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Preface

My goal is to help you learn calculus. It is a beautiful subjeal ds central ideas
are not so hard. Everything comes from the relation between two different functions.
Here are two important examples:

Function(1) Thedistancea car travels Functio®) Its speed
Function(1) Theheightof a graph Functiofi2) Its slope

Function (2) is telling us how quickly Function (1) is changing.The distance will
change quickly or slowly based on the speed. The height changes quickly or slowly
based on the slope. You see the same in climbing — Fun¢tiocan be the height of

a mountain and Functiof?) is its steepness. The height and the distance in Function
(1) are “running totals” that add up the changes that come from Funjon

The clearest example is when the spee@@GNSTANT. The distance is steadily
increasing. If you travel af0 miles per hour, or ag0 kilometers per hour, then
after3 hours you know the distance traveled. | can write the answer by multiplying
3 times 50 or 3 times80. | can write the formula using algebra, which allows any
constant speedand any time of travel:

The distance f at constant speed in travel time ¢ is f =s timest.
We don’t need calculus when the speed is constant or the slope is constant:
If s =slope andx = distance acrossthe distance up isy = s timesx.

Those rules find Functiofl) from Function(2). We can also find Functiof2) from
Function(1). To know the speed or the slope, divide instead of multiplying:

_ distancef distance up

speeds = - slopes =
travel timet

" distance across

From the distance, we find the speed. ThidDi$ferential Calculus.Knowing the
speeds, we find the distanc¢. This isIntegral Calculus.

Algebra is enough for this example of constant speed. But whisrcontinually
changing, and we speed up or slow down, then multiplication and division are not
enough!A new idea is needed and that idea is the heart of calculus.



Vi

Preface

Differential Calculus finds Functiori2) from Function(1). We recover the
speedometer information from knowing the trip distance at all times.

Integral Calculus goes the other way. The “integral” adds up small pieces, to get
the total distance traveled. That integration brings back Fun¢tipn

Function (1) is f(¢) or y(x) (2) Its “derivative” s isdf/dt or dy/dx

The derivative in Functio) isthe “rate of changé of Function(1). The book will
explain the meaning of these symbdl§/dt anddy/dx for the derivative.

CHANGING SPEED AND CHANGING SLOPE

Let me take a first step into the real problem of calculus, whésn not constant.
Now Function(1) will not have a straight line graph. The speed and the slope of the
graph will change, but only every hour. From the numbers you can see the pattern:

Distances 0 1 4 9 16 Subtractthe distances to get Function (2)
Speeds 1 3 5 7 Add up the speeds to get Function (1)

Going from (1) to (2) we are subtracting, as ih—1=3 and 9—4=25. Those
differences3 and5 are the speeds in the second hour and third hour.

Going from(2) to (1) we are adding, as ih+3+5=9. The trip meter adds up the
distances from hoursand2 and3. Addition is the opposite of subtraction.

The essential point of calculus is to see this same pattern in “continuous time.”
It's not enough to look at the total or the change every hour or every minute.
The distance and speed can dganging at every instant In that case addition
and subtraction are not enough. The central idea of calculcsnisnuous change

There are so many pairs liké) and(2)—not just cars and graphs and mountains.
This is what makes calculus important. The functions are changing continuously—not
justin finite steps. This is what makes calculus different from arithmetic and algebra.

IMPORTANT FUNCTIONS

Let me repeat the right name for the step fréin to (2). When we know the
distance or the height or the functigfix), calculus can find the speedglocity) and
the slope andhe derivative That isdifferential calculus, going from Function(1)
to Function(2). It will take time to find the slopedlte derivativelfor the examples
we need.

| finally realized that the list of truly essential functions is not extremely long!
I now include only five special choices foKx) or f(¢) on my basic list:

Important functions x™  sinx andcosx e* andInx

For those distance functions, the speed (the slope) is continually changing. If we
divide the total distance by the total time, we only know one number: the
average speedWhat calculus finds is thepeed at each separate momeithe
whole history of speed from the whole history of distance.
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Your car has a speedometer to tell the derivative. It has a trip meter to tell the total
mileage. They have the same information, recorded in different ways. From a record
of the speeds we could recover a lost trip meter and vice versa. One black box is
enough, we could recover the other one

The derivative (speedometer) tells how the distance is changing.
The integral (odometer) adds up the changes to fnd the distance.

This is the “Big Picture” and the details are in this book. We need examples, we
need formulas, we need rules, and especially we want and need applications — how
to use this subject that you are learning.

VIDEO LECTURES

This book is supplemented by a series of 17 video lectures on "Highlights of
Calculus". These are on MIT's OpenCourseWare site ocw.mit.edu and they are
freely available to all viewers. My hope is to help students and teachers everywhere.
https://ocw.mit.edu/resources/res-18-005-highlights-of-calculus-spring-2010/

At this moment I cannot know all the ways the videos may be used (my website
math.mit.edu/~gs will try to keep up to date). OpenCourseWaren ocw.mit.edu
is the focus of this plan. That site has notes and reading materials for almost 2000
MIT courses. For large classes there are also videos. The linear algebra lectures have
had 2 million viewers (amazing. Those videos for the 18.06 course can help for
review (at any hour!). There is also the next course 18.085 on Computational
Science and Engineering.

One plan is to include these calculus videos on “Highlights for High School”
within ocw.mit.edu. The highlights are shorter than the full multi-semester subject
18.01-18.02. I started with the idea that it must be so easy to get lost in a calculus
textbook of 1000 pages. (This book is not so long, but still there is a lot to learn.)
The video lectures go far beyond the page you are reading now, to help you capture
the main ideas of calculus.

Many ideas from these videos on Highlights of Calculus are repeated and
developed in Chapter O of this book. In addition to these, Cleve Moler (the creator
of MATLAB) has joined me in a long series of short videos on a recent book :
Differential Equations and Linear Algebra (math.mit.edu/dela). The link to these
videos is :
https://ocw.mit.edu/resources/res-18-009-learn-differential-equations-up-close-
with-gilbert-strang-and-cleve-moler-fall-2015/

THE EXPONENTIAL y =e”*

There is one special function that I want to mention separately. It is created by calculus
(not seen in algebra because a limit is involved). This is the function y =e*, and
one big question for the new Section 0.3 is how to construct it.

My answer now is not one of the usual four or fve ways. All those def nitions
of e* seem rather indirect and subtle. Instead I will try a direct attack that only uses
the powers x”. At that point of the book, the functions y =1, x, ..., x” have known
slopes. We are looking for the magic functiony = e* that equals its own slope

Then Function (1) equals Function (2) ! See what you think of this approach.
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To the Student

| hope you will learn calculus from this book. On this page | witlnait that | even

hope for more. If you find that the explanations are clear, and alspuhmoseis
clear—that means you see not only equations but ideas. Then the book was worth
writing, and the course is a success.

| am trying to say that this subject is alive. As long as there are problems to solve,
mathematics will keep growing. It is not wrapped up inside some giant formula!
We want to know the chance of winning the Florida lottery (ChaferYou can
see the meaning of an electrocardiogram (Chaptesnd where we are on the pop-
ulationS-curve. There is no reason to pretend that mathematics hasah#wers.

This book is really thdife story of an idea—which isn'’t finished.

Most of mathematics is about patterns and functions. There is a pattern in the
graphs of Sectiori.6 (which | don’t understand). There is a pattern in the slopes
of x2 and x3 and x” (which you will understand). They change aschanges.
Every function contains a whole history of growth or decay. The pattern is sometimes
clear and sometimes hidden—the goal is to find it.

The reader will understand that calculus is not all sweetness and light. There is
work to do. You absolutely have to solve problems—and think carefully. As one of
my students said,My God, | have to read the wordg guess that's true, and | hope
the words come to the point. The book will try not to waste your time. Its object is
not to “cover” material, but to uncover and explain it. In the end, teaching a subject
comes down to teaching a person.

It is not easy to stay inspired for a year—probably impossible. But mathematics
is more active and cheerful than most people know. This book was written in a happy
spirit, with a serious purpose—I hope you enjoy it.

A SMALL REWARD

Some mistakes may have crept into the solutions. | still havetehedimes that
George Thomas offered ih952, for correcting ten errors. This reward is hereby
increased to & It should bee’ but that could grow exponentiallilore important:

All suggestions are welconelease write about any part of the book or the videos.



Derivatives

d & _ d ,ex _ . ,cx
Sum:; (u+v)—dx+dx 75 Sinx =cosx 1€ =ce
d d _ ; d px _ px
Product 7= (uv) —udx +v dx 75 COSx = —sinx 7=b*=b*Inb
. d __ vdu/dx—udv/dx d _ i _ l
Quotient: H(E) = PN R £ tanx =seCx Inx =
. d ny n—1du d _ d -1
Power: = (u”") =nu" 1 9% £ cotx = —CSC x Lsn iy = \/—
dz dy d _ d -1, _
Chain: —Z(y(x)) Iy dx 7y SeCx =secxtanx tan™ x = 1+x
1 _ _
Inverse:4 D = Tdx dxCSCx CSCx COtx dxsec \x\\/m
Limits and Continuity Algebra
sinx 1—cosx 1—cosx 1 _
1 === =0 el ;?Z_bx X n:xi" (,/_:xl/n

an —0:lay| <eforalln>N
apn—L:|lay,—L|<eforalln>N
fx)—=L:|f(x)—L|<eforO<|x—al<$é
f(x) — f(a): Continuous at: if L = f(a)
LQ=J@ _, £'(q): Derivative at

[ -J@ — ¢1(¢): Mean Value Theorem

W — f/(x): Derivative atx
f(x+Ax2)Z){(x—Ax) — f'(x): Centered

x)

LX) rUanital’ 0
5 =lim ,(x) I'Hopital's Rule for §

Sx)
lim 0

Maximum and Minimum

Critical: f/(x) =0 or no f’ or endpoint
Minimum f'(x)y=0andf"(x)>0
Maximum fl(x)=0andf"(x) <0
Inflection point f"(x)=0

Newton's Methodx,, + 1 = x, — £
Iterationx,+; = F(x,) attracted to
fixed pointx® = F(x*) if |F'(x*)| <1
Stationary in 2D9 f/0x =0,0f/0y =0
Minimum Sax >0 fax fyy > xzy
Maximum  fix <0 fex fyy > f2,
Saddle point fex Loy < 13

Newton in 2D
h+hyAx+hy,Ay =0

(x2)(x3) =x> (x2)3 = x x2/x3 =x!

ax? +bx +c =0 has rootsc = —2E\ b —dac Vzl;z_““”

x24+2Bx+C =0hasrootsc =—B++/B2—-C

Completing squarex? +bx+c =a(x+ 2)* ¢ — %
cx+d A B

Patial fractions

(x—a)(x—=b) =~ x—a + x—b

Mistakes 34 # 5+ ¢ VX2 +aZ£x+a

Fundamental Theorem of Calculus

£ S vwdt=v(x) [} 4dx=f(b)- f(a)
L o v(t)dr = v(b(x)) 2 —v(a(x)) 42
2 y(odx = Jim Ax[y(Ax)+y@Ax) + -+ y (D))

Circle, Line, and Plane

X =rcoswt, y =rSnwt, speedvr
y=mx+bory—yo=m(x—xg)
Planeax +by +cz=d or
a(x—x0)+b(y —yo)+c(z—2z0) =0
Normal vectowmi + bj + ck

Distance t0(0,0,0): |d|/~a? + b2 +c2
Line (x,y,z) = (xo,Y0,%0) +1(v1,v2,v3)

xX— xo_y Yo — z2—Z2o
No parameter:; > "

Projection:p = a aa |p| = |b|cosé



Trigonometric Identities

sin? x +cogx =1

tan® x + 1 = sec x (divide by cos x)

1 +cof x = cs@ x (divide by sirf x)

sin2x = 2sinx cosx (double angle)

cos2x =cofx —siPx =2coFx —1=1-2six
sin(s +¢) = sinscost £ cosssint  (Addition
cogs +t) =cosscost Fsinssint formulas)
tan(s +¢) = (tans +tanr) /(1 —tans tant)
c2=a?+b?%—2abcosb (Law of cosines)
a/sinA=b/sinB =c/sinC (Law of sines)
acosf +bsind =+/a? +b2cogd —tar! 2)
cos(—x) =cosx and sif—x) = —sinx

sin( £ x) = cosx and co$% +x) = Fsinx
sin(w +x) = Fsinx and co$r + x) = —COSx

Trigonometric Integrals

P xX— smxcosx 1— cost __ X _ sin2x
[sir?xdx = = dx =3 4

__ x+4sinxcosx __ ( 14-cos2x _ X
Jco?xdx = 2 =[x =35

+ sin2x
4
Jtan?x dx =tanx —x

Jcof x dx = —cotx —x

. il —1 .
[ s x dx = —st__xcosx 4 n=l ('gjp=2x gx

n

Jcodxdx=+ COSnilfxsmx+ﬂfcos”’2xafx

Jtart x dx =2 M [tar"2xdx

-2
fsed‘xdx _ sed’ "~ xtanx +

— 22 fse¢2xdx
Jtanx dx = —In|cosx|

Jcotx dx =In|sinx|

[ secx dx =In|secx +tanx|
Jesex dx =In|cscx —cotx| = —In|cscx + cotx|

['sexdx =1sextanx + 1In|secr +tanx|

fsin px sin qx dx = sin(p—q)x __ sin(p+q)x

2(p—q) 2(p+q)
[ cos px cosgx dx = SXp—)x | sintpta)x
4 q 2(p—q) 2(p+q)

; _ _codp—g)x _ codp+q)
J'sin px cosqx dx = — o~ s

I ntegration by Parts

[Inxdx =xInx—x

n _ xn+l|nx _ anrl
Jatinx dx = 25 — 2o

[x"e*dx =x"e* —n [x""le®dx

Je*sinkx dx = 5 (csinkx —k coskx)

Jee* coskx dx = £ (c coskx + ksinkx)
[ xsinx dx =sinx —xcosx

J xcosx dx =cosx +xsinx

[x"sinx dx =—x"cosx+n [x" !cosxdx
[x"cosxdx =+x"sinx—n [x" !sinxdx
[sin'xdx=xsin'x+41-x2

Jtan!x dx =xtan ! x — 1In(1 +x?)

Integrals with x? and ¢? and D = b? —4ac

J‘ dx _ltan71£

x2+aZ " a
fa;i_xx2:2a|n|x+a|—ltanh 1x
_ 21 .2
f\/m—lnpc—}-\/x +a?|
dx _oin—1lx
) o =sinT g
JVx2+a2dx=3+x 2+a2+ﬁ|n|x+\/x2+a2|
fmdx:gm+ -1y
1 os™ a
[ 5= =jcosT' ¢
J‘ dx :l|n|\/x2+427a|
x\/x2+a2 @ X
_dx  _ _1 ||2ax+tb=vD
Iax2+bx+c - |n|2ax+b+\/l__)|’D>0
— _2 gl 2ax+b
_Ftan J_’D<0
2ax+b’D 0
— 1 2
f\/m ﬁln|2ax+b+2\/0_t\/ax +bx+c|

_ 1 in—1 —2ax—b
= =S i) ,a<0

Definite Integrals

J, x"e*dx=n!=T(n+1)

I e~ dx =\/m/2a

1
Jo X" (A —x)"dx = %

Dsitx g (Psinx g _ 7w
Jo Fptdx= [, dx =73

X

foﬂ/zsin" xdx = foﬂ/z cod xdx =

13...u(1) 24 . n-1
24 n 2 35 n
neven nodd>1



CHAPTER O

Highlights of Calculus

I 0.1 Distance and Speed // Height and Slope |

Calculus is about functionsl use that word “functions” in the first sentence,
because we can’t go forward without it. Like all other words, we learn this one in
two different ways: Wedefinethe word and weisethe word.

| believe that seeing examples of functions, and using the word to explain those
examples, is a fast and powerful way to learn. | will start with three examples:

Linear function y(x)=2x
Squaring function y(x) =x2
Exponential function y(x)=2"

The first point is that those are not the same! Their formulas invbbedx in very
different ways. When | draw their graphs (this is a good way to understand functions)
you see that all three are increasing whes positive. The slopes are positive.

When the inputx increases (moving to the right), the outputalso increases
(the graph goes upward). The three functions increase at diffierst

y

8 y= 23

4r y= 2%x

2 .

; Exponential
L. oy
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Near the start at =0, thefirst function increases the fastest. But the others soon
catch up. All three graphs reach the same heigkt4 whenx =2. Beyond that
point the second graph = x? pulls ahead. Atx = 3 the squaring function reaches
y =32 =9, while the height of the third graph is onjy= 23 =8.

Don’t be deceivedthe exponential will winlt pulls even atx = 4, becausd? and
2% are both16. Theny =2* moves ahead of = x? and it stays ahead. When you
reachx = 10, the third graph will have = 21° = 1024 compared toy = 102 = 100.

The graphs themselves arestraight line and aparabola and anexponential
The straight line has constant growth rate. The parabola has increasing growth rate.
The exponential curve has exponentially increasing growth rate. | emphasize these
because calculus is all about growth rates.

The whole point of differential calculus is to discover the growth rate of a function,
and to use that information. So there are actualyp functions in play at the
same time—the original function and its growth rate. Before | go further down
this all-important road, let me give a working definition of a functidr):

A function has inputs x and outputs y (x). To eachx it assigns oney.

The inputsx come from the “domain” of the function. In our graphs the domain
contained all numbers > 0. The outputsy form the “range” of the function. The
ranges for the first two functions =2x and y = x? contained all numbers > 0.
But the range foy = 2* is limited to y > 1 when the domain is > 0.

Since these examples are so important, let me also allot® be negative.
The three graphs are shown below. Strictly speaking, these are new functions! Their
domains have been extendedalbreal numbersy. Notice that the three ranges are
also different:

The range ofy = 2x is all real numbery
The range ofy = x2 is all nonnegative numbens> 0
The range ofy = 2* is all positive numbers > 0

One more note about the idea of a function, and then calculus can begin. We have
seen the three most popular ways to describe a function:

1. Give aformulato find y from x. Example:y(x) = 2x.
2. Give agraphthat showst (distance across) and(distance up).
3. Give theinput-output pairgx in the domain ang in the range).
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In a high-level definition, the “function” is the set of all the impoutput pairs. We
could also say: The function is the rule that assigns an oytputhe range to every
inputx in the domain.

This shows something that we see for other words too. Logically, the definition
should come first. Practically, we understand the definition better after we know
examples that use the word. Probably that is the way we learn other words and also
the way we will learn calculus. Examples show the general idea, and the definition
is more precise. Together, we get it right.

The first words in this book wer€alculus is about functiondNow | have to
update that.

PAIRS OF FUNCTIONS

Calculus is about pairs of functionsCdl them Function {) and Function (2).
Our graphs ofy =2x and y =x2 and y =2* were intended to be examples of
Function (). Then we discussed the growth rates of those three exanifes.
growth rate of Function (1) is Function (2). This is our first task—to find the
growth rate of a function. Differential calculus starts with a formula for
Function(1) and aims to produce a formula for Functi@).

Let me say right away how calculus operates. There are two ways to compute how
quickly y changes when changes:

Ch i A
Method 1 (Limits): Write m = 22 Take the limit of this ratio ashx — 0.
Changeix  Ax

Method?2 (Ruleg: Follow a rule to produce new growth rates from known rates.

For each new functiony(x), look to see if it can be produced from known
functions—obeying one of the rules. An important part of learning calculus is
to see different ways of producing new functions from old. Then we follow the
rules for the growth rate.

Suppose the new function igot produced from known function2t is not
produced from2x or x2). Then we have to find its growth rate directly. By
“directly” | mean that we compute a limit which is Function (2). This book will
explain what a “limit” means and how to compute it.

Here we begin with examples—almost always the best way. | will state the
growth rates ¢y /dx” for the three functions we are working with:

Function (1) y=2x y=x2 P =nT
. dy dy dy .
Function (2) Iy =2 Iy =2x Iy =2*(n2)

The linear functiony =2x has constant growth ratéy/dx = 2. This section will
take that first and easiest step. It is our opportunity to connect the growth rate to the
slope of the graph The ratio ofup to acrossis 2x/x which is2.

Section).2 takes the next step. The squaring functjos x? has linear growth rate
dy/dx =2x.(This requires the idea of a limit—so fundamental to calculus.) Then we
can introduce our first two rules:

Constant factor  The growth rate o€y (x) is C times the growth rate of (x).
Sum of functions The growth rate of; + y, is the sum of the two growth rates.



0 Highlights of Calculus

The first rule says thap = 5x2 hasgrowth ratelOx. The factorC =5 multiplies
the growth rate2x. The second rule says that + y, = 5x% +2x has growth rate
10x +2. Notice how we immediately toakx? as a functiory; with a known growth
rate. Together, the two rules give the growth rate for any “linear combination” of
y1 andy;:

Th , N dyi dyz

e growth rate of Cyy1+ Czy, isthat same combinationCy Ir + CZE'

Inwords, the step from Function (1) to Function (2)iiear. The slope ofy = x2 —x
isdy/dx =2x—1. This rule is simple but so important.

Finally, Section0.3 will present the exponential functions=2* and y =e*.

Our first job is their meaning—what is2“to the powerz”? We understand
23 =8 and2* = 16, but how can we multipl{ by itself = times?

When we meet*, we are seeing the great creation of calculus. This is a function
with the remarkable property thdy /dx = y. The slope equals the functionThis
requires the amazing number which was never seen in algebra—because it only
appears when you take the right limit.

So these first sections compute growth rates for three essential functions. We are
ready fory = 2x.

THE SLOPE OF A GRAPH

The slope is distance up divided by distance acrossam thinking now about the
graph of a functiorny(x). The “distance across” is the change— x; in the inputs,
from x; to x,. The “distance up” is the change — y; in the outputs, frony; to y,.
The slope is large and the graph is steep whenr y; is much larger than, — x; .
Change iny divided by change in matches our ordinary meaning of the word slope:

change iny _ yo—y1 _ Ay

Average slope= — = = .
9 P change ik xp—x; Ax

1)

| introduced the very useful Greek lettar(delta), as a symbol farthange We take
a step of lengthAx to go fromx; to x,. For the heighty(x) on the graph, that
produces a stepy = y, — y;. The ratio of Ay to Ax, up divided by across, is the
average slope betwean andx,. The slope is the steepness.
Important point: | had to say “average” because the slope could be changing as
we go. The graph of = x? shows an increasing slope. Betwegn= 1 andx, =2,
what is the average slope for= x2 ? Divide Ay by Ax:
n=latx=1 Average slope= -l _dy_ 3.
yo=4atx, =2 2—1 Ax
Betweenx; =0 and x, =2, we get a different answer (né). This graph ofx?
shows the problem of calculus, to deal with changes in slope and changes in speed.
The graph ofy =2x has constant slope. The ratio afy to Ax, distance up to
distance across, is alwags

Ay _ya=y1 _ 2x2-2x1 _

2.
Ax X3 —Xx1 X2 — X1

Constant slope

The mathematics is easy, which gives me a chance to emphasize the words and the
ideas:

Function (1)= Height of the graph Function (ZF Slopeof the graph
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When Function (1) iy = Cx, the ratioAy/Ax is alwaysC. A linear function has
a constant slope. And those same functions can come from driving a car at constant
speed:

Function (1)= Distancetraveled= Ct Function (2)= Speedof the car=C

For a graph of Function (1), its rate of change is #iepe When Function (1)
measures distance traveled, its rate of change isspeed (or velocity). When
Function(1) measures our height, its rate of change isgromwth rate.

The first point is thatfunctions are everywherd-or calculus, those functions
come in pairsFunction(2) is the rate of change of Functiqn).

The second point is that Function (1) and Function (2) are measured in different
units. That is natural:
. miles . L . . -
(Speed mm) multiplies (Tlme in hours) to glve(Dlstance wrmles)

._inches . _ . S
(Growth rate in year ) multiplies (T|me myears) to glve(He|ght mmches)

When time is in seconds and distance is in meters, then speed is automatically in
meters per second. We can choose two units, and they decide the third. Function (2)
always involves a division‘Ay is divided byAx or distance is divided by time.

The delicate and tricky part of calculus is coming next. We wanstbpe at one
pointand thespeed at one instantVhat is the rate of change #ero time?

The distance across isx =0 at a point. The distance up 5§y =0. Formally,
their ratio is %. Itis the inspiration of calculus to give this a useful meaning.
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Big Picture

Calculus connects Function (1) with Function &Y ate of changeof (1)
Function (1) Distance traveleflr) Function (2) Speed(t) =df/dt
Function (1) Height of graph(x) Function (2) Slopa(x)=dy/dx
Function (2) tells how quickly Function (1) is changing

Distance f Distance up

KEY Constant speegl= . Constant slopg = ——
Timet Distance across

Graphs of (1) and (2)
f = increasing distance

s = constant speed

J
f=st s
t t
Slope of f-graph= a:rr;ssz St—t =

Area under-graph= area of rectangle- st = f

Now run the car backwards
Speed is negative
Distance goes down

Area “under”s(¢) is zero

(@) s(1)
+s

t
This area
is negative
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Example with increasing speed Then distance has steeper slope

f=10¢?
s =20t

f

When speed is changing, algebra is not enough- " iswrong

. . 1
Still true that area under= triangle area= E(t)(ZOt) =102=f

Still true thats = slope of f = % = “derivative” of f

When f is increasing, the slopeis positive
When f is decreasing, the slopds negative
When f is at its maximum or minimum, the slopés zero

The graphs of any'(¢) and f(¢) + 10 have the same slope at every
df

To recoverf = Function (1) fromz, good to know a starting heighf(0)
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Practice Questions

1. Draw a graph off (¢) that goes up and down and up again.

Then draw a reasonable graph of its slope.

f S

2. The world populationf(¢) increased slowly at first, now quickly, the
slowly again (we hope and expect). Maybe a limifLl2 or 14 billion.

af

Draw a graph forf(¢) and its slopes(z) = I

3. Supposef (1) =2t fort <1andthenf(z)=3r+2forr > 1
Describe the slope graplir). Compare its area out to= 3 with f(3)

4. Draw a graph off (#) = cost. Then sketch a graph of its slope. At what ang
t is the slope zero (slope 0 when £(¢) is “flat”).

5. Suppose the graph of(¢) is shaped like the capital lett®/. Describe the
graph of its slope(r) = % What is the total area under the graphsd?

6. A train goes a distanc¢ at constant speed Inside the train, a passeng
walks forward a distancd at walking speedS. What distance does th

passenger go? At what speed? (Measure distance from the train statior

~ (O W
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I 0.2 The Changing Slope of y =x?and y =x" [N

The second of our three examplesis- x2. Now the slope is changing as we move
up the curve. The average slope is stilt / A x, but that is not our final goal. We have
to answer the crucial questions of differential calculus:

What is the meaning of “slope at a point and how can we compute i?

My video lecture onBig Picture Derivativesalso faces those questions. Every
student of calculus soon reaches this same problem. What is the meaning of “rate
of change” when we are at a single moment in time, and nothing actually changes
in that moment? Good question.

The answers will come in two steps. Algebra produsseg A x, and then calculus
findsdy/dx. Those stepgly anddx are infinitesimally short, so formally we are
looking at0/0. Trying to definedy anddx and0/0 is not wise, and | won't do it.

The successful plan is to realize that the ratiohof to Ax is clearly defined, and
those two numbers can become very snifithat ratio Ay/Ax approaches a limit,
we have a perfect answer

Ay _y+Ax)-y(x)

The slope atx is the limit of
P Ax Ax

The distance across, fromto x + Ax, is just Ax. The distance up is from(x) to
y(x 4+ Ax). Let me show how algebra leads directlyAy/Ax wheny = x2:

Ay  (x+Ax)2—x? _x?+2xAx+(Ax)?—x?

Notice that calculation! The “leading terms? and —x? cancel. The important term
here is2xAx. This “first-order term” is responsible for most afy. The “second-
order term” in this example i6Ax)?2. After we divide byAx, this term is still small.
That part(Ax)2/Ax will disappear as the step sizex goes to zero.

That limiting process Ax — 0 produces the slopedy/dx at a point. The first-
order term survives idy /dx and higher-order terms disappear.

. d __ A -
Slope at a point &Y _limit of 22X = limit of 2x + Ax =2x.
dx Ax

Algebra producedAy/Ax. In the limit, calculus gave ugly/dx. Look at the
graph, to see the geometry of those steps. The rafiaarpss= Ay/Ax is the slope
between two points on the grapfihe two points come together in the limit
Then Ay/Ax approaches the slopgy/dx at asingle point
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Ax

X x+Ax X x+Ax

x+dx

The color lines connecting points on the first two graphs are called “chords.”
They approach the color line on the third graph, which touches at ampoint.
This is the tangent line” to the curve. Here is the idea of differential calculus:

. . d
Slope of tangent line= Slope of curve= Function(2) = d_y =2x.
X

To find the equation for this tangent line, return to algebra. Choose any specific
value xo. Above that position on ther axis, the graph is at heighto = x2.

The slope of the tangent line at that point of the graphdis/dx =2xy.

We want the equation for the line through that point with that slope.

Equation for the tangent line v —yo = (2x0)(x —x9) Q)

At the point wherex = xo and y = yy, this equation becomés= 0. The equation is
satisfied and the point is on the line. Furthermore the slope of the line matches the
slope2x, of the curve. You see that directly if you divide both sidesiby x,:

up y—Jyo
across x—Xxp

. . d
Tangent line =2xy isthe correct sloped—y.
X

Let me say this again. The curve= x? is bending, the tangent line is straight.
This line stays as close to the curve as possible, near the point where they touch.
The tangent line giveslinear approximation to the nonlinear function= x2:

: L d
Linear approximation  y =~ yo+ (2x0)(x —x9) = yo + d—y(x —x0) (@
X

| only moved y, to the right side of equation (1). Then | used the symisofor
“approximately equal” because the symbelwould be wrong: The curve bends.

Important for the futureThis bending comes from treecond derivativef y = x2.
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THE SECOND DERIVATIVE

The first derivative is the slopéy/dx = 2x. The second derivative is the slope
of the slope By good luck we found the slope @f in the previous section (easy to
do, it is just the constant 2). Notice the syml@ly /dx? for the slope of the slope:

.. d? d .
Second derlvatlve—y The slope of—y =2x is
dx? dx

d?y

ax?

2. €)

In ordinary language, the first derivative /dx tells how fast the functiow (x) is
changing. The second derivative tells whether wespeeding up or slowing down
The exampley = x? is certainly speeding up, since the graph is getting steeper. The
curve is bending and the tangent line is steepening.

Think also abouty = x2 on the left side (the negative side) of=0. The graph
is coming down to zero. Its slope is certainly negative. But the curve is still bending
upwards! The algebra agrees with this picture: The slbp&ix = 2x is negativeon
the left side ofr = 0, but the second derivativé? y /dx? = 2 is still positive.

An economist or an investor watches all three of those numbéx3:tells where
the economy is, andy/dx tells which way it is going (short term, close to the
tangent line). But it isd2y/dx? that reveals the longer term prediction. | am
writing these words near the end of the economic downturn (I hope). | am sorry that
dy/dx has been negative but happy thidty /dx? has recently been positive.

DISTANCE AND SPEED AND ACCELERATION

An excellent example of (x) and dy/dx andd?y/dx? comes from driving a car.

The functiony is thedistance traveledts rate of change (first derivative) is thpeed

The rate of change of the speed (second derivative) iaticeleration If you are
pressing on the gas pedal, all three will be positive. If you are pressing on the brake,
the distance and speed are probably still positive but the acceleration is negative:
The speed is dropping. If the carirsreverseand you ardoraking what then ?

The speed is negative (going backwards)
The speed is increasing (less negative)
The acceleration is positive (increasing speed).

The video lecture mentions that car makers don’t know calculus. The distance
meter on the dashboard does not go back toward zero (in reverse gear it should).
The speedometer does not go below zero (it should). There is no meter at all (on my
car) for acceleration. Spaceships do have accelerometers, and probably aircraft too.

We often hear that an astronaut or a test pilot is subjected to a high numpisr of
The ordinary acceleration in free fall is oge from the gravity of the Earth. An
airplane in a dive and a rocket at takeoff will have a high second derivative—the
rocket may be hardly moving but it is accelerating like mad.

One more very useful point about this example of motitime natural letter to use
is notx butz. The distance is a function éime. The slope of a graph is ypcross,
but now the right ratio is (change of distance) divided by (change in time):

Ay _y+AD—y(@)
At At

: . d A
Speed att itself (instant speed) d—f = limit of A—f asAt —0

Average speed betweenand ¢ + At
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The words “rate of change” and “rate of growth” suggestrhe word “slope”

suggestse. But calculus doesn’t worry much about the letters we use. If we graph

the distance traveled as a function of time, then thaxis (across) becomes the

t axis. And the slope of that graph becomes the speed (velocity is the best word).
Here is something not often seen in calculus books—sbeond difference.

We know the first difference\y = y(t + At)—y(¢). It is the change iny. The

second differencA?y is the change inAy:

A2y d?y

a0z arz @

Second

difference A7V =0 +AD = y(0) = ()~ y(t — A1)

A%y smplifies to y(t+A1)—2y()+y(t—Ar). We divide by (Ar)? to
approximate the acceleration. In the limit ast — 0, this ratio AZy/(At)?
becomes theecond derivatived 2y /dt?.

THE SLOPE OF y =x"

The slope ofy = x? is dy/dx = 2x. Now | want to compute the slopes of= x3
andy =x* and all succeeding powess= x". The rate of increase of” will be
found again in Sectior2.2. But there are two reasons to discover these special
derivatives early:

: . . d
1. Their pattern is simpleThe slope of each powely =x" is d_y =nx""1.
X

. . _ . . d
2. The next section can then introduge- ¢*. This amazing function hagz =y.
X
Of coursey = x? fits into this pattern for”. The exponent drops by from n =2
ton—1=1. Alson = 2 multiplies that lower power to givex” ! = 2x.
The slope ofy = x3 is dy/dx = 3x?. Watch how3x? appears im\y/Ax:

Ay (x+ Ax)3 —x3 _ x34+3x2 Ax+3x(Ax)? + (Ax)3 —x3
Ax Ax N Ax ’

©)
Cancelx? with —x3. Then divide byA x:

Average slope % =3x243xAx+ (Ax)2.

When the step length x goes to zero, the limit valuéy /dx is 3x2. This isnx"~1.

To establish this pattern far=4,5,6, ... the only hard part i$x + Ax)". When
n was 3, we multiplied this out in equation (5) above. The result will always start
with x”. We claim that the next term (the “first-order term”A) will be nx”~! Ax.
When we divide this part oAy by Ax, we have the answer we want—the correct
derivativenx™~! of y(x) = x".

How to see that ternmux”~1Ax ? Our multiplications showed thatxAx and
3x2Ax are correct forn =2 and3. Then we can reach= 4 fromn = 3:

(x+Ax)* = (x + Ax)3 times(x + Ax)
= (x> +3x2Ax +---) times(x 4+ Ax)

That multiplication produces* and4x3Ax, exactly what we want. We can go from
eachn to the next one in the same way (this is called “induction”). The derivatives of
all the powerse?, x°, ..., x" aredx3, 5x*, ..., nx"~1L.
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Section2.2 of the book shows you a slightly different proof of this formula.
And the video lecture on thBroduct Ruleexplains one more way. Look at’*!
as the product at” timesx, and use the rule for the slope pf timesy,:

Product Rule  Slope ofy; y2 = y2 (sope of y1) + y1 (slope of y;) (6)

With y; = x" and y, = x, the slope ofy; y, = x"*! comes out right:
x(slope ofx”) + x" (slope ofx) = x(nx"~1) +x" (1) = (n + 1)x". @)

Again we can increase one step at a time. Soon comes the truly valuable fact that
this derivative formula is correct faall powers y = x". The exponent can be
negative, or a fraction, or any number at all. The sldpgdx is alwaysnx” 1.

By combining different powers aof, you know the slope of every “polynomial.”
An example isy = x +x2/2+x3/3. Computedy/dx one term at a time, as the
Sum Rule allows:

d x2 X3 | 5
dx(x+ > + 3 )— +x+x~.

Theslope of the slope ig2y/dx? = 1+ 2x. The fourth derivative is zero!

Function (1) tells us the heighy above each point
The problemis to find the “instant slope” at

d
This slopes(x) iswritten d_y It is Function (2)
X

dy

Ay _ybe+Ax) -y __up approaches— as Ax — 0
dx

KEY: — =
Ax Ax across

. d .
Compute thenstant slope d_y for the functiony = x3
X

First find the average slope betweeand x + Ax

A Ax)? —x3
Average S|ope: _y - M
Ax Ax

Write (x + Ax)? = x3 +3x2Ax +3x(Ax)2 + (Ax)3
Subtracty® and divide by Ax

Ay 3x?Ax +3x(Ax)*+(Ax)?

AT " =3x2+3xAx+(Ax)?
. dy 2 d 1
WhenAx — 0, this becomes— = 3x —(x")=nx"
dx dx

d
y =Cx" has slope&Cnx"~!  The slope ofy = 7x? is d_y =14x
X

Multiply y by C — Multiply Ay by C — Multiply Z—y by C
X
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Neat Fact: The slope ofy =sinx is Z—y =C0Sx
X

The graphs show this is reasonable

Slope at the start is 1 (to find later)

N\ NS
{ vn dope— coss l\n =

Sine curve climbing—» Cosine curve> 0
Top of sine curve (flat}» Cosine is zero at the first bullet
Sine curve falling— Cosine curve< 0 between bullets

Bottom of sine curve (flat}> Cosine back to zero at the second bullet

Practice Questions

. A
1. Fory =2x3, what is the average slope A_y fromx=1tox=27
X

. . _d?
2. What is the instant slope of=2x3 atx=1?  What |sd—)2) ?
X
d _d 1
3. y=x" has &2 — =1 what is &2 when yx)=—=x"17?
dx dx X

. A 1
4. Fory =x~!, what is the average sIopAeX fromx = 3 tox=17?
X

. . 1
5. What is the instant slope of=x"! atx = 3 ?

6. Suppose the graph ofx) climbs up to its maximum at = 1

Then it goes downward for > 1

6A. What is the sign oﬁl for x <1 and then forx > 17
X
6B. What is the instant slope at=17?

. . . A .
7 If y =sinx, write an expression foAr—y atany pointx.
X

A
We see later that thvzl approaches cos
X
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I 0.3 The Exponential y =¢* |

The great function that calculus creates is the exponentiaé™. There are different
ways to reach this function, and Section 6.2 of this textbook mentions five ways.
Here | will describe the approach & that | now like best. It uses the derivative of
x", the first thing we learn.

In all approaches, a “limiting step” will be involved. So the amazing number
e=2.7... is not seen in algebrae (is not a fraction). The question is where to
take that limiting step, and my answer starts with this truly remarkable fact:
Wheny = ¢* is Function (1), it is also Function (2).

. . . d
The exponential functiony = e* solves the equatloell =y.
X

The function equals its slope This is a first example of differential equation—

connecting an unknown functionwith its own derivatives. Fortunately /dx =y

is the most important differential equation—a model that other equations try to follow.
| will add one more requirement, to eliminate solutions like-2¢* andy = 8¢*.

When y =e* solves our equation, all other functioifs* solve it too. C =2

and C =8 will appear on both sides ofy/dx =y, and they cancel.) Ak =0,

e? will be the “zeroth power” of the positive number All zeroth powers arel.

So we wanty = e* to equal 1 whenx = 0:

. . d
y =e* is the solution ofd—y =y that starts fromy =1atx =0.
X

Before solvingdy/dx =y, look at what this equation means. Whenstarts
from 1 atx =0, its slope is also 1. Sg¢ increases. Thereforgy /dx also increases,
staying equal toy. So y increases faster. The graph gets steeper as the function
climbs higher. This is what “growing exponentially” means.

INTRODUCING e*

Exponential growth is quite ordinary and reasonable. When a pay& interest on
your money, the interest is proportional to the amount you have. After the interest is
added, you have more. The new interest is based on the higher amount. Your wealth
is growing “geometrically,” one step at a time.

At the end of this section oa*, | will come back tocontinuouscompounding—
interest is added at every instant instead of every year. That word “continuous”
signals that we need calculus. There is a limiting step, from every year or month
or day or second to every instant. You don't get infinite interest, you do get
exponentially increasing interest.

I will also describe other ways to introdueé&. This is an important question with
many answers! | like equation (1) below, because we know the derivative of each
powerx”. If you take their derivatives in equation (1), you get back the same
amazing So that sum solvegy /dx = y, starting fromy = 1 as we wanted.

The difficulty is that the sum involves every powet: aninfinite series When
| go step by step, you will see that those powers are all needed. For this infinite
series, | am asking you to believe that everything wolkie. can add the series
to gete*, and we can add all derivatives to see that the slope o ¢~.

For me, the advantage of using only the powetss overwhelming.



16

0 Highlights of Calculus

CONSTRUCTING y =e*

| will solve dy/dx = y a step at a time. At the stast,= 1 means thatly /dx = 1:

y=1+x

y=1 ﬂz y=1+x
dyjdx=1 CMaNgey . iy

Start dx dy/dx=1+x

Change

After the first changey =1+ x has the correct derivativéy /dx = 1. But then |
had to changéy/dx to keep it equal to). And | can’t stop there:

dy/dii } ii Update y to 1 4+x + %xz Then update% tol+x+ %xz
The extra%x2 gave the correck in the slope. Ther%x2 also had to go intady /dx,
to keep it equal tgy. Now we need a new term with this derivati%az.

Theterm that givest x? has x3 divided by 6. The derivative ofc” is nx"~!, so |
must divide byn (to cancel correctly). Then the derivative.ot/6 is 3x2/6 = 1 x2
aswe wanted. After that comes' divided by 24:

3 3 2

X_ — xi EBSIO e X—
6~ 30 P¢ 20
ﬁ — X74 hess'o e 47)(3 — ﬁ
24~ W)W ¢ @Deon 6

The pattern becomes more clear. Ttileterm is divided by: factorial, which isn! =
(m)(n—1)...(1). The first five factorials arel,2,6,24,120. The derivative
of that term x"/n! is the previous term x"~!/(n —1)! (because tha’s cancel).
As long as we don't stop, this sum of infinitely many terms does achigyéx = y:

y(x)=ex=1+x+%x2+%x3+---+ni!x"+--- 1)

If we substitutex = 10 into this series, do the infinitely many terms add to a finite
numbere!®? Yes The numbers:! grow much faster than £0(or any otherx™).
So the termsc” /n! in this “exponential series” become extremely smalhas co.
Analysis shows that the sum of the series (which is e*) does achievey /dx = y.

Note 1 Let me just remember a series that you kndw; 1 +1+1+4...=2.
If I replace 1 by x, this becomes thgeometric seried + x +x2 +x3+--- and
it adds up tol/(1—x). This is the most important series in mathematics, but it
runs into a problem at = 1: the infinite suml +1+1+1+--- doesn't “converge.”

I emphasize that the series fer is always safe, because the powers
are divided by the rapidly growing numberd =n factorial. This is a great
example to meet, long before you learn more about convergence and divergence.

Note 2 Here is another way to look at that series &r. Start withx” and take
its derivativen times. First getnx"~! and thenn(n—1)x"~2. Finally the nth
derivative isn(n —1)(n —2)...(1)x°, which isn factorial. When we divide by that
numberthe nth derivative of x” /n! is equal to1.

Now look ate*. All its derivatives are stille*. They all equal 1 atx =0.
The series is matching every derivative of the functioat the starting pointy = 0.
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Set x =1 in the exponential seriesThis tells us the amazing number = e:

The number e e=1+1+1+2+ L+ L+ @)

The first three terms add to 2.5. The first five terms almost reach\2efiever reach
2.72. With quite a few terms (how many ?) you can pass 2.71828. It is certain that
is not a fraction. It never appears in algebra, but it is the key number for calculus.

MULTIPLYING BY ADDING EXPONENTS

We write e? in the same way that we writg?. s it true thate timese equalse? ?
Up to now,e and e? come from settingr =1 and x =2 in the infinite series.
The wonderful fact is that for every, the series produces thath power of the
numbere.” Whenx = —1, we gete—! which is 1/e:
1 1 1 1 1
Setx =—1 T sl o ——— -
* ¢ T 2T T 0"

If we multiply that series foil /e by the series foe, we getl.

The best way is to go straight for all multiplicationsedftimes any powee* . The
rule of adding exponents says that the answef ¥ . The series must say this too!
Whenx =1 andX = —1, this rule produces® frome! timese!.

Add the exponents (e*)(eX)=e*+X 3

We only knowe* ard eX from the infinite series. For this all-important rule, we can
multiply those series and recognize the answer as the serie$fér. Make a start:

. 1 1
Multiply each term eX=1+x+=-x2 +-x3 4.

2 6
e* times eX 1 1
_ eX=1+X+-X2+-X3+--
Hoping for 2 6
1 1
e +X E)EM)=1+x+X  +x7 X + X4 ()

Certainly you see + X. Do you seeé—(x + X)? inequation(4) ? No problem:

1 1
E(x +X)2= E(x2 +2xX +X?) matches the “second degree” terms.

The step to third degree takes a little longer, but it also succeeds:

1 1 3 3 1 .
g(x +X) = €x3 + EXZX + ngz + €X3 matches the next terms in (4).
For high powers ofr + X we need theébinomial theorem(or a healthy trust that
mathematics comes out right). Wheri multiplies eX, the coefficient ofx” X"
will be 1/n! times 1/m!. Now look for that same term in the series X :

X n+m ) nym ] ! ] ]
% |ncludes(x+ 3 tmes@ which gives
n m): n m): n.m.

nXm

()

n'm!

17
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That binomial numbegn +m)!/n! m! is known to successful gamblers. It counts the
number of ways to chooseaces out of: +m aces. Out of 4 aces, you could choose
2 aces i4!/212! = 6 ways. To a mathematician, there are 6 ways to chQosis
out of xxxx. This number 6 will be the coefficient af X2 in (x 4+ X)*.

That 6 shows up in the fourth degree term. It is divided by 4! (to producé.
Whene* multipliese®, 1x? multiplies 3 X2 (which also produces/4). All terms
are good, but we are not going there—we ac¢ept(eX ) = e*+X as now confirmed.

Note A different way to see this rule fae*)(e¥) is based ondy /dx = y. Starting
from y =1 at x = 0, follow this equation. At the point, you reachy = ¢*. Now go
an additional distanc¥ to arrive ate*+X

Notice that the additional part starts froem (instead of starting from 1). That
starting valuez* will multiply e¥ in the additional part. Se* timese* must be the
same ag* X (This is a “differential equations proof” that the exponents are added.
Personally, | was happy to multiply the series and match the terms.)

The rule immediately gives® timese*. The answer ig* ™~ = ¢2~_ If we multiply
again bye*, we find (e*)3. This is equal te?*T* = ¢3*. We are finding a new rule
for all powers(e*)"” = (e*)(e*)--- (e¥):

Multiply exponents (e*)" =e"* (6)

This is easy to see for=1,2,3,... and therm = —1,—-2,—3,.. .1t remains true for
all numbersx andn.

That last sentence about “all numbers” is important! Calculus cannot develop
properly without working with all exponents (not just whole numbers or fractions).
The infinite series (1) defines® for every x and we are on our way. Here is the
graph:Function (1) = Function (2) = e* = exp(x).

e?=7388...T y = e*
dy o
E =e
(ex)(eX) — ex+X
(ex)n = enx
Iny _
e=2.718... 1 e =Yy
eln2_2
=1
e~ 1=368
Il Il x
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THE EXPONENTIALS 2* AND b*

We know that23 =8 and2* = 16. But what is the meaning &f* ? One way to get
close to that number is to replageby 3.14 which is314/100. As long as we have a
fraction in the exponent, we can live without calculus:

Fractional power ~ 2314/190 — 314th power of thel 00th root2'/1°,

But this is only “close” to2”. And in calculus, we will want the slope of the curve
y =2%. The good way is to conne2t with ¢*, whose slope we know (it is* again).
So we need to conne2twith e.

The key number is thievgarithm of 2. This is written “In2” and it is the power
of e that produceg. It is specially marked on the graph of:

Natural logarithm of 2 en2=2

This number Ir2 is about7/10. A calculator knows it with much higher accuracy.
In the graph ofy = ¢*, the number Ir2 on thex axis produces = 2 on they axis.

This is an example where we want the output2 and we ask for the input
x=In2. That is the opposite of knowing and asking fory. “The logarithm
x =In y is theinverseof the exponentiay = ¢*.” This idea will be explained in
Section4.3 and in two video lectures—inverse functions are not always simple.

Now 2* has a meaning for every. When we have the number lh meeting the
requiremen® = ¢ 2, we can take theth power of both sides:

Powers of 2 from powers ofe 2=¢"2 and 2* =e*M2 (7)

All powers of e are defined by the infinite series. The new functdnalso grows
exponentially, but not as fast a8 (because is smaller thare). Probablyy = 2*
could have the same graph a8, if | stretched out thex axis. That stretching
multiplies the slope by the constant factoinHere is the algebra:

d

Slope ofy =2* —2*=ieX'"2=(|nz)eX'”2=(|n 2)2*%.
dx dx
For any positive numbeb, the same approach leads to the functioe- 5*.

First, find the natural logarithm lb. This is the number (positive or negative) so
thath = ¢ 2. Then take therth power of both sides:

Connectbtoe h=¢"? and b*=¢*"? and di b*=(nb)b*  (8)
X

Whenb is e (the perfect choice), lh=Ine = 1. Whenb is ¢”, then Inb =Ine” =n.
“The logarithm is the exponert Thanks to the series that defines for everyx,
that exponent can be any number at all.

Allow me to mention Euler’s Great Formuld* = cosx +i sinx. The exponent
ix has become aimaginary number. (You know thati? = —1.) If we faithfully
use cosc+i sinx at 90° and 180° (wherex = /2 andx = r), we arrive at these
amazing facts:

Imaginary exponents ei™/2 =i and €™ =-1. 9)

Those equations are not imaginary, they come from the great series for
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CONTINUOUS COMPOUNDING OF INTEREST

There is a different and important way to reachnde* (not by an infinite series).
We solve the key equatiathy /dx = y in small steps. As these steps approach zero
(a limit is always involved !) the small-step solution becomes the exace*.

| can explain this idea in two different languages. Each step multiplidstbs x:

1. Compound interestAfter each stepAx, the interest is added tp. Then the

next step begins with a larger amount, gniohcreases exponentially.
2. Finite differencesThe continuoudy/dx is replaced by small stepsY / Ax:

d Y Ax)-Y
& _ y changes to (x+Ax) = Y(x)
dx Ax

This is Euler's method of approximatioFi(x) approaches(x) asAx — 0.

=Y(x) withY(0)=1.  (10)

Let me compute compound interest when 1 year is divided into 12 months, and
then 365 days. The interest rate is 100% and you start ¥ith = $1. If you only
getinterest once, at the end of the year, then you lgvg= $2.

If interest is added every month, you now gﬁt of 100% each time (12 times).
SoY is multiplied each month by-t-L.. (The bank adds’ for every 1 you have.)
Do this 12 times and the final value $2 is improved to $2.61.:

1 12
After 12 months Y(1)= (1 + E) =%$2.61

1.

Now add interest every day(0) = $1 is multiplied 365 times by + 3=:

365

Very few banks use minutes, and nobody divides the year Mte31,536,000
seconds. It would add less than a penny to $2.71. But many banks are willing to
usecontinuous compoundinthe limit asN — oo. After one year you haved$

365
After 365 days Y(1)= (1 + —) =%$2.71 close toe)

N
Another limit gives e (1 + %) —e=2.718...asN - (11)

You could invest at the 100% rate faryears. Now each of theV steps is for
x/N years. Again the bank multiplies at every step bys. The 1 keeps what
you have, thec/ N adds the interest in that step. Aft8rsteps you are close td':

A formula for e* 1+ %)N —e* asN - w (12)

Finally, I will change the interest rate to Go for x years at the interest rate
The differential equation changes fraim/dx =y tody/dx = ay. The exponential
function still solves it, but now that solution js= e*:

Change the rate toa Z—y =ay issolved byy(x) =e?* (13)
X
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You can write down the serie$* =1+ax + %(ax)z + -+ and take its derivative:

d
d—(e“x)=a+a2x+---:a(l+ax+---)=ae‘”‘ (14)
X

The derivative ob%* brings down the extra factar. Soy = e?* solvesdy/dx =ay.

The Exponential y =e*

. . : _.d
Looking for a functiony (x) that equals its own derlvatlvg)—}
X
A differential equation! We start at=0 with y =1

x2 X3 x"
Infinite SerieSy(x)z1+x+;+§+---+(—')+---

) . dy x2 xnfl
Take derivative — =0+1 4.
dx it +((n—l)!)+

d . - . .
Term by termd—y agees withy Limit step= add up this series
X
n!=(n)(n—1)---(1) grows much faster thar® so the terms get very small

At x =1 the numbely (1) is callede. Setx = 1 in the series to find

111
=141+ -+ 4 +---=2.71828...
e=l+l++-+0+

GOAL Show thaty (x) agrees withe* for all x ~ Series gives powers ef

Check that the series follows the rule to add exponents e&eth= ¢°
Directly multiply seriese* timeseX to gete* X

1 . 1 .
(1 +x+ Exz) ti mes(l +X+ EXZ) produces the right start far*+¥

1
I+ @+X)+5(c+X)>+- HIGHER TERMS ALSO WORK

The series gives us*® for EVERY x, not just whole numbers

de* ) x+Ax _ ,x ] Ax_l
CHECK £ —iim&———¢ _ox(jim& — ¢ YES!
dx Ax Ax

SECOND KEY RULE (e*)" =e™* for everyx andn

Another approach te* uses multiplication instead of an infinite sum

Start with §.. Earn interest every day at yearly rate

365
Multiply 365 times by(1+ 3%5) . End the year with {1 + %)

Now payn times in the year. End the year Wi(h + f)n —$e* asn — o
n

. AY . - d
We are soIvmgA— =Y inn short stepsAx. The limit solvesd—y =y.
X X

21
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Practice Questions

10 9
1. What is the derivative 0% ? What is the derivative of;—' ?

xn
2. How to see that—' gets small ast — 0 ?
n:

2

Start with? and % possibly big. But we multiply by;ﬁ, % --- which gets small.

o1 .
3. Whyis— thesame ag™* ?  Use equation (3) and also use (6).
e

. 1 1 1 1
4, Why|3e—1:1—1+——€+--- betweeng andE?Then2<e<3.

2

d :
5. Canyou solvedl =y startingfromy=3atx=07
X
Why is y = 3e* the right answer?  Notice ho® multipliese*.
dy .
6. Canyou solved— =5y darting fromy =1atx =07
X

Why is y = e>* the right answer?  Noticg in the exponent!

Ax

1 .
7. Why doeseT approachl asAx gets smaller? Use the** series.
X

oo

10.
11.

12.

13.

. Draw the graph af =In y, just by flipping the graph of = ¢~ across th@5°
line y = x. Remember thap stays positive but =In y can be negative.

. 1 1
. What is the exact sum af+In 2 + E(In 2)2+ y(ln 2342

If you replace Ir2 by 0.7, what is the sum of those four terms ?

From Euler's Great Formuld* = cosx +i sinx, what number ig?7! ?

1 10
How close is(l + E) toe?

1\2V
What is the limit of(l + N) aSN - x0?
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B 0./ Video Summaries and Practice Problems |

This section is to help readers who also look at #ighlights of Calculus video
lectures. The first five videos are just releasedoer.mit.edu as | write these
words. Sections 0.1-0.2-0.3 discussed the content of three lectures in full detail. The
summaries and practice problems for the other two will come first in this section:

4, Maximum and Minimum and Second Derivative

5. Big Picture of Integrals

That Lecture 5 is a taste dftegral Calculus A second set of video lectures goes
deeper intdifferential Calculus—the rules for computing and using derivatives.

This second set is right now with the video editors, to zoom in when | write on the
blackboard and zoom out for the big picture. | just borrowed a video camera from
MIT’s OpenCourseWare and set it up in an empty room. | am not good at looking at
the audience anyway, so it was easier with nobody watching!

I hope it will be helpful to print here the summaries and practice problems that are
planned to accompany those videos. Here are the topics:

6. Derivative of the Sine and Cosine
7. Product and Quotient Rules

8. Chain Rule for the Slope of (g(x))
9. Inverse Functions and Logarithms

10. Growth Rates and Log Graphs

11 Linear Approximation and Newton’s Method

12. Differential Equations of Growth

13. Differential Equations of Motion

14. Power Series and Euler's Formula

15. Six Functions, Six Rules, Six Theorems

That last lecture summarizes the theory of differential calculus. The other lectures
explain the steps. Here are the first lines written for the max-min video.

Maximum and Minimum and Second Derivative

To find the maximum and minimum values of a functipfx)

d . .
Solved—y =0 tofind pointsx* whereslope= zero
X

Test eachy* for a possible minimum or maximum

dy

Exampley(x) =x3—12x ——=3x2-12 Solve3x?=12
X

. d
The slope |sd—y =0atx*=2andx*=-2
X

At those pointy(2) =8 —24 = —16 =min andy(—2) = —8 + 24 = 16 = max
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. - d (d I
x* =2isaminimum Look at— [ 22} = second derivative
dx \ dx
d?y - . L
T2 derivative of 3x2 —12.  This second derivative iSx.
X
d? dy .
ay >0 9 increases Slope goes from down to upcat= 2
dx? dx
The bending is upwards and thig is aminimum
d? d
27 0 2 decreases Slope goes from up to downcét= —2

dx? dx
The bending is downwards and is amaximum

: . . . d .
Find the maximum o (x) = sin x 4 cosx usmgd—y =Ccosx —Sinx
X
The slope is zero when cas= sin x at x* =45 degrees= % radians

. . 2 2

That pointx* hasy =sin> +cos > = £+ i =2
4 4 2 2
2

o.d .
The second derivative |s—d z = —sSinx —COSx
X

At x* = % thisis< 0 y is bending down x* is amaximum

d? 2
2y > 0 when the curve bends up Z—)Z)
X

Ix2 < 0 when the curve bends down
X

_— : : _ : d?
Direction of bending changes apaint of inflection whered—i =0
X

Which x* gives the minimum of = (x —1)%2 + (x —2)% + (x —6)%?
You can writey = (x? —2x + 1) + (x? —4x +4) + (x> — 12x + 36)

. d - .
The slope |sd—y =2x—2+42x—4+42x—12 =0 at the minimum poink*
X

Then6x* =18 andx* =3 Minimum point is the average df, 2, 6

Key for max/ min word problems is to choose a suitable meaningifor
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Practice Questions

. . - d
1. Whichx* gives the minimum of (x) = x2 +2x ? Solved—y =0.
X

d2
2. Find d—); for y(x) = x2 +2x. This is> 0 so the parabola bends up.
X

3. Find the maximum height of(x) = 2 + 6x — x2. Solve;{—y =0.
X

d?y

4, Find —
! dx?

to show that this parabola bends down.

d
5. Fory(x) =x*—2x2 show thatd—y
X

Find y(—1), y(0), y(1). Check max versus min by the signa#ty /dx2.

=0atx=-1,0,1.

- . ) dy d?y
6. Ata minimum point explain wh%— =0and T > 0.
X X

. d?y . d?y .
7. Bending down| —= < 0] changes to bending up——= >0 at a point
dx? dx?

d?y

of : At this pointﬁ =0 Doesy =sinx have such a point?
X

8. Suppose + X = 12. What is the maximum of timesX ?

This question asks for the maximumpt= x (12 — x) = 12x — x2.

. d . -
Find where the slop?ll =12—2x is zero. What isc times X ?
X

The Big Picture of Integrals

d
Key problem Recover the integra(x) from its derivatived—y
X

Find the total distance traveled from a record of the speed

Find Function(1) = total height knowing Functiof2) = slope since the start
. . d L
Simplest way Recogmzedl asderivative of a known y(x)
X

d . 1 .
If d_y = x3 then itsintegral y(x) waszx4 + C = Function (1)
X

dy ox 1
- = theny = —e2* +C
dx ¢ Y 26 +

Integral Calculus is the reverse of Differential Calculus

If

y(x)= J d—ydx adds up the whole history of slopegljr tofind y(x)
dx X

Integral is like sum Derivative is like difference

25
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Sums Yo N Y2 Y3 B2
Differences  y1—yo y2—y1  y3—)y2 Ya—)3
Notice cancellatiorfy; — yo) + (y2 — y1) = y2 — yo = change in height

Divide and multiply the differences by the step sixe

Ay Y1—Yo Y2 — 1 N
Sumof— Ax="—-"A = < Axisstill —
Ax . Ax X+ Ax . y2= Yo

. d
Now letAx —0 Sum changes to mtegr{ld—ydx = Yend — Ystart
X

d
Fundamental Theorem of Calculus Jd—ydx =yx)+C
X

The integral reverses the derivative and brings baok

Integration and Differentiation are inverse operations
d X
Fundamental Theorem in the opposite order Ix J, s(t)dt =s(x)
X Jo

X
KEY Whatis the meaning of an integral s(¢) d¢ ? Add up short .
0

Example s(z) = 6¢ shows increasing speed and slope. Fir{g).

Method 1y = 3¢2 has the required derivativér (this is the simplest way !)
Method 2 Thetriangle under the graph oft) = 61 has aredt?

. 1
FromO to ¢, base=1t and height= 67 and area= Et(6t).

[Most shapes are more difficult! Area comes from integratig or s(x)]
Method 3 (fundamental) Add up short time steps each at constant speed
In a stepAt, the distance is close tqz*) At

t* is the starting time for that step an¢ *) is the starting speed

This is not exact because the speed changes a little withindime

The total distance becomes exactas— 0 andsum — integral

Picture of each step shows a tall thin rectangle

s(y) = ot s(t*)At = height times base
= area of rectangle
t* = start point of the time step
o At

Sum ofs(¢*)At = total area of all rectangles
Now At — 0 The rectangles fill up the triangle

Integral ofs(¢) dt = exact areay(¢) under the graph
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Fundamental TheoremArea y(¢) has the desired derivativgr)

ReasonAy isthe thin area undet(r) betweerr andt + At

S

At is the base of that thin “rectangle”

% isthe height of that thin “rectangle”

At

This heightAy /At approaches(t) as the basar — 0

Practice Questions

1. What functions(¢) have the constant derivativer) =7 ?

2. What is the area froiato ¢ under the graph of(r) =7?

2
3. Fromt =0to 2, find the integraU, 7dt =
0

4. What functiony () has the derivative(z) =7+ 6t ?

2
5. Fromt =0to 2, find area= integralj (7+61)dt.
0

. . d(are
6. At this instant =2, what is ( ; 6)?

7. From0to ¢, the area under the curye=e’ IS NOT y = ¢’
If ¢ is small, the area must be small. The wrong ansatés not small !
8. From0 to ¢, the correct area under=e’ isy =e’ —1.

The slope‘;—); is and now the starting areg0) is

9. Same for sums. Noticg in (y1 —yo) + (y2—y1)+ (3 —y2) = .

A
The sum ofAy = A—fAt becomes the integral O%dt

The area unders(¢) from 0 to ¢t becomesy (¢) — y (0).

27
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Derivative of the Sine and Cosine

: d . d .
This lecture shows tha{-}— (sin x) =cosx and—(cosx) = —sinx
x dx
We have to measure the angién radians 2 radians= full 360 degrees

All the way around the circle2¢r radians) Length =2z when the radius is 1
Part way around the circle (radians) Length = x when the radius is 1

slopel atx =0

+1 Slope cost
y=sinx
atx=0 slopel =cos0
0 | | | X

‘ atx=n/2 dopeld=cosz/2
4 /2 ”W” atx=n  slope—1=cosr
-1

+1
Ry =CcoSx / Slope —sinx
0 ; s x atx=0 slope=0=—sin0
n/ T 27 .
\/ atx=n/2 dope—1=-—sinx/2
atx=m slope=0=—sinx

Ay sin(x+Ax)—sinx

(x +Ax)?—x?
87

Problem:— is not as simple a;
AXx Ax Ax
. A sin A
Goodideato startat=0 Show A_y = ad approaches 1
X X

Draw a right triangle with anglé x to seesin Ax < Ax

straight piece
curved arc straight length = sin Ax
curved length = Ax

straight piece is shortegt

sin Ax

IDEA and S'ZAX

. SinAx
> cosAx will squeeze—A —1asAx—0
X X X

sin Ax
To prove
AXx

> cosAx whichis tanAx > Ax Go to a bigger triangle

. 1
Triangle area = 5(1)(tan Ax) greater than

A 1
Circular area = (—x) (whole circle)= = (Ax)
2 2

Full angle2s
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SinAx
t

A
* < 1tells us tha approaches 1

sin
The squeeze casx <

sinAx)? 1 —cosA
((Ai)xz) <1 means(Aix)(l +COSAx) < Ax
X X

1—cosA .
So —Ar * 0 Cosine curve has slope=0
X

For the slope at otherx remember a formula from trigonometry:

sin(x + Ax) =sinx cosAx +cosx Sin Ax

We wantAy =sin(x + Ax) —sinx Divide that byAx

A _ CosAx —1 sin A
_yz(smx)(ix)+(coszc)( A x) Now let Ax — 0
X

Ax Ax
) . I .
In the limit d_y = (sinx)(0) + (cosx)(1) = cosx = Derivative of sinx
X
- d .
For y = cosx the formula for coéx + Ax) leads similarly tod—y =-—sinx
X

Practice Questions
1. What is the slope of =sinx at x =7 and atx =27 ?
2. What is the slope of =cosx atx =z/2 andx =37n/2?

3. The slope ofsinx)? is 2sinx cosx. The slope ofcosx)? is —2 cosx Sin x.
Combined, the slope d@&in x)? + (cosx)? is zero. Why is this true ?

4. What is thesecond derivative of y = sin x (derivative of the derivative) ?

5. At what anglex doesy = sinx + cosx have zero slope ?

6. Here are amazing infinite series for simnd cosx. e’* = cosx +i sinx

X x3 x>
sinx = — — — odd powers ok
=1 7320 T 52321 (oddp )
X2 X4
cosx = 1 — — _ = .. even powers af
o 21 T 1321 (evenp )

7. Take the derivative of the sine series to see the cosine series.
8. Take the derivative of the cosine series tormgsus the sine series.

9. Those series tell us that for small angks x ~ x and cosx %l—%xz.
With these approximations check tlfsin x)? + (cosx)? is close tol.

29
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Product and Quotient Rules

Goal To find the derivative oy = f(x)g(x) from ﬁ and dg
X

Idea Write Ay = f(x+ Ax)g(x+ Ax) — f(x)g(x) by separating\ f andAg
Thatsame\y is f(x+ Ax)[g(x+Ax) —g(x)]+g(x) [f(x + Ax) — f(x)]

ﬂ:f(x_FAx)%—kg(x)ﬂ Product Rule ——f( )—+ (x )ﬂ
Ax Ax Ax

. d .
Example y=x?sinx Product Ruled—y =x2 cosx +2x sinx
X

A picture shows the two unshaded piece\of= f(x + Ax)Ag+g(x)Af

Ag —toparea=(f(x)+Af)Ag

g(x) «—side area=g(x)Af

f(x) Af

Example  f(x)=x" gx)=x y=f(x)g(x)=x"*!
dy L, dx dx"
Product Rule Ix x" E+x I

The correct derivative af” leads to the correct derivative of !

=x"4+xnx""' = m+1)x"

Quotient Rule If y:Mth ( (x )ﬂ_f( )_)/ 2
g(x)
d (sinx ) )
EXAMPLE I (COSx) = (COSx(COSx)—Slnx(—SInx))/COSZX

=sac?x  (Notice(cosx)? +(sinx)?2=1)

This says thatd— tanx =
dx cos?x

EXAMPLE — =
x8

dx s
_fe+An f0) | fHAf f
Prove the Quotient Rule Ay = 2+ Ax) g(x) g+Ag g

s +Af)—flg+Ag) _gAf —fAg
g(g+Ag) g(g+Ag)
Now divide thatAy by Ax  As Ax — 0 we have the Quotient Rule

d (1 4times0— 1 times4x?® —4 o
(—):x v This isnx" 1

Write thisAy as
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Practice Questions

1. Product Rule: Find the derivative pf= (x3)(x*). Simplify and explain.
2. Product Rule: Find the derivative of= (x2)(x~2). Simplify and explain.

: . o cos
3. Quotient Rule: Find the derivative pf= sinx

. sin .
4. Quotient Rule: Show that = 'Y hasa maximum (zero slope) at=0.
X

. . L sin
5. Product and Quotient! Find the derivativeyot XCOS x.
X

d’g

- d
6. g(x) has a minimum whelcuﬁ =0amd —
dx dx?

>0 The graph is bending up

1 . . dy d?y
y = —— hasamaximunmat that point: Show that— =0 and — <0
g(x) dx dx?

Chain Rule for the Slope of f(g(x))

y=g(x) z=f(y) — thechainis z= f(g(x))
y=x> z=y* — thechainis z = (x)*=x?°

Az Az Ay
Average slope — = — )| — ] Just cancelAy
AXx Ay Ax
d dz d . .
Instant slope 4z _ 228 _ cHAIN RULE (like cancellingdy)
dx dydx
You MUST changey to g(x) in the final answer

d d
Example of chain  z = y* = (x°)* az _ 4y3 4y _
dy dx

. dz  (dz\(dy\ . 5 coa a0 3.4
Chain rule P (dy) (dx) = (4y°)(5x%) =20y°x

5x4

Replacey by x> to get onlyx Z—Z =20(x%)3x*=20x"1°
X

d
CHECK z=(x5)*=x2° does have d—z —=20x19
X

o .d . d
1. Find i for z = cos(4x) Write y = 4x andz = cosy so—Z =
dx dx

- d _ d
2. F|nd—Zforz=(1+4x)2 Write y = 1 +4x andz = y? s0f =
dx dx

d
CHECK (14+4x)2 =1+ 8x +16x2 sod—Z -
X

31



32
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Practice Questions

3. Find Z—h for h(x) = (sin3x)(cos3x)
X

Productrule first ~ Then the Chain rule for each factor

dh . d d .
— = (sin3x)—(cos3x) + (cos3x)—(sin 3x)
dx dx dx

= (sin3x)(CHAIN) + (cos3x)(CHAIN) = ?

4. Tough challenge: Find theecond derivativeof z (x) = f(g(x))

FIRST dz _ (dz\ (dy Function of y (x)
DERIV dx \dy ) \dx times function ofx

PRODUCT  d% _ (d=\ d (dr  (dv)d (dz
RULE dx2  \dy) dx \dx dx ) dx \dy

2 2
SECOND (d=) (dy) | (dv) (€%2) (dy) dv .
DERIV dy ) \ dx? dx ) \ dy? ) \dx dx

2
Checky =x° z=y*=x%° d—Z =20x1° d—Z =380x!8
dx dx?
SEES/ND (4y3)(20x3) + (5x*)(12y?)(5x*) 80 +300 =380 OK

Inverse Functions and Logarithms

A function assigns anutput y = f(x) to eachinput x
A one-to-one function has different outpytgor different inputsx

For theinverse functionthe input isy and the outputis = £ ~1(y)
Example Ify = f(x)=x>thenx=f"1(y)= y%
-b . .

= inverse function

a
Notice thate = f =1 (f(x)) andy = £ (/' (»))
Thechain rule will connect the derivatives of ~! and f

KEY If y =ax+b then solve forc = Y

The great function of calculus = e*

Its inverse function is thén atural logarithm” x =Iny
Remember that is the exponentiry = e*

The rulee*eX = e*+X tells us thain(yY) =Iny +InY
Add logarithms because you add exponelnté 2e3) =5
(e¥)" = e™* (multiply exponent) tells us than (y”) =niny




0.4 Video Summaries and Practice Problems

We can change from basdo basel0: New functiony = 10*

The inverse function is the logarithm to bage Call it log: x =log y

1
Thenlogl00=2 and log T00— —2 and logl=0

d 1
We will soon find the beautiful derivative of jn d—(ln y)=—
y y

. d 1
You can change letters to write thatg&(lnx) =—
X X

Practice Questions

. Whatisx = f~1(y) if y =50x?
. Whatisx = f~1(y) if y =x*? Why do we keep >0?

. Draw a graph of an increasing functipr= f(x). This has different outputs

for differentx. Flip the graph (switch the axes) to sea = £ ~1(y)

. This graph has the sanyefrom two x’s. There is no f ~1(y)

y X

f(x)

X y
f (x) is NOT one-to-one f~1(y) is NOT a function

0 N o O

. The natural logarithm of = 1/e is In(e™!) = ? What is Ir{\/e) ?
. The natural logarithm of =1 is In1 =? and also base 10 has lbg ?
. The natural logarithm af?)>° is ? The bas0 logarithm of(10%)°? is ?

. | believe thatln y = (In10)(log y) because we can writg¢ in two ways
y=eNY and alsoy = 10109Y = ((IN10)(109y) ' Explain those last steps.

. Change from base and basd 0 to base 2 Now y =2* meansx =log, y.

What are log 32 and log, 2 ? Why is log,(e) > 1 ?

33



34

0 Highlights of Calculus

Growth Rates and Log Graphs

In order of fast growth as gets large

log x x,x2% x3 2%, e*,10* x!, x*

logarithmic polynomial exponential factorial

X

Choosex = 1000 = 103 so that logt =3 OK to usex!~ x—x
e

log1000=3 103,105,10° 10300 10434 101000 (2566 13000

Why is 10001000 = 103000 9

Logarithms are best for big numbers

Logarithms are exponents! log 10° =9

Logarithms 3,6,9

300,434,1000

log log x is VERY slow
25663000

Polynomial growth Exponential growth« Factorial growth

Decay to zero for NEGATIVE powers and exponents

1 1
— = x~2 decays much more slowly than the exponentiak= e~ *
X e

Logarithmic scale shows = 1, 10, 100 equally spaced. NO ZERO!

-3 -2 -1 0 1 2 3 log x

X

1/1000 1/100 1/10 1 f 10 100 1000
logv/10=1

Question If x =1,2,4,8 areplotted, what would you see ?
Answer THEY ARE EQUALLY SPACED TOO!

log-log graphs(log scale up and also across)
If y = Ax", how to seed andn on the graph?
Plot logy versus logr to get a straight line

logy =logA +nrlogx  Slope on alog-log graph is the exponent

logy =1.5logx
y=x15
logA =0
; logx
—1 1
A=1 n=15 slopen =1.5

Fory = Ab* use semilog (x versus log is now a line) logy =log A+ xlog b




0.4 Video Summaries and Practice Problems

. . A d
New type of question  How quickly doesA—f amroachd—f asAx —0?
X X

A df . .
The errorE = —f — —f will be E ~ A(Ax)" Whatisn ?
Ax dx

A _
Usual one-sidedAff = SO+ 4%) — ) only hasn =1
AXx Ax
Ax)— —-A
Centered differencaf(x-’_ X;A S x) hasn =2
X

Centered is much better than one-sided E ~ (Ax)? VSE ~ Ax

IDEA FOR f(x)=e* | One-sidedE vs centered
PROJECT atr=0 Graph logE vs logAx Should see slopkor2

Practice Questions

1. Doesx!'% grow faster or slower thaa® asx gets large ?
2. Doesl00 Inx grow faster or slower than asx gets large ?

3. Put these in increasing order for large

10"
n!

1
—, nlogn, n'!,
n

4. Put these in increasing order for large

1 1
X2 xl10

5. Describe the log-log graph of= 10x> (graph logy vs logx)
Why don’t we seey =0 atx = 0 on this graph ?

What is the slope of the straight line on the log-log graph ?
The line crosses the verticalaxiswhes= ~~ andy=__
Thenlogx=0ardlogy=

The line crosses the horizontal axis whesa: andy =1

Then logx = and logy =0
6. Draw the semilog graph (a line) of=10¢* (graph logy versusx)

7. Thatline cross the = 0 axis at which logy ? What is the slope ?
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0 Highlights of Calculus

Linear Approximation and Newton’s Method

Start atx = a with known f'(a) = height andf’(a) = slope
f(x)—f(a)
X —a

KEY IDEA f'(a) ~ whenx is neara

Tangent line has slopé’(a) f) /
Solve for f(x) fla) /*

fx)~ f@)+(x—a)f'(a)

~ means “approximately”
curvex line nearx =a

Examples of linear approximation t6(x)

1. f(x)=e* f(0)=e’=1andf’(0)=e"=1are known atz =0
Follow the tangentline e*~1+(x—0)1=1+x

1+ x is the linear part of the series fer*

2. f(x)=x"%and f'(x)=10x° f(1)=1andf’(1)=10known ata = 1
Follow the tangentling'® ~ 14 (x —1)10 nearx =1

Takex =1.1 (1.1)!° is approximatelyf +1=2

Newton’s Method (looking for x to nearly solvef(x) = 0)
Go back tof”(a) ~ f®-j/@
X—d

f(a) and f'(a) are again known

f(x)
exact x
Solve forx when f(x) =0 a v/
f(@)
—ar~— @ Newton x Newtonx
Line crossing near curve crossing




0.4 Video Summaries and Practice Problems

Examples of Newton’s Method  Solv&(x) =x?—1.2=0
l.a=1lgvesf(a)=1-12=—-2andf'(a)=2a =2
(=2

Tangentline hit® at x — 1 = = Newton’s x will be 1.1

2. For a bettex, Newton starts again from that poiat=1.1
Now f(a)=1.12—12=.01 and f'(a)=2a=2.2

. .01 . .
The new tangent line has— 1.1 = ~35 For thisx, x2 is very close td .2

Practice Questions
1. The graphof = f(a)+ (x —a) f'(a) is a straight
At x =a the heightisy=
At x =a theslopeisly/dx=
Thisgraphist  ttothe graphoff(x) atx =a

For f(x) = x? at a = 3 this linear approximation is =

2. y=f(a)+(x—a)f'(a) hasy =0whenx —a =

Instead of the curve/(x) crossingd, Newton has tangent ling crossing)

f(x)=x3—8.12ata=2hasf(a)=  andf'(a)=3a®=
Newton’s method gives —2 = — ]{,((il)) =

This Newtonx = 2.01 nearly hasc3 = 8.12. It actually hag2.01)3 =

Differential Equations of Growth

d .
& _ cy Complete solution y(r) = Ae’ forany 4

dt
Starting fromy (0) y(t) = y(0)e®’ A=y (0)
Now include a constant source tesm  This gives a new equation

d . . . . .
d_)t; =cy+s s>0issaving,s <0is spendingcy is interest

Complete solution y(¢) = 2 + Ae! (any A gives a solution)
c
: . . d
y= —2 isaconstant solution witley +5=0 andd—f =0amdA=0
c
For that solution, the spendingexactly balances the incomey

Choosed to start fromy(0) att =0 y(¢) = iy (y 0) + i) et
Cc 4
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Now add a nonlinear termw? coming from competition

P(t) = world population at time (for example) follows a new equation
dpP . :

YTl c¢P —sP? ¢ = birth rate minus death rate

“LOGISTIC EQN” P? since each person competes with each person

. . . 1
To bring back a linear equation set= —

P/dt —cP +sP?
d_y:_d [di _ (b s )——i—i-s:—cy—i-s

Then = =
dt P2 P2 P

y =1/ P produced our linear equation (nd) with —c not+c
N S N . .
y()=—+Ae ' =—+ (y(O) — —) e~ ¢! = old solution with change te-c
C C C
At t =0 we correctly gey(0) CORRECT START
Ast — oo ande ¢! — 0 we gety(o0) =  and P(0) = ¢
c N

The populationP(¢) increases along a$i-curve approachingE
N

+ Population P(t)

c/s

I

c/2s approaching c/s

T Time t

point of symmetry

0

P = 2i has P” =0 Inflection point Bending changes from up to down
S

d:p d dP c
CHECK = —(cP—-sP¥)=(c—-2sP)— =0atP =—
dt?2  dt (C s ) (e =25 )dz a 2s

World population approaches the linit~ 12 billion (FOR THIS MODELY)
N

Population nows 7 billion  Try Google for “World population”
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Practice Questions

d . . . . .
d_)t) = cy —s hass = spending rate not savings rate (with minus sign)

Lo d
1. The constant solution is= Whend—J; =0

In that case interest income balances spending: s
2. The complete solution ig(¢) = 2+ Aect, Why is 4 = y(0) — )
c c

3. Ifyou start withy (0) > 2 why does wealth approach ?
Cc

If you start withy (0) < 2 why does wealth approachoo ?
Cc

.od .
4. The complete solution t% =sisy(t)=st+A4

What solutiony (¢) starts fromy(0) at =0 ?

dpP 2 1 . dy
5. If 7 —sP*andy = 7 explain whyz =
Pure competition. Show that(r) — 0 ast — o

dP 4 . . 1
6. If I ¢P —sP*? find a linear equation foy = rs

Differential Equations of Motion

A differential equation fory (¢) can involvedy /dt and alsad?y /dt?

Here are examples with solutions” and D can be any numbers

d?y d?y ) _y=C cost + D sint
arz - Y andﬁ=—w y Solutions y=C coswt + D sinwt
Now includedy/dt and look for a solution method
d?y dy _ dy
—— 4+2r—+ky=0has adamping terir—. Try y =e?!
md[2+rd[+y ping rd[ yy=e

Substitutinge* gives  mA2e* +2rder + ke =0
Cancele? to leave the key equation far mA2+4+2r A +k =0

—r+~Nr2—km
m

The quadratic formula gives =

The differential equation is solved byy = Ce*1* 4+ De*2?

Special case? =km hasA; =X, Thent entersy = Cet1? + Dtett?

Two solutionsA; andA,
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d?y dy
EXAMPLE 1 —+6E+8y=0 m=1and2r =6 andk =8
—r+r2—k Ay=-2
Al A= ! ! m|s 3+49—8 Then ,11 4
2=

Solution y=Ce~2*+De~%"  Overdamping with no oscillation

A1=-34+1i
EXAMPLE2 Changetk =10 A=-3++9-10 has Al 3+f
2=—-3—-1

Oscillationsfrom the imaginary partof ~ Decayfrom the real part-3

Solutlon y=CeM! 4 Det2t = Ce(3+D1 4 pe(-3-01
=cost +i sint leads toy = (C + D)e 3 cost + (C — D)e 3 sint

EXAMPLE 3 Changetdk =9 Now A = —3,-3 (repeated root)

Solution  y =Ce~ 4 Dte—3! includes the factor

Practice Questions

2

d . .
1. Ford—t; = 4y find two solutionsy = Ce? 4 Deb?. What arez andb ?

d? i . . .
2. Ford—i = —4y find two solutionsy = C cosw? + D sinwt. What isw ?

2

d
3. Ford—ti =0y find two solutionsy = Ce® and (???)

d?y _dy
4. Puty =’ into Zﬁ +3d— +y=0 tofindA; andA, (real numbers)

d?y dy
+5—+3y 0tofind A; andA, (complexnumbers)

5. Puty = e* into2—=
y=e FTERRT,

d*>y _dy
6. Puty =e* into — 72 +2d— +y=0tofindA; and\, (equal numbers)

Now y = Ce*1! + DteM1?. The factor appears whei; = A,
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Power Series and Euler's Formula

At x =0, thenth derivative ofx” is the numben! Other derivatives ar8.

Multiply the nth derivatives of f(x) by x” /n! to match function with series

2 n
eres S0 = SO+ S OF + 11O+t OO

EXAMPLE1  f(x)=e* Allderivatives=1atx=0 Match withx”"/n!

2 n

i X X X
Taylor Series ex:1+1T+17+,..+1_'+...
n:

Exponential Series —

EXAMPLE2 f=sinx f’'=cosx f"=-—sinx f"”=-cosx
Atx=0thisis0 1 0 —1 0 1 0 -1 REPEAT

x3 x>

sinx=1§—1§+1§—--- ODD POWERS sif—x) = —sinx

EXAMPLE3 f=cosxproduced 0 —1 0 1 0 —1 0 REPEAT

x? x4 d .
cosx=1-1—+1——---| EVEN POWERS —(cosx)=—sinx
2! 41 dx
Imaginary i?=—1andthen3=—i Find the exponentiale®*

) 1 1
ix — | : —(iv)2 —(iv)3
¢ T 2!(lx) + 3!(lx) + Those are

2 3 ..
. X . X COSx +1 Sinx

EULER’S GREAT FORMULA ¢'* =cosx +i sinx

ising e

¢'? =cosh +isind

el 4 Real €'?+e ' =2cosh

cosf Part  ,im —_1  combinest great number

Two more examples of Power Series (Taylor Seriesffor))

1 . .
f(x)= == I+x+x24+x3+.--  “Geometric series”
—X

2 3 4

)

f(x)=—In(l—-x)= ? + % + % + XT +---  “Integral of geometric series’
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Summary: Six Functions, Six Rules, Six Theorems

Integrals Six Functions Derivatives

X"t/ (n+1), n# -1 x" nx"1
—CO0SXx sinx COSXx

sinx cosx —sinx
ecx/c er CeL‘X
xInx—x Inx 1/x

Ramp function Step function Delta function
1 —
Infinite spike
X has area= 1

Six Rules of Differential Calculus

1. The derivative ofaf (x) +bg(x) is aZ—f +b Zg Sum
X
2. The derivative off (x)g(x) is f(x)—+ (x )df Product
3. The derivative 01% is ( ﬁ —fdg)/ Quotient
g
4. The derivative off (g(x)) is d_fd_y where y = g(x) Chain
5. The derivative ofc = f —1(y) is d—x _ Inverse
' =S W T 4y dx
6. When f(x) -0 andg(x) -0 as x —a, what aboutf(x)/g(x)? [I'Hopital
’
f(x) =lim df/dx if these limits exist. Normally this ,J(_
g(x) dg/dx g'(a)

Fundamental Theorem of Calculus

If f(x) :J s(t)dt thenderivative of integral = Z—f =s5(x)
a X
df . - b
If i s(x) thenintegral of derivative = J, s(x)dx = f(b)— f(a)
X

a
Both parts assume thatx) is a continuous function.

All Values Theorem Suppose f(x) is a continuous function for < x <b.
Then on that intervalf(x) reaches its maximum valud and its minimurn.
And f(x) takes all values betweem and M (there are no jumps).




0.4 Video Summaries and Practice Problems

Mean Value Theorem If f(x) has a derivative fon < x <b then

f)—f(a) = ﬂ(c) at somec betweeru andb
b—a dx

“At some moment, instant speeé- average speed”

Taylor Series Match all the derivativeg’ ™ = d"f/dx" at the basepoint = a
1
fx)=fla)+ f'(a) (x—a)+ Ef"(a)(x—a)z-F"'
=Y @ -y
n.
n=0

Stopping ai(x —a)” leaves the errof "1 (c) (x —a)" ' /(n +1)!
[c is somewhere betweenand x] [z = 0 is the Mean Value Theorem]

. 1
The Taylor series looks best aroume= 0 f(x) =) — F™(0) x™
n!

n=0
Binomial Theorem shows Pascal’s triangle

(14x) 1+ 1x
(14x)? 14 2x + 1x?
(1+x)3 14 3x 4 3x% + 13
(1+x)*  14+4x+6x2+43+ 14

Those are just the Taylor series f(x) = (1 +x)” whenp=1,2,3,4

FO@= A+0? p+077" p(p—D(1+x)72 -
fmo)= 1 p p(p—1)

Divide by n! to find the Taylor coefficients- Binomial coefficients

p(p—1)---(p—n+1)  p! (p)

1 gy — _
n!f © = nn—1)---(1) C(p—n)ln! \n

The series stops att when p =n  Infinite series for othep

pp=1) , pPP=D(pP=2) 5

Every(1+x)? =1+ px+ o) 3@
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1.

2.

What ramp functionF(x) hasj—F =S8(x)? F isthe integral of.
X

ds
Why is the derivative— =2 delta(x) ? (Infinite spike ak = 0 with area2)
X

Practice Questions
Check that the derivative gf=xInx —x isdy/dx =Inx.

1 forx>0

The “sign function” isS(x) =
9 (x) { —1 forx<O

d

. : - 3x?
3. ('Hbdpital) What is the limit ofm asx —07? What about — o0 ?
5x +7x2
4. I'Hopital's Rule says that Ii()n& =??when f(0) =0. Hereg(x) = x.
X—> X
5. Derivative is like Difference Integral is like Sum
Difference of sums  Iff, =51 +s2+---+s,, Whatisf, — f,_1?
Sums of differences  What g1 — fo)+ (fa— fi)+- -+ (fu — fa—1) ?
Those are th&€undamental Theoremsof “Difference Calculus”
6. Draw a non-continuous graph for< x <1 where your function does NOT
reach its maximum value.
. o 5—fA d
7. For f(x) = x2, which in-between point g|ves% = d—f(c) ?
— X
8. If your average speed on the Mass Pike7is then at some instant you
speedometer will read .
9. Find three Taylor coefficientd, B, C for /1 + x (aroundx = 0).
(1+x)2 =A+Bx+Cx>+--
. . . _ 1
10. Find the Taylor£ Binomial) series forf = Tox aroundx =0 (p =—1).
X

=
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I 0.5 Graphs and Graphing Calculators | IS

This book started with the sentencedl€ulus is about functions When these
functions are given by formulas like = x +x2, we now know a formula for the
slope (and even the slope of the slope). When we only have a rough graph of the
function, we can’t expect more than a rough graph of the slope. But graphs are very
valuable in applications of calculus!

From a graph of (x), this section extracts the basic information about the growth
rate (the slope) and the minimymaximum and the bending (and area too). A
big part of that information is contained &plus or minus signls y(x) increasing ?

Is its slope increasing? Is the area under its graph increasing? In each case some
number is greater than zero. The three numberg/ay@x andd?y/dx? andy(x)
itself.

When one of those numbersdgactly zerave always have a special situation. It is
a good thing that mathematics invented zero, we need it.

This section is organized by two themes:

(1) Graphs that are drawn without a formula fpfx). From that graph you can
draw other graphs—the slope /dx, the second derivativé?y /dx?, the area
A(x) under the graph.

You can also identify where those functions are positive or negative—and
especially the points wheegy /dx or d?y/dx? or y(x) is zera

(2) Graphs that are drawn by a calculator or computer. Now there is a formula for
y(x). The display allows us to guess rules for derivatives:

Chain Rule Inverse Rule I'Hépital's Rule

These rules come into later chapters of the book. They are also explained in
Highlights of Calculusthe video lectures that are available to everyone. One
specific goal is to see how the derivative2dfis proportional t@2*.

This section was much improved by ideas that were offered by Benjamin Goldstein.

GRAPH WITHOUT FORMULAS

y(x)
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. Suppose this is the graph of some functiaix)

a. At what value(s) ofc doesy(x) have a local minimum ?
b. At what value(s) of doesy(x) have a local maximum ?
c. Atwhat value(s) of doesy(x) have an inflection point? (Estimate.)

. Let's change the problem. Suppose this is the grapthygfix, the derivative
of y(x). Answer the following questions aboufx), the original function.
a. At what value(s) ok doesy(x) have a local minimum ?
b. At what value(s) ok doesy(x) have a local maximum ?
c. At what value(s) of doesy(x) have an inflection point?

. One more variation. Suppose this is the graph of the second derigativel x>
(slope of the slope). If any of these questions can’t be answered, explain why.

a. Atwhat value(s) ok doesy(x) have a local minimum ?
b. At what value(s) of doesy(x) have a local maximum ?

c. At what value(s) ok doesy(x) have an inflection point?

. Answer the same 9 questions for this second graph.

5. The following table shows the velocity of a car at selected times.

time 0 5 10 15 20 25 30 35

velocity 45 40 30 40 45 40 30 25

a. Was there any time when the car was moving with acceleration
d?y/dt*=07? Justify your answer.

b. If y(¢) represents the car’s position as a function of time, was there ever
a time whend3y/dt3=07? Justify your answer. The third derivative is
sometimes referred to agetk’ because it indicates the jerkiness of the
motion. This isimportantto roller-coaster designers.

¢. What assumptions have you made abquj and (more importantlydy/d¢
in your answers to parts (a) and (b) ? Are the assumptions reasonable ?
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THE CHAIN RULE ON A CALCULATOR

a. Onyour calculator, graph;¥= sin(X) and its slope ¥ = nDeriv(Y 1, X, X). Make
sure you are in radian mode, and select the trigonometric viewing window.
1. What function does Yappear to be ?

2. Change Y to Y; =sin(2X). Now what function does Y appear to be?
Check your guess by graphing the true derivative.

3. Finally, change Yto Y; =sin(3X). What does ¥ appear to be this time ?
4. Conjecture: Ik is some constant, then the derivative of(&in) is
b. Those functions arehains(also calledcompositions They can be written in the

formY = f(g(x)). For sin(kx) the outer function isf(x) = and the inner
functionisg(x) =

c. So far the inner functiong(x) has been linear, but it doesn’'t have to be. Let

Y =sin(y/x).
. dYy
Conjecture:d— = wheng(x) = +/x.
X

Check your conjecture by graphing and comparing to the graph of the numerical
derivative.

d. Now we generalize. Supposg(x) is any function. If y =sin(g(x)), then
dy/dx =

e. There is nothing magical about the sine function. Whenever we have a composition
of an outer and an inner function, the chain rule applies. Predict the following
derivatives and check by graphing the numerical derivative on your calculator.

1. y=02x+4)3 dy/dx = 2. y=co¢ x = (cosx)?; dy/dx =
3. y=cos(x?); dy/dx = 4. y=[sin(x2+1)]?; dy/dx =

COMPUTING IN CALCULUS

Software is available for calculus courses—a lot of it. The pgek keep getting

better. Which program to use (if any) depends on cost and convenience and purpose.

Howto use it is a much harder question. These pages identify some of the goals. Our
aim is to support, with examples, the effort to use computing to help learning.

For calculusthe greatest advantage of the computer is to offer graphi¥su
see the function, not just the formula. As you wat¢l{x) reaches a maximum or
a minimum or zero. A separate graph shows its derivative. Those statements are not
100% true, as everybody learns right away—as soon as a few functions are typed in.
But the power tsee this subjeés enormous, because it is adjustable. If we don't like
the picture we change to a new viewing window.

This is computer-based graphics. It combinamerical computation withgraph-
ical computation. You get pictures as well as numbers—a powerful combination. The
computer offers the experience of actually working with a function. The domain and
range are not just abstract ideasu choose thenMay | give a few examples.

a7
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EXAMPLE 1 Certainlyx3equds 3* whenx =3.Do those graphs ever meet again
At this point we don’t know the full meaning 6f, exeept whenx is a nice number.
(Neither does the computer.) Checkingrat2 and4, the functionx? is smaller both
times: 23 is below3? and43=64 is below3*=81. If x3 is always less tha@* we
ought to know—these are among the basic functions of mathematics.

The computer will answer numerically or graphically. At our command, it solves
x3=3%, At another command, it plots both functions—this shows more. The screen
proves a point of logic (or mathematics) that escaped us. If the graphs cross once, they
must cross again—becaudeis higher a2 and4. A crossing point neat.5 is seen
by zooming in. | am less interested in the exact number than its position—it comes
beforex =3 rather than after.

A few conclusions from such a basic example:

1. A supercomputer is not necessary.
2. High-level programming is not necessary.
3. We can do mathematics without completely understanding it.

The third point doesn’t sound so good.Write it differenthe can learn mathematics
while doing it. The hardest part of teaching calculus is to turn it from a spectator
sport into a workout. The computer makes that possible.

EXAMPLE 2 (mental computer) Compan€ with 2*. The functions meet at=2.
Where do they meet again? Is it before or aftér

That is mental computing because the answer happens to be a whole number (4). Now

we are on a different track. Does an accident fike=42 ever happen again ? Can the

machine tell us about integers? Perhaps it can plot the solutiarfs=eb*. | asked

Mathematicdor a formula, hoping to discoveras a function ob—but the program

just gave back the equation. For once the machine typed HELP instead of the user.
Well, mathematics is not helpless. | am proud of calculus. There is a new exercise

at the end of Sectio6.4, to show that we never see whole numbers again.

EXAMPLE 3  Find the numbeb for which x? =b* has onlyonesolution (atx =b).

Whenb is 3, the second solution is belogv Whenb is 2, the second solutio#) is
above2. If we moveb from 2 to 3, there must be a special “double point"—where
the graphs barely touch but don’t cross. For that partickdaand only for that one
value—the curver® never goes above®.

This special poinb can be found with computer-based graphics. In many ways
it is the “center point of calculus Since the curves touch but don'’t cross, they are
tangent. They have the same slope at the double point. Calculus was created to work
with slopes, and we already know the slopexdf Soon comes?. Eventually we
discover the slope df*, and identify the most important number in calculus.

The point is that this number can be discovered first by experiment.

EXAMPLE 4 Graphy(x) =e* —x*. Locate its minimum. Zoom in near=e.

From the derivatives of* andx®, show thatdy /dx =0 atx =e.
If you try, you can also find the next derivative?y/dx?. Can you see why
d?y/dx*>>0atx=e?
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The next example was proposed by Don Small. Satve 11x3 +5x —2=0. The
first tool is algebra—try to factor the polynomial. That succeeds for quadratics, and
then gets extremely hard. Even if the computer can do algebra better than we can,
factoring is seldom the way to go. In reality we have two good choices:

1. (Mathematicd Use the derivative. Solve by Newton’s method.
2. (Graphicg Plot the function and zoom.n

Both will be done by the computer. Both have potential problenesitdén’s method
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is also
fast—Dbut solutions can be outside the viewing window. This particular functionis zero
only once, in the standard window from10 to 10. The graph seems to be leaving
zero, but mathematics again predicts a second crossing point. So we zoom out before
we zoom in.

The use of the zoom is the best part of graphimgpt only do wechoosdhe domain
and range, wehangethem. The viewing window is controlled by four numbers.
They can be the limitgl < x < B andC < y < D. They can be the coordinates of two
opposite cornerg:4,C) and(B, D). They can be the center positigm, ») and the
scale factorg andd. Clicking on opposite corners of the zoom box is the fastest
way, unless the center is unchanged and we only need to give scale factors. (Even
faster: Use the default factors.) Sectidd discusses theentering transformand
zoom transform—a change of picture on the screen and a change of variable within
the function.

EXAMPLE 5 Find all real solutions ta* — 11x3 +5x —2=0.

EXAMPLE 6 Zoom out and in on the graphs of=cos40x andy = x sin(1/x).
Describe what you see.

EXAMPLE 7 What doesy = (tanx —sinx)/x3 approach atc=0? For smallx
the machine eventually can't separate fafrom sinx. It may give y =0. Can you
get close enough to see the limitpasx —»07?

SYMBOLIC COMPUTATION

In symbolic computation, answers can foemulas as well as numbers and graphs.
The derivative ofy =x? is seen as “2& The derivative of sim is “cost.” The slope

of b* is known to the program. The computer does more than substitute numbers into
formulas—it operates directly on the formulas. We need to think where this fits with
learning calculus.

In a way, symbolic computing is close to what we ourselves do. Maybe too close—
there is some danger that symbolic manipulatioaliswve do. With a higher-level
language and enough power, a computer can print the derivative(@fsirbo why
learn the chain rule ? Because mathematics goes deeper than “algebra with formulas.”
We deal withideas

| want to say clearly:Mathematics is not formulas or computatisor even proofs,
but ideas The symbols and pictures are the language. The book and the professor and
the computer can join in teaching it. The computer should be non-threatening (like
this book and your professor)—you can work at your own pace. Your part is to learn
by doing.
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EXAMPLE 8 A computer algebra system quickly find90 factorial. This is
100!=(100)(99)(98)...(1). The number ha$58 digits (not written out here). The
last 24 digits are zeros. Fot0!=3628800 there are seven digits and two zeros.
Betweenl 0 and100, and beyond, are simple questions that need ideas:

1. How many digits (approximately) are in the numbéy?
2. How many zeros (exactly) are at the end\of?

For Questionl, the computer shows more thaN digits when N =100. It will
never show more thaw? digits, because none of thé terms can have more than
N digits. A much tighter bound would b2V, but is it true ?Does N always have
fewer than 2N digits ?

For Questior?, the zeros inl0! can be explained. One comes frd@ the other
from 5 times2. (10 is also5 times2.) Can you explain the4 zeros in100! ? An idea
from the card game blackjack applies here Gount the fives

Hard question: How many zeros at the en@d! ?

Writing in Calculus  May | emphasize the importance of writing ? We totally miss

it, when the answer is just a number. A one-page report is harder on instructors as
well as students—but much more valuable. You can’t write sentences without being
forced to organize ideas—and part of yourself goes into it.

I will propose a writing exercise with options. If you have computer-based
graphing, follow through on Examplds-4 above and report. Without a computer,
pick a paragraph from this book that should be clearemaakie it clearerRewrite it
with examples. Identify the key idea at the start, explain it, and come back to express
it differently at the end. Ideas are like surfaces—they can be seen many ways.

Mathematics can be learned kglking and writing—it is a human activity. Our
goal is not to test but to teach and learn.



CHAPTER 1

Introduction to Calculus

I 1.1 Velocity and Distance |G

The right way to begin a calculus book is with calculus. This chapter will jump
directly into the two problems that the subject was invented to solve. You will see
what the questions are, and you will see an important part of the answer. There are
plenty of good things left for the other chapters, so why not get started ?

The book begins with an example that is familiar to everybody who drives a car. Itis
calculus in action—the driver sees it happening. The example is the relation between
the speedometeand theodometer One measures the speed {etocity); the other
measures thdistance traveledWe will write v for the velocity, andf for how far
the car has gone. The two instruments sit together on the dashboard:

Fig. 1.1 Velocity v and total distancef (atone instant of time).

Notice that the units of measurement are differentf@nd f. The distancef is
measured in kilometers or miles (it is easier to say miles). The velod#yneasured
in km/hr or miles per hour A unit of time enters the velocity but not the distance.
Every formula to compute from f will have f divided by time.

The central question of calculus is the relation betweerand f.

51



52

1 Introduction to Calculus

Can you findv if you know £, and vice versa, and how ? If we know the velocity over
the whole history of the car, we should be able to compute the total distance traveled.
In other words, if the speedometer record is complete but the odometer is missing,
its information could be recovered. One way to do it (without calculus) is to put in

a new odometer and drive the car all over again at the right speeds. That seems like
a hard way; calculus may be easier. But the point is thatinformation is there

If we know everything about, there must be a method to find

What happens in the opposite direction, whéis known ? If you have a complete
record of distance, could you recover the complete velocity ? In principle you could
drive the car, repeat the history, and read off the speed. Again there must be a better
way.

The whole subject of calculus is built on the relation betweand f. The question
we are raising here is not some kind of joke, after which the book will get serious
and the mathematics will get started. On the contreeyn serious now-and the
mathematics has already started. We need to know how to find the velocity from a
record of the distance. (That is calléifferentiation, and it is the central idea of
differential calculus) We also want to compute the distance from a history of the
velocity. (That isintegration, and it is the goal ointegral calculus)

Differentiation goes fromf' to v; integration goes fronv to f. We look first at
examples in which these pairs can be computed and understood.

CONSTANT VELOCITY

Suppose the velocity is fixed at= 60 (miles per hour). Thery increases at this
constant rate. After two hours the distancefis= 120 (miles). After four hours
f =240 and afters hours f = 60zt. We say thatf increasedinearly with time—
its graph is a straight line.

velocity v(r) distance f(t)
240
60 *——.-—: v==60
Area =240 :
——t—t—t—> time ¢
2 4

Fig. 1.2  Constant velocity = 60 and linearly increasing distancg = 60z.

Notice that this example starts the car at full velocity. No time is spent picking up
speed. (The velocity is a “step function.”) Notice also that the distance starts at zero;
the car is new. Those decisions make the graphsaofd / as neat as possible. One is
the horizontal linev = 60. The other is the sloping ling = 60¢. Thisv, £, ¢ relation
needs algebra but not calculus:

If vis constant andf starts at zero thenf = vr.

The opposite is also true. Whefiincreases linearlyy is constantThe division by
time gives the slope. The distancefis= 120 miles when the time is; =2 hours.
Later f» =240 miles att, = 4 hours. At both points, the ratig/¢ is 60 miles/hour.
Geometricallythe velocity is the slope of the distance graph

charge in distance vt
slope= — =—=u.
change in time t
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A
60 g U = 60 =20+ 60t
Area 30
0 ; t t
Area—15 1/2
11 S p——— - v=-30

Fig. 1.3  Straight linesf =20+ 60z (slope60) and f = —30¢ (slope—30).

The slope of thg'-graph gives the-graph Figure 1.3 shows two more possibilities:

1. The distance starts ab instead of0. The distance formula changes frait:
to 20+ 60¢. The numbef0 cancels when we computbangen distance—so
the slope is stilb0.

2. Whenv is negative, the graph of goesdownward The car goes backward
and the slope of = —30¢ isv = —30.

I don’t think speedometers go below zero. But driving backwards, it's not that safe
to watch. If you go fast enough, Toyota says they measure “absolute values"—the
speedometer reads30 when the velocity is-30. For the odometer, as far as | know

it just stops. It should go backwaid.

VELOCITY vs. DISTANCE: SLOPE vs. AREA

How do you computef from v ? The point of the question is to sg&= vt on the
graphs We want to start with the graph ofand discover the graph ¢f Amazingly,
the opposite of slope @rea

The distancef is the area under thev-graph. Whenv is constant, the region
under the graph is a rectangle. Its height ists width is¢, and its area is timest.
This isintegration to go fromv to f by computing the area. We are glimpsing two
of the central facts of calculus.

1A The slope of thef-graph gives the velocity. The area under thev-graph
gives the distance.

That is certainly not obvious, and | hesitated a long time before | wrote it down in
this first section. The best way to understand it is to look first at more examples. The
whole point of calculus is to deal with velocities that a constant, and from now
onv has several values.

EXAMPLE (Forward and bacR There is a motion that you will understand right
away The car goes forward with velocity, and comes back at the same speed. To
say it more correctly, theelocity in the second part is V. If the forward part lasts
until + = 3, and the backward part continueg te: 6, the car will come back where it
started The total distance after both parts will e= 0.

1 This actually happened iRerris Bueller's Day Off when the hero borrowed his father’s
sports car and ran up the mileage. At home he raised the car and drove in reverse. | forget if
it worked.
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v(r) = slope of f(r) 3V 1

|4 velocity V velocity —V
area

3V 13 6

t t
area 6
-3V ‘ 3

-vi

Fig. 1.4 Velocities+V and —V gives motion forward and back, ending #t6) = 0.

Thev-graph shows velocities-V and—V. The distance starts up with slogel
and reaches’ =3V. Then the car starts backward. The distance goes down with
slope—V and returns tof =0 att = 6.

Notice what that means. The total area “under” thgraph is zero! A negative
velocity makes the distance graph downward(negative slope). The car is moving
backwardArea below the axis in the-graph is counted as negative

FUNCTIONS

This forward-back example gives practice with a crucially imaot idea—the
concept of a “functior’ We seize this golden opportunity to explain functions:

The numberv(z) is the value of the functiorv at the timer.

The timet is theinput to the function. The velocity(z) at that time is theutput
Most people say ¥ of :” when they read)(¢). The number ¥ of 2” is the velocity
whent =2. The forward-back example hag2) = +V andwv(4) = —V. The func-
tion contains the whole history, like a memory bank that has a recarcbéactr.

It is simple to convert forward-back motion into a formula. Here(is:

+V if 0<r<3
v(t)= 7 0f =3
-V if 3<t<6

The right side contains the instructions for finding@). The inputs is converted into
the output+V or —V. The velocityv(¢) depends on. In this case the function is
“discontinuous,” because the needle jumps-at3. The velocity is not defined at that
instant There is now(3). (You might argue that is zero at the jump, but that leads
to trouble.) The graph of has a corner, and we can't give its slope.

The problem also involves a second function, namely the distance. The principle
behind f(¢) is the same () is the distance at time. It is the net distance forward,
and again the instructions change at 3. In the forward motion,f(¢) equalsl't as
before. In the backward half, a calculation is built into the formulafar):

Vit if 0<r<3
1) =
Y { Ve—t) if 3<t<6

At the switching time the right side gives two instructions (one on each line). This
would be bad except that they agre&3) = 3V.1 The distance function is “continu-
ous” There is no jump inf, even when there is a jump in After r = 3 the distance
decreases because-e¥'t. At t = 6 the second instruction correctly givgs6) = 0.

1A function is only allowedone value f(¢) or v(¢) at each time.
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Notice something more. The functions were given by graphs béfesewere given
by formulas. The graphs tell yofi andv at every timez—sometimes more clearly
than the formulas. The valugqr) andv(¢) can also be given by tables or equations
or a set of instructions. (In some way all functions are instructions—the function tells
how to find f* at timez.) Part of knowingf is knowing all its inputs and outputs—its
domainandrange:

The domain of a function is the set of inputs. The range is the sébatputs.

The domain off conssts of all times0 <t < 6. The range consists of all distances
0< f(¢t) <3V. (The range ofv contains only the two velocities-V and —V.)

We mention now, and repeat later, that every “linear” function has a formula
f(@)=vt+C. Its graph is a line and is the slope. The consta6t moves the line

up and down. It adjusts the line to go through any desired starting point.

SUMMARY: MORE ABOUT FUNCTIONS

May | collect together the ideas brought out by this example ? &ilgwo functions

v and f. One wasvelocity, the other waslistance Each function had domain and
arange and most important graph For the f-graph we studied the slope (which
agreed withv). For thev-graph we studied the area (which agreed wfith Calculus
produces functions in pairs, and the best thing a book can do early is to show you
more of them.

in inputr —  function f/ — output f(¢) in
the input2 —  functionv — outputv(2) the
domain | input7 — f(t)=2t+6 — f(7)=20 range

Note about the definition of a function.The idea behind the symbof(¢) is
absolutely crucial to mathematics. Words don't do it justice! By definition, a function
is a “rule” that assigns one member of the range to each member of the domain. Or,
a function is a set of pairg, f(z)) with not appearing twice. (These are “ordered
pairs” because we write before f(¢).) Both of those definitions are correct—but
somehow they are too passive.

In practice what matters is the active part. The numbe) is produced from the
numberz. We read a graph, plug into a formula, solve an equation, run a computer
program. The input is “mapped” to the outpuf(¢), which changes aschanges.
Calculus is about theate of change This rate is our other function

e
3 3 fir-2)=21-3

g
(8]

range fin=2r+1 21

l L
range / domain
0 t 0 + 1 0 + +
domain / 1 | 2 3
1

Fig. 1.5 Subtracting from f affects the range. Subtracting 2 franaffects the domain.
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It is quite hard at the beginning, and not automatic, to see tliereifce between
f(t)—2and f(t —2). Those are both new functions, created out of the origfi{a).
In f(tr)—2, we subtrac® from all the distances. That moves the whole greptvn
In f(t—2), we subtrac from the time. That moves the graph ouerthe right
Figure 1.5 shows both movements, starting frgn) =2z + 1. The formula to find
f({—2)is2(t —2)+ 1, which is27 —3.

A graphing calculator also moves the graph, when you change the viewing window.
You can pick any rectanglg <t < B,C < f(t) < D. The screen shows that part of
the graph. But on the calculatdine functionf(¢) remains the samét is the axes that
get renumbered. In our figures the axes stay the same and the function is changed.
There are two more basic ways to change a function. (We are always creating new
functions—that is what mathematics is all about.) Instead of subtracting or adding,
we canmultiply the distance by. Figure 1.6 showg f(¢). And instead of shifting
the time, we caispeed it upThe function becomeg(2¢). Everything happens twice
as fast (and takes half as long). On the calculator those changes corresporatinia
—on the f axis or ther axis. We soon come back to zooms.

6
range 2f(t) =41+ 2
slope 4
3 3
range f(/)=21+ 1 2 2 f(?.l):4l+ |
slope 2 slope 4
| 1
domain
0 t 0 ——— ¢ 0 t
domain | 1 1/2

Fig. 1.6  Doubling the distance or speeding up the time doubles the slope.

1.1 EXERCISES

Each section of the book contains read-through questions. under thev-graph up to time.5is__o . The domain off is the
They allow you to outline the section yourself—more actively time interval p , and the range is the distance intervalg
than reading a summary. This is probably the best way to Therange ofv(z)isonly__r .

remember the important ideas.

Starting from f(0) =0 at constant velocityw, the distance func-
tionis f(t)=__a .Whenf(¢) =55t the velocityisv=__b .

When f(t) = 55t + 1000 the velocity is still__c __ and the starting 19
valueisf(0)=__d .Ineachcase isthe__e of the graph of

f-When__f _is negative, the graph of g goes downward. In

that case area in the-graph countsas h .

Thevalue of f(t)=3t+1atr=2is f(2)=__s . The value
equals f (__t ). The differencef(4)— f(1)= _u . That
is the change in distance, wheh—1 is the change in_v_.
Theratio of those changes equalsw__, whichisthe__x__ofthe

graph. The formula forf(t) +2 is 3t +3 whereasf (z +2) equals

Forward motion fromf(0) =0to f(2)=10hasv=__i__.Then y . Those functions have the samez _ as f: the graph
backward motion tof(4) =0 hasv= j . The distance function of f(¢)+2 is shifted__A _and f(¢+2) is shifted__B . The
is f(t)=5t for 0<r<2 and thenf(r)= __k _(not—5¢). The formulafor f(5¢)is__C . The formula for5f(t)is__D .The

slopesare | _and__m .Thedistancef(3)=__n . The area slope has jumped frodto__E
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The set of inputs to a function is its F . The set of outputs Draw the distance graph that goes with each velocity graph.
isits__G . The functionsf(r) =7+3(t —2) and f(r)=vt+C Startfrom f =0 ats =0 and mark the distance.

are__H . Theirgraphs are | _with slopesequalto J and
K . They are the same functionpit=_ L andC=_M . 13 4 0 i v
Draw the velocity graph that goes with each distance graph. 2071 | l
; ¢ |
12 T 2F 3T
1 f f
60 20 -40 14a 14b
[\, W/
t t 14 v v
2 4.6 1 2 30 J[ 30 4
2 + 1
30 +f f I I 2. 3 2 4 6
20 I 13a -30 13b
10 ] ) ) ]
t P 15 Write down formulas forv(¢) in Problem14, starting with
10 20 30 v=—40 for 0 <t < 1. Find the average velocities to=2.5 and
t =3T.

3 Write down three-part formulas for the velocitiagz) in . .
Problem2. starting from (¢) =2 for 0 < < 10. 16 Give 3-part formulas for the area$(r) underv(z) in 13.
17 The distance ifl4a strts with f(t) = —40z for 0<t < 1. Find

4 The distance inlb stats with f(r)=10—10¢ for 0<z<1. f(¢) in the other part, which passes throufi=0 ats = 2.

Give a formula for the second part.

5 In the middle of grapRa find f(15) and f(12) and f(¢). F(t)=20+1for2<t <3

, _ . "
6 Ingraph2b find f(1.4T).If T =3 whatis f(4) 19 Draw rough graphs ofy=+/% and y=+x—4 and
7 Find theaverage speetbetveens =0 ands =5 in graphla. y =+/x—4. They are “half-parabolas” with infinite slope at the

18 Draw the velocity and distance graphsi) =8 for0 <t <2,

What is the speed at=57? start.
8 What is the average speed between0 andr =2 in graphlb? 20 What is the break-even point if yeabooks cost $,200 4+ 30x
The average speed is zero betvveeﬂ% andr = . to produce and the income #x ? The slope of the cost line is
(cost per additional book). If it goes above you can't

9 (recommended) A car goes at speee: 20 into a brick wall at
distancef = 4. Give two-part formulas fow(¢) and f(¢) (before
and after), and draw the graphs. 21 What are the domains and ranges of the distance functions in

14a ard 14b—all values of and f(¢) if f(0)=07

break even.

10 Draw any reasonable graphs and f(¢) when
Y graphstalt) S 22 What is the range ob(¢) in 14b? Why ist =1 not in the

(a) the driver backs up, stops to shift gear, then goes fast; domain ofv(r) in 14a?
(b) the driver slows ta5 for a police car;
(c) inarough gear change, the car accelerates in jumps;

i . ) Problems 23-28 involvelinear functions f(¢t)=vt+C. Find
(d) the driver waits for a light that turns green.

the constantsv and C.

11 Your bank account earns simple interest on the opening ) ) 5
balance f(0). What are the interest rates per year ? 23 What linear function hag'(0) = 3 and f(2) = —117

24 Findtwo linear functions whose domain@s<¢ < 2 and whose

120 range isl < f(r) <9.
100 ’ 100
f(r) 80 £(1) 25 Find the linear function withy'(1) = 4 and slopes.
26 What functions have/(r +1) = f(t)+2?
+—> | + + !
! 2 I - 27 Find the linear function with f(t+2)= f(1)+6 and
F(1)=10.
12 The earth’s population is growing at= 100 million a year, 28 Find the only f = vt that has f(2¢) =4 f(¢). Show that every
starting fromf = 5.2 billion in 1990. Graph f(¢) and find f (2000). f = %azz has this property. To go times as far in twice the

time, you must accelerate.



58 1 Introduction to Calculus

29 Sketch the graph of (r) = |5—2¢| (absolute value) fojr| <2 45 (a) Draw the graph off(r) =741 for —1 < <1. Find the
and find its slopes and range. domain, range, slope, and formula for

30 Sketch the graph of (1) =4—1¢ — |4 —¢| for 2 <¢ <5 and find (b) 21@t) (©) f(z—=3) d) —f@) (e f(=0).
its slope and range.

31 Suppose =8 up totime T, and after that = —2. Starting from 46 If /(1) =t—1whatare2f(3r) and f(1~7) and f(t —1)?
zero, when doeg’ return to zero ? Give formulas foi(z) and f(1). 47 In the forward-back example (Figure 1.4) find(37) and
32 Suppose = 3 up totime T = 4. What new velocity will lead to ./ (3T). Verify that those agree with the areas “under” thgraph.

J(7)=30if f(0)=07 Give formulas fow () and / (2). 48 Find formulas for the outputg; () ard /> () which come from
33 What function F(C) converts Celsius temperature C tbe inputs:
Fahenheit temperature F? The slope is , which is the (1) inside=input #3 (2) insidec input +6

number of Fahrenheit degrees equivalent €. output=inside +3 outpute inside 3

34 What function C(F) converts Fahrenheit to Celsius (%

Centgrade), and what is its slope ? ote BASIC and FORTRAN (and calculus itself) use in-

stead of— . But the symbolk— or := is in some ways better. The
35 What function converts the weight in grams to the weight instructions « ¢ 4+ 6 produces a new equal to the old plus six.
f(w) in kilograms ? Interpret the slope gi(w). The equation = ¢ + 6 is not intended.

36 (Newspaper of March989) Ten hours after the accident the alag your computer can add and multiply. Starting with the number
cohol reading wag)61. Blood alcohol is eliminated ab15 per hour. | and te input called, give a list of instructions to lead to these
What was the reading at the time of the accident? How much laggfputs:

would it drop t0.04 (the maximum set by the Coast Guard) ? The A0 =241 KO =AA0) A=A+

usual limit on drivers is10 percent.
50 In fifty words or less explain whatfaindion is.
Which points betweent =0 and ¢t = 5 can be in the domain of

£(r)? With this domain find the range in 37-42. The last questions are challenging but possible.
51 If f(r)=3t—1 for 0 <t <2 give formulas (with domain) and

37 fO)=vi—-1 38 f)=1/vi-1 find the slopes of these six functions:
39 f(1)= |t —4| (absolute value) 40 f®)y=1/( —4)2 (@ f(t+2) (b) f(t)+2 (© 2f@)
a1 f=2" 42 fy=2" (d) f(20) (e) f(=0) ® fUf@).
43 (a) Draw the graph off (t) = %t +3 with domain0 <r <2. 52 For f(t) =vt + C find the formulas and slopes of

Then give a formula and graph for (@) 3f(t)+1 () f(3t+1) ©) 2f(41)

(b) f()+1 (© f@+1) (d) f(=0) (e fO-fO 6 Q).

@ 4/ € s@n. 53 (hardest) The forward-back function isf(tr)=2¢ for

0<r<3, f(t)=12—2¢ for 3<r <6. Graph f(f(¢)) and find its

44 (a) Draw the graph otU(r) = step function= {0 for r <0, four-part formula. First tryt = 1.5 and3.

1 for ¢ = 0}. Then draw
(b)y U@)+2 (© Ut+2)
(d) 3U() (e) UB).

54 (a) Why is the letterX not the graph of a function ?
(b) Which capital letters are the graphs of functions ?
(c) Draw graphs of their slopes.
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The next page is going to reveal one of the key ideas behind calculus. The discussion is
just about numbers—functions and slopes can wait. The numbers are not even special,
they can be any numbers. The crucial point is to look at their differences:

Suppose the numbersafe=0 2 6 7 4 9
Their differences are = 2 41 -3 5

The differences are printed in between, to shaw0=2 and 6—2=4 and
7—6=1. Notice how4 —7 gives a negative answer3. The numbers inf can go

up or down, the differences incan be positive or negative. The idea behind calculus
comes when yoadd up those differences

24+4+1-3+5=9

The sum of differences i8. This is the last number on the top line (ff). Is this an
accident, or is this always true ? If we stop earlier, ater4 + 1, we get the7 in f.
Test any prediction on a second example:

Suppose the numbersafe=1 3 7 8 5 10
Their differences are = 2 41 =35

The f’s are increased by. The differences are exactly the same—no change. The
sum of differences is stil). But the lastf is now10. That prediction is not right, we
don’t always get the last.

The first f is now 1. The answeb® (the sum of differences) i0 — 1, the last f
minus the first £. What happens when we change tfis in the middle ?

Suppose the numbersafe=1 5 12 7 10
Their differences are = 4 7 =53

The differences add té+7—5+3 =9. This is still 10 — 1. No matter whatf’s we
choose or how many, the sum of differences is controlled by the firahd last /.
If this is always true, there must be a clear reason thieymiddle /s cancel out

The sum of differences ig5—1)+ (12—5)+(7—12)+(10—-7) =10—1.

The5'’s cancel, thd2’s cancel, and th&'s cancel. Itis onlyl0 — 1 that doesn’t cancel.
This is the key to calculus!

1B The differences of the f’sadd up to ( fiast— first)-

EXAMPLE 1 Thenumbers grow linearly:f = 2 3 4 5 6 7
Their differencesareconstant:= 1 1 1 1 1

The sum of differences is certainy. This agrees with7 —2 = flast— fiirst. The
numbers i remind us of constant velocity. The numbersfinemind us of a straight
line f =vt+C. This example has =1 and the f’s start at2. The straight line
would come fromf =t +2.

EXAMPLE 2 The numbers are squareg:= 0 1 4 9 16
Their differences grow linearlyp= 1 3 5 7

1+3+5+7 agrees withd? = 16. It is a beautiful fact that the first odd numbers
always add up tg 2. Thev'’s are the odd numbers, th&s are perfect squares.
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Note The letter; is sometimes useful to tell which number jfi we are looking at.
For this example the zeroth numberfis= 0 and thejth numberisf; = j2. Thisis a
part of algebra, to give a formula for th&s instead of a list of numbers. We can also
use; to tell which difference we are looking at. The firstis the first odd number
v = 1. The jth difference is thg'th odd numbep; =2 —1. (Thusvs is8—1="7.)

It is better to start the differences wijh= 1, since there is no zeroth odd numlvgr
With this notation the jth difference isv; = f; — f;_1. Sooner or later you will
get comfortable with subscripts like and j — 1, but it can be later. The important
point is that the sum of the's equals flast— fiirst. WWe now connect the’s to slopes

and thef’s to areas.

’ f4=16
v, =77 ) it 5
DJ-=2J—1 & _,5:_,'
U3=35 - i
2 > £,=9
s
[)2=% = ~
1 2 i
o, =
I i + + > t fi=l + ; ; = !
1 2 3 4 1 2 3 4

Fig. 1.7 Linear increase im = 1,3,5,7. Squares in the distancgs=0, 1,4,9, 16.

Figure 1.7 shows a natural way to graph Example 2, with the odd numberand
the squares irf. Notice an important difference between thgraph and the-graph.
The graph off is “piecewise lineat We plotted the numbersifi and connected them
by straight lines. The graph ofis “piecewise constaritWe plotted the differences
as constant over each piece. This reminds us of the distance-velocity graphs, when
the distancef(¢) is a straight line and the velocity(z) is a horizontal line.
Now make the connection to slopes:

distanceup changein f
= =0

The sl f thef- hi S N
e slope of thef-grap ISdistanceac:ross change in

Over each piece, the changedn(across) isl. The change inf (upward) is the

difference that we are calling The ratio is the slope/1 or justv. The slope makes

a sudden change at the breakpoints1,2,3, .... At those special points the slope

of the f-graph is not defined—we connected thg by vertical lines but this is very

debatableThe main idea is that between the breakpoints, the slopeg¢f) is v(z).
Now make the connection to areas:

The total area under the)-graph is fiast— ffirst.

This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle ig. The heights of the rectangles are this. So the areas also
equal thev's, and the total area is the sum of this. This area iSfiast— fiirst.

Even more is true. We could start at any time and end at any later time—
not necessarily at the special times 0, 1,2,3,4. Suppose we stop at=3.5. Only
half of the last rectangular area (undee 7) will be counted. The total area is
14345+ 1(7)=12.5. This still agrees with fiast— first=12.5—0. At this
new ending time = 3.5, we are only halfway up the last step in tfiegraph. Halfway
betweerp and16 is 12.5.
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1C Thev’sare slopes off(z). The area under thev-graph is f(tend) — f (¢star -

This is nothing less than the Fundamental Theorem of Calculus. But we have only
used algebra (no curved graphs and no calculations involving limits). For now the
Theorem is restricted to piecewise line@(t) and piecewise constant(z). In
Chapters that restriction will be overcome.

Notice that a proof of +3+ 5+ 7 = 42 is suggested by Figure 1.7a. The triangle
under the dotted line has the same area as the four rectangles under the staircase. The
area of the triangle i% -baseheight= %-4-8, which is the perfect squarg. When
there arej rectangles instead df we get% -j-2j = j? for the area.

The next examples show other patterns, whgrandv increase exponentially or
oscillate around zero. | hope you like them but | don'’t think you have to learn them.
They are like the special functio?$ and sirv and cog—except they go in steps.

You get a first look at the important functions of calculus, but you only need algebra.
Calculus is needed for a steadily changing velocity, when the graphy'ds curved.

The last example will bancome tax—which really does go in steps. Then
Sectionl.3 will introduce the slope of a curve. The crucial step for curves is working
with limits. That will take us from algebra to calculus.

EXPONENTIAL VELOCITY AND DISTANCE

Start with the numberg =1,2,4,8,16. These are “powers &f.” They start with the
zeroth power, which i€° = 1. The exponential starts dt and not0. After j steps
there arej factors of2, and f; equals2’/. Please recognize the difference between
2j and j2 and2/. The number&; grow linearly, the numberg? grow quadratically,
the numberg’/ grow exponentially. Atj = 10 these arQ0 and 100 and 1024. The
exponential/ quickly becomes much larger than the others.

The differences off =1,2,4,8,16 are exactlyv =1,2,4,8. We get the same
beautiful numbersWhen the f’'s are powers of2, so are thev’s. The formula
v; =2/~ lis slightly different fromf; = 2/, because the firstis numbered; . (Then
vy =2°% = 1. The zeroth power of every numberlisexcept thad® is meaningless.)
The two graphs in Figure 1.8 use the same numbers but they look different, because
f is piecewise linear and is piecewise constant.

v, =81 e =81
U.r'=2j_1

v,=4 =4

r:2=2~-_,—— fHi=2 %

vy =11 fo=11

1 -2 2, -4 I 2 & .4
Fig. 1.8  The velocity and distance grow exponentially (powerg)of
Where will calculus come in? It works with the smooth curyér) =2'. This

exponential growth is critically important for population and money in a bank and the
national debt. You can spot it by the following testr) is proportional to f(z).
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Remark The function2? is trickier thanz2. For f =t the slope isv =2¢. It is
proportional tor and notr2. For f =2’ the slope iv = c2?, and we won't find the
constantt =.693... until Chapter6. (The number is the natural logarithm o2.)
Problem37 estimates with a calculator—the important thing is that it's constant.

OSCILLATING VELOCITY AND DISTANCE

We have seen a forward-back motion, veloditjollowed by—V. That is oscillation
of the simplest kind. The graph gf goes linearly up and linearly down. Figure 1.9
shows another oscillation that returns to zero, but the path is more interesting.

The numbers inf are nowo,1,1,0,—1,—1,0. Since f¢ = 0 the motion brings us
back to the start. The whole oscillation can be repeated.

The differences in are1,0,—1,—1,0,1. They add up to zero, which agrees with
fast— frirst. Itis the same oscillation as ifi (and also repeatable), but shifted in time.

The f-graph resembles (roughly)sine curve Thev-graph resembles (even more
roughly) acosine curve The waveforms in nature are smooth curves, while these are
“digitized"—the way a digital watch goes forward in jumps. You recognize that the
change from analog to digital brought the computer revolution. The same revolution
is coming in CD players. Digital signals (off or obor 1) seem to win every time.

The piecewise and f start again at = 6. The ordinary sine and cosine repeat at
t =2m. A repeating motion igperiodic—here the “period” is6 or 2. (With ¢ in
degrees the period #0—a full circle. The period becomé@s when angles are mea-
sured inradians We virtually always use radians—which are degrees t2ag's$60.)
A watch has a period df2 hours. If the dial showaM andPM, the periodis .

v(r)

1 3 5 6 | \_/
=

Fig. 1.9 Piecewise constant “cosine” and piecewise linear “sine.” Thwk repeat.

A SHORT BURST OF SPEED

The next example is a car that is driven fast for a short time. ThedsV until the
distance reaches = 1, when the car suddenly stops. The graplfafoes up linearly
with slopeV/, and then across with slope zero:

V upto =T Vit upto t=T
)= )=
v(®) {O after =T /0 {1 after =T

This is another example of “function notation.” Notice the general tinamd the
particular stopping timel”. The distance isf(z). The domain of f (the inputs)
includes all times > 0. The range off (the outputs) includes all distanc@s f < 1.

Figure 1.10 allows us to compare three cars—a Jeep and a Corvette and a Maserati.
They have different speeds but they all regck- 1. So the areas under thegraphs
are alll. The rectangles have heightand basd" =1/V.
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Vm EQUAL AREAS EQUAL DISTANCES "
Maserati delta y function
aserati "
1 step
Vol=g= 1 X
€ —: Corvette 1' function
V; " I
I Jeep I
$ —
Ty Te T, Ty Tc T,

Fig. 1.10 Bursts of speed with/ys Ty = Ve Tc =V Ty = 1. Step function has infinite
slope.

Optional remark It is natural to think about faster and faster speeds, which means
steeper slopes. Thé-graph reaches in shorter times. The extreme case istap
function, when the graph off goes straight up. This is the unit stéf§z), which is

zero up tor =0 and jumps immediately t&/ =1 for ¢t > 0.

What is the slope of the step function Tt is zero except at the jump. At that moment,
which ist = 0, the slope isnfinite. We don’t have an ordinary velocity(¢)—instead
we have an impulse that makes the car jump. The graph is a spike over the single point
t =0, and it is often denoted b¥—so the slope of the step function is calleddzlta
function.” The area under the infinite spike is

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Our last example is a real-world application of slopes ands rates—to explain “how
taxes work.” Note especially the difference between tax rates and tax brackets and
total tax. The rates ang the brackets are an, the total tax isf.

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .28, .31.

Suppose you are single with taxable incomerafollars (Form1040, line 37—after
all deductions). These are thh@91 instructions from the Internal Revenue Service:

If x is notover 0,350, the tax is15% of x.
If $20,350 < x < $49,300, the tax is $052.50 +28% of the amount over2, 350.

If x is over $9,300, the tax is $1, 158.50 + 31% of the amount over4®, 300.

The first bracket i9 < x < $20,350. (The IRS never uses this symbg| but | think
itis OK here.We know what it means.) Thesecond bracke2is 350 < x < $49, 300.
The top bracket > $49,300 pays tax at the top rate 81 %. But only the incomen
that bracketis taxed at that rate.

Figure 1.11 shows the rates and the brackets and the tax due. Thosearerage
rates, they arenarginal rates. Total tax divided by total income would be the average
rate. The marginal rate a8 or .31 gives the tax on eadcdditionaldollar ofincome—
it is the slope at the point. Taxis like areaor distance—it adds up.Tax rateis like
slopeor velocity—it depends where you are. This is often unclear in the news media.

Question What is the equation for the straight line in the top bracket ?

Answer  The bracket begins at = $49,300 when the tax isf(x) = $11, 158.50.
The slope of the line is the tax ratgl. When we know a point on the line and the
slope, we know the equation. This is important enough to be highlighted.
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40 + 180
DZ =60+ LI.E 180

tax to pay flx)

31%

11,158

tax rate =
slope .28

v, =20 [ area | 3,052

20350 49,300

Fig. 1.11 Thetax rate isv, thetotal tax is f. Tax brackets end at breakpoints.

1D For x in the top bracket the tax i§(x) = $11, 158.50 + .31 (x — $49,300).
This is the tax on &9, 300 plus the extra tax on extra income.

Section2.3 presents this “point-slope equation” for any straight line. Here you see it
for one specific example. Where does the number $11, 158cfde from? It is the
tax at theendof the middle bracket, so it is the tax at thirt of the top bracket.

Figure 1.11 also shows a distance-velocity example. The distance=atis
f(2) =40 miles. After that time the velocity i60 miles per hour. So the line with
slope60 on the f-graph has the equation

f(t) = starting distancet+ extra distance= 40+ 60(t —2).
The starting point ig2,40). The new speed0 multiplies the extra time —2. The
point-slope equation makes sendé now review this section, with comments

Central idea Start with any numbers iff. Their differences go im. Then the sum of
those differences igjast— fiirst.

Subscript notationThe numbers arefy, f1,... and the first difference is
v1 = f1 — fo. Atypical number isf; and thejth differenceisy; = f; — f;_1. When
those differences are added, Al in the middle (like f1) cancel out:

v+t tv; =1 —f)+ oSO+ -+ ;= F,0=f;—fo
Examples f; = or j2 or 2/. Thenv; =1 (constant) or2j —1 (odd numbers)
or2/-1,

Functions Connect thef’s to be piecewise linear. Then the slapis piecewise con-
stant. The area under thegraph from anys:to anyteng equalsf (fend) — f (fstard -

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate in
(dollars paid) (dollars earned). Tax rate is a percentage I#& with no units.

1.2 EXERCISES

Read-through questions

Start with the numbers f =1,6,2,5. Their differences are With distancesl,5,25 at unit times, the velocities are g
v= __a . The sum of those differencesis b . Thisis equal These are the h _ of the f-graph. The slope of the tax graph
to fiast minus__ ¢ . The numbers ard 2 have no effect on this is the tax __i . If f(¢) is the postage cost far ounces ort
answer, because i6—1) + (2—6) + (5—2) the numbers and2 grams, the slope isthe j per__k . For distance$,1,4,9 the

d . The slope of the line betweefi(0)=1 and f(1)=6 is velocities are__| . The sum of the firstj odd numbers is

e . The equation of that line ig(t)=__ f . fi=_m_ .Thenfjpis__n andthe velocityois__o
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The piecewise linear sine has slopesp . Those form a

piecewise g cosine. Both functions have r equal to 6,
which means thatf(r+6)= __s for everyt. The velocities
v=12,4,8,... have v; = t . In that casefp=1 and
fi= u . The sum ofl1,2,4,8,16 is __v__ . The difference
2/ —27-1 equals__w . After a burst of speed’ to time 7', the
distance is__x

onlytoT = 'y .WhenV approaches infinityf(¢) approaches a

z __function. The velocities approach a A __ function, which

is concentrated at =0 but has area_ B under its graph. The

slope of a step functionis C .
Problems 1-4 are about numbersf” and differencesv.

1 From the numberg’ =0,2,7, 10 find the difference® and the

sum of the three’s. Write down anotherf that leads to the same

v's. For f =0,3,12, 10 the sum of the’s is still .
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Problems 12-18 are based on Example 3 about income taxes.

12 What are the income taxes on=$10,000 and x = $30, 000
andx = $50,000 ?

13 What is the equation for income tgi(x) in the second bracket
$20,350 < x <$49,300 ? How is the numbet1, 158.50 connected

. If f(T) = 1 and V increases, the burst lastswvith the other numbers in the tax instructions ?

14 Write the tax functionF'(x) for a married couple if the IRS treats
them as two single taxpayers each with taxable incanfiz (This

is not done.)

15 In the 15% bracket, with 5% state tax as a deduction, the
combined rate is no20% but . Think about the tax on an
extra $100.

16 A piecewise linear function isontinuouswhen f(¢) at the end
of each interval equalg(z) at the start of the following interval. If

2 Starting from f =1,3,2,4 draw the f-graph (linear pieces) and f(¢) = 5t up tor =1 andv () =2 for ¢ > 1, define f beyondr = 1

the v-graph. What are the areas “under” thegraph that add to

so it is (a) continuous (b) discontinuous. (c) Define a tax function

4—17? If the next number inf is 11, what is the area under thef(x) with rates.15 and.28 so you would lose by earning an extra

nextv ?

3 Fromv=1,2,1,0,—1 find the f’s starting atfo = 3. Graphv
and f. The maximum value off occurs when = . Where
isthe maximumf whenv=1,2,1,—17?

4 For f =1,b,c,7 find the differences;,v,,v3 and add them up.
Do the same forf =a,b,c,7. Do the same foif =a,b,c.d.
Problems 5-11 are about linear functions and constant slopes.

5 Write down the slopes of these linear functions:

@ f()=11t (b) f(t)=1-2t (C) f(t)=4+5(t—6).

dollar beyond the breakpoint.

17 The difference between a tagredt and adeductionfrom
income is the difference betweef(x) —c and f(x —d). Which is
more desirable, a credit of=$1000 or a deduction of! = $1000,
and why ? Sketch the tax graphs whgx) = .15x.

18 The average tax rate on the taxable incomea(x) = f(x)/x.
This is the slope betwee(®,0) and the point(x, f(x)). Draw a
rough graph of:(x). The average rate is below the marginal rate
v because .

Problems 19-30 involve numbers fy, f1, f2,... and their
differencesv; = f; — f;_1. They give practice with subscripts

Compute f(6) and f(7) for each function and confirm thatp . . ;.

f(7)— f(6) equals the slope.

6 If f(r)=5+3(t—1)andg(r)=1.54+2.5(t — 1) whatish(r) =
f(t)—g(t)? Find the slopes of, g andh.

7 Supposev(t) =2fort <5andv(t) =3 for¢ > 5.

(@) If £(0) =0 find a two-part formula forf (¢).

(b) Check thatf(10) equals the area under the graphvdf)
(two rectangles) up to= 10.

8 Supposev(r) =10 for t < 1/10,v(¢t) =0 for > 1/10. Starting
from f(0) =1 find f(¢) in two pieces.

9 Supposeg(r)=2t+1 ard f(zr) =4t. Find g(3) and f(g(3))
and f(g(¢)). How is the slope off (g(¢)) related to the slopes of
andg ?

10 For the same functions, what arg(3) and g(f(3)) and
g(f(t))? Whery is changed tdt, distance increases times
asfast and the velocity is multiplied by .

11 Compute f(6) and f(8) for the functions in Problent.
Confirm that the slopes agree with

S(®)— f(6) change inf

8—6  changein

slope=

19 Find the velocities);,v2,v3 and formulas forv; and f;:
(b) f=0,1,01,... (c)f=0.3.2.2....

20 Find f1, f2. f3 and a formula for f; with fo = 0:
(@ v=1,2,48, ... (b) v=—1,1,—1,1,...

@ f=13.5.7,...

21 The areas of these nested squareslaré?,32, .... What are
the areas of the L-shaped bands (the differences between squares) ?
How does the figure show that-3+5+7 =427

L 2 3 3 1

22 From the area under the staircase (by rectangles and then by
triangles) show that the firsf whole numbersl to j add up to
12+ L) Find1+2+---+100.
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23 If v=1,3,5... then f;=;2 If v=1,11,... then 38 Supposefp=1andv; =2f; 1=v;.Find fs.

fi= . Add those to find the sum df, 4,6, ...,2j. Divide 11 1s L
by 2 to find the sum ofl,2,3, ..., j. (Compare Probler2.) 39 (@) Fromf =13 7.5 findvy,v2,v3, and predicv;.
(b) Checkf3—f0:v1+v2+v3 andfj—fj_lzvj.

40 Supposev; =r/. Show that f; = (r/T1—1)/(r—1) starts
from fo=1 and hasf; — f;_1 =v;. (Then this is the correct
fi=1+r+--- +r/ = sum of a geometric series.)

24 True (with reason)r false(with example).

(&) When thef’s are increasing so are theés.
(b) When thev’s are increasing so are thés.
(c) When thef’s are periodic so are thes.

(d) When thev's are periodic so are thg's. 41 From f; = (—1)/ computev;. Whatisvy + vy +--+v; ?

25 If f(r)=12, compute £(99) and f(101). Between those times, 42 Estimate the slope of (1) = ¢’ a t = 0. Use a calculator that
what is the increase iff divided by the increase in? knowse (or else takee = 2.78) to compute

26 If f(t)=1t>+t, compute £(99) and f(101). Between those F@) = f0) e—1 el 1 01 _1

times, what is the increase ifi divided by the increase in? P 1 and 1 and 01

27 If fj = j?+j+1findaformula forv;.

28 Suppose the's increase byt at every step. Show by examplePrObIems 43-47 are abou/(r) = step from 0'to 1 at 7 =0.

and then by algebra that the “second differeng§”y 1 —2f; + 43 Graph the four function&/(r —1) and U(z) —2 and U(3¢) and

fj—1 equalst. 4U(t). Then graphf(t) =4U (3t —1) —2.

29 Supposefo=0 and te v's are 1,4.2, 2.1 L 1 . For 44 Graph the square waw(:)—U(z — ). If this is the velocity
which j doesf; =57 v(t), graph the distancg (¢). If this is the distancef (), graph the
30 Show that a;=f;j11—-2f;+fj—1 always equals velocity.

v;j+1—vj. If vis velocity theru stands for . 45 Two bursts of speed lead to the same distafiee 10:
Problems 31-34 involve periodic f’s and v's (like sins v=__tor=.001 v=Vtor=

and cost). As V — oo the limit of the f'(¢)'s is .

31 Forthe discrete sing =0,1,1,0,—1,—1,0 find the second dif- 46 Draw the staircase functio/(t)+U(t —1)+U(t —2). Its
ferencesi; = f>» —2f1 + fo andas = f3—2f>+ f1 andas. Com- slope is a sum of three functions.

parea; with f;. 47 Which capital letters likeL are the graphs of functions when

32 If the sequencevi,vs, ... has periodé and wq,w,, ... has Stefs are allowed ? The slope bfis minus a delta function. Graph
period10, what is the period of{ +w;,v2 + w2, ...? the dopes of the others.

33 Draw the graph of f(t) starting from fo=0 when 48 Write a subroutine FINDV whose input is a sequence

v=1,—1,—1,1. If v has periodt find f(12), £(13), £(100.1). fo, f1,....fn and whose output isvl,vz,..z.,vN,lnclude
hical output if ible. Test ofy =2 and d2/.

34 Graph f(¢) from fo=0to f4 =4 whenv=1,2,1,0. If v has graphical output if possible. Test ofy J andj=an

period 4, find £(12) and f(14) and f(16). Why doesn’t f have 49 Write a subroutine FINDF whose inputig,...,vy. and fo,

period4 ? and whose output iy, f1, ..., fn . The default value offy is zero.
Include graphical output if possible. Test = ;.

Problems 35-42 are about exponential’s and /”s. 50 If FINDV is applied to the output of FINDF, what sequence

35 Findthev'sfor f =1,3,9,27. Predictvs, andv ;. Algebra gives is reurned ? If FINDF is applied to the output of FINDV, what

33/ 1=(3— 153]‘71 sequence is returned ? Watgh

. . %) Jj - . . .
36 Findl4+24+4+--+32and alsol+%+%+-~-+%. 51 Arrange2j and;# and2/ and+/J in increasing order

- L - 1
37 Estimate the slope off(t)=2' a t =0. Use a calculator to (@ Whenjislarge:j =9 (b) whenj is small:j = 5.

compute (increase iff)/(increase in) whent is small: 52 The average age of your family sin¢@70 is a piecewise linear

f)—f0) 2-1 21 201 _ 1 9001 _| function A(r). Is it continuous or does it jump ? What is its slope ?

- N ard 3 ard ol and o0l Graph it the best you can.
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I 1.3 The Velocity atan Instant [ IEEEEEE

We have arrived at the central problems that calculus was invented to solve. There are
two questions, in opposite directions, and | hope you could see them coming.

1. If the velocity is changindjow can you compute the distance traveted
2. Ifthe graph off(¢) is not a straight lineywhat is its slop&@

Find the distance from the velocity, find the velocity from the distance. Our goal is to
do both—but not in one section. Calculus may be a good course, but it is not magic.
The first step is to let the velocity change in the steadiest possible way.

Question 1 Suppose the velocity at each timés v(r) = 2¢. Find f(z).

With v = 2¢, a physicist would say that the acceleration is constant (it eqyalhe

driver steps on the gas, the car accelerates, and the speedometer goes steadily up. The
distance goes up too—faster and faster. If we measurseconds and in feet per

second, the distancg comes out in feet. Aftet0 seconds the speed 2§ feet per

second. After4 seconds the speed88 feet/second (which i$0 miles/hour). The
acceleration is cleabut how far has the car gone

Question 2 The distance traveled by timeis f(z) = 2. Find the velocityv(z).

The graph of f() =2 is on the right of Figure 1.12. It is parabola The curve
starts at zero, when the car is new. /At 5 the distance isf =25. By t =10, f
reached00.

Velocity is distance divided by time, but what happens when the speed is changing ?
Dividing f =100 by r =10 givesv = 10—the average velocityover the first ten
seconds. Dividingf = 121 by ¢t = 11 gives the average speed ovdrseconds. But
how do we find thanstantaneous velocity—the reading on the speedometer at the
exact instant when=10"?

| change in slope 2t + h
, distance approaches
1(t+ )2 =12 v=21
I

h

time ¢ t t+h 1

Fig. 1.12  Thevelocity v = 2¢ is linear. The distanc¢ = 12 is quadratic.

| hope you see the problem. As the car goes faster, the graghgsts steeper—
because more distance is covered in each second. The average velocity betwéen
andr = 11 is a good approximation—but only an approximation—to the speed at the
moment: = 10. Averages are easy to find:
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distance at =10 is £(10) =102 =100 distanceat=11is f(11)=112=121

JSaD=£(10)  121-100
T o11-10 1 -

average velocity i 21.

The car coveredl feet in thatl second. Its average speed Wadeet/second. Since
it was gaining speed, the velocity at the beginning of that second was bBélow

Geometrically, what is the average ? It is a slope, but not the slope of the curve.
The average velocity is the slope of a straight lifEhe line goes between two points
on the curve in Figure 1.12. When we compute an average, we pretend the velocity is
constant—so we go back to the easiest case. It only requires a division of distance by
time:
changein f

average velocit —.
g ¥ change irr

oy

Calculus and the Law You enter a highway at : 00. If you exit 150 miles away at
3:00, your average speedi$ miles per hour. I'm not sure if the police can give you

a ticket. You could say to the judge, “When was | do#tsg? ” The police would have

to admit that they have no idea—but they would have a definite feeling that you must
have been doing@5 sometime;:

We return to the central problem—computingl0) at the instant = 10. The
average velocity over the next secon®is We can also find the average over the
half-secondbetweens = 10.0 and ¢ = 10.5. Divide the change in distance by the
changein time:

£(10.5)— £(10.0) _ (10.5%—(10.0)> 110.25—100
10.5—10.0 5 B B

20.5.

That average d20.5 is closer to the speed at= 10. It is still not exact.

The way to findv(10) is to keep reducing the time intervarhis is the basis for
Chapter2, and the key to differential calculufind the slope between points that
are closer and closer on the curve. The “limit” is the slope at a single point.

Algebra gives the average velocity between 10 and any later time = 10+ A.
The distance increases frori? to (10 + 4)2. The change in time is. So divide:

(10+/)?—10> 100420k +h*—100
h B h

Vaveage™= =20+h. (2)
This formula fits our previous calculations. The interval from 10 to ¢t =11 had
h=1, and the average wag0+/i=21. When the time step Wah:%, the
average wa90+% =20.5. Over a millionth of a second the average will be
plus1/1,000,000—which is very nea20.

Conclusion The velocity atr =10 is v =20. That is the slope of the curvdt
agrees with the-graph on the left side of Figure 1.12, which also hag)) = 20.

+This is our first encounter with the much despised “Mean Value Theorem.” If the judge can
prove the theorem, you are dead. A fevgraphs andf-graphs will confuse the situation.
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We now show that the two graphs match at all timesf {f) =¢2 thenv(¢) = 2¢.
You are seeing the key computation of calculus, and we can put it into words before
equations. Compute the distance at timeh, subtractthe distance at time, and
divideby &. That gives the average velocity:

fE+h)—F@t) @+h)? =12 242th+h*—+?
Vave = = =
h h h
Thisfits the previous calculation, wheravas10. The average wa&0 + 4. Now the
average iQ¢ + h. It depends on the time stép because the velocity is changing. But

we can see what happeas/ approaches zerolThe average is closer and closer to
the speedometer reading2f, at the exact moment when the clock shows time

=2+h.  (3)

1E As h approaches zero, the average veloQity+ i1 approaches (1) = 2¢.

Note The computation (3) shows how calculus needs algebra. If we want the whole
v-graph, we have to let time be adriable” It is represented by the letterNumbers
are enough at the specific time= 10 and the specific stepp= 1—but algebra gets
beyond that. The average between aayd any 4/ is 2¢ + k. Please don't hesitate
to put back numbers for the letters—that checks the algebra.

There is also a step beyond algebra! Calculus requireéirttieof the average
As h shrinks to zero, the points on the graph come closer. “Average over an interval”
becomes “velocity at an instant.” The general theory of limits is not particularly
simple, but here we don’t need it. (It isn’t particularly hard either.) In this example
the limiting value is easy to identiffhe averag@r + i approache?t, ash — 0.

What remains to do in this section? We answered Quegteto find velocity
from distance. We have not answered Questidfi v(¢r) = 2¢ increases linearly with
time, what is the distance ? This goes in the opposite directionifitegratior).

The Fundamental Theorem of Calculus says that no new work is necd§siagy.
slope of f(¢) leads tov(¢), then the area under that-graph leads back to the
f-graph. The odometer readingg = > produced speedometer readings- 2:.
By the Fundamental Theorem, the area urtdeshould ber?. But we have certainly
not proved any fundamental theorems, so it is better to be safe—by actually
computing the area.

Fortunately, it is the area of a triangle. The base of the trianglamsl the height is
v =2¢. The area agrees witfi(¢):

area= 3 (base)(heighy = 1(1)(21) =1>. (4)

EXAMPLE 1 The graphs areshited in time. The car doesn't start untik=1.
Thereforev =0 and f =0 up to that time. After the car starts we have-2(t — 1)
and 1 = (t —1)2. You see how the time delay dfenters the formulas. Figure 1.13
shows how it affects the graphs.

EXAMPLE 2  The acceleration changes frano another constant. The velocity
changes fromv = 2¢ to v = at. The acceleration is the slope of the velocity cutve
The distance is also proportionaldgbut notice the factoé—:

acceleratiorn < velocityv=at < distancef:%atz.

If a equalsl, thenv=r and f = %12. That is one of the most famous pairs in
calculus. Ifa equals the gravitational constagt thenv = gt is the velocity of a
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v=2(-1)

1 2

Fig. 1.13 Delayed velocity and distance. The pairs-at +b and f = %at2 +bt.

falling body. The speed doesn’t depend on the mass (tested by Galileo at the
Leaning Tower of Pisa). Maybe he saw the distaiice %gt2 more easily than the
speedy = gt. Anyway, this is the most famous pair in physics.

EXAMPLE 3 Supposef(t) = 3t +t2. The average velocity fromto ¢ + & is

f+h)—f(@t) 3(@t+h) ++h)?*-=3t—12
Vave = = .
h h
Thechange in distance has an exdfa(coming from3(z + 4) minus3¢). The velocity
contains an additional (coming from3/ divided by /). When3¢ is added to the

distance3} is added to the velocity. If Galileo had thrown a weight instead of dropping
it, the starting velocity, would have added,¢ to the distance.

FUNCTIONS ACROSS TIME

The idea of slope is not difficult—for one straight line. Dividetchange inf" by
the change in. In Chapter2, divide the change ity by the change inr. Experience
shows that the hard part is to see what happens to the slope as the line moves.

Figure 1.14a shows the line between poititand B on the curve. This is a “secant
line.” Its slope is amaveragevelocity. What calculus does is to bring that poilit
down the curve toward.

speed
fa+hm+ 60+ d
car C
vorf?
fin+ 3071
car D
+ - - + ——t> [ forv?
t t+h 1 I & 1
4 2 4 L

Fig. 1.14  Slope of line, slope of curve. Two velocity graphic is which?

Question 1  What happens to the “change fit—the height of B aboveA ?
Answer The change iry deceases to zero. So does the change in
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Question 2 As B approached, does the slope of the line increase or decrease ?
Answer | am not going to answer that question. It is too important. Draottaer
secant line withB closer to4A. Compare the slopes.

This question was created by Steve Monk at the University of Washington—where
57% of the class gave the right answer. Proba®l% would have found the right
slope from a formula. Figure 1.14b shows the opposite problem. We know the
velocity, not the distance. But calculus answers questions about both functions.

Question 3 Which car is going faster at time=3/4?
Answer CarC has higher speed. Car hasgreater acceleration.

Question 4  If the cars start together, B catding up toC at the end ? Between

t= % and t = 1, do the cars get closer or further apart ?

Answer  This time more than half the class got it wrong. You won't but yon see

why they did. You have to look at the speed graph and imagine the distance graph.
When carC is going faster, the distance between them .

To repeat: The cars start together, but they don't finish together. They reach the
same speed at= 1, not the same distance. Garwent faster. You really should draw
their distance graphs, to see how they bend.

These problems help to emphasize one more point. Finding the speed (or slope) is
entirely different from finding the distance (or area):

1. To find theslopeof the f-graph at a particular timg youdon't have to know
the whole history.

2. To find thearea under thev-graph up to a particular timg you do have to
know the whole history.

A short record of distance is enough to recov@rn. Point B moves toward poin#.
The problem of slope imcal—the speed is completely decided Jiyr) near pointA.

In contrast, a short record of speechist enougho recover the total distance. We
have to know what the mileage was earlier. Otherwise we can only knowwdrease
in mileage, not the total.

1.3 EXERCISES

Read-through questions

Between the distances f(2)=100 and f(6)=200, the atBisfoundby__o .When the velocity is positive, the distance

average velocity is _a . If f(t):%t2 then f(6)= b is p .When the velocity is increasing, the carisq .
and f(8)= __c . The average velocity in between is d . .
The }irn(st)antMS velocitiesga1:6 a)r/1d /=8 are e 1 Compute the average velocity betwees: 5 andr = 8:
and f . @ f@)=6t (b) f@r)=6t+2
© f@0)=zar? d f)y=t—1>
The average velocity is computed fronf(z) and f(z +h) (e f)=6 ) v@)=21
by vae= g .If f(t)=1%thenvae=_h .Fromr=1to ) _
t=1.1 the average is_i . The instantaneous velocity is the 2 FOr the same functions computef (s +h) — f(1)]/h. This
i of vae. If the distance isf(t) = Lar? then the velocity is depends om andh. Find the limit ash — 0.
v(f)=__k _andthe accelerationis | . 3 If the odometer readg(r) = t2 +¢(f in miles or kilometerst

in hours), find the average speed between

Onthe graph off (¢), the average velocity betweehand B is the (@ r=1and t=2
slope of _m . The velocity at4 isfound by__n__. The velocity (b) t=1 and r=1.1
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() t=1 and t=1+h (&) Graph this parabola and its slope.
(d r=1 and t =.9 (noteh = —.1) (b) Find the time in the air and maximum height.

: _3
4 For the samef(r) = 12 +¢, find the average speed between (c) Prove Half the time you are above = .

(@) ¢=0andl () t=0 and% © t=0andh. Basketball players “hang” in the air partly because of (c).
16 Graphf(t) =t?andg(t) = f(t) —2andh(t) = £(21), all from
5 In the answer to 3(c), find the limit @s— 0. What does that ; _ o ?Zfl(’ Lind the vil(o)citieg ) (n=7e0

limit tell us ? o
17 (Recommended) An up and down velocityvi§) = 2¢ for t <

6 Set h=0 in your answer to 4(c). Draw the graph of3 ;)= 12—2/fors > 3. Draw the piecewise paraboj(). Check

f(t)=1?+1 and show its slope at=0. that f(6) = area under the graph of?).
7 Draw the graph ofy(¢) = 1+2¢. From geometry find the area; g Supposev(t) =t for 1 <2 and v(r) =2 for ¢t >2. Draw the
under it from0 to ¢. Find the slope of that area functigfi(z). graph of £(¢) out to = 3.
8 Draw the graphs of(z) =3 —2r and the ared (1). 19 Draw f(¢) uptot = 4 whenw(r) increases linearly from
9 True or false @@ 0to2 (b) —1tol (© —2100.
(a) Ifthe distancef (¢) is positive, so i9)(¢).
(b) If the distancef (¢) is increasing, so is(z). 20 (Recommended) Supposé€) is the piecewise linear sine func-
(c) If f(¢) is positive,u(z) is increasing. tion of Sectionl.2. (In Figure 1.8 it was the distance.) Find the area
(d) If v(r) is positive, £ (¢) is increasing. underv(z) betweensr =0 and¢ =1,2,3,4,5,6. Plot those points

f(), ..., f(6) and draw the complete piecewise parabfia).
10 If f(r)=6r2 find the slope of thef-graph and also the

v-graph. The slope of the-graph is the _ 21 Draw the graph off () = |1 —¢2| for 0<¢ <2. Find a three-

part formula forv(¢).
11 If f(r)=1? wha is the average velocity betweenr=.9 and

¢ =1.17? What is the average between 1 andz +/ ? 22 Draw the graphs of () for these velocities (to= 2):
H=1-t
12 (a) Show that forf(r) = %azz the average velocity between EZ; Zit)) — =]

t —h andr + h is exactly the velocity at.
] © v)=Q—-1)+|1—1].
(b) The area under(t) =at fromt—h tot+h is exactly the
base2/ times ] 23 When doesf (t) = t> — 3¢ reach10? Find the average velocity
) ) ) up to that time and the instantaneous velocity at that time.
13 Find f(¢) fromv(¢) =20t if f£(0)=12. Alsoif f(1)=12.
. 24 If f(t)=2%at®>+bt+c, what isv(r)? What is the slope of
14 True or false for any distance curves. v(t)? When doesf (1) equaldl, ifa =h=c =12
(@) The slope of the line froml to B is the average velocity
between those points.
(b) Secant lines have smaller slopes than the curve.
(c) If f(r) and F(¢) start together and finish together, th
average velocities are equal.
(d) If v(r) and V(¢) start together and finish together, the7 For f(¢) =2 find vae(t) betweend andr. Graphvaye(t) and
increases in distance are equal. v(t).

25 If f(¢r)=1t?thenv(r) = 2¢. Does the speeded-up functigit4r)
have velocityv(4¢) or 4v(t) or 4v(4t) ?

g6 If f(t)=1t—1*find v(r) and f(3t). Does the slope off (3)
equalv(3t) or3v(z) or3v(3t) ?

15 When you jump up and fall back your heightjis=2r —1% in 28 If you know the average velocityave(t), how can you find the
the right units. distancef'(¢t) ? Start fromf(0) =0.
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I 1.4 Circular Motion |

This section introduces completely new distances and velocities—the sines and
cosines from trigonometry As | write that last word, | ask myself how much
trigonometry it is essential to know. There will be the basic picture of a right
triangle, with sides cos and sint and 1. There will also be the crucial equation
(cost)? +(sint)? =1, which is Pythagoras’ law? + 52 = ¢2. The squares of two
sides add to the square of the hypotenuse (and tisereally 12). Nothing else is
needed immediately. If you don’'t know trigonometry, don’t stop—an important part
can be learned now.

You will recognize the wavy graphs of the sine and cosifve.intend to find the
slopes of those graph¥hat can be done without using the formulas for(si# y)
and cogx + y)—which later give the same slopes in a more algebraic way. Here it is
only basic things that are needgénd anyway, how complicated can a triangle be ?

Remark You might think trigonometry is only for surveyors and navigators
(people with triangles). Not at all! By far the biggest applications ametation and
vibration and oscillation. It is fantastic that sines and cosines are so perfect for
“repeating motion"—around a circle or up and down.

v=cost f=sint

\

b4
radians

o /r 90°  180° 270°

COs [

Fig. 1.15 Asthe angle charges, the graphs show the sides of the right triangle.

Our underlying goal is to offer one more example in which the velocity can be
computed by common sense. Calculus is mainly an extension of common sense, but
here that extension is not needed. We will find the slope of the sine curve. The straight
line f = vt was easy and the parabofa= %at2 was harder. The new example also
involves realistic motion, seen every day. We start witbular motion, in which the
position is given and the velocity will be found.

A ball goes around a circle of radius oneThe center is akk =0,y =0 (the
origin). Thex andy coordinates satisfy? + y2 = 12, to keep the ball on the circle.
We specify its position in Figure 1.16a by giving its angle with the horizontal. And
we make the ball travel with constant speed, by requiringttimiangle is equal to
the time¢. The ball goes counterclockwise. At tiniet reaches the point where the
angle equald. The angle is measured fadiansrather than degrees, so a full circle
is completed at = 27 instead off = 360.

The ball starts on the axis, where the angle is zero. Now find it at time

The ball is at the point wherer = cost and y = sint.

+Sines and cosines are so important that | added a review of trigonometry in SeétiBuoit
the concepts in this section can be more valuable than formulas.
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This is where trigonometry is useful. The cosine oscillates betw and—1, as the
ball goes from far right to far left and back again. The sine also oscillates befween
and —1, starting from sird = 0. At time /2 the sine (the height) increases to one.
The cosine is zero and the ball reaches the top poiabd, y = 1. Attime x the cosine

is —1 and the sine is back to zero—the coordinates(are 0). At r =27 the circle

is complete (the angle is algar), andx = cos2z =1, y =sin 2z =0.

—sin t

- —— =y

_ vertical
S AROR = i
Y velocity

vertical
distance

Fig. 1.16  Circular motion with speed, ande ¢, height sir¢, upward velocity cos.

Important point: The distance around the circle (its circumferenc2yis= 2,
because the radius Is The ball travels a distancer in a time2x. The speed equals
1. It remains to find the velocity, which involves not only speedditgction

Degrees vs. radiansA full circle is 360 degrees anéx radians. Therefore

1 radian=360/27 degreess 57.3 degrees
1 degree=27/360 radians~ .01745 radians

Radians were invented to avoid those numbers! The speed isyexacdaching:
radians at time. The speed would b®1745, if the ball only reached degrees. The
ball would complete the circle at tim€ = 360. We cannot accept the division of the
circle into360 pieces (by whom ?), which produces these numbers.

To check degree mode vs. radian mode, verify that $in .017 and sinl ~ .84.

VELOCITY OF THE BALL

At time ¢, which direction is the ball going? Calculus watches the motion between
andt + h. For a ball on a string, we don’t need calculus—just letBue direction of
motion is tangent to the circléWith no force to keep it on the circléhe ball goes off

on a tangentlf the ball is the moon, the force is gravity. If it is a hammer swinging
around on a chain, the force is from the center. When the thrower lets go, the hammer
takes off—and it is an art to pick the right moment. (I once saw a friend hit by a
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that same
tangent direction, when the pointstaands + 4 come close.

The “velocity trianglé€ is in Figure 1.16b. It is the same as the position triangle,
but rotated througl0°. The hypotenuse is tangent to the circle, in the direction the
ball is moving. Its length equalk (the speed). The anglestill appears, but now it
is the angle with the vertical.lhe upward component of velocity isost, when the
upward component of position isinz. That is our common sense calculation, based
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ona figure rather than a formula. The rest of this section depamis-eand we check
v = cost at special points.

At the starting time = 0, the movement is all upward. The height is 8ig 0 and
the upward velocity is co= 1. At time /2, the ball reaches the top. The height
is sinw/2 =1 and the upward velocity is cag/2 = 0. At that instant the ball is not
moving up or down.

The horizontal velocity contains a minus sign. At first the ball travels téettheThe
value ofx is cost, butthe speed in the direction is—sinz. Half of trigonometry
is in that figure (the good half), and you see how’sificost = 1 is so basic. That
equation applies to position and velocity, at every time.

Application of plane geometry: The right triangles in Figure 1.16 are the same
size and shape. They look congruent and they are—the amdleve the ball equals
the angle at the center. That is because the three angles at the ball a8é°to

OSCILLATION: UP AND DOWN MOTION

We now use circular motion to studyraight-line motion That line will be they axis.
Instead of a ball going around a circle, a mass will move up and down. It oscillates
betweeny =1 andy = —1. The mass is thé shadow of the balf as we explainin a
moment.

There is a jumpy oscillation that we do not want, with=1 andv = —1. That
“bang-bang” velocity is like a billiard ball, bouncing between two walls without
slowing down. If the distance between the wall®ighen at: = 4 the ball is back
to the start. The distance graph is a zigzag (or sawtooth) from Selcfion

We prefer a smoother motion. Instead of velocities that jump betwedeand—1,

a real oscillatiorslows down to zerand gradually builds up speed again. The mass

is on a spring, which pulls it back. The velocity drops to zero as the spring is fully
stretched. Them is negative, as the mass goes the same distance in the opposite
direction. Simple harmonic motionis the most important back and forth motion,
while f =vtand f = %atz are the most important one-way motions.

LT n
sin—=1 4, cos —=0 turn
mass ball 2 : 2
1
_ 1
II'}ulji_(:os‘rl sin0=0 + cos0=1 up
_,f'“p =sint °
sint=0 * cos T =-1 down
B
f
1
il 3
sin—=-1 1 cos En =0 turn

Fig. 1.17  Circular motion of the ball and harmonic motion of the mass (itisiw).

How do we describe this oscillation ? The best way is to match it with the ball on
the circle.The height of the ball will be the height of the mas$he “shadow of the
ball” goes up and down, level with the ball. As the ball passes the top of the circle, the
mass stops at the top and starts down. As the ball goes around the bottom, the mass
stops and turns back up threaxis. Halfway up (or down), the speedlis

Figure 1.17a shows the mass at a typical tim&he height isy = f(r) = sint,
level with the ball. This height oscillates betwe¢n=1 and f = —1. But the mass
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does not move with constant speé&tie eed of the mass is changing although the
speed of the ball is alwayk The time for a full cycle is stilk, but within that cycle
the mass speeds up and slows down. The problem is to find the changing velocity
Since the distance ig = sint, the velocity will be theslope of the sine curve.

THE SLOPE OF THE SINE CURVE

At the top and bottoms(= /2 and r =37 /2) the ball changes direction amd= 0.

The slope at the top and bottom of the sine curve is.zémtime zero, when the ball

is going straight up, the slope of the sine curve is 1. At t = &, when the ball and

mass ang‘-graph are going down, the velocityis= —1. The mass goes fastest at the
center. The mass goes slowest (in fact it stops) when the height reaches a maximum
or minimum. The velocity triangle yields at every time.

To find the upward velocity of the mass, look at the upward velocity of the ball.
Those velocities are the same! The mass and ball stay level, and wekfrom
circular motion:The upward velocity i3 = cost.

Figure 1.18 shows the result we want. On the rights sin¢ gives the height. On
the left is the velocity = cost. That velocity is the slope of th¢-curve. The height
and velocity (red lines) are oscillating together, but they are out of phase—just as the
position triangle and velocity triangle were at right angles. This is absolutely fantastic,
that in calculus the two most famous functions of trigonometry form a pai:slope
of the sine curve is given by the cosine curve

When the distance isf(¢) = sin ¢, the velocity isv(z) = cost.

Admission of guilt: The slope of sinr was not computed in the standard way.
Previously we compared + 4)? with ¢2, and divided that distance Iy This average
velocity approached the slo@e asi became smallFor sint we could have done
the same

change insin _ sin(z +h) —sint

average velocit - =
g ¥ changeinr h

D)

This is where we need the formula for &iR-/), coming soon. Somehow the ratio
in (1) should approach casas’ — 0. (It does.) The sine and cosine fit the same
pattern ag? and2¢r—our shortcut was to watch the shadow of motion around a circle.

| 4 - 11 -

! U=cost \ ! f=sint !
I

—_

Fig. 1.18 v =cost when f =sin¢ (red);v = —sinz when f = cost (black).

+That looks easy but you will see later that it is extremely importAbta maximum or
minimum the slope is zerdThe curve levels off.
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Question 1 What if the ball goes twice as fast, to reach angleat time¢ ?

Answer  The speed is nov2. The time for a full circle is onlysz. The ball’s
position isx = cos2t andy =sin2t. The velocity is still tangent to the circle—but
the tangent is at angler where the ball is. Therefore c@s enters the upward
velocity and —sin2¢ enters the horizontal velocity. The difference is thhé
velocity triangle is twice as bigrhe upward velocity is not cd@ but2cos2¢. The
horizontal velocity is-2sin2¢. Notice thes@’s!

Question 2  What is the area under the cosine curve from=0tor =7 /27

You can answer that, if you accept the Fundamental Theorem ofullsie
computing areas is the opposite of computing slop@&se slope of sin is cost,
so the area under coss the increase in sin No reason to believe that yet, but we
use it anyway.

From sin0=0 to sinz/2 =1, the increase id. Please realize the power of
calculus. No other method could compute the area under a cosine curve so fast.

THE SLOPE OF THE COSINE CURVE

| cannot resist uncovering another distance and velocity k@ngt-v pair) with no
extra work. This timef is the cosine. The time clock stads the top of the circle
The old timer = /2 is nowt = 0. The dotted lines in Figure 1.18 show the new start.
But the shadow has exactly the same motion—the ball keeps going around the circle,
and the mass follows it up and down. Tliiegraph andy-graph are still correct, both
with a time shift ofz /2.

The newf-graph is the cosineThe newv-graph isminus the sine The slope of
the cosine curve follows theegativeof the sine curve. That is another famous pair,
twins of the first:

When the distance i (z) = cost, the velocity isv(t) = — sint.

You could see that coming, by watching the ball go left and rigigtéad of up and
down). Its distance across j6= cost. Its velocity across i® = —sinz. That twin
pair completes the calculus in Chaptgtrigonometry to come). We review the ideas:

v is thevelocity
theslopeof the distance curve
thelimit of average velocity over a short time
thederivativeof f.

f is thedistance
theareaunder the velocity curve
thelimit of total distance over many short times
theintegral of v.

Differential calculus: Conputewv from f. Integral calculus Compte f fromuv.

With constant velocityf equals vt. With constant acceleration=at and f = %at?

In harmonic motionp = cost and f =sinz. One part of our goal is to extend that
list—for which we need the tools of calculus. Another and more important part is to
put these ideas to use.

Before the chapter ends, may | add a note about the book and the course? The
book is more personal than usual, and | hope readers will approve. What | write is

77
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very close to what | would say, if you were in this room. The sergsrare spoken
before they are writteh.Calculus is alive and moving forward—it needs to be taught
that way.

One new part of the subject has come with the computer. It works with a finite step
h, not an ‘“infinitesimal” limit. What it can do, it does quickly—even if it
cannot find exact slopes or areas. The result is an overwhelming growth in the range
of problems that can be solved. We landed on the moon becAuws®a v were so
accurate. (The moon’s orbit has sines and cosines, the spacecraft staris=with
and f = %aﬂ. Only the computer can account for the atmosphere and the sun’s
gravity and the changing mass of the spacecrdftgdern mathematics is a
combination of exact formulas and approximate computatiomMdeither part can be
ignored, and | hope you will see numerically what we derive algebraically. The
exercises are to help you master both parts.

The course has made a quick start—not with an abstract discussion of sets or
functions or limits, but with the concrete questions that led to those ideas. You have
seen a distance functiofi and a limitv of average velocities. We will meet more
functions and more limits (and their definitions!) but it is crucial to study important
examples early. There is a lot to do, but the course has definitely begun.

1.4 EXERCISES

Read-through questions

A ball at anglet on the unit circle has coordinates= __a 3 Aball goes around a circle of radidsAt timet (when it reaches
and y = b . It completes a full circle at = c . Its angler) find
speed is__d . Its velocity points in the direction of the e ,

which is __f _ to the radius coming out from the center. The
upward velocity is g and the horizontal velocity is h .

(@) itsx andy coordinates
(b) the speed and the distance traveled
(c) the vertical and horizontal velocity.

A mass going up and down level with the ball has height; on a circle of radiusk find the x and y coordinates at time
f(t)= _i_. This is called simple j motion. The velocity (and angle). Draw the velocity triangle and find theandy veloc-
is v(t)= k . When t=x/2 the height is f = I ities.
and the velocity isv = m . If a speeded-up mass reaches
f =sin2t attimet, its velocity isv = __n . A shadow traveling 5 A ball travels around a unit circle (radius with speed3,
under the ball hasf = cost andv=__0 . When f is distance= starting from angle zero. At timg
area=integralvis p = q =_r

(@) what angle does it reach ?
(b) what are itst andy coordinates ?
1 For a ball going around a unit circle with speéd (c) what are itst andy velocities ? This part is harder.

@) m"‘{ long does it take fqﬁ revolutions ? 6 If another ball staysr/2 radians ahead of the ball with speed
(b) attimer =3 /2 where is the ball ? 3, find its angle, itst and y coordinates, and its vertical velocity at
(c) att =22 where is the ball (approximately) ? timezr.

2 For the same motion find the exaetand y coordinates at 7 A mass moves on the axisunder or over the original ball (on
t =2m/3. At what time would the ball hit ther axis, if it goes off the unit circle with speed). What is the positionx = f(¢) ? Findx
on the tangent at=2x/37? andv att = /4. Plotx andv up tot = 7.

1On television you know immediately when the words are live. The same with writing.
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8 Does the new mass (under or over the ball) meet the old mass Find the slope of the sine curve at 7/3 from v = cost.
(level with the ball)? What is the distance between the massesThen find an average slope by dividing siy2—sinz/3 by the
timetr ? time differencer/2 — /3.

9 Draw graphs of f(tr)=cos3t and cont and 2mwcost, 24 The slope off =sint att =0 is cosO = 1. Compute average
marking the time axes. How long until eaghrepeats ? slopes(sint) /¢t fort =1,.1,.01,.001.

10 Draw graphs of f_ZSi”(“F”)?and v=cot+x). This The pall at x = cost, y = sint circles (1) counterclockwise (2)
oscillation stays level with what ball - with radius 1 (3) starting from x =1,y =0 (4) at speed!. Find
11 Draw graphs off = sin(x/2—t) andv = —cog(r/2—1). This (1)(2)(3)(4) for the motions 25-30.

oscillation stays level with a ball going which way starting where 25 . _ ~n53; y = —sin3t
12 Draw a graph of f(1)=sinz+cos:. Estimate its greatest,s y —3cos4r, y = 3 sin 4t
height (maximum f) and the time it reaches that height. By )

computing £ 2 check your estimate. 27 x=15s8In2t, y =5C082¢

13 How fast should you run across the circle to meet the ball agaif® ¥ = 1 +¢0st, y =sint

It travels at speed. 29 x=cos(t+1), y =sin(z +1)
14 A mass falls from the top of the unit circle when the ball of speet) x = cos(¢), y =sin(—¢)

1 pases by. What acceleratianis necessary to meet the ball at the

bottom ? The oscillation x =0,y =sinr goes (1) up and down (2)
between —1 and 1 (3) starting from x=0,y=0 (4) at
Find the area under v = cost from the change in f =sinz: velocity v = cost. Find (1)(2)(3)(4) for the oscillations 31-36.
31 x=cost, y=0 32 x=0, y=sin5t
15 fromt=0tor=mx 16 fromr=0tor=nx/6 33 x=0, y=2sin(t +6) 34 x =cost, y = cost
17 fromt=0tot=2n 18 fromt=m/2t0t =3m/2. 35 x=0,y=—2cos%t 36 x=cot, y =sint

37 If the ball on the unit circle reachesdegeesat timet, find its

19 The distance curvef =sin4: yields the velocity curve o X
position and speed and upward velocity.

v = 4cos4t. Explain both4’s.
38 Choose the numbdrso thatx = coskt, y = sinkt completes a

20 The distance curvef =2cos3t yields the velocity curve - . :
4 y y rotation atr = 1. Find the speed and upward velocity.

v = —6sin3¢. Explain the—6.
39 If a pitcher doesn't pause before starting to throw, a balk is
called. The American League decided mathematically that there is
always a stop between backward and forward motion, even if the
22 The velocityv = 5sin 5¢ yields what distance ? time is too short to see it. (Therefore no balk.) Is that true ?

21 The velocity curve v =cos4t yields the distance curve
f = Lsin4z. Explain thel.
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I 1.5 A Review of Trigonometry [ EEEEEEEE

Trigonometry begins with a right triangle. The size of the triangle is not as important
asthe angles. We focus on one particular angle—cd@lHtand on theatios between

the three sides, y,r. The ratios don’t change if the triangle is scaled to another size.
Three sides give six ratios, which are the basic functions of trigonometry:

X near side r 1
r hypotenuse x cos#

. opposite side 1
y y Sm@:X:7pp CSC@ZI—:—.
r  hypotenuse y sinf

opposite side X
- tan g = L = oPPOSTeSIAe g X 1
) X near side y tané
Fig. 1.19

Of course those six ratios are not independent. The three ongheadme directly
from the three on the left. And the tangent is the sine divided by the cosine:
tanf = ﬂ = M = X.
cosd x/r x
Note that “tangent of an angle” and “tangent to a circle” and “tangent line to a graph”
are different uses of the same word. As the cosiné gbes to zero, the tangent of
0 goes to infinity. The sider becomes zerd} approache®0°, and the triangle is
infinitely steep. The sine df0°is y/r = 1.
Triangles have a serious limitation. They are excellent for angles @p°toand
they are OK up tal 80°, but after that they fail. We cannot put2d0° angle into a
triangle. Therefore we change now to a circle.

2T y = 2sin®

4 y=sin20

®|

-2 4

Fig. 1.20  Trigonometry on a circle.Compa2sin 6 with sin 26 and tand (periods2rx, z, ).

Angles are measured from the positiveaxis (counterclockwise). Thug0° is
straight up,180° is to the left, and60° is in the same direction &. (Then450° is
the same a90°.) Each angle yields a point on the circle of radiuShe coordinates
andy of that point can be negativeift neverr). As the point goes around the circle,
the six ratios co$, sin 6, tan 6, ... trace out six graphs. The cosine waveform is the
same as the sine waveform—just shiftedi#9y.

One more change comes with the move to a circle. Degrees are out. Radians are
in. The distance around the whole circl&isr. The distance around to other points
is Or. We measure the angle by that multipte For a half-circle the distance isr,
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so the angle ist radians—which isl80°. A quarter-circle ist/2 radians 090°. The
distance around to anglé is r timesf.

Whenr = 1 this is the ultimate in simplicityThe distance i§. A 45° angle is% of a
circle and2x/8 radians—and the length of the circular ar@is/8. Similarly for 1°:

360° =2x radians  1°=2x/360radians 1 radian=360/2x degrees.

An angle going clockwise iregdive. The angle-x/3 is —60° and takes u% of the
wrongway around the circle. What is the effect on the six functions ?

Certainly the radius is not changed when we go tef. Also x is not changed (see
Figure 1.20a). Buy reverses sign, becaus# is below the axis wher-6 is above.
This change iry affectsy/r andy/x but notx/r:

cog—6) =cosh sin(—0)=—sinf tan(—0) = —tan6.

The cosine igven(no change). The sine and tangentade (change sign).

The same point i% of theright way around. Therefor§ of 2z radians (0300°)
gives the same direction asz/3 radians or—60°. A difference of2z makes no
difference tox, y,r. Thus sinf and co¥ and the other four functions have period
2. We can go five times or a hundred times around the circle, addirngor 2007
to the angle, and the six functions repeat themselves.

EXAMPLE Evaluate the six trigonometric functionstae 277/3 (or 6 = —4x/3).

This angle is shown in Figure 1.20a (where: 1). The ratios are

cosl=x/r=—1/2 sinf=y/r=+3/2 tanf=y/x=—/3
seh=-2 csch=2//3 cotf=—1//3

Those numbers illustrate basic facts about the sizes of four functions:
|cosf| < 1 [sing| <1 |sect| >1 |csch| > 1.

The tangent and cotangent can fall anywhere, as long as-edt/ tan 6.

The numbers reveal more. The tangent/3 is the ratio of sine to cosine. The
secant—2 is 1/ cos6. Their squares arg and4 (differing by 1). That may not seem
remarkable, but itis. There are three relationships isthereof those six numbers,
and they are the key identities of trigonometry:

co20 +sintd =1 1 +tan?6 = sedd coBh +1=csx0

Everything flows from the Pythagoras formula? + y2 = r2. Dividing by r? gives
(x/r)2+(y/r)*=1. That is cod6 +sirn* 6 = 1. Dividing by x2 gives the second
identity, which isl + (y/x)? = (r/x)?2. Dividing by y? gives the third. All three will
be needed throughout the book—and the first one has to be unforgettable.

DISTANCES AND ADDITION FORMULAS

To compute the distance between points we stay with Pythagbinaspoints are in
Figure 1.21a. They are known by theirand y coordinates, and is the distance
between them. The third point completes a right triangle.
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For thex distance along the bottom we don’t need help. btis- x; (or |xz — x|
since distances can't be negative). The distance up the sjde-isy;|. Pythagoras
immediately gives the distanck

distance between points d = \/(xz —x1)2+(y2—y1)2. Q)

X=CoSs
y=sins
x=cos(s=1)

R y=sin(s—1)
] X= -

y=sinft 1 d

\.I' \5—!

ad= \'I." .

__A )

|-,

]
non

Fig. 1.21  Distance between points and equal distances in two circles.

By applying this distance formula in two identical circles, we discover the cosine
of s —t. (Subtracting angles is important.) In Figure 1.21b, the distance squared is

d?* = (change inx)? + (change iny)?
= (coss —cost)? + (sins —sint)?. 2)

Figure 1.21c shows the same circle and triangle (but rotated). The same distance
squared is

d? = (cogs —1)—1)* +(sin(s —1))>. (3)

Now multiply out the squares in equations (2) and (3). When@asing? + (sine)?
appears, replace it by The distances are the same,(3p= (3):

(2)=141—2coss cost —2sins sint
(3)=14+1-2cogs—1).

After cancelingl + 1 and then-2, we have the &ddition formula’ for cos(s —¢):

The cosine ofs —¢ equals cos cost +sins sint. 4)
The cosine ofs +¢ equds coss cost —sins sint. (5)

The asiest ist =0. Then cog =1 and sirt =0. The equations reduce to
COSs = COSs.

To go from (4) to (5) in all cases, replacby —z. No change in cos, but a “minus”
appears with the sine. In the special caset, we have cog +¢) = (cost)(cost) —
(sint)(sint). This is a much-used formula for cos:

Double angle cos2¢ = cos?t —sin®*t =2co2t —1=1-—2sin’*t.  (6)

| am constantly using cds + sin’s = 1, to switch between sines and cosines.
We also need addition formulas and double-angle formulas faittemf s —z and
s+t and2¢. For that we connect sine to cosine, rather ttgne)? to (cosing?. The
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connection goes back to the ratjg r in our original triangle. This is the sine of the
anglef and also the cosine of tltemplementary angle/2 — 6:

sing =coqn/2—0) and cod) =sin(z/2—0). (7

The complementary angle is/2—6 because the two angles add w2 (a
right angle). By making this connection in Problé® formulas (4—5-6) move from
cosines to sines:

sin(s —t) = sins cost —coss sin ¢ (8)
sin(s +¢) = sins cost 4 coss sint 9)
sin2t = sin(t +¢) =2 sint cost (20)

| want to stop with these ten formulas, even if more are possible. Trigonometry is
full of identities that connect its six functions—basically because all those functions
come from a single right triangle. The y,r ratios and the equatiat? + y2? = r?
can be rewritten in many ways. But you have now seen the formulas that are needed
by calculus: They give derivatives in Chapté@r and integrals in Chaptef. And
it is typical of our subject to add something of its own—a limit in which an angle
approaches zerdhe essence of calculus is in that limit

Review of the ten formulasFigure 1.22 showd? = (0 — %)2 +(1-+/3/2).

14 T m . W . T N S S 4 T .
COS— =C0S—C0S—+sin —sin — (s—¢) Sin—=sin —Cc0S— —C0S— sin —
6 2 3 2 3 6 2 3 2 3

5 T T S 1 . 5w . T T
COS— =C0S—COS— —Sin—sin — (s+17) Sin— =sin —Cc0S— +C0s— Sin —
6 2 3 2 3 6 2 3 2 3
cos2Z =cot T _sitZ (21) sn2Z =2sinZcos
3 3 3 3 3 3
T s T 4 4
CoS— =Sin — =+/3/2 (——9) sin—=cos—=1/2
6 3 \/_/ 2 6 3 /
1 3
9.1 d oo s=% s—1=
n V3 1
6 % r=% s+t= 2 2
g ™ \4
AW 1,0
Fig. 1.22

. o o 1
Quespon 1  Draw graphs for eque}uonﬁ_ sin2x, y=2snrx, y = 5C082nx,
y =sinx +cosx, and mark three points.

Question 2 Which of the six trigonometric functions are infinite at what asf

Question 3 Draw rough graphs or computer graphg eint and sin4z sinz from
0to2m.

fCalculus turns (6) around to cis= £ (14 cos2¢) and sirft = £ (1 —cos21).
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1.5 EXERCISES

Read-through questions

Starting witha__a _triangle, the six basic functions are theb (c) cosf —secH =sind tand
of the sides. Two ratios (the cosingr and the__c ) are belowl. (d) sin2r—8)=sind

Two ratios (the secant/x and the__d ) are abovel. Two ratios
(the__e andthe f )cantake any value. The six functions are2 Simplify sin(z —0), coSm —6),sin(zr/2+ 6),cos(w/2 +0).

defined for all angle®, by changing from a triangletoa g .

13 From the formula for ca@t +¢) find cos3t in terms of cos.
The angled is measured in_h . Afullcircleis6=__i

when the distance around &rr. The distance to anglé is  j

All six functions have period k . Going clockwise changesis By averaging cos —t) and cogs +¢) in (4-5) find a formula

thesign of  and__| and__m . Since cost-0) = cosb, the for coss cost. Find a similar formula for sin sin.
cosineis_ n

14 From the formula for si(2z +¢) find sin3z in terms of siry.

. o 16 Show that(cost + i sin#)? = cos2t +i sin2t, if i2 = —1.
Coming from x2+y% =r2 are the three identities $if +
coff=1and_o and p .(Dividebyr2and q and 17 Drawcosf and £c6 on the same graph. Find all points where

r_.) The distance from(2,5) to (3.4) is d= __s . The C0S6 =sect.
distance from (1,0) to (coss—1),sin(s —7)) leads to the ;g5 Fing a)l angless ands beween0 and 2 where sifis +1) =
addition formula cog —t) =__t . Changing the sign of gives sins +sinz.
cogs+t)= u . Choosings=t gives cot=_vVv _ or
w__. Thereforel (1 +cos2¢)=__x_, aformulaneeded incal- 19 Complementary angles have #ir=cos(z/2—6). Write
cuus. sin(s+t) as co¢$r/2—s—t) and apply formula (4) with
1 /2 —s instead ofs. In this way derive the addition formula (9).

1 Ina60—60—60 triangle show why si30° = 3

2 Convert =, 37w, —n/4 to degrees and60°,90°,270° to
radians. What angles betwe@and2z correspond t@ = 480° and 21 Check the addition formulas (4-5) and (8-9) for
0=—-1°7 s=t=mn/4

3 Draw graphs of tard and ©t® from 0 to 2z. What is their 22 Use (5) and (9) to find a formula for té¢).
(shortest) period ?

20 If formula (9) is true, how do you prove (8) ?

In 23-28 find 6 that satisfies th tion.
4 Show that cog6 andco6 have periodr and draw them on : inaeveryt that satistes the equation

the same graph. )
. . . 23 sinf=-—1 24 s h=-2
5 At 6 =3x/2 conmpute the six basic functions and check@bg-

sint0,se@6 —tartd, csc26 — cot2f. 25 siné = cost 26 sing =0

6 Prepare a table showing the values of the six basic function€ At sa?f+csCf =1 28 tanf =0

0=0,n/4, /3, 7/2, 7. Y
. . . 29 Rewrite co¥)+sind as +/2sin(0+¢) by choosing the
2
7 The area of a C|rcle. igr-. What is the area of the sector thatcorrect “phase angle’. (Make the equation correct dt = 0.
has anglé ? Itis a fraction of the whole area.

Square both sides to check.)
8 Find the distance fronil,0) to (0, 1) along (a) a straight line (b)

- o h 30 Match asinx +bcosx with Asin(x +¢). From equation (9)
a quarter-circle (c) a semicircle centerec(ét 7) .

show thata = Acos¢ and b = Asing. Square and add to find
A= . Divide to find tanp = b /a.
9 Find the distance! from (1,0) to (%,\/5/2) and show on a W =b/

circle why6d is less tharer 31 Draw the base of a triangle from the origi® = (0,0)
' to P =(a,0). The third corner is atQ = (b cosf,b sing).

10 In Figure 1.22 compute? and vith calculator)12d. Why is what are the side length®P and 0Q? From the distance

12d close to and belolr ? formula (1) show that the sidBQ has length
11 Decide yvhether these equations are true or false: 4% =a? +b? —2abcosé  (law of cosines)
@ sing _ 1+lcose
1—cosd sind
sech + csch 32 Extend the same triangle to a parallelogram with its fourth

(b) and +cotd — sin 6 +cosé correr at R=(a+b cosé,b sinf). Find the length squared of
and +co the other diagonaDR.
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I 1.6 A Thousand Points of Light | EEESE

The figures drawn below show y=sinn. This is very different
from y =sinx. The graph of sinc is one continuous curve. By the time it reaches
x =10,000, the curve has gone up and dow,000/2x7 times. Thosel591
oscillations would be so crowded that you couldn’t see anything. The graph of sin
has pickedLO, 000 pointsfrom the curve—and for some reason those points seem to
lie on more thanrl0 separate sine curves.

The second graph shows the fit600 points. Theydon'tseem to lie on sine curves.
Most people see hexagomut they are the same thousand poiiitss hard to believe
that the graphs are the same, but | have learned what filtithe second graph and
look from the side at a narrow angleNow the first graph appears. | believe you will
see “diamonds.” The narrow angle compressesrtlagis—back to the scale of the
first graph.

[}
L

T T

77 200,400, 600 - 800" ' 1000

The effect of scale is something we don't think of. We understand it for maps.
Computers can zoom in or zoom out—those are changes of scale. What our eyes see
depends on what is “close.” We think we see sine curves il th@00 point graph,
and they raise several questions:

1. Which points are nedgp,0) ?
2. How many sine curves are there ?
3. Where does the middle curve, going upward frédn0), come back to zero ?

A point near(0,0) really means that sim is close to zero. That is certainly not true
of sin1 (1 is one radian!). In fact sif is up the axis at84, at the start of the seventh
sine curve. Similarly sir2 is .91 and sin3 is .14. (The numbers and.14 make us
think of . The sine oB equals the sine of —3. Then sin.14 is near.14.) Similarly
sin4, sin5, ..., sin21 are not especially close to zero.

The first point to come close isin 22. This is becaus@2/7 is nearr. Then22 is
close to7x, whose sine is zero:

sin22 = sin(7x —22) ~ sin(—.01) ~ —.01.

That is the first point to the right of0,0) and slightly below. You can see it on
graphl, and more clearly on grapgh It begins a curve downward.
The next point to come close is sii. This is becausé4 is just pasti4r.

44 ~ 147+ .02 S0 sind4 ~ sin.02 ~ .02.
This point (44, sin44) starts the middle sine curvéNext is(88, sin88).
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Now we know somethinglhere are44 curves They begin near the heighgi 0,
sinl, ...,sin43. Of these44 curves,22 start upward an@2 start downward. | was
confused at first, because | could only figticurves. The reason is thsin 11 equals
—0.99999 andsin33 equals 9999. Those are so close to the bottom and top that
you can't see their curves. The sineldfis near—1 becausesin 22 is near zero. It is
almost impossible to follow a single curve past the top—coming back down it is not
the curve you think it is.

The points on the middle curve arerat= 0 and44 and88 and every numbet4 N.
Where does that curve come back to zero? In other words, wherdddésome
very closeto a multiple ofr ? We know that4 is 147 +.02. More exactly44 is
14w 4 .0177. So we multiply.0177 until we reachr:

if N=n/.0177 then 44N = (147 +.0177)N =147 N +=.

This givesN = 177.5. At that point44 N = 7810. This is half the period of the sine
curve The sine of7810 is very near zero.

If you follow the middle sine curve, you will see it come back to zero alit8id).
The actual points on that curve hawe=44-177 andn = 44 -178, with sines just
above and below zero. Halfway betweemis- 7810. The equation for the middle
sine curve isy = sin(xx/7810). Its period isl 5, 620—beyond our graph.

Question The fourth point on that middle curve looks the same as the fouitht p
coming down fromsin 3. What is this “double point?”
Answer 4 times44 is 176. On the curve going up, the point($76,sin176). On the
curve coming down it i€179,sin179). The sines ofl76 and 179 differ only by
.00003.

The second graph spreads out this double point. Look ab®§end 179, at the
center of a hexagon. You can follow the sine curve all the way across graph

Only a little question remains. Why does graphave hexagons ?don’t know
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted
points on straight lines as well as sine curves. Giaphows y = fractional part of
n/2m. Then he made a second copy, turned it over, and placed it on top. That produced
graph4—uwith hexagons. Graplsand4 are on the next page.
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This is called aMoiré pattern If you can get a transparent copy of graghand
turn it slowly over the original, you will see fantastic hexagons. They come from
interference between periodic patterns—in our éais€7 and25/4 and19/3 are near
27. This interference is an enemy of printers, when color screens don’t line up. It can
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing
Moiré patterns move. There are good applications in engineering and optics—but
we have to get back to calculus.



CHAPTER 2

Derivatives

I 2.1 The Derivative of a Function  [IEEEEEEE

This chapter begins with the definition of the derivative. Two examples were in
Chapter 1. When the distance i€, the velocity is2¢. When £ (¢) = sint we found

v(t) = cost. The velocity is now called thderivative of f(z). As we move to a
more formal definition and new examples, we use new sympbénddf/d for the
derivative.

2A Attimet, thederivative f/(z) or df/dt or v(¢) is

iy e JEFAD— f(0)
fi(@)=lim ; .

At—0 A

(1)

The ratio on the right is the average velocity over a short thmeThe derivative, on
the left side, is its limit as the stepr (delta r) approaches zero.

Go slowly and look at each piece. The distance at timteA¢ is f(t + At). The
distance at time is f(¢). Subtraction gives thehange in distancebetween those
times. We often write\ f for this differenceA f = f(t + At) — f(¢). The average
velocity is the ratioA f/ At—change in distance divided by change in time.

The limit of the average velocity is the derivative, if this limit exists:

d
dt At—0 At

)

This is the neat notation that Leibniz inventetly / At approaches/f/dt. Behind
the innocent wordlimit” is a process that this course will help you understand.
Note thatA f is not A times f! It is the change in f. Similarly A¢ is not
A timest. It is the time step, positive or negative and eventually small. To have a
one-letter symbol we replack? by 4.

The right sides of1) and(2) contain average speeds. On the graphf @f), the
distanceupis divided by the distancacross That gives the average slopef/At.

The left sides of1) and(2) areinstantaneousspeeds!f/dt. They give the slope
at the instant. This is the derivativel/f /dt (whenAt andA f shrink to zero). Look
again at the calculation fof (1) = ¢2:
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Af  fl+A0)—f@) 1242t Ar+(Ar)>—12
At At a At

Important point; Those steps are taken befdnegoes to zerolf we setAr =0 too
soon we learn nothing The ratioA f/ At become®)/0 (which is meaningless).
The numbersA f and At must approach zero together, not separately. Here their
ratio is2¢ + At, the average speed.

To repeat: Success came by writing ¢t A¢)? and subtracting? and dividing
by Az. Then and only then can we approath= 0. The limit is the derivativ®z.

=2t + At. 3)

There are several new things in formu(d3 and(2). Some are easy but important,
others are more profound. The idea of a function we will come back to, and the
definition of a limit. But the notations can be discussed right away. They are used
constantly and you also need to know how to read them aloud:

f(t)="f of t" = the value of the functiorf attimer
At ="deltar” = the time step forward or backward fram
f(t+ At)y="f of t plus deltar” = the value off at tmet + At
A f ="delta f” = the changef (t + At) — f(¢)
A f/At ="delta f over deltar” = the average velocity
f'(t) =" f prime oft” = the value of the derivative at tinte
df/dt="d fdt" =the same ag” (the instantaneous velocity)

lim ="“limit as deltar goes to zero’= the process that starts with
A0 numbersA f/ At and produces the numbéy /d:.

From those last words you see what lies behind the notaltfg/t. The symbolAf¢
indicates a nonzero (usually short) length of time. The sym#iolindicates

an infinitesimal (even shorter) length of time. Some mathematicians work separately
with df anddt, anddf/dt is their ratio. For usif/dt is a single notation (don't
canceld and don’t cancel\). The derivativedf/dt is the limit of A f/At. When

that notationdf/dt is awkward, usef” or v.

Remark The notation hides one thing we should mention. The time step can be
negativgust as easily as positive. We can compute the avefafjeAt over a time
intervalbeforethe timet, instead of after. This ratio also approachg¢gd:.

The notation also hides another thinghe derivative might not existThe
average4 /At might not approach a limit (it has to be the same limit going forward
and backward from time). In that casef”(¢) is not defined. At that instant there is
no clear reading on the speedometer. This will happen in Example 2.

EXAMPLE 1 (Constant velocity’ = 2) Thedistancef is V timest. The distance
attimer + At is V timest 4+ At. The differenceA f is V timesA¢:

Af = VAt =V sothelimitis =V.
At At dt

The derivative ofl’t is V. The derivative ot is 2. The averagea f/ At are always
V =2, in this exceptional case of a constant velocity.
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EXAMPLE 2 Constant velocit up totimes = 3, then stop

For small times we still havef (1) = 2¢. But after the stopping time, the distance
is fixed at f(¢) = 6. The graph is flat beyond tim& Then f(t + At) = f(¢) and
A f =0 andthe derivative of a constant function is zero

] v e JO+HAD)—f() 0
£>3 f= AIItrD»O At N AILTO At 0 @)
In this examplé¢he derivative is not defined at the instant wheg= 3. The velocity
falls suddenly fron® to zero. The ratid\ f/ At depends, at that special moment, on
whetherAt is positive or negative. The average veloéffertimer = 3 is zero. The
average velocitpeforethat time is2. When the graph off has a corner, the graph
of v has gump. It is astep function

One new part of that example is the notation (df fatfz f’ instead ofv). Please
look also at the third figure. It shows how the function takéen the left) to f(¢).
Especially it showg\¢ andA f. At the start,A /At is 2. After the stop at = 3, all
t's go to the samef (1) = 6. SoA f =0 anddf/dt =0.

time distance

6

v=dfldt=f f At

slope 0 t=3 Af

(]

—o0
slope undefined

f'(3) not defined slope 2

O ! I

3 3

Fig. 2.1 The derivative i thenO. It does not exist at = 3.

THE DERIVATIVE OF 1/¢

Here is a completely different slope, for the “demand functiofi(t) =1/t.
The demand id /¢ when the price ig. A high pricer means a low demantl/¢.
Increasing the price reduces the demand. The calculus questibtovs:quickly
doesl1/t change whent changes? The “marginal demand” is the slope of the
demand curve.

The big thing is to find the derivative df/ t once and for all. Itis—1/¢2.

1 1 1 t—(1+ At At
EXAMPLE 3 f(t) = —hasAf = — —. Thisequals C+An _ '
! t+Ar 1 tt+At) 1t +A1)
Divide by Ar andlet A7 —0: 27 ! roaches — —!
-0 —=— ——
/ A it an P Tl

Line 1 is algebra, line is calculus. The first step in lingé subtractsf(¢) from
f(t+ At). The difference id /(¢ + At) minus1/¢. The common denominator is
timest + Ar—this makes the algebra possible. We can'tAet=0 in line 2, until
we have divided byAz.

The averageid /At = —1/t(t + At). Now setAt = 0. The derivative is-1/12.
Section2.4 will discuss the first of many cases when substitutihg= 0 is not
possible, and the idea of a limit has to be made clearer.
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[

Fig. 2.2 Average slope is-¢, true slope is- ;. Increase irr produces decrease

Check the algebra at=2 and¢ + At = 3. The demand /¢ drops from1/2 to
1/3. The difference isA f = —1/6, which agrees with-1/(2)(3) in line 1. As the
stepsA f and At get smaller, their ratio approached /(2)(2) = —1/4.

This derivative is negativeThe functionl/¢ is decreasingand A f is below
zero. The graph is goingownwardin Figure 2.2, and its slope is negative:

An increasing f(t) has positive slope A decreasingf(z) has negative slope

The slope—1/¢? is very negative for small. A price increase severely cuts demand.
The next figure makes a small but important point. There is nothing sacredrabout
Other letters can be used—especiallyA quantity can depend gposition instead
of time. The height changes as we go west. The area of a square changes as the side
changes. Those are not affected by the passage of time, and there is no reason to use
t. You will often seey = f(x), with x across ang up—connected by a functiofi
Similarly, f is not the only possibility. Not every function is namgd That letter
is useful because it stands for the word function—but we are perfectly entitled to write
y(x) or y(¢) instead of f(x) or f(¢). The distance up is a function of the distance
across. This relationship*of x” is all-important to mathematics.
The slope is also a function. Calculus is about two functigiis, anddy /dx.

Question If we add1 to y(x), what happens to the slopefhswerNothing.

Question If we add]1 to the slope, what happens to the heighAfRswer .

The symbolst andx represenindependent variables-they take any value they
wantto (in the domain). Once they are sgt) andy (x) are determined. Thug and
y representiependent variablestheydependns andx. A changeAt produces a

(]

: Af negative
s Ay negative
241 H

Fig. 2.3 The derivative ofl /¢ is —1/¢%. The slope ofl /x is —1/x2.
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changeA f. A changeAx producesAy. Theindependent variable go@sside the
parentheses irf (1) andy(x). It is not the letter that matters, it is the idea:

independent variableor x
dependent variablegf or g or y orz oru
derivativedf/dt ordf/dx ordy/dx or---

The derivatively /dx comes from [change in] divided by [change ix]. The time
step becomes a space step, forward or backward. The slope is the rate atywhich
changes withx. The derivative of a function is it§ rate of change’

| mention that physics books user) for distance. Darn it.

To emphasize the definition of a derivative, here it is again witmdx:

Ay y(x+Ax)—y(x) distance up dy . Ay

= — = lim =y'(x).
Ax Ax distance across dx Ax—-0Ax '

The notationy’(x) pins down the point where the slope is computed.diy /dx that
extra precision is omitted. This book will try for a reasonable compromise between
logical perfection and ordinary simplicity. The notati@dn/dx (x) is not good;y’(x)
is better; wherx is understood it need not be written in parentheses.

You are allowed to say that the functionyis= x2 and the derivative ig’ = 2x—
even if the strict notation requiregx) = x2 andy’(x) = 2x. You can even say that
the function isx? and its derivative iQx and itssecond derivativés 2—provided
everybody knows what you mean.

Here is an example. It is a little early and optional but terrific. You get excellent
practice with letters and symbols, and out come new derivatives.

EXAMPLE 4 If u(x) has slopefu/dx, what is the slope of (x) = (u(x))??

From the derivative ofc? this will give the derivative ofx*. In that caseu = x2
and f = x*. First point: The derivative ofu? is not (du/dx)?. We do not square
the derivative2x. To find the “square rule” we start as we have to—with

Af=f(x+Ax)— f(x):
Af =u(x+Ax))%—w(x)?=[ulx+ Ax) +ux)][ulx+ Ax) —u(x)].

This algebra puts\ f in a convenient form. We factored® — b2 into [a + b] times
[a —b]. Notice that we don’t havéAu)?. We haveA f, the change in/?. Now
divide by A x and take the limit:

u(x +Ax)—u(x)
Ax

A _ [u(x + Ax) +u(x)] [

du
hes2u(x)—. (5
A } approaches u(x)dx (5)

Thisis thesquare rule The derivative ofu(x))? is 2u(x) timesdu /dx. From the
derivatives oft? and1/x andsinx (all known) the examples give new derivatives.

EXAMPLE 5 (u = x?2) The derivative ofc* is 2u du/dx = 2(x?)(2x) = 4x3.

EXAMPLE 6 (u = 1/x) Thederivative ofl1 /x? is 2u du/dx = (2/x)(—1/x?) = —2/x3.

EXAMPLE 7 (u =sinx, du/dx = cosx) The derivative oft> = sirfx is 2sinx cosx.

Mathematics is really about ideas. The notation is created to express those ideas.
Newton and Leibniz invented calculus independently, and Newton’s friends spent
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a lot of time proving that he was first. He was, but it was Leibniz wiaught of
writing dy /d x—which caught on. Itis the perfect way to suggest the limihgf/ A x.
Newton was one of the great scientists of all time, and calculus was one of the great
inventions of all time-but the notation must help. You now can write and speak about
the derivative. What is needed is a longer list of functions and derivatives.

2.1 EXERCISES

Read-through questions

The derivative is the_a of Af/At as At approaches b .
Here Af equals__c . The stepAt can be positive or__d

The derivative is writtenv or __e _or __ f . If f(x)=2x+3
andAx=4thenAf= g .If Ax=—1thenAf=_h

f
Ax=0thenAf=__i .Theslopeisnot/0butdf/dx= j

The derivative does not exist wherg(r) has a__k _andv(z)
hasa_ | .For f(r)=1/t the derivative is_m__. The slope of
y=4/xisdy/dx= __n__. A decreasing function has a o
derivative. The p variable ist or x and the g variable
is f or y. The slope ofy? (is) (is not) (dy/dx)?. The slope
of (u(x))? is __r__ by the square rule. The slope @Ix +3)2
is__s

1 Which of the following numbersas is) givesdf/dt at timet ?
If in doubt test onf (r) =£2.

fa+A)—f@) S+2h)— 1)

@ % O
L Ja=A0—f0) St AD - f()
RN -y @ A

2 Suppose f(x) = x2. Compute each ratio and sét=0:
fx+h)—f(x) f(x+5h)— f(x)

@ ; (®) -
S+ = fCr=h) fE+D— /@)
© = @

3 For f(x)=3x amd g(x)=1+3x, find f(4+h) andg(4+h)
and f/(4) andg’(4). Sketch the graphs of and g—why do they
have the same slope ?

4 Find three functions with the same slopefis) = x2.

5 For f(x)=1/x, sketch the graphs of (x)+1 and f(x +1).
Which one has the derivativel/x2 ?

9 Find Ay/Ax for y(x) = x +x2. Then finddy /dx.
10 FindAy/Ax arddy/dx for y(x) =14 2x +3x2.

11 When f(t) =4/t, simplify the differencef (r + Ar) — f(¢), di-
vide by Az, and setAt =0. The resultisf /(7).

12 Find the derivative ofl /12 from A f(r) = 1/(t + At)? —1/12.
Write Af as a fraction with the denominato? (r + Az)2. Divide
the numerator byAz to find A f// At. SetAt =0.

13 Supposef(t)=7t to t =1. Afterwards f(1)=7+9(t —1).
(@) Finddf/dt att=1% andt = 3.
(b) Why doesn’tf(¢) have a derivative at=1?

14 Find the derivative of the derivative (tfeond derivative of
y = 3x2. What is the third derivative ?

15 Find numbers4 and B so that the straight liney = x fits
smoothly with the curveY = A+ Bx+x2 at x =1. Smoothly
means thay =Y anddy/dx =dY/dx atx =1.

16 Find numbers4 and B so that the horizontal liney =4 fits
smoothly with the curvey = A+ Bx + x?2 at the pointx = 2.

17 True(with reason)or false(with example):

(@) If f(r)<Othendf/dt <O.

(b) The derivative of f(r))? is 2df/dt.

(c) The derivative oRf(¢) is2df/dt.

(d) The derivative is the limit of\ / divided by the limit ofAz.

18 For f(x)=1/x the centered differencef(x +h)— f(x —h)

is 1/(x+h)—1/(x—h). Subtract by using the common
denominator(x + /) (x — k). Then divide by2/4 and seth =0. Why
divide by2h to obtain the correct derivative ?

19 Supposey =mx+b for negativex and y=Mx+ B for
x =0. The graphs meet if . The two slopes are .
Theslope att =0 is (what is possible ?).

6 Choosec so that the liney = x is tangent to the parabola20 The slope ofy=1/x at x=1/4is y'=—1/x*=—16. At

y =x2 +c. They have the same slope where they touch.
7 Sketch the curvg (x) = 1 —x? and compute its slope at= 3.

8 If f(r)=1/t, what is the average velocity betwees- % ard
t =27? What is the average betweer= % ard t =17? What is the
average (to one decimal place) betweeﬂ% ard ¢t =101/2007?

h =1/12, which of these ratios is closest tol6 ?

yx+h)—yx) yx)—yx—h) yx+h)—yx—h)
h h 2h

21 Find the average slope of= x2 betweenx = x; andx = x».
What does this average approachxaspproaches; ?
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22 Redaw Figure 2.1 when f(r)=3—-2¢ for <2 and
f(@)=—1fort>=2.Includedf/dt.

23 Redraw Figure 2.3 for the functiony(x)=1—(1/x).
Includedy/dx.

24 The limit of 0/ At as At — 0 is not0/0. Explain.

25 Guess the limits by an informal working rule. St =0.1 and
—0.1 and imagineAt becoming smaller:

1+ A1 |At|
@ A ®) 5
At +(A1)? q [TA!
© a2 @

*26 Suppose f(x)/x —7 as x —0. Deduce thatf(0)=0 and
f'(0) ="7. Give an example other thafi(x) = 7x.

fB+x)—-/0B)
X

27 Whatis lim if it exists? Whatifc —»1?

x—0

Problems 28-31 use the square rulef(u?)/dx = 2u(du/dx).
28 Takeu = x and fnd the derivative of? (a new way).

29 Takeu = x* and find the derivative ok?® (usingdu/dx = 4x3).

30 If u=1thenu?=1.Thendl/dx is2timesd1/dx. How is this
possible ?

31 Takeu = +/x. The derivative ofu® = x is 1 = 2u(du/dx). So
what isdu/dx, the derivative of,/x ?

32 The left figure showsf(¢) =t2. Indicate distanceg (¢ + At)
andAt andA f. Draw lines that have slopa /At and f/(¢).

W

93

33 The right figure showg'(x) and Ax. Find A f/Ax and f/(2).
34 Draw f(x) andAx so thatA f/Ax =0 but f/(x) #0.

35 If f=u? then df/dx=2u du/dx. If g=f?
then dg/dx=2fdf/dx. Together those giveg=u* and
dg/dx =

36 True or false assiming f(0) = 0:

(@) If f(x)<xforall x,thendf/dx <1.
(b) Ifdf/dx <1forall x, then f(x) <x.

37 The graphs showA f andA f/h for f(x) = x2. Why is2x +h
the equation foA £/ h ? If h is cut in half, draw in the new graphs.

38 Draw the corresponding graphs fx) = %x.

39 Drawl/x and1/(x +h) andA f/ h—either by hand with = 1
or by computer to showit — 0.

40 Fory =e*, show on computer graphs thét/dx = y.

41 Explain the derivative in your own words
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I 2.2 Powers and Polynomials [ EEEEEEEG

This section has two main goals. One is to find the derivativeg ¢f) = x> and
x* andx> (and more generally(x) = x™). The poweror exponent: is at first a
positive integer. Later we allow” andx2-? and every”.

The other goal is different. While computing these derivatives, we look ahead to
their applications. In using calculus, we megpuations with derivatives in them
“differential equations’ It is too early to solve those equations. But it is not too
early to see the purpose of what we are doing. Our examples come from economics
and biology.

With n = 2, the derivative ofc? is 2x. With n = —1, the slope ofc~! is —1x~2.
Those are two pieces in a beautiful pattern, which it will be a pleasure to discover. We
begin withx3 and its derivativéx?, before jumping toc”.

EXAMPLE 1 If f(x)=x3then Af = (x+h)3—x3 = (x3+3x2h+3xh?>+h3) —x3.
Step 1:Cancelx3. Step 2:Divide by A. Step 3:/4 goes to zero.

A d
l—f =3x2+3xh+h* approaches d_f =3x2.
1 [ X

That is straightforward, and you see the crucial step. The péwer#)? yields four
separate terms> + 3x2h +3xh% 4+ h3. (Notice 1, 3, 3, 1.) After x> is subtracted,
we can divide byz. At the limit (2 = 0) we have3x?2.

For f(x) = x" the plan is the same. A step of sizéeads tof (x + h) = (x + h)".
One reason for algebra is to calculate powers(ike- /)", and if you have forgotten
the binomial formula we can recapture its main point. Start with 4:

(x+h)(x+h)(x+h)(x+h) =x*+ 77 +h* (1)

Multiplying the fourx’s givesx*. Multiplying the fouri’s givesh*. These are the
easy terms, but not the crucial ones. The subtradtion #)* — x* will remove x4,
and the limiting steg — 0 will wipe out* (even after division byr). The products
that matter are those with exactly onfe In Example 1 with(x + /)3, this key term
was3x2h. Division by i left 3x2.

With only oneh, there aren places it can come fronEquation(1) has four
h’s in parentheses, and four ways to produéé. Therefore the key term i$x3/.
(Division by & leavestx3.) In general there are parentheses andways to produce
x"~1h, so thebinomial formula contains:x” 1 h:

(x+h)"=x"+nx""Th+ - +n". 2

2B Forn=1,2,3.4, ..., thederivative ofx” is nx"~!.

Subtractx” from (2). Divide byh. The key term iszx”~!. The rest disappears as
h—0:

M_(x—kh)"—x"_nx”_1h+---+h” ar _

Ax h h 0 I

The terms replaced by the dots involv& and/3 and higher powers. After dividing
by A, they still have at least one factbr All those terms vanish @sapproaches zero.

nxn—l
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EXAMPLE 2 (x +h)*=x*+4x3h+6x2h> +4xh3>+h*. This is n=4 in
detalil.

Subtracte*, divide by#, leth — 0. The derivative istx3. The coefficientd , 4,6,4, 1
are in Pascal’s triangle below. For + 1)° the nextrow isl, 5,10, 2 .

Remark The missing terms in the binomial formula (replaced by the dots) contain

all the productsc” /A7, An x or ank comes from each parenthesis. The binomial

coefficient “nchoosej” is the number of ways to choosgh’s out of n parenthe-

ses It involvesn factorial, which isn(n — 1) ---(1). Thus5!=5-4-3-2-1 =120.
These are numbers that gamblers know and love:

1 Pascal’s
11 triangle
!
“n choosej” :(n.):.’;. 121
i) jtn—=j)! 1331 n=3

14641 n=4

In the last row, the coefficient of 34 is4!/1!13!'=4-3-2-1/1-3-2-1 =4. For the
x2h? term, with j =2, there are4-3-2-1/2-1-2-1 = 6 ways to choose twa’s.
Notice thatl +4 + 6 +4 + 1 equalsl6, which is2*. Each row of Pascal’s triangle
adds to a power df.

Choosingd numbers out o9 in a lottery, the odds aré9-48-47-46-45-44/6!
to 1. That numberisV = “49 chooseb” = 13,983, 816. Itis the coefficient ofc*3h6

in (x+h)*.If A timesN tickets are bought, the expected number of winness is
The chance of no winner is™*. The chance obnewinner isie~*. See Sectios.4.

Florida’s lottery in Septembdr990 (these rules) had six winners out 1i9, 163,

978 tickets.

DERIVATIVES OF POLYNOMIALS

Now we have an infinite list of functions and their derivatives:

xx2x3xt X 1 2x 3x2 4x3 5x% ...

The derivative ofx” is n times the next lower powet”~!. That rule extends
beyond these integers 2, 3,4, 5 to all powers:

f=1/x has f'=-1/x2: Example3 of section2.1 (n=—1)
f=1/x% has f'=-2/x3: Example6 of section2.1 (n = —2)
f=+/x has f/=1x"12: true but not yet checked (n=1)

Remember thatx—2 meansl/x2 andx~!/2 meansl//x. Negative powers lead
to decreasingunctions, approaching zero asgets large. Their slopes have minus
signs.

Question What are the derivatives of'® andx2-2 andx~1/2 ?

Answer  10x° and2.2x!2 and —1x~3/2. Maybe (x + h)2% is a little unusual.
Pascal’s triangle can’t deal with this fractional power, but the formula stays firm:
After x22 comes2.2x!2h. The complete binomial formula is in Sectidf.5.

That list is a good start, but plenty of functions are left. What comes next is really
simple. A tremendous number of new functions are “linear combinations” like

1 1
f(x)=6x> or 6X3+5x2 or 6x3—5x2.
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What are their derivatives? The answers are knownfoand x2, and we want to
multiply by 6 or divide by2 or add or subtracDo the same to the derivatives

f'(x)=18x2 or 18x%2+x or 18x%—x.

2C The derivative of: times f(x) is ¢ times f'(x).

2D The derivative off (x) + g(x) is f'(x) + g'(x).

The numberc can be any constant. We can add (or subtract) any functions.
The rules allow any combination of and g: The derivative of9f(x) —7g(x)
iIs9f'(x) —7g"(x).

The reasoning is direct. Wheifi(x) is multiplied by ¢, so is f(x +h). The
differenceA f is also multiplied byc. All averagesA f/ h containc, so their limit is
¢f’. The only incomplete step is the last one (the limitje still have to say what
“limit” means

Rule 2D is similar. Adding f + g means adding\ /' + Ag. Now divide by#. In
the limit as# — 0 we reachf’ + g’—because a limit of sums is a sum of limits.
Any example is easy and so is the proof—it is the definition of limit that needs care
(Section2.6).

You can now find the derivative of every polynomia “polynomial” is a
combination of 1, x, x2, ..., x"—for example 942x —x>. That particular
polynomial has slop@ — 5x*. Note that the derivative df is zero! A constant just
raises or lowers the graph, without changing its slope. It alters the mileage before
starting the car.

The disappearance of constants is one of the nice things in differential calculus. The
reappearance of those constants is one of the headaches in integral calculus. When you
find v from £, the starting mileage doesn’t matter. The constanf imas no effect on
v. (A f is measured by a trip meteAs comes from a stopwatgiiro find distance
from velocity, you need to know the mileage at the start.

A LOOK AT DIFFERENTIAL EQUATIONS (FIND y FROM dy/dx)

We know thaty = x* hasthe derivativedy /dx = 3x2. Starting with the function,
we found its slope. Now reverse that proceStart with the slope and find the
function. This is what science does all the time—and it seems only reasonable to say
so.

Begin withdy /dx = 3x2. The slope is given, the functionis not given.

Question Can you go backward to reagh= x> ?

Answer  Almost but not quite. You are only entitled to say that x3 + C. The
constantC is the starting value of (whenx = 0). Then thedifferential equation
dy /dx = 3x? is solved.

Every time you find a derivative, you can go backward to solve a differential
equation. The functiory = x4 x has the slopely /dx = 2x + 1. In reverse, the
slope2x + 1 producesy? 4+ x—and all the other functions? + x + C, shifted up
and down. After going from distancg to velocity v, we return tof + C. But there
is a lot more to differential equations. Here are two crucial points:

1. We reachdy/dx by way of Ay /Ax, but we have no system to go backward.
With dy/dx = (sinx)/x we are lost. What function has this derivative ?
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2. Many equations have the same solutjos x3. Ecanomics hasgly /dx =3y /x.
Geometry hagly /dx = 3y?/3. These equations involve as well asdy/dx.
Function and slope are mixed together! This is typical of differential equations.

To summarizeChapter2-4 compute and use derivatives. Chadeyoes in reverse.
Integral calculus discovers the function from its slope. Giderldx we find y (x).
Then Chapteé solves the differential equatiaty /d¢ = y, function mixed with slope.
Calculus moves frorderivativeso integralsto differential equations

This discussion of the purpose of calculus should mention a specific example. Dif-
ferential equations are applied to an epidemic (like AIDS). In most epidemics the
number of cases grows exponentially. The peak is quickly reachef land the epi-
demic dies down. Amazingly, exponential growth is not happening with AIDS—the
best fit to the data throughP88 is acubic polynomial(Los Alamos Scienc€989):

The number of cases fits a cubic withifo: y = 174.6(r — 1981.2)3 + 340.

This is dramatically different from other epidemics. Instead/ofdt = y we have
dy/dt =3y/t. Before this book is printed, we may know what has been
preventing’ (fortunately). Eventually the curve will turn away from a cubic—I hope
that mathematical models will lead to knowledge that saves lives.

Added in proof In 1989 the curve for the U.S. dropped from to 2.

MARGINAL COST AND ELASTICITY IN ECONOMICS

First point about economics: Thearginal cost andnarginal income are crucially
important. The average cost of making automobiles ma§1fe000. But it is the

$8,000 cost of thenext carthat decides whether Ford makes ifTHe average
describes the past, the marginal predicts the futufer bank deposits or work

hours or wheat, which come in smaller units, the amounts are continuous variables.

Then the word “marginal” says one thingake the derivativer

The average pay over all the hours we ever worked may be low. We wouldn’t work
another hour for that! This average is rising, but the pay for each additional hour rises
faster—possibly it jumps. Whe#10/hour increases t&15/hour after a40-hour
week, a50-hour week pay$550. The average income i811/hour. The marginal
income is$15/hour—the overtime rate.

Concentrate next on cost. Le{x) be the cost of producing tons of steel. The
cost ofx + Ax tons isy(x 4+ Ax). The extra cost is the differenc®y. Divide by
Ax, the number of extra tons. The ratfoy /A x is the average cost per extra ton
WhenAx is an ounce instead of a ton, we are near the marginalgosfx.

Example: When the cost ie?, the average cost is*/x = x. The marginal cost is
2x. Figure 2.4 has increasing slope—an example of “diminishing returns to scale.”

This raises another point about economics. The units are arbitrary. In yen per
kilogram the numbers look different. The way to correct for arbitrary units is to work
with percentage changer relative change An increase ofAx tons is a relative
increase ofAx/x. A cost increase\y is a relative increase ohy/y. Those are
dimensionlesghe same in torydons or dollargdollars or yerfyen.

A third example isthe demand at price x. Now dy/dx is negative. But again
the units are arbitrary. The demand is in liters or gallons, the price is in dollars or
pesos.

tThese paragraphs show how calculus applies to economics. Yowtdeave to be an
economist to understand them. Certainly the author is not, probably the instructor is not,
possibly the student is not. We can all use/dx.

97



2 Derivatives

marginal :
~yet D
R ayernge demand L :
costx X ' fixed supply
E=-1 o il 15 w5 )
any price
n o B /
/ slope 2x 3'—'?‘_[31_) ]"”-‘ any supply
24 average .v =i fixed price =~
’ 1
' > ®
x quantity equilibrium price price

Fig. 2.4 Marginal exceeds average. Constant elastiity¢ +1. Perfectly elastic to perfectly
inelastic (" curve).

Relative changes are better. When the price goes up®l, the demand may drop
by 5%. If that ratio stays the same for small increaths, elasticity of demand |1§

Actually this number should be%. The price rose, the demand dropped. In our

definition, the elasticityill be —%. In conversation between economists the minus
sign is left out (I hope not forgotten).

DEFINITION  The elasticity of the demand function(x) is

E(r)= lim 22/Y _dy/dx
Ax—0 Ax/x y/x

®3)

Eladicity is “marginal” divided by“average’ E(x) is also relative change in
divided by relative change im. SometimesE (x) is the same at all prices—this
important case is discussed below.

EXAMPLE 4 Suppose the demandjs= c/x when the price isc. The derivative
dy/dx = —c/x? comes from calculus. The division/x = c¢/x? is only algebra.
TheratioisE = —1:

For the demandy = ¢/ x, the elasticity is(—c/x?)/(c/x?) = —1.

All demand curves are compared with this one. The demanidakstic when
|E| < 1. Itis elasticwhen |E| > 1. The demand0/+/x is inelastic(E = —1),
while x =3 is elastic(E = —3). The powery = cx”, whose derivative we knayis

the function with constant elasticity::
if y=cx® then dy/dx=cnx® ' and E =cnx""'/(cx"/x)=n.

Itis becausey = cx” ses the standard that we could come so early to economics.
In the special case when= ¢/ x, consumers spend the same at all prices. Brice
times quantityy remains constant aty = c.

EXAMPLE 5 The supply curve has¥l > 0—supply increases with price. Now
the baseline case is= cx. The slope is: and the average is/ x = c¢. The elasticity
iSE=c/c=1.

CompareE = 1 with £ =0andE = co. A constant supply is “perfectly inelastic.”
The powern is zero and the slope is zerg:= c¢. No more is available when the
harvest is over. Whatever the price, the farmer cannot suddenly grow more wheat.
Lack of elasticity makes farm economics difficult.

The other extremé’ = oo is “perfectly elastic.” The supply is unlimited at a fixed
price x. Once this seemed true of water and timber. In reality the steep curve
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x = constant is leveling off to a flat curve = corstant. Fixed price is changing to
fixed supply,E = oo is becomingE = 0, and the supply of water follows a “gamma
curve” shaped likd".

EXAMPLE 6 Demand is an increasing function isfcome—more income, more
demand. Thencome elasticityis E(I) =(dy/d1)/(y/I). A luxury hasE > 1
(elastic). Doubling your income more than doubles the demand for caviar. A necessity
hasE <1 (inelastic). The demand for bread does not double. Please recognize how
the central ideas of calculus provide a language for the central ideas of economics.

Important note on supply= demand This is the basic equation of microeconomics.
Whetre the supply curve meets the demand curve, the economy finds the equilibrium
price.Supply= demand assumes perfect competitiith many suppliers, no one
can raise the price. If someone tries, the customers go elsewhere.

The opposite case is monopoly—no competition. Instead of many small pro-
ducers of wheat, there is one producer of electricity. An airport is a monopolist (and
maybe the National Football League). If the price is raised, some demand remains.

Price fixingoccurs when several producers act like a monopoly-which antitrust
laws try to prevent. The price is not set by supglydemand. The calculus problem is
different—to maximize profitSection3.2 locates the maximum where the marginal
profit (the slope!) is zero.

Question on income elasticity From an income 0%$10,000 you save$500.
The income elasticity of savings & = 2. Out of the next dollar what fraction do
you save ?

Answer  The savings i3 = cx? becauseE = 2. The number must give500 =
¢(10,000)2, soc is 5-107%. Then the slopely /dx is 2cx =10-10-107%-10* =
11—0. This is the marginal savings, ten cents on the doAaerage savings i$%,
marginal savings isl0%, and £ = 2.

2.2 EXERCISES

Read-through questions

The derivative of f =x* is f'= __a . That comes from 1 Starting with f =x®, write down f’ and thenf”. (This is “f
expanding (x +h)* into the five terms__b . Subtractingr* ard  double prime,” the derivative of ’.) After derivatives ofx®
dividing by & leaves the four terms_c¢ . ThisisAf/h, and its you reach a constant. What constant ?

limitis __d

2 Find a function that has® as its derivative.

The derivative of f =x" is f'=__e . Now (x+h)" comes Find the derivatives of the functions in 3-10. Even ifn is
from the __f  theorem. The terms to look for are” 'k, negative or a fraction, the derivative ofx" is nx” 1.
containing only one g . There are__h _ of those terms,

SO (x+h)"=x"+4_1 +-.-. After subtracting | and 3 x247y45 4 14(7/x)+(5/x2)
dividing by 7, the limit of Af/h is __k . The coefficient of
x"=Jh/, not needed here, iz‘choosej” = |, wheren!means 5 |4 424,344 6 (x2+1)2
m
7 x4 xn 8 Xn/}’l!

The derivative of x=2 is __n . The derivative ofx!/2 is 1 1 1 ) )

0 . The derivative of3x+(1/x) is p , which uses the 9 1+x+ -x24+ -x3+ x4 10 Zx3/242,5/2
following rules: The derivative of3f(x) is g and the 2 6 24 3 5
deivative of f(x)+g(x) is __r . Integral calculus recovers

s fromdy/dx. |fdy/dx =x*theny(x)=__t . 11 Name two functions withlf /dx = 1/x2.
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12 Find the mistake x2 is x+x+---+x (with x terms). Its 31 What function f(x) has fourth derivative equal tb?
derivative is1+1+---+1 (alsox terms). So the derivative of?

32 What function f(x) hasnth derivative equal ta ?
seems to be.

33 Suppoself/dx =1 24 %3, Find )
13 What are the derivatives oBx!/3 and —3x—1/3 and ppoself/dx =14 x+x7 +x /()

(3x1/3)~12 34 Suppoself/dx =x~2—x73.Find f(x).

14 The slope ofc + (1/x) is zero whenx = “What does the 35 f(x) can be its own derivativeln the infinite polynomial

graph do at that point ? f=1+x+4ix24+1x3+ | what numbers multiply x*
and x° if df /dx equalsf ?

15 Draw a graph ofy = x3 — x. Where is the slope zero ?

] ) ) ] 36 Write down a differential equatiorly/dx = that is
16 If df/dx is negative, is f(x) always negative? Isf(x) gplved byy = x2. Make the right side involve (not just2x).
negative for larger ? If you think otherwise, give examples.

37 True or false (a) The derivative ofx™ is 7x™.
(b) The derivative ofix™ /bx" isa/b.
(¢) Ifdf/dx=x*anddg/dx = x*thenf(x)=g(x).
(a) Find its average speeXlf /At fromt =0tot = % d) (f(x)— f())/(x —a) approacheg’’(a) asx —a.
(b) Find its average speeff/At fromt = % tor=1. (e) The slope of = (x — 1)3 is y/ = 3(x — 1)2.
(c) Whatisdf/dt att = % ?
18 When £ is in feet and is in seconds, what are the units 6f

and its derivativef” ? In f = 161 — 1612, the first16 is ft/sec but 38 When the cost isy = yo +cx, find E(x) = (dy/dx)/(y/x).
the second6 is . It approaches for largex.

17 A rock thrown upward with velocityl6 ft/sec reaches height
f =16t —16¢2 at timer.

Problems 38—44 are about calculus in economics.

19 Graph y=x3+4x2—x from x=—2 to x =2 and estimate 39 From an income ofx =$10,000 you spendy = $1,200 on
where it is decreasing. Check the transition points by solviygur car. If E:%, what fraction of your next dollar will be
dy/dx =0.

20 At a point wheredy /dx = 0, what is special about the graph of PENt On the car? Compare /dx (marginal) withy /x (average).
y(x)? Test casey = x2. 40 Name a product whose price elasticity is

21 Find the slope ofy = 1/x by algebra (thett — 0): (a) high (b) low (c) negative (?)
Ay /x+h—+/x x+h—+x Vxt+th+/x 41 The demandy =c/x hasdy/dx = —y/x. Show thatAy/Ax

is not —y/x. (Use numbers or algebra.) Finite steps miss the

h h h Vathty/x special feature of infinitesimal steps.
22 Imitate Problen?1 to find the slope of = 1/4/x. 42 The demandy = x" hask = . The revenuexy (price

times demand) has elasticify =
23 Complete Pascal’s triangle for=5 andn =6. Why do the ) iy

numbers across each row add®to? 43 y=2x+3 grows with marginal cos2 from the fixed cos8.
5 5 . . Draw the graph of£ (x).
24 Complete (x +h)° =x>+ . What are the binomial
- 5 5 5\, 44 From an incomel we sve S(I/). The marginal propensity
coefﬁClents( )and(z) and(3). to save is . Elasticity is not needed becaus® and I
have the same . Applied to the whole economy this is

25 Compute(x +I’Z)3 — (X —h)3, divide by2h, and seti =0. Why (miCroeCOnOmiCS) (macroeconomics)l

divide by2# to find this slop& ) ] )
45 2! is doubled when increases by . 13 is doubled when

26 Solve the differential equation” = x to find y (x). ¢ increases to t. The doubling time for AIDS is proportional

27 For f(x)=x2+x3, write out f(x + Ax) andA f/Ax. What 7.
is the limit atAx = 0 and what rule about sums is confirmed ? 46 Biology also leads tdy/y = n dx/x, for the relative growth of

28 The derivative ofu(x))? is from Sectior2.1. Test this the headdy/y) andthe bodydx/x).1sn > 1orn <1forachild?
rule onu = x". 47 What functions havef/dx = x® anddf/dx = x™ ? Why does
S 7 7 . n = —1 give trouble ?
29 What are the derivatives af’ + 1 and(x + 1)’ ? Shift the graph
of x7. 48 The slope ofy = x3 comes from this identity:
30 If df/dxis , what functions have these derivatives ? )3 —x3
fldxisv(x) ) —x7 = (x+h)? + (x+h)x +x2.
(@) 4v(x) (b) v(x)+1 h

(© v(x+1) (d) v(x)+v'(x). (&) Check the algebra. Finth/dx ash — 0.
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(b) Write a similar identity fory = x*. 51 In the Massachusetts lottery you chodsaunbers out of36.

49 (Computer graphing) Find all the points Wheré{Vhatisyourchancetowin?

y=x*+2x3—-7x2+3=0and wherely/dx = 0. 52 In what circumstances would it pay to buy a lottery ticket for
50 The graphs ofy1(x) = x* +x3 and y,(x) =7x—5 touch at &V&Y possible combination, so one of the tickets would win ?
the point whereys(x)= =0. Plot y3(x) to see what

is special. What does the graph ofx) do at a point where
y=y'=0?
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I 2.3 The Slope and the Tangent Line |

Chapter1 started with straight line graphs. The velocity was constant (at least
piecewise). The distance function was linear. Now we are facing polynomials like
x3 —2orx*— x2 + 3, with other functions to come soon. Their graphs are definitely
curved. Most functions are not close to linear—except if you focus all your attention
near a single point. That is what we will do.

Over a very short range a curve looks straiglitook through a microscope, or
zoom in with a computer, and there is no doubt. The graph of distance versus time
becomes nearly linear. Its slope is the velocity at that moment. We want to find the
line that the graph stays closest to—tharfgent liné—before it curves away.

The tangent line is easy to describe. We are at a particular point on the graph of
y = f(x). At that pointx equalsa andy equalsf(a) and the slope equalg’(a).

The tangent line goes through that poink =a,y = f(a) with that slope
m = f'(a). Figure 2.5 shows the line more clearly than any equation, but we have to
turn the geometry into algebra. We need the equation of the line.

EXAMPLE 1 Supposey = x* —x2+43. At the pointx =a =1, the height is
y = f(a) =3. The slope isdy/dx = 4x3 —2x. At x =1 the slope is# —2=2.
Thatis f'(a):

The numbersx =1, y =3, dy/dx =2 determine the tangent line

The equation of the tangent line js— 3 =2(x — 1), and this section explains

why.
y=3.1
curve
o s e= ")
y=x*-x2+3  iadi to(4,9)
2
_ ZOOM 2.5)

fla) =34 BOX
tangent

y=2x+1

y=29 X
x=09 a=1 x=11

Fig. 2.5 The tangent line has the same sl@pas the curve (especially after zoom).

THE EQUATION OF A LINE

A straight line is determined by two conditions. We know the lihee know two of

its points. (We still have to write down the equation.) Also, if we kranve point and

the slopethe line is set. That is the situation for the tangent line, which has a known
slope at a known point:

1. The equation of a line has the form=mx + b
2. The numbem is the slope of the line, becaude/dx =m
3. The numbeb adjusts the line to go through the required point.

| will take those one at a time—first= mx + b, thenm, thenb.
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1. The graph ofy =mx +b is not curved. How do we know? For the specific
exampley = 2x + 1, take two points whose coordinatesy satisfy the equation:

x=0,y=1 and x=4,y=9 bothsatisfy y=2x+1.

Those pointg0, 1) and(4, 9) lie on the graphThe point halfway between has=2
andy = 5. That point also satisfies= 2x + 1. The halfway point is on the graph
If we subdivide again, the midpoint betweéh 1) and(2,5) is (1, 3). This also has
y =2x + 1. The graph contains all halfway points and must be straight.

2. What is the correct slopen for the tangent line? In our example it is

m= f'(a)=2.

The curve and its tangent line have the same slope at the crucial point

dy/dx =2.

Allow me to say in another way why the line= mx + b has slopen. At x =0
its height isy = b. At x = 1 its height isy =m + b. The graph has gonene unit
across(0 to 1) andm units up(b tom + b). The whole idea is

distance up m

slope= — = —.
distance across 1

@
Each unit across means: units up, to2m +b or 3m + b. A straight line keeps a
constant slope, whereas the slopget x* — x? + 3 equal2 only atx = 1.

3. Finally we decide orb. The tangent liney =2x + b must go throughx =1,
y =3. Thereforeb = 1. With letters instead of numberg,=mx +b leads to
f(a) =ma+b. So we knowb:

2E The equation of the tangent line has= f(a) —ma:

y=mx+ f(a) —ma or y— f(a)=m(x —a). (2)

That last form is the besYou see immediately what happensyat a. The factor
x —a is zero. Thereforgy = f(a) as required. This is thpoint-slope formof the
equation, and we use it constantly:

y—3  distanceup
x—1 distance across

y—3=2(x—1) or slope?2.

EXAMPLE 2 The curvey = x3 —2 goes througly = 6 whenx = 2. At that point
dy/dx = 3x? = 12. The point-slope equation of the tangent line uBasd6 and12:

y—6=12(x—2) whichisalso y=12x—18.

There is another important line. It iperpendicularto the tangent line and
perpendicularto the curve. This is theormal line in Figure 2.6. Its new feature
is its slope. When the tangent line has slepethe normal line has slope 1/m.
(Rule: Slopes of perpendicular lines multiply to givel.) Example 2 hasn = 12,
so the normal line has slopel /12:

tangentline y —6=12(x —2) normal line y —6= —ﬁ(x -2).

Light rays travel in the normal direction. So do brush fires—theyeperpendicular
to the fire line. Use the point-slope form! The tangent is 12x — 18, the normal is
noty = —x —18.
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EXAMPLE 3 You are on a roller-coaster whose track follows= x2 + 4. You see
a friend at(0, 0) and want to get there quickly. Where do you step off ?

Solution Your path will be the tangent line (at high speed). The probletm ihoose
x = a so the tangent line passes through= 0, y = 0. When you step offat = a,

the height isy = a2 + 4 and the slope i8a
the equation of the tangent lineys— (a2 +4) = 2a(x —a)
this line goes througto, 0) if —(a?+4) = —2a?ora = +2.

The same problem is solved by spacecraft controllers and baseball pitchers. Releasing
a ball at the right time to hit a targé0 feet away is an amazing display of calculus.
Quarterbacks with a moving target should read Chapter related rates.

Here is a better example than a roller-coaster. Stopping at a red light wastes gas. It
is smarter to slow down early, and then accelerate. When a car is waiting in front of
you, the timing needs calculus:

EXAMPLE 4 How much must you slow down when a red lighfmeters away ?
In 4 seconds it will be green. The waiting car will accelerat8 atetergsec¢. You
cannot pass the car.

Strategy Slow down immediately to the speé&dat which you will just catch that car.
(If you wait and brake later, your speed will have to go belayAt the catchup time
T, the cars have the same speed and same distwoeconditions, so the distance
functions in Figure 2.6d are tangent.

Solution  Attime T, the other car’s speed T —4). That shows the delay df
seconds. Speeds are equal WB¢h —4) =V or T = %V + 4. Now require equal

distances. Your distance I5 timesT. The other car’s distance ® + %atzz
724+1.3(T—4)?>=VT becomes 72+1-1v2=Vv (1v+4).
The solution isV = 12 metergsecond. This ig43 km/hr or27 miles per hour.

Without the other car, you only slow down 6= 72/4 = 18 metergsecond. As
the light turns green, you go throughtgt km/hr or40 miles per hour. Try it.

tangent line:
P dy distance
0P T dx A
track vT 4
-._ normal line: y = - 72 Wwaitinu 7+ catch up
. ) : = | car o T=8,V=12
slope — — ¢ .2 f
P m lone 2 4 - R
slope 2a _.*" your speed is |
: e+ {ime
xXp=a 0,0) a 4 T

. . 1 .
Fig. 2.6  Tangent liney — yo =m(x —xp). Normal line y — yo = ——(x — xp). Leaving a
m
roller-coaster and catching up to a car.
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THE SECANT LINE CONNECTING TWO POINTS ON A CURVE

Instead of the tangent line through one point, considesdwt line through two
points For the tangent line the points came together. Now spread them apart. The
point-slope form of a linear equation is replaced byti#hie-point form

The equation of the curve is stilf = f(x). The first point remains at = a,
y = f(a). The other pointis at =c, y = f(c). The secant line goes between them,
and we want its equation. This time we don't start with the slope-#big easy to
find.

EXAMPLE 5 The curvey = x —2 goes throughr = 2, y = 6. It also goes through
x =3,y =25. The slope between those points is

changeiny 25—6
m= — = =109.
changeint  3-—2
The point-slope form (at the first point) js— 6 = 19(x — 2). This line automatically
goes through the second poif, 25). Check:25 — 6 equals19(3 —2). The secant
has the right slopé9 to reach the second point. It is thgerage slopé\y /Ax.

A look ahead The second point is going to approach the first point. The secant
slope Ay/Ax will approach the tangent slopgy/dx. We discover the derivative
(in the limit). That is the main point now—nbut not forever.

Soon you will be fast at derivatives. The exatt/dx will be much easier
thanAy/Ax. The situation is turned around as soon as you knowxtfdtas slope
9x3. Near x = 1, the distanceup is about9 times the distancacross To find
Ay =1.001° —1°, just multiply Ax =.001 by 9. The quick approximation is
.009, the calculator givea\y = .009036. It is easier to follow the tangent line than
the curve.

Come back to the secant line, and change numbers to letters. What line connects
x=a,y= f(a) to x=c,y= f(c)? A mathematician puts formulas ahead of
numbers, and reasoning ahead of formulas, and ideas ahead of reasoning:

distanceup  f(c)— f(a)
distance across ¢ —a

(1) The slopeisn =

(2) The heightisy = f(a) atx =a

(3) The heightisy = f(c) atx = ¢ (automatic with correct slope).

2F Thetwo-point formuses the slope between the points:

[O=1@) -
c—da

secantline y— f(a)= (

At x =a the right side is zero. Sg = f(a) on the left side. Atx = ¢ the right
side has two factors — a. They cancel to leave = f(c). With equation(2) for the
tangent line and equatidB) for the secant line, we are ready for the moment of truth.

105
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THE SECANT LINE APPROACHES THE TANGENT LINE

What comes now is pretty basic. It matches what we did with vedscit

A distance: f@+At)— f(2)

average velocit -
g ¥ A time At

Thelimitis df/dt. We now do exactly the same thing with slop&he secant line
turns into the tangent line ag: approaches::

Af _ )= f@)

slope of secant line:

Ax c—a
d A
slope of tangent line: —f = limit of —f
X Ax

There stands the fundamental idea of differential calculus! You have to imagine
more secant lines than | can draw in Figure 2.7¢ aomes close ta. Everybody
recognizes —a asAx. Do you recognizef(c) — f(a) as f(x + Ax)— f(x)? It

is Af, the change in height. All lines go through=a,y = f(a). Their limit is

the tangent line

p Ax secant
) .- -
. secant secant y— f(a)= M(x —a)
j:‘; i secant c—a
fla) tangent y— f(a) = f'(a)(x —a)

rangent

a ¢ cc

Fig. 2.7  Secants approach tangent as their
slopesA f//Ax approachif/dx.

Intuitively, the limit is pretty clear. The two points come together, and the
tangent line touches the curveatepoint. (It could touch again at faraway points.)
Mathematically this limit can be tricky—it takes us from algebra to calculus. Algebra
stays away fronf)/0, but calculus gets as close as it can.

The new limit ford f//dx looks different, but it is the same as before:

f(0) = fla)

li
c—a c—a

@)= 4

EXAMPLE 6 Find the secant lines and tangent line foe f(x) =sin x atx =0.

The starting point isc =0, y = sin0. This is the origin(0,0). The ratio of distance
up to distance across(sinc)/c:

. sinc .
secant equationy = —x tangent equation y = 1x.
C

As ¢ approaches zero, the secant line becomes the tangent line. The I{siitoj/c
is not0/0, which is meaningless, but which isdy /dx.

EXAMPLE 7 The gold you own will be worth/s million dollars int years. When
does the rate of increase drop 6% of the current value, so you should sell the
gold and buy a bond ? At= 25, how far does that put you aheadgf = 5 ?
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Solution  The rate of increase is the derivative\gf, which is1/2+/¢. Thatis10%
of the current value,/t when1/2+/t =/t/10. Therefore2t = 10 ort = 5. At that
time you sell the gold, leave the curve, and go onto the tangent line:

5
y—\/gz%(I—S) becomeSy—\/§:2\/§ a t=25.

With straight interest on the bond, not compounded, you have reached
y= 34/5 = 6.7 million dollars. The gold is worth a measly five million.

2.3 EXERCISES

Read-through questions

A straight line is determined by _a__ points, or one point and the10 For y =1/x the secant line from(a,1/a) to (c,1/c) has
b . The slope of the tangent line equals the slope of the . the equation . Simplify its slope and find the limit as
The point-slope form of the tangent equationyis- f(¢)=__d . approaches:.

i 3
= = e . . .
The tangent line toy =x~+x atx=1 has slope_e . Its 11 What are the equations of the tangent line and normal

Lo ) . linetoy=sinxatx =x/27?
equation is__f . It crosses they axis at g and thex axis Y xatx=mn/

a__h . The normal line at this pointl,2) has slope__i . Its 12 If ¢ anda both approach an in-between valwe= b, then the
equationisy—2= j .Thesecantline fronil,2)to(2,__k ) secantslopé€f(c)— f(a))/(c—a) approaches .
has sl I .0t tion iy —2 =
g siope___. fis equation 1 —— 13 At x =a on the graph ofy = 1/x, compute
The point (c, f(c)) is on the liney — f(a) = m(x —a) provided (a) the equation of the tangent line
m=__n__.Asc approaches, the slopen approaches o .The

- i (b) the points where that line crosses the axes.
secant line approaches the p  line.

The triangle between the tangent line and the axes always has
1 (8 Findthe slope of =12/x. Find the slope ofy = 12/x. area .

(b) Find the equation of the tangent line(2t6).
(c) Find the equation of the normal line @ 6).
(d) Find the equation of the secant line(tg 3).

14 Supposeg(x) = f(x)+7. The tangent lines t¢' andg atx =4
are . True or false The distance between those lineg.is

) ) ) 15 Choose so thaty = 4x is tangent toy = x2 +¢. Match heights
2 Fory = x*+x find equations for as well as slopes.

(a) the tangent line and normal line@t 2);

, 16 Chooser so thaty = 5x —7 is tangent toy = x2 +cx.
(b) the secantline to = 1 +/,y = (1+h)% +(1+Ah). 4 gentioy=x=+c
17 Fory =x3+44x2—3x+1, find all points where the tangent is

3 A line goes through(1,—1) and (4,8). Write its equation in horizontal.

point-slope form. Then write it ag = mx +b.
18 y =4x can't be tangent to = cx2. Try to match heights and

) 3 .
4 The tangent line to y=x>+6x at the origin is slopes, or draw the curves.

y= . Does it cross the curve again ?
19 Determinec so that the straight line joining0, 3) and(5, —2) is

. _ 3_ 2 .. .
5 The tangent line toy=x"—3x“+x at the origin is tangent to the curve = ¢/(x + 1).

y= . It is also the secant line to the point .
. . 20 Chooseb,c,d so hat the two parabolag = x2+bx +¢ and
2 _ _ ,Cy

6 Find the tangent line tar =y~ atx =4,y =2. y = dx —x?2 are tangent to each otherat= 1, y = 0.
7 For y=x2 the ®cant line from(a,a?) to (c,c?) has the
equation . Do the division byc—a to find the tangent

line asc approaches. (&) Another pointisc=c=1+h,y = f(c)=

8 Construct a function that has the same slope=atl andx = 2. (b) The change inf is Af = —
Then find two points where = x* —2x2 has the same tangent line () The slope of the secantis = .
(draw the graph). (d) Ash goes to zerap approaches .

21 The graph off(x) = x3 goes through(, 1).

9 Find a curve that is tangent jo=2x —3 atx = 5. Find the nor- 22 Construct a functiory = f(x) whose tangent line at= 1 is the
mal line to that curve a5, 7). same as the secant that meets the curve again-a8.
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23 Draw two curves bending away from each other. Markl Draw a circle of radius 1 reding in the parabola
the mints P and O where the curves are closest. At those =x2. At the touching point (a,a?), the equation of the

points, the tangent lines are and the normal lines are .

#24 If the parabolasy = x2+1 and y = x —x2 come closest at

(a,a®+1) and(c,c —c?), set up two equations ferandc.

normal line is . That line hasx =0 wheny = . The
distance to(a,a?) equals the radiud when a = . This
locates the touching point.

32 Follow Problem 31 for the flatter parabolayz%x2 and

25 Alight ray comes down the line = a. It hits the parabolic re- explain where the circle rests.

flectory = x2 at P = (a,a?).

33 You are applying for a $000 scholarship and your time is worth

(@) Find the tangent line ak. Locate the point) where that g a hour. If the chance of successlis-(1/x) from x hours of

line crosses thg axis.

writing, when should you stop ?

(b) Check thatP and Q are the same distance from the focus

atF =(0,%).
(c) Show from (b) that the figure has equal angles.

34 Supposd f(c) — f(a)| <|c—a] for every pair of points: and
c¢. Prove thatdf/dx| < 1.

(d) What law of physics makes every ray reflect off thd> From which pointr =a does the tangent line to = 1/x? hit

parabola to the focus & ?

vertical ray
1

=

(]

|‘_'§
I
I

P=(a,a’)

focus|, 4

26 In a bad reflectoy =2/x, aray down one special line=a is
reflected horizontally. What is ?

thex axis atx =37

36 If u(x)/v(x)=7findu’(x)/v'(x). Also find (u(x)/v(x))’.

37 Find f(c) = 1.001'° in two ways—Dby calculator and by(c) —
f(@)~ f'(a)(c —a). Chooser = 1 and f(x) = x1°.

38 At a distanceAx from x =1, how far is the curvey =1/x
above its tangent line ?

39 AtadistanceAx from x =2, how far is the curve = x> above
its tangent line ?

40 Based on Problers® or 39, the distance between curve and tan-
gent line grows like what powdiA x)? ?

41 The tangent line tof(x)=x%2—1 at xg=2 crosses the
x axis at x1= . The tangent line atx;, crosses
the x axis at xp= . Draw the curve and the two
lines, which are the beginning dflewton’s methodto solve

27 For the paraboladpy =x2, where is the slope equal tof(x)=0.
1? At that point a vertical ray will reflect horizontally. So the,, (Puzzle) The equationy =mx +b requires two numbers

focus is at(0, ).
28 Why are these statements wrong ? Make them right.

(&) If y=2x is the tangent line atl,2) theny = —%x is the
normal line.

(b) As ¢ approachesa, the secant slopd f(c)— f(a))/
(c —a) approaches f(a) — f(a))/(a —a).

(c) The line through2,3) with slope4 is y —2 = 4(x —3).

29 Aball goes around a circle: = cost, y =sint. At t =3x /4 the

the point-slope formy — f(a) = f'(a)(x —a) requiresthreg and
the two-point form requiresfour: a, f(a),c, f(c). How can
this be ?

43 Find the timeT at the tangent point in Example 4, when you
catch the car in front.

44 If the waiting car only accelerates Zinetes/se, what speed
V must you slow down to ?

45 A thief 40 meers away runs toward you a® meters

ball flies off on the tangent line. Find the equation of that line arpkr second. What is the smallest acceleration so thatat

the point where the ball hits the grouiad = 0).

keeps you in front ?

30 If the tangent line toy = f(x) a x=a is the same as the46 With 8 meters to go in a relay race, you slow down badly
tangent line toy = g(x) at x = b, find two equations that must be( f = —8+ 61 — %tz). How fast should the next runner start

satisfied byz andb.

(choosev in f = vt) so you can just pass the baton ?
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B 2 2 The Derivative of the Sine and Cosine | NG

This section does two things. One is to compute the derivativesof and cosx.

The other is to explain why these functions are so important. They describe
oscillation, which will be expressed in words and equations. You will see a
“differential equation” It involves the derivative of an unknown function(x).

The differential equation will say that tlecondierivative—the derivative of the
derivative—is equal and opposite tp. In symbols this isy” = —y. Distance in one
direction leads to acceleration in the other direction. That makasd y’ andy” all
oscillate. The solutions tp” = —y aresinx andcosx and all their combinations.

We begin with the slope. The derivative of=sinx is y’ = cosx. There is no
reason for that to be a mystery, but | still find it beautiful. Chaptéollowed a ball
around a circle; the shadow went up and down. Its heightsiras and its velocity
was cost. We now find that derivative byhe standard method of limits, when
y(x)=sinx:

dy Ay sin(x + ) — sino
9 _imitof 2Y = jm SN +4) —sinx
dx Ax  h—0 h

(1)

The dne is harder to work with thar? or x3. Where we hadx + h)? or (x + h)3,
we now havesin(x + k). This calls for one of the basic “addition formulas” from
trigonometry, reviewed in Sectioh5 :

sin(x +/h) = sin x cosh + cosx sinh (2)
cogx +h) = cosx cosh—sinx sinh. 3)

Equaion (2) putsAy = sin(x + k) —sinx in a new form:

Ay  sinx cosh-+cosx sinkh—sinx . cosh —1 sin A
2y _ =sinx| ——— ) +cosx|—— ). (4)
AXx h h

The ratio splits into two simpler pieces on the right. Algebra and trigonometry got
us this far, and now comes the calculus problgvinat happens ag& — 0? Itis no
longer easy to divide b. (I will not even mention the unspeakable crime of writing
(sink)/ h =sin.) There are two critically important limits—the first is zero and the

second is one:

. cosh—1 . sin}
lim S~ and lim Lo 5)
h—0 h h—0 h

The areful reader will object that limits have not been defined! You may further
object to computing these limits separately, before combining them into eqéj}ion
Nevertheless—following the principle afleas now, rigor later—I would like to
proceed. It is entirely true that the limit ¢4) comes from the two limits if5):

Z:—y = (sin x)(first limit) + (cosx)(second limij = 0 + cosx. (6)
X

The secant slopAy/Ax has approached the tangent slape'dx.

2G The derivative ofy =sinx is dy/dx = cosx.
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1.00001. . .

e ] |
995
995 — cos /i

sin h

100. ..
Fig. 2.8

2 Applications of the Derivative

We cannot pass over the crucial step—the two limit¢5) They contain the real
ideas.Both ratios become)/0 if we just substituter = 0. Remember that the
cosine of a zero angle i and the sine of a zero angle(s Figure 2.8a shows a
small anglé: (as near to zero as we could reasonably draw). The edge of Isimgth
is close to zero, and the edge of lengtbs/ is nearl. Figure 2.8b shows how the
ratio of sin to i (both headed for zero) gives the slope of the sine curve at the start.

When two functions approach zero, their ratio might do anything. We might have

h? h vh
——>0 or ——1 or — —> 0.
h h h

No clue comes frod/0. When matters isvhether the top or bottom goes to zero
more quickly Roughly speaking, we want to show tt{@osh — 1)/ h is like h?/ h
and(sinh)/ his like h/ h.

Time out The graph ofinx is in Figure 2.9 (in black). The graph sfn(x + Ax)
sits just beside it (in red). The height differencéig’ when the shift distance & x.

Af sin A Af _sin (x + h)—sin x
. , = h - h
sin h 77 f(x) sin x 2

Fig. 2.9  sin(x +h) with 2 = 10° = /18 radians.A f/Ax is close to cos.

X
‘ sin (x + h)

Now divide by that small numbeA x (or /). The second figure showsf/Ax.
Itis close tocosx. (Look how it starts—it is not quiteosx.) Mathematics will prove
that the limit iscosx exactly, whenAx — 0. Curiously, the reasoning concentrates
on only one poin{x = 0). The slope at that point i50s0 = 1.

We now prove thissin Ax divided by Ax goes tol. The sine curve starts with
slopel. By the addition formula fosin(x + /), this answer at one point will lead to
the slopecosx at all points.

Question Why does the graph of (x + Ax) shift left from f(x) whenAx >07?
Answer  Whenx = 0, theshifted graph is already showinf(Ax). In Figure 2.9a,
the red graph is shifteleéft from the black graph. The red graph shairs when the
black graph showsinO0.

THE LIMIT OF (sink)/h 1S 1

There are several ways to find this limit. The direct approachlet@computer draw
a graph. Figure 2.10a is very convinciridhe function (sin/)/ h approached at
the key point: = 0. So doegtan/)/ k. In practice, the only danger is that you might
get a message like “undefined function” and no graph. (The machine may refuse to
divide by zero at: = 0. Probably you can get around that.) Because of the importance
of this limit, | want to give a mathematical proof that it equals

Figure 2.10b indicates, but still only graphically, tleih /2 stays below:. (The
first graph shows that togsin)/ 4 is below1.) We also see thdan/ stays above
h. Remember that the tangent is the ratio of sine to cosine. Dividing by the cosine is
enough to push the tangent abdneThe crucial inequalities (to be proved whitis
small and positive) are

sinh < h and tanh > h. @)
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tan h h

sin h

sin h
h

> h
-n/2 h=0 n/2

Fig. 2.10  (sinh)/h squeezed between casand 1; (tank)/ h decreases tb.

Sincetan’ = (sinh)/(cosh), those are the same as

sinh sinh
<1 and
h h

> COoSh. (8)

Whathappens ag goes to zero 7The ratio (sin/)/ h is squeezed betweawsh
and 1. Butcosr is approaching! The squeeze as— 0 leaves only one possibility
for (sinh)/ h, which is caught in betweeiThe ratio(sink)/ h approached.

Figure 2.10 shows that “squeeze pldffwo functions approach the same limit,
so does any function caught in betweghhis is proved at the end of Secti@rb.

For negative values @f, which are absolutely allowed, the result is the same. To the
left of zero,h reverses sign angln / reverses sign. The rat{gin )/ & is unchanged.
(The sine is an odd functiorsin(—4) = —sink.) The ratio is anevenfunction,
symmetric around zero and approachinigom both sides.

The proof depends osink < h < tanh, which is displayed by the graph but not
explained. We go back to right triangles.

~sin h
h

~sin h
~h

Fig. 2.11  Line shorter than ar& sink < 2h. Areas giveh < tanh.

Figure 2.11a shows whgin < h. The straight lineP Q has lengtt2 sini. The
circular arc must be longer, because the shortest distance between two points is a
straight linet The arcP Q has lengti2/. (Important:When the radius i$, the arc
length equals the angl&@he full circumference i€ and the full angle is alsdr.)

The straight distance sin is less than the circular distanc2h, sosini < h.

Figure 2.11b shows whiy < tanh. This time we look atireas The triangular area

is %(base)(heighté: %(1)(tanh). Inside that triangle is the shaded sector of the circle.

T1f we try to prove that, we will be here all night. Accept it as true.
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2 Applications of the Derivative

Its area ish/2x times the area of the whole circle (because the angle is that fraction
of the whole angle). The circle has area® =, so multiplication byh /27 gives
2h for the area of the sector. Comparing with the triangle arounigitian 7 > 5.

The inequalitiessink < h <tanh are now proved. The squeeze in equat{8j
produces(sink)/h — 1. Q.E.D. Probleml3 shows how to provesins < h from
areas.

Note All anglesx andh are being measured in radiams.degreescosx is not
the derivative okinx. A degree is much less than a radian, ahg dx is reduced
by the factoR/360.

THE LIMIT OF (cosh —1)/h 1S 0

This second limit is different. We will show that— cosh shrinks to zeranore quickly
thank. Cosines are connected to sines(bin)? + (cosh)? = 1. We start from the
known factsin i < h and work it into a form involving cosines:

(1 —cosh)(1 +cosh) =1 — (cosh)? = (sinh)? < h?. 9)
Note that everything is positive. Divide through byand also byl + cosh:

1 —cosh h
< < .
h 1 +cosh

Our ratio is caught in the middlel'he right side goes to zero because» 0. This
is another $queeze—there is no escape. Our ratio goes to zero.

Forcosh — 1 or for negative:, the signs change but minus zero is still zero. This
confirms equatioli6). The slope ofin x is cosx.

(10)

Remark Equation(10) also shows thai —cosh is approximately% h?. The

2 comes from1+cosh. This is a basic purpose of calculus—to find simple
approximations Iike%h? A “tangent parabolal — %hz is close to the top of the
cosine curve.

THE DERIVATIVE OF THE COSINE

This will be easy. The quick way to differentiat®sx is to shift the sine curve by
/2. That yields the cosine curve (solid line in Figure 2.12b). The derivative also
shifts by /2 (dotted line).The derivative ofcosx is —sinx.

Notice how the dotted line (the slope) goes below zero when the solid line
turns downward. The slope equals zero when the solid line is Iéveieasing
functions have positive slopes. Decreasing functions have negative sldjmes
is important, and we return to it.

There is more information iy /dx than “function rising” or “function falling.”

The slope tellhiow quicklythe function goes up or down. It gives trae of change
The slope ofy = cosx can be computed in the normal way, as the limif\of /A x:

Ay COS(x + h) —cosx _ cosx (cosh — 1) sinx (smh)

Ax h h
dy . .
- = (cosx)(0) = (sinx)(1) = —sinx. (11)

The first line came from formul#3) for coSx + /). The second line took limits,
reaching) and1 as before. This confirms the graphical proof that the slopznsfc
is —sinx.
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y=sinxis increasing

y = cos x is decreasing ‘

. 7 iti v = sin f bends dow
W' = cos v is positive y= bends do n

13

¥ =—sin v is negative ‘ Wi V' = cos t decreases

y" =—sin t is negative

Fig. 2.12  y(x) increases wherg’ is positive.y (x) bends up wherg” is positive.

THE SECOND DERIVATIVES OF THE SINE AND COSINE

We now introducéhe derivative of the derivativeThat is thesecond derivativef

the original function. It tells how fast the slope is changing, not how faitself is
changing. The second derivative is the “rate of change of the velocity.” A straight line
has constant slope (constant velocity), so its second derivative is zero:

f(t)=5t has df/dt=5 and d*f/dt*=0.
The parabola = x? has slop&x (linear) which has slop2 (constant). Similarly
f(ty==%ar* has df/di=ar and d*f/di*=a.

There stands the notatie? f/dt? (or d?y/dx?) for the second derivative. A short
formis f” or y”. (Thisis pronounceg double primeor y double primg. Example:
The second derivative of = x3 is y” = 6x.

In the distance-velocity problent,” is accelerationlt tells how fasw is changing,
while v tells how fastf is changing. Wheré/f/dt was distancetime, the second
derivative is distancgfime)?. The acceleration due to gravity is abGtft/se or
9.8 m/se?, which means thab increases b2 ft/sec in one second. It does not
mean that the distance increasesiByeet!

The graph ofy =sin¢ increases at the start. Its derivatices: is positive.
However the second derivative is sinz. The curve is bending down while
going up The arch is toncave dowhbecausey” = —sint is negative.

At ¢t = i the curve reaches zero and goes negative. The second derivative becomes
positive.Now the curve bends upwarthe lower arch is “concave up

y" >0 means thay’ increases s¢ bends upward (concave up)
y” < 0 means thay’ decreases sp bends down (concave down).
Chapten studies these things properly—here we get an advance loskrfor
The remarkable fact about the sine and cosine isjthat —y. That is unusual and
special:acceleration= —distance The greater the distance, the greater the force
pulling back:
y=sint has dy/dt=+cost and d’y/di>=—sint=—y.
y=cost has dy/dt=-—sint and d?y/dt*>=—cost=—y.

Question Doesd?y/dt? <0 mean that the distanogt) is decreasing ?
Answer No. Absolutely not! It means thaty /dt is decreasing, not necessarjly
At the start of the sine curve, is still increasing bup” < 0.
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2 Applications of the Derivative

Sines and cosines gigémgde harmonic motior-up and down, forward and back,
out and in, tension and compression. Stretch a spring, and the restoring force pulls
it back. Push a swing up, and gravity brings it down. These motions are controlled

by adifferential equation
d?y
dt?

—y. (12)

All solutions are combinations of the sine and cosjne: A sint + B cost.

This is not a course on differential equations. But you have to see the purpose of
calculus. It models events by equations. It models oscillation by equ@t)n Your
heart fills and empties. Balls bounce. Current alternates. The economy goes up and

down:

high prices— high production— low prices— ---

We can't live without oscillations (or differential equations).

2.4 EXERCISES

Read-through questions

The derivative of y =sinx is y’ =__a . The second derivative 7 The key to trigonometry is ¢899 =1—sin?6.
(the b of the derivative) is y”"=__ ¢ The fourth Set sindx~6@ to find codf~1—62. The square root is
derivative is y” =__d . Thusy = sin x satisfies the differential cosf ~ 1 —%02. Reason: Squaring gives cb8 ~ and the
equations y”"=__e and y"=_f So does correction term is very small nead = 0.
y = cosx, whose second derivativeis g 8 (Calculator) Compare cdswith 1 — 362 for

All these derivatives come from one basic limisink)/h
approaches__h . The sine of .01 radians is very close @ ¢=01 (b) #=05 (c) §=30° (d) &=30°

to i . So is the | of .01. The cosine of.01 is
not .99, becausel —cos/ is much __k than 4. The ratio
(1—cosh)/h? approaches_ | . Therefore co& is close to

1— %hz ard cos.01 ~__m_ . We can replacé by x.

The differential equationy” =—y leads to__n . When y
is positive, y” is __o . Thereforey’ is p . Eventually y
goes below zero andy” becomes q . Theny’ is _ r
Examples of oscillation inreal lifeare s and__t

1 Which of these ratios approadhash — 0 ?
h sinZh sinh sin(—h)
@) sinh (0) h2 © sin2h @ h

2 (Calculator) Find (sink)/h at h=0.5 and 0.1 and .0l.
Where doegsinh)/h go above 99 ?

3 Find the limits ag: — 0 of

sinth sin 5h sin 5h sinh
b d —
@>== 05 0= O
4 Where does taik = 1.014 ? Where does talh="71?
5 y=sinx has perio®x, which means that sin = . The
limit of (sin(2z +h) —sin2x)/h is 1 because . This gives

dy/dx atx =

6 Draw coqx + Ax) nextto cosx. Mark the height differencé y.
Then drawAy/Ax as in Figure 2.9.

9 Trigonometry gives co®=1—2sin? %0. The approximation
sinio ~ leads directly to cog ~ 1 —162.

10 Find the limits ag: — 0:

1—cosh 1 —cosh
@ —3 b —5—
1 —cosh 1 —cos2h
) ——— d ——
© sirth @ h
11 Find by calculator or calculus:
) sin3h . 1—cos2h
@ hITo sin2h (b) i!lTo 1—cosh

12 Compute the slope at= 0 directly from limits:
(b) y=sin(—x)

13 The unmarked points in Figure 2.11 a@eandS. Find the height
PS and the area of triangl@ PR. Prove by areas that sin< h.

. The

(@) y=tanx

14 The slopes of cos and1 — %xz are —sinx and
dopes of sinc and are cosx and1 — %xz.

15 Chapterl10 gives an infinite series for sit:
. X x3 XS
sinx =—— + —
1 3.2.1 5.4.3.2-1
From the derivative find the series for cos Then take its
derivative to get back te-sinx.
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16 A centered differenctr f(x) =sinx is
fOx+h)—f(x—h) sin(x+h)—sin(x—h)

2h 2h

Usethe addition formula (2). Then lét— 0.

?

17 Repeat Problenh6 to find the slope of cos. Use formula (3) to
simplify cogx +h) —cos(x — h).
18 Find the tangent line tg =sinx at

@ x=0 (b) x=7m (c) x=n/4

19 Where doeg = sinx + cosx have zero slope ?

20 Find the derivative of sifx + 1) in two ways:

(a) Expand to sirx cos1+cosxsinl. Computedy /dx.
(b) Divide Ay =sin(x + 1+ Ax)—sin(x +1) by Ax. Write
X instead ofx 4 1. Let Ax go to zero.

21 Show that(tank)/h is squeezed betweehand 1/cosh. As
h — 0 the limitis

22 For y =sin2x, the ratioAy/h is

Sin2(x+h)—sin2x _ sin2x (cos2h —1) +cos2x sin2h
h N h '

Explain why the limitdy /dx is 2 cos2x.

23 Draw the graph ofy = sin %x. State its slope akt =0,7/2, 7,
and2/m. Does% sin x have the same slopes ?
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24 Draw the graph of = sinx ++/3 cosx. Its maximum value is
y= atx = . The slope at that point is .

25 By combining sint and cosx, find a combination that
starts atx =0 from y =2 with slope 1. This combination also
solvesy” =

26 True or false with reason:
(@) The derivative of sifw is cogx
(b) The derivative of cas-x) is sinx
(c) A positive function has a negative second derivative.
(d) If y"isincreasing then” is positive.
27 Find solutions taly /dx = sin3x anddy/dx = cos3x.

28 If y=sin5x then y’=5cos5x and y” =-25sin5x. So
this function satisfies the differential equatiph =

29 If h is measured in degrees, find Jimq (sink)/h. You could
set your calculator in degree mode.

30 Write down a ratio that approachesy/dx at x=mn. For
y =sinx andAx = .01 compute that ratio.

31 By the square rule, the derivative 6f(x))? is 2u du/dx. Take
the derivative of each term in i +cos x = 1.

32 Give an example of oscillation that does not come from physics.

Is it simple harmonic motion (one frequency only) ?

33 Explain the second derivative in your own words.
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B S The Product and Quotient and Power Rules

What are the derivatives af+ sin x and x sin x and1/ sinx andx/ sinx andsin” x ?
Those are made up from the familiar piecesind sinx, but we need new rules.
Fortunately they are rules that apply to every function, so they can be established
once and for all. If we know the separate derivatives of two functioasdv, then

the derivatives oft + v anduv and1/v andu /v andu” are immediately available.

This is a straightforward section, with those five rules to learn. It is also an
important section, containing most of the working tools of differential calculus. But |
am afraid that five rules and thirteen examples (which we need—the eyes glaze over
with formulas alone) make a long list. At least the easiest rule comes/fifgtn we

add functions,we add their derivatives

Sum Rule
du dv

d
Thederivative of the sumu(x) +v(x)is —(u+v) = —+ —.
dx dx dx

1)

EXAMPLE 1 The derivative ofx +sinx is 1+cosx. That is tremendously
simple, but it is fundamental. The interpretation for distances may be more

confusing (and more interesting) than the rule itself:

Suppose a train moves with velocityThe distance attimeisz. On the train a
professor paces back and forth (in simple harmonic motion). His distance from

his seat isin¢. Then the total distance from his starting point is sin¢, and

his velocity (train speed plus walking speed] i$- cosz.

If you add distances, you add velocities. Actually that example is ridiculous, because
the professor’'s maximum speed equals the train speel). He is running like mad,

not pacing. Occasionally he is standing still with respect to the ground.

The sum rule is a special case of a bigger rule calletbarity.” It applies when
we add or subtract functions and multiply them by constants—akcir 4 Sinx.
By linearity the derivative i —4 cosx. The rule works for all functiong(x) and
v(x). A linear combinations y(x) = au(x) + bv(x), wherea andb are any real

numbers. Thed\y/Ax is

au(x + Ax) +bv(x+ Ax) —au(x) —bv(x) _au(x+ Ax)—u(x) +bv(x-i—Ax) —v(x)

Ax Ax

Ax

Thelimit on the leftisdy /dx. The limit on the rightist du/dx + b dv/dx. We are

allowed to take limits separately and add. The result is what we hope for:

Rule of Linearity
du dv

d
The cerivative of au(x)+bv(x)is —(au+bv)=a—+b—.
dx dx dx

)

The product rule comes next. It can’t be so simple—products are not linear. The
sum rule is what you would have done anyway, but products give something new.
The derivative ofu timeswv is notdu/dx timesdv/dx. Example: The derivative
of x° is 5x*. Don’t multiply the derivatives ok > andx?. (3x? times2x is not5x*.)

For a product of two functions, the derivative has two terms
Product Rule(the key to this section)
dv du

d
The derivative of u(x)v(x) is E(M) = ua + UE.

®3)
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EXAMPLE 2 u = x3 timesv = x? is uv = x°. The product rule leads tox*:

d d
32 +x2—u =x3(2x) +x2(3x?) = 2x* + 3x* = 5x*.
dx dx

EXAMPLE 3 Inthe slope ofx sinx, | don’t writedx/dx = 1 but it's there:

d . .

—(xSinx) = xcosx +sinx.

dx
EXAMPLE 4 If u = sinx andv = sin x thenuv = sinfx. We get two equal terms:

.d . d . .
sinx—(sinx) 4+sinx—(sinx) =2 sinx CcoSx.
dx dx

This confirms the “square rul€u du/dx, whenu is the same as. Similarly the
slope ofcog x is —2 cosx sinx (minus sign from the slope of the cosine).

Question Those answers fa@ir?x and cosx have opposite signs, so the derivative
of sirfx 4+ cogx is zero (sum rule). How do you see that more quickly ?

EXAMPLE 5 The derivative oftvw is uvw’ + uv’w + u’vw—one derivative at a
time. The derivative ok xx is xx + xx + xx.

u(x + h)

u Au v Av Av ulAv Aulv E Av
i e S e T dawww=d
product ;
v(x) b vAu : v(x)
sumu+v Au+Av 4

u(.x) Au Au

Fig. 2.13 Change in length= Au + Av. Change in area=u Av+v Au+ Au Av.

After those examples we prove the product rule. Figure 2.13 explains it best. The
area of the big rectangle isv. The important changes in area are the two strips
u Av and v Au. The corner aredu Av is much smaller. When we divide b x,
the strips giveu Av/Ax andv Au/Ax. The corner givesAu Av/Ax, which ap-
proaches zero.

Notice how the sum rule is in one dimension and the product rule is in two
dimensions. The rule forvw would be in three dimensions.

The extra area comes from the whole top strip plus the side strip. By algebra,

u(x +hv(x+h) —u()v(x) =u(x +h)v(x+h) —v)]+v)ux +h) —u(x)].  (4)

This increase ist(x + 1) Av + v(x) Au—top plus sideNow divide byh (or Ax)
and leth — 0. The left side of equatiof®) becomes the derivative af(x)v(x). The
right side becomes(x) timesdv/dx—we can multiply the two limits-plusv(x)
timesdu/dx. That proves the product rule—definitely useful.

We could go immediately to the quotient rule iofx) /v(x). But start withu = 1.
The derivative ofl /x is —1/x? (known). What is the derivative df/v(x) ?

Reciprocal Rule

1 —dv/dx
The cerivative of is v/dx . 5)
v(x) v2
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The proof starts witl{v)(1/v) = 1. The derivative ofl is 0. Apply the product rule:
1 1 1 —
d (—) + Tdv_ 0 sothat di (—) = —dv/dx' (6)

vV— =
dx \v vdx x \v v2

It is worth checking the units—in the reciprocal rule and others. A test of
dimensions is automatic in science and engineering, and a good idea in
mathematics. The test ignores constants and plus or minus signs, but it prevents bad
errors. If v is in dollars andx is in hours,dv/dx is in dollars per hour Then
dimensions agree:

d (l) _ (1/dollarg

d and also —dv/dx _ dollarg/hour
dx \v

hour v2 (dollars}

From this test, the derivative df/v cannot bel / (dv/dx). A similar test shows that
Einstein’s formulae = mc? is dimensionally possible. The theory of relativity might
be correct! Both sides have the dimension of (mass)(distagahe)?, when mass
is converted to energy.

EXAMPLE 6 The derivatives ok —!,x =2, x " are—1x 2, —2x 3, —nx "1,
Those come from the reciprocal rule with= x andx? and anyx”:

d d (1 nx"1

L= (=) = =

dx dx \ x" (x™)

The beautiful thing is that this answernx ! fits into the same pattern ag'.
Multiply by the exponent and reduce it by one

For negative and positive exponents the derivativexdfis nx"~1.  (7)
Reciprocal —. 1__—Av i
1 P v+Av v v(v+Av) .
Quotient u+Au u_ vAu—ulAv
Av ¥ v+Av v v(v+Av) A 5

Fig. 2.14  Reciprocal rule from(—Av)/v2. Quotient rule from(vAu —uAv)/v2.

o 1 1 +sinx — COSx
EXAMPLE 7 The derivatives ot and — are al - .
COoSx sinx coSx Sintx

Those come directly from the reciprocal rule. In trigonometrycosx is thesecant
of the anglex, and1/sinx is thecosecanbf x. Now we have their derivatives:

d (s ) sinx 1 sinx e x tan ®)
- X — = = X X.

dx ' co$x COSx COSx

d COSx 1 cosx

—((cxcx) = — = —— - = —CSCx cotx. 9
dx( ) Sitx sinx sinx ©)

1 But only Einstein knew that the constantlis
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Those formulas are often seen in calculus. If you have a good nyethey are
worth storing. Like most mathematicians, | have to check them every time before
using them (maybe once a year). Itis really the rules that are basic, not the formulas.

The next rule applies to the quotientx)/v(x). That isu times1/v. Combining
the product rule and reciprocal rule gives something new and important;

Quotient Rule

u(x) is 1 du dv/dx vdu/dx—udv/dx
—-———1 = .

Thederivative of 5 5

v(x) vdx v v

You must menorize that last formula. The? is familiar. The rest is new, but
not very new. Ifv =1 the result isdu/dx (of course). Foru =1 we have the
reciprocal rule. Figure 2.14b shows the differewe- Au)/(v + Av) — (u/v). The
denominatow (v + Av) is responsible fov?.

EXAMPLE 8 (only practice) Ifu /v = x° /x3 (whichisx?) the quotient rule give&x:

2x.

x3 x6 x6

d x*\  x3G5xH)—x(3x?)  5x7—3x7
dx - N -

EXAMPLE 9 (important) Fom = sinx and v = cosx, the quotientisinx/ cosx =
tanx. The derivative otanx is se@x. Use the quotient rule areb$ x + sifx = 1 :

d (sinx) __cosx (cosx) —sinx(—sinx) 1 5

- = = X. 11
dx \ cosx coSx coSx Sy (11)

Again to memorize(tanx)’ = seéx. At x = 0, this slope is 1. The graphs sin x
andx andtanx all start with this slope (then they separate).»At /2 the sine
curve is flat(cosx = 0) and the tangent curve is vertiq@eéx = o0).

The slope generally blows up faster than the function. We dividedsx, once
for the tangent and twice for its slope. The slopé of is —1/x2. The slope is more
sensitive than the function, because of the square in the denominator.

EXAMPLE 10

dx
That one | hesitate to touch at= 0. Formally it become®/0. In reality it is more
like 03/02, and the true derivative is zero. Figure 2.10 showed graphicallysivat ) / x

is flat at the center point. The functionéven(symmetric across thg axis) so its
derivative can only be zero.

x2

d (sinx X COSx —Sinx
. = .

This section is full of rules, and | hope you will allow one more. It goes beyond
x" to (u(x))". A power ofx changes to a power af(x)—as in(sinx)® or (tanx)’
or (x2+1)3. The derivative containsu” ~! (copyingnx”~—1), butthere is an extra
factor du/dx. Watch that factor in6(sinx)>cosx and 7(tanx)®seéx and
8(x2+1)7(2x):
Power Rule
n—1 du

Thederivative of [u(x)]n is n[u(x)} I (12

For n =1 this reduces todu/dx =du/dx. For n =2 we get the square rule
2u du/dx. Next comesu3. The best approach is to useathematical induction
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which goes from each to the next powen + 1 by the product rule:

d 41 d du _,du du
= n — = (yh —n" n—1271 _ Du™ ==
I "™ I u"u)=u I +u (nu dx) (n+1u I

That is exactly equatio12)for the powen + 1. We get all positive powers this way,
going up fromn = 1—then the negative powers come from the reciprocal rule.

Figure 2.15 shows the power rule far=1,2,3. The cube makes the point
best. The three thin slabs areby u by Au. The change in volume is essentially
3u?Au. From multiplying out (u+ Au)3, the exact change in volume is
3u?Au +3u(Au)? + (Au)>—which also accounts for three narrow boxes and a
midget cube in the corner. This is the binomial formula in a picture.

/i /‘: 2] [ (Ati)"
R --: 2 1 cube
Rl it
ulu — (Au)? : & ; H I )
- n itk 3 bricks
2 uAu 3 .:4‘ 2 :. | i :-—_"_-’ 3 .
” " u“‘_, - = u® Au
T M 3 slabs
u Au u Au u Au

Fig. 2.15 Length change= Au; area change 2uAu; volume changex 3u? Au.

d . . .
EXAMPLE 11 Ix (sinx)" =n (sinx)"~! cosx. The extra factocosx isdu /dx.
X

Our last step finally escapes from a very undesirable restriction—+#thatist be
a whole number. We want to allow fractional powers= p/¢q, and keep the same
formula.The derivative ok” is still nx"~!.

To deal with square roots | can wrifg/x)? = x. Its derivative i21/x(1/x)’ = 1.
Therefore(4/x)" is 1/24/x, which fits the formulawhen = 1. Now try n = p/q:

Fractional powers Write u = x?/9 asu? = x?. Take derivatives, assuming they
exist:

d
qui! d_” = pxP~1  (power rule on both sides)
X

d -1

d_u oy i : (cancelx? with u?)
X qu—

du o

Ix =nx" (replacep/q by n and u by x")
X

EXAMPLE 12 The slope ofx!/3 is 1x~2/3. The slope is infinite at =0 and
zero atx = 00. But the curve in Figure 2.16 keeps climbing. It doesn’t stay below an
“asymptote.”
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1 - I slope 4/3
slope 1/3
121
zero =
infinite slope slope '
/. ) 1/161 / )
1/8 1 1/8 1

Fig. 2.16  Infinite slope ofx” veraus zero slope: the difference betwdean <1 andn > 1.

EXAMPLE 13  The slope ofc#/3 is 2x1/3. The slope is zero at = 0 and infinite at
x = o0. The graph climbs faster than a line and slower than a paraédkat(etween
1 and2). Its slope follows the cube root curve (timé};

WE STOP NOW! | am sorry there were so many rules. A computer can memorize
them all, but it doesn’t know what they mean and you do. Together with the chain rule
that dominates Chaptdt they achieve virtually all the derivatives ever computed by
mankind. We list them in one place for convenience.

Rule of Linearity  (au +bv) =au’+bv’
Product Rule (uv) = uv' +vu’
Reciprocal Rule (1/v) = —v'/v?
Quotient Rule (u/v) = (vu' —uv')/v?
Power Rule ™) =nu"tu'

The power rule applies whenis negative or afraction, or any real number. The
derivative ofx™ is 7x™ !, according to Chaptef. The derivative of(sinx)” is
. And the derivatives of all six trigopnometric functions are now established:
(sinx)’= cosx (tanx)' = seéx (secx)'= secxtanx
(cosx)'=—sinx (cotx)' = —cs@x (cscx)’'=—cscx cotx.

2.5 EXERCISES

Read-through questions

The derivatives of sinc cosx and 1/cosx and siny/cosx and Even simpler is the rule of __o , which applies
tarx come fromthe__a rule, _b rule,__c rule, and toau(x)+bv(x). The derivative is p . The slope oB3sinx +
_d  rule. The product of siw times cost has (uv)’ =uv’+ 4cosxis g .The derivative of(3 sinx +4 cosx)? is __r

= __f . The derivative ofl /v is g , so the slope of Thederivative of s is4sin® x cosx.

h . The derivative ofi /vis__i_, so the slope of tan

. The derivative of tafw is__k . The slope ofc” is__| Find the derivatives of the functions in 1-26

and the slope ofu(x))" is_m__. With n = —1 the derivative of
(cosx)~lis__n , which agrees with the rule for sec

1 (x+1D)(x—1) 2 (x24+DE2-1)
1 n 1 4 1 n 1
1+x I1+sinx 14+x2  1-—sinx
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5 (x—1)(x—2)(x—3) 6 (x—1)2(x—2)2
7 x2cosx +2xsinx 8 xl/z(x—{—sinx)

3 2 ;
g x°+1 cgs;c 10 x“4+1 sinx

x+1  sinx x2—1 cosx
11 x1/2sir?x + (sin x)1/2 12 x3/2sinPx 4 (sin x)3/2
13 x*cosx +xcostx 14 /x(Vx+1DH/X+2)
15 1x2sinx—x cosx +sinx 16 (x—6)10 +sinl0x
17 se@x —tartx 18 cs@x —cofx
19 4 . 4 20 sinx —cosx

(x—=35)2/3  (5—x)2/3 sinx +cosx
21 (sin x cosx)3 4sin 2x 22 X COSX CSCx
23 u(x)v(x)w(x)z(x) 24 [u(x)]? [p(x)]?

1 1 .

25 —— 26 x sinx 4 cosx

tanx cotx
27 A growing box has length width 1/(1 +¢), and height cos.

(&) What is the rate of change of the volume ?
(b) What is the rate of change of the surface area?

28
deiivative ofuvw is uvw’ +uv’w +u’vw. When a box with sides

With two applications of the product rule show that the
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33 Find thesecondderivative of the produciu(x)v(x). Find the
third derivative. Test your formulas an=v = x.

34 Find functionsy (x) whose derivatives are

(@ x3 (b) 1/x3 (¢) 1—x)*2 (d) coxsinx
35 Find the distanceg (¢), starting from f(0) = 0, to match these
velocities:

(@) v(t) =cost sint (b) v(r) =tansseés

() vt)=+1+t
36 Apply the quotient rule tau(x))3/(u(x))? and —v’/v2. The
latter gives the second derivative of .
37 Draw a figure like2.13 to explain thesquare rule
38 Give an example whereu(x)/v(x) Iis
du/dx =dv/dx =1.

increasing but

39 True or false with a good reason:

(@) The derivative of?” is 2nx2" 1,

(b) By linearity the derivative ofa(x)u(x)+b(x)v(x) is
a(x)du/dx+b(x)dv/dx.

(c) The derivative ofx|? is 3| x|2.

(d) tarfx and seéx have the same derivative.

(e) (uv) =u'v’istrue whenu(x) =1.

u,v,w grows by Au, Av, Aw, three slabs are added with volume

uv Aw and and

29 Find the velocity if the distance ig(r) =

512 for 1 <10, 500+ 100+t —10 for t > 10.

. . 13/2 _ 1
30 A cylinder has radius = m and heighth = e

(& Whatis the rate of change of its volume ?

40 The cost ofu shaes of stock av dollars per share igv dollars.
Check dimensions af (uv)/dt andu dv/dt andv du/dt.

41 If u(x)/v(x) is aratio of polynomials of degree, what are the
degrees for its derivative ?

42 Fory =5x43,is(dy/dx)? the same ag?y/dx??

43 If you change from f(z) =t cost to its tangent line at
t = /2, find the two-part functiorlf/dt.

(b) What is the rate of change of its surface area (including top

and base) ?

31 The height of a model rocket ig(r) =13/(1+1).
(&) Whatis the velocity(z) ?
(b) What is the acceleratiatw/dt ?

32 Apply the product rule ta:(x)u2(x) to find the power rule
for u3(x).

44 Explain in your own words why the derivative ofx)v(x) has
two terms.

45 A plane starts its descent from height= 1 atx = —L to land
at (0,0). Choosea,b,c,d so its landing pathy = ax3 +bx2 +
c¢x+d is smooth With dx/dt =V =constant, finddy/dt and
d?y/dt* at x=0 and x=—L. (To keep d?y/dt* small, a
coast-to-coast plane starts down> 100 miles from the airport.)
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I 2.6 Limits [

You have seen enough limits to be ready for a definition. It is true that we have

survived this far without one, and we could continue. But this seems a reasonable

time to define limits more carefully. The goal is to achieve rigor without rigor mortis.
First you should know that limits oAy /Ax are by no means the only limits in

mathematics. Here are five completely different examples. They inuohsexo, not

Ax —O0:

. ap=(m-—3)/(n+3) (forlargen, ignore the3’s and finda, — 1)
an=32a,_1+4 (startwith anyz; and always: — 8)

a, = probability of living to yeam (unfortunatelyu,, — 0)

. a, = fraction of zeros among the firstdigits of = (a, — 1—10 7)

ay =.4,a;=.49, a3 = .493, ... No matter what the remaining decimals are,
thea’s converge to a limitPossiblya,, — .493000 ..., but not likely.

N

The problem is to say what the limit symbol—  really means

A goad starting point is to ask about convergenceésa When does a sequence
of positive numbers approach zero? What does it mean to wyite>0? The
numbersi,a,,as, ..., must become “small,” but that is too vague. We will propose
four definitions ofconvergence to zer@nd | hope the right one will be clear.

1. All the numbersa, are below 1019, That may be enough for practical
purposes, but it certainly doesn’t make theapproach zero.

2.The sequence is getting closer to zesacha,, ; is smaller than the preceding
a,. Thistestis metbyt.1, 1.01, 1.001, ... which converges td instead oD.

3. For any small number you think of, at least one of i#és is smaller That
pushes something toward zero, but not necessarily the whole sequence. The condition
would be satisfied by, 1.1,1,1, . ..., which does not approach zero.

4. For any small number you think of, tlag’s eventually go below that number
andstay belowThis is the correct definition.

| want to repeat that. To test for convergence to zero, start wétimal number—
say 10710, Thea,’s must gobelow that number. They may come back up and go
below again—the first million terms make absolutely no difference. Neither do the
next billion, but eventually all terms must go beld—1°. After waiting longer
(possibly a lot longer), all terms drop belol®—2°. The tail end of the sequence
decides everything.

Question 1 Does the sequencel031072,107°,107>,107°,10°8, ...
approacio ?
Answer Yes, These up and down numbers eventually stay below. any

{J"

0 0

,<eifn>3 a, <eifn>6 non-convergence

Fig. 2.17 Convergence means: Only a finite numberf are outside any strip around L.
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Question 2 Does10~4,1076,10=4,10~8,10=4,10~19, ... approach zero ?
Answer No. This sequence goes belbW # but does not stay below.

There is a recognized symbol for “an arbitrarily small positive number.” By
worldwide agreement, it is the Greek lettetepsilor). Convergence to zero means
thatthe sequence eventually goes belevand stays thereThe smaller the,
the tougher the test and the longer we wait. Think afs the tolerance, and keep
reducing it.

To emphasize that comes from outside, Socrates can choose it. Whatewer
proposes, the’s must eventually be smalleffter somezy, all thea’s are below
the tolerances. Here is the exact statement:

for any ¢ there is anN such thata, <eif n > N.
Once you see that idea, the rest is easy. Figure 2.1N¥has3 andthen N = 6.

EXAMPLE 1 The sequencé. $. 3. ... starts upward but goes to zero. Notice that
1,4,9,...,100, ... are squares, ariti4,8, ..., 1024, ... are powers o2. Eventually

2" grows faster than?, as ina;o = 100/1024. The ratio goes below any

EXAMPLE 2 1,0, % 0, %,0, ... approacheszero. Thess do not decrease steadily
(the mathematical word for steadily is “monotonically”) but still their limit is zero.
The choices = 1/10 produces the right respondgeyondi,g; all terms are below
1/1000. SoN = 2001 for thate.

The sequencé, 1.2.1,1, 1 .. is much slower—but it also converges to zero.

Next we allow the numbets, to benegativeas well as positive. They can converge
upward toward zero, or they can come in from both sides. The test still requires the
a, to go inside any strip near zero (and stay there). But now the strip starts at

The distance from zero is the absolute valug|. Thereforea, — 0 means

|a,| — 0. The previous test can be applied|tn,|:

for any ¢ there is anN sud that |a,| < ¢if n > N.

EXAMPLE3 1,—1.1,—1 .. convergesto zero becaukel. 1,1, ... converges
to zero.

It is a short step to limits other than zefbhe limit is L if the numbersa, — L
converge to zeraOur final test applies to the absolute vajug — L|:

for any ¢ there is anN sud that |a, —L| <eif n > N.

This is the definition of convergence! Only a finite numbes sfare outside any strip
aroundL (Figure 2.18). We writer,, — L or lima, =L orlim,_,, a, = L.

L . 1 1 111
+ Sl — — e N T
& E @R - [ ) ™ 1 1 1 4.3 1 3 : 4 |5:6=7=8|
L—e =aioioioiooic . a,! ay! ay) ag)

““““““ 11 1111

° — pin

. l 1 14, 4,8888
N T ] T | DL

- 1 ) 2 2]

B 2 2

Fig. 2.18 a, —0 in Example 3;a, — 1 in Example 4;a, — o0 in Example 5 (but
an+1—an —0).
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EXAMPLE 4 The numbers, 2, I, ... converge tal = 1. After subtractingl the

differencesi, 1, 1. ... converge to zero. Those difference fwg — L|.

EXAMPLE 5 The sequencé, 1+3,1+3+1, 141 +1+4 1, ... fails to converge

The distance between terms is getting smaller. But those numbeds, as, aq, ...
go past any proposed limlt. The second term il;%. Thefourth term adds oé + %,

s0 a4 goes pasl. The eighth term has four new fractioss+ 1 +1 + 1 totaling
more thang + § + 5 + ¢ = 5. Thereforeas exceed2 3. Eight more terms will add

more than8 timesll—G, S0 aj¢ is beyond3. The lines in Figure 2.18c are infinitely
long, not stopping at ani.

In the language of Chaptel0, the harmonic serie$ + 1 + 1 + ... does not
convergeThe sum is infinite, because the “partial sumg’go beyond every limi.
(aso00 is pastL = 9). We will come back to infinite series, but this example makes a

subtle point: The steps between thgcan go to zero while stilk,, — co.

Thus the conditioru,,+1 —a, — 0 is not sufficient for convergence. However
this condition isnecessarylf we do have convergence, thep+; —a, — 0. That
is a good exercise in the logic of convergence, emphasizing the difference between
“sufficient” and “necessary.” We discuss this logic below, after proving that [statement
A] implies [statemeni]:

If [a, convergestd.]then[a,+1 —a, convergesto zeto (1)

Proof Because ther, conwerge, there is a numbe¥ beyond which|a, —L| <e
and alsola,+1 — L| < ¢. Sincea,+1 —ay, is the sum ofz, 11 — L and L —a,, its
absolute value cannot exceed ¢ = 2¢. Thereforen, +1 — a, approaches zero.
Objection by Socrate§Ve only got below2e and he asked far. Our reply: If he
particularly wantga, +1 —a, | < 1/10, we start withe = 1/20. Then2¢ = 1/10. But
this juggling is not necessary. To stay beis just as convincing as to stay belew

THE LOGIC OF “IF” AND “ONLY IF”

The following page is inserted to help with the language of matt&s In ordinary
language we might say “I will come if you call.” Or we might say “I will come only
if you call.” That is different! A mathematician might even say “I will confeand
only if you call.” Our goal is to think through the logic, because it is important and
not so familia;

Statementd above implies stateme®®. Statement4 is a, — L; statementB is
an+1—a, — 0. Mathematics has at least five ways of writing down= B, and
| though you might like to see them together. It seems excessive to have so many
expressions for the same idea, but authors get desperate for a little variety. Here are
the five ways that come to mind:

A= B
A implies B
if AthenB
A is a sufficient condition for B

B is trueif A is true

tLogical thinking is much more important tharand §.

125
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EXAMPLES If [positive numbers are decreasintijien [they converge to a limit].
If [sequences, andb, converge]then [the sequence, + b, converges].
If [f(x)istheintegral ofv(x)] then [v(x) is the derivative off (x)].

Those are all true, but not provedl.is the hypothesisB is the conclusion.

Now we go in the other direction. (It is called the “converse,” not the invele.)
exchanged and B. Of course stating the converse does not make it tRiahight
imply A, or it might not. In the first two examples the converse was false-athe
can converge without decreasing, angl+ b, can converge when the separate
sequences do not. The converse of the third statement is true—and there are five
more ways to state it:

A< B
A is implied by B
if B then A
A is a necessarycondition for B

B is trueonly if A is true

Those words “necessary” and “sufficient” are not always easy to master. The same
is true of the deceptively short phrase “if and only if.” The two statemdnts B and
A < B are completely different anthey both require proofThat means two sepa-
rate proofs. But they can be stated together for convenience (when both are true):

A< B
A implies B and B implies A
A is equivalentto B
A is a necessary and sufficientondition for B
Aistrue ifand only if B istrue

EXAMPLES [a, — L] © [2ay, —2L] © [an+1—>L+1] < [a,— L —0].

RULES FOR LIMITS

Calculus needs defnition of limits, to definedy /dx. That derivative contains two
limits: Ax — 0andAy/Ax — dy/dx. Calculus also needsles for limits to prove
the sum rule and product rule for derivatives. We started on the definition, and now
we start on the rules.

Given two convergent sequences, — L and b, — M, other sequences also
converge:

Addition: a, +b, - L+ M Subtraction:a, —b, > L—M

Multiplication: anb, — LM Division: a, /b, — L/M (providedM # 0)
We check the multiplication rule, which uses a convenient identity:
anby —LM = (a, —L)Y(by—M)+M(a,— L)+ L(b,—M). (2)

Supposda, — L| < & beyond some poin¥V, and|b, — M| < & beyond some other
point N’. Then beyond the larger @&f andN’, the right side of2) is small. Itis less
thane-e 4+ Me+ Le. This proves tha(2) givesa, b, — LM.

An important special case isa, — cL. (The sequence df's is c,c,c,c,...)
Thus a constant can be brought “outside” the limit, to dine ca, = ¢ lim a,.
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THE LIMIT OF f(x) AS x —>a

The final step is to replace sequences by functions. Instead,ab, ... there is a
continuum of valuesf(x). The limit is taken ast approaches a specified point
(instead ofn — c0). Example: Asx approachea = 0, the function f(x) = 4 — x?
approaches = 4. Asx approaches = 2, the functiorox approaches = 10. Those
statements are fairly obvious, but we have to say what they mean. Somehow it must
be this:

if x is close taz then f(x) is close tol.

If x —a is small, thenf(x) — L should be small. As before, the wosdchalldoes not
say everything. We really mean “arbitrarily small,” or “below any The difference
f(x) — L must becomas small as anyone wantshenx gets neau. In that case
limy_4 f(x)= L. Orwewrite f(x) > L asx —a.

The statement is awkward because it involves limits The limitx — a is forcing
f(x) — L. (Previouslyn — oo forceda — L.) But it is wrong to expect the same
in both limits. We do not and cannot require thet-a| < ¢ produces) f(x) — L| <
e. It may be necessary to push extremely close ta: (closer thare). We must
guarantee that if is close enough ta, then| f(x) — L| <e.

We have come to thegpsilon-delta definitiof of limits. First, Socrates chooses
¢. He has to be shown thaft(x) is within ¢ of L, for everyx neara. Then somebody
else (maybe Plato) replies with a numierThat gives the meaning of “near.”
Plato’s goal is to gejf'(x) within ¢ of L, by keepingx within § of a:

if 0<|x—a|<é then |f(x)—L|<e. (3)

The input tolerance i$ (delta), the output tolerance & When Plato can find &
for everye, Socrates concedes that the limitis

EXAMPLE Prove thatlim2 5x =10. Inthis caser =2 andL = 10.

X
Socrates asks f¢fx — 10| < ¢. Plato responds by requirig — 2| < §. What$ should
he choose ? In this caséx — 10| is exactly5 times|x —2|. So Plato picks$ below
/5 (a smaller§ is always OK). Whenevex — 2| < ¢/5, multiplication by5 shows
that|5x — 10| <e.

Remarkl In Figure 2.19, Socrates chooses the height of the box. It extends above
and belowL, by the small numbes. Second, Plato chooses the width. He must make
the box narrow enough for the graph togot the sides. Thehf(x) — L| <e.

fixy=>Lasx—a limit L is not f(a) f(x) = step function
fla)t ® —
Y o | ' | nolimitL
/ Lt o 1 s asy—a
/ | Y { :
st x — X —+ — X
a-8 a+d a a

Fig. 2.19 S chooses heighe, then P chooses width$. Graph must go out the sides.
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When f(x) hasa jump, the box can’t hold it. A step function has no limitas
approaches the jump, because the graph goes through the top or bottom—no matter
how thin the box.

Remark2 The second figure hag(x) — L, because in taking limitese ignore
the final pointx = a. The valuef'(a) can be anything, with no effect di. The first
figure has moref (a) equalsL. Then a special name applies—isfcontinuous. The
left figure shows a continuous function, the other figures do not.

We soon come back to continuous functions.

Remark3 Inthe example withf = 5x and§ = ¢/5, the numbe6 was theslope
That choice barely kept the graph in the box—it goes out the corners. A little narrower,
say§ =¢/10, and the graph goes safely out the sidésieasonable choice is to
divide ¢ by 2| f"(a)|. (We double the slope for safety.) | want to say why this
works—even if thee — § test is seldom used in practice.

Theratio of f(x) — L to x — a is distance up over distance across. This j§/ A x,
close to the slopg’(a). When the distance acrossdisthe distance up or down is
near§| f'(a)|. That equals/2 for our “reasonable choice” of—so we are safely
belowe. This choice solves most exercises. But Example 7 shows that a limit might
exist even when the slope is infinite.
EXAMPLE 7 Iim+ vVx—1=0 (aone-sided limi}

x—1

Notice the plus sign in the symbol— 17. The number approachea = 1 only
from aboveAn ordinary limitx — 1 requires us to accepton both sides ot (the
exact valuex = 1 is not considered). Since negative numbers are not allowed by the
square root, we haveane-sided limitltis L = 0.

Suppose is 1/10. Then the response could be= 1/100. A number belowl /100
has a square root beloly'10. In this case the box must be made extremely naréow,
much smaller tham, because the square root starts with infinite slope.

Those examples show the point of the- § definition. (Giveng, look for §. This
came from Cauchy in France, not Socrates in Greece.) We also see its bad feature: The
test is not convenient. Mathematicians do not go around prope&rand replying
with §’s. We may live a strange life, but not that strange.

It is easier to establish once and for all tttat approaches its obvious limit
5a. The same is true for other familiar functions” — 4" and sinx — sina
and (1—x)~!— (1 —a)~'—except ata =1. The correct limit L comes by
substitutingx = « into the function. This is exactly the property of a&bntinuous
function.” Before the section on continuous functions, we prove the Squeeze
Theorem using and$.

2H Squeeze Theorensuppose f(x) < g(x) < h(x) for x neara. If f(x)—
L andh(x) — L asx — a, then the limit ofg(x) is alsoL.

Proof g(x) issqueezed betweefi(x) and/(x). After subtractingL, g(x) — L is
betweenf(x) — L andh(x) — L. Therefore
lg(x)—L|<e if |f(x)—L|<e and |[h(x)—L|<e.

For anye, the last two inequalities hold in some regi@r< |x —a| < §. So the first
one also holds. This proves thatx) — L. Values atx = a are not involved—until
we get to continuous functions.
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2.6 EXERCISES

Read-through questions

The limit of a, = (sinn)/nis __a . The limit ofa, =n*/2" is *5 If the sequencer;,as,as,... approaches zero, prove that we
b .Thelimitofa, =(—1)"is__c . The meaning of, —0 can put those numbers in any order and the new sequence still
is: Only __d __ of the numberga,| can be__e . The meaning approaches zero.

of ap, > L is: Forevery f thereisan g suchthat h “6 Supposef(x)— L andg(x)— M asx —a. Prove from the

if n>_1 . The sequencd,l+3,1+3+3,...08 N0t _|  definitions thatf (x) + g(x) — L + M asx —a.
because eventually those sums go past .

The limit of f(x)=sinx as x —a is __| . The limit of Findthe limits 724 if they exist. Ane —§ testis not required.
fx)=x/|x] as x—> -2 is m_, but the limit asx —0

. . . S t+3 2
does not_n__. This function only has o  -sided limits. The 7 lim 2+ 3 lim 743
meaning of limy_,, f(x) = L is: For everye there is & such that 1212 . 12 1—2 |
| f(x)—L|<ewhenever p . 9 Of(x+ )—f(x) (careful) 10 h"m Sa+ 2—f(1)
x-’ —0
Two rules for limits, whera,, — L andb, — M, area, + b, — 2y tanx
) . i sirthcogh 12 i
q andayb, — __r . The corresponding rules for functions11 hToT S iy

when f(x) - L andg(x) > M asx—a,are__s and__t

In al limits, |a, — L| or | f(x)— L| must eventually go below and13 |im x| (one-sided) 14 lim x] (one-sided)
__u_ anypositive v . x—0F X x>0~ X
i sinx fe)— f(a)
A= B means thatt isa__w__condition for B. Then B is true 15 lim — 16 lim — —
X /.1|s true.Ac)B.means thaisa y condition forB. C x24925 o x2_25
ThenBistrue__z  Aistrue. 17 lim 18 lim
x—5 x—5 x—=5 x—5
i i imit L ? i i /1 -1 L
1 What |s1 aq and what is the limit L? After which N is 19 im +x (testx=.01) 20 lim X
lan — L| < 1 ? (Calculator allowed) x—0 X x—>24/6+x
1 _1 11,1 1,11 _ 2 i _
@ “lhode ) L i+Li+iel 21 lim [f()—f@](?) 22 lim (secr—tanx)
© 123 ap=n/ @ 1.1,1.11,21.111,... - sinx o sin(x — 1)
(e) an= \/ﬁ () an=vn*+n—n x—0Sinx/2 ol ay
1,2 1,3
@ 1+1L0+2)%0+3)... 25 Choose$ so that] f(x)| < o5 if 0 <x <8.

2 Show by example that these statements are false:
(@ Ifa,— Landb, — L thena,/b, —1

f(x)=10x f(x)=+vx f(x)=sin2x f(x)=xsinx

(b) an — Lifand only ifa2 — L? 26 Which does the definition of a limit require ?
(¢) Ifay, <0anda, — L thenL <0 1) |f(x)—Lj<e = 0<|x—a|<$.
(d) If infinitely many a,’s are inside every strip around zero(2) |f(x)—L|<e = 0<|x—a|<8.
thenay, — 0. @) |[f(x)—L|<e « 0<|x—a|<$.

3 Which of these statements are equivalenBte> A ? 27 The definition of “f(x) —> L as x — 0" is this: For any
(@) If Aistrue soisB ¢ there is anX such that <e¢ if x> X. Give an example
(b) Aistrueif and only ifB is true in which f(x) — 4 asx — o0.

(c) B is asufficient condition for 28 Give a correct definition of f(x) — 0 asx — —o0.”
(d) Afs anecessary condition fd 29 The limit of f(x)=(sinx)/x as x— o is . For

4 Decide whethed = B or B = A or neither or both: ¢ =01 find a pointX beyond which f(x)|<e.

(@ A=lan—1] B=[—an— —1] 30 The limit of f(x)=2x/(1+x) as x—o is L=2. For
() A=[an—0] B=[an—an_1—0] ¢ =01 find a pointX beyond whicH f(x) —2| <e.

() A=[an<n] B=]lan=n] 31 The limit of f(x)=sinx asx — oo does not exist. Explain
(d) A=[a,—0] B=]sina, —0] why not.

(e) A=lap —>0] B =][l/ay,failsto convergg . L 1\*

(f) A=[an<n] B =I[an/nconvergek 32 (Calculator) Estimate the limit c(l + ;) asx — .
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33 For the polynomialf (x) = 2x —5x2 +7x3 find
@ lim f(x) (b) lim f(x)

() o fx)
(© [lim =3 (d  fim =3
34 For f(x)=6x3+1000x find
@ lim /&) (©) lim f(f)
X—>0 X X—>0 X
o fx) f(x)
(© x“_f:]/v‘x—4 (d) Rl M

Important rule As x — oo the ratio of polynomialsf(x)/g(x)
has the same Ilimit as the ratio of theieading terms
fx)=x3—x+2 has leading term  x3 and
g(x)=5x+x+1 has leading term 5x°  Therefore
f(x)/g(x) behaves likex3/5x® -0, g(x)/f(x) behaves like
5x%/x3 > w, (f(x))?/g(x) behaves likex®/5x% — 1/5.

35 Find the limit asx — oo if it exists:

3x2+2x +1 x4 x2 41000 1
34+2x+x2  x34x2  x3-1000

36 If a particular§ acheves|f(x)—L|<eg, why is it OK to
choose a smallet?

37 The sum of l+r+r2+... 41 is g, =(1—-r")/
(1—r). What is the limit ofa, asn—o00? For whichr does
the limit exist ?

38 If ay — L prove that there is a numbe¥ with this property:

2 Derivatives

39 No matter what decimals come latet; =.4,a, = .49,
a3 =.493,... approaches a limiL.. How do we know (when we
can't know L) ? Cauchy’s tests passed: the’s get closer to each
other.

(a) Fromay4 onwards we havér, —ap | <
(b) After whichay is |am —an| <10772

40 Choose decimals in Proble®d so the limitis L = .494. Choose
decimals so that your professor can't fihd

41 If every decimal in.abcde--- is picked at random from
0,1,...,9, what is the “average” limif. ?

42 If every decimal isO or 1 (at random), what is the average
limit L ?

43 Supposei, = %an,l +4 and start fronu; = 10. Find a» and
a3 and a connection between, —8 and a,_1 —8. Deduce that
an — 8.

44 “For every § there is ane such that|f(x)|<e if |x|<$.”
That test is twisted around. Firdwhen f(x) = cosx, which does
not converge to zero.

45 Prove the Squeeze Theorem for sequences, usitigz, — L
andc, — L anday, < b, <c, forn > N, thenb,, — L.

46 Explain in110 words the difference between “we will get there

If n >N andm > N then|a, —am| <2e. This is Cauchy’s test for if you hurry” and “we will get there only if you hurry” and “we will

convergence.

get there if and only if you hurry.”
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I 2.7 Continuous Functions |

This will be a brief section. It was originally included with limits, but the
combination was too long. We are still concerned with the limitfafx) asx — «,
but a new number is involved. That numberfi¢a), the value off at x =a. For a
“limit,” x approached but never reached it—sf(a) was ignored. For a “continuous
function,” this final numberf (a) must be right.

May | summarize the usual (good) situationaapproaches ?

1. The numberf(a) exists (f is defined atz)
2. The limit of f(x) exists (it was called.)
3. Thelimit L equalsf(a) (f(a) is the right value)

In such a casef (x) iscontinuousat x = a. These requirements are often written in
a single line:f(x) — f(a) asx — a. By way of contrast, start with four functions
that arenot continuous at = 0.

Fig. 2.20  Four types of discontinuity (others are possible)at 0.

In Figure 2.20, the first function would be continuous if it hgd0) = 0. But
it has f(0) = 1. After changing f(0) to the right value, the problem is gone. The
discontinuity isremovable Examples2, 3,4 are more important and more serious.
There is no “correct” value foy (0):

2. f(x) = step function  (jump frond to 1 atx =0)
3. f(x)=1/x? (infinite limit asx — 0)
4. f(x)=sin(1/x) (infinite oscillation asc — 0).

The graphs show how the limit fails to exist. The step function hasirap
discontinuity. It hasone-sided limits from the left and right. It does not have an
ordinary (two-sided) limit. The limit from the leftd— 07) is 0. The limit from the
right (x — 07) is 1. Another step function is/|x|, which jumps from—1 to 1.

In the graph ofl /x2, the only reasonable limit i& = + co. | cannot go on record
as saying that this limit exists. Officially, it doesn’t—but we often write it anyway:
1/x% — o0 asx — 0. This means thalt/x? goes (and stays) above evénasx — 0.

In the same unofficial way we write one-sided limits f6¢x) = 1/x:

1 . 1
From the left, im — = —oo. From the right, lim — = 4-o0. (1)
x—0— X x—0t+t X

Remark 1/x has a pole’ at x =0. So hasl/x? (a double pole). The function
1/(x?—x) has poles at =0 andx = 1. In each case the denominator goes to zero
and the function goes té-0o or —oo. Similarly 1/ sinx has a pole at every multiple
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of = (wheresinx is zero). Except fot /x? these poles aresimplé—the functions
are completely smooth at= 0 when we multiply them by:

1 1 1 1
(x) (_) =1 and (x)( 5 ) = and (x) (—) are continuous atx = 0.
b X% —x x—1 sinx

1/x? has a double pole, since it needs multiplicationddy(not justx). A ratio of
polynomialsP (x)/ Q(x) has poles wher@® = 0, provided any common factors like
(x+1)/(x + 1) are removed first.

Jumps and poles are the most basic discontinuities, but others can occur. The
fourth graph shows thatin(1/x) has no limit asc — 0. This function does not blow
up; the sine never exceedlsAt x = 1 and 1 and 5 it equalssin3 andsin4 and
sin 1000. Those numbers are positive and negative and (? x gsts small and /x
gets large, the sine oscillates faster and faster. Its graph won't stay in a small box of
heighte, no matter how narrow the box.

CONTINUOUS FUNCTIONS

DEFINITION  f is “continuous atx =a"if f(a) is defined andf(x) — f(a)

asx —a. If f is continuous at every point where it is defined, it is@tinuous
function.

Objection The definition makesf(x) = 1/x a continuous function! It is not de-
fined atx = 0, so its continuity can’t fail. The logic requires us to accept this, but we
don't have to like it. Certainly there is n#(0) that would makel /x continuous at
x=0.

It is amazing but true that the definition of “continuous function” is still debated
(Mathematics TeacherMay 1989). You see the reason—we speak about a
discontinuity ofl /x, and at the same time call it a continuous function. The definition
misses the difference betweéyix and(sinx)/x. The functionf(x) = (sinx)/x
can be made continuous at all Just setf(0) = 1.

We call a function tontinuabl€ if its definition can be extendetb all x in a
way that makes it continuous. Th(gin x)/x and/x are continuable. The functions
1/x andtanx are not continuable. This suggestion may not end the debate, but | hope
it is helpful.

EXAMPLE 1 sinx andcosx and all polynomialsP (x) are continuous functions.

EXAMPLE 2 The absolute value|x| is continuous. Its slope jumps (not
continuable).

EXAMPLE 3 Any rational function P(x)/Q(x) is continuous except where
0=0.

EXAMPLE 4  The function that jumps betwedmat fractions and at non-fractions
is discontinuous everywher& here is a fraction between every pair of non-fractions
and vice versa. (Somehow there are many more non-fractions.)

EXAMPLE 5 The function0*” is zeo for everyx, except thad® is not defined.
So define it as zero and this function is continuous. But see the next paragraph where
0° has to bel.
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We could fill the book with proofs of continuity, but usually théusition is clear.
“A function is continuous if you can draw its graph without lifjrup your pen.”
At a jump, or an infinite limit, or an infinite oscillation, there mo way across the
discontinuity except to start again on the other side. The functibis continuous
for n > 0. It is not continuable fom < 0. The functionx® equalsl for every x,
except that® is not defined. This time continuity requir@® = 1.

The interesting examples are the close ones—we have seen two of them:

sinx 1 —cosx )
EXAMPLE6 —— and ———— areboth continuable at =0.
X X
Those were crucial for the slope sfnx. The first approache$ and the second
approached). Strictly speaking we must give these functions the correct values
(1 and0) at the limiting pointx = 0—which of course we do.

It is important to know what happens when the denominators change to

sinx 1 —cos
EXAMPLE 7 ——— blows up but ————

; OS% hasthe limit = atx = 0.
X X 2
Since(sinx)/x approaches, dividing by anothex gives a function like /x. There
is a simple pole. It is an example 6f0, in which the zero fronx? is reached more
quickly than the zero fromsin x. The “race to zer® produces almost all interesting
problems about limits.

For 1 —cosx andx? the race is almost even. Their ratioligo 2:

1 —cosx 1 —cogx sinfx 1 1
= = . — as x—0.
x2 x2(1+ cosx) x2 14cosx 1+1
This answer% will be found again (more easily) by “I'Hdpital’s rule.” Here |

emphasize not the answer but the problem. A central question of differential
calculus isto know how fast the limit is approachebhe speed of approach is
exactly the information in the derivative

These three examples are all continuous &t 0. The race is controlled by the
slope—becausg(x) — f(0) is nearly £ (0) timesx:

derivative ofsinx is1 <« sinx decreases like

derivative ofsi’x is0 <  sin’x decreases faster than

1/3 1/3

derivative ofx*/?isoc0 < x'/° decreases more slowly than

DIFFERENTIABLE FUNCTIONS

The absolute valux| is continuous at = 0 but has no derivative. The same is true
for x'/3. Asking for a derivative is more than asking for continuityrhe reason
is fundamental, and carries us back to the key definitions:

Continuousatx  f(x+ Ax)— f(x)—0asAx —0

S+ A~ f()
Ax

Derivativeat x:

f'(x)asAx —0.
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2 Derivatives

In the first caseA f goes to zero (maybe slowly). In the second cad¢, goes to
zeroas fast asA x (because\ f/Ax has a limit). That requirement is stronger:

2| At a point wheref(x) has a derivative, the function must be continuqus.
But f(x) can be continuous with no derivative.

Proof The limit of A f = (Ax)(Af/Ax) is (0)(df/dx) =0. So f(x + Ax)—
f(x)—0.

The continuous function!/® has no derivative at = 0, because; x~2/3 blows
up. The absolute valuer| has no derivative because its slope jumps. The remarkable
function % cos3x + i cos9x + - -- is continuous a&ll pointsand has a derivative at
no points You can draw its graph without lifting your pen (but not easily—it turns
at every point). To most people, it belongs with space-filling curves and
unmeasurable areas—in a box of curiosities. Fractals used to go into the same box!
They are beautiful shapes, with boundaries that have no tangents. The theory of
fractals is very alive, for good mathematical reasons, and we touch on it in
Section3.7.

I hope you have a clear idea of these basic definitions of calculus:

1 Limit (n - o0 or x »a) 2 Continuity (atx =a) 3 Derivative(atx = a).

Those go back te andé, but it is seldom necessary to follow them so far. In the same
way that economics describes many transactions, or history describes many events,
a function comes from many valuggx). A few points may be special, like market
crashes or wars or discontinuities. At other poidf§/dx is the best guide to the
function.

This chapter ends with two essential facts al@oontinuous function on a closed
interval. The interval ist < x < b, written simply as{, b]. T At the endpoints and
b we requiref(x) to approachf(a) and f(b).

Extreme Value Property A continuous function on the finite intervit, b] has a
maximum valueM and a minimum value:. There are pointsmax andxmin in [a, b]
where it reaches those values:

S(xma) =M = f(x) = f(xmin) =m for all x in [a,b].

Intermediate Value Property If the numberF is beween f(a) and f (), there is
a pointc betweern andb where f(c) = F. Thus if F is between the minimum
and the maximund/ , there is a point betweenxmin andxmax Where f(c¢) = F.

Examples show why we require closed intervals and continuous functions. For
0 < x < 1 the functionf(x) = x never reaches its minimum (zero). If we close the
interval by defining f(0) = 3 (discontinuous) the minimum is still not reached.
Because of the jump, the intermediate valtie= 2 is also not reached. The idea of
continuity was inescapable, after Cauchy defined the idea of a limit.

1 The intervalla, b] is closed(endpoints included). The interval (a, b)apen(a andb left
out). The infinite interval [0g0) contains allx > 0.
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2.7 EXERCISES

Read-through questions
Continuity requires the__a  of f(x) to exist asx »a and (sinx —x)/x¢ x#0 2. 2
) — ) : = 2 = ;

to agree with__b . The reason thatk/|x| is not continuous f(x) 0 =0 0 Sl =l"+c7]
atx=01is __c . This function does have d  limits. The

reason that1/cosx is discontinuous at_e is _f . The construct your own f(x) with these discontinuities at
reason that co6l/x) is discontinuous att=0is g . The ,_{

function f(x)=__h has a simple pole at =3, where 2 has
a__i_pole.

21 Removable discontinuity

The power x" is continuous at allx providedn is | . It 22 Infinite oscillation
has no derivative atr =0 whenn is __k . f(x)=sin(—x)/x 23 Limitfor x — 17, no limit for x — 1~
approaches__ | as x—0, so this is a__m __ function
provided we definef(0)=__n . A “continuous function” must ) )
be continuous at all__o . A “continuable function” can be 25 x'l[TIL f(x)=4+x|_IT+ S(x)
extended to every point sothat p

24 A double pole

. . . 26 lim f(x)=oobut lim (x —1) f(x)=0
If f has a derivative atr =a then f is necessarily q x—1 x—>1
at x=a. The derivative controls the speed at whicfi(x) 27 Iim (x—1)f(x)=5

x—1 ’

approaches _r . On a closed intervald],b], a continuous f
has the__s  value property and the t value property. It 28 The statement3x — 7 asx — 1” is false. Choose anfor which

reachesits _u M andits__ v __m, and it takes on every valueno § can be found. The statemergx‘— 3 asx — 1" is true. For

wo. e =1 choose a suitablé.
H H / " H
In Problems 1-20, find the numbersc that make f(x) into f29 ':,OW omany derivatives f*, f".... are continuable
unctions 7

(A) a continuous function and (B) a differentiable function. In
one casef(x) — f(a) at every point, in the other caseA f/Ax (@) f=x32 (b) f=x3Zsinx (c) f=(sinx)>/2
has a limit at every point.

30 Find one-sided limits at points where there is no two-sided limi

1 fx) = {sinx x <1 2 fx)= {cos3x x#m Give a3-part formula for function (c).
xz1 r=r (@) |x| (b) sin|x| © di|x2—1|
X
3 f(x)_{ cx x<0 4 flx )_{ v<l 31 Let f(1)=1 and f(=)=1 and f(x)=(x2—x)/(x2—1)
2ex x20 x=1 otherwise. Decide whethef is continuous at
c+x x <0 X#c (@ x=1 (o) x=0 (€) x=-1
5 f(x)={ ST e w= { f
T Xz r=c #32 Let f(x)=x2sinl/x for x#0 and £(0)=0. If the limits
ox Y <c . exist, find
7 fl)= 8 fln)= l b) df/dx atx=0 lim
x+1 xze 0 (@ lm /() (B dffdvatx=0 (O Im f'()
(sinx)/x2 x#0 x+c¢ x<c 33 If f(0)=0 and f/(0)=3, rank these functions from
9 fl)= c x=0 10 = x>c smallest to largest asdecreases to zero:
. £ X <0 f(), x xf(X), fO+2x, 2(f(x)—x), (f(x)*
11 f(x)= 3 12 f(x)=
1/x = x=0 34 Create a discontinuous functiopf(x) for which f2(x) is
2 21 continuous.
13 f(x)=< x—1 x#1 14 f(x)= X#¢ 35 True or false with an example to illustrate:
2 x=1 (@ If f(x) is continuous at allx, it has a maximum
value M.
15 f(x)= {(tanx)/x x#0 16 f(x)—{ xse (b) If f(x)<7forall x,then f reaches its maximum.
¢ x=0 2x x>c (c) If £(1)=1and f(2) = —2, then somewherg (x) = 0.
+¢0S 0 (d) If f(1)=1andf(2)=-2and f is continuous orl,2],
17 f(x):{(c o N/ ifo 18 f(x)=|x+¢] then somewhere on that interva(x) = 0.
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36 The functions cos and 2x are continuous. Show from the40 Explain the difference between a continuous function and
property that cos = 2x at some point betweedand1. a caitinuable function. Are continuous functions always

continuable ?
37 Show by example that these statements are false:

] ) ) . 41 f(x) is any continuous function withf(0) = f(1).
(a) If a function reaches its maximum and minimum then the (a) Draw atypicalf (x). Mark where f(x) = /(x + L)
function is continuous. yp : J(xX)= 2)-

~ _ 1
(b) If f(x) reaches its maximum and minimum and all (® Explainwhyg(x)= f(x+3)—f(x)has

values betweerf (0) and f(1), it is continuous at = 0. g(3)=—¢g(0).
(c) (mostly for instructors) If f(x) has the intermediate  (C) Deduce from (b) that (a) is always FiOSSIb“:“i Therestbe
value property between all points and b, it must be a point whereg(x) =0 and f(x) = f(x + 3).
continuous. 42 Create anf(x) that is continuous only at = 0.
38 Explain with words and a graph why'(x) =xsin(1/x) is 43 If f(x)is continuous and < f(x) <1 for all x, then there is a
continuous but has no derivative.at= 0. Set 1(0) = 0. point where f (x*) = x*. Explain with a graph and prove with the

39 Which of these functions amdrtinuable and why ? intermediate value theorem.

44 In the ¢—§ definition of a limit, change0 < |x —a|<§ to
sinx x<0 sinl/x x<0 _ i i —4”
) :{ fz(x)={ / |x —a| < 8. Why is f(x) now continuousatx = a =

cosx x>1 cosl/x  x>1 45 A function has a at x=0 if and only if

f3(x) = ﬁ whensinx £0  f4(x) =x0+0% (f(x)=f(O)/xis ____ atx=0.



CHAPTER 3

Applications of the Derivative

Chapter 2 concentrated on computing derivatives. This chaptecentrates onsing

them. Our computations producéd /dx for functions built fromx” andsin x and

cosx. Knowing the slope, and if necessary also the second derivative, we can answer
the questions aboyt= f(x) that this subject was created for:

1. How doesy change whenr changes?
2. What is the maximum value gf? Or the minimum?
3. How can you tell a maximum from a minimum, using derivatives?

The information indy/dx is entirely local. It tells what is happening close to
the point and nowhere else. In Chapter’2y and Ay went to zero. Now we want
to get them back. The local information explains the larger pictoeeauseAy is
approximatelydy /dx timesAx.

The problem is to connect the finite to the infinitesimal—the average slope to the
instantaneous slope. Those slopes are close, and occasionally they are equal. Points
of equality are assured by the Mean Value Theorem—which is the local-global
connection at the center of differential calculus. But we cannot predietredy /dx
equalsAy/Ax. Therefore we now find other ways to recover a function from its
derivatives—or to estimate distance from velocity and acceleration.

It may seem surprising that we learn abgurom dy /dx. All our work has been
going the other way! We struggled withto squeeze outy /dx. Now we usely /dx
to studyy. That's life. Perhaps it really is life, to understand one generation from later
generations.

137
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I 3.1 Linear Approximation |

The book started with a straight liné = v¢. The distance is linear when the velocity
is constant. As soon asbegins to changef’ = vt falls apart. Which velocity do we
choose, whemw(z) is not constant? The solution is to take very short time intervals,
in which v is nearly constant:
f=vt is completely false

Af =vAt isnearly true

df =vdt isexactly true
For a brief moment the functiofi(¢) is linear—and stays near its tangent line.

In Section 2.3 we found the tangent lineyc= f(x). At x = a, the slope of the

curve and the slope of the line ay€(a). For points on the line, start at= f(a).
Add the slope times the “increment™—a:

Y = fla)+ f(@)(x —a). (1)

We write a capitall’ for the line and a smaly for the curve. The whole point of
tangents is that they are clogarovided we don’t move too far from:

yrY or  f(x)x fla)+ f(a)(x—a). )

Thatis the all-purposdinear approximation Figure 3.1 shows the square root
function y = 4/x and its tangent line at = a = 100. At the pointy = 1/100 = 10,
the slope isl /24/x = 1/20. The table beside the figure compapesc) with Y (x).

y

1 Y=10+"% _2(']00 x Y y=ix
15 y=Vx 100 10 10
—102 10.1 10.0995
197 110 105 10.49
;|7 Y12 =101 200 15 14.1
' 1i‘3 400 25 20

+ + + + X
100 200 300 400
Fig. 3.1  Y(x) isthe linear approximation t¢/x nearx = a = 100.

The accuracy gets worse asdeparts froml00. The tangent line leaves the curve.
The arrow points to a good approximationlé2, and atl 01 it would be even better.
In this exampleY is larger thany—the straight line is above the curve. The slope
of the line stays constant, and the slope of the curve is decreasing. Such a curve will
soon be called “concave downward,” and its tangent lines are above it.

Look again atx = 102, where the approximation is good. In Chapter 2, when we
were approachindy/dx, we started witPAy /A x:

v/ 102 —+/100

| X . 3
SIOPe~ 02— 100 3)
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Now that is turned around! The slopelig20. What we don’t know isy/102:
4/102 ~ 4/100 + (slope) 102 — 100). (4)

You work with what you have. Earlier we didn’t knadw /dx, so we used3). Now
we are experts afy /dx, and we usd4). After computingy’ = 1/20 once and for
all, the tangent line stays negfx for every number neat00. When that nearby
number isl00 + Ax, notice the error as the approximation is squared:

1 2 1
V1004 —A =100+ Ax +—(Ax)?.
( +20 x) + x—|—400( X)

The desired answer K00 + Ax, and we are off by the last term involvirigh x)2.
The whole point of linear approximation is to ignore every term after

There is nothing magic abowt= 100, except that it has a nice square root. Other
points and other functions allow ~ Y. | would like to express this same idea in
different symbolslnstead of starting froma and going tax, we start fromx and go
a distanceAx to x + Ax. The letters are different but the mathematics is identical.

3A At any pointx, andfor any smooth functiory = f(x),

f+8%) = f(x)

slope atx ~ (5)
AXx
For the approximation tgf (x + Ax), multiply both sides byA x and addf (x):
f(x+ Ax) =~ f(x)+ (slope atr)(Ax). (6)

EXAMPLE 1  Animportant linear approximation (1 4+ x)" ~ 1+ nx for x near zero.

EXAMPLE 2 A second important approximationl /(1 + x)" ~ 1 —nx for x near zero.

Discussion Those are really the same. By changimgo —n in Example 1, it
becomes Example 2. These are linear approximations using the sioped —n»
atx =0:

(14+x)" ~ 1+ (slope at zerptimes(x —0) = 1 +nx.
Here is the same thing witlfi(x) = x". The basepoint in equatid®) is now1 or x:

(1+Ax)"~1+nAx (x+Ax)" ~x"+nx""1Ax.
Better than that, here are numbers. Fot 3 and—1 and100, takeAx = .01:
1 1\ 100
1.01)°~1.03 —=~.99 1+— X2
(1.o1) 1.01 ( + 100)

Actually that last number is no good. ThE)Oth power is too much. Linear

approximation give$ 4+ 100A x = 2, but a calculator give€l.01)1°° =2.7.. .. This

is close tae, the all-important number in Chapter 6. The binomial formula shows why

the approximation failed:

(100)(99)
@)

Linear approximation forgets thgh x)? term. ForAx = 1/100 that error is nearly

%. It is too big to overlook. The exact error-z}t{Ax)zf”(c), where the Mean Value
Theorem in Section 3.8 placedbetweenx andx + Ax. You already see the point:

y —Y is of order(Ax)2. Linear approximation, quadratic error.

(14+Ax)1°=14100Ax + (Ax)2+---.

139



140

y+Ay T
y+dy+

3 Applications of the Derivative

DIFFERENTIALS

There is one more notation for this linear approximation. It labe presented,
because it is often used. The notation is suggestive and confusing at the same time—it
keeps the same symboléx and dy that appear in the derivative. Earlier we
took great pains to emphasize thét/dx is not an ordinary fractiom.Until this
paragraph,dx and dy have had no independent meaning. Now they become
separate variables, likeandy but with their own names. These quantitiesanddy

are calledlifferentials.

The symbols/x anddy measure chang@dong the tangent lineThey do for the
approximationY (x) exactly whatAx and Ay did for y(x). Thusdx and Ax both
measure distance across.

Figure 3.2 hasAx = dx. But the change iry does not equal the change Ih
One isAy (exact for the function). The other i&y (exact for the tangent lineJhe
differential dy is equal toAY, the change along the tangent linéVhereAy is
the true changely is its linear approximatiofdy /dx)dx.

You often seely written asf’(x)dx.

Ay =change iny (dlong curve)

dy =change int (along tangent)

Fig. 3.2 The linear approximation tay is
2 dy = f'(x)dx.

x=a x+dx=x+Ax

EXAMPLE 3y =x? hasdy/dx =2x sody =2xdx. The table has basepoint
x = 2. The predictiondy differs from the trueAy by exactly(Ax)? = .01 and.04
and.09.

dx dy Ax Ay
y =x2 1 04 1 041 Ay=Q2+Ax)?2-22
dy = 4dx 2 08 2 084 Ay=4Ax+(Ax)?
3 1.2 3 1.29

The dfferential dy = f'(x)dx is consistent with the derivativdy /dx = f”'(x).
We finally havedy = (dy/dx)dx, but this is not as obvious as it seems! It looks like
cancellation—it is really a definition. Entirely new symbols could be used{band
dy have two advantages: They suggest small steps and they satisfyf’(x)dx.
Here are three examples and three rules:

d(x™)=nx""ldx d(f+g)=df +dg
d(sinx)=cosxdx d(cf)=cdf
d(tanx) =seéx dx d(fg)=fdg+gdf

Science and engineering and virtually all applications of mathematics depend on
linear approximation. The true function ibrfearized” using its slopev:

1 Fraction or not, it is absolutely forbidden to cancel itHe
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Increasing the time bz increases the distance byvAt
Increasing the force b f* increases the deflection by vA f
Increasing the production b p increases its value by vAp.

The goal of dynamics or statics or economics is to predict this multipkethe
derivative that equals the slope of the tangent line. The multiplier givexcal
predictionof the change in the function. The exact law is nonlinear—but Ohm’s law
and Hooke’s law and Newton’s law are linear approximations.

ABSOLUTE CHANGE, RELATIVE CHANGE, PERCENTAGE CHANGE

The change\y or A f can be measured in three ways. So dar

Absolute change Af Ax
A Ax

Relative change —f —
S (x) x
Af Ax

x 100 — x 100

Percentage change —
98 Ehange 7 x

Relative change is often more realistic than absolute change. kihow the distance
to the moon within three miles, that is more impressive than knowing our own height
within one inch. Absolutely, one inch is closer than three miles. Relatively, three miles
is much closer:

3 miles linch

— < — or .001% < 1.4%.
300,000 miles  70inches

EXAMPLE 4  The radius of the Earth is withi®0 miles ofr = 4,000 miles.
(a) Find the variatio@ V' in the volumel = %nr3, using linear approximation.
(b) Compute the relative variations/r andd V/V andAV/ V.

Solution  The job of calculus is to produce the derivative. Aftd¥/dr = 4 r?,
its work is done. The variation in volume sV = 47(4000)2(80) cubic miles. A
2% relative variation inr gives a6% relative variation inV:

dr 80 dV  47(4000)2(80)
r 4000 V. 47(4000)3/3

Without calculus we need the exact volume at 4000 4 80 (also atr = 3920):

AV 47(4080)3/3 — 47(4000)3/3

~6.1%
% 471(4000)3/3 ’

One comment ol V = 4xr?dr. This is (area of sphere) times (change in radius).
It is the volume of a thin shell around the sphere. The shell is added when the radius
grows bydr. The exacAV/V is 3917312 /640000%, but calculus just calls 6%.
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3 Applications of the Derivative

3.1 EXERCISES

Read-through questions

On the graph, a linear approximation is given by thea
line. At x =a, the equation for that line i¥ = f(e)+ __ b .

Near x=a=10, the linear approximation toy=x3 s
Y =10004+__c . At x =11 the exact value ig11)3=__d
The approximation isY =__e . In this caseAy=__f and
dy= g . If we know sinx, then to estimate sifix + Ax) we
add__h

In terms of x and Ax, linear approximation is
f(x+Ax)~ f(x)+__i_. The error is of order(Ax)? or
(x —a)? with p= | . The differentialdy equals__k times

the differential__1 . Those movements are along them _line,
where Ay is along the__n

Find the linear approximation Y to y = f(x) nearx =a:

1 fx)=x+x*a=0 2 f(x)=1/x,a=2

3 f(x)=tanx,a=m/4 4 f(x)=sinx,a=mn/2

6 f(x)=sirx,a=0

5 f(x)=xsinx,a=2n

Compute 7-12 within .01 by deciding on f(x), choosing the
basepointa, and evaluating f(a)+ f/(a)(x —a). A calculator
shows the error.

7 (2.001)° 8 sin(.02)
9 c09.03) 10 (15.99)1/4
11 1/.98 12 sin(3.14)

Calculate the numerical error in these linear approximations
and compare withl (Ax)? £ (x):

13 (1.01)3 &~ 1+3(.01)
15 (sin.01)2 2 040(.01)

1 10
17 (1 + w)

14 c0g.01) =~ 1+0(.01)
16 (1.01)73a1-3(.01)

~2 18 v/8.99~3+ L(-.01)

Confirm the approximations 19-21 by computingf”(0):
19 \/l—le—%x
20 1//1—x2~ 1+ 3x2 (use f = 1/v/1—u, then putu = x2)

1 2

21 Ve 4x zc—{-ix— (use  f(u)=+/c2+u, then put
c

u=x?)

22 Write down the differentialsdf for f(x)=cosx and
(x+1)/(x—1) and(x2+1)2.

In 23-27 find the linear changedV in the volume or dA in the
surface area

23 dV if the sides of a cube change frorfi to 10.1.
24 dAif the sides of a cube change framo x + dx.
25 dA if the radius of a sphere changes &y

26 dV if a circular cylinder withr =2 changes height from3
t03.05 (recall V = r2h).

27 dV if a cylinder of height3 changes fronv =2tor =1.9.
Extra credit: What isd V if r andh both changedr anddh)?

28 In relativity the mass isng/+/1—(v/c)? at velocity v. By
Problem 20 this is nearmg + for small v. Show that
the kinetic energy%mv2 and the change in mass satisfy
Einstein’s equatiom = (Am)c2.

29 Enter 1.1 on your calculator. Press the square root key
times (slowly). What happens each time to the number after the dec-
imal point? This is becaus¢1 + x ~

30 InProblem29 thenumbers you see are less thas, 1.025, ... .
The second derivative af 1 + x is so the linear approxima-
tion is higher than the curve.

31 Enter 0.9 on your calculator and press the square root
key 4 times. Predict what will appear the fifth time and press
again. You now have the root of 0.9. How many decimals
agree withl — 55 (0.1)?
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I .2 Maximum and Minimum Problems |

Our goal is to learn abouf(x) from df/dx. We begin with two quick questions.
If df/dx is positive, what does that say abgf{i? If the slope is negative, how is that
reflected in the function? Then the third question is the critical one:

How do you identify anaximumor minimum?
Normal answer: The slope is zero

This may be the most important application of calculus, to regchix = 0.

Take the easy questions first. Suppade/ dx is positivefor every x between
a andb. All tangent lines slope upwar@he functionf (x) is increasingasx goes
froma to b.

3B If df/dx >0 then f(x) is increasing If df/dx <0 then f(x)
is decreasing

To define increasing and decreasing, look at any two pointsX. “Increasing”
requiresf(x) < f(X). “Decreasing” requireg (x) > f(X). A positive slope does
not mean a positive functionThe function itself can be positive or negative.

EXAMPLE 1 f(x) = x2 —2x has slop&x — 2. This slope is positive when > 1
and negative whew < 1. The function increases aftar=1 and decreases before
x=1.

f(x)

[

Fig. 3.3 Slopes are- +. Slope is+ —+ — 4+ so f is up-down-up-down-up.

We say that without computing'(x) at any point! The parabola in Figure 3.3 goes
down to its minimum ak = 1 and up again.

EXAMPLE 2 x2—2x+5 has the same slope. Its graph is shifted up3bya
number that disappears wf/dx. All functions with slope2x —2 are parabolas
x2 —2x +C, shifted up or down according . Some parabolas cross tlveaxis
(those crossings are solutionsf¢x) = 0). Other parabolas stay above the axis. The
solutions tox? —2x +5 =0 are complex numbers and we don’t see them. The
special parabola? —2x +1 = (x — 1)? grazes the axis at = 1. It has a “double
zero,” wheref(x) =df/dx =0.
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3 Applications of the Derivative

EXAMPLE 3 Supposedf/dx=(x—1)(x—2)(x —3)(x —4). This slope is
positive beyondx =4 and up tox =1 (df/dx =24 at x=0). And df/dx is
positive again betwee@ and 3. At x =1,2,3,4, this slope is zero and(x)
changes direction.

Here f(x) is a fifth-degree polynomial, becaugé(x) is fourth-degree. The graph
of f goes up-down-up-down-up. It might cross thexis five timeslt must cross
at least oncédlike this one). When complex numbers are allowed, every fifth-degree
polynomial has five roots.

You may feel that positive slope implies increasing functiosiobvious—perhaps
it is. But there is still something delicate. Starting fraffi/dx > 0 at everysingle
point, we have to deducé(X)> f(x) atpairs of points. That is a “local to global”
question, to be handled by the Mean Value Theorem. It could also wait for the
Fundamental Theorem of Calculughe difference f(X) — f(x) equals the area
under the graph ofdf/dx. That area is positive, s6(X) exceedsf'(x).

MAXIMA AND MINIMA

Which x makes f(x) as large as possible? Where is the smallgst)? Without
calculus we are reduced to computing valueg ¢f) and comparing. With calculus,
the informationis indf/dx.

Suppose the maximum or minimum is at a particular paintt is possible that
the graph has a corner—and no derivatBat if df /dx exists, it must be zerdhe
tangentline is level. The parabolas in Figure 3.3 change from decreasing to increasing.
The slope changes from negative to positive. At this crucial gbiatslope is zero

3C Local Maximum or Minimum Suppose the maximum or minimu
occurs at a point inside an interval wher¢f (x) anddf/dx are defined. The

F'(x) =0.

The word ‘1ocal” alows the possibility that in other intervalg,(x) goes higher or
lower.We only look neax, and we use the definition aff /dx.

Start with f(x + Ax) — f(x). If f(x) is the maximum, this difference is negative
or zero. The steph x can be forward or backward:

Ax)— i
if Ax>0: JWFAD-SX) _negatve i thelimit Y <o,
Ax positive dx
Ax)— i d
it Ax <0: JOHAN S _negatve o dinthelimit < >0,

Ax ~ negative dx

Both arguments apply. Both conclusiafg/dx < 0anddf/dx > 0 are correct. Thus
df/dx=0.

Maybe Richard Feynman said it best. He showed his friends a plastic curve that
was made in a special way-rt matter how you turn it, the tangent at the lowest
point is horizontal” They checked it out. It was true.

Surely You're Joking, Mr. Feynmanis a good book (but rough on
mathematicians).

EXAMPLE 3 (continued) Look back at Figure 3.3b. The points that stand out
are not the “ups” or “downs” but the “turns.” Those astationary points where
df/dx =0. We see two maxima and two minima. None of them are absolute
maxima or minima, becausg(x) starts at-co and ends at-co.
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Tfx) = 4x3 - 324

3.2 Maximum and Minimum Problems

EXAMPLE 4  f(x) =4x3—3x* has slopel2x? — 12x3. That derivative is zero
whenx? equalsx3, at the two pointsc = 0 andx = 1. To decide between minimum
and maximum (local or absolute), the first step is to evalydte at thesestationary
points We find f(0) =0and f(1) = 1.

Now look at largex. The function goes down te-co in both directions.You can
mentally substitute = 1000 andx = —1000). For largex, —3x* dominatestx>.

Conclusion f =1 is an absolute maximury. = 0 is not a maximum or minimum
(local or absolute). We have to recognize this exceptional possibility, that a curve (or a
car) can pause for an instafyt’ = 0) and continue in the same direction. The reason

is the “double zero” inl2x2 — 12x3, from its double factox?.

L) W | =

absolute max

end
point

local max

| [ . - s :
minat1+1=2, - f(x) = Ix| il

point

W)=t

rough point 2

N
b e
(¥

T
~

3

[ 3 3

1/3 1

Fig. 3.4 The graphs ofix3 —3x* andx +x 1. Check rough points and endpoints.

EXAMPLE 5 Define f(x) = x + x~! for x > 0. Its derivativel — 1/x? is zero at
x = 1. At that point f(1) =2 is the minimum value. Every combination Ii@—i— 3
or 2 + 2 islarger thanfmin = 2. Figure 3.4 shows thahe maximum of +x~! is
+o00.F

Important The maximum always occurs aséationary point(wheredf/dx = 0)

or arough point (no derivative) or arendpointof the domain. These are the three
types ofcritical points. All maxima and minima occur at critical points! At every
other pointdf/dx >0 or df /dx < 0. Here is the procedure:

1. Solvedf/dx = 0 to find the stationary pointg(x).

2. Compute f(x) at every critical point—stationary point, rough point,
endpoint

3. Take the maximum and minimum of those critical valuesf@f).

EXAMPLE 6 (Absolute valuef(x) = |x|) The minimum is zero at a rough point.
The maximum is at an endpoint. There are no stationary points.

The derivative ofy = |x| is never zero. Figure 3.4 shows the maximum and
minimum on the interval—3, 2]. This is typical of piecewise linear functions.

Question Could the minimum be zero when the function never reaghieg = 0?
Answer Yes f(x) = 1/(1 4+ x)? approaches but never reaches zerg as 0.

1A good word isapproachwhen f(x) — co. Infinity is not reached. But | still say “the
maximum isoo.”
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3 Applications of the Derivative

Remarkl x — 400 and f(x) — +oo are avoided wherf is continuous on a
closed intervala < x <b. Then f(x) reaches its maximum and its minimum
(Extreme Value TheoréuBut x — oo and f(x) — oo are too important to rule out.
You testx — oo by considering larger. You recognizef(x) — oo by going above
every finite value.

Remark2 Note the difference between critigabints(specified byx) and critical
values(specified byf(x)). The example: + x~! had the minimunpointx = 1 and
the minimumvalue f (1) = 2.

MAXIMUM AND MINIMUM IN APPLICATIONS

To find a maximum or minimum, solv¢’(x) = 0. The slope is zero at the top and
bottom of the graph. The idea is clear—and then check rough points and endpoints.
But to be honest, that is not where the problem starts.

In a real application, the first step (often the hardest) is to choose the unknown
andfind the functionlt is we ourselves who decide onand f(x). The equation
df/dx =0 comes in the middle of the problem, not at the beginning. | will start on a
new example, with a question instead of a function.

EXAMPLE 7 Where should you get onto an expressway for minimum driving,time
if the expressway speed6® mph and ordinary driving speed3® mph?

I know this problem well—it comes up every morning. The Mass Pike goes to MIT
and | have to join it somewhere. There is an entrance near R@8tand another
entrance further in. | used to take the second one, now | take the first. Mathematics
should decide which is faster—some mornings | think they are maxima.

Most models are simplified, to focus on the key idea. We will allow the expressway
to be entered a&ny pointx (Figure 3.5). Instead of two entrances (a discrete problem)
we have a continuous choice (a calculus problem). The trip has two parts, at speeds
30 and60:

a distance/a? + x2 up to the expressway, ifa? + x2/30 hours
a distancé — x on the expressway, ib — x) /60 hours

1 1
Problem Minimize f(x) = total time= 0 /a?+x2+ @(b —X).

We have the functiorf'(x). Now comes calculus. The first term uses the power rule:
The derivative ofi'/2 is 3u=1/2du/dx. Hereu = a® + x2 hasdu/dx = 2x:

11
302
To solve f'(x) = 0, multiply by 60 and square both sides:

F10) = 355 430 0 - = )

(@>+x>)V202x)=1 gives 2x=(a?+x»)V? and 4x2=a>+x%. (2)
Thus 3x2 = a2. This yields two candidates; =a/+/3 and x = —a/+/3. But a

negative x would mean useless driving on the expressway. In féicts not zero
atx = —a/\/g. That false root entered when we squa2ed
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MIT e driving time f(x) driving time f(x)
when b>a;’\q whcnb«caiﬁ
b-x
f** ‘5\.__// f“* )ﬂ““ 'P\'—.'/
}'21&*
enter r's-c
freeway
X

alN'3 b »

Fig. 3.5 Join the freeway at—minimize the driving timef (x).

| notice something surprising. The stationary point a/\/§ does not depend on
b. The total time includes the constdnt60, which disappeared idf /dx. Somehow
b must enter the answer, and this is a warning to go carefully. The minimum might
occur at a rough point or an endpoint. Those are the other critical poinfts ahd
our drawing may not be realistic. Certainly we expect b, or we are entering the
expressway beyond MIT.

Continue with calculus. Compute the driving timg(x) for an entrance at

x*=a/+/3:

)=l s

1 1 a
— — /a2 2 —(p_-= —
S (x) 30 V4 +(a /3)+60 (b <0 +60

V3
The square root ofa2 /3 is2a/+/3. We combine /30 — 1/60 = 3/60and divided
by 1/3. Is this stationary valuef * a minimum? You must look also andpoints

enter atx = 0: travel timeisa/30+b/60 = f**
enter atx = b: travel time isv/a? + b2 /30 = f***,

The comparisory * < f** should be automatic. Entering.at= 0 was a candidate
and calculus didn’t choose it. The derivative is not zera &t 0. It is not smart to
go perpendicular to the expressway.

The second comparison has=b. We drive directly to MIT at spee@0. This
option has to be taken seriously. In fact it is optimal wihera small ora is large.

This choicex = b can arise mathematically in two ways. If all entrances are
between) andb, thenb is anendpoint If we can enter beyond MIT, theh is a
rough point The graph in Figure 3.5¢ has a cornewat b, where the derivative
jumps. The reason is that distance on the expressway abbelute valug¢h — x|—
never negative.

Either wayx = b is a critical point.The optimal x is the smaller ofa/+/3
andb.

if a/+/3 <b: stationary point wins, enter at=a/+/3, total time f*
if a/+/3 = b no stationary point, drive directly to MIT, timg ***

The heart of this subject is in “word problems.” All the calculus is in a few lines,
computingf’ and solvingf’(x) = 0. The formulation took longer. Step usually
does:

1. Express the quantity to be minimized or maximized as a funcif@n).
The variablex has to be selected
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3 Applications of the Derivative

2. Computef”’(x), solve f’(x) = 0, check critical points forfmin and fmax-
A picture of the problem (and the graph ¢fx)) makes all the difference.

EXAMPLE 7 (continued) Choosex as anangle instead of a distance. Figure 3.6

shows the triangle with angle and sidez. The driving distance to the expressway

is a secx. The distance on the expresswayis- a tanx. Dividing by the speed30

ando60, the driving time has a nice form:

asecx b—atanx
+ .

'(x) =total time= 3
f(x) = total = ®
The derivatives ofsecx andtanx go intodf/dx:
d
—f= 2 sex tany — —se?x. 4)
dx 30 60
Now setdf/dx = 0, divide bya, and multiply by30co< x:
sinx =1 5)

3
This answer is beautiful. The angle is 30°! That optimal angle /6 radians)
hassinx = % The triangle with sidez and hypotenuse/\/§ is a30—60-90 right
triangle.

I don’t know whether you prefes/a? + x2 or trigonometry. The minimum is
exactly as before—either &0° or going directly to MIT.

& 12000
o
o ° 26001  [rcome
b—la tan x 5 | 8500 +
. -~ jo energy
2 L. & . = Cost
o 10 ek xd
enter | 2
a Sec x = o
e | ) Profit
) =] N adeil iz JOW
energy — mx / 10 20 30

Fig. 3.6  (a) Driving at anglex. (b) Energies of spring and mass. (c) Prefiincome— cost.

EXAMPLE 8 In mechanicshatue chooses minimum energy spring is pulled
down by a mass, the energy i§(x), anddf/dx =0 gives equilibrium. It is a
philosophical question why so many laws of physics involve minimum energy or
minimum time—which makes the mathematics easy.

The energy has two terms—for the spring and the mass. The spring energy is
%kxz—positive in stretching £ > 0 is downward) and also positive in compression
(x <0). The potential energy of the mass is taken-asx—decreasing as the mass
goes down. The balance is at the minimunygf) = %kx2 —mx.

| apologize for giving you such a small problem, but it makes a crucial point.
Whenf'(x) is quadratic, the equilibrium equatiafif /dx = 0 is linear.

df/dx =kx—m=0.

Graphically,x =m/k is at the bottom of the parabola. Physicalkyy =m is a
balance of forces—the spring force against the weiblatoke’s lawfor the spring
force is elastic constaittimes displacement.
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EXAMPLE 9 Derivative of cost= margnal cost (our first management
example).

The paper to printc copies of this book might cost’ = 1000 + 3x dollars. The
derivative isd C /dx = 3. This is themarginal cosbf paper for each additional book.
If x increases by one book, the c@tincreases b$3. The marginal cost is like the
velocity and the total cost is like the distance.

Marginal cost is in dollars per book. Total cost is in dollar©n the plus
side, the income ig(x) and the marginal income 6/ /dx. To apply calculus, we
overlook the restriction to whole numbers.

Suppose the number of books increases dwy.t The cost goes up by
(dC/dx)dx. The income goes up b/ I /dx) dx. If we skip all other costs, then
profit P(x) = incomel(x)— costC(x). In most case® increases to a maximum
and falls back.

At the high point on the profit curvéhe marginal profit is zero

dP/dx=0 or dl/dx=dC/dx. (6)

Profit is maximized when marginal incomé’ equals marginal cosC’.

This basic rule of economics comes directly from calculus, angivwean example:

C(x)=cost of x advertisements: 900 + 400x — x?
setup cost 900, print cogd0x, volume savings:2
I(x)=income due toc advertisements: 600x — 6x?

sales600 per advertisement, subtragt? for diminishing returns

optimal decisioniC/dx =dI/dx or 400—2x=600—12x or x=20
profit = income-cost= 9600 — 8500 = 1100.

The next section shows how to verify that this profit is a maximutranminimum.
The first exercises ask you to solv&f/dx =0. Later exercises also look

for f(x).

3.2 EXERCISES

Read-through questions

If df/dx >0 in an interval thenf(x) is __a . If a maximum The minimum Of%axz—bx is_ | atx=_m
or minimum occurs atx then f/(x)=__b . Points where
f'(x)=0 are called__c__ points. The functionf(x) =3x2—x Find the stationary points and rough points and endpoints.
has a (minimum)(maximum) at=__d . A stationary point that Decide whether each point is a local or absolute minimum or
is not a maximum or minimum occurs fof(x)=__e . maximum.
1 f(x)=x2+4x+5-0<x<w

Extreme values can also occur wheref is not defined 3
orathe g of the domain. The minima ofx| and 5x for 2 J(x)=x"—12x,—00 <x <o
—2<x<2 are at x=__h and x=_1i , even though 3 f(x)=x2+3,—-1<x<4
df/dx is not zero. x* is an absolute j when

f(x*) = f(x) for all x. A Kk minimum occurs when

4 f(x)=x24+@2/x),1<x<4

f(x*) < f(x) for all x nearx*. 5 f(x)=(x—x?)% -1<x<1

tMaybedx is a differential calculus book. | apologize for that.



150

© 00 N o

10
11
12
13
14
15
16
17
18
19
20
21
22

f)=1/(x—x2),0<x<1
f(x)=3x*+8x3—18x2, —0<x <©
f(x)={x2—4x foro<x<1,x2—4for1<x <2}
F)=vVx—T+v/9—x,1<x<9
f(x)=x+sinx,0<x<2x

f(x)=x31—x)% —0<x<w
f(x)=x/(1+x),0<x <100

f(x) = distance fromx > 0 to nearest whole number
f(x) = distance fromx >0 to nearest prime number
fx)=|x+1|+|x—1|,-3<x<2
f(x)=xV1-x2,0<x<1
f)=x12—x320<x<4
f(x)=sinx+cosx,0<x <27
f(x)=x+sinx,0<x <27

f(0) =coshsing, —r <O

f(#)=4sinf —3c0s6,0<6 <2x
fO)={x2+1forx <1,x%2—4x+5forx>1}.

In applied problems, choose metric units if you prefer

23

24 If a patient's pulse measure®), then 80, then 120, what
least squares value  minimizes (x —70)2 + (x —80)2 +
(x —120)27? If the patient got nervous, assiga0 a lower weight

The airlines accept a box if lengthwidth+ height=

I[+w+h<62" or 158 cm. If h is fixed show that the
maximum volume(62 —w —h)wh is V =h(31—1h)2. Choose
h to maximizeV. The box with greatest volume is a .

and minimize(x —70) + (x —80)% + X (x — 120)2.

25 At speedwv, a tuck usesav+ (b/v) gallons of fuel per
mile. How many miles per gallon at spee@ Minimize the fuel
consumption. Maximize the number of miles per gallon.

26

A limousine gets (120—2v)/5 miles per gallon.

chauffeur costs B/hour, the gas costsl$gallon

27 You should shoot a basketball at the andle requring
minimum speed. Avoid line drives and rainbows. Shooting

from (0,00 with the basket at (a,b), minimize

(@) Find the cost per mile at speed
(b) Find the cheapest driving speed.

f(6) =1/(asind cosd —bcogh).

The same angle allows the largest margin of err@pdrts
Scienceéby Peter Brancazio). Section 12.2 gives the flight path.

(@ If b=0 you are level with the basket. Show that

0 = 45° is best (Jabbar sky hook).

(b) Reducelf/d6 =0totan26 = —a/b. Solve wher: = b.

(c) Estimate the best angle for a free throw.

3 Applications of the Derivative

28 On the longest and shortest days, in June and December, why
does the length of day change the least?

29 Find the shortesty connecting P,Q, and B in the figure.
Originally B was a birdfeeder. The length ofy is
L(x)=(b—x)+2Va?+x2.

(8 Choosex to minimize L(not allowingx > b).

(b) Show that the center of thehas120°angles.

(c) The best becomes & whena/b =

c, C =1 +x2
cost
2

1 income

3
R=3x—x-

30 If the distance function isf(r) = (1+3t)/(143t2), when
does the forward motion end? How far have you traveled?
Extra credit: Graphf' () anddf /dt.

In 31-34 we make and sell x pizzas The income is
R(x) = ax +bx? and the cost isC(x) = ¢ +dx +ex?2.

31 The profit is II(x)= . The average profit per
pizza is = . The marginal profit per additional pizza
is dll/dx = . We should maximize the (profit)(average

profit)(marginal profit).

32 We receive R(x) =ax+bx? when the price per pizza is
p(x)= . In reverse: When the price jswesellx =
pizzas (a function op). We expecth <0 because .

33 Findx to maximize the profifl(x). At thatx the marginal profit
isdIl/dx =

34 Figure B showsR(x)=3x—x2 and C;(x)=1+x2 and
C(x) =24 x2. With costCy, which salesc makes a profit? Which
x makes the most profit? With higher fixed cosiip, the best plan

The cookie box and popcorn box were created by Kay Dundas
from a 12" x 12" square A box with no top is a calculus classic

h,%

12-x




3.2 Maximum and Minimum Problems 151

35 Choosex to find the maximum volume of the cookie box.  *50 A wall 8 feet high isl foot from a house. Find the length of
- the shortest ladder over the wall to the house. Draw a triangle with
36 Choosex to maximize the volume of the popcorn box. :
heighty, basel + x, and hypotenusé.
37 A high-class chocolate box adds a strip of widthdown
across the front of the cookie box. Find the new voluriéx)
and the x that maximizes it. Extra credit: Show thdfnax is
reduced by more thaz0%. 52 Draw a kite that has a triangle with siddsl,2x next to
38 For a box with no top, cut four squares of sigefrom the a trllan.gle \,Nlth sides2x,2,2. ,Fmd, the areaZA agd the x ;hat
corners of thei2” square. Fold up the sides so the height.iMax- MaXimizes itHint: In dA/dx simplify \/1—x2 —x%//1—x* to

2
imize the volume. (1=2x%)//1—x2.

51 Find the closed cylinder of volum& = = r2h = 167 that has
the least surface area.

Geometry provides many problems, more applied than they |n 53-56 x and y are nonnegative numbers withx + y = 10.
seem Maximize and minimize:

39 A wire four feet long is cut in two pieces. One piece form
a circle of radiusr, the other forms a square of side Choose
r to minimize the sum of their areas. Then chooseto 57 Find the total distancef(x) from 4 to X to C. Show that
maximize. df/dx =0 leads to sim =sinc. Light reflects at an equal angle
to minimize travel time.

53 Xy 54 x24y2 55 y—(1/x) 56 sinxsiny

40 A fixed wall makes one side of a rectangle. We hag®
feet of fence for the other three sides. Maximize the adem 4
steps: q A

1 Draw a picture of the situation. C
2 Select one unknown quantity agbut notA!). . e e ;_ e
3 Find all other quantities in terms af & R

4 SolvedA/dx =0 and check endpoints. ofe ey sox

X X §=X X X ‘,.
41 With no fixed wall, the sides of the rectangle satisf reflection refraction % 9
2x 4+2y =200. Maximize the area. Compare with the area c 3

a circle using the same fencing. B

42 Add200 meters of fence to an existing straiglib—meter fence,

to make a rectangle of maximum area (invented by Professor Kleg). Fermat'’s principle says that light travels fromto B on the
43 How large a rectangle fits into the triangle with Sideguickest path. Its velocity above theaxis isv and below ther axis
x=0,y =0, and x/4+ y/6 = 1? Find the point on this third side'> "

that maximizes the areay. (@) Find the timeT(x) from A to X to B. On AX,
time = distancgvelocity= v/r2 + x2/v.

(b) Find the equation for the minimizing.

(c) Deducesnell’'s law(sina)/v = (sinb)/w.

44 The largest rectangle in Probled3 may not sit straight
up. Put one side along/4 + y/6 = 1 and maximize the area.

45 The distance around the rectangle in ProbletA is
P =2x+2y. Substitute fory to find P(x). Which rectangle has

= ’) . . .
Pmax= 12 “Closest point problems” are models for many applications

46 Find the .rlght circular cylinder of largest volume that fits in 89 Where is the parabola= x2 closest tox =0, y = 2?
sptere of radiusl.

i ingg =5— ?
47 How large a cylinder fits in a cone that has base radtus 60 Where is the ling = 5 —2x closest td0,0)
and reight H? For the cylinder, chooseand/ on the sloping sur- 61 What point on y=—x? is closest to what point on
facer/R+h/H =1 to maximize the volum@& = nr2h. y =5—2x7? At the nearest points, the graphs have the same slope.

Sketch th hs.
48 The cylinder in Problem47 has side area A=2nrh. eichthe graphs

Maximize A instead ofV. 62 Where is y=x? closest to (0,%)? Minimizing

2 _1y2_ 12 5
49 Including top and bottom, the cylinder has area X7+ (y—3)"=y+(—3)" givesy <0. What went wrong?

63 Draw the liney =mx pasing near(2,3),(1,1), and(—1,1).
A=2rrh+2rr? =2rxrH(1—(r/R)) + 277>, For a least squares fit, minimize

Maximize A when H > R. Maximize A whenR > H. B=2m)?+(1—m)?+(1+m)>.
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64 A triangle has corners <1,1),(x,x2), and (3,9) on the Now x is fixed. The maximum o2+ xy — y2 (a function of
parabola y = x2. Find its maximum area forx between—1 y)is M(x)= . Find the minimum of\/ (x).
and 3. Hint: The distance from(X,Y) to the liney =mx+5b is

|Y —mX —b|/vV1+m2.

65 Submarines are located af2,0) and (1,1). Choose the 0 y=x-+2x2sin(l/x) has slopel at x =0. But show thaty

slope m so the liney =mx goes between the submarines but . . . - .
. IS not increasing on ainterval aroundx =0, by finding points
stays as far as possible from the nearest one.

wheredy/dx =1—2 coq1/x) +4x sin(1/x) is negative.

69 For eachm the minimum value of f(x)—mx occurs at
x =m.Whatis f(x)?

71 True or false with a reason: Between two local minima of a
smooth functionf(x) there is a local maximum.

66 To find where the graph of(x) has greatest slope, solve . . . .
_For y = 1/(1+x2) this point is ’ 72 Create a functiory(x) that has its maximum at a rough point

and its minimum at an endpoint.

Problems 66—72 go back to the theory

67 When the difference betweefi(x) and g(x) is smallest, their
slopes are . Show this point on the graphs ¢f= 2+ x? and
g=2x—x2.

73 Draw a circular pool with a lifeguard on one side and
a downer on the opposite side. The lifeguard swims with
velocity v and runs around the rest of the pool with velocity
68 Supposey is fixed. The minimum ofc2 +xy —y? (a function w = 10v. If the swim direction is at angled with the direct
of x)ism(y) = . Find the maximum ofn(y). line, choos& to minimize and maximize the arrival time.
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I +5+cos.x tangent above 4 2
"< y=x%-2x*

3.3 Second Derivatives: Bending and Acceleration

When f’(x) is positive, f(x) is increasing. Whenly/dx is negative,y(x) is
decreasing. That is clear, but what about$keeondderivative? From looking at the
curve, can you decide the sign ¢f'(x) or d?y/dx?? The answer igesand the key
is in thebending

A straight line doesn’t bend. The slopeypf= mx + b ism(a constant). The second

derivative is zero. We have to go to curves, to see a changing slope. Changes in the

derivative show up irf” (x):
f=x?hasf’=2x and f" = 2 (this parabola bendsp)
y =sinx hasdy/dx = cosx andd?y/dx? = —sinx (the sine benddown)

The slopex ges largereven when the parabola is fallinghe sign of f or /' is
not revealed byf”. The second derivative tells abathiange in slope

A function with f”(x) > 0 is concave uplt bends upward as the slope increases.
Itis also callecconvexA function with decreasing slope—this meafié(x) < 0—is
concave downNote howcosx andl + cosx and evenl + %x + cosx change from
concave down to concave up.at= /2. At that point f” = — cosx changes from
negative to positive. The extiat %x tilts the graph but the bending is the same.

f=0 tangent
crosses

Fig. 3.7 Increasing slope= conave up( f” > 0). Concave down ig"” < 0. Inflection pointf” =0

Here is another way to see the sign 6f. Watch the tangent linesVhen the

curve is concave up, the tangent stays below it. A linear approximation is too low.

This section computes quadratic approximation—which includes the term with
f”>0. When the curve bends dowif” < 0), the opposite happens—the tangent
lines are above the curve. The linear approximation is too high fanidwers it.

In physical motion, ”(t) is the acceleratior—in units of distancg(time)?.
Acceleration is rate of change of velocity. The oscillat&in2¢ hasv = 2c0s2t¢
(maximum spee@) anda = —4sin2¢ (maximum acceleratio#).

An increasing population meang’ > 0. An increasing growth rate means
f" > 0. Those are different. The rate can slow down while the growth continues.

MAXIMUM VS. MINIMUM

Remember thajf’(x) =0 locates a stationary point. That may bemanimumor
a maximumThe second derivative decidesistead of computingf(x) at many
points, we computef”(x) at one point—the stationary point. It is @ minimum if

£7(x) > 0.
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3D When f'(x) =0and f”(x) > 0, there is docal minimum at x.
When f/(x) =0and f”(x) < 0, there is docal maximumat x.

To the left of a minimum, the curve is falling. After the minimum, the curve rises. The
slope has changed from negative to positive. The graph bends upway’dmg > 0.

At a maximum the slope drops from positive to negative. In the exceptional case,
when f/(x) = 0 and alsof” (x) = 0, anything can happen. An examplexi$, which
pauses at = 0 and continues up (its slope3s? > 0). Howeverx* pauses and goes
down (with a very flat graph).

We emphasize that the information frofif(x) and f”(x) is only “local.” To be
certain of anabsoluteminimum or maximum, we need information over the whole
domain.

EXAMPLE 1 f(x)=x3>—x2 has f/(x)=3x?>—2x and f"(x)=6x—2.

To find the maximum antbr minimum, solve3x2 —2x = 0. The stationary points
arex =0andx = % . Atthose points we need the second derivative. ft'1§0) = —2
(local maximum) andf” (%) = +2 (local minimum).

Between the maximum and minimum is timflection point That is where
f"(x) =0. The curve changes from concave down to concave up. This example has
/" = 6x —2, so the inflection pointis at = J.
INFLECTION POINTS

In mathematics it is a special event when a function passesghmero. When the
function is f, its graph crosses the axis. When the functioif isthe tangent line is
horizontal. Whenf"” goes through zero, we have imflection point

The direction of bending changes at an inflection poinfour eye picks that out
in a graph. For an instant the graph is straight (straight lines lfgve 0). It is easy
to see crossing points and stationary points and inflection points. Very few people can
recognize wherg” =0 or f” = 0. | am not sure if those points have names.

There is a genuine maximum or minimum wh¢h(x) changes sign. Similarly,
there is a genuine inflection point wheif (x) changes signThe graph is concave
down on one side of an inflection point and concave up on the other gide
The tangents are above the curve on one side and below it on the other side. At an
inflection pointthe tangent line crosses the curfiégure 3.7b).

Notice that a parabola = ax? + bx + ¢ has no inflection pointsy” is constant.

A cubic curve has one inflection point, becayséis linear. A fourth-degree curve
might or might not have inflection points—the quadrafi¢(x) might or might not
cross the axis.

EXAMPLE 2 x*—2x?isW-shaped4 x> — 4x has two bumpsl2x? — 4 is U-shaped.
The able shows the signs at the important values:of

x —V2 =1 —1/3 0 1/43 1 2

F(x) 0 - 0,0 - 0
f1(x) 0 + 0 -0
f"(x) 0 - 0

+That rules outf(x) = x*, which hasf” = 12x? > 0 on both sides of zero. Its tangent line
is the x axis. The line stays below the graph—so no inflection point
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Between zeros off (x) come zeros off’(x) (stationary points). Between zeros of
f'(x) come zeros off”(x) (inflection points). In this examplg'(x) has a double
zero at the origin, so a single zero 6f is caught there. It is a local maximum, since
f"(0) <0.

Inflection points are important—not just for mathematics. We know the world
population will keep rising. We don’t know if theate of growth will slow down.
RememberThe rate of growth stops growing at the inflection poirtiere is the
1990 report of the UN Population Fund.

The next ten years will decide whether the world population trebles or merely
doubles before it finally stops growing. This may decide the future of the earth as a
habitation for humans. The population, név8 billion, is increasing by a quarter
of a million every day. Betweefl0 and 100 million people will be added every
year during thel 990s; a billion people—a whole China—over the decade. The
fastest growth will come in the poorest countries.

A few years ago it seemed as if the rate of population growth was slgwing
everywhere except in Africa and parts of South Asia. The world’s population
seemed set to stabilize arouh@l 2 billion towards the end of the next century.

Today, the situation looks less promising. The world has overshot the marker
points of thel984 “most likely” medium projection. It is now on course for an
eventual total that will be closer tbl billion than to10 billion.

If fertility reductions continue to be slower than projected, the mark could be
missed again. In that case the world could be headed towards a total ofldp to
billion people.

Starting with a census, the UN follows each age group in each country. They
estimate the death rate and fertility rate—the medium estimates are published. This
report is saying that we are not on track with the estimate.

Section 6.5 will come back to population, with an equation that prediictsilion.

It assumes we are now at the inflection point. But China’s second census just started
on July1, 1990. When it's finished we will know if the inflection point is still ahead.

You now understand the meaning 6f (x).Its sign gives the direction of bending—
the change in the slop@he rest of this section computesw muchthe curve
bends—using thesizeof f” and not just its sign. We find quadratic approximations
based onf”(x). In some courses they are optional—the main points are highlighted.

CENTERED DIFFERENCES AND SECOND DIFFERENCES

Calculus begins with average velocities, computed on eithercfid:

fOHA) ) )= flx—AY)
Ax Ax

areclosetof'(x) (1)

We never mentioned it, but a better approximatioryt@x) comes fromaveraging
those two averageShis produces aentered differencgwhich is based om + Ax
andx — Ax. It divides by2Ax:

f10) ~

}[fu+Aﬂ—fu[Fﬂw—fu—Aw}:fu+Aﬂ—fu—Am_

- - 2
2 Ax Ax 2AXx

We claim this is better. The test is to try it on powersxof

+The United Nations watches the second derivative!
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For f(x) =x these ratios all givef’ =1 (exactly). For f(x) = x2, only the
centered difference correctly give§’ =2x. The one-sided ratio gavex + Ax
(in Chapter 1 it wagt + h). It is only “first-order accurate.” But centering leaves no
error. We are averagin@x + Ax with 2x — Ax. Thus the centered difference
is “second-order accurate.”

I ask now:What ratio converges to the second derivati@ne answer is to take
differences of the first derivative. Certainly f'/Ax approacheg”. But we want
a ratio involving f itself. A natural idea is to takdifferences of differenceshich
brings us to $econd difference’s

Jx+Ax)—f(x)  f(x)—fx—Ax)

AXx

Ax _SGHA)2f () + f(x =A%) df

Ax (Ax)2 dx?’ 3)

On the top, the difference of the differenceAd A ) = A? f. It corresponds ta/? f.

On the bottom(Ax)? corresponds tdx? . This explains the way we place tBis in

d? f/dx?.To say it differentlydx is squareddf is not squared—as in distanfaéme)?.
Note that(A x)? becomes much smaller thanx. If we divide A ¥ by (Ax)?, the

ratio blows up. It is the extra cancellation in the second different¢ that allows

the limit to exist. That limit isf” (x).

Application The great majority of equations can't be solved exactly. A tyipiese

is f”(x)=—sinf(x) (the pendulum equation). To compute a solution, | would
replace f”(x) by the second difference in equati¢8). Approximations at points
spaced byAx are a very large part of scientific computing.

To test the accuracy of these differences, here is an experimenf(en=
sinx + cosx. The table shows the errorsaat= 0 from formulas(1), (2), (3):

step lengttAx onesided errors centered errors  second difference errors

1/4 1347 .0104 —.0052
1/8 .0650 .0026 —.0013
1/16 .0319 .0007 —.0003
1/32 .0158 .0002 —.0001

The one-sided errors are cut in half whénx is cut in half. The other columns
decrease lik Ax)?. Each reduction divides those errors byThe errors from
one-sided differences ar®(Ax) and the errors from centered differences are
O(Ax)2.

The “big O”" notation When the errors are of ordekx, we write E = O(Ax).

This means thatl < CAx for some constant’. We don’t computeC —in fact we
don'twant to deal with it. The statement “one-sided errors are Oh of déltaptures
what is important. The main point of the other columng&is= O(Ax)? .

LINEAR APPROXIMATION VS. QUADRATIC APPROXIMATION

The second derivative gives a tremendous improvement ovear lagproximation
f(a)+ f'(a)(x —a). A tangent line starts out close to the curve, the line has

no way to bendAfter a while it overshoots or undershoots the true function (see
Figure 3.8). That is especially clear for the mod¢k) = x2, when the tangent is the

x axis and the parabola curves upward.
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You can almost guess the term with bendihghould involvef”, and alsd A x)2.
It might be exactly ”(x) times (Ax)? but it is not. The model function? has
f"=2.There must be a factcé’ to cancel tha®:

3E Thequadratic approximationto asmooth functionf'(x) nearx =a is

f) = f@)+ @) (x—a)+3 f"(@)(x —a)*. (4)

At the basepoint this if(a) = f(a). The derivatives also agree at=a. Further-
morethe second derivatives agre@n both sides of4), the second derivative at
x=ais f"(a).

The quadratic approximation bends with the function. It is not the absolutely
final word, because there is a cubic teéryf’”(a)(x —a)? and a fourth-degree term
21—4f”” (a)(x —a)*and so on. The whole infinite sum is a “Taylor series.” Equa#n
carries that series through the quadratic term—which for practical purposes gives a
terrific approximation. You will see that in numerical experiments.

Two things to mention. First, equatidd) shows why f” > 0 brings the curve
above the tangent line. The linear part gives the line, while the quadratic part is
positive and bends upward. Second, equafdncomes from(2) and (3). Where
one-sided differences give'(x + Ax) = f(x)+ f'(x)Ax, centered differences
give the quadratic:

from(2): f(x+Ax)= f(x —Ax)+2f'(x)Ax
from(3): f(x+Ax)=2f(x)— f(x —Ax)+ f"(x)(Ax)>.

Add and divide bg. Theresultisf (x + Ax) = f(x)+ f'(x)Ax + %f”(x)(Ax)z.
This is correct througliAx)? and misses byA x)3, as examples show:

EXAMPLE 3 (x4 Ax)® & (x) 4+ (3x%)(Ax) + 1 (6x)(Ax)? +error(Ax)?3.

EXAMPLE 4 (1+x)"~ l4+nx+in(n—1)x2.

The first derivative ak = 0 is n. The second derivative is(n — 1). The cubic term
would be%n(n —1)(n—2)x3. We are just producing the binomial expansion!

EXAMPLE 5

~ 1+ x + x? = start of a geometric series.
—X

1/(1—x) has derivativel /(1 — x)?. Its second derivative i8/(1 —x)3. At x =0
those equal, 1,2. The factor% cancels the2, which leavesl, 1, 1. This explains
1+ x+x2.

The next terms are3 andx*. The whole series i$/(1 —x) =14+ x+x24+x3+---.
Numerical experiment 1/4/1+x~1—4x+32x? is tested for accuracy.
Dividing x by 2 almost divides the error b¥. If we only keep the linear paitt— %x,
the error is only divided byt. Here are the errors at= 1, 4+ and %

3
linear approximatio(errorzgxz): .0194 .0053 .0014

-5
quadratic approximatioéerrom 1—6x3) :—.00401 —.00055 —.00007
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3.3 EXERCISES

Read-through questions

The direction of bending is given by the sign of a . If the 21 If f(x) is an even function, the centered difference

second derivative is b in an interval, the function is concave[ f(Ax) — f(—Ax)]/2Ax exactly equalsf’(0) = 0. Why?

up (or convex). The graph bends ¢ . The tangent lines are
d _the graph. Iff”(x) <0 then the graph is concave e

andthe slopeis f .

At a point where f/(x) =0 and f”(x) >0, the function has a
g . Ata point where__h _, the function has a maximum. A

22 If f(x) is a odd function, the second difference
[f(Ax) —2f(0)+ f(—Ax)]/(Ax)? exactly equals f”(0)=0.
Why?

Write down the quadratic f(0)+f’(0)x+%f”(O)x2 in

pointwheref”(x)=0isan__i__point, providedf” changes sign. 2326
The tangent line j the graph. A
The centered approximation tgf/(x) is [__k ]/2Ax. The 23 f(x)=cosx+sinx 24 f(x)=tanx
_nOi H i " i 2
3-point approximation tof”(x) is [__| ]/(Ax)=. The second 25 f(x) = (sinx)/x 26 f(x)=1+x+x2

order approximation tof (x + Ax) is f(x)+ f/(x)Ax+__m .
Without that extra term this is just the n __ approximation. With |, 26 find FO)+ (D) =1)+ %f”(l)(x—l)z arounda = 1.

that term the erroris O(__ o).
. o 27 FinddandBin+/1T—x ~1+ Ax + Bx2.
1 A graph that is concave upward is inaccurately said to

“hold water.” Sketch a graph witlf” (x) > 0 that would not hold 28 FindAandB in 1/(1—x)? ~ 14 Ax+ Bx?.

water. 29 Substitute  the quadratic  approximation into
2 Find a function that is concave down far<0 and concave [f(x+Ax)—f(x)]/Ax, to estimate the error in this one-sided
up for0 < x < 1 and concave down for > 1. approximation tof’(x).

3 Can a function be always concave down and never cross ze$8?What is the quadratic approximationsat=0to f(—Ax)?
Canit be always concave down and positive? Explain. 31 Substitute for f(x+Ax) and f(x—Ax) in the centered
4 Find a function with f”(2)=0 and no other inflection approximation [f(x+Ax)— f(x—Ax)]/2Ax, to  get
point. f'(x)+ error. Find theAx and (Ax)? terms in this error. Test

) ] onf(x)=x3atx=0.
True or false when f(x) is a 9th degree polynomial with

£/(1)=0and f'(3) =0. Give (or draw) a reason. 32 Guess a third-order approximation f(Ax) =~ f(0)+
F1OAx+ 1 £"0)(Ax)2 + .Testiton f(x) = x3
5 f(x)=0somewhere between=1andx =3.
6 f”(x)=0somewhere between= 1 andx = 3. Construct a table as in the text, showing the actual errors
7 There is no absolute maximum.at= 3. at x =0 in one-sided differences centered differences second
. . . differences and quadratic approximations. By hand take two

8 There are seven points of inflection. values of Ax, by calculator take three, by computer take four.
9 If f(x) has nine zeros, it has seven inflection points.

3 .4 - —
10 If f(x) has seven inflection points, it has nine zeros. 38 flx)=x"4x 34 f)=1/(=x)
35 f(x)=x2+sinx
In 11-16 decide which stationary points are maxima or
minima. 36 Example5 was 1/(1—x) ~14+x+x2. What is the error at
x =0.1? What is the error at =2?

11 f(x)=x2—6x 12 f(x)=x3—6x2 ) ) ) )

. 3 . 10 37 Substitute x =.01 and x=—0.1 in the geometric series
13 fx)=x"—6x 14 fx)=x"—6x 1/(1=x)=1+x+x2+--- to find 1/.99 and 1/1.1—first to
15 f(x) = sinx —cosx 16 f(x)=x+sin2x four decimals and then to all decimals.

38 Compute cod° by equation (4) witha =0. OK to check
) ) ) ) . onacalculator. Also compute cbsWhy so far off?
Locate the inflection points and the regions wheref(x) is
concave up or down 39 Why is sinx ~x not only a linear approximation but also a
] quadratic approximation? =0 is an point.
17 f(x)=x+x2—x3 18 f(x)=sinx+tanx ) ) o . L
) ) . s 40 If f(x) is an even function, find its quadratic approximation
19 f(x)=(x—2)*(x—4) 20 f(x)=sinx+(sinx) atx = 0. What is the equation of the tangent line?



3.3 Second Derivatives: Bending and Acceleration 159

41 For f(x)=x+x2+x3 what is the centered difference
[/(3) — f(1)]/2, and what is the true slopg’(2)?

2. The plane is landing smoothly.
3
42 For f(x)=x+x2+x3, what is the second difference 4= Thetaxrateis constant.
5
6
7

The economy is picking up speed.

[f(3)—2f(2)+ f(1)]/12, and what is the exagf” (2)? A bike accelerates faster but a car goes faster.

43 Theerrorinf(a)+ f'(a)(x —a)is approximately% f"(a)(x — Stock prices have peaked.

. . e L Th f leration is slowi .
a)?. This error is positive when the function is . Then the tan- _e rate o gcce gratlon 'S S owing down
gent line is the curve. This course is going downhill.

46 (Recommended) Draw a curve that goes up-down-up.
Below it draw its derivative. Then draw its second derivative.
Mark the same points on all curves—the maximum, minimum,
and inflection points of the first curve.

44 Draw a piecewise lineary(x) that is concave up. Define

“concave up” without using the test?y/dx? > 0. If derivatives

don't exist, a new definition is needed.

45 What do th t bpur 1’ " "o . .
atdo these sentences say abfur /7 or /™ or f 47 Repeat Problem46 on a printout showing y(x)=

1. The population is growing more slowly. x3 —4x? +x +2 anddy/dx andd?y/dx? on the same graph.
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I 3.4 Graphs I

Reading a graph is like appreciating a painting. Everything is there, but you have to
know what to look for. One way to learn is by sketching graphs yourself, and in the
past that was almost the only way. Now it is obsolete to spend weeks drawing curves—
a computer or graphing calculator does it faster and better. That doesn’t remove the
need to appreciate a graph (or a painting), since a curve displays a tremendous amount
of information.

This section combines two approaches. One is to study actual machine-produced
graphs (especially electrocardiograms). The other is to understand the mathematics of
graphs—slope, concavity, asymptotes, shifts, and scaling. We introducerttexing
transform andzoom transform These two approaches are like the rest of calculus,
where special derivatives and integrals are done by hand and day-to-day applications
are by computer. Both are essential—the machine can do experiments that we could
never do. But without the mathematics our instructions miss the point. To create good
graphs you have to know a few of them personally.

READING AN ELECTROCARDIOGRAM (ECG or EKG)

The graphs of an ECG show the electrical potential during a heartbeat. There are
REFERENCE twelve graphs—six from leads attached to the chest, and six from leads to the arms

e and left leg. (It doesn't hurt, but everybody is nervous. You have to lie still, because

ww—  contraction of other muscles will mask the reading from the heart.) The graphs record
W—  electrical impulses, as the cells depolarize and the heart contracts.
—_ What can | explain in two pages? The graph shows the fundamental pattern of the
_y5— ECG.Note theP wave the QRS complex and the T wave Those patterns, seen
§ 15— differently in the twelve graphs, tell whether the heart is normal or out of rhythm—or
'E };ﬁ: suffering an infarction (a heart attack).
n 120—
= - eI
10— b S Sstesasssstsas sessausas:
- Seconds SRS Bt s SHIETEEE
85— o iamas z I s 1 2
80— + s HHH
75— S : : :
70— il mEEESSENISEESIEEEND 1
55_
60— First of all the graphs show theeart rate. The dark vertical lines are by convention
1 second apart. The light lines arg: second apart. If the heart beats evelsecond
%— (one dark line) the rate i§ beats per second &00 per minute. That is extreme

tachycardia—not compatible with life. The normal rate is between three dark lines
per beaté second, or100 beats per minute) and five dark lines (one second between
beats60 per minute). A baby has a faster rate, ov@0 per minute. In this figure the
rate is . A rate below60 is bradycardia not in itself dangerous. For a resting
athlete that is normal.

Doctors memorize the six rat@60, 150, 100, 75, 60, 50. Those correspond th 2,
3,4,5,6 dark lines between heartbeats. The distance is easiest to measure between
spikes (the peaks of the R wave). Many doctors put a printed scale next to the chart.
One textbook emphasizes that “Where the next wave falls determines the rate. No
mathematical computation is necessary.” But you see where those numbers come
from.
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The next thing to look for isheart rhythm. The regular rhythm is set by the
pacemaker, which produces the P wave. A constant distance between waves is good—
and then each beat is examined. When there is a block in the pathway, it shows as a
delay in the graph. Sometimes the pacemaker fires irregularly. Figure 3.10 shows
sinus arrythmigfairly normal). The time between peaks is changing. In disease or
emergency, there are potential pacemakers in all parts of the heart.

| should have pointed out the main parts. We have four chambers, an atrium
ventricle pair on the left and right. The SA node should be the pacemaker. The
stimulus spreads from the atria to the ventricles— from the small chambers that “prime
the pump” to the powerful chambers that drive blood through the body. The P wave
comes with contraction of the atria. There is a pausgl(—)oﬁecond at the AV node.

Then the big QRS wave starts contraction of the ventricles, and the T wave is when
the ventricles relax. The cells switch back to negative charge and the heart cycle is
complete.

[Right Atrium] ff [ Left Atrium |

electrodes

ground

Left
Ventricle

8 Right
ericlc

Fig. 3.9 Happy person with a heart and a normal electrocardiogram.

The BCG shows when the pacemaker goes wrong. Other pacemakers take over—
the AV node will pace a60/minute An early firing in the ventricle can give a wide
spike in the QRS complex, followed by a long pause. The impulses travel by a slow
path. Also the pacemaker can suddenly speed up (paroxysmal tachycardia is
150 — 250/ minutg. But the most critical danger fibrillation.

Figure 3.10b shows a dying heart. The ECG indicates irregular contractions—no
normal PQRST sequence at all. What kind of heart would generate such a rhythm?
The muscles are quivering or “fibrillating” independently. The pumping action is
nearly gone, which means emergency care. The patient needs immediate CPR—
someone to do the pumping that the heart can’t do. Cardio-pulmonary resuscitation
is a combination of chest pressure and air pressure (hand and mouth) to restart the
rhythm. CPR can be done on the street. A hospital applies a defibrillator, which shocks
the heart back to life. It depolariza#l the heart cells, so the timing can be reset. Then
the charge spreads normally from SA node to atria to AV node to ventricles.

This discussion has not used all twelve graphs to locate the problem. That needs
vectorsLook ahead at Section 11.1 for the heart vector, and especially at Section 11.2
for its twelve projectionsThose readings distinguish between atrium and ventricle,
left and right, forward and back. This information is of vital importance in the event
of a heart attack. A “heart attack” israyocardial infarction(Ml).

An Ml occurs when part of an artery to the heart is blocked (a coronary occlusion).
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Fig. 3.10  Doubtful rhythm. Serious fibrillation. Signals of a heart attack

An area is without blood supply—therefore without oxygen or glucose. Often the

attack is in the thick left ventricle, which needs the most blood. The cells are first

ischemic, then injured, and finally infarcted (dead). The classical ECG signals involve
those three I's:

IschemiaReduced blood supply, upside-down T wave in the chest leads.
Injury: An elevated segment between S and T means a recent attack.
Infarction The Q wave, normally a tiny dip or absent, is as wide as a small
square % second). It may occupy a third of the entire QRS complex.

The Q wave gives the diagnosis. You can find all three I's in Figure 3.10c.
It is absolutely amazing how much a good graph can do.

THE MECHANICS OF GRAPHS

From the meaning of graphs we descend to the mechanics. A forsmubaigiven for
f(x). The problem ido create the grapht would be too old-fashioned to evaluate
f(x) by hand and draw a curve through a dozen points. A computer has a much better
idea of a parabola than an artist (who tends to make it asymptotic to a straight line).
There are some things a computer knows, and other things an artist knows, and still
others that you and | know—because we understand derivatives.

Our job is to apply calculus. We extract information frgfiand f” as well asf.
Small movements in the graph may go unnoticed, but the important properties come
through. Here are the main tests:

1. The sign of f(x) (above or below axisf = 0 atcrossing poin

The sign of f/(x) (increasing or decreasing:’ = 0 atstationary poin}
The sign of f”(x) (concave up or downf” = 0 atinjection poin}

The behavior off (x) asx — o0 andx — —o0

The points at whichf (x) — oo or f(x) — —o0

Even or odd? Periodic? Jumpsjhor f/? Endpoints? f(0)?

2 o

’ 2 2+6x2
RANPEE S f(x)=1f7 f/(x):(l—iz)z f”(x)=(1tx)zc)3‘

The sign of f(x) depends orl —x2. Thus f(x) >0 in the inner interval where
x2 < 1. The graph bends upwardg ((x) > 0) in that same interval. There are no
inflection points, sincef” is never zero. The stationary point whefé vanishes is
x = 0. We have docal minimumat x = 0.

The guidelines (oasymptotesmeet the graph at infinity. For largethe important
terms arex? and—x2. Their ratio is4+x2/ — x2 = —1—which is the limit asx —
00, andx — —o0. The horizontal asymptote is the ling = —1.

The other infinities, wher¢ blows up, occur wheh — x? is zero. That happens at
x =1 andx = —1. The vertical asymptotes are the lines=1 andx = —1. The
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graph in Figure 3.11a approaches those lines.

if f(x)— b asx — o0 or —oo, the liney = b is ahorizontal asymptote
if f(x)— +o0or—o0asx —a,thelinex = a is avertical asymptote
if f(x)—(mx+b)—0asx — +ooor— —o0,theliney =mx + b is asloping asymptote

Finally comes the vital fact that this function &ven f(x) = f(—x) because
squaringx obliterates the sign. The graph is symmetric acrosgthgis.

To summarize the effect of dividing by- x2: No effect near = 0. Blowup at1
and—1 from zero in the denominator. The function approachésas|x| — o0.

x? _ x2—2x 2

=t T Taoy

This example divides by — 1. Thereforex = 1 is a vertical asymptote, wherg(x)
becomes infinite. Vertical asymptotes come mostly f@@ro denominators.

Look beyondx = 1. Both f(x) and f”(x) are positive forx > 1. The slope is
zero atx = 2. That must be a local minimum.

What happens as — c0? Dividing x? by x — 1, the leading term isc. The
function becomes large. It grows linearly—we expesi@ping asymptoteTo find
it, do the division properly:

EXAMPLE 2 f(x) =

x—1

x2

1
=x+14+—--. (1)
x—1 x—1
The last term goes to zero. The function approaghesx + 1 as the asymptote.
This function is not odd or even. Its graph is in Figure 3.11b. \iitlom outyou
see the asymptotedoom infor f =0or f'=0or f"=0.

Ty=x+1

: sin 3
=1 y=sinx+ =—

Fig. 3.11  Thegraphs oft?/(1 —x2) andx?/(x — 1) and sinx + 1 sin 3x.

3

EXAMPLE 3 f(x) =sinx+ % sin3x hastheslope f’(x)=cosx + cos3x.

Above all these functions aggeriodic. If x increases b, nothing changes. The
graphs fron27 to 47 are repetitions of the graphs frdirto 2. Thus f(x +27) =
f(x) and the period i€x. Any interval of length2sr will show a complete picture,
and Figure 3.11c picks the interval fromr to 7.

The second outstanding property is thatis odd The sine functions satisfy
f(—x) = — f(x). The graph is symmetric through the origin. By reflecting the right
half through the origin, you get the left half. In contrast, the cosing& {(ix) are even.

To find the zeros off (x) and f/(x) and f"(x), rewrite those functions as

f(x)=2sinx—%si’x f'(x)=-2cosx+4cosx f"(x)=—10sinx+12sirx.
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We changedin3x to 3 sinx —4sin’x. For the derivatives usgin’x = 1 —cogx.
Now find the zeros—therossing pointsstationary pointsandinflection points
3

/=0 2sinx=%smx=sinx=0or sitx=3=x=04x

f'=0 2cosx =4 cosx = cosx=0 or cOSx =1 = x =t/ +7/2 +37/4

f"=0 5sinx=6 sir’x = sinx=0 or sifx=2=x=0,1+66°+£114° +7
That is more than enough information to sketch the graph. Th@stay points
7/4,7/2,37/4 are evenly spaced. At those poinftéx) is 4/8/3 (maximum),2/3
(local minimum),\/§/3 (maximum). Figure 3.11c shows the graph.

I would like to mention a beautiful continuation of this same pattern:
f(x)=sinx+4sin3x+3sin5x+---  f'(x)=cosx+CoS3x +COS5x + -

If we stop after ten termsf(x) is extremely close to atep function If we don't
stop,the exact step function contains infinitely many siftggmps from—7 /4 to
+m/4 asx goes past zero. More precisely it is a “square walecause the graph
jumps back down atr and repeats. The slom®sx + cos3x + - -- also has period
2. Infinitely many cosines add up to a delta functidiThe slope at the jump is an
infinite spike.) These sums of sines and cosined-atgier series

GRAPHS BY COMPUTERS AND CALCULATORS

We have come to a topic of prime importance. If you hgvaphing softwarefor

a computer, or if you have graphing calculator, you can bring calculus to life. A
graph presents(x) in a new way—different from the formula. Information that is
buried in the formula is clear on the grafBut don’t throw awayy (x) anddy/dx.
The derivative is far from obsolete.

These pages discuss how calculus and graphs go together. We work on a crucial
problem of applied mathematics—to find wheréx) reaches its minimum. There is
no need to tell you a hundred applications. Begin with the formula. How do you find
the pointx* wherey(x) is smallest ?

First, draw the graph. That shows the main features. We should see (roughly) where
x* lies. There may be several minima, or possibly none. But what we see depends on
a decision that is ours to make—the rangexadnd y in the viewing window

If nothing is known abouy (x), the range is hard to choose. We can accept a default
range, and zoom in or out. We can use the autoscaling program in Section 1.7.
Somehowx* can be observed on the screen. Then the problem is to compute it.

I would like to work with a specific example. We solved it by calculus—to find
the best poink* to enter an expressway. The speeds in Section 3.2 $0eaad 60.

The length of the fast road will b = 6. The range of reasonable values for the
entering point is0 < x < 6. The distance to the road in Figure 3.12is= 3. We
drive a distanca/32 + x2 at speed0 and the remaining distande— x at speed0:

1 1
driving time =—4/324+x24+ —(6—x). 2
gtime y(x)=2-v/3 422+ (6-x) )
This is the function to be minimized. Its graph is extremely flat.

It may seem unusual for the graph to be so level. On the contrary, it is common.
A flat graph is the whole point @fy /dx = 0.
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The graph near the minimum looks like= Cx2. It is a parabola sitting on a
horizontal tangent. At a distance afx = .01, we only go up byC(Ax)? = .0001C.
UnlessC is a large number, thiAy can hardly be seen.

driving time y(x)
6-x -0 .20 .187

—— \-—/
\;_/

0 A8 18
0 6 1 3 ?

ZOOM
S ¥ 20

Fig. 3.12 Enter atx. Thegraph of driving timey (x). Zoom boxes locate *.

The solution is to change scalBoom in onx*. The tangent line stays flat, since
dy/dx is still zero. But the bending from@ is increased. Figure 3.12 shows #t@om
boxblown up into a new graph of (x).

A calculator has one or more ways to find. With a TRACE mode, you direct

a cuwsor along the graph. From the display pivalues, read/max andx* to the
nearest pixel. A zoom gives better accuracy, because it stretches the axes—each
pixel represents a smallésx andAy. The TI-81 stretches b¥ as default. Even
better, let the whole process be graphical—draw the aci@dM BOX on the

screen Pick two opposite corners, preBSITER, and the box becomes the new
viewing window (Figure 3.12).

The first zoom narrows the search fdf. It lies betweenx = 1 andx = 3. We build
a newZOOM BOX and zoom in again. Now.5 < x* < 2. Reasonable accuracy
comes quickly. High accuracy does not come quickly. It takes time to create the box
and execute the zoom.

Question1  What happens as we zoom in, if all boxes are square (equal scaling

Answer  The picture gets flatter and flatter. We are zooming in to the tarigen
Changingx to X /4 andy to Y /4, the paraboly = x? flattens toY = X2/4. To see
any bendingwe must use a long thin zoom hox

| want to change to a totally different approach. Suppose we have a formula for
dy/dx. That derivative was produced by an infinite zddrne limit of Ay/Ax
came by brainpower alone:

dy X

1
dx  30v32+x2 60

cdl this f(x).

This function is zero ak ™. The computing problem is completely changed: Solve
f(x)=0.ltis easier to find a root off (x) than a minimum o§ (x). The graph of
f(x) crosses the axis. The graph of (x) goes flat—this is harder to pinpoint.
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ope dhs Take the model functiony =x? for |x| <.01. The slope f =2x changes
+.02 ' from —.02 to +.02. The value ofx? moves only by.0001 —its minimum point is
hard to see.

To repeat: Minimization is easier witdy/dx. The screen shows an order of
magnitude improvement, when we trace or zoomfdw) = 0. In calculus, we have
been taking the derivative for granted. It is natural to get blasé ahgutx = 0. We
forget how intelligent it is, to work with the slope instead of the function.

-02

zero slope

at minimum Question2  How do you get another order of magnitude improvement ?
Fig. 3.13 Answer  Use the next derivative! With a formula fatf/dx, which isd?y /dx?,
the convergence is even faster. In two steps the error goes .fibrto .0001 to
.00000001. Another infinite zoom went into the formula fatf /dx, andNewton’s
methodakes account of it. Sections 3.6 and 3.7 styfdy) = 0.

The expressway example allows perfect accuracy. We can giiéx =0 by
algebra. The equation simplifies@0x = 304/32% + x2. Dividing by 30 and squaring
yields4x2 = 32 + x2. Then3x2 = 32. The exact solution is* = v/3 = 1.73205...

A model like this is a benchmark, to test competing methods. It also displays what
we never appreciated—the extreme flatness of the graph. The difference in driving
time between entering at* = \/5 andx = 2 isone second

THE CENTERING TRANSFORM AND ZOOM TRANSFORM

For a photograph we do two things—point the right way and stanthetright
distance. Then take the picture. Those steps are the same for a graph. First we pick
the new center point. The graphskifted to move that point fronfa, b) to (0,0).

Then we decide how far the graph should reach. It fits in a rectangle, just like the
photographRescalingo x/c andy/d puts the desired section of the curve into the
rectangle.

A good photographer does more (like an artist). The subjects are placed and
the camera is focused. For good graphs those are necessary too. But an everyday
calculator or computer or camera is built to operate without an artist—just aim
and shoot. | want to explain how to aimat= f(x).

We are doing exactly what a calculator does, with one big differelt@oesn’t
change coordinates. We d&whenx = 1, y = —2 moves to the center of the viewing
window, the calculator still shows that point 4$,—2). When the centering
transform acts on y+2=m(x—1), those numbers disappear. This will be
confusing unlessc and y also changeThe new coordinates ar& = x — 1 and
Y =y +2.Then the new equationi§=mX.

The main point (for humans) is to make the algebra simpler. The computer has no
preference fol¥ =mX overy — yo = m(x — xo). It accept2x? — 4x as easily as
x2. But we do preferY =mX andy = x2, partly because their graphs go through
(0,0). Ever since zero was invented, mathematicians have liked that number best.

3F A centering transformshifts left by a and down byb:
X =x—aandY =y—bchangey = f(x)intoY +b = f(X +a).

EXAMPLE 4 The parabolay =2x?>—4x has its minimum whendy/dx =
4x —4=0. Thus x =1 and y =—2. Move this bottom point to the center:
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y=2x%2—4xis
Y4+2=2(X—-1)2>—4(X—-1) or Y=2X2

The new parabold& =2X? has its bottom at0,0). It is the same curve, shifted
across and up. The only simpler parabola is- x2. This final step is the job of the
zoom.

Next comes scalinVe may want more detail (zoom in to see the tangent line).
We may want a big picture (zoom out to check asymptotes). We might stretch one
axis more than the other, if the picture looks like a pancake or a skyscraper.

3G A zoom transformscales theX andY axes byc andd:
x=cX and y=dY change Y =F(X) to y=dF(x/c).
The newx andy are boldface letters, and the graph is rescaled. Qfteni.

EXAMPLE 5 Start with ¥ =2X2. Apply a square zoom withc =d. In the

new xy coordinates, the equation ¥§/c =2(x/c)?. The number2 disappears if

¢ =d = 2. With the right centering and the right zoom, every parabola that opens
upward isy = x2.

Question 3 What happens to the derivatives (stoand bendinpafter a zoom ?
Answer The slope (first derivative) is multiplied by/c. Apply the chain rule to
y=dF(X/c). A square zoom had/c = 1—lines keep their slopeThe second
derivative is multiplied byd /c2, which changes the bending. A zoom out divides
by small numbers = d, so the big picture is more, curved.

Combining the centering and zoom transforms, as we do in practice, giires
terms ofx:

y= f(x) becomes Y = f(X+a)—b andthen y:d[f(§+a)—b:|.

slope | slope 1 slope 2
(3,1) (0,0) (0,0)

xr=A-3 x=4(A-3)

y=B y=B-1 y=8(B-1)

Fig. 3.14 Change of coordinates by centering and zoom. Calculators ktilhgx, y).

Question4  Findx andy ranges after two transforms. Start betweem and1.
Answer The window after centeringisl <x—a<land—1<y—»b<1.The
window after zoomis-1 < c(x —a) <land—1<d(y—b) < 1. The point(1,1)
was originally in the corner. The poitit —! +a,d ~! +b) is now in the corner.

The numbersz,b,c,d are chosen to produce a simpler function (like= x?).
Or else—this is important in applied mathematics—they are chosen to xreakaty
“dimensionless.” An example iy = % cos8t. The frequency8 has dimension
1/time. The amplitude% is a distance. Withd =2 cm andc = 8 sec, the units are
removed ang = CosSt.
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May | mention one transform thaloeschange the slope? It is eotation.
The whole plane is turned. A photographer might use it—but normally people are
supposed to be upright. You use rotation when you turn a map or straighten a picture.
In the next section, an unrecognizable hyperbola is turnedtintol / X.

3.4 EXERCISES

Read-through questions

The position, slope, and bending of = f(x) are decided by 13 fx)= 14 f(x):%_zjc
x—

a ,_b and_c .If|f(x)[>o0 asx—a, the line x§+x2 Sinx4CoSx
x=a is a vertical_d . If f(x)—b for large x, theny= 15 f(x)= x"+1 16 f(x)= ———
bisa_e .If f(x)—mx—b for large x, then y =mx +b ' x3—1 Sinx —Cosx
isa_ f . The asymptotes of =x2/(x2—4) are g .This 17 f(x)=x—sinx 18 f(x)=(1/x)—+/x
function is even becausg(—x)=__h . The function sirkx has
period__i

In 19-24 construct f(x) with exactly these asymptotes
Near a point wheredy/dx =0, the graph is extremely j .

For the modely = Cx?, x=.1 givesy=__k . A box around 19

the graph looks longand I . We__m__in to that box for an- ,, y=xandx=4 22 y=2x+3andx =0

other digit of x*. But solvingdy/dx = 0 is more accurate, because

its graph__n__ the x axis. The slope otly/dx is __ 0 . Each 23 j=x(x >w), y=—x(x > —00)

deivative is likean p zoom.

To move (a,b) to (0,0), shift the variables to¥= q and )
Y=_r .This_s transformchanges= f(x)to0Y = t . 25 For P(x)/Q(x) tohavey =2 as asymptote, the polynomiafs

x=1landy=2 20 x=1,x=2,y=0

24 x=1,x=3,y=x

Theoriginal slope ata, b) equals the new slope at u__. Tostretch andQ mustbe .

the axes byc andd, setx=cX and__v_.The__w_transform 26 For P(x)/Q(x) to have a sloping asymptote, the degrees of
changesY = F(X) toy=__x_ . Slopes are multipliedby y . P andQ must be .

Second derivatives are multiplied by z .

27 For P(x)/Q(x) to have the asymptote =0, the degrees of

1 Find the pulse rate when heartbeats érea:ond ortwodark P and Q must _____. The graph ofx*/(14+x2) has what
lines orx seconds apart. asymptotes ?
2 Another way to compute the heart rate uses marks & Both 1/(x—1) and 1/(%—_1)2 have x=1 and y=0 as
6-seond intervals. Doctors count the cycles in an interval. asymptotes. The most obvious difference in the graphs is
(@) How many dark lines id seconds ? - ,
(b) With 8 beats per interval, find the rate. 29 If f'(x) has asymptotest=1 and y =3 then f(x) has
asymptotes )

(c) Rule: Heart rate= cycles per interval times .
30 True(with reason) ofalse(with example).
(@) Every ratio of polynomials has asymptotes

. . . o e
Which functions in 3-18 are even or odd or periodic? Find (b) If f(x)is even so i/ (x)

all asymptotes:y =b or x =a or y =mx +b. Draw roughly by

hand or smoothly by computer. (©) If f"(x)is evensoisf(x)
(d) Between vertical asymptoteg;(x) touches zero.
3 f(x)=x—(9/x) 4 f(x)=x" (any integem) 31 Construct anf(x) that is “even around = 3.”
1 %3 32 Constructg(x) to be “odd aroundv = r.”
5 f(x)zm 6 f(x):m
X243 X243 Create graphs of 33—38 on a computer or calculator

7 0= 8 fx)=

Y1 33 y(x)=(1+1/x)*,-3<x<3

34 y(x):xl/x,0.1<x$2

sin N 35 y(x)=sin(x/3)+sin(x/5)
xsinx

1 f="5-7 12 f0)=Gnx 36 y(x)=2—x)/Q+x).~3<x <3

x2+1
9 f(x)=(sinx)(sin2x) 10 f(x)=cosx +c0S3x + Ccos5x
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37 y(x)=2x3+3x2—12x+50n[-3,3] and[2.9,3.1]
38 100[sin(x +.1) —2 sinx +sin(x —.1)]

In 39-40 show the asymptotes on large-scale computer graphs.

3 4 3
x°+8x—15 xT—6x7+1
39 (a = b = - -
@ v x2-2 ®) y 2x4 +x2
2 2
x“—=2 X“—x+2
0@ y:x3+8x—15 (®) y_x2 2x+1

41 Rescaley =sinx soX isin degrees, not radians, aficchanges
from meters to centimeters.

Problems 42—46 minimize the driving timey (x) in the text. Some
guestions may not fit your software.

42 Trace along the graph of(x) to estimatex*. Choose an
xy range or use the default.

43 Zoomin byc =d = 4. How many zooms until you reach* =
1.73205 or 1.7320508 ?

44 Ask your program for the minimum of (x) and the solution of
dy/dx =0. Same answer ?

45 What are the scaling factors and d for the two zooms in
Figure 3.12? They give the stretching of theandy axes.

46 Show thatdy/dx = —1/60 and d2y/dx?=1/90 at x =0.
Linear approximation givedy/dx ~ —1/60+ x/90. So the slope
is zero nearc =
derivative.

169

Change the function toy(x) = v'15+x2/30+ (10— x)/60.
47 Find x* using only the graph of (x).
48 Findx™* using also the graph efy/dx.

49 What are thexy and XY and xy equations for the line in
Figure 3.14?

50 Define fu(x)=sinx+3sn3x+isn5x+--- (n terms).

Graph f5 and fjo from —x to #. Zoom in and describe the
Gibbs phenomenoat x = 0.

On the graphs of 51-56 zoom in to all maxima and minima
(3 significant digits). Estimate inflection points.

51 y =2x> —16x*45x3 —37x2 4 21x + 683
52 y=x2—x*—B3x+1-2
53 y=x(x—1)(x-=2)(x—4)

54 y=7sin2x +5 cos3x

55 y=(x3—2x+1)/(x*—3x2-15),-3<x <5

56 y=xsin(1/x),0.1<x<1

57 A 10-digit computer showsy =0 ard dy/dx=.01 at
x* =1. This root should be correct to abo& digits) (10 digits)
(12 digits). Hint: Supposey =.01(x —1+ error). What errors
don’t show in10 digits of y ?

. This is Newton’s method, using the nex68 Which is harder to compute accurately: Maximum point

or inflection point ? First derivative or second derivative ?
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I 35 Parabolas, Ellipses, and Hyperbolas | GGG

Here is a list of the most important curves in mathematics, so you can tell what is
coming. It is not easy to rank the top four:

1. straight lines

2. sines and cosine@scillation)

3. exponentialggrowth and decay)

4. parabolasgllipses and hyperbolagusingl,x, y,x2,xy, y?).

The curves that | wrote last, the Greeks would have written first. It is so natural to
go from linear equations to quadratic equations. Straight linesl usgy. Second
degree curves include?, xy, y2. If we go on tox? and y3, the mathematics gets
complicated. We now study equations of second degree, and the curves they produce.

Itis quite important to see both tleguationsand thecurves This section connects
two great parts of mathematics—analysfshe equation angeometryof the curve.
Together they produceathalytic geometry You already know about functions and
graphs. Even more basic: Numbers correspond to points. We speak #tmpidint
(5,2).” Euclid might not have understood.

Where Euclid drew &5° line through the origin, Descartes wrote down= x.
Analytic geometry has become central to mathematics—we now look at one part of it.

Fig. 3.15 Thecutting plane gets steeper: circle to ellipse to parabolapetbola.

CONIC SECTIONS

The parabola and ellipse and hyperbola have absolutely remarnkedperties. The
Greeks discovered that all these curves come fstining a cone by a planeThe
curves are “conic sections.” A level cut givesiecle, and a moderate angle produces
anellipse A steep cut gives the two pieces ohgperbola(Figure 3.15d). At the
borderline, when the slicing angle matches the cone angle, the plane carves out a
parabola It has one branch like an ellipse, but it opens to infinity like a hyperbola.

Throughout mathematics, parabolas are on the border between ellipses and
hyperbolas

To repeat: We can slice through cones or we can look for equations. For a cone
of light, we see an ellipse on the wall. (The wall cuts into the light cone.) For an
equationdx? 4+ Bxy +Cy?+ Dx + Ey + F = 0, we will work to make it simpler.
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The graph will be centered and rescaled (and rotated if necéssaming for an
equation likey = x2. Eccentricity and polar coordinates are left for Chapter 9.

THE PARABOLA y =ax?+bx +c

You knew this function long before calculus. The graph crossesctlaxis when
y =0. The quadratic formula solves=3x2 —4x + 1 =0, and so does factoring
into (x —1)(3x — 1). The crossing points = 1 andx = % come from algebra.

The other important point is found by calculus. It is thenimumpoint, where
dy/dx = 6x —4=0.Thex coordinate st = Z, halfway between the crossing points.

The height isymin = —%. This is thevertexV in Figure 3.16a—at the bottom of the
parabola.

A parabola has no asymptotes. The slépe-4 doesn’t approach a constant.
To center the vertexShift left by 2 and up by 1. So introduce the new

variablesX =x—2% and Y =y+1. Then x=% amd y=—1 correspond to
X =Y = 0—which is the new vertex:

y=3x>—4x+1 becomes Y =3X2 (1)

Check the algebral =3X? is the same ag + 1 =3 (x — %)2 That simplifies to

the original equatioly = 3x2 — 4x + 1. The second graph shows the centered parabola
Y = 3X?2, with the vertex moved to the origin.

To zoom in on the vertex RescaleX andY by the zoom factou:
Y =3X? becomes y/a =3(x/a)>.

The final equation has andy in boldface. Witha = 3 we findy = x>—the graph is
magnified by3. In two steps we have reached the model parabola opening upward.

* | ray )

|
¥
]
I
1
I
1

Y =3x? y=x

y=3x2-4x+1

focusat¥ = -5 focus aty =

&=

V=(0,0) directrixaty= - —

vertex at (2/3,-1/3)

Fig. 3.16  Paabola with minimum a¥. Rays reflect to focus. Centered in (b), rescaled in (c).

A parabola has another important point—theus Its distance from the vertex is
called p. The special parabola= x? has p = 1/4, and other parabolal = a X ?
havep = 1/4a. You magnify by a factou to gety = x2. The beautiful property of a
parabola is thagvery ray coming straight down is reflected to the focus

Problem2.3.25 located the focug'—here we mention two applications. A solar
collector and a TV dish are parabolic. They concentrate sun rays and TV signals
onto a point—a heat cell or a receiver collects them at the focus1982 UMAP
Journalexplains how radar and sonar use the same idea. Car headlights turn the idea
around, and send the light outward.

Here is a classical fact about parabolksom each point on the curve, the
distance to the focus equals the distance to the “directrihe directrix is the
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line y = — p below the vertex (so the vertex is halfway between focus and directrix).
With p = 1, the distance down from arfy, y) is y + 1. Match that with the distance

to the focus a(O, %)— this is the square root below. Out comes the special parabola
2.
y=x~

y+i= xz—i—(y—%)2 —— (square both sides)—— y=x2. (2)

The exercises give practice with all the steps we have taken—center the parabola to
Y =aX?, rescale it toy = x?, locate the vertex and focus and directrix.

Summary for other parabolas y = ax? 4 bx + ¢ has its vertex wherely /dx is
zero. Thu®ax + b =0andx = —b/2a. Shifting across to that point is “completing
the square™:

b 2
ax*+bx+c eqals a (x+2—) +C. ©)
a
Here C =c —(b?/4a) is the height of the vertex. The centering transform
X =x+(b/2a),Y =y —C produce¥ = aX?. ltmoves the vertex t¢0, 0), where
it belongs.
For the ellipse and hyperbola, our plan of attack is the same:

1. Center the curve to remove any linear teris andE y.
2. Locate each focus and discover the reflection property.
3. Rotate to remové x y if the equation contains it.

x2 y2
ELLIPSES — + b_2 =1 (CIRCLES HAVE a =b)
a

This equation makes the ellipse symmetric ab@yt)—the center. Changing to
—x or y to —y leaves the same equation. No extra centering or rotation is needed.
The equation also shows that/a? and y2/b? cannot exceed one. (They add
to one and can't be negative.) Therefare< a?, andx stays between-a anda.
Similarly y stays betweeh and—b. The ellipse is inside a rectangle.
By solving fory we get a function (or two functions!) of:

2 2 2 b
L1 gives X=i\/1—x— or y=1+—vVa%—-x2
b? a? b a? a

The graphs are the top h&H-) and bottom half—) of the ellipse. To draw the ellipse,
plot them together. They meet when= 0, atx = a on the far right of Figure 3.17
and atx = —a on the far left. The maximum = b and minimumy = —b are at the
top and bottom of the ellipse, where we bump into the enclosing rectangle.

A circle is a special case of an ellipse, wheg= b. The circle equation? +
y2 =r? is the ellipse equation with = b = r. This circle is centered &0, 0); other
circles are centered at=h,y = k. The circle is determined by itadiusr and its

center(h,k):
Equation of circle:  (x —h)>+ (y —k)> =r2. (4)

In words, the distance fronx, y) on the circle to(h, k) at the center is. The
equation has linear terms2hx and—2k y—they disappear when the cente(is0).
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EXAMPLE 1 Find the circle that has a diameter frain 7) to (5, 7).
Solution  The center is halfway &8, 7). Sor =2 and(x —3)2+ (y —7)% = 22.
EXAMPLE 2  Find the center and radius of the cirald — 6x + y2 — 14y = —54.

Solution ~ Completex? —6x to the square(x —3)? by adding9. Complete
y2 —14y to (y —7)? by adding49. Adding 9 and49 to both sides of the equation
leaves(x —3)% + (y — 7)% = 4—the same circle as in Example 1.

Quicker Solution Match the given equation witt#). Thenh =3,k =7, andr = 2:
x2—6x+y?—14y =—54 must agree with x> —2hx +h%+ y> —2ky +k*> =r2.

The change t& = x —h andY = y —k moves the center of the circle frofh, k)
to (0,0). This is equally true for an ellipse:
(x—h)? (y—k)? X2 y?

2 + b2 =1 becomes a_2+ﬁ:1
When we rescale by = X /a andy = Y /b, we get the unit circle? + y2 = 1.

The unit circle has area. The ellipse has arearab (proved later in the book).
The distance around the circle?is. The distance around an ellipse does not rescale—
it has no simple formula.

The ellipse

(x, y)

(0,-b)

Fig. 3.17  Uncentered circle. Centered ellipsé/32 + y2/2% = 1. The distance from center
to far right is alsoa = 3. All rays from F; reflect toFj.

Now we leave circles and concentrate on ellipses. They tvawdoci (pronounced
fo-sigh. For a parabola, the second focus is at infinity. For a circle, both foci are at
the center. The foci of an ellipse are on its longer axisr{iggor axis), one focus on
each side of the center:

Fiisatx =c=1/a?—b2 and F,isatx = —c.

The right triangle in Figure3.17 has sidesz, b, c. From the top of the ellipse, the
distance to each focusds From the endpoint at = a, the distances to the foci are
a+c¢ anda —c. Adding (¢ +¢) + (a — ¢) gives2a. As you go around the ellipse,
the distance tdF; plus the distance t@, is constan{always2a).

3H At all points on the ellipse, the sum of distances from the fodds This
is another equation for the ellipse:

from Fy andF> to (x,y) : v/ (x —¢)2 + y2++/(x +¢)2+y2=2a. (5)
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To draw an ellipse, tie a string of leng®a to the foci. Keep the string taut and your
moving pencil will create the ellipse. This description ugeendc—the other form
usesz andb (remembeb? + c2 = a?). Problen24 asks you to simplify equatiofb)
until you reachw? /a? + y? /b% = 1.

The “whispering gallery” of the United States Senate is an ellipse. If you stand at
one focus and speak quietly, you can be heard at the other focus (and nowhere else).
Your voice is reflected off the walls to the other focus—following the path of the
string. For a parabola the rays come in to the focus from infinity—where the second
focus is.

A hospital uses this reflection property to split up kidney stones. The patient sits
inside an ellipse with the kidney stone at one focus. At the other fotitlsadripter
sends out hundreds of small shocks. You get a spinal anesthetic (I mean the patient)
and the stones break into tiny pieces.

The most important focus is the Sun. The ellipse is the orbit of the Earth. See
Section 12.4 for a terrible printing mistake by the Royal Mint, on England’s
last pound note. They put the Sun at the center.

Question1  Why do the whispers (and shock waves) arrive together at thexdeco
focus?
Answer  Whichever way they go, the distanceis. Exception: straight path i&c.

Question 2 Locate the ellipse with equatiahx? + 9y? = 36.
Answer Divide by 36 to change the constant to Now identifya andb:

2 2
%4_%:1 soa:\/gandb:\/z. Fociat+v/9—4= i\/g

Question 3  Shift the center of that ellipse across and down te 1, y = —5.
Answer Changex to x—1. Changey to y+5. The equation becomes
(x —1)2/9+ (y+5)?/4=1. In practice we start with this uncentered ellipse and
go the other way to center it.

y2 x2
HYPERBOLAS — — — =1
a2 b2
Notice the minus sign for a hyperbolaTha makes all the difference. Unlike an
ellipse,x andy can both be large. The curve goes out to infinity. It is still symmetric,
sincex can change te-x andy to —y.
The center is at0,0). Solving for y again yields two functions# and—):

Vb2+x2.  (6)

The hyperbola has two branches that never meet. The upper branch, with a plus sign,
hasy >a. ThevertexV; is atx =0, y = a—the lowest point on the branch. Much
further out, wherx is large, the hyperbola climbs up besidestsping asymptotes

2 2 2
X . X
Yy gives X:J_r l+— or y=+
a

_ a
a? b2 b? b

2 2

if 2 = 1000 then 2= = 1001. S0~ is close to- or — =
b2 az Ta b b’
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F 9(0,V13)

(0, 2)

radio signals

~ reach curve
k: fixed waves
—b, 0)e— =1 e (3,0 e — ® e
( ) T b .0 time apart a reflect
L N to F,

// v 0 r= b-. ‘-"--— "'q‘

- - y = -
B ( ) o" 4 ""‘
F;II(O. —C) o‘ F, -~

Fig.3.18 The hyperbolagy? —&x2=1hasa=2,b=3,c = /4+9. The distances td";
and F, differ by 2a = 4.

The asymptotes are the lingga = x /b andy /a = —x/b. Their slopes ara /b and
—a/b. You can’'t miss them in Figure 3.18.

For a hyperbola, the foci are inside the two branches. Their distance from the
center is still called:. But now ¢ =+/a? + b2, which is larger tharm and b. The
vertex is a distance —a from one focus and + a from the other. Thalifference
(not the sum) igc +a) — (c —a) =2a.

All points on the hyperbola have this properthe difference between distances
to the foci is constantly2a. A ray coming in to one focus is reflected toward the
other. The reflection is on thautsideof the hyperbola, and tHasideof the ellipse.

Here is an application to navigation. Radio signals leave two fixed transmitters at
the same time. A ship receives the signals a millisecond apart. Where is the ship ?
Answer It is on a hyperbola with foci at the transmitters. Radio signals travel
186 miles in a millisecond, s486 = 2a. This determines the curve. In Long Range
Navigation (LORAN) a third transmitter gives another hyperbola. Then the ship is
located exactly.

Question 4  How do hyperbolas differ from parabolas, far from the center?
Answer Hyperbolas have asymptotes. Parabolas don't.

The hyperbola has a natural rescaling. The appearancéhoifs a signal to change
to X. Similarly y/a becomes. ThenY =1 at the vertex, and we have a standard
hyperbola:

y2/a*—x?/b>=1  becomes YZ?2-X2=1.

A 90° turn gives X2 — Y2 = 1—the hyperbola opens to the sides.4&° turn
produces2X Y = 1. We show below how to recognize? +xy+y%2=1 as an
ellipse andx? 4+ 3xy + y2 =1 as a hyperbola. (They are not circles because of the
xy term.) When thexy coefficient increases padt x2 + y? no longer indicates an
ellipse.

Question5  Locate the hyperbola with equati®y? — 4x2 = 36.
Answer  Divide by 36. Then y2/4—x2/9 = 1. Recognize: = v/4 andb = /9.

Question 6  Locate the uncentered hyperb®lg? — 18y —4x? — 4x = 28.
Answer Complete9y? — 18y to 9(y — 1) by adding9. Complete4x? + 4x to
4(x+1)? byadding4(%)2 = 1. The equation is rewritten &Ky — 1)> — 4(x + )% =
28 +9—1. This is the hyperbola in Questidn—except its center i(;—%, 1).

175
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To summarize: Find the center by completing squares. Then réadaoidb.

THE GENERAL EQUATION Ax2+ Bxy +Cy%+Dx+Ey+F =0

This equation is of second degree, containing any and all,af y,x2,xy, y2.
A plane is cutting through a conds the curve a parabola or ellipse or
hyperbola? Start with the most important cagec? + Bxy + Cy? = 1.

31 The equatiomx? + Bxy +cy? = 1 produces a hyperbolaB? > 4AC and
an ellipse ifB? < 4AC. A parabola ha$3? = 4AC.

To recognize the curve, we remofBer y by rotating the planeThis also changed
and C—but the combinationB> —4AC is not changed (proof omitted). An
example i2xy = 1, with B2 = 4. It rotates toy? — x? = 1, with —4AC = 4. That
positive numbed signals a hyperbola—sinee= —1 andC = 1 have opposite signs.

Another example isc2 4+ y2 =1. It is a circle (a special ellipse). However we
rotate, the equation stays the same. The combinalién-4AC =0—4-1-1 is
negative, as predicted for ellipses.

To rotate by an angle, changex andy to new variables’ andy’:

x=x'cosa—y’sina

. and
y=x'"sina + y’ cosa

()

x'= xcosa+y sSina
y'=—ysina + x cosa.

Sulstituting for x andy changesix? 4+ Bxy +Cy2 =1to A'x"?+ B'x'y’' + C'y"? =
1. The formulas ford’, B, C' are painful so | go to the key point:

B' is zero if the rotation anglex hastan2a = B/(A —C).

With B’ = 0, the curve is easily recognized fra#ix’> + C’y’? = 1. Itis a hyperbola

if A’ andC’ have opposite signs. Thét? —4A4’C’ is positive. The originaB? — 4AC

was also positive, because this special combination stays constant during rotation.
After thexy term is gone, we deal with and y—by centering To find the center,

complete squares as in Questidnand6. For total perfection, rescale to one of the

model equationy = x> or x> +y?2 =1 or y?2 —x2=1.

The remaining question is abofit= 0. Whatis the graphaflx?> + Bxy + Cy? =0?
The ellipse-hyperbola-parabola have disappeared. But if the Greeks were right, the
cone is still cut by a plane. The degenerate cBse 0 occurs when the plane cuts
right through the sharp point of the cone

A level cut hits only that one point0,0). The equation shrinks te? + y2 =0,

a circle with radius zero. A steep cut gives two lines. The hyperbola becomes
x2 =0, leaving only its asymptoteg = +x. A cut at the exact angle of the cone
gives only one line, as in? = 0. A single point, two linesandone lineare very
extreme cases of an ellipse, hyperbola, and parabola.

All these “conic sections” come from planes and cones. The beauty of the geometry,
which Archimedes saw, is matched by the importance of the equations. Galileo
discovered that projectiles go along parabolas (Chapter 12). Kepler discovered that
the Earth travels on an ellipse (also Chapter 12). Finally Einstein discovered that
light travels on hyperbolas. That is in four dimensions, and not in Chapter 12.
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equation vertices foci
5 b b? 1 o
P y=ax*+bx+c ——,c—— — above vertex, also infinity
2a 4a 4a
X2 y2
E —2+b—2:1,a>b (a,0) and(—a,0) (c,0) and(—c,0) : c = Va2 —b?
a
y2  x2
H - i 1 (0,a) and(0, —a) (0,¢) and(0, —c¢) : c = Va2 +b?
a
3.5 EXERCISES
Read-through questions
The graph of y=x2+2x+5 is a __a . Its lowest point 9 9x%2+4y%2=9 10 x2/4—(y—1)?%=1
(the vertex) is(x,y)= (__b ). Centering byX =x+1 anrd
Y= _c_ moves the vertex tq0,0). The equation becomesll y*—4x?=1 12 (y—1)2—4x?=1
Y =__d . Thefocus of this centered parabolaise . Allrays 5 y2x2=0 14 xy=0

coming straight down are_f __to the focus.
The graph ofx2+4y2=16isan g . Dividing by _ h Problems 15-20 are about parabolas21-34 are about ellipses

leaves x2/a? +y2/b2=1 with a=__i _and b= | . The 35-41areabouthyperbolas
graph lies in the rectangle whose sides arek . The area 15 Find the parabolay=ax2+bx+c that goes through
is mab=__1 . The foci are atx =fc=__m__. The sum of (0,0) and(1,1) and(2, 12).
distances from the foci to a point on this ellipse is always 2

n_. If we rescale toX =x/4 and ¥ = y/2 the equation 6 y=x“—x has vertex at_ . To movezthe vertex to
becomes o _and the graph becomes ap . O.0)setx=___ and¥=___.ThenY =X~

The graph of y2—x2=9is a q . Dividing by 9 leaves 17 (a) Inequation (2) changk to p. Square and simplify.

y2/a? —x%/b? =1witha=_r andb=__s . On the upper (b) Locate the focus and directrix of =3X2. Which

branch y > __t . The asymptotes are the lines u_. The foci points are a distanckfrom the directrix and focus ?
are aty = .ic =_ Vv . The w__of distances from the focito a13 The parabolay=9—x2 opens with vertex at
paint on this hyperbolais x . . Centering byY = y —9yieldsY = —x2.

All these curves are conic sections—the intersection of;&@ king equations for all parabolas which
y anda__z . A steep cutting angle yields a A . At he right with
the borderline angle we get a B . The general equation is (@) gpentothe rig tYV't vertex 40.0)
Ax24+__C _+F=0.If D=E =0 the center of the graph is at  (b) open upwards with focus &,0)
D . The equatiomx? + Bxy +Cy? =1 gives an ellipse when ~ (¢) open downwards and go through 0) and(1,0).

__E . Thegraphofdx®+5xy +6y*=1isa_F . 20 A projectile is atx=r¢, y=r—t? at time ¢. Find dx/dt

1 The vertex of y =ax2+bx+c is at x=—b/2a. What is anddy/dt at the start, the maximum height, and an equation
special about this ? Show that it gives = ¢ — (b2 /4a). for the path.

21 Find the equation of the ellipse with extreme points at
(£2,0) and(0, =1). Then shift the center t0l, 1) and find the new
equation.

2 The parabola y=3x2—12x has xmn=___ . At this
minimum, 3x2is __ as large ad2x. Introducing X = x —2
andY = y + 12 centers the equationto .
22 On the ellipse, x2/a®?+y2/b2 =1, solve for y when

Draw the curves 3-14 by hand or calculator or computer x=c =+/a2—b2. This height above the focus will be valuable in
Locate the vertices and foci. proving Kepler’s third law.
23 Find equations for the ellipses with these properties:

(@) through(5,0) with foci at (+4,0)
5 4y =—x? 6 4x=y? (b) with sum of distances td, 1) and(5, 1) equal to12
7 x=D2+(y—-12=1 8 x24+9y2=9 (c) with both foci at(0,0) and sum of distances 2a = 10.

3 y=x2—2x-3 4 y=(x—1)>2
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24 Move a square root to the right side of equation (5) ark$ Rotate the axes ok%+xy+y2=1 by using equation (7)
squae both sides. Then isolate the remaining square root and squeite sinae = cosx = 1/4/2. The x’y’ equation should show an
again. Simplify to reach the equation of an ellipse. ellipse.

25 Decide between circle-ellipse-parabola-hyperbola, basedenss What ares, b, ¢ for the Earth’s orbit around the sun ?
XY equation withX =x —1 andY =y +3.

35 Find an equation for the hyperbola with
(@ x2—2x+y%2+6y=6 a yp

() x2—2x—y2—6y=6 (a) \ertices(0,=+1), foci (0, £2)
(€ x2—2x+2y2+12y=6 (b) vertices(0, +3), asymptotey = +2x
(d) x2—2x—y=6. (c) (2,3) on the curve, asymptotgs= +x

26 A tilted cylinder has equation (x—2y—2z)2+ 36 Find the slope of y? —sz =1 at (xo,y0). Show that
(y —2x —2z)% = 1. Show that the water surface at=0 is an el- yyo—xxo =1 goes through this point with the right slope (it has
lipse. What is its equation and whatB% —4AC ? to be the tangent line).

27 (4,9/5) is above the focus on the ellips€/25+y2/9=1. 37 If the distances from(x,y) to (8,0) and (—8,0) differ by
Finddy/dx at that point and the equation of the tangent line. 10, what hyperbola contains, y) ?

28 (a) Check that the linexxo+yyo=r? is tangent to the 38 If a cannon was heard by Napoleon and one second later

circlex? + y2 = r2 at(xo, yo)- by the Duke of Wellington, the cannon was somewhere on a

(b) For the ellipsex2/a? + y2/b% =1 show that the tangent With fociat .

equation isvxg/a? + yyo/b% = 1. (Check the slope.) 39 y2—4y is part of (y—2)2= and 2x2+12x
is part of 2(x 4+ 3)% = . Thereforey? —4y —2x2 —12x =0

gives the hyperbolgy —2)2 —2(x +3)% = . Its center is
and it opens to the .

40 Following Problem 39 tum y2+2y=x2+10x into
Y2 =X24C with X, Y, andC equal to )

41 Draw the hyperbolax?—4y2=1 and find its foci and
asymptotes.

29 The slope of the normal line in FigureA is

s = —1/(slope of tangent= . The slope of the line from Problems 42-46 are about second-degree curves (conics)
F2is§= . Bythereflection property, 42 For whichA4,C, F doesAx?+Cy? + F =0 have no solution
1 1 1 ?
S =cot20 = E(cot@ —tanf) = 3 (s - —) . (empty graph)
§ 43 Show thatx2+2xy+y2+2x+2y+1=0 is the equation
Test your numbers andS against this equation. (squared) of a single line.
30 Figure B proves the reflecting property of an ellipse44 Given any points in the plane, a second-degree

R is the mirror image of; in the tangent lineQ is any other point curve Ax2+--- + F =0 goes through those points.
on the line. Deduce steps3.4 from 1,2, 3:

. ) ) 45 (a) When the plane =ax +by +c¢ meets the conez? =
1. PF1+ PF, < QF1+ QF, (left side=2a, Q is outsidé

x2+y2, eliminatez by squaring the plane equation. Rewrite

2. PR+PF, <QR+QOF in the formAx2 + Bxy + Cy2 + Dx+ Ey + F =0.

3. P ison the straight line fron¥, to R (b) ComputeB2 —4AC in terms ofa andb.

4. a = p: the reflecting property is proved. (c) Show that the plane meets the cone in an ellipse if
31 The ellipse (x —3)2/4+(y—1)2/4=1 is really a a?+b? <1and a hyperbola it + b2 > 1 (steepe).
with center at and radius . ChooseX and Y to

46 The roots of ax?24+bx+c=0 also involve the special
combinationb? — 4ac. This quadratic equation has two real roots if
32 Compute the area of a square that just fits inside the and no real roots if . The roots come together when
ellipsex2/a? 4+y2/b% =1. b2 = 4ac, which is the borderline case like a parabola.

produceX? +Y2=1.
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I s 6 lterations x4 = F(x,) N

Iteration means repeating the same functioSuppose the function is'(x) =
cosx. Choose any starting value, say = 1. Take its cosinex; = cosxy = .54.
Then take the cosine of;. That produces:; = c0s.54 = .86. The iteration is
Xn+1 = COSX,. | am in radian mode on a calculator, pressiegS each time. The
early numbers are notimportant, what is important is the output Bter 30 or 100
steps:

EXAMPLE 1 x12=.75, )C]3=.73, X14=.74, ooy X29=.7391, X30:.7391.

The goal is to explain why the’s approachx* =.739085 .... Every starting value
X leads to this same numhe¥. What is special about7391 ?

Note on iterations Do x; = C0Sxg, and x, = COSx;, mean thatr, = coFxg ?
Absolutely not! Iteration creates a new and different functiogcosx). It uses the
cos button, not the squaring button. The third step creBt{ds(F(x))). As soon as
you can, iterate withr, + 1 = 1 cosx,. Whatlimit do thex’s approach ? Is i (.7931) ?

Let me slow down to understand these questidie central idea is expressed
by the equationx, +; = F(x,). Substitutingrq into F givesx;. This outputx; is
the input that leads t®,. In its turn, x; is the input and out comes, = F(x,). This
is iteration, and it produces the sequengg x1, x2, . ...

The x’s may approach a limix*, depending on the functiof. Sometimesx*
also depends on the starting valuyg Sometimes there isolimit. Look at a second
example, which does not need a calculator.

EXAMPLE 2 Xxp4+1=F(xp) = %xn + 4. Starting fromxo = 0 the sequence is
x1=3-0+4=4, x,=3-444=6, x3=2-6+4=7, x4=1-T+4=75, ...

Those number9,4,6,7,7%, ... seem to be approaching’ = 8. A computer would
convince us. So will mathematics, when we see what is special 8bout

When thex’s approachx *, the limit of x,, 1 = %xn +4
is x* = 2x* 4 4. This limiting equation yieldsc* = 8.
8 is the “steady state” wheiiaput equals output8 = F(8). It is thefixed point

If we start atxy = 8, the sequence i8,8,8,.... When we start aty = 12, the
sequence goes back towad

x1=3-12+4=10, x;=3-10+4=9, x3=3-9+4=85,
Equation for limit: If th e iterationsx,+; = F(x,) converge tax*, thenx* = F(x*).

To repeat8 is special because it equa%-8 +4. The number.7391... is special
because it equalsos.7391.... The graphs ofy =x and y = F(x) intersect at
x*. To explainwhythe x’s converge (or why they don't) is the job of calculus.

EXAMPLE 3 x,4+1=x2 has wo fixed points: 0=0% and 1=12. Here
F(x)=x2.
11

Starting fromx, = 1 the sequence, -, 51, ... goes quickly tax* = 0. The only
approaches ta™ =1 are fromxy = 1 (of course) and fromxy = —1. Starting from
Xxo =2 we get4, 16,256, ... andthe sequence diverges+ox.
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Each limitx* has a basin of attraction” The basin contains all starting pointg
that lead tax*. For Exampled and2, everyxq led t0.7391 and8. The basins were
the whole line (that is still to be proved). Example 3 had three basins—the interval
—1 < x < 1, the two pointstg = £1, and all the rest. The outer bagiry| > 1 led
to £oo. | challenge you to find the limits and the basins of attraction (by calculator)
for F(x) = x —tanx.

In Example 3,x* =0 is attracting. Points neax® move towardx*. The fixed
pointx* = 1 isrepelling. Points neat move away. We now find the rule that decides
whetherx* is attracting or repellingThe key is the slope F/dx at x*.

3J Start from anyx, neara fixed pointx* = F(x™):

x* is attractingif |d F/dx| is belowl atx*
x* isrepelling if |dF/dx|is abovel atx*.

First | will give a calculus proof. Then comes a picture of convergencegbigwebs’
Both methods throw light on this crucial test for attractiphF/d x| < 1.

First proof: Subtrack™ = F(x*) from x,41 = F(x,,). The differencec,, +1 — x*
is the same a#'(x,) — F(x*). ThisisA F. The basic idea of calculus is thah F
is close toF’ Ax:

Xpi1—x*=F(x,)— F(x") ~ F'(x*)(x, —x%). (1)

The “error” x,, — x* is multiplied by the slope/ F/dx. The next errorc,, 41 —x* is
smaller or larger, based ofF’| <1 or |F'|>1 at x*. Every step multiplies
approximately byF’(x*). Its size controls the speed of convergence

In Example 1,F(x) is cosx and F’(x) is —sinx. There is attraction t67391
becausésinx*| < 1.In Example 2,F is 1x +4 and F’ is 1. There is attraction to
8. In Example 3,F is x? and F' is 2x. There is superattraction to* = 0 (where
F’ =0). There is repulsion from* = 1 (whereF’ = 2).

I admit one major difficulty. The approximation in equati¢l) only holdsnear
x*. If xq is far away, does the sequence still approatl? When there are several
attracting points, whichc* do we reach? This section starts with good iterations,
which solve the equatian®™ = F(x*) or f(x) = 0. At the end we discovédewton’s
method The next section produces crazy but wonderful iterations, not converging and
not blowing up. They lead toffactals’ and “Cantor setsand “chaos.”

The mathematics of iterations is not finished. It may never be finished, but we are
converging on the answers. Please choose a function and join in.

THE GRAPH OF AN ITERATION: COBWEBS

The iterationx, +1 = F(x,) involves two graphs at the same time. One is the graph

of y = F(x). The other is the graph of = x (the45° line). The iteration jumps back

and forth between these graphs. It is a very convenient way to see the whole process.
Example 1 wasx,; = C0Sx,. Figure 3.19 shows the graph obsx and the

“cobwely Starting at(xg, x¢) on the45° line, the rule is based am = F(xy):

From (xg,xo) goup or down to(xg,x1) on the curve

From(xg,x1) go across tqx,x1) on the45° line.
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These steps are repeated forever. Frgngo upto the curve atF'(x;). That height
is x2. Now cross to thé5° line at(x;, x»). The iterations are aiming fac ™, x*) =
(.7391,.7391). This is thecrossing poinbf the two graphy = F(x) andy = x.

X0 \F{\} = Cos X
F(x;) 1

!.‘(_\-' )T

F(-"z) T F(x)= :l} x+4
F(x") 4 ) Fexy) /
; L/ y=x
Pt F(x,) >
y=x
\

54 .739 86 1

+—t X + +—t—

- . - . 5 n .
.ll X ,\.2 .t’u ,t’ﬂ ,\.! ,13 .lj X

Fig. 3.19 Cobwebs go from(xg, xo) t0 (x0,x1) to (x1,x1)—Iline to curve to line.

Example 2 wasy, 1 = %xn + 4. Both graphs are straight lines. The cobweb is
one-sided, from0,0) to (0,4) to (4,4) to (4,6) to (6,6). Notice howy changes
(vertical line) and thenx changes (horizontal line). The slope Bix) is 1, o the
distance td& is multiplied by% atevery step.

Example 3 was, 1 = x2. The graph ofy = x? crosses thd5° line at two fixed
points:02 = 0 and 1% = 1. Figure 3.20a starts the iteration closeltdout it quickly
goes away. This fixed point is repelling becausd1) = 2. Distance fromx* =1
is doubled (at the start). One path moves down te= 0—which issuperattractive
becausd’ = 0. The path fromxg > 1 diverges to infinity.

EXAMPLE 4  F(x) has two attracting points* (a repellingx * is always between).

Figure 3.20b shows two crossings with slope zero. The iterations and cobwebs
converge quickly. In between, the graph/ofx) must cross thd5° line from below.
That requires a slope greater than one. Cobwebs diverge from this unstable point,
which separates the basins of attraction. The fixed poiatr is in a basin by itself!

Notel To draw cobwebs on a calculator, grapk= F(x) on top ofy = x. On
a Casio, one way is to pldtxg, xo) and give the command LINE: PLOT
X , Y followed by EXE. Now move the cursor vertically tg = F(x) and press
E X E. Then move horizontally t¢ = x and pres€ X E. Continue. Each step draws
aline.
For the TI-81 (and also the Casio) a short program produces a cobwebFtore
in the Y = function slotY 1. Set the range (square window or autoscaling). Run the
program and answer the prompt with:

PrgmC:COBWEB :Disp '""INITIAL X@'' :Input X :All-off
:Y1-0n ::'"'X'"'>Y4 :Lbl 1 :X—>S :Yq->T :Line (S,S,S,T)
:Line(S,T,T,T) :T—»X :Pause :Goto 1

Note2 Thex’s approachx™ from one side whefl < dF/dx < 1.

Note3 A basin of attraction can include faraway's (basins can come in infinitely
many pieces). This makes the problem interesting. If no fixed points are attracting,
see Section 3.7 for “cycles” and “chaos.”

181
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2n 1

F(x)=x—-sinx

slope
l-cosm=2
repels
attracting
x*=0
e 2n

Fig. 3.20 Converging and diverging cobweb#(x) = x2 and F(x) = x —sinx.

THE ITERATION Xp41=Xn—cf (xp)

At this point we offer the reader a choice. One possibility is tmjuahead to the
next section on “Newton’s Method.” That method is an iteration to s¢iye) = 0.

The function F(x) combinesx, and f(x,) and f’(x,) into an optimal formula

for x,+1. We will see how quickly Newton’s method works (when it works). Ithe
outstanding algorithm to solve equations, and it is totally built on tangent
approximations.

The other possibility is to understand (through calculus) a whole family of
iterations. This family depends on a numlegmwhich is at our disposallhe best
choice ofc produces Newton’s method emphasize that iteration is by no means a
new and peculiar idedt is a fundamental technique in scientific computing

We start by recognizing that there are many ways to reach*) = 0. (I write
x* for the solution.) A good algorithm may switch to Newton as it gets close. The
iterations usef (x,) to decide on the next point, 4 :

Xpt1=F(xp) =xp—cf(xn). (2

Notice howF (x) is constructed frony (x)—they are different! We movg  to the
right side and multiply by a “preconditionet” The choice ot (or ¢,, if it changes
from step to stepis absolutely critical. The starting guesg is also important—but
its accuracy is not always under our control.

Suppose the,, converge toc*. Then the limit of equatiof2) is

x*=x*—cf(x*). 3
Thatgives f(x*) =0. If the x,’s have a limit, it solves the right equation. It is a

fixed point of F' (we can assume, — ¢ # 0 and f(x,) — f(x*)). There are two
key questions, and both of them are answered by the diéfe*):

1. How quickly doesy,, approachc* (or do thex, diverge)?
2. What is a good choice af (or ¢,) ?

EXAMPLES5 f(x)=ax—b is zero at x*=b/a. The iteration x,4+; =
Xn —c(ax, —b) intends to findb/a without actually dividing. (Early computers



3.6 lterations x,4+1 = F(x,) 183

could not divide; they used iteration.) Subtracting from both sides leaves an
equation for the error:

Xp+1—x¥=x, —x*—c(ax, —b).
Replaceb by ax*. The right side iq1 — ca)(x, — x*). This “error equation” is
(error),;1 = (1 —ca)(error),. (4)

At ewery step the error is multiplied byl — ca), which is F’. The error goes to
zero if| F’| is less tharl. The absolute valugl — ca| decides everything:

xn convergestoc™ ifand only if —1 <1—ca<1. (5)

The perfect choice (if we knew it) is = 1/a, which turns the multiplied — ca into

zero. Then one iteration gives the exact answer= xo — (1/a)(axo—b) =b/a.

That is the horizontal line in Figure 3.21a, converging in one step. But look at the
other lines.

This example did not need calculus. Linear equations never do. The key idea is that
close tox* the nonlinear equatiorf (x) = 0 is nearly linear We apply the tangent
approximation. You are seeing how calculus is used, in a problem that doesn't start
by asking for a derivative.

THE BEST CHOICE OF ¢

The immediate goal is to study the errorg —x*. They go quickly to zero, if
the multiplier is small. To understand,+; = x, —cf(x,), subtract the equation
x*=x*—cf(x*):

X1 — X5 =X, —x* —c(f(xn) — f(x¥)). (6)

Now calculus enterdVhen you see a difference of 's think of df/dx. Replace
f(xn)— f(x*) by A(x, —x*), whereA stands for the slopéf/dx atx*:

Xnt1— X" = (1 —cA)(xp—x¥). (7)

Thisis theerror equation The new error at step+ 1 is approximately the old error
multiplied by m =1 —cA. This corresponds te: = 1 —ca in the linear example.
We keep returning to the basic test| = | F'(x*)| < I:

3K Starting neax*, the errorsy, — x* go to zero if multiplier hagm| < 1. The
perfect choiceis = 1/A=1/f"(x*). Thenm=1—cA=0.

There is only one difficultyWe don’t know x*. Therefore we don't know the
perfectc. It depends on the slopé = f’(x*) at the unknown solution. However we
can come close, by using the slopexat

Chooser, = 1/f"(xn). Thenx, 11 = xp, — f(xn)/f'(xn) = F(xn).

This is Newton’s methodThe multiplier m = 1 —cA is as near to zero as we can
make it. By buildingdf/dx into F(x), Newton speeded up the convergence of the
iteration.



184 3 Applications of the Derivative

F(x) F(x) F'(x*®)
x=clax=b): good X =V (xg) 0.018

X —l(u_r —b) : best x=fxyf'(x) 0.000
a v=f() -1.435

2 s
X ==(ax—=b) : fail
a

Xo flx)=2x—cos.x

Fig. 3.21  Theerror multiplier ism = 1 —cf’'(x*). Newton has = 1/f"/(x,) andm — 0.

EXAMPLE 6 Solve f(x) = 2x —cosx = 0 with different iterations (different’s).

The line y =2x crosses the cosine curve somewhere n:ear% The intersection

point where2x* = cosx* has no simple formula. We start froxg = % ard iterate
Xn+1 = Xn —c(2x, — COSx,) with three different choicesf c.
Takec =1o0rc=1/f"(xo) or updater by Newton’s rulec, = 1/f"(x,):

xo=.50 c=1 c=1/f"(xo) cn = 1/f"(xn)

X1 = .38 45063 45062669
Xy = .55 .45019 45018365
X3 = .30 45018 .45018361....

The column withc =1 is diverging (repelled fronx*). The second column shows
convergence (attracted 1d*). The third column (Newton’s method) approaches
so quickly that4501836 and seven more digitsre exact fors.

How does this convergence match the prediction ? Notefh@t) =2+ sinx so
A =2.435. Look to see whether the actual errazs— x*, going down each column,
are multiplied by the predictea below that column:

c=1 c=1/Q24+sind) ¢ =1/@2+sinx,)
xXo—x* = 0.05 4.98-102 4.98-102
xXp—x* = —0.07 4.43.10~* 4.43.10~%
Xy —Xx*= 0.10 7.88-10~° 3.63-108
X3—x*= —0.15 1.41-1077 2.78-10"16
multiplier m=—1.4 m=.018 m — 0 (Newton)

The first column shows a multiplier belowl. The errors grow at every step. Because
m is negative the errors change sign—the cobweb goes outward.

The second column shows convergence with=.018. It takes one genuine
Newton step, thert is fixed. After n steps the error is closely proportional to
m" = (.018)"— that is Yinear convergencéwith a good multiplier.

The third column shows thequiadratic convergenceof Newton's method.
Multiplying the error bym is more attractive than ever, because— 0. In fact m
itself is proportional to the error, sat each step the error is square@®roblem
3.8.31 will show that(erron, +1 < M(erroﬂﬁ. This squaring carries us frof0 2
to 10~*to 10~8 to “machines” in three steps. The number of correct digits is doubled
at every step as Newton converges.
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Note 1  The choicec =1 producesx;,+1 =x,— f(x,). This is “successive
substitution.” The equatiorf(x) = 0 is rewritten asx = x — f(x), and eachx, is
substituted back to produasg 1. Iteration withc = 1 does not always fail!

Note2 Newton’s method is successive substitution fgrf”’, not . Thenm = 0.

Note3 Edwards and Penney happened to choose the same exampleosx.
But they cleverly wrote it as, 41 = 1 cosx,, which has| F'| = |1 sinx| < 1. This
iteration fits into our family withc = % and it succeeds. We asked earlier if its limit
is 2(.7391). No, itis x* = .450.....

Note4 The choice = 1/f"(x) is “modified Newtor After one step of Newton’s
method,c is fixed. The steps are quicker, because they don't require affiéwy,).

But we need more steps. Millions of dollars are spent on Newton’s method, so speed
is important. In all its formsf(x) = 0 is the central problem of computing.

3.6 EXERCISES

Read-through questions 10 Fromxg = —1 compute the sequencg,+ = —x,3,. Draw the
cobweb with its “cycle.” Two steps produog, 4+, = x,9,, which has

Xn+1=x describes, an__a . After one stepx;=__Db . the fixed points .

= = c .

et — OUtpUt, o™ -8 e o a._e_poim F —x’ 1L Draw the cobwebs fory.1 = 4x, —1 and.v,i =1~ bx,

hes _ f _ fixed points, atx*= g . Starting near a fixed ;tartlng from xo =2. Rule: Cobwebs are two-sided whei¥ /dx

point, the x, will converge to itif __h < 1. That is because s

Xn41—x*=F(xp)—F(x*)~__i . The pointis called j . 12 Draw the cobweb forx,4+;=x2—1 starting from the

The x, are repelled if__k . For F =x3 the fixed points have periodic pointxo =0. Another periodic point is . Start

F'=__1 . The cobweb goes frorfxg,xo) to (,) to (,) and con- nearby at xo=.1 to see if the iterations are attracted to

verges tox*,x*)=__m . Thisis an intersection of =x3 ard 0,—1,0,—1, ....

y=__n__,anditis superattracting becauseo .

Solve equations 13-16 within 1% by iteration

_ f(x_):O can be solved iteratively t_)ycn+1:x,,—cf(x,,), 13 x:cos%x 14 x = cos2x

in which caseF/(x*)= p . Subtractingx* =x* —cf(x*),

the error equation isc,+1—x*~m (__q ). The multiplier ° X =C0S4/x 16 x=2x—1(??)

is m=__r__. The errors approach zero if s . The chmpe 17 For which numbers: does x4 1 :a(xn—x,%) converge to
cp=__t produces Newton's method. The choiee=1 is ,x_go

“successive __u " and c¢= v__ is modified Newton. ) )

Convergence toc* is__w__certain. 18 For which numbers: does x, 41 =a(x, —x;) converge to

x*¥=(a—-1)/a?

19 lterate x,+1 :4(xn—x,2,) to see chaos. Why don't the,
approachc* = 3 ?

We have three ways to study iterationsx,+; = F(x,):
(1) computexy, xa, ... from differentxo (2) find the fixed points
x*and tesidF/dx| <1 (3) draw cobwebs.

20 One fixed point OfF(x):xz—% is atracting, the other is

In Problems 1-8 start from xo=.6 and xo=2. Compute repelling. By experiment or cobwebs, find the basincgh that go

X1, X2, ... to test convergence to the attractor.
1 Xpi1 :x,%—% 2 Xp41=2xn(1—xn) 21 (|mportant) Find the fixed point foF (x) = ax +s. When is it
attracting ?
3 x =./x 4 x =1/yx
il " nt+1 =1/ 22 What happens in the linear casgy; =ax, +4 when a =1
5 Xp+1=3xn(1—xn) 6 Xp+1=2%7+Xn—2 and whery = —17?
7 Xp41= %Xn —1 8 Xn+1=|xn] 23 Starting with 4,000, you spend half your money each year

and a rich but foolish aunt gives you a new,®0. What is
9 CheckdF/dx at dl fixed points in Problems 1-6. Are theyyour steady state balance* ? What isx™* if you start with a
attracting or repelling ? million dollars ?
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24 The US national debt was oncel $trillion. Inflation 37 Find the multiplier m at each fixed point of x,4+; =
reduces its real value 826 each year (so multiply by = .95), but  x, —c(x,% —xp). Predict the convergence for different(to which
overspending adds anothel0® billion. What is the steady state debtx* ?).
x*?

) ) . 38 Make a table of iterations for=1 and ¢ =1/f'(xp) and
25 xp+1=hb/x, has the fixed point x* =+/b. Show that ¢=1//"(x), when f(x) = x> — L and xo = 1.

|dF/dx|=1 at that point—what is the sequence starting frog?

26 Show that both fixed points Ofvy4i=x2+x,—3 are 39 Intheiterationfor®—2=0, finddF/dx atx*:
repelling. What do the iterations do ?
27 A $5 calculator takes square roots but not cube roots. Explain _ - 2
3 Xn+1 Xn + .
why x,,+1 = A/2/x, converges tov/2. 2 Xn

28 Start the cobwebs for, 4+ =sinx, amd x,4+; =tanx,. In
both cases/F/dx =1 at x* =0. (a) Do the iterations converge? (b) Newton's iteration hasF(x)=x— f(x)/f’(x). Show

(b) Propose a theory based 61 for cases wheF’ = 1. that F' =0 when f(x)=0. The multiplier for Newton is
m=0.
Solve f(x) =0in 29-32 by the iterationx, 1 = x, —cf(xn), to
find a ¢ that succeeds and a that fails. 40 What are the solutions off(x) =x?>+2=0 and why is
Newton’s method sure to fail? But carry out the iteration to see
29 f(x)=x2-4 30 f(x)=x%—4x+3 whetherx; — o0.
31 f(x)=(x—2)°—1 32 f(x)=(01-x)7""=3 41 Computer projectF(x)=x—tanx has fixed points where

tanx™* =0. Sox* is any multiple ofz. Fromxy =2.0 and1.8 and
1.9, which multiple do you reach ? Test pointsliry < x¢ <1.9to
find basins of attraction t@, 2x, 37,47

33 Newton's method computes a new=1/f'(x,) at each
step. Write out the iteration formulas fof(x) =x3—2=0 and
fx)y=sinx—1=o.

. . . . Between any two basins there are basinssf@rymultiple of r.
34 Apply Problem33 to find the first six decimals oR/2 and g more basins between theseftactal). Mark them on the line
/6. from 0 to 7. Magnify the picture arounao = 1.9 (in color ?).

35 By experiment find eachx®* and its basin of attraction, 4

when Newton’s method is applied t(x) = x2 —5x +4. 2 Graph cosr andcos(cosx) and cogcogcosx)). Also (co93x.

What are these graphs approaching ?
36 Test Newton's method om2—1=0, starting far out at

xo=10°. At first the error is reduced by about = % Near 43 Graph sinx and sn(sinx) and(sin)®x. What are these graphs
x* =1 the multiplier approaches = 0. approaching ? Why so slow ?
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I 3.7 Newton's Method (and Chaos) IS

The equation to be solved i5(x) = 0. Its solutionx* is the point where the graph
crosses the axis. Figure 3.22 shows* and a starting guesgy. Our goal is to come
as close as possible 1d°, based on the informatiofi(xo) and f”(xo).

Section 3.6 reached Newton’s formula for (the next guess). We now do that
directly.

What do we see aty ? The graph has heighff(xo) and slopef’(xq). We know
where we are, and which direction the curve is going. We don’t know if the curve
bends (we don’t havg”). The best plan ito follow the tangent ling which uses
all the information we have.

Newton replacey’(x) by its linear approximation= tangent approximation):

J ()& f(xo)+ f'(xo0) (x — xo). 1)

We want the left side to be zero. The best we can do is to make the right side zero!
The tangent line crosses the axiscat while the curve crosses at'. The new guess

x1 comes fromf(xo) + f”/(x0)(x1 — x0) = 0. Dividing by f’(x¢) and solving for

X1, this is stepl of Newton’s method:

_ f(xo)
* fr(xo)

At this new point, computef(x1) and f/(x;)—the height and slope at;. They
give a new tangent line, which crossesxat At every step we wanf'(x,+1) =0
and we settle forf (x,) + f'(xn)(xn+1 — x»n) = 0. After dividing by f'(x,), the
formula forx, 4 is Newton’s method.

X1 =X

)

3L The tangent line from,, crosses the axis at;,+:
X
Newton’s method  x,4+1 =x, — J(n) . 3)
S (xn)
Usually this iterationy, 1 = F(x,) converges quickly ta*.
2 T 1
f{-\') = T 2

converge 1o x* =5

xXp=.7 x=121

tangent
line

Fig. 3.22 Newton's method along tangent lines frarg to x; to x.
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Linear approximation involves three numbers. TheyAre(aaoss) andA f (up)
and the slopef”’(x). If we know two of those numbers, we can estimate the third. It
is remarkable to realize that calculus has now used all three calculations—they are
the key to this subject:

1. Estimate the slopg’(x) fromA f/Ax (Section 2.1)
2. Estimate the changa f from f/(x)Ax (Section 3.1)
3. Estimate the chang&x fromA f/ f/(x) (Newton’s method)

The desired\ f is — f(x,). Formula(3) is exactlyAx = — f(x,)/ f'(xn).

EXAMPLE 1 (Squareroots) f(x) =x2—biszeroatc* = +/b and also at-/b.
Newton’s method is a quick way to find square roots—probably built into your
calculator. The slope i$’(x,) = 2x,, and formula(3) for the new guess becomes

x2—b 1 b
Xn+1=Xp — ;x =Xn— Exn + E (4)
n n

This simplifies tox, +1 = %(x,, +b/x,). Guess the square ropdivide intob, and
average the two numbers. The ancient Babylonians had this same idea, without
knowing functions or slopes. They iterategly; = F(x,):

1 b 1 b
F(X):E(X%»;) and F/(X):E(l_x_z) (5)

The Babylonians did exactly the right thing. The slop# is zeroat the solution
whenx? = b. That makes Newton’s method converge at high speed. The convergence
testis| F/(x*)| < 1. Newton achieved”’(x*) = 0—which issuperconvergence

To find /4, start the iteration Xn41 = %(x,, +4/x,) at xo=1. Then

1 .
X1 = 5(1 +4):
x1=2.5 x2=2.05 x3=2.0006 x4=2.000000009.

The wrong decimal is twice as far out at each stépe error is squared
Subtractinge* = 2 from both sides ok, +; = F(x,) gives arerror equatiorwhich
displays that square:

1 4 1
Xnt1—2==|xpn+—)—-2= (xn_2)2' (6)
2 2x

n n

Thisis(error),4+1 ~ %(error)?,. It explains the speed of Newton’s method.

Remark1l You can't start this iteration ato = 0. The first step computes/0
and blows up. Figure 3.22a shows why—the tangent line at zero is horizontal. It will
never cross the axis.

Remark2 Starting atvg = —1, Newton converges te\/§ instead of+\/§. That
isthe otherx*. Often it is difficult to predict whiche * Newton’s method will choose.
Around every solution is a “basin of attraction,” but other parts of the basin may be
far away. Numerical experiments are needed, with many startBinding basins of
attraction was one of the problems that led to fractals.
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1 1
EXAMPLE 2 Solve— —a =0to findx* = — without dividing bya.
X a

Here f(x)=(1/x)—a. Newton usesf’(x)= —1/x2. Surprisingly, we don’t

divide: (1/x,)
Xp)—a 5
xn+1:xn—T/xrzl:xn+xn—axn. (7)
Do these iterations converge ? | will take= 2 and aim forx* = 1. Subtracting%

2
from both sides of7) changes the iteration into the error equation:

Xn41=2X, —2x> becomes X1 — % = —2(xn — %)2 (®)

At each step the error is squared. This is terrific if (and only if) you are close to
x* = % Otherwise squaring a large error and multiplying-b{ is not good:

xXo=.70 x1=.42 x,=.487 x3=.4997 x4 =.4999998
xo=121 x1=—=5 xp=—15 x3=—75 x4=-127.5

The algebra in Problemh8 corfirms those experiments. There is fast convergence if
0 < xo < 1. There is divergence ify is negative ory > 1. The tangent line goes to
a negativer;. After that Figure 3.22 shows a long trip backwards.

In the previous section we dreW(x). The iterationx,+; = F(x,) converged to
the45° line, wherex™ = F(x™). In this section we are drawing(x). Now x* is
the point on the axis wherg(x*) = 0.

To repeat: It is f(x*) =0 that we aim for. But it is the slopd’(x*) that
decides whether we get there. Example 2 Rgs) = 2x — 2x2. The fixed points are
x*= % (our solution) andr * = 0 (not attractive). The slopes’(x*) are zero (typical
Newton) and2 (typical repeller).The key to Newton’s method &' =0 at the
solution

S L S
frx)  (f1(x)?

The examples? = b and1/x = a show fast convergence or failure. In Chapter 13,
and in reality, Newton's method solves much harder equations. Here | am going to
choose a third example that came from pure curiosity about what might happen. The
results are absolutely amazing. The equatiorfis= —1.

The slope ofF (x) = x . ThenF’(x) = 0when f(x) = 0.

EXAMPLE 3 What happens to Newton’s method if you ask it to solve
f(x)=x24+1=07?

The only solutions are the imaginary numbefs=i andx* = —i. There is no real
square root of—1. Newton’s method might as well give up. But it has no way to
know that! The tangent line still crosses the axis at a new pgjnt;, even if the
curvey = x2 + 1 never crosses. Equatig¢h) still gives the iteration fob = —1:

1 1
Xnt1= 5| Xn—— | = F(xn). )
2 Xp
Thex’s cannot approachor —i (nothing is imaginary). So what do they do ?
The starting guessy = 1 is interesting. It is followed by = 0. Thenx, divides
by zero and blows up. | expected other sequences to go to infinity. But the experiments
showed something different (and mystifying). Whenis large x, 41 is less than half
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as large. Afterx, =10 comes x,+1 = 3(10— 1) = 4.95. After much indecision
and a long wait, a number near zero eventually appears. Then the next guess divides
by that small number and goes far out again. This reminded me of “chaos.”

It is tempting to retreat to ordinary examples, where Newton’s method is a big
success. By trying exercises from the book or equations of your own, you will see that
the fast convergence te/4 is very typical. The function can be much more
complicated thanx? — 4 (in practice it certainly is). The iteration f@r = cosx was
in the previous section, and the error was squared at every step. If Newton’s method
starts close ta:*, its convergence is overwhelming. That has to be the main point of
this sectionfollow the tangent line

Instead of those good functions, may | stay with this strange exaniplel =0 ?

It is not so predictable, and maybe not so important, but somehow it is more
interesting. There is no real solutiari, and Newton’s methosl, +; = %(xn —1/xp)
bounces around. We will now discovey.

A FORMULA FOR x,

The key is an exercise from trigonometry books. Most of thosdlpros just give
practice with sines and cosines, but this one exactly%ms, —1/xp):

1 /cosf sinf _00829 or 1 cot o 1 _ col20
2\sin6 cosf ) sin26 2 cotd )

In the left equation, the common denominato? &in # cosf (which issin26). The
numerator isco$6 —sir?f (which is cos26). Replace cosingsine by cotangent,
and the identity says this:

If xo=cotd then x;=cot26. Then x,=cot4d Then x,=-cot2"f.
This is the formulaOur points are on the cotangent curvéigure 3.23 starts from
xo =2 =cotf, and every iteration doubles the angle.

Example AThe sequencgy, = 1,x; = 0, x, = co matches the cotangentsmof4, /2,
ands. This sequence blows up becausehas a division byt; = 0.

i/

X, X X3 xg=2

Fig. 3.23  Newton’s method forc2 + 1 = 0. Iteration givesx, = cot2"6.

Example BThe sequenck/+/3, —1/+/3,1/+/3 matches the cotangentsmof 3, 27 /3,
and4r /3. This sequenceycles forevebecauserg = x; = x4 =....
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Example C Stat with a largex, (a smallf). Thenx; is about half as large (&f).
Eventually one of the angle®), 80, ... hits on a large cotangent, and this go far
out againThis is typical ExamplesA and B were special, whefi/z was or 1.

What we have here ighaos. Thex’s can’t converge. They are strongly repelled
by all points. They are also extremely sensitive to the valug éffter ten stepd is
multiplied by2'% = 1024. The starting angle§0° and61° look close, but now they
are different byl 024°. If that were a multiple ol 80°, the cotangents would still be
close. In fact ther;¢'s are0.6 and14.

This chaos in mathematics is also seen in nature. The most familiar example is the
weather, which is much more delicate than you might think. The headline “Forecast-
ing Pushed Too Far” appeared3cience 1989). The article said that the snowballing
of small errors destroys the forecast after six days. We can’t follow the weather equa-
tions for a month—the flight of a plane can change everything. This is a revolutionary
idea, that a simple rule can lead to answers that are too sensitive to compute.

We are accustomed to complicated formulas (or no formulas). We are not
accustomed to innocent-looking formulas lik@t 2" 6, which are absolutely hopeless
after100 steps.

CHAOS FROM A PARABOLA
Now | get to tell you about new mathematics. First | will changeithrationx, +; =
%(xn —1/x,) into one that is even simpler. By switching frorto z = 1/(1 + x?2),
each new turns out to involve only the old andz?:

Zng1 =4z, — 422 (10)
This is the most famous quadratic iteration in the world'here are books about
it, and Problen28 shows where it comes from. Our formula foy leads toz,:

1 1

= = = (sin2"9)>. 11
122 1+ (cozrgy - SN0 (11)

Zn

The sine is just as unpredictable as the cotangent, @h@mets large. The new thing
is to locate this quadratic as the last member (wihen4) of the family

Znt1=azy—azy, 0<a<4. (12)

Exanple 2 happened to be the middle membet 2, converging to%. I would like
to give a brief and very optional report on this iteration, for differe’st

The general principle is to start with a numlzgrbetween) and1, and compute
71,722,723, .... Itis fascinating to watch the behavior changezdacreasesYou can
see it on your own computeHere we describe some things to look for. All numbers
stay betweef and1 and they may approach a limit. That happens winénsmall:

for 0 <a < 1thez, approactz™ =0
for 1 <a <3thez, approackt* =(a—1)/a

Those limit points are the solutions of= F(z). They are the fixed points where
z* =az* —a(z*)2. But remember the test for approaching a lirfihe slope at*
cannotbe larger than onélereF = az —az? hasF' = a —2az. Itis easy to check
| F'| <1 at the limits predicted above. The hard problem—sometimes impossible—
is to predict what happens abave= 3. Our case ist = 4.

The z’s cannot approach a limit when F’(z*)| > 1. Something has to happen,
and there are at least three possibilities:

191
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Thez,’'s can cycle or fill the whole intervadD, 1) or approach a Cantor set
| start with a random numbeyp, take 100 steps, and write down step81 to 105:
a=34 a=3.5 a=3.8 a=4.0

Z101 = 842 875 .336 .169
Z102 = 452 .383 .848 562
Z103 = 842 827 491 .985
Z104 = 452 501 .950 .060
Z105 = & ﬂ 182 225

The first column is converging to a2*cycle.” It alternates between = .842 and
y = .452. Those satisfy = F(x) andx = F(y) = F(F(x)). If we look at adouble
stepwhena = 3.4, x andy are fixed points of the double iteratiop, , = F(F(z,)).
Whena increases past45, this cycle becomes unstable.

At that point the period doubles fror to 4. With a = 3.5 you see a4-cycle”in
the table—it repeats after four steps. The sequence bouncesfféro .383 t0 .827
to .501 and back to.875. This cycle must be attractive or we would not see it. But
it also becomes unstable asincreases. Next comes &rcycle, which is stable in
a little window (you could compute it) around= 3.55. The cycles are stable for
shorter and shorter intervals of:’s. Those stability windows are reduced by the
Feigenbaum shrinking factar.6692.. .. Cycles of lengtH 6 and32 and64 can be
seen in physical experiments, but they are all unstable beferd8.57. What happens
then?

The new and unexpected behavior is betw8e&s7 and 4. Down each line of
Figure 3.24, the computer has plotted the values@f; to z299o—O0mitting the
first thousand points to let a stable period (or chaos) become established. No points
appeared in the big white wedge. Idon’'t know why. Inthe window for period 3, you
see only three’s. Period3 is followed by6, 12,24, .... There igperiod doubling
at the end of every window (including all the windows that are too small to see). You
can reproduce this figure by iterating = az, —az? from anyz, and plotting the
results.

CANTOR SETS AND FRACTALS

| can'ttell what happens at= 3.8. There may be a stable cycle of some long period.
The z's may come close to every point betwe@rand 1. A third possibility is to
approach a very thin limit set, which looks like the famdlentor set

To construct the Cantor set, dividie, 1] into three pieces and remove the open
interval (1, 2). Then remove(3. 2) and (Z.2) from what remains. At each
steptake out the middle thirdsThe points that are left form the Cantor set.

All the endpointst, 2, 5.2, ... are in the set. So i§ (Problem42). Nevertheless

the lengths of the removed intervals addltand the Cantor set has “measure zero.”
What is especially striking is itself-similarity: Betweer0 and% you see the same

Cantor set three times smallgfrom0 to é the Cantor set is there again, scaled

down by9. Every section, when blown up, copies the larger picture.

Fractals That self-similarity is typical of dractal. There is an infinite sequence

of scales. A mathematical snowflake starts with a triangle and adds a bump in the
middle of each side. At every step the bumps lengthen the siddg hyThe final
boundary is self-similar, like an infinitely long coastline.
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The period2,4, ... is the number ofz's in a cycle

7

Fig. 3.24 Paiod doubling and chaos from iteratin§(z) (stolen by special permission

from Introduction to Applied Mathematidsy Gilbert Strang, Wellesley-Cambridge
Press).

The word “fractal” comes fronfractional dimension The snowflake boundary
has dimension larger thanand smaller tha. The Cantor set has dimension larger
than0 and smaller thari. Covering an ordinary line segment with circles of radius
r would takec /7 circles. For fractals it takas/ r? circles—andD is the dimension.

Fig. 3.25 Cantor set (middle thirds removed). Fractal snowflake (infinb@tdary).

Our iterationz, 1 =4z, — 425 hasa = 4, at the end of Figure 3.24. The sequence
Z9,21,. .. goes everywhere and nowhere. Its behavior is chaotic, and statistical tests
find no pattern. For all practical purposes the numbers are random.

Think what this means in an experiment (or the stock market). If simple rules
produce chaos, theredbsolutely no wajo predict the results. No measurement can
ever be sufficiently accurate. The newspapers report that Pluto’s orbit is chaotic—
even though it obeys the law of gravity. The motion is totally unpredictable over
long times. | don’t know what that does for astronomy (or astrology).

The most readable book on this subject is Gleick’s best-s€ll@os Making a
New ScienceThe most dazzling books afide Beauty of FractalandThe Science
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of Fractal Images, in Wich Peitgen and Richter and Saupe show photographs that
have been in art museums around the world. The most original books are Mandelbrot’s
FractalsandFractal GeometryOur cover has a fractal from Figure 13.11.

We return to friendlier problems in which calculus is not helpless.

NEWTON'S METHOD VS. SECANT METHOD: CALCULATOR PROGRAMS

The hard part of Newton’s method is to fiagt' /d x. We need it for the slope of the
tangent line. But calculus can approximate Ay / Ax—using the values off'(x)
already computed at,, andx,, ;.

Thesecant methodollows the secant line instead of the tangent line:

SO Af ) )= fGaz)
(Af/AX)n Ax n B Xn —Xn-1 '

The secant line connects the two latest points on the grapfi(©j. Its equation
is y— f(xn)=(Af/Ax)(x —x,). Sety =0 to find equation(13) for the new
X = X, +1, Where the line crosses the axis.

Prediction:Threesecant steps are about as gootlesNewton steps. Both should
give four times as many correct decimalsrror) — (error)*. Probably the secant
method is also chaotic for?> +1 = 0.

These Newton and secant programs are for the TI-81. Place the formufdfor
in slot Y q and the formula forf”’(x) in slot Y 2 on the Y = function edit screen.
Answer the prompt with the initiako =X @. The programs pause to display each
approximationx,,, the valuef(x,), and the differencer, —x,, 1. PressENTER
to continue or pres® N and select iten2 : Qu 1 t to break. If f(x,) = 0, the pro-
grams displayR 00T AT and the roof,,.

Secant x,4+1=Xxp where ( (13)

PrgmN:NEWTON :Disp'"ENTER FORMORE'" PrgmS:SECANT (YT

:Disp'"X@=""' :Disp''ON2 TOBREAK'' :Disp''Xg="" 1YY
tInput X :Disp'" " tInput X :Disp'""ENTER FOR MORE"!
:X—>S :Disp'"XN FXN XN=XNM1'" :X->S :Disp'"XN FXN XN=XNM1"'
Y1V :Disp X :Y1-T :Disp X
tLblL 1 :DispY :Disp "'Xx1="! :DispY
tX=Y/Yo—oX :DispD tInput X :DispD
1 X=S-D :Pause Y1V :Pause
1 X—S tIf Y£Q :Lbl 1 tIf Y£Q
1YY :Goto 1 :X=S—D :Goto 1
:Disp '""ROOT AT"! 1 X—S :Disp '""ROOT AT"!
:Disp X :X=YD/(Y=-T)—>X :DispX

3.7 EXERCISES

Read-through questions

When f(x)=0 is linearized to f(x,) + f'(xn)(x —x5) =0, the For f(x)=x%2—b, Newton’s iteration isx,r1= @

solutionx=__a is Newton'sx,4+;. The __b to the curve The x, converge to__h if x>0 and to__i if xo<0.
crosses the axis at,y1, while the __c  crosses atc*. The For f(x)=x2+1, the iteration becomes;, 1= | . This
errors at x, and x,4+; are normally related bycanot converge to __k . Instead it leads to chaos.

(erron,+1~M__d . Thisis__e convergence. The numberChanging to z=1/(x2+1) yields the parabolic iteration

of correct decimals__f __ at every step. Znt1=__1
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For a <3, zy41 :azn—az,zl converges to a single_m . 21 Whatis Newton’s method to find thieth root of 7? Calculate
After ¢ =3 the limit is a 2-cycle, which means n . Later the +/7to7 places.
limit is a Cantor set, which is a one-dimensional example of a

3_
o0 . The cantor set is self- p 22 Find all solutions ofx®> = 4x — 1 (5 decimals).

21—
1 To solve f(x)=x3—b=0, what iteration comes from Problems 23-29 are abouk” +1 =0 and chaos.

’ ?
Newton's method 23 For 6 =n/16 when does x, =cot2"6 blow up? For

2 For f(x)=(x—1)/(x+1) Newton’s formula is x,+1 = 6==x/7 when does ca"6=cotf? (The angles2"6 and 6
F(xp) = . Solve x* = F(x*) and find F’(x*). What limit differ by a multiple ofr.)

do thex,’s approach ? .
Xn'S app 24 For6 = 7/9 follow the sequence until, = xg.

3 | believe that Newton only applied his method in public

to ore equation x3—2x—5=0. Raphson carried the idea?> For 6 =1, x, neve retumns toxo=cotl. The angles2"
forward but got partial credit at best. After two steps fragi=2, andl never differ by a multiple ofr because

how many decimals in* = 2.09455148 are correct ?

4 Show that Newton's method forf(x)=x1/3 gives the
strange formulax,+;=—2x,. Draw a graph to show the
iterations.

2
5 Findx; if (8) /(x0) =0; (b) /" (x0) = 0. Ynt1 :x,2,+1+1:l(x,,_i) 1

6 Graph f(x)=x3—3x—1 and estimate its rootx*. Run
Newton’s method starting from, 1, —%, and 1.1. Experiment to
decide whichxg converge to which root.

26 1f zo equals sif6, show thatzy = 4z¢ — 422 equals sif 26.

27 If y=x%+1, eah newy is

Show that this equalg? /4(yn —1).

28 Turn Problem27 upsde down, 1/y,4+1=4(yn_1)/y2, to

7 2 _ — 7, I =2. . . .
Solve x*—6x+5=0 by Newton's method withxg =2.5 find the quadratic iteratio(l0) for znzl/ynzl/(1+x,%).

and3. Draw a graph to show whicky lead to which root.

8 If f(x) is increasing and concave up/(>0 and f” >0) 29 If F(z)=4z—4z% what is F(F(z))? How many solutions to
show by a graph that Newton’s method converges. From whigfr £'(F(2))? How many are not solutions to= F(z) ?

side? 30 Apply Newton's method tox3—.64x—.36=0 to find the
basin of attraction forx* =1. Also find a pair of points for
which y = F(z) andz = F(y). In this example Newton does not
always find a root.

Solve 9-17 to four decimal places by Newton’'s method with a
computer or calculator. Choose anyxg exceptx ™.

9 x2-10=0
31 Newton’s method solves/(1—x)=0 by x,4+1=
10 x*—100 =0 (faster or slower than Problef?) From which x¢ does it converge ? The distancextt = 0 is exactly
11 x2—x =0 (which xo to which root ?) squared.

3_ i i 2 .
12 x? —x =0 (which.xo to which root ?) Problems 33-41 are about competitors of Newtan

13 x4+ 5cosx =0 (this has three roots)
32 At a double root, Newton only converges linearly. What

14 x +tanx =0 (find two roots) (are there more ?) is the iteration to solvec2 = 0 ?

15 1/=x)=2 33 To speed up Newton's method, find the stépr from
16 1+x+x24+x34x*=2 FGn) +Axf (xn) + $(AX)2 f"(xp) =0. Test on f(x)=
17 x34(x+1)3 =103 x2 —1 from x¢ = 0 and explain.

18 (a) Show thatr,i; =2x, —2x2 in Example 2 is the same34 Halley's method useg, + Axf, + $AX(— fu/ fi)) f = 0. For
as(1—2x,41) = (1 —2x,)2. f(x)=x%—1andxg = 1 +¢, show thatc; = 1 +O(e3)— which is
(b) Prove divergence ifl —2xo|> 1. Prove convergence if cubicconvergence.

[1=2xp[<Tor0<xo<lL 35 Apply the secant method tof(x)=x2—4=0, starting

19 With a =3 in Example 2, experiment with the Newtonfrom xo=1 and x; =2.5. Find Af/Ax and the next pointr,
iteration:x, 41 = 2x, — 3x2 to decide whichr, lead tox* = 1. by hand. Newton useg’(x1)=5 to reachx; =2.05. Which

] ’ ’ is closertax* =27
20 Rewrite x,4+1=2xy —ax; as(l—axp4+1)=(1—axy)~. For

which xo does the sequencel —ax, approach zero (so36 Draw a graph of f(x) =x%—4 to show the secant line in
x—1/a)? Problem35 and the pointv, where it crosses the axis.
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Bisection methodf f(x) changes sign betweeny and x1, find
its sign at the midpoint x, = %(xo + x1). Decide whether f(x)
changes sign betweenty and x, or x; and x;. Repeat on
that half-length (bisected) interval. Continue.Switch to a faster
method when the interval is small enough

37 f(x)=x2—4 is negative atx = 1, positive atx =2.5, and
negative at the midpoint = 1.75. So x* lies in what interval ?
Take a second step to cut the interval in half again.

3 Applications of the Derivative

43 The solution to f(x)=x—-1.9)/(x—=2.00=0 s
x*=1.9. Try Newton’s method fromxy=1.5,2.1, and 1.95.

Extra credit: Whichxg's give convergence ?
method to solve cos=0 from

44 Apply the secant

xo =.308.

45 Try Newton's method on cas=0 from xo=.308. If
cotxg is exactly 7, show thatx; =x¢o+=m (and x, = x1 + 7).

38 Write a code for the bisection method. At each step priRtomxy =.308169071 does Newton’s method ever stop ?

out an interval that contains *. The inputs arerg andxp; Ibr the
code callsf'(x). Stop if f(xp) and f(x;) have the same sign.

39 Three bhisection steps reduce the interval by wht
factor ? Starting fromxo =0 and x; =8, take three steps for

f(x)=x2-10.

46 Use the Newton and secant to

3 _10x2+22x+6 =0 from xo =2 and1.39.

programs

47 Newton's method for sik=0 IS x,41=x,—tanx,.
Graph sinx and three iterations fromxg=2 and xo=1.8.

40 A direct method is tozoomin where the graph crosses théredict the result foxg = 1.9 and test. This leads to thmputer

axis. Solve 10x3—8.3x242.295x—.21141=0 by several

Zooms.

41 If the zoom factor is 10, then the number of correct

decimals for every zoom. Compare with Newton.

42 The number? equals%(1+ 5 + - +-++). Show that itis in the

Cantor set. It survives when middle thirds are removed.

projectin Problem3.6.41, which finds fractals.

48 Graph Yi(x)=3.4(x —x2) and Yo(x)=Y;(Y1(x)) in the
square window (0,0) < (x,y)<(1,1). Then graph Y3(x)=
Y>(Y1(x)) andYy, ..., Yo. The cycle is from842 to .452.

49 Repeat Problen8 with 3.4 changed t@ or 3.5 or 4.

solve
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I 3.8 The Mean Value Theorem and I'Hépital’s Rule | EEGTEGEGENG

Now comes one of the cornerstones of calculus: Mean Value Theorem. It
connects the local picture (slope at a point) to the global picture (average slope
across an interval). In other words it relai®6/dx to A f/Ax. Calculus depends

on this connection, which we saw first for velocities. If the average velocity,iss

there a moment when the instantaneous veloci# i3

150 1 - 150 T 57"
100 + f® % 100 + = -~
T v=75 PR
v=100" > Vwe=T5 o7 Uy =75
50 + = 01 -7 i

1 =2 ¢ 1 =2

Fig. 3.26  (8) v jJumps oVelaygage (b) v €qUalSVaverage

Without more information, the answer to that questiom@ The velocity could
be 100 and then50—averaging75 but never equal t&5. If we allow a jump in
velocity, it can jump right over its average. At that moment the velocity does not
exist. (The distance function in Figure 3.26a has no derivatixe=atl .) We will take
away this cheap escape by requiring a derivative at all points inside the interval.

In Figure 3.26b the distance increasesi®y) whent increases by. There is a
derivativedf/dt at all interior points (but an infinite slope at=0). The average
velocity is

Af  f@=f0) 150

At 2-0 2
The conclusion of the theorem is thatlf/dt =75 at some point inside the
interval. There is at least one point whefé(c) = 75.

This is not a constructive theorem. The valueca$ not known. We don't fina:,
we just claim (with proof) that such a point exists.

=75.

3M Mean Value TheoremSuppose f(x) is continuous in the closed interval
a < x < b and has a derivative everywhere in the open intarvalx < b. Then

f)—f@)
a

b = f'(c) at some pointz < ¢ < b. (1)

The left side is the average slopgef/Ax. It equalsdf/dx atc. The notation for a
closed interval [with endpoints] ig, b]. For an open interval (without endpoints) we
write (a,b). Thus f’ is defined in(a,b), and f remains continuous at andb. A
derivative is allowed at those endpoints too—but the theorem doesn’t require it.

The proof is based on a special case—wifén) = 0 and f(b) = 0. Suppose the
function starts at zero and returns to zefhe average slope or velocity is zero.
We have to prove that’(c) = 0 at a point in between. This special case (keeping the
assumptions orf'(x)) is calledRolle’s theorem

Geometrically, if f goes away from zero and comes back, thfér= 0 at the turn
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3N Rolle’s theorem Suppose f(a) = f(b) =0 (zero at the ends). Thgn
f'(c) =0 at some point withz < ¢ < b.

Proof At a point inside the interval wherg(x) reaches its maximum or minimum,
df/dx must be zero. That is an acceptable poirffigure 3.27a shows the difference
betweenf = 0 (assumed at andd) and /' = 0 (proved at).

Small problem: The maximum could be reached at the eradsdd, if f(x) <0in
between. At those endpoint¥’/dx might not be zero. But in that case thenimum
is reached at an interior point which is equally acceptable. The key to our proof is
thata continuous function on[a, b] reaches its maximum and minimunThis is
the Extreme Value Theorein

It is ironic that Rolle himself did not believe the logic behind calculus. He may not
have believed his own theorem! Probably he didn’t know what it meant—the language
of “evanescent quantities” (Newton) and “infinitesimals” (Leibniz) was exciting but
frustrating. Limits were close but never reached. Curves had infinitely many flat sides.
Rolle didn't accept that reasoning, and what was really serious, he didn’t accept the
conclusions. The Académie des Sciences had to stop his battles (he fought against
ordinary mathematicians, not Newton and Leibniz). So he went back to number
theory, but his special case wheita) = f(b) = 0 leads directly to the big one.

slope df/dx -~
equals
slope Af/Ax _ _

-

fla) S
1\/ : }’ ‘; ;' ;)

Fig. 3.27 Rdle’s theorem is wherf'(a) = f(b) =0 in the Mean Value Theorem.

Proof of the Mean Value Theorem We are looking for a point wher@f /dx equals

A f/Ax. The idea ido tilt the graph back to Rolle’s special cagehenA f was
zero). In Figure 3.27b, the distané# x) between the curve and the dotted secant line
comes from subtraction:

F = £~ | f@+ i -a| @

At a and b, this distance isF(a) = F(b) =0. Rolle’s theorem applies t&'(x).
There is an interior point wherE’(c) = 0. At that point take the derivative of equa-
tion (2): 0= f'(¢) — (Af/Ax). The desired point is found, proving the theorem.

EXAMPLE 1 The functionf(x) = /x goes from zero at = 0 to ten atx = 100.
Its average slope i f/Ax =10/100. The derivative f'(x) = 1/24/x exists in
the open interval0, 100), even though it blows up at the end= 0. By the Mean
Value Theorem there must be a point whéfg'100 = f”(c) = 1/2+/c. That point
isc =25.

T1f f(x) doesn’t reach its maximumM, then1/(M — f(x)) would be continuous but also
approach infinity. Essential fack continuous function on[a, b] cannot approach infinity
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The truth is that nobody cares about the exact value. dfs existence is what
matters. Notice how it affects the linear approximatiftx) =~ f(a)+ f'(a)(x —
a), which was basic to this chapter. Close becomes exatigcomes=) when [’ is
computed at instead ofu:

30 The derivative at gives an exact prediction of (x):

fx) = fl@)+ f'(c)(x —a). ©)

The Mean Value Theorem is rewritten here/ag = f’(c)Ax. Nowa < c < x.

EXAMPLE 2 The function f(x)=sinx starts from f(0)=0. The linear
prediction (tangent line) uses the slapes0 = 1. The exact prediction uses the slope
cosc at an unknown point betweénandx:

(approximate sinx =~ x (exac) sinx = (cosc)x. (4)
The approximation is useful, because everything is computed=atz =0. The

exact formula is interesting, becausesc <1 proves again thasinx < x. The
slope is belowl, so the sine graph stays below # line.

EXAMPLE 3 If f’(c) =0 atall points in an interval thenf(x) is constant

Proof When f" is everywhere zero, the theorem giveg = 0. Every pair of points
has f(b) = f(a). The graph is a horizontal line. That deceptively simple case is a
key to the Fundamental Theorem of Calculus.

Most applications ofA f = f'(c)Ax do not end up with a number. They end up
with another theorem (like this one). The goal is to connect derivatives (local) to
differences (global). But the next application—I|'HOpital's Rulenanages to
produce a number out 6f/0.

LHOPITAL'S RULE

When f(x) and g (x) both approach zero, what happens to their ratfax) /g (x) ?

2 sin —sin 0
&=X— or al or al o allbecome — at x=0.
gx) x X 1 —cosx 0
Since0/0 is meaningless, we cannot work separately witlx) andg(x). This is a
“race toward zergd in which two functions become small while their ratio might do
anything. The problem is to find the limit of(x)/g(x).
One such limitis already studieldlis the derivativé A f/ A x automatically builds
in a race toward zero, whose limitds/dx:
FO—F@=0 p i

x — a—0 x—a

= f'(a). (5)

The idea of 'HOpital is to usg’ /g’ to handlef/g. The derivative is the special case
g(x) =x —a,with g’ = 1. The Rule is followed by examples and proofs.

S~ fla)
X—a

3P I'Hopital's Rule Suppose f(x) and g(x) both approach zero as— a.
Then f(x)/g(x) approaches the same limit &3(x)/g’(x), if that second limi
exists:

f&x) o f(X) f'(a)

lim —— = lim . Normally this limit is .
o g(x) | ¥oa g/(x) Y ¢'(a)

(6)
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fx)=6(x-a)

g) =2(x~-a) fx)

f'=6 3 fa)=6 g'a)=2 oy
/]a a
Fig. 3.28 €) & is exactly & =3. (b) & approachesm =3.
g(x) g'(a) g(x) g'(a)

This is not the quotient ruleThe derivatives of f(x) and g(x) are taken
separately. Geometrically, 'H6pital is saying thahen functions go to zero their
slopes control their sizé\n easy case i = 6(x —a) andg =2(x —a). The ratio
f/g is exactly6/2, the ratio of their slopes. Figure 3.28 shows these straight lines
dropping to zero, controlled byand2.

The next figure shows the same lirhjt2, when the curves atangentto the lines.
That picture is the key to I'HOpital’s rule.

Generally the limit off /g can be a finite numbdt or +00 or —co. (Also the limit
pointx = a can represent a finite number-¢ro or —oo. We keep it finite.) The one
absolute requirement is thai{(x) andg (x) must separately approach zero—we insist
on0/0. Otherwise there is no reason why equaiiépshould be true. Withf'(x) = x
andg(x) = x —1,don’t use I'Hopital:

& — a but /') !

gx) a—1 g 1

Ordinary ratios approachim f(x) divided bylim g(x). 'Hopital enters only for
0/0.

. . l—cosx . sinx )
EXAMPLE 4 (an old friend) I|m0 —— equals lim R This equals zero.
X— X

x—0
tan x " se@x |
EXAMPLE 5 iz.— leads to L: . At x =0 the limitis —.
g sinx g’ cosx 1
x—sinx " 1—cosx 0
EXAMPLE 6 i =——— leadsto L =———. At x =0thisis still —.
g 1—cosx g’ sinx 0

Solution  Apply the Rule tof”’/g’. It has the same limit ag” /g":
f 0 f 0 f"(x) _sinx 0

if ——— amd — — — then compute = ——-=0.
g 0 g 0 g"(x) cosx 1

The reason behind I'Hépital’s Rule is that the following fraadhs are the

same
() _ )= fl@) [gx)—gla)

g(x) X—a X—a

()

Thatis just algebra; the limit hasn’t happened yet. The factorsa cancel, and the
numbersf(a) andg(a) are zero by assumption. Now take the limit on the right side
of (7) asx approaches.
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What normally happens is that one part approacfieat x =a. The other part
approacheg’(a). We hopeg’(a) is not zero. In this case we can divide one limit by
the other limit. That gives the “normal” answer

’

iim £ fimitof (7) = L@

x—a g(x) g'(a)
Thisis also I'H6pital’'s answer. Whert’(x) — f’(a) and separately’(x) — g'(a),
his overall limit is f'(a)/g’(a). He published this rule in the first textbook ever
written on differential calculus. (That was 1i696—the limit was actually discovered
by his teacher Bernoulli.) Three hundred years later we apply his hame to other cases
permitted in(6), when 1’/ g’ might approach a limit even if the separate parts do not.

To prove this more general form of 'H6pital’s Rule, we need a more general Mean
Value Theoreml regard the discussion below as optional in a calculus course
(but required in a calculus book). The important idea already came in eq&jion

(8)

Remark The basic'indeterminaté is co —oo. If f(x) and g(x) approach
infinity, anything is possible forf (x) — g(x). We could havex? —x or x — x? or
(x +2) —x. Their limits areco and—oo and?.

At the next level ard)/0 andoo/co and0-co. To find the limit in these cases,
try 'Hopital's Rule. See Problem 24 whefi(x)/g(x) approacheso/co. When
f(x) —>0andg(x) — oo, apply theO/0 rule to f(x)/(1/g(x)).

The next level ha®® and 1 and 0. Those come from limits off (x)&™).

If f(x) approache$, 1, or co while g(x) approache$, co, or 0, we need more
information. A really curious example is!/'"*, which shows all three possibilities
0% and1” andoo®. This function is actually a constant! It equals

To go back down a level, take logarithms. Thefx) In f(x) returns to0/0 and

0-00 and I'Hbpital’'s Rule. But logarithms arelhave to wait for Chapter 6.

THE GENERALIZED MEAN VALUE THEOREM

The MVT can be extended tiwvo functions The extension is due to Cauchy, who
cleared up the whole idea of limits. You will recognize the special gasex as the
ordinary Mean Value Theorem.

3Q GeneralizedMVT If f(x) and g(x) are continuous ora,b] and
differentiable on(a, b), there is a poin& < ¢ < b where

[f () = f(@)]g'(c) = [g(b) — g(a)] /' (c). (9)

The proof comes by constructing a new function that Fés) = F (b):

F(x)=[f()— f(a)lg(x)—[g(b) —g(a)] f(x).

The ordinary Mean Value Theorem leadsi&(c) = 0—which is equatior{9).

Application 1 (Proof of I'Hopital’s Rule) The rule deals withf(a)/g(a) =0/0.

Inserting those zeros into equatit®) leavesf(b)g’(c) = g(b) f'(c). Therefore
f) _ f'()
gb) g'c)

As b approaches, so does. The pointc is squeezed betweenandb. The limit of

equation(10)asbh — a andc — a is I'Hopital’s Rule.

(10)
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Application 2 (Error in linear approximation) Section 3.2 stated that the distance
between a curve and its tangent line grows lilke— a)2. Now we can prove this, and
find out more. Linear approximation is

f(x)= f(a)+ f'(a)(x —a) + error e(x). (12)

The pattern suggests an error involvingf (x) and (x —a)?. The key example
f = x? shows the need for a fact@ (to cancel f” =2). The error in linear
approximation is

e(x)=1f"(c)(x—a)*> with a<c<ux. (12)
Key idea Compare the errar(x) to (x —a)?. Both are zero at = a:
e=f)—fla)-f@x—a) =[f()-fa) =f"(Xx)
g=(x—a)? ¢ =2(x—a) ¢ =2

The Generalized Mean Value Theorem finds a pdinbetweena and x where
e(x)/g(x)=¢€'(C)/g'(C). This is equation(10) with different letters. After
checkinge’(a) = g’(a) = 0, apply the same theorem¢&(x) andg’(x). It produces
a pointc betweeru andC —certainly betweea andx—where

e'(C) _e"(0) e(x) _€"(0)

= and therefore —= = .
g'(C)  g"(c) gx)  g"(c)

With g =(x—a)? and g”=2 and ¢’ = f”, the equation on the right is

e(x) = %f”(c)(x —a)?. The error formula is proved. A very good approximation is

2/ (@) (x —a)>.

1 1/ —1
EXAMPLE 7 = =100: +/102~10+(— )2+ — ) 22.
fx)=+/x neara +(2o) +2(4000)

That last term predicte = —.0005. The actual erroris/102 — 10.1 = —.000496.

3.8 EXERCISES

Read-through questions

The Mean Value Theorem equates the average slop&/Ax  f(x)/g(x) equals the limit of_n _, provided this limit exists.

over an__a _[a,b] to the slopedf/dx at an unknown b . Normally this limit is f/(a)/g’(a). If this is also0/0, go on to

The statement is__ ¢ . It requires f(x) to be __d  on the thelimitof__ o

e interval [a,b], with a __f on the open intervala,b). _. . Y
Rolle’s theorem is the special case whg) = f(b) =0, and the Find all points 0 < ¢ <2 where f(2) - f(0) = f"(c)(2=0).

pointc satisfies g . The proof chooses asthe point wheref 1 f(x)=x3 2 f(x)=sinmx
reachesits h .

. 3 f(x)=tan2nx 4 f(x)=14+x4+x2
Consequences of the Mean Value Theorem include: 10 0
If f’(x)=0 everywhere in an interval thenf(x)=__i . 5 f(O)=&-1 6 f(x)=(x-1)
The prediction f(x)= f(a)+ | (x—a) is exact for some _ _
¢ betweena and x. The quadratic predictionf(x) = f(a)+ !N 7-10show thatno pointc yields /(1) — f(=1) = f(¢)(2). Ex-
F(a)(x —a)+ k  (x—a)? is exact for anotherc. The plain why the Mean Value Theorem fails to apply.
. /7 _ . l _ 2
error in f(la)+f (a)(x—a) is less thany M(x —a)* where M 7 f(x)=|x—%|
is the maximum of _|

8 f(x)=unit step function

A chief consequence is I'Hopital's Rule, which applies wher® f(x) = |x|!/2 10 fx)=1/x*
f(x) and g(x)» _m__ as x—a. In that case the limit of
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11 Shaw that seéx and &rex have the same derivative, and dravgl The error in Newton’s method is squared at each step:
a conclusion abouf (x) = seéx —tar?x. [Xn+1—x%| < M|xy —x |2 The proof starts fromd = f(x*) =

_ 4 _ 2 i
12 Show that cstx and cot?x have the same derivative andf(x")+f (n) (x°* X”)+ SO )" Divide by
find f(x) = cs@x —cotx. f'(xn), recognizex, 41, and estimaté/.

32 (Rolle’s theorem backward) Supposg’(c) =0. Are there

Evaluate the limits in 13—22 by I'Hopital’s Rule. necessarily two points arourdwhere f(a) = f(b)?
2 2
13 lim 2= 14 lim X -9 33 Supposef(0) =0. If f(x)/x has a limit asx — 0, that limit is
x—3 x—3 x=3 x+3 better known to us as . L’'Hopital’'s Rule looks instead at the
2 v/T—cos imi
15 lim +07-1 16 lim Y22 limit of ] o . e
x—0 x x—0 X Conclusion from I'H6épital: The limit of /7 (x), if it exists, agrees
X—1 | with f7(0). Thus f/(x) cannot have a “removable
17 lim — 18 lim —
xX—m sinx x—1sinx 34 It is possible that f’(x)/g’(x) has no limit but
n_ 1 "_1- L. This is why I'Hépital included an “if.”
1o fim (0" =1 20 fim 1Y) . nx fx)/g(x)— y I'Hop
x—0 x x—0 x (@ Find L as x—0 when f(x)=x2coql/x) and
. sinx—tanx AT+ x—y1—x g(x) =x. Remember that cosines are belbw
2l )!To 3 22 )!TO X (b) From the formulaf’(x)=sin(1/x)+2xcog1/x) show

that //g’ has no limit asc — 0.
23 For f =x2—4 and g=x+2, the ratio f'/g’' approachest

asx —2. What is the limit of £(x)/g(x)? What goes wrong in 3° Stein’s calculus book asks for the limiting ratio of

I'Hépital’s Rule ? fx)= triangular_ a}reaABC to g(x)= curved areaABC.
L ) ) (@) Guess the limit of f/g as the anglex goes to zero.
24 |'Hépital’s Rule still holds for f(x)/g(x) — o0/o0: L is (b) Explain why f(x) is %(sinx—sinxcos;c) and g(x) is
i f(x) Iiml/g(x) i ¢ (x)/g%(x)  2im ¢ (x) 5(x —sinxcosx). (c) Compute the true limit of (x)/g(x).
g(x) 1/7(x) F1x)/f2(x) J(x) c
Then L equals lindf'(x)/g’(x)] if this limit exists. Where did A
we use the rule fo0/0 ? What other limit rule was used ? 1
2
25 Compute lim-—--- 1+ (/0 26 Compute_lim - tx -
—(1/x) x>0 2x2 A B B
27 Compute lim X+ Cosy by common sense. Show that
'Hoital ivesxnzén)év—\tgrmx 36 If you drive 3,000 miles from New York to L.A. in 100
pitalg csc hours (sleeping and eating and going backwards are allowed)
28 Compute_lim % by common sense or trickery. then at some moment your speedis
— 0 X

37 Asx — oo I'Hopital’s Rule still applies. The limit off'(x)/g(x)
equals the limit off’(x)/g’(x), if that limit exists. What is the limit
%s the graphs become parallel in Figure B ?

29 The Mean Value Theorem applied fix) = x3 guarantees that
some numbet betweenl and4 has a certain property. Say what the
property is and find.

38 Prove that f(x) is increasing when its slope is positivi:
f'(c) >0 at all pointsc, then f(b) > f(a) at all pairs of points
|f(x)—f(y)|<latallx andy. b>a.

30 If |df/dx| <1 atall points, prove this fact:



CHAPTER 4

Derivatives by the Chain Rule

I 4.1 The Chain Rule NN

You remember that the derivative of(x)g(x) is not (df/dx)(dg/dx). The
derivative ofsin x timesx? is notcosx times2x. The product rule gave two terms,
not one term. But there is another way of combining the sine funcficand the
squaring functiorg into a single function. The derivative of that new function does
involve the cosine time3x (but with a certain twist). We will first explain the new
function, and then find thechain rule” for its derivative.

May | say here that the chain rule is important. It is easy to learn, and you will
use it often. | see it as the third basic way to find derivatives of new functions from
derivatives of old functions. (So far the old functions afe sinx, andcosx. Still
ahead are* andlog x.) When f andg are added and multiplied, derivatives come
from thesum ruleandproduct rule This section combineg andg in a third way.

The new function issin(x?)—the sine ofx?2. Itis created out of the two original
functions: ifx = 3 thenx? = 9 andsin(x?) = sin9. There is a “chain” of functions,
combiningsin x andx? into the composite functiogin(x?). You start withx, then
find g(x), then find f(g(x)):

The squaring function gives = x2. Thisis g(x).
The sine function produces= sin y = sin(x2). This is f(g(x)).

The “inside functior’” g(x) givesy. This is the input to théoutside functior
f(»). That is calledcomposition It starts withx and ends withe. The composite
function is sometimes writteif o g (the circle shows the difference from an ordinary
product fg). More often you will seef (g(x)):

z(x) = fog(x) = f(g(x)). @
Other examples areos2x and(2x)3, with g = 2x. On a calculator you input,
then push the " button, then push the ¥ button:

From x computey = g(x) From y computez = f(y).

There is not a button for every function! But the squaring funttad sine function
are on most calculators, and they are usedhat order. Figure 4.1a shows how
squaring will stretch and squeeze the sine function.

204
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That graph okin x?2 is a crazy FM signal (the Frequency is Modulated). The wave
goes up and down liksin x, but not at the same places. Changingitog (x) moves
the peaks left and right. Compare with a prodgi€t) sinx, which is an AM signal
(the Amplitude is Modulated).

Remark f(g(x)) is usually different fromg( f(x)). The order of f and g is
usually important For f(x) = sinx andg(x) = x2, the chain in the opposite order
g(f(x)) gives something different:

First apply the sine function: = sinx
Then apply the squaring function:= (sinx)?.

That result is often writtesin’x, to save on parentheses. It is never writsémx2,
which is totally different. Compare them in Figure 4.1.

l/\ N M\ wd N

(sinVm )?
Fig. 4.1 f(g(x)) is different fromg(f(x)). Apply g then £, or f theng.

sin(¥w 2)

EXAMPLE 1 The composite functiorf og can be deceptive. I§(x) = x> and
f(»)=y* how doesf(g(x)) differ from the ordinary productf(x)g(x)? The
ordinary product isc’. The chain starts withy = x3, and thenz = y* = x!2. The
composition ofx® andy* gives f(g(x)) = x12.

EXAMPLE 2 In Newton’s method, F(x) is composed with itself. This is
iteration. Every outputy,, is fed back as input, to find, +, = F(x,,) The example
F(x)=3x+4 hasF(F(x)) =1(3x+4)+4. That produces =1x+6.

The derivative ofF (x) is —. The derivative ofz = F(F(x))is 1, whichi iS5 1 times
%. Wemultiply derivatives This is a special case of the chain rule.

An extremely special case i§(x) = x andg(x) = x. The ordinary product is?.
The chain f(g(x)) produces onlyx! The output from the fdentity functiori is
g(x) = x.f When the second identity function operatesxoit producesx again.
The derivative id times1. | can give more composite functions in a table:

y=gkx) z=/0) z=/f(gk)
x2—1 N3 Vx2—1

COSX y3 (cosx)?
2% 2Y 2%
x+5 y—5 by

1A calculator has no button for the identity function. It wouldn’t do anything.
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The last one addsS to gd y. Then it subtract$ to reachz. Soz = x. Here output
equals input;f(g(x)) = x. These fnverse functions are in Sectiord.3. The other
examples create new functionéx) and we want their derivatives.

THE DERIVATIVE OF f(g(x))

What is the derivative of = sinx2?Itis the limit of Az / Ax. Therefore we look at a
nearby pointc + Ax. That change inc produces a change = x?>—which moves
toy + Ay = (x + Ax)2. From this change iy, there is a change in= f(y). Itisa
“domino effect,” in which each changed input yields a changed outputproduces
Ay producesAz. We have to connect the finAlz to the originalA x.

The key is to writeAz/Ax as Az/Ay timesAy/Ax. Then letAx approach
zero. In the limit,dz /dx is given by the “chain rule”:

Az Az Ay dz dz dy

= becomes the chain rule— = —= ——, 2
Ax Ay Ax dx dy dx @

As Ax goes to zero, the ratidhy /Ax approachedy/dx. ThereforeAy must be
going to zero, and\z /Ay approachedz/dy. The limit of a product is the product
of the separate limits (end of quick proo¥ye multiply derivatives

4A Chain Rule Supposeg(x) hasa derivative atv and f(y) has a derivativ
aty = g(x). Then the derivative of = f(g(x)) is

dz _dzdy .
dx ~ dy dx = f'(g(x)) g'(x). )

The slope ak isdf/dy (aty) timesdg/dx (atx).

\1-2

Caution The chain rule doesot say that the derivative afinx? is (cosx)(2x).
True, cosy is the derivative o§in y. The point is thatosy must be evaluated at
(not atx). We do not want/f /dx atx, we wantdf/dy aty = x2:

The derivative ofsin x? is (cosx?) times(2x). (4)

EXAMPLE 3 If z = (sinx)? thendz/dx = (2sinx)(cosx). Herey = sinx is inside

In this order,z = y? leads todz/dy =2y. It does not lead t@x. The inside
functionsinx producesdy/dx = cosx. The answer i2y cosx. We have not yet
found the function whose derivative2s cosx.

dz dz dy

EXAMPLE 4 The derivative ot =sin3x is— = — — =3 cos3x.
dx dy dx

1 Ay - = fiv
z2=J(y) ¥ z=flg() Sy
! A: ' A
PR —— | - = = o

Ay Ax

) . Az Az Ay dz dz dy
Fig. 4.2 The chain rule— = — — aproaches— = — ——.
9 nr Ax Ay Ax a8 dx dy dx
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The outside function i = sin y. The inside function isy =3x. Thendz/dy =
cosy—this is cos3x, not cosx. Remember the other factaty /dx = 3.

I can explain that factoB, especially if x is switched tof. The distance is
z =sin3¢. That oscillates likesint exceptthree times as fasfThe speeded-up
function sin3¢ completes a wave at tim@n/3 (instead of2s). Naturally the
velocity contains the extra factdrfrom the chain rule.

EXAMPLE 5 Letz = f(y) = y". Find the derivative off (g(x)) = [g(x)]".

In this caselz/dy is ny"~!. The chain rule multiplies byy /dx:
dz _, dy d _,dg
hlalp n et - n_ n =2y 5
To=m T oo e = alg o) T )

This is thepower ruld It was already discovered in Secti@rs. Square roots (when
n = 1/2) are frequent and important. Suppgse: x> — 1:

d 1
L=ty =
V1= (=7

(6)

i
S|
|

_

Question A Buick usesl /20 of a gallon of gas per mile. You drive &0 miles per
hour. How many gallons per hour?

Answer (Gallons/hour) = (gallons/mile)(miles/hour). The chain rule is
(dy/dt) = (dy/dx)(dx/dt). The answer ig1/20)(60) = 3 gallong'hour.

Proof of the chain rule The discussion above was correctly based on
Az Az Ay dz dz dy

Ax Ay Ax a dx dy dx’ 0
It was here, over the chain rule, that the “battle of notation” was won by Leibniz.
His notation practically tells you what to do: Take the limit of each term. (I have to
mention that wher\ x is approaching zero, it is theoretically possible that might
hit zero. If that happensiz/Ay becomed)/0. We have to assign it the correct
meaning, which iglz/dy.) As Ax — 0,

Ay ’ Az / = f'
A—x—>g(x) and A_y_)f(y)_f(g(x»

ThenAz/Ax approacheg”(y) timesg’(x), whichis the chainrulédz/dy)(dy/dx).
In the table below, the derivative dfsinx)3 is 3(sinx)?cosx. That extra factor
cosx is easy to forget. It is even easier to forget thé in the last example.

z=(x3+1)° dz/dx=5(x3>+1)* times3x?
z=(sinx)® dz/dx =3sirx times cosx
z=(1-x)? dz/dx=2(1—x) times — 1

Important All kinds of letters are used for the chain rule. We named the output
Very often it is calledy, and the inside function is called

dy d
The derivative ofy =sinu(x) is o COSMl.
dx dx

Examples withdu /dx are extremely common. | have to ask you to accept whatever

letters may come. What never changes is the key idea—derivative of outside function

times derivative of inside function

207
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EXAMPLE 6 The chain rule is barely needed fain(x — 1). Strictly speaking the
inside functionist = x — 1. Thendu/dx is justl (not—1). If y =sin(x — 1) then
dy/dx = cog9x — 1). The graph is shifted and the slope shifts too.

Notice especially: The cosine is computedcat 1 and not at the unshifted.

RECOGNIZING f(y) AND g(x)

A big part of the chain rule iecognizing the chainThe table started witfx3 + 1)>.
You look at it for a second. Then you see itas The inside function ist = x3 4 1.
With practice this decomposition (the opposite of composition) gets easy:

cog2x+1)iscosu  v/14+sntisy/u  xsnxis... (productrule!)

In calculations, the careful way is to write down all the functions:
z=cosu u=2x+1 dz/dx=(—sinu)(2)=-2sin2x+1).

The quick way is to keep in your mind “the derivative of what's inside.” The
slope ofcog2x + 1) is —sin(2x + 1), times2 from the chain ruleThe derivative
of 2x + 1 is remembered—withoutor u or f or g.

EXAMPLE 7 siny/1 —x isachain ot =siny, y = y/u,u = 1 —x (three functionk

With that triple chain you will have the hang of the chain rule:

The derivative ofsiny/1 —x is (cosy/1 — —1).
Vi=r i cosvT=) (5= ) (-1
Thisis(dz/dy)(dy/du)(du/dx). Evaluate them at the right placesu, x.
Finally there is the question second derivative§he chain rule givedz/dx as
a product, sal?z/dx? needs the product rule:

dz dz dy d*z dzd?y d (dz\dy

—=——ledsto —=——"+—[—)—. 8

dx dy dx dx? dy dx? + dx (dy) dx ®
u v u v + u’ v

That last term needs the chain rule again. It becosttes dy? times(dy /dx)?.

EXAMPLE 8 The derivative ofsin x2 is 2x cosx2. Then the product rule gives
d?z/dx? =2 cosx? —4x?sinx?. In this casey” =2 and(y’)? =

4.1 EXERCISES

Read-through questions

z= f(g(x)) comes fromz = f(y) andy= __a . At x =2, the m . The power rule fory=[u(x)]" is the chain rule
chain (x2—1)3 equals__b . Itsinside functionisy=__c ,its dy/dx=__n . The slope of5g(x) is __o _ and the slope of
outside functioniz =__d .Thendz/dx equals__e .Thefirst g(5x)is p . When f = cosine andg = sine andx =0, the
factor is evaluated ap =__f  (not aty = x). For z =sin(x*—1) numbersf(g(x)) andg(f(x)) and f(x)g(x)are g

the derivative is g The triple chairz = cos(x + 1)? has a shift dz
anda__h _anda cosine. Thediz/dx=__i . In 1-10 identify f(y) and g(x). From their derivatives find I

— (2 3 — (3 2
Theproof of the chain rule begins withz /Ax =(__j )(_k ) + Z=(&"=3) 2 z=(x"=3)
ard ends with__| . Changing lettersy = cosu(x) hasdy/dx = 3 ; =cogqx?) 4 z—tan2x
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5 z=4/sinx 6 z=snyx
7 z=tan(l/x)+1/tanx 8 z =sin(cosx)
9 z=cogx2+x+1) 10 z=vVx2

In 11-16 write downdz/dx. Don’t write down f and g.
11 z =sin(17x) 12 z=tan(x+1)
14 z=(x2)3/2

16 z=(9x+4)3/2

13 z =coycosx)

15 z=x2%sinx

Problems 17-22 involve three functions (y), y(u), and u(x).
Find dz/dx from (dz/dy)(dy/du)(du/dx).

17 z=sinvVx+1 18 z=4/sin(x +1)
19 z=+/1+sinx 20 z=sin(y/x+1)

21 z=4dn(l/sinx) 22 z=(sinx?)?2

In 23-26 finddz /dx by the chain rule and also by rewriting z.

23 z=((x2)?)2 24 z=(3x)3

26 z=41/1—co2x

27 If f(x)=x2+1 wha is f(f(x))? If U(x) is the unit step
function (from 0 to 1 at x=0) draw the graphs of sifi(x)

and U(sinx). If R(x) is the ramp function%(x+|x|), draw the
graphs ofR(x) andR(sinx).

28 (Recommended) Ifg(x)=x3 find f(y) so that f(g(x)) =

x341. Then find h(y) so thath(g(x)) =x. Then findk(y) so

thatk(g(x))=1.

29 If f(y)=y—2find g(x) so thatf(g(x))=x. Then findh(x)
so thatf (h(x)) = x2. Then findk(x) so that f (k(x)) = 1.

30 Find two different pairsf(y), g(x) so thatf (g (x)) = /1 —x2.
31 The derivative of f(f(x)) is . Is it (df/dx)?? Test
your formula onf(x) =1/x.

32 If f3)=3andg(3)=5andf’(3)=2andg’(3) =4, find the
derivative atx = 3 if possible for

@ f(xglx) (b) flg(x) (©) g(f(x) (d) f(f(x)

33 For F(x) = Lx +8, show how iteration gives¥ (F (x)) = +x +
12. Find F(F(F(x)))—also called F® (x). The derivative of
F®(x)is .

34 In Problem33 the limit of F((x) is a constanC =

From any start (tryx = 0) the iterationsx, 1 = F(x,) converge to
C.

35 Supposg(x)=3x+1land f(y)=3(y—1).Thenf(g(x)) =
andg(f(y)) = . These arénverse functions

25 z=(x+1)2+sin(x+mn)

36 Supposeg(x) is continuous atx =4, say g(4) =7. Suppose
f(y) is continuous aty =7, say f(7)=9. Then f(g(x)) is
continuous ak =4 and f(g(4)) =9.

Proof & is given. Because is continuous, there is &
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swch that | f(g(x))—9| <& whenever|g(x)—7|<§. Then be-
cause is continuous, there is & swch that |g(x)—7| <§
whenever|x —4| < 6. Conclusion:If |x —4| <6 then . This
shows that f(g(x)) approaches (g (4)).

37 Only six functions can be constructed by compositions (in any

seqeence) ofg(x) =1—x and f(x) = 1/x. Starting withg and f,
find the other four.

38 If g(x)=1—xtheng(g(x))=1—-(1—x)=x.If g(x)=1/x
theng(g(x))=1/(1/x) = x. Draw graphs of thosg’s and explain

from the graphs why (g(x)) = x. Find two moreg’s with this spe-
cial property.

39 Construct functions so thaf(g(x)) is always zero, bug'(y) is
not always zero.

40 True or false
@) If f(x)=f(=x)thenf’(x)= f'(—x).
(b) The derivative of the identity function is zero.
(c) The derivative off(1/x) is —1/(f(x))2.
(d) The derivative off (1+x) is f/(1+x).
(e) The second derivative of(g(x))is /" (g(x))g" (x).
41 On the same graph draw the parabgle= x2 and he curve

z=siny (keepy upwards, withx andz across). Starting at =3
find your way toz =sin9.

42 On the same graph draw=sinx and z = y2 (y upwards for
both). Starting ak = /4 find z = (sinx)? on the graph.

43 Find the second derivative of

(@) sn(x2+1) (b) Vx2-—1 (c) cosy/x

d?*z dy\ . .
<dy—2) (E) in equation (8).

Final practice with the chain rule and other rules (and other
letters!). Find the x or ¢ derivative of z or y.

44 Explain why %(;{—2)
X\ ay

Check this wherr = y2, y = x3.

46 Z:u3,u:x3

48 y =A/u(t)
50 y=f(x?)=(f(x))?

45 z= f(u(r))

47 y=sinu(x)cosu(x)

49y =x2u(x)

51 z=+1—-u,u=+1—x 52 z=1/u"(t)
53 z= f(u),u=v2v=+/1 54 y=u,u=x,x=1/t
55 If f=x*andg=x3then f’=4x3 andg’ = 3x2. The chain

rule multiplies derivatives to ge2x>. But f(g(x)) =x!? and its
derivative is notl2x>. Where is the flaw?

56 The derivative ofy =sin(sinx) isdy/dx =
cogcosx) sin(cosx)cosx cogsinx)Ccosx COYCOSx)COSX.

57 (a) A book hast00 words per page. There aPgages per sec-
tion. So there are words per section.
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58

(b) Youread200 words per minute. So you read pages 59 Coke costsl/3 dollar per bottle. The buyer gets bottles
per minute. How many minutes per section? pe dollar. If dy/dx = 1/3 thendx /dy= .

(@) You walk in atrain aB miles per hour. The train moves ats0 (Computer) GraphF(x)=sin x and G(x) = sin(sinx)—not
50 miles per hour. Your ground speed.is __ miles per hour. much difference. Do the same fdf’(x) and G’(x). Then plot
(b) You walk in a train aB miles per hour. The train is shownF” (x) andG” (x) to see where the difference shows up.

on TV (1 mile train=20 inches on TV screen). Your speed

across the screen is inches per hour.
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B 2 2 Implicit Differentiation and Related Rates ||

We start with the equationsy = 2 and y° + xy = 3. As x changes, thesg’s will
change—to keepx, y) on the curveWe want to knowdy /dx at a typical point
For xy = 2 that is no trouble, but the slope of + xy = 3 requires a new idea.

In the first case, solve for = 2/x and take its derivatively /dx = —2/x2. The
curve is a hyperbola. At =2 the slope is—2/4=—1/2.

The problem withy> + xy = 3 is that it can’t be solved fop. Galois proved that
there is no solution formula for fifth-degree equatigrighe function y(x) cannot
be given explicitly All we have is theimplicit definition of y, as a solution to
y°+xy = 3. The pointx =2, y = 1 satisfies the equation and lies on the curve,
but how to finddy /dx?

This section answers that question. It is a situation that often occurs. Equations like
siny+sinx =1 or y siny = x (maybe eversin y = x) are difficult or impossible
to solve directly fory. Nevertheless we can fintly /dx at any point.

The way out igmplicit differentiation. Work with the equation as it standsind
the x derivative of every term in> 4+ xy = 3. That includes the constant ten
whose derivative is zero.

EXAMPLE 1 The power rule fory® andthe product rule for y yield

dy dy
Syt — 4 x— =0. 1
Y dx —|—de ty @)
Now substitute the typical point=2 andy = 1, and solve fody /d x:
dy dy dy 1
5—4+2—+1=0 d ——=—c. 2
Tx + Tx + produces I 5 (2)

This is implicit differentiation(ID), and you see the idea: Includb /dx from the
chain rule, even ify is not known explicitly as a function of.

. . d
EXAMPLE 2 siny +sinx =1 leads tOCOSyd—y +cosx =0
X

dy
dx

Knowing the slope makes it easier to draw the curve. We still need points)
that satisfy the equation. Sometimes we can solve f@ividing y°> +xy =3 by y
givesx = 3/y — y*. Now the derivative (the: derivative!) is

L dy .
EXAMPLE 3 ysiny =x leadstoy COSyd— =siny 1
X

3 dy dy
l=(-=-47)—=—=-7—aty=1. 3
( I ) I 7 Ay ©)
Againdy/dx = —1/7. All these examples confirm the main point of the section:

4B (Implicit differentiation) An equationF(x,y) =0 can be differentiatefl
directly by the chain rule, without solving forin terms ofx.

The examplexy =2, done implicitly, givesx dy/dx +y = 0. The slopedy/dx is
—y/x. That agrees with the explicit slope2/x?2.

ID is explained better by examples than theory (maybe everything is). The essential
theory can be boiled down to one ide&d ahead and differentiaté

+That was before he went to the famous duel, and met his end. Fourth-degree equations do
have a solution formula, but it is practically never used.
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EXAMPLE 4  Find the tangent direction to the circté + y2 = 25.
We can solve fory = ++/25 — x2, or operate directly on? 4 y2 = 25:

d d
w2y o o XX 4)
dx dx y
Compare with the radius, which has slope/x. The radius goes across
and upy. The tangent goes acrossy and upx. The slopes multiply to give
(—=x/y)(y/x) = ~1. -
To emphasize implicit differentiation, go on to teecond derivativeThe top of
the circle is concave down, $t?y /dx? is negative. Use the quotient rule enc/y:

dy  x o &_ ydx/dx—xdy/dx y+(x2/y)_ y2+x2 ®
dx ~ y dx2 y2 - y2 - y3

RELATED RATES

There is a group of problems that has never found a perfect plazadnlus. They
seem to fit here—as applications of the chain rule. The problem is to compute
df/dt, but the odd thing is thawve are given another derivatiwég/dt. To find
df/dt, we need a relation betweghandg.

The chain rule isif/dt = (df /dg)(dg/dt). Here the variable is because that
is typical in applications. From the rate of changeofe findthe rate of change of
f. This is the problem ofelated ratesand examples will make the point.

EXAMPLE 5  The radius of a circle is growing bygr/dt = 7. How fast is the
circumference growing? Remember tiiat= 27 r (this relate<C to r).
. dC dC dr

Solution o dr dr Q2n)(7) = 14m.
That is pretty basic, but its implications are amazing. Suppose you want to put a rope
around the earth that ard¢footer can walk under. If the distancedd,000 miles,
what is the additional length of the rope? Answer: Ohdyr feet.

More realistically, if two lanes on a circular track are separatefifieyet, how much
head start should the outside runner get? Qfby feet. If your speed around a turn
is 55 and the car in the next lane ga®&s who wins? See Problernt.

Examples—-8 are from thel 988 Advanced Placement Exarg®pyright1989
by the College Entrance Examination Board). Their questions are carefully prepared.

B

X b 5 100
Fig. 4.3 Rectangle for Example 6, shadow for Example 7, balloon for Exar@p
EXAMPLE 6  The sides of the rectangle increase in such a waydhbdt/r = 1

anddx/dt =3dy/dt. At the instant whenx =4 and y = 3, what is the value of
dx/dt?
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Solution ~ The key relation isc? + y2 = z2. Takeits derivative {mplicitly):

2 d—+2 dy_2zd_z roduces 8d —|—6d 10
Ya " Ya T Fa P a o dar T

We used all information, including =5, except fordx/dt =3dy/dt. The term
6dy/dt equal2dx/dt, so we havd 0dx/dt = 10. Answer:dx/dt = 1.

EXAMPLE 7 A person2 metes tall walks directly away from a streetlight that is
8 meters above the ground. If the person’s shadow is lengthening at the rgté of
meters per second, at what rate in meters per second is the person walking?

Solution  Draw a figure! You must relate the shadow lengtto the distancex
from the streetlight. The problem gives/dt = 4/9 and asks fot/x /dt:

dx 6ds

By similar trian Iesx =2 so = =(3)
y glese =3 dr 2di

4
3

Note This problem was hard. | drew three figures before catching onaods.
It is interesting thatve never knew or s or the angle

EXAMPLE 8 An observer at poind is wetching balloonB as it rises from poin€.
(The figure is given The balloon is rising at a constant rate3ofeters per second
(this meangly /dt = 3) and the observer iE00 meters from poinC.

(a) Find the rate of change inat the instant whem = 50. (They want/z/dt.)

2241002 = 22— 0, Y
=y dr - ar

dz 2:50-3 34/5
=4/502 + 1002 = 504/5 = ==Y,
di " 2.5005 5

(b) Find the rate of change in the area of right trianB@Awheny = 50.

1 dA dy
A= =(100)(y) =50 — =50—==50-3=150.
2( () y 7 0

(c) Find the rate of change thwheny = 50. (They want/6/dt.)

=50 = cosf = 100 _ 2
a BENRYE
1 2\2
100 dt 100 dt dt \/§ 100 125

In all problems | first wrote down a relation from the figureThen | took its
derivative Then | substituted known information(The substitution igftertaking
the derivative otanf = y/100. If we substitutey = 50 too soon the derivative of
50/100is uselesy

“Candidates are advised to show their work in order to minimize the risk of not
receiving credit for it.”50% solved Example 6 an@1% solved Example 7. From
12,000 candidates, the average on Example 8 (free response).Wasit of 9.
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EXAMPLE 9 Aisalighthouse anBCisthe shoreline (same figure as the balloon).
The light atA4 turns once a second6/dt = 2x radians/second. How quickly does
the receiving poinB move up the shoreline?

Solution  The figure showg = 100 tan 6. The speedly /dt is 100se0 df/d:.
This is200 se@6, so B speeds up asech increases.

Paradox When 6 approaches a right angleect approaches infinity. So does
dy/dt. B moves faster than lightThis contradicts Einstein’s theory of relativity.
The paradox is resolved (I hope) in Probléf

If you walk around a light at4, your shadow aiB seems to go faster than light.
Same problem. This speed is impossible—something has been forgotten.

Smaller paradox(not destroying the theory of relativity). The figure shows: z sin 6.
Apparentlydy /dt = (dz/dt) sinf. This is totally wrong Not only is it wrong, the
exact opposite is truetz /dt = (dy/dt) sin@. If you can explain that (Probler®),
thenlD and related rates hold no terrors.

4.2 EXERCISES

Read-through questions

For x3+y3=2 the derivative dy/dx comes from __a 13 At 25 metergsecond, does your car turn faster or slower

differentiation. We don't have to solve for b . Term by term the than a car travelings meters further out a6 metergsecond?

derivative is3x2+ __c¢  =0. Solving for dy/dx gives__d . Your radius is (a0 meters (b)100 meters.

At xI:_y :fl this slope__e . The equation of the tangent line is, , Equation (4) i2x +2y dy /dx = 0 (on a circle). Directly byD

yol=—— reachd?y/dx? in equation (5).
A second example isy2=x. The x derivative of this Problems 15-18

equationis g .Thereforedy/dx=__h .Replacingy by v/x, Example 9

thisisdy/dx = __i

resolve the speed of light paradox in

15 (Small paradox first) The right triangle hag = y2 + 1002.
In related rates, we are giverdg/di and we wantdf/di. Take ther derivative to show that’ = y’sin 6.
We need a relation betweeyf and | . If f=g2, then
df/dty= __k__(dg/dt). f f24+g2=1, thendf/dt=__1
If the sides of a cube grow hys/d¢ =2, then its volume grows

16 (Even smaller paradox) AB moves up the line, why isly /dt
larger thandz /dt? Certainlyz is larger thany, But asf increases

bydV/dt =__m . To find a number (8 is wrong), you also neeéhey become .
toknow__ n . 17 (Faster than light) The derivative ofy =100tan6 in
Example 9 isy’ = 100se@6 0’ = 200rse@0. Thereforey’ passes

¢ (the speed of light) when séé passes . Such a

By implicit differentiation find dy/dx in 1—10. - ) ’ -
speed is impossible—we forget that light takes time to re&ch

1 yt+x"=1 2 x2y4+yZx=1
0 increases b
3 (x—y)2=4 4 \/x+,/y=3atx=4 :
(= VEEVY A B in 1 second
5 x=F() 6 S+ F()=xy ) y(&y ¢ is arrival time
7 x%y=y%x 8 x=siny ’ 8() of light
9 x=tany 10 y"=xatx =1 100 0 is different from2sxt

11 Show that the hyperbolascy = C are perpendicular to the 18 (Explanation bylD) Light travels fromA to B in time z/c,
hyperbolasx? — y% = D. (Perpendicular means that the product dafistance over speed. lts arrival time is=6/27+z/c so
slopes is—1.) 0'/2m =1—2'/c. Then z/ =y’ sind and y’ = 100sed 6’ (all

. th éD) lead t
12 Show that the circlegx —2)24+y2 =2 andx? + (y —2)2 =2 ese ardD) lead to

are tangent at the poiit, 1). y' =2007¢/(ccos6 + 2007 sinf)
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As 6 approacheg /2, this speed approaches (&) Choose so the ball meets the receiver.

Note: y’ still exceedsc for some negative angle. That is for *(b) Atthatinstant the distanc® between them is changing at
Einstein to explain. See th985 College Math Journalpage 186, what rate?

and thel 960 Scientific American‘Things that go faster than light.”

27 A thief is 10 meers away (8 meters ahead of you,
19 If a plane follows the curve = f(x), and its ground speed isacross a streeé6 meters wide). The thief runs on that side at
dx /dt =500 mph, how fast is the plane going up? How fast is the meters/second, you run & meters/second. How fast are you

plane going? approaching if (a) you follow on your side; (b) you run toward the

. . H . . ,)
20 Why can't we differentiater = 7 and eachl = 0? thief; (c) you run away on your side?

28 A spherical raindrop evaporates at a rate equal to twice its

Problems 21-29 are applications of related rates. surface area. Findr/dr.

21 (Calculus classic) The bottom of 0-foot ladder is going . S '
; 29 Starting fromP =V =5and t PV =T,finddV/dt
away from the wall at/x/dt =2 feet per second. How fast is the aring from and maintaining n /

top going down the wall? Draw the right triangle to fiald /d¢ ifdp/dt=2anddT/dt =3.
when the heighy is (a) 6 feet (b)5 feet (c) zero. 30 (a) The crankshaft B turns twice a second so

22 The top of thel0-foot ladder can go faster than light. At what dojdt=____
heighty doesdy /dt = —c? (b) Differentiate the cosine la®? = 32 + x2 —2 (3x cosf) to

23 How fast does the level of a Coke go down if you find the piston speedx/dr whent = /2 andf = 7.

drink a cubic inch a second? The cup is a cylinder of radigs A camera turns af to follow a rocket atR.

2 inches—first write down the volume. (a) Relatedz/d tody/dt wheny = 10.

24 A jet flies at8 miles up and560 miles per hour. How fast (b) Relatedf/dt to dy/dt based ory = 10 tan.
is it approaching you when (a) it is6 miles from you; (b) its (c) Related?6/dr? tod?y/dt? anddy/dt.
shadow is8 miles from you (the sun is overhead); (c) the plane

is 8 miles from you (exactly above)?

25 Starting from a3—4—5 right triangle, the short sides in-
crease by2 meters/second but the angle between them decreases
by 1 radian/secondHow fast does the area increase or decrease?

26 A pass receiver is at =4, y =8¢. The ball thrown atr =3
isatx =c(t —3),y =10c(t —3).
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B 2 3 Inverse Functions and Their Derivatives || G

There is a remarkable special case of the chain rule. It occurs Whenandg (x) are
“inverse functions’ That idea is expressed by a very short and powerful equation:
f(g(x)) = x.Here is what that means.

Inverse functions Start with any input, sayx =5. Conpute y = g(x), say
y =3. Then computef(y), andthe answer must b&. What one function does,
the inverse function undoes. #(5) =3 then f(3) =5. The inverse function f
takes the outputy back to the inputx.

EXAMPLE 1 g(x)=x—2and f(y) = y+2 are inverse functions. Starting with
x =5, the functiong subtract®. That producey = 3. Then the functionf adds2.
That brings backe = 5. To say it directly:;The inverse ofy = x —2isx =y + 2.

EXAMPLE 2 y=g(x)=32(x—32) and x= f(y)=2y+32 ae inverse
functions (for temperature). Hereis degrees Fahrenheit andis degrees Celsius.
From x =32 (freezing in Fahrenheit) you fing =0 (freezing in Celsius). The
inverse function takey =0 back to x =32. Figure 4.4 shows howt = 50°F
matchesy = 10°C.

Notice thatg (x —32) subtracts32 first. The inverseg—y + 32 adds32 last In the
same wayg multiplies last byg while f multiplies first by%.

x=2y+32 domain of f=range of g
°C 5 ) y 2 0
¥
o =1 fr=3w-3 _,.=}.:O ool
0 f 2
2 50 «°
/_ 50 x°F ¥

range of f= domain of g

Fig. 4.4 °Fto°Cto°F. Alwaysg l(g(x))=x andg(g '=(y)=y.If f=g ! then
g=f"1

The inverse function is writtenf = g~! and pronounced‘g inverse.’lt is not
1/g(x).

If the demand is afunction of the pricex, then the price is a function of the demand.
Those are inverse functiongheir derivatives obey a fundamental rulely /dx
timesdx/dy equalsl. In Example 2dy/dx is5/9 anddx/dy is 9/5.

There is another important point. Whef and g are applied in theopposite
order, they still come back to the start. FirStadds2, theng subtract®. The chain
g(f(y))=(y+2)—2bringsbacky. If f isthe inverse of theng is the inverse
of f. The relation is completely symmetric, and so is the definition:

Inverse function If y =g(x)thenx =g~ '(y).If x =g 1(y) theny = g(x).

The loop in the figure goes from to y to x. The compositiong ! (g(x)) is the
“identity function.” Instead of a new point it returns to the originak. This will
make the chain rule particularly easy—leadinddy /dx)(dx/dy) = 1.

EXAMPLE 3y = g(x) =+/x andx = f(y) = y? are inverse functions.

Starting fromx = 9 we find y = 3. The inverse give§? = 9. The square of/x is
f(g(x)) = x. In the opposite direction, the square rootdfis g(f(y)) = y.
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Caution That example does not allow to be negative. The domain gf—the set
of numbers with square roots—is restrictedat@> 0. This matches the range of
g~ !. The outputsy? are nonnegative. Witlomain ofg = range ofg~!, the
equationx = (y/x)? is possible and true. The nonnegativgoes intog and comes
outofg~!.

In this exampley is also nonnegative. You might think we could square anything,
but y must come back as the square rooyéf Soy > 0.

To summarizeThe domain of a function matches the range of its inversehe
inputs tog —! are the outputs frong. The inputs tog are the outputs frong—!.

If g(x) =y then solving that equation forx givesx = g~ !(y):

if y=3x—6 thenx=1(y+6) (thisisg~!(y))
if y=x3+1 thenx=+y—1 (thisisg=1(y))

In practice that is howg ! is computedSolveg (x) = y. This is the reason inverses
are important. Every time we solve an equation we are computing a vagre'of

Not all equations have one solutiohot all functions have inversesFor
eachy, the equatiorg(x) =y is only allowed to produce one. That solution is
x =g~ !(y). If there is a second solution, therm! will not be a function—because
a function cannot produce twds from the samey.

EXAMPLE 4 There is more than one solutionse x = % Many angles have the
same sine. On the interv@l< x < &, the inverse ofy = sinx is not a function.
Figure 4.5 shows how twe’s give the same.

Preventx from passingr/2 and the sine has an inverse. Write=sin~! y.

The functiong has no inverse if two points; and x; give g(x;) = g(x»). Its
inverse would have to bring the sameéback tox; andx,. No function can do that;
g~ !(y) cannot equal botly; andx,. There must be only one for eachy.

To be invertible over an intervalg mustbe steadily increasing or steadily decreasing

Fig. 4.5 Inverse exists (one for eachy). No inverse function (twa’s for oney).

THE DERIVATIVE OF gil

It is time for calculus. Forgive me for this very humble example.

EXAMPLE 5 (ordinary multiplication) The inverse of = g(x) =3xisx = f(y) = %y.

This shows with special clarity the rule for derivativ8$e slopesi/y/dx =3 and
dx/dy = % multiply to givel. This rule holds for all inverse functions, even if their
slopes are not constant. It is a crucial application of the chain rule to the derivative

of f(g(x)) = x.
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o7

4C (Derivative of inverse functiop From f(g(x)) = x the chain rule give
f'(g(x))g’(x) =1.Writing y = g(x) andx = f(y), this rule looks better:

N
dy dx dy dy/dx’

@

The slope ofx = g~!(y) times the slope of = g(x) equals one.

This is the chain rule with a special feature. Sintgz(x)) = x, the derivative of
both sides isl. If we know g’ we now know f’. That rule will be tested on a
familiar example. In the next section it leads to totally new derivatives.

EXAMPLE 6 The inverse ofy = x3 is x = y'/3. We can finddx /dy two ways:

d 1 d 1 1 1
directly: ax _ gy*2/3 indirectly: @ _

dy dy _ dy/dx 3x2  3y2/3

The equation(dx/dy)(dy/dx) =1 is not ordinary algebra, but it is true. Those
derivatives are limits of fractions. The fractions d#&x/Ay)(Ay/Ax)=1 and
we letAx — 0.

Fig. 4.6  Graphs of inverse functions: = %y is the mirror image ofy = 3x.

Before going to new functions, | want to draw graphs. Figure 4.6 shows,/x
and y = 3x. What s special is thahe same graphs also show the inverse functions
The inverse ofy = 4/x isx = y2. The pairx = 4, y = 2 is the same for both. That is
the whole point of inverse functions—¥= g(4) then4 = g—1(2). Notice that the
graphs go steadily up.

The only problem is, the graph af= g~!(y) is on its side. To change the slope
from 3 to % you would have to turn the figure. After that turn there is another
problem—the axes don'’t point to the right and up. You also have to look in a mirror!
(The typesetter refused to print the letters backward. He thinks it's crazy but it's not.)
To keep the book in position, and the typesetter in position, we need a better idea.

The graph ofx = %y comes fromturning the picture across th&5° line. They
axis becomes horizontal andyoes upward. The poiri2, 6) on the liney = 3x goes
into the point(6,2) on the linex = %y. The eyes see a reflection across 45 line
(Figure 4.6¢). The mathematics sees the same pa@rsd y. The special properties
of g andg~! allow us to know two functions—and draw two graphs—at the same
time;f The graph ofx = g~!(y) is the mirror image of the graph ofy = g(x).

+1 have seen graphs with= g(x) and alsoy = g~ !(x). For me that is wrong: it has to be
x =g '(y). If y=sinx thenx =sin !y.
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EXPONENTIALS AND LOGARITHMS

| would like to add two more examples of inverse functions, beedbsy are so
important. Both examples involve tlexponentiaknd thelogarithm One is made
up of linear pieces that imitatg*; it appeared in Chapter. The other is the true
function2*, which is not yet defined—and it is not going to be defined here. The
functionsb* andlog, y are so overwhelmingly important that they deserve and will
get a whole chapter of the book (at least). But you have to see the graphs.

The slopes in the linear model are power20fSo are the heights at the start
of each pieceThe slopesl, 2,4, ... equal the heightsl,2,4,... at those special
points

The inverse is a discrete model for the logarithm (to li&sd& he logarithm ofl
is 0, becaus@® = 1. The logarithm of2 is 1, becaus@! = 2. The logarithm of2/
is the exponeny. Thus the model gives the correct=10g, y at the breakpoints
y=1,2,4.8,.... The slopes aré, . ;. 5.... becauselx/dy = 1/(dy/dx).

The model is good, but the real thing is better. The figure on the right shows the
true exponentia =2*. At x =0, 1,2, ... the heights are the same as before. But

now the height atc = 1 is the number2!/2, which is /2. The height atr = .10

is the tenth roo2'/1° = 1.07.... The slope ak = 0 is no longerl—it is closer to
Ay/Ax=.07/.10. The exact slope is a number (near 7) that we are not
yet prepared to reveal.

The special property of =2~ is that the slope at all points isy. The slope is
proportional to the function The exponential solvasy /dx = cy.

Now look at the inverse function—the logarithmts graph is the mirror image:

If y=2"thenx =log, y. If 2'/1° ~ 1.07 thenlog, 1.07 ~ 1/10.

What the exponential does, the logarithm undoes—and vice vEngalogarithm of
2% is the exponenty. Since the exponential starts with slopethe logarithm must
start with slopd /c. Check that numerically. The logarithm bf07 is nearl /10. The
slope is nearl.0/.07. The beautiful property is thatx/dy = 1/cy.

I’ y
O

x=log,y

X

1 2 B

Fig. 4.7 Piecewise linear models and smooth curyes: 2* and x =log, y. Baseb = 2.

| have to mention that calculus avoids logarithms to baséhe reason lies
in that mysterious number. It is the “natural logarithm” o2, which is 693147...
—and who wants that? Alsd/.693147... enters the slope ofog,y. Then
(dx/dy)(dy/dx) = 1. The right choice is to use “natural logarithms” throughout.
In place of2, they are based on the special numder

y =e” is the inverse ofx =1In y. %))
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The derivatives of those functions are sensational—they amdsfmr Chapter 6.
Together withx” andsinx andcosx, they are the backbone of calculus.

Note It is almost possible to go directly to Chaptér The inverse functions
x =sin"!'y andx =tan !y can be done quickly. The reason for including integrals
first (Chapten) is that they solve differential equations with no guesswork:

d d 1 d

_y:y o L leadsto fdx:f—y or x=Iny+C.

dx dy 'y y
Integrals have applications of all kinds, spread through the rest of the book. But do
not lose sight o2* ande*. They solvedy /dx = cy—the key to applied calculus.

THE INVERSE OF A CHAIN k(g (x))

The functiong (x) = x — 2 andh(y) = 3y were easy to invert. Fgr—! we adde,
and forz—! we divided by3. Now the question is: If we create the composite function
z=h(g(x)),orz=3(x —2), whatis its inverse?

Virtually all known functions are created in this way, from chains of simpler
functions.The problem is to invert a chain using the inverse of each pi€bce
answer is one of the fundamental rules of mathematics:

4D The inverse of = h(g(x)) is a chain of inverse the opposite order

x=g (A1 (2)). 3)
h~1is applied first becaudewas applied lastg =1 (A~ (h(g(x)))) = x.

That last equation looks like a mess, but it holds the key. In the middle you see
h=1! andh. That part of the chain does nothing! The inverse functions cancel, to
leaveg—!(g(x)). But that isx. The whole chain collapses, when! andi~! are
in the correct order—which is opposite to the ordefhi 6§ (x)).

EXAMPLE 7 z=h(g(x))=3(x—2) and x =g~ ' (h~!(2)) = 3z +2.

First h—! divides by3. Theng~! adds2. The inverse ofiog is g ! oh~!. It can
be found directly by solving = 3(x —2). A chain of inverses is like writing in
prose—we do it without knowing it.

EXAMPLE 8 Invertz = +/x — 2 by writing z2 = x — 2 and thenx = z2 4-2.

The inverse addg and takes the square—but not in that ord&hat would give
(z 4+ 2)?, which is wrong. The correct order i€ + 2.

The domains and ranges are explained by Figure 4.8. We start xwiti2.
Subtracting2 gives y = 0. Taking the square root gives> 0. Taking the square
brings backy > 0. Adding 2 brings backx = 2—which is in the original domain
of g.

== h(g()) x=g ') c=2v-1 r=5E+1D

NS TS

y=g) =z=h( y=h'c) x=g7l(¥ y=2:

; t=y—=1 y=z+1 ==V

Fig. 4.8 The chaing=1(h~!(h(g(x)))) = x is one-to-one at every step.
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Inverse Functions and Their Derivatives

Inverse matrice6AB)~! =
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B~14-! (thislinear algebrais optional).

Suppose a vector is multiplied by a square matriB: y = g(x) = Bx. The inverse

function multiplies by theinverse matrix x =g '(y)=B"!y.

It is like

multiplication by B = 3 and B~! = 1/3, except that andy are vectors.

Now suppose a second function multiplies by another mattrix= h(g(x)) = ABx.
The problem is to recover from z. The first step is to inverl, because that came
last: Bx =A"'z. Then the second step multiplies by ! and brings back
x=B"1A471z. The productB—! A~! inverts the product4 B. The rule for matrix
inverses is like the rule for function inverses—in fact it is a special case.

| had better not wander too far from calculus. The next section introduces the
inverses of the sine and cosine and tangent, and finds their derivatives. Remember
that the ultimate source is the chain rule.

4.3 EXERCISES

Read-through questions

The functions g(x)=x—4 and f(y)=y+4 are a

functions, becaus¢'(g(x))=_Db . Alsog(f(y))=_c¢c . The

notation is f =g~ ! and g=__d . The composition__e

is the identity function. By definitionx = ¢—1(y) if and only

if y=__f . Wheny is in the range ofg, it is in the g

of g—!. Similarly x is in the __h of g when it is in the
i of g7l If g has an inverse them(x;) i g(x2)

at any two points. The functiong must be steadily_ k

or steadily | .

The chain rule applied tof (g(x)) = x gives (df/dy)(__m_)
=_ n . The slope ofg—! times the slope of equals__o
More directly dx/dy=1/ p For y=2x+1 and x=

1(y—1), the slopes aredy/dx=_q and dx/dy=__r1__

For y=x2 and x=__s , the slopes arely/dx=__t and
dx/dy =__u__. Substitutinge? for y givesdx/dy =__v__.Then
(dx/dy)(dy/dx)=__w__

The graph of y =g(x) is also the graph ofc=__x_, but

with x across andy up. For an ordinary graph of—!, take
the reflection in the line y . If (3,8) is on the graph of,
then its mirror image (_z ) is on the graph ofg—!. Those
particular points satisf§ =23 and3=__A

The inverse of the chain =h(g(x)) is the chainx=__B .
If g(x)=3x and h(y)=y3 then z=__C . Its inverse is
x=__D ,whichisthe compositionof E _and_ F

Sdve equations 1-10 for x, to find the inverse function
x =g~ 1(y). When more than onex gives the samey, write “no
inverse”

1 y=3x—6 2 y=Ax+B

3 y=x2-1 4 y=x/(x—1)[solvexy —y =x]

5 y=1+x""! 6 y=|x|

7 y=x3-1 8 y=2x+]|x|
9 y=sinx 10 y = x1/5 [draw graph]
. 1 . 1
11 Solving y=—— gives xy—ay=1 or x= +ay. Now
X—a y

solve that equation fop.

1 1
12 Solving y = x—+1 givesxy—y=x+1or x= % Draw
X — y—
the graph to see why' and f~! are the same. Comput& /dx
anddx/dy.

13 Supposef is increasing andf(2) =3 and f(3) = 5. What can
you say aboutf —1(4)?

14 Supposef(2) =3 and f(3) =5 and f(5) =5. What can you
say aboutf ~1?

15 Supposef(2)=3 and f(3)=5 and f(5)=0. How do you
know that there is no functiogf —1?

16 Vertical line test If no vertical line touches its graph twice
then f(x) is a function (one y for each x). Horizontal line
test If no horizontal line touches its graph twice thef(x) is
invertible because .

17 If f(x) and g(x) are increasing, which two of these might
not be increasing?

fO+g)  fgx)  flg) ST /)

18 If y=1/x then x=1/y. If y=1—x thenx=1—y. The
graphs are their own mirror images in th&° line. Construct two
more functions with this property = 1 or f(f(x)) = x.

19 For which numberg: are tiese functions invertible?
@ y=mx+b (b)) y=mx+x3 () y=mx+sinx

20 From its graph show thap = |x|+cx is invertible if ¢ >1
and also ifc <—1. The inverse of a piecewise linear function
is piecewise .
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In 21-26 finddy/dx in terms of x and dx/dy in terms of y. (b) If f(x)isinvertible soigi(x) = f(f(x)).
21 y=x5 22 y=1/(x—1) (¢) f~'(») has aderivative at every.
23 y=x3-1 24 y=1/x3 In the ehains 46-51 write downg(x) and f(y) and their
X ax+b inverses. Then findx = g~ 1(f~1(2)).
25 y= 2 =
Y x—1 6y cx+d
46 z=5(x—4) 47 z=(x")"
27 Ifdy/dx=1/ythendx/dy = andx =
. 48 z=(6+x)3 49 z=6+x3
28 If dx/dy=1/y thendy/dx = (these functions are L
y=e¢* andx =In y, soon to be honored properly). 50 z=g(zx+4)+4 51 z=log(10%)
_1.3 _ 2 2
29 The slopes off (x) = 3x” and g(x) = —1/x arex” and1/x". 5, gyving f(x)=0 is a large part of applied mathematics.

Why isn't f = g=!? What isg~!? Show thag’(g~!)' = 1. Express the solution* in terms of f ~1: x* =
30 At the pointsxy, x2, x3 & piecewise constant function jumpss3 () Show by example that2x/dy? is not1/(d2y/dx2).

to yi, y2, y3. Draw its graph starting fromy(0)=0. o o o
The mirror image is piecewise constant with jumps at the (P) If yisin meters and is in seconds, therd?y/dx? is in
points to the heights . Why isn't this the —andd?x/dy?isin .

inverse function? 54 Newton’s method solvesf(x*)=0 by applying a linear
approximation tof ~1:

In 31-38 draw the graph of y =g(x). Separately draw its

mirror image x = g~ 1(y). FHO~ 7T 0 +df 7 dy) 0-y).
31 y=5x—10 32 y=cosx,0<x <7 Fory = f(x) this is Newton’s equation™ ~ x + .
33 y=1/(x+1) 34 y=|x|—2x 55 If the demand isl/(p +1)? when the price isp, then the
demand isy when the price is . If the range of prices
35 y=10*% 36 y=4/1-x2,0<x<1 is p =0, what is the range of demands?
37 y=27% 38 y=1/A/1—-x2,0<x<1 56 If dF/dx = f(x) show that the derivative of
G =yft O =F( ) is 7).
In39-42 finddx/dy at the given point 57 For each numbery find the maximum value ofyx —2x*.
39 y=sinx atx=7/6 40 y=tanx atx = /4 This maximum is a functionG(y). Verify that the derivatives
) ) of G(y) and2x* are inverse functions.
41 y=sinx2 atx =3 42 y=x—sinxatx=0 ) )
58 (for professors only) IfG(y) is the maximum value of
43 If y is a decreasing function of, then x is a yx = F(x), prove thatF (x) is the maximum value oty — G(y).
function of y. Prove by graphs and by the chain rule. Assume that f(x)=dF/dx is increasing, like 8x~ in

Problems7.
44 If f(x)> x for all x, show thatf ~1(y) < y.
59 Suppose the richest percent of people in the world have

104/x percent of the wealth. Them percent of the wealth is
(@) If f(x) is invertible so ish(x) = (f(x))2. held by percent of the people.

45 True or false with example:
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Mathematics is built on basic functions like the sine, and on basic ideas like the

inverse. Thereforét is totally natural to invert the sine function The graph of
x=sin"'y is a mirror image ofy =sinx. This is a case where we pay close

attention to the domains, since the sine goes up and down infinitely often. We only

wantone pieceof that curve, in Figure 4.9.

For the bold line the domain is restricte@ihe anglex lies between—sm/2
and 4+ /2. On that interval the sine is increasing, sach y comes from exactly
one anglex. If the whole sine curve is allowed, infinitely many angles would have

sinx = 0. The sine function could not have an inverse. By restricting to an interval

wheresin x is increasing, we make the function invertible.

y=sinx

/ dy _
E—O
y=11 >
1 &y _ =i Tt
=1 dx = V3/ <1 S&
; ' x :
_x x x -1 1
2 6 2 >
~
2 -1
sin"ly +cos~ly = %

|
e

Fig. 4.9 Graphs of sinx and $n—!y. Their slopes are caosand1/+/1 — y2.

The inverse function brings back tox. Itis x = sin~!y (theinverse sing:
x =sin~'y wheny = sinx and|x| < /2. Q)

The inverse starts with a numberbetween—1 and 1. It produces an angle =
sin~! y—the angle whose sine is. The anglex is between—7/2 and/2, with
the required sine. Historically was called the “arc sine” of, andarcsinis used in
computing. The mathematical notatiorsis—!. This has nothing to do with/ sin x.

The figure shows th80° anglex = /6. Its sine isy = 1. The inverse sine of}
is /6. Again: The symbosin~! (1) stands for the angle whose sineligthis angle
isx = /2). We are seeing ! (g(x)) = x:

sin~!(sinx) = x for —% <x < % sin(sin~'y)=y for —1<y<1.
EXAMPLE 1  (important) Ifsinx = y find a formula forcosx.

Solution  We are given the sine, we want the cosine. The key to this problesh m
becogx = 1 —sir?x. When the sine ig, the cosine is the square rootbf- y?:

cosx = cogsin~ly) =+/1—y2. 2)

This formula is crucial for computing derivatives. We use it immediately.
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THE DERIVATIVE OF THE INVERSE SINE

The calculus problem is to find the slope of the inverse funcifgm) = sin~'y.
The chain rule givess{ope of inverse function= 1/(slope of original functioh
Certainly the slope a$in x is cosx. To switch fromx to y, use equatiof2):

®3)

. ) dy dx 1 1
y =Sinx gives — =co0Sx sothat — = = .
’ dx dy  cosx 1—y2

This derivative 1/4/1 — y2 gives a newv—f pair that is extremely valuable in
calculus:

velocity v(r)=1/4/1—t2  distance f(¢) =sin"!z.

Inverse functions will soon produce two more pairs, from the derivativéarof! y
andsec!y. The table at the end lists all the essential facts

EXAMPLE 2 Theslopeogin~!y aty = lisinfinite: 1/4/1 — y2 = 1/0. Explain.

At y =1 the graph ofy = sinx is horizontal. The slope is zero. So its mirror image
is vertical. The slopé /0 is an extreme case of the chain rule.

Question Whatisd/dx(sin"!'x)?  Answer 1/4/1 —x2.1justchanged letters.

THE INVERSE COSINE AND ITS DERIVATIVE

Whatever is done for the sine can be done for the cosine. But timaidand range
have to be watched. The graph cannot be allowed to go up and down.yHaaim
—1 to 1 should be the cosine afnly one angler. That putsx between) and .
Then the cosine is steadily decreasing and cosx has an inverse:

cos !(cosx) =x and cogcos 'y) = y. (4)

The cosine of the angle= 0 is the numbey = 1. The inverse cosine of = 1 is the
anglex = 0. Those both express the same fact, teg0 = 1.

For the slope ofos™! y, we could copy the calculation that succeededsfar ! y.
The chain rule could be applied as in (3). But there is a faster way, because of a special
relation betweegos !y andsin~!y. Those angles always add to a right angle

cos 'y +sinly =x/2. (5)

Figure 4.9c shows the angles and Figure 4.10c shows the graphs. Thesyih(the
dotted line), and its derivative is zero. So the derivativesasf ! y andsin™!y must
add to zeroThose derivatives have opposite siGhere is aminus for the inverse
cosine, and its graph goes downward:

The derivative ofx =cos™'y is dx/dy =—1/4/1—y2. (6)

Question How can two functionst = sin~!y andx = —cos !y have thesame
derivative?
Answer sin~!y must be the same ascos !y + C. Equation(5) givesC = /2.
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-Lr) -

i
Y =CO0S X

| = Tl
cos™ly +sin~!y = -

(0, m/2) T

(/2. 0) s 60° 1

(1,0
] i

(=1,-m/2)

Fig. 4.10 Thegraphs ofy = cosx and x = cos ! y. Notice the domaii) < x < 7.

THE INVERSE TANGENT AND ITS DERIVATIVE

The tangent isinx/ cosx. The inverse tangent isotsin~!y/cos™' y. The inverse
function producethe angle whose tangent is. Figure 4.11 shows that angle, which
is between-m/2 andzx /2. The tangent can be any number, but the inverse tangent is
intheopen interval-n/2 < x < /2. (The interval is “open” because its endpoints
are not included.) The tangentssof 2 and—7 /2 are not defined.

The slope ofy =tanx is dy/dx = seéx. What is the slope aof = tan!y?

d 1 1 1
By the chain rules = = = . (7)
y seéx l4tartx 1+y?
L . df 1
4E The derivative of f(y) =tan "y is — = . (8)
dy 1+4y?

X=T
A SR L S
2
1
slope =
I",I 3': = |
' — : + =5
-3 -2 -1 (0.0 I\‘ 2 3

~

Fig. 411 x=tan 'y has slopd /(1 +y?). x =sec !y has slopd/|y|\/y2 —1.

EXAMPLE 3  The tangent ofc = /4 is y = 1. We check slopes. On the inverse
tangent curvedx /dy =1/(1 + y?) = 1. Onthe tangent curvely /dx = seéx. At
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7 /4 the secant squared equalsThe slopesix/dy = % and dy/dx =2 multiply to
givel.

Important Soon will come the following questionWhat function has the
derivative1/(1+ x2)? One reason for reading this section is to learn the answer.
The function is in equatio(8)—if we change letterstis f(x) = tam ' x that has
slopel/(1+ x?).

1 secy
A sinx tanx

COS X 1 col x

Fig. 412 cos?x+sin?x=1 and 1+tarx =seéx and 1+cot?x =cséx.

INVERSE COTANGENT, INVERSE SECANT, INVERSE COSECANT

There is no way we can avoid completing this miserable list! Boait be painless.

Theideais to usé/(dy/dx) for y = cotx andy = secx andy = cscx:
d —1 d 1 d —1
e am ZEo—— ad Eo_——
dy cséx dy secxtanx dy cscxcotx

9)

In the middle equation, replasecx by y andtanx by ++/y2 — 1. Choose the sign
for positive slope (compare Figure 4.11). That gives the middle equatid®in

The derivatives otot™!y and sec’!y andcsc!'y are

d
) d—(SGfly) =T (ccly) =
[y

1 d —1
— —F—— . (10

|y|4/_y2—1 dy |y|«/y2—1 ( )
Noteabout the inverse secantWheny is negative there is a choice for= sec! y.
We selected the angle in the second quadrant (betweg@nand ). Its cosine is
negative, so its secant is negative. This choice makes! y = cos ' (1/y), which
matchesecx = 1/ cosx. It also makesec ! y an increasing function, wheoos ™! y
is a decreasing function. So we needed the absolute Y|l the derivative.

Some mathematical tables make a different choice. The angleuld be in the
third quadrant (betweer and—s/2). Then the slope omits the absolute value.

T 142

Summary For the six inverse functions it is only necessary to learn three
derivatives. The other three just have minus signs, as we sasiriof y andcos ! y.
Each inverse function and its “cofunction” add #9'2, so their derivatives add to
zero. Here are the six functions for quick reference, with the three new derivatives.

function f(y) inputsy outputsx slopedx/dy
o 1 b4 JT] 1
sin'y, cos <1 [——,— (1005 B ———
y y Iyl 55 |- [0.7] T
1
tam !y, cotly ally (—%,%), 0,7) +

1+ y2
T 1

®
LAY N
22 |y|4/y2—]

se~ly,escly |y|=1 [O,JT]*,[
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If y =cosx or y =sinx then|y| < 1. For y = secx andy = cscx the opposite is
true; we must havéy| > 1. The graph oec !y misses all the points-1 <y < 1.
Also, that graph misses = 7/2—where the cosine is zero. The secantgf2
would be 1/0 (impossible). Similarlycsc 'y missesx =0, becausey = csc0
cannot bel /sin0. The asterisks in the table are to remove those pointss/2
andx = 0.
The column of derivatives is what we need and use in calculus.

4.4 EXERCISES

Read-through questions

The relation x—sin~!y means that a is the sine of 11 Take thex deiivative of sirr!(sinx)=x by the chain rule.
b . Thusx is the angle whose sine is ¢ . The number Check that/(sin~!y)/dy = —1//1— y2 gives a correct result.

v lies between__d _and _e . The anglex lies between ,, 0 the ) derivative of cogcos!y) = y by the chain rule.

f and g . (If we want the inverse to exist, therech 1 3
— eck that/(cos™ dy=—1/A/1— ives a correct result.
cannot be two angles with the same sine.) The cosine of the ( )/dy / y~4g

angle sinly is n/_h . The derivative of x=sin"'y is 13 At y=0andy=1, find the slopedx/dy of x=sin"'y and
dx/dy=__i x=cos !y andx =tanly.

14 At x =0 andx =1, find the slopedx/dy of x=sin"1y and

The relationx =caos~!y means thaty equals j . Again 1 i)
the number y lies between__k and __| . This time the ¥ =C0s""y andx =tarm"y.
argle x lies between_m _and__n __ (so that eachy comes 15 True or false, with reason:
from only one anglex). The sum sim!y+cosly=_o . (@) (sin"'y)2+(cosly)2=1
(The angles are called p , and they add to a g angle.) (b) sim 'y =cos !y has no solution
Therefore the derivative af =cos !yisdx/dy=__r _,the same (c) sin !y is an increasing function

1 .
asfor sin” 'y exceptfor a_s sign. (d) siy is an odd function

The relation x=tan 'y means that y=_t . The (e) sinm !y and—cos !y have the same slope—so they are the
number y lies between__ u  and __ v . The anglex lies same.
between__w and __x . The derivative isdx/dy= y . (f) sin(cosx) = cogsinx)
Since tarly+cot-ly=__z , the derivative of cotly is the

16 Find tar(cos !(sinx)) by drawing a triangle with sides

same exceptfora A sign. sinx, cosx. 1.

The relation x =sec''y means that_B . The numbery

never lies between C _and__ D . The anglex lies between Compute the derivatives in 17-28 (using the letters as given)

E _alnd. F , but never atx=__ G . The derivative of 17 w=sin1x 18 w=tan!2x
x=s& 'yisdx/dy=__H
_ _ ~ 19 z=sin"!(sin3x) 20 z=sin"!(cosx)
In 1-4, find the anglessin~'y and cos !y and tan 'y in . .
radians. 21 z=(sin"1x)2 22 z=(sin"1x)~1
— /1 _2sin-1 _ 2ytar-1
1 y=0 2 y=—1 3 y=1 4 y=+3 23 z=A/1—y?sin'y 24 z=(14+x)tan" "x
25 x=sec l(y+1) 26 u =sec !(secx?)

5 Weknow that sint = 0. Why isn’t = = sin—10?
. L. . —gin ! 1 _ 2
6 Suppose sitx = y. Under what restriction is = sin~1 y? 27 u=sin""y/cos /1y
— ain-1 1 1
7 Sketch the graph of = sin—!y and locate the points with slope28 u=sin—y+cosyttan—y
dx/dy =2. 29 Draw a right triangle to show why tarl y +cot~1y = 7/2.

8 Finddx/dy if x =sin~'1y. Draw the graph. 30 Draw a right triangle to show why tart y = cot 1(1/y).

9 If y=cosx find a formula for sinc. First draw a right 31 If y =tanx find secx in terms ofy.
triangle with anglex and near sidg—what are the other two sides?32 Draw the graphs of = cotx ard x = cot ! y.

10 If y=sinx find a formula for tanx. First draw a right 33 Find the slopelx/dy of x =tan !y at
triangle with anglex and far sidey—what are the other sides? (@ y=-3 (b) x=0 () x=—mn/4
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34 Find a functionu(t) whose slope satisfieg +2u’ = 1. 48 Solve the differential equatiodu /dx = 1/(1 +4x2).
; et 2 —ain—1
35 What is the second derivative?x /dy? of x =sin~1y? 49 1 du/dx :2/Mfindu(l)—u(0).

36 What isd?u/dy? foru =tan~1y? ) i
50 (recommended) With u(x)=(x—-1)/(x+1), find the

derivative of tarrlu(x). This is also the derivative of . So

Find the derivatives in 37-44 the difference between the two functionsisa .

37 y=secix 38 x=sec 12y

o . 51 Findu(x)