
CHAPTER 0

Highlights of Calculus

0.1 Distance and Speed == Height and Slope

Calculus is about functions. I use that word “functions” in the first sentence,
because we can’t go forward without it. Like all other words, we learn this one in
two different ways: Wedefinethe word and weusethe word.

I believe that seeing examples of functions, and using the word to explain those
examples, is a fast and powerful way to learn. I will start with three examples:

Linear function y.x/D 2x

Squaring function y.x/D x2

Exponential function y.x/D 2x

The first point is that those are not the same! Their formulas involve2 andx in very
different ways. When I draw their graphs (this is a good way to understand functions)
you see that all three are increasing whenx is positive. The slopes are positive.

When the inputx increases (moving to the right), the outputy also increases
(the graph goes upward). The three functions increase at differentrates.
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Near the start atxD 0, the first function increases the fastest. But the others soon
catch up. All three graphs reach the same heightyD 4 whenxD 2: Beyond that
point the second graphyDx2 pulls ahead. AtxD 3 the squaring function reaches
yD 32 D 9, while the height of the third graph is onlyyD 23 D 8:

Don’t be deceived,the exponential will win. It pulls even atxD 4, because42 and
24 are both16. ThenyD 2x moves ahead ofyDx2 and it stays ahead. When you
reachxD 10, the third graph will haveyD 210 D 1024 compared toyD 102 D 100:

The graphs themselves are astraight line and aparabola and anexponential.
The straight line has constant growth rate. The parabola has increasing growth rate.
The exponential curve has exponentially increasing growth rate. I emphasize these
because calculus is all about growth rates.

The whole point of differential calculus is to discover the growth rate of a function,
and to use that information. So there are actuallytwo functions in play at the
same time—the original function and its growth rate. Before I go further down
this all-important road, let me give a working definition of a functiony.x/:

A function has inputs x and outputsy.x/. To eachx it assigns oney.

The inputsx come from the “domain” of the function. In our graphs the domain
contained all numbersx¥ 0. The outputsy form the “range” of the function. The
ranges for the first two functionsyD 2x andyDx2 contained all numbersy¥ 0.
But the range foryD 2x is limited toy¥ 1 when the domain isx¥ 0.

Since these examples are so important, let me also allowx to be negative.
The three graphs are shown below. Strictly speaking, these are new functions! Their
domains have been extended toall real numbersx. Notice that the three ranges are
also different:

The range ofyD 2x is all real numbersy

The range ofyDx2 is all nonnegative numbersy¥ 0
The range ofyD 2x is all positive numbersy¡ 0
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One more note about the idea of a function, and then calculus can begin. We have
seen the three most popular ways to describe a function:

1. Give aformulato findy from x. Example:y.x/D 2x:

2. Give agraphthat showsx (distance across) andy (distance up).

3. Give theinput-output pairs(x in the domain andy in the range).



0.1 Distance and Speed == Height and Slope 3

In a high-level definition, the “function” is the set of all the input-output pairs. We
could also say: The function is the rule that assigns an outputy in the range to every
inputx in the domain.

This shows something that we see for other words too. Logically, the definition
should come first. Practically, we understand the definition better after we know
examples that use the word. Probably that is the way we learn other words and also
the way we will learn calculus. Examples show the general idea, and the definition
is more precise. Together, we get it right.

The first words in this book wereCalculus is about functions. Now I have to
update that.

PAIRS OF FUNCTIONS

Calculus is about pairs of functions. Call them Function (1) and Function (2).
Our graphs ofyD 2x and yDx2 and yD 2x were intended to be examples of
Function (1). Then we discussed the growth rates of those three examples.The
growth rate of Function (1) is Function (2). This is our first task—to find the
growth rate of a function. Differential calculus starts with a formula for
Function.1/ and aims to produce a formula for Function.2/:

Let me say right away how calculus operates. There are two ways to compute how
quicklyy changes whenx changes:

Method1(Limits): Write
Change iny

Change inx
D
�y

�x
. Take the limit of this ratio as�xÑ 0.

Method2 (Rules): Follow a rule to produce new growth rates from known rates.

For each new functiony.x/, look to see if it can be produced from known
functions—obeying one of the rules. An important part of learning calculus is
to see different ways of producing new functions from old. Then we follow the
rules for the growth rate.

Suppose the new function isnot produced from known functions (2x is not
produced from2x or x2). Then we have to find its growth rate directly. By
“directly” I mean that we compute a limit which is Function (2). This book will
explain what a “limit” means and how to compute it.

Here we begin with examples—almost always the best way. I will state the
growth rates “dy=dx” for the three functions we are working with:

Function (1) yD 2x yD x2 yD 2x

Function (2)
dy

dx
D 2

dy

dx
D 2x

dy

dx
D 2x.ln 2/

The linear functionyD 2x has constant growth ratedy=dxD 2. This section will
take that first and easiest step. It is our opportunity to connect the growth rate to the
slope of the graph. The ratio ofup to acrossis 2x=x which is2.

Section0:2 takes the next step. The squaring functionyDx2 has linear growth rate
dy=dxD 2x. (This requires the idea of a limit—so fundamental to calculus.) Then we
can introduce our first two rules:

Constant factor The growth rate ofCy.x/ is C times the growth rate ofy.x/.

Sum of functions The growth rate ofy1 Cy2 is the sum of the two growth rates.
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The first rule says thatyD 5x2 has growth rate10x. The factorC D 5 multiplies
the growth rate2x. The second rule says thaty1 Cy2 D 5x2 C2x has growth rate
10xC2. Notice how we immediately took5x2 as a functiony1 with a known growth
rate. Together, the two rules give the growth rate for any “linear combination” of
y1 andy2:

The growth rate of C1y1 CC2y2 is that same combinationC1

dy1

dx
CC2

dy2

dx
.

In words, the step from Function (1) to Function (2) islinear. The slope ofyDx2�x
is dy=dxD 2x�1. This rule is simple but so important.

Finally, Section0:3 will present the exponential functionsyD 2x and yD ex .
Our first job is their meaning—what is “2 to the power�” ? We understand
23 D 8 and24 D 16, but how can we multiply2 by itself� times?

When we meetex , we are seeing the great creation of calculus. This is a function
with the remarkable property thatdy=dxDy. The slope equals the function. This
requires the amazing numbere, which was never seen in algebra—because it only
appears when you take the right limit.

So these first sections compute growth rates for three essential functions. We are
ready foryD 2x.

THE SLOPE OF A GRAPH

The slope is distance up divided by distance across. I am thinking now about the
graph of a functiony.x/. The “distance across” is the changex2�x1 in the inputs,
from x1 to x2. The “distance up” is the changey2�y1 in the outputs, fromy1 to y2.
The slope is large and the graph is steep wheny2�y1 is much larger thanx2�x1.
Change iny divided by change inx matches our ordinary meaning of the word slope:

Average slopeD
change iny

change inx
D
y2�y1

x2�x1

D
�y

�x
: (1)

I introduced the very useful Greek letter� (delta), as a symbol forchange. We take
a step of length�x to go fromx1 to x2. For the heighty.x/ on the graph, that
produces a step�yDy2�y1. The ratio of�y to �x, up divided by across, is the
average slope betweenx1 andx2. The slope is the steepness.

Important point: I had to say “average” because the slope could be changing as
we go. The graph ofyDx2 shows an increasing slope. Betweenx1 D 1 andx2 D 2,
what is the average slope foryDx2 ?Divide�y by�x:

y1 D 1 at x1 D 1

y2 D 4 at x2 D 2
Average slopeD

4�1
2�1 D

�y

�x
D 3:

Betweenx1 D 0 and x2 D 2, we get a different answer (not3). This graph ofx2

shows the problem of calculus, to deal with changes in slope and changes in speed.
The graph ofyD 2x has constant slope. The ratio of�y to �x, distance up to

distance across, is always2:

Constant slope
�y

�x
D
y2�y1

x2�x1

D
2x2�2x1

x2�x1

D 2:

The mathematics is easy, which gives me a chance to emphasize the words and the
ideas:

Function (1)D Height of the graph Function (2)D Slopeof the graph



0.1 Distance and Speed == Height and Slope 5

x

y

�y

�x
D 2

1
or 4

2

Constant slope

1

1

2

2

2

4

0
x

yDx2

y

�y

�x
D 3

1
or 4

2

Changing slope

1
1

1 2

3

4

0

When Function (1) isyDCx, the ratio�y=�x is alwaysC . A linear function has
a constant slope. And those same functions can come from driving a car at constant
speed:

Function (1)D DistancetraveledD Ct Function (2)D Speedof the carD C

For a graph of Function (1), its rate of change is theslope. When Function (1)
measures distance traveled, its rate of change is thespeed (or velocity). When
Function.1/measures our height, its rate of change is ourgrowth rate.

The first point is thatfunctions are everywhere. For calculus, those functions
come in pairs.Function.2/ is the rate of change of Function.1/:

The second point is that Function (1) and Function (2) are measured in different
units. That is natural:

�

Speed in
miles
hour

�

multiplies
�

Time in hours
�

to give
�

Distance inmiles
�

�

Growth rate in
inches
year

�

multiplies
�

Time inyears
�

to give
�

Height in inches
�

When time is in seconds and distance is in meters, then speed is automatically in
meters per second. We can choose two units, and they decide the third. Function (2)
always involves a division:�y is divided by�x or distance is divided by time.

The delicate and tricky part of calculus is coming next. We want theslope at one
point and thespeed at one instant. What is the rate of change inzero time?

The distance across is�xD 0 at a point. The distance up is�yD 0. Formally,
their ratio is 0

0
. It is the inspiration of calculus to give this a useful meaning.
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Big Picture

Calculus connects Function (1) with Function (2)D rate of changeof (1)

Function (1) Distance traveledf .t/ Function (2) Speeds.t/Ddf=dt

Function (1) Height of graphy.x/ Function (2) Slopes.x/Ddy=dx

Function (2) tells how quickly Function (1) is changing

KEY Constant speedsD
Distancef

Time t
Constant slopesD

Distance up

Distance across

Graphs of (1) and (2)

f D increasing distance

sD constant speed

f

f D st

t

s

t

Slope off -graphD
up

across
D
st

t
D s

Area unders-graphD area of rectangleD st Df

Now run the car backwards.

Speed is negative

Distance goes down to0

Area “under”s.t/ is zero

f .t/

t

t

Cs

�s
s.t/

This area
is negative
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Example with increasing speed Then distance has steeper slope

f D 10t2

s D 20t

f

t

s

t

When speed is changing, algebra is not enoughsD
f

t
iswrong

Still true that area undersD triangle areaD
1

2
.t/.20t/D 10t2 Df

Still true thatsD slope off D
df

dt
D “derivative” off

Whenf is increasing, the slopes is positive

Whenf is decreasing, the slopes isnegative

Whenf is at its maximum or minimum, the slopes iszero

The graphs of anyf .t/ andf .t/C10 have the same slope at everyt

To recoverf D Function (1) from
df

dt
; good to know a starting heightf .0/



8 0 Highlights of Calculus

Practice Questions

1. Draw a graph off .t/ that goes up and down and up again.

Then draw a reasonable graph of its slope.

f

t

s

t

2. The world populationf .t/ increased slowly at first, now quickly, then
slowly again (we hope and expect). Maybe a limit� 12 or 14 billion.

Draw a graph forf .t/ and its slopes.t/D
df

dt

3. Supposef .t/D 2t for t ¨ 1 and thenf .t/D 3tC2 for t © 1
Describe the slope graphs.t/: Compare its area out tot D 3 with f .3/

4. Draw a graph off .t/D cost: Then sketch a graph of its slope. At what angles
t is the slope zero (slopeD 0 whenf .t/ is “flat”).

5. Suppose the graph off .t/ is shaped like the capital letterW. Describe the

graph of its slopes.t/D
df

dt
: What is the total area under the graph ofs ?

6. A train goes a distancef at constant speeds: Inside the train, a passenger
walks forward a distanceF at walking speedS: What distance does the
passenger go ? At what speed ? (Measure distance from the train station)
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0.2 The Changing Slope of y D x2 and y D xn

The second of our three examples isyDx2: Now the slope is changing as we move
up the curve. The average slope is still�y=�x; but that is not our final goal. We have
to answer the crucial questions of differential calculus:

What is the meaning of “slope at a point” and how can we compute it?

My video lecture onBig Picture: Derivatives also faces those questions. Every
student of calculus soon reaches this same problem. What is the meaning of “rate
of change” when we are at a single moment in time, and nothing actually changes
in that moment ? Good question.

The answers will come in two steps. Algebra produces�y=�x; and then calculus
finds dy=dx: Those stepsdy anddx are infinitesimally short, so formally we are
looking at0=0: Trying to definedy anddx and0=0 is not wise, and I won’t do it.
The successful plan is to realize that the ratio of�y to �x is clearly defined, and
those two numbers can become very small.If that ratio �y=�x approaches a limit,
we have a perfect answer:

The slope atx is the limit of
�y

�x
D
y.xC�x/�y.x/

�x
:

The distance across, fromx to xC�x; is just�x: The distance up is fromy.x/ to
y.xC�x/: Let me show how algebra leads directly to�y=�x whenyDx2:

�y

�x
D

.x C�x/2�x2

�x
D

x2
C2x�x C.�x/2�x2

�x
D 2x C�x:

Notice that calculation! The “leading terms”x2 and�x2 cancel. The important term
here is2x�x: This “first-order term” is responsible for most of�y: The “second-
order term” in this example is.�x/2: After we divide by�x; this term is still small.
That part.�x/2=�x will disappear as the step size�x goes to zero.

That limiting process �xÑ 0 produces the slopedy=dx at a point. The first-
order term survives indy=dx and higher-order terms disappear.

Slope at a point
dy

dx
D limit of

�y

�x
D limit of 2x C�x D 2x:

Algebra produced�y=�x: In the limit, calculus gave usdy=dx: Look at the
graph, to see the geometry of those steps. The ratio up=acrossD�y=�x is the slope
between two points on the graph.The two points come together in the limit.
Then�y=�x approaches the slopedy=dx at a single point.
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yDx2

x xC�x

�y

�x
D 2xC�x

yDx2

x xC�x

�x

�y

yDx2

x

xCdx

dy

dx
D 2x

The color lines connecting points on the first two graphs are called “chords.”
They approach the color line on the third graph, which touches at onlyonepoint.
This is the “tangent line” to the curve. Here is the idea of differential calculus:

Slope of tangent lineD Slope of curveD Function.2/D
dy

dx
D 2x:

To find the equation for this tangent line, return to algebra. Choose any specific
value x0: Above that position on thex axis, the graph is at heighty0 Dx2

0 :

The slope of the tangent line at that point of the graph isdy=dxD 2x0:

We want the equation for the line through that point with that slope.

Equation for the tangent line y�y0 D .2x0/.x�x0/ (1)

At the point wherexDx0 and yDy0; this equation becomes0D 0: The equation is
satisfied and the point is on the line. Furthermore the slope of the line matches the
slope2x0 of the curve. You see that directly if you divide both sides byx�x0:

Tangent line
up

across
D
y�y0

x�x0

D 2x0 is the correct slope
dy

dx
:

Let me say this again. The curveyDx2 is bending, the tangent line is straight.
This line stays as close to the curve as possible, near the point where they touch.
The tangent line gives alinear approximation to the nonlinear functionyDx2:

Linear approximation y � y0 C.2x0/.x�x0/Dy0 C
dy

dx
.x�x0/ (2)

I only movedy0 to the right side of equation (1). Then I used the symbol� for
“approximately equal” because the symbolD would be wrong: The curve bends.

Important for the future: This bending comes from thesecond derivativeof yDx2:
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THE SECOND DERIVATIVE

The first derivative is the slopedy=dxD 2x: The second derivative is the slope
of the slope. By good luck we found the slope of2x in the previous section (easy to
do, it is just the constant 2). Notice the symbold 2y=dx2 for the slope of the slope:

Second derivative
d2y

dx2
The slope of

dy

dx
D 2x is

d 2y

dx2
D 2: (3)

In ordinary language, the first derivativedy=dx tells how fast the functiony.x/ is
changing. The second derivative tells whether we arespeeding up or slowing down.
The exampleyDx2 is certainly speeding up, since the graph is getting steeper. The
curve is bending and the tangent line is steepening.

Think also aboutyDx2 on the left side (the negative side) ofxD 0: The graph
is coming down to zero. Its slope is certainly negative. But the curve is still bending
upwards! The algebra agrees with this picture: The slopedy=dxD 2x is negativeon
the left side ofxD 0; but the second derivatived 2y=dx2 D 2 is still positive.

An economist or an investor watches all three of those numbers:y.x/ tells where
the economy is, anddy=dx tells which way it is going (short term, close to the
tangent line). But it isd 2y=dx2 that reveals the longer term prediction. I am
writing these words near the end of the economic downturn (I hope). I am sorry that
dy=dx has been negative but happy thatd 2y=dx2 has recently been positive.

DISTANCE AND SPEED AND ACCELERATION

An excellent example ofy.x/ and dy=dx andd 2y=dx2 comes from driving a car.
The functiony is thedistance traveled. Its rate of change (first derivative) is thespeed.
The rate of change of the speed (second derivative) is theacceleration. If you are
pressing on the gas pedal, all three will be positive. If you are pressing on the brake,
the distance and speed are probably still positive but the acceleration is negative:
The speed is dropping. If the car isin reverseand you arebraking, what then ?

The speed is negative (going backwards)
The speed is increasing (less negative)
The acceleration is positive (increasing speed).

The video lecture mentions that car makers don’t know calculus. The distance
meter on the dashboard does not go back toward zero (in reverse gear it should).
The speedometer does not go below zero (it should). There is no meter at all (on my
car) for acceleration. Spaceships do have accelerometers, and probably aircraft too.

We often hear that an astronaut or a test pilot is subjected to a high number ofg’s.
The ordinary acceleration in free fall is oneg; from the gravity of the Earth. An
airplane in a dive and a rocket at takeoff will have a high second derivative—the
rocket may be hardly moving but it is accelerating like mad.

One more very useful point about this example of motion.The natural letter to use
is notx but t . The distance is a function oftime. The slope of a graph is up=across,
but now the right ratio is (change of distance) divided by (change in time):

Average speed betweent and t C�t
�y

�t
D
y.tC�t/�y.t/

�t

Speed att itself (instant speed)
dy

dt
D limit of

�y

�t
as�tÑ 0
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The words “rate of change” and “rate of growth” suggestt . The word “slope”
suggestsx: But calculus doesn’t worry much about the letters we use. If we graph
the distance traveled as a function of time, then thex axis (across) becomes the
t axis. And the slope of that graph becomes the speed (velocity is the best word).

Here is something not often seen in calculus books—thesecond difference.
We know the first difference�yDy.tC�t/�y.t/. It is the change iny: The
second difference�2y is the change in�y :

Second
difference

�2yD .y.tC�t/�y.t//�.y.t/�y.t��t// �2y

.�t/2
Ñ d2y

dt2
(4)

�2y simplifies to y.tC�t/�2y.t/Cy.t��t/: We divide by .�t/2 to
approximate the acceleration. In the limit as�tÑ 0, this ratio �2y=.�t/2

becomes thesecond derivatived2y=dt2.

THE SLOPE OF y D xn

The slope ofyDx2 is dy=dxD 2x: Now I want to compute the slopes ofyDx3

andyDx4 and all succeeding powersyDxn: The rate of increase ofxn will be
found again in Section2:2: But there are two reasons to discover these special
derivatives early:

1. Their pattern is simple:The slope of each powery D xn is
dy

dx
D nxn�1:

2. The next section can then introduceyD ex : This amazing function has
dy

dx
Dy:

Of courseyDx2 fits into this pattern forxn: The exponent drops by1 from nD 2

to n�1D 1. Also nD 2 multiplies that lower power to givenxn�1 D 2x:

The slope ofy D x3 is dy=dx D 3x2. Watch how3x2 appears in�y=�x:

�y

�x
D
.xC�x/3�x3

�x
D
x3 C3x2 �xC3x.�x/2 C.�x/3�x3

�x
: (5)

Cancelx3 with �x3: Then divide by�x:

Average slope
�y

�x
D 3x2 C3x�xC.�x/2:

When the step length�x goes to zero, the limit valuedy=dx is 3x2: This isnxn�1.
To establish this pattern fornD 4;5;6; : : : the only hard part is.xC�x/n: When

n was3; we multiplied this out in equation (5) above. The result will always start
with xn:We claim that the next term (the “first-order term” in�y) will be nxn�1�x:

When we divide this part of�y by �x; we have the answer we want—the correct
derivativenxn�1 of y.x/Dxn:

How to see that termnxn�1�x ? Our multiplications showed that2x�x and
3x2�x are correct fornD 2 and3. Then we can reachnD 4 from nD 3:

.xC�x/4 D .xC�x/3 times.xC�x/

D .x3 C3x2�xC � � � / times.xC�x/

That multiplication producesx4 and4x3�x, exactly what we want. We can go from
eachn to the next one in the same way (this is called “induction”). The derivatives of
all the powersx4, x5; : : :, xn are4x3, 5x4; : : :, nxn�1.
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Section2:2 of the book shows you a slightly different proof of this formula.
And the video lecture on theProduct Ruleexplains one more way. Look atxnC1

as the product ofxn timesx, and use the rule for the slope ofy1 timesy2:

Product Rule Slope ofy1y2 D y2 (slope ofy1) C y1 (slope ofy2) (6)

With y1 Dxn and y2 Dx, the slope ofy1y2 DxnC1 comes out right:

x.slope ofxn/Cxn.slope ofx/Dx.nxn�1/Cxn.1/D .nC1/xn: (7)

Again we can increasen one step at a time. Soon comes the truly valuable fact that
this derivative formula is correct forall powersyDxn. The exponentn can be
negative, or a fraction, or any number at all. The slopedy=dx is alwaysnxn�1.

By combining different powers ofx, you know the slope of every “polynomial.”
An example isyDxCx2=2Cx3=3. Computedy=dx one term at a time, as the
Sum Rule allows:

d

dx

�

xC
x2

2
C
x3

3

�

D 1CxCx2:

The slope of the slope isd 2y=dx2 D 1C2x. The fourth derivative is zero!

Function (1) tells us the heighty above each pointx

The problem is to find the “instant slope” atx

This slopes.x/ is written
dy

dx
It is Function (2)

KEY:
�y

�x
D
y.xC�x/�y.x/

�x
D

up

across
approaches

dy

dx
as �xÑ 0

Compute theinstant slope
dy

dx
for the functionyDx3

First find the average slope betweenx and xC�x

Average slopeD
�y

�x
D
.xC�x/3�x3

�x

Write .xC�x/3 Dx3 C3x2�x C3x.�x/2 C.�x/3

Subtractx3 and divide by�x

�y

�x
D

3x2�x C3x.�x/2 C.�x/3

�x
D 3x2 C3x�xC.�x/2

When�xÑ 0; this becomes
dy

dx
D 3x2

d

dx
.xn/Dnxn�1

yDCxn has slopeCnxn�1 The slope ofyD 7x2 is
dy

dx
D 14x

Multiply y by C Ñ Multiply �y byC Ñ Multiply
dy

dx
by C
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Neat Fact:The slope ofy D sin x is
dy

dx
D cosx

The graphs show this is reasonable

Slope at the start is 1 (to find later)

� 2�
yD sin x

slopeD cosx � 2�

Sine curve climbingÑ Cosine curve¡ 0
Top of sine curve (flat)Ñ Cosine is zero at the first bullet

Sine curve fallingÑ Cosine curve  0 between bullets

Bottom of sine curve (flat)Ñ Cosine back to zero at the second bullet

Practice Questions

1. ForyD 2x3; what is the average slopeD
�y

�x
fromxD 1 to xD 2 ?

2. What is the instant slope ofyD 2x3 atxD 1? What is
d 2y

dx2
?

3. yDxn has
dy

dx
Dnxn�1: What is

dy

dx
wheny.x/D

1

x
Dx�1 ?

4. ForyDx�1, what is the average slope
�y

�x
fromxD

1

2
to xD 1?

5. What is the instant slope ofyDx�1 atxD
1

2
?

6. Suppose the graph ofy.x/ climbs up to its maximum atxD 1

Then it goes downward forx¡ 1
6A. What is the sign of

dy

dx
for x  1 and then forx¡ 1?

6B. What is the instant slope atxD 1?

7 If yD sin x, write an expression for
�y

�x
at any pointx:

We see later that this
�y

�x
approaches cosx
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0.3 The Exponential y D ex

The great function that calculus creates is the exponentialyD ex : There are different
ways to reach this function, and Section 6.2 of this textbook mentions five ways.
Here I will describe the approach toex that I now like best. It uses the derivative of
xn; the first thing we learn.

In all approaches, a “limiting step” will be involved. So the amazing number
eD 2:7 : : : is not seen in algebra (e is not a fraction). The question is where to
take that limiting step, and my answer starts with this truly remarkable fact:
WhenyD ex is Function .1/, it is also Function .2/.

The exponential functiony D ex solves the equation
dy

dx
D y :

The function equals its slope. This is a first example of adifferential equation—
connecting an unknown functiony with its own derivatives. Fortunatelydy=dxDy

is the most important differential equation—a model that other equations try to follow.
I will add one more requirement, to eliminate solutions likeyD 2ex andyD 8ex :

When yD ex solves our equation, all other functionsCex solve it too. (C D 2

andC D 8 will appear on both sides ofdy=dxDy, and they cancel.) AtxD 0,
e0 will be the “zeroth power” of the positive numbere: All zeroth powers are1.
So we wantyD ex to equal 1 whenxD 0:

y D ex is the solution of
dy

dx
D y that starts fromy D 1 at x D 0.

Before solvingdy=dxDy, look at what this equation means. Wheny starts
from 1 at xD 0, its slope is also 1. Soy increases. Thereforedy=dx also increases,
staying equal toy: So y increases faster. The graph gets steeper as the function
climbs higher. This is what “growing exponentially” means.

INTRODUCING ex

Exponential growth is quite ordinary and reasonable. When a bank pays interest on
your money, the interest is proportional to the amount you have. After the interest is
added, you have more. The new interest is based on the higher amount. Your wealth
is growing “geometrically,” one step at a time.

At the end of this section onex; I will come back tocontinuouscompounding—
interest is added at every instant instead of every year. That word “continuous”
signals that we need calculus. There is a limiting step, from every year or month
or day or second to every instant. You don’t get infinite interest, you do get
exponentially increasing interest.

I will also describe other ways to introduceex : This is an important question with
many answers! I like equation (1) below, because we know the derivative of each
powerxn. If you take their derivatives in equation (1), you get back the sameex :
amazing. So that sum solvesdy=dxDy; starting fromyD 1 as we wanted.

The difficulty is that the sum involves every powerxn: an infinite series. When
I go step by step, you will see that those powers are all needed. For this infinite
series, I am asking you to believe that everything works.We can add the series
to getex; and we can add all derivatives to see that the slope ofex is ex :

For me, the advantage of using only the powersxn is overwhelming.
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CONSTRUCTING y D ex

I will solve dy=dxDy a step at a time. At the start,yD 1 means thatdy=dxD 1:

Start
yD 1

dy=dxD 1
Changey

yD 1Cx

dy=dxD 1
Change

dy

dx

yD 1Cx

dy=dxD 1Cx

After the first change,yD 1Cx has the correct derivativedy=dxD 1: But then I
had to changedy=dx to keep it equal toy: And I can’t stop there:

yD 1Cx

dy=dxD 1Cx
Updatey to 1CxC

1

2
x2 Then update

dy

dx
to1CxC

1

2
x2

The extra1
2
x2 gave the correctx in the slope. Then1

2
x2 also had to go intody=dx,

to keep it equal toy: Now we need a new term with this derivative1
2
x2:

The term that gives1
2
x2 has x3 divided by6: The derivative ofxn is nxn�1, so I

must divide byn (to cancel correctly). Then the derivative ofx3=6 is 3x2=6D 1
2
x2

aswe wanted. After that comesx4 divided by 24:

x3

6
D

x3

.3/.2/.1/
has slope

x2

.2/.1/

x4

24
D

x4

.4/.3/.2/.1/
has slope

4x3

.4/.3/.2/.1/
D
x3

6
:

The pattern becomes more clear. Thexn term is divided byn factorial, which isnŠD
.n/.n�1/ : : : .1/: The first five factorials are1;2;6;24;120: The derivative
of that term xn=nŠ is the previous term xn�1=.n�1/Š (because then’s cancel).
As long as we don’t stop, this sum of infinitely many terms does achievedy=dxDy:

y.x/ D ex
D 1Cx C

1
2
x2

C
1
6
x3

C � � �C 1
nŠ

xn
C � � � (1)

If we substitutexD 10 into this series, do the infinitely many terms add to a finite
numbere10 ? Yes. The numbersnŠ grow much faster than 10n (or any otherxn).
So the termsxn=nŠ in this “exponential series” become extremely small asnÑ8:
Analysis shows that the sum of the series (which isyD ex) does achievedy=dxDy:

Note 1 Let me just remember a series that you know,1C 1
2

C 1
4

C 1
8

C � � �D 2:

If I replace 1
2

by x, this becomes thegeometric series1CxCx2 Cx3 C � � � and
it adds up to1=.1�x/: This is the most important series in mathematics, but it
runs into a problem atxD 1: the infinite sum1C1C1C1C � � � doesn’t “converge.”

I emphasize that the series forex is always safe, because the powersxn

are divided by the rapidly growing numbersnŠDn factorial. This is a great
example to meet, long before you learn more about convergence and divergence.

Note 2 Here is another way to look at that series forex : Start withxn and take
its derivativen times. First getnxn�1 and thenn.n�1/xn�2. Finally the nth
derivative isn.n�1/.n�2/ : : : .1/x0; which isn factorial. When we divide by that
number,the nth derivative of xn=nŠ is equal to1:

Now look at ex : All its derivatives are stillex : They all equal 1 atxD 0:

The series is matching every derivative of the functionex at the starting pointxD 0:
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Setx D 1 in the exponential series. This tells us the amazing numbere1 D e:

The number e e D 1C1C
1
2

C
1
6

C
1

24
C

1
120

C � � � (2)

The first three terms add to 2.5. The first five terms almost reach 2.71.Wenever reach
2.72. With quite a few terms (how many ? ) you can pass 2.71828. It is certain thate

is not a fraction. It never appears in algebra, but it is the key number for calculus.

MULTIPLYING BY ADDING EXPONENTS

We write e2 in the same way that we write32: Is it true thate timese equalse2 ?
Up to now, e and e2 come from settingxD 1 and xD 2 in the infinite series.
The wonderful fact is that for everyx, the series produces the “xth power of the
numbere:” WhenxD�1, we gete�1 which is 1=e:

Setx D�1 e�1 D
1

e
D 1�1C

1

2
� 1
6

C
1

24
� 1

120
C � � �

If we multiply that series for1=e by the series fore, we get1:
The best way is to go straight for all multiplications ofex times any powereX : The

rule of adding exponents says that the answer isexCX : The series must say this too!
WhenxD 1 andX D�1, this rule producese0 from e1 timese�1:

Add the exponents .ex/.eX / D exCX (3)

We only knowex and eX from the infinite series. For this all-important rule, we can
multiply those series and recognize the answer as the series forexCX : Make a start:

Multiply each term

ex times eX

Hoping for

exCX

ex D 1C x C
1

2
x2 C

1

6
x3 C � � �

eX D 1C XC
1

2
X2 C

1

6
X3 C � � �

.ex/.eX /D 1C x C X C
1

2
x2 C xX C

1

2
X2 C � � � (4)

Certainly you seexCX: Do you see1
2
.xCX/2 in equation.4/? No problem:

1

2
.xCX/2 D

1

2
.x2 C2xXCX2/ matches the “second degree” terms.

The step to third degree takes a little longer, but it also succeeds:

1

6
.xCX/3 D

1

6
x3 C

3

6
x2XC

3

6
xX2 C

1

6
X3 matches the next terms in (4).

For high powers ofxCX we need thebinomial theorem(or a healthy trust that
mathematics comes out right). Whenex multiplies eX , the coefficient ofxnXm

will be 1=nŠ times 1=mŠ: Now look for that same term in the series forexCX :

.xCX/nCm

.nCm/Š
includes

xnXm

.nCm/Š
times

.nCm/Š

nŠmŠ
which gives

xnXm

nŠmŠ
: (5)
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That binomial number.nCm/Š=nŠmŠ is known to successful gamblers. It counts the
number of ways to choosen aces out ofnCm aces. Out of 4 aces, you could choose
2 aces in4Š=2Š2ŠD 6 ways. To a mathematician, there are 6 ways to choose2 x’s
out ofxxxx. This number 6 will be the coefficient ofx2X2 in .xCX/4:

That 6 shows up in the fourth degree term. It is divided by 4! (to produce1=4).
Whenex multiplies eX , 1

2
x2 multiplies 1

2
X2 (which also produces1=4). All terms

are good, but we are not going there—we accept.ex/.eX /D exCX as now confirmed.

Note A different way to see this rule for.ex/.eX / is based ondy=dxDy: Starting
from yD 1 atxD 0, follow this equation. At the pointx, you reachyD ex : Now go
an additional distanceX to arrive atexCX :

Notice that the additional part starts fromex (instead of starting from 1). That
starting valueex will multiply eX in the additional part. Soex timeseX must be the
same asexCX : (This is a “differential equations proof” that the exponents are added.
Personally, I was happy to multiply the series and match the terms.)

The rule immediately givesex timesex : The answer isexCx D e2x : If we multiply
again byex , we find.ex/3: This is equal toe2xCx D e3x : We are finding a new rule
for all powers.ex/n D .ex/.ex/ � � � .ex/:

Multiply exponents .ex/n
D enx (6)

This is easy to see fornD 1;2;3; : : : and thennD�1,�2,�3,. . .It remains true for
all numbersx andn.

That last sentence about “all numbers” is important! Calculus cannot develop
properly without working with all exponents (not just whole numbers or fractions).
The infinite series (1) definesex for everyx and we are on our way. Here is the
graph:Function .1/D Function .2/D ex

D exp.x/:

−2 −1 0 1 2ln 2
x

e�1 D :368: : :

eD 2:718: : :

eln 2 D 2

e2 D 7:388: : : y D ex

dy

dx
D ex

e0 D 1

.ex/.eX / D exCX

.ex/n
D enx

e ln y
D y
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THE EXPONENTIALS 2x AND bx

We know that23 D 8 and24 D 16. But what is the meaning of2� ? One way to get
close to that number is to replace� by 3:14 which is314=100: As long as we have a
fraction in the exponent, we can live without calculus:

Fractional power 2314=100 D 314th power of the100th root21=100:

But this is only “close” to2� : And in calculus, we will want the slope of the curve
yD 2x : The good way is to connect2x with ex; whose slope we know (it isex again).
So we need to connect2 with e:

The key number is thelogarithm of 2. This is written “ln2” and it is the power
of e that produces2: It is specially marked on the graph ofex :

Natural logarithm of 2 eln 2 D 2

This number ln2 is about7=10. A calculator knows it with much higher accuracy.
In the graph ofyD ex , the number ln2 on thex axis producesyD 2 on they axis.

This is an example where we want the outputyD 2 and we ask for the input
xD ln 2: That is the opposite of knowingx and asking fory. “The logarithm
xD ln y is the inverseof the exponentialyD ex :” This idea will be explained in
Section4:3 and in two video lectures—inverse functions are not always simple.

Now 2x has a meaning for everyx: When we have the number ln2; meeting the
requirement2D eln 2; we can take thexth power of both sides:

Powers of 2 from powers ofe 2D eln 2 and 2x
D ex ln 2: (7)

All powers of e are defined by the infinite series. The new function2x also grows
exponentially, but not as fast asex (because2 is smaller thane). ProbablyyD 2x

could have the same graph asex , if I stretched out thex axis. That stretching
multiplies the slope by the constant factor ln2: Here is the algebra:

Slope ofy D 2x
d

dx
2x D

d

dx
ex ln 2 D .ln 2/ex ln 2 D .ln 2/2x:

For any positive numberb, the same approach leads to the functionyD bx .
First, find the natural logarithm lnb. This is the number (positive or negative) so
thatbD eln b. Then take thexth power of both sides:

Connectb to e bD eln b and bx D ex ln b and
d

dx
bx D .ln b/bx (8)

Whenb is e (the perfect choice), lnbD lneD 1: Whenb is en, then lnbD lnen Dn:

“The logarithm is the exponent.” Thanks to the series that definesex for everyx,
that exponent can be any number at all.

Allow me to mention Euler’s Great Formulaeix
D cosx Ci sinx. The exponent

ix has become animaginary number. (You know thati2 D�1:) If we faithfully
use cosxC i sinx at 90� and180� (wherexD�=2 andxD�), we arrive at these
amazing facts:

Imaginary exponents ei�=2
D i and ei�

D�1: (9)

Those equations are not imaginary, they come from the great series forex :
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CONTINUOUS COMPOUNDING OF INTEREST

There is a different and important way to reache andex (not by an infinite series).
We solve the key equationdy=dxDy in small steps. As these steps approach zero
(a limit is always involved !) the small-step solution becomes the exactyD ex :

I can explain this idea in two different languages. Each step multiplies by1C�x:

1. Compound interest. After each step�x, the interest is added toy: Then the
next step begins with a larger amount, andy increases exponentially.

2. Finite differences. The continuousdy=dx is replaced by small steps�Y=�x:

dy

dx
Dy changes to

Y.xC�x/�Y.x/
�x

DY.x/ withY.0/D 1: (10)

This is Euler’s method of approximation.Y.x/ approachesy.x/ as�xÑ 0.

Let me compute compound interest when 1 year is divided into 12 months, and
then 365 days. The interest rate is 100% and you start withY.0/D $1: If you only
get interest once, at the end of the year, then you haveY.1/D $2:

If interest is added every month, you now get1
12

of 100% each time (12 times).
SoY is multiplied each month by 1C 1

12
: (The bank adds1

12
for every 1 you have.)

Do this 12 times and the final value $2 is improved to $2.61:

After 12 months Y.1/D

�

1C
1

12

�12

D $2.61

Now add interest every day.Y.0/D $1 is multiplied 365 times by 1C 1
365

:

After 365 days Y.1/D

�

1C
1

365

�365

D $2.71 (close toe)

Very few banks use minutes, and nobody divides the year intoND31;536;000

seconds. It would add less than a penny to $2.71. But many banks are willing to
usecontinuous compounding, the limit asN Ñ8: After one year you have $e:

Another limit gives e
�

1C
1
N

�N Ñ e D 2 :718: : : asN Ñ8 (11)

You could invest at the 100% rate forx years. Now each of theN steps is for
x=N years. Again the bank multiplies at every step by 1C x

N
: The 1 keeps what

you have, thex=N adds the interest in that step. AfterN steps you are close toex :

A formula for ex
�

1C
x
N

�N Ñ ex asN Ñ8 (12)

Finally, I will change the interest rate toa: Go for x years at the interest ratea:
The differential equation changes fromdy=dxDy to dy=dx D ay : The exponential
function still solves it, but now that solution isyD eax :

Change the rate toa
dy

dx
D ay is solved byy.x/ D eax (13)
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You can write down the serieseax D 1CaxC
1
2
.ax/2 C � � � and take its derivative:

d

dx
.eax/D aCa2xC � � �D a.1CaxC � � � /D aeax (14)

The derivative ofeax brings down the extra factora: SoyD eax solvesdy=dxD ay:

The Exponential y D ex

Looking for a functiony.x/ that equals its own derivative
dy

dx

A differential equation! We start atxD 0 with yD 1

Infinite Seriesy.x/D 1CxC
x2

2Š
C
x3

3Š
C � � �C�

xn

nŠ

�

C � � �
Take derivative

dy

dx
D 0C1CxC

x2

2Š
C � � �C�

xn�1

.n�1/Š�C � � �
Term by term

dy

dx
agrees withy Limit stepD add up this series

nŠD .n/.n�1/ � � � .1/ grows much faster thanxn so the terms get very small

At xD 1 the numbery.1/ is callede: SetxD 1 in the series to finde

e D 1C1C
1

2
C
1

6
C
1

24
C � � �D 2 :71828: : :

GOAL Show thaty.x/ agrees withex for all x Series gives powers ofe

Check that the series follows the rule to add exponents as ine2e3 D e5

Directly multiply seriesex timeseX to getexCX

�

1CxC
1

2
x2
�

times
�

1CXC
1

2
X2
�

produces the right start forexCX

1C.xCX/C
1

2
.xCX/2 C � � � HIGHER TERMS ALSO WORK

The series gives usex for EVERY x, not just whole numbers

CHECK
dex

dx
D lim

exC�x�ex

�x
D ex

�

lim
e�x�1
�x

�

D ex YES!

SECOND KEY RULE .ex/n
D enx for everyx andn

Another approach toex uses multiplication instead of an infinite sum

Start with $1. Earn interest every day at yearly ratex

Multiply 365 times by
�

1C
x

365

�

: End the year with $
�

1C
x

365

�365

Now payn times in the year. End the year with
�

1C
x

n

�nÑ $ex asnÑ8
We are solving

�Y

�x
DY in n short steps�x: The limit solves

dy

dx
Dy:
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Practice Questions

1. What is the derivative of
x10

10Š
? What is the derivative of

x9

9Š
?

2. How to see that
xn

nŠ
gets small asnÑ8 ?

Start with
x

1
and

x2

2
, possibly big. But we multiply by

x

3
;
x

4
; � � � which gets small.

3. Why is
1

ex
the same ase�x ? Use equation (3) and also use (6).

4. Why ise�1 D 1�1C
1

2
� 1
6

C � � � between
1

3
and

1

2
? Then2  e  3:

5. Can you solve
dy

dx
Dy starting fromyD 3 atxD 0 ?

Why isyD 3ex the right answer ? Notice how3; multipliesex :

6. Can you solve
dy

dx
D 5y starting fromyD 1 atxD 0?

Why isyD e5x the right answer ? Notice5 in the exponent!

7. Why does
e�x�1
�x

approach1 as�x gets smaller ? Use thee�x series.

8. Draw the graph ofxD lny, just by flipping the graph ofyD ex across the45�
line yDx. Remember thaty stays positive butxD ln y can be negative.

9. What is the exact sum of1C ln 2C
1

2
.ln 2/2 C

1

3Š
.ln 2/3 C � � � ?

10. If you replace ln2 by 0:7; what is the sum of those four terms ?

11. From Euler’s Great Formulaeix D cosxC i sinx; what number ise2� i ?

12. How close is

�

1C
1

10

�10

to e ?

13. What is the limit of

�

1C
1

N

�2N

asN Ñ8 ?
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0.4 Video Summaries and Practice Problems

This section is to help readers who also look at theHighlights of Calculus video
lectures. The first five videos are just released onocw.mit.edu as I write these
words. Sections 0.1–0.2–0.3 discussed the content of three lectures in full detail. The
summaries and practice problems for the other two will come first in this section:

4. Maximum and Minimum and Second Derivative

5. Big Picture of Integrals

That Lecture 5 is a taste ofIntegral Calculus. A second set of video lectures goes
deeper intoDifferential Calculus—the rules for computing and using derivatives.

This second set is right now with the video editors, to zoom in when I write on the
blackboard and zoom out for the big picture. I just borrowed a video camera from
MIT’s OpenCourseWare and set it up in an empty room. I am not good at looking at
the audience anyway, so it was easier with nobody watching !

I hope it will be helpful to print here the summaries and practice problems that are
planned to accompany those videos. Here are the topics:

6. Derivative of the Sine and Cosine

7. Product and Quotient Rules

8. Chain Rule for the Slope off .g.x//

9. Inverse Functions and Logarithms

10. Growth Rates and Log Graphs

11. Linear Approximation and Newton’s Method

12. Differential Equations of Growth

13. Differential Equations of Motion

14. Power Series and Euler’s Formula

15. Six Functions, Six Rules, Six Theorems

That last lecture summarizes the theory of differential calculus. The other lectures
explain the steps. Here are the first lines written for the max-min video.

Maximum and Minimum and Second Derivative

To find the maximum and minimum values of a functiony.x/

Solve
dy

dx
D 0 to find pointsx� whereslopeD zero

Test eachx� for a possible minimum or maximum

Exampley.x/Dx3�12x dy

dx
D 3x2�12 Solve3x2 D 12

The slope is
dy

dx
D 0 at x� D 2 andx� D�2

At those pointsy.2/D 8�24D�16D min andy.�2/D�8C24D 16D max
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x� D 2 is a minimum Look at
d

dx

�

dy

dx

�

D second derivative

d 2y

dx2
D derivative of3x2�12: This second derivative is6x:

d 2y

dx2
¡ 0 dy

dx
increases Slope goes from down to up atx� D 2

The bending is upwards and thisx� is aminimum

d 2y

dx2
  0 dy

dx
decreases Slope goes from up to down atx� D�2

The bending is downwards andx� is amaximum

Find the maximum ofy.x/D sinxCcosx using
dy

dx
D cosx�sinx

The slope is zero when cosxD sin x atx� D 45 degreesD
�

4
radians

That pointx� hasyD sin
�

4
Ccos

�

4
D

?
2

2
C

?
2

2
D
?
2

The second derivative is
d 2y

dx2
D�sinx�cosx

At x� D
�

4
this is  0 y is bending down x� is amaximum

d 2y

dx2
¡ 0 when the curve bends up

d 2y

dx2
  0 when the curve bends down

Direction of bending changes at apoint of inflection where
d2y

dx2
D 0

Whichx� gives the minimum ofyD .x�1/2 C.x�2/2 C.x�6/2 ?

You can writeyD .x2�2xC1/C.x2�4xC4/C.x2�12xC36/

The slope is
dy

dx
D 2x�2C2x�4C2x�12D 0 at the minimum pointx�

Then6x� D 18 andx� D 3 Minimum point is the average of1, 2, 6

Key for max=min word problems is to choose a suitable meaning forx
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Practice Questions

1. Whichx� gives the minimum ofy.x/Dx2 C2x ? Solve
dy

dx
D 0:

2. Find
d 2y

dx2
for y.x/Dx2 C2x: This is¡ 0 so the parabola bends up.

3. Find the maximum height ofy.x/D 2C6x�x2: Solve
dy

dx
D 0:

4. Find
d 2y

dx2
to show that this parabola bends down.

5. Fory.x/Dx4�2x2 show that
dy

dx
D 0 at xD�1;0;1:

Findy.�1/, y.0/, y.1/: Check max versus min by the sign ofd 2y=dx2:

6. At a minimum point explain why
dy

dx
D 0 and

d 2y

dx2
¡ 0:

7. Bending down

�

d 2y

dx2
  0� changes to bending up

�

d 2y

dx2
¡ 0� at a point

of : At this point
d 2y

dx2
D 0 DoesyD sinx have such a point ?

8. SupposexCX D 12: What is the maximum ofx timesX ?

This question asks for the maximum ofyDx.12�x/D 12x�x2:

Find where the slope
dy

dx
D 12�2x is zero. What isx timesX ?

The Big Picture of Integrals

Key problem Recover the integraly.x/ from its derivative
dy

dx

Find the total distance traveled from a record of the speed

Find Function.1/D total height knowing Function.2/D slope since the start

Simplest way Recognize
dy

dx
asderivative of a known y.x/

If
dy

dx
Dx3 then itsintegral y.x/ was

1

4
x4 CC D Function (1)

If
dy

dx
D e2x thenyD

1

2
e2x CC

Integral Calculus is the reverse of Differential Calculus

y.x/D

»
dy

dx
dx adds up the whole history of slopes

dy

dx
to find y.x/

Integral is like sum Derivative is like difference
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Sums y0 y1 y2 y3 y4

Differences y1�y0 y2�y1 y3�y2 y4�y3

Notice cancellation.y1�y0/C.y2�y1/Dy2�y0 D change in height

Divide and multiply the differences by the step size�x

Sum of
�y

�x
�x D

y1�y0

�x
�x C

y2�y1

�x
�x is still y2�y0

Now let�xÑ 0 Sum changes to integral
»

dy

dx
dx D yend�ystart

Fundamental Theorem of Calculus
»
dy

dx
dxDy.x/CC

The integral reverses the derivative and brings backy.x/

Integration and Differentiation are inverse operations

Fundamental Theorem in the opposite order
d

dx

» x

0

s.t/ dt D s.x/

KEY What is the meaning of an integral
» x

0

s.t/ dt ? Add up short :

Example s.t/D 6t shows increasing speed and slope. Findy.t/:

Method 1 yD 3t2 has the required derivative6t (this is the simplest way !)

Method 2 The triangle under the graph ofs.t/D 6t has area3t2

From0 to t; baseD t and heightD 6t and areaD
1

2
t.6t/:

[Most shapes are more difficult! Area comes from integratings.t/ or s.x/]

Method 3 (fundamental) Add up short time steps each at constant speed

In a step�t; the distance is close tos.t�/�t
t� is the starting time for that step ands.t�/ is the starting speed

This is not exact because the speed changes a little within time�t

The total distance becomes exact as�tÑ 0 andsumÑ integral

Picture of each step shows a tall thin rectangle

s.t�/�t D height times base

D area of rectangle

t� D start point of the time step

Sum ofs.t�/�t D total area of all rectangles

Now�tÑ 0 The rectangles fill up the triangle

Integral ofs.t/ dt D exact areay.t/ under the graph
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Fundamental TheoremAreay.t/ has the desired derivatives.t/

Reason:�y is the thin area unders.t/ betweent andtC�t

�t is the base of that thin “rectangle”
�y

�t
is the height of that thin “rectangle”

This height�y=�t approachess.t/ as the base�tÑ 0

Practice Questions

1. What functionsy.t/ have the constant derivatives.t/D 7 ?

2. What is the area from0 to t under the graph ofs.t/D 7 ?

3. Fromt D 0 to 2; find the integral
» 2

0

7 dt D :

4. What functiony.t/ has the derivatives.t/D 7C6t ?

5. Fromt D 0 to 2; find areaD integral
» 2

0

.7C6t/ dt:

6. At this instantt D 2, what is
d.area/

dt
?

7. From0 to t; the area under the curvesD et IS NOTyD et :

If t is small, the area must be small. The wrong answeret is not small !

8. From0 to t; the correct area undersD et is y D et�1:

The slope
dy

dt
is and now the starting areay.0/ is

9. Same for sums. Noticey0 in .y1�y0/C.y2�y1/C.y3�y2/D :

The sum of�yD
�y

�t
�t becomes the integral of

dy

dt
dt

The area unders.t/ from 0 to t becomesy.t/�y.0/:
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Derivative of the Sine and Cosine

This lecture shows that
d

dx
.sin x/ D cosx and

d

dx
.cosx/ D�sin x

We have to measure the anglex in radians 2� radiansD full 360 degrees

All the way around the circle (2� radians) Length D 2� when the radius is 1
Part way around the circle (x radians) Length D x when the radius is 1

�=2 � 3�=2 2�

yD sinx

slope1 atxD 0

0�1

C1

x

Slope cosx

atxD 0 slope1D cos0

atxD�=2 slope0D cos�=2

atxD� slope�1D cos�

�=2 � 2�

yD cosx

x

C1

0�1

Slope�sin x

atxD 0 slopeD 0D�sin0

atxD�=2 slope�1D�sin�=2

atxD� slopeD 0D�sin�

Problem:
�y

�x
D

sin.xC�x/�sinx

�x
is not as simple as

.xC�x/2�x2

�x

Good idea to start atxD 0 Show
�y

�x
D

sin �x

�x
approaches 1

Draw a right triangle with angle�x to seesin �x¨�x

�x
r D 1 straight piece

curved arc

straight piece is shortest

straight length D sin�x

curved length D�x

IDEA
sin�x

�x
  1 and

sin�x

�x
¡ cos�x will squeeze

sin �x

�x
Ñ 1 as�xÑ 0

To prove
sin�x

�x
¡ cos�x which is tan�x¡�x Go to a bigger triangle

Angle�x

�x

Full angle2�

tan�x
Triangle area D

1

2
.1/.tan�x/ greater than

Circular area D

�

�x

2�

�

(whole circle)D
1

2
.�x/
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The squeeze cos�x  sin �x

�x
  1 tells us that

sin �x

�x
approaches 1

.sin�x/2

.�x/2
  1means

.1�cos�x/

�x
.1Ccos�x/ �x

So
1�cos�x

�x
Ñ 0 Cosine curve has slopeD 0

For the slope at otherx remember a formula from trigonometry:
sin.x C�x/ D sin x cos�x Ccosx sin �x

We want�yD sin.xC�x/�sinx Divide that by�x

�y

�x
D .sin x/

�

cos�x�1
�x

�

C.cosx/

�

sin�x

�x

�

Now let�xÑ 0

In the limit
dy

dx
D .sin x/.0/C.cosx/.1/D cosx D Derivative of sinx

ForyD cosx the formula for cos.xC�x/ leads similarly to
dy

dx
D�sin x

Practice Questions

1. What is the slope ofyD sin x atxD� and atxD 2� ?

2. What is the slope ofyD cosx atxD�=2 andxD 3�=2?

3. The slope of.sinx/2 is 2sinx cosx: The slope of.cosx/2 is�2 cosx sinx:

Combined, the slope of.sin x/2 C.cosx/2 is zero. Why is this true ?

4. What is thesecond derivativeof yD sinx (derivative of the derivative)?

5. At what anglex doesyD sinxCcosx have zero slope ?

6. Here are amazing infinite series for sinx and cosx: eix
D cosx Ci sin x

sin x D
x

1
� x3

3 �2 �1 C
x5

5 �4 �3 �2 �1 � �� � (odd powers ofx)

cosx D 1 � x2

2 �1 C
x4

4 �3 �2 �1 � �� � (even powers ofx)

7. Take the derivative of the sine series to see the cosine series.

8. Take the derivative of the cosine series to seeminus the sine series.

9. Those series tell us that for small anglessin x�x and cosx� 1� 1
2

x2:

With these approximations check that.sinx/2 C.cosx/2 is close to1:
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Product and Quotient Rules

Goal To find the derivative ofy D f .x/g.x/ from
df

dx
and

dg

dx

Idea Write�yDf .xC�x/g.xC�x/�f .x/g.x/ by separating�f and�g

That same�y is f .xC�x/Œg.xC�x/�g.x/�Cg.x/ Œf .xC�x/�f .x/�
�y

�x
Df .xC�x/

�g

�x
Cg.x/

�f

�x
Product Rule

dy

dx
D f .x/

dg

dx
Cg.x/

df

dx

Example yDx2 sinx Product Rule
dy

dx
Dx2 cosxC2x sinx

A picture shows the two unshaded pieces of�yDf .xC�x/�gCg.x/�f

�g

g.x/

f .x/ �f

� top areaD .f .x/C�f /�g� side areaD g.x/�f

Example f .x/Dxn g.x/Dx y D f .x/g.x/ D xnC1

Product Rule
dy

dx
Dxn

dx

dx
Cx

dxn

dx
Dxn Cxnxn�1 D .nC1/xn

The correct derivative ofxn leads to the correct derivative ofxnC1

Quotient Rule If yD
f .x/

g.x/
then

dy

dx
D

�

g.x/
df

dx
�f .x/

dg

dx

��

g2

EXAMPLE
d

dx

�

sin x

cosx

�

D .cosx.cosx/�sinx.�sinx//

�

cos2x

This says that
d

dx
tan x D

1

cos2 x
D sec2 x (Notice.cosx/2 C.sinx/2 D 1)

EXAMPLE
d

dx

�

1

x4

�

D
x4 times0�1 times4x3

x8
D
�4

x5
This isnxn�1

Prove the Quotient Rule �yD
f .xC�x/

g.xC�x/
� f .x/
g.x/

D
f C�f

g C�g
� f

g

Write this�y as
g.f C�f /�f .gC�g/

g.gC�g/
D

g�f �f�g

g.g C�g/

Now divide that�y by�x As�xÑ 0 we have the Quotient Rule
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Practice Questions

1. Product Rule: Find the derivative ofyD .x3/.x4/: Simplify and explain.

2. Product Rule: Find the derivative ofyD .x2/.x�2/: Simplify and explain.

3. Quotient Rule: Find the derivative ofyD
cosx

sinx
:

4. Quotient Rule: Show thatyD
sinx

x
has a maximum (zero slope) atxD 0:

5. Product and Quotient! Find the derivative ofyD
x sinx

cosx
:

6. g.x/ has a minimum when
dg

dx
D 0 and

d 2g

dx2
¡ 0 The graph is bending up

yD
1

g.x/
has amaximumat that point: Show that

dy

dx
D 0 and

d 2y

dx2
  0

Chain Rule for the Slope of f .g.x//

yDg.x/ zDf .y/ ÝÑ the chain is zDf .g.x//

yDx5 zDy4 ÝÑ the chain is zD .x5/4 Dx20

Average slope
�z

�x
D

�

�z

�y

��

�y

�x

�

Just cancel�y

Instant slope
dz

dx
D
dz

dy

dy

dx
D CHAIN RULE (like cancellingdy)

You MUST changey to g.x/ in the final answer

Example of chain zDy4 D .x5/4
dz

dy
D 4y3

dy

dx
D 5x4

Chain rule
dz

dx
D

�

dz

dy

��

dy

dx

�

D .4y3/.5x4/D 20y3x4

Replacey by x5 to get onlyx
dz

dx
D 20.x5/3x4 D 20x19

CHECK zD .x5/4 Dx20 does have
dz

dx
D 20x19

1. Find
dz

dx
for zD cos.4x/ Write yD 4x andzD cosy so

dz

dx
D

2. Find
dz

dx
for zD .1C4x/2 Write yD 1C4x andzDy2 so

dz

dx
D

CHECK .1C4x/2 D 1C8xC16x2 so
dz

dx
D
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Practice Questions

3. Find
dh

dx
for h.x/D .sin3x/.cos3x/

Product rule first Then the Chain rule for each factor

dh

dx
D .sin 3x/

d

dx
.cos3x/C.cos3x/

d

dx
.sin 3x/

D .sin3x/.CHAIN/C.cos3x/.CHAIN/D ‹

4. Tough challenge: Find thesecond derivativeof z.x/Df .g.x//

FIRST
DERIV

dz

dx
D

�

dz

dy

��

dy

dx

�

Function ofy.x/
times function ofx

PRODUCT
RULE

d 2z

dx2
D

�

dz

dy

�

d

dx

�

dy

dx

�

C

�

dy

dx

�

d

dx

�

dz

dy

�

SECOND
DERIV

�

dz

dy

��

d 2y

dx2

�

C

�

dy

dx

��

d 2z

dy2

��

dy

dx

�

dy

dx
twiceŠ

CheckyDx5 zDy4 Dx20
dz

dx
D 20x19

d 2z

dx2
D 380x18

SECOND
DERIV

.4y3/.20x3/C.5x4/.12y2/.5x4/ 80C300D 380OK

Inverse Functions and Logarithms

A function assigns anoutput y D f .x/ to eachinput x

A one-to-one function has different outputsy for different inputsx

For theinverse functionthe input isy and the output isx D f �1.y/

Example IfyDf .x/Dx5 thenxDf �1.y/Dy
1
5

KEY If yD axCb then solve forxD
y�b
a

D inverse function

Notice thatx D f �1.f .x// andy D f .f �1.y//

Thechain rule will connect the derivatives off �1 andf

The great function of calculus isy D ex

Its inverse function is the“ natural logarithm” x D ln y

Remember thatx is the exponent inyD ex

The ruleexeX D exCX tells us thatln.yY / D ln y C ln Y

Add logarithms because you add exponents:ln.e2e3/ D 5

.ex/n D enx (multiply exponent) tells us thatln.yn/ D n ln y
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We can change from basee to base10: New functiony D 10x

The inverse function is the logarithm to base10 Call it log: x D log y

Then log100D 2 and log
1

100
D�2 and log1D 0

We will soon find the beautiful derivative of lny
d

dy
.lny/ D

1

y

You can change letters to write that as
d

dx
.lnx/ D

1

x

Practice Questions

1. What isxDf �1.y/ if yD 50x ?

2. What isxDf �1.y/ if yDx4 ? Why do we keepx© 0?

3. Draw a graph of an increasing functionyDf .x/: This has different outputsy
for differentx: Flip the graph (switch the axes) to seex D f �1.y/

4. This graph has the samey from two x’s. There is nof �1.y/

f .x/ is NOT one-to-one
x

y

f .x/

f �1.y/ is NOT a function

x

y

5. The natural logarithm ofyD 1=e is ln.e�1/D ? What is ln.
?
e/ ?

6. The natural logarithm ofyD 1 is ln1D ? and also base 10 has log1D ?

7. The natural logarithm of.e2/50 is ? The base10 logarithm of.102/50 is ?

8. I believe thatln y D .ln 10/.log y/ because we can writey in two ways

yD elny and alsoyD 10logy D e.ln10/.logy/: Explain those last steps.

9. Change from basee and base10 to base 2: Now yD 2x meansx D log2 y:

What are log2 32 and log2 2 ? Why is log2.e/¡ 1 ?
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Growth Rates and Log Graphs

In order of fast growth asx gets large

log x x;x2;x3 2x;ex ;10x xŠ;xx

logarithmic polynomial exponential factorial

ChoosexD 1000D 103 so that logxD 3 OK to usexŠ� xx

ex

log 1000D 3 103;106;109 10300;10434;101000 102566;103000

Why is10001000 D 103000 ? Logarithms are best for big numbers

Logarithms are exponents! log 109 D 9 log logx is VERY slow

Logarithms 3;6;9 300;434;1000 2566;3000

Polynomial growth! Exponential growth! Factorial growth

Decay to zero for NEGATIVE powers and exponents

1

x2
Dx�2 decays much more slowly than the exponential

1

ex
D e�x

Logarithmic scale showsxD 1;10;100 equally spaced. NO ZERO!�3 �2 �1 0 1 2 3 logx

x

log
?
10D 1

2

1=1000 1=100 1=10 1 10 100 1000

Question If xD 1;2;4;8 are plotted, what would you see ?

Answer THEY ARE EQUALLY SPACED TOO!

log-log graphs(log scale up and also across)

If yDAxn, how to seeA andn on the graph ?

Plot logy versus logx to get a straight line

log y D logA Cn logx Slope on a log-log graph is the exponentn

yD x1:5

AD 1 nD 1:5

logy D 1:5 logx

logAD 0

logx

1�1
slopenD 1:5

ForyDAbx use semilog(x versus logy is now a line) logyD logACx log b
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New type of question How quickly does
�f

�x
approach

df

dx
as�xÑ 0?

The errorED
�f

�x
� df
dx

will beE�A.�x/n What isn ?

Usual one-sided
�f

�x
D
f .xC�x/�f .x/

�x
only hasnD 1

Centered difference
f .xC�x/�f .x��x/

2�x
hasnD 2

Centered is much better than one-sided E� .�x/2 vsE ��x
�

IDEA FOR f .x/Dex

PROJECT atxD0

�

One-sidedE vs centeredE
Graph logE vs log�x Should see slope1 or 2

Practice Questions

1. Doesx100 grow faster or slower thanex asx gets large ?

2. Does100 lnx grow faster or slower thanx asx gets large ?

3. Put these in increasing order for largen:

1

n
; n logn; n1:1;

10n

nŠ

4. Put these in increasing order for largex:

2�x; e�x;
1

x2
;

1

x10

5. Describe the log-log graph ofyD 10x5 (graph logy vs logx)

Why don’t we seeyD 0 at xD 0 on this graph ?

What is the slope of the straight line on the log-log graph ?

The line crosses the vertical axis whenxD andyD

Then logxD 0 and logyD

The line crosses the horizontal axis whenxD andyD 1

Then logxD and logyD 0

6. Draw the semilog graph (a line) ofyD 10ex (graph logy versusx)

7. That line cross thexD 0 axis at which logy ? What is the slope ?
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Linear Approximation and Newton’s Method

Start atxD a with knownf .a/D height andf 1.a/D slope

KEY IDEA f 1.a/� f .x/�f .a/

x�a
whenx is neara

Tangent line has slopef 1.a/
Solve forf .x/

f .x/�f .a/C.x�a/f 1.a/� means “approximately”
curve� line nearxD a

Examples of linear approximation tof .x/

1. f .x/D ex f .0/D e0 D 1 andf 1.0/D e0 D 1 are known ataD 0

Follow the tangent line ex � 1C.x�0/1D 1Cx

1Cx is the linear part of the series forex

2. f .x/Dx10 andf 1.x/D 10x9 f .1/D 1 andf 1.1/D 10 known ataD 1

Follow the tangent linex10� 1C.x�1/10 nearxD 1

TakexD 1:1 .1:1/10 is approximately1C1D 2

Newton’s Method (looking forx to nearly solvef .x/D 0)

Go back tof 1.a/� f .x/�f .a/
x�a

f .a/ andf 1.a/ are again known

Solve forx whenf .x/D 0

x�a�� f .a/

f 1.a/
Newtonx

Line crossing near curve crossing

a

exactx

Newtonx

f .x/
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Examples of Newton’s Method Solvef .x/Dx2�1:2D 0

1. aD 1 givesf .a/D 1�1:2D�:2 andf 1.a/D 2aD 2

Tangent line hits0 at x�1D� .�:2/
2

Newton’sx will be 1:1

2. For a betterx; Newton starts again from that pointaD 1:1

Now f .a/D 1:12�1:2D :01 and f 1.a/D 2aD 2 :2

The new tangent line hasx�1:1D� :01
2:2

For thisx; x2 is very close to1:2

Practice Questions

1. The graph ofyDf .a/C.x�a/f 1.a/ is a straight

At xD a the height isyD

At xD a the slope isdy=dxD

This graph is t t to the graph off .x/ atxD a

Forf .x/Dx2 at aD 3 this linear approximation isyD

2. yDf .a/C.x�a/f 1.a/ hasyD 0 whenx�aD

Instead of the curvef .x/ crossing0, Newton has tangent liney crossing0

f .x/Dx3�8:12 ataD 2 hasf .a/D andf 1.a/D 3a2 D

Newton’s method givesx�2D� f .a/

f 1.a/ D

This NewtonxD 2:01 nearly hasx3 D 8:12: It actually has.2:01/3 D :

Differential Equations of Growth

dy

dt
D cy Complete solution y.t/DAect for anyA

Starting fromy.0/ y.t/Dy.0/ect ADy.0/

Now include a constant source terms This gives a new equation

dy

dt
D cy Cs s¡ 0 is saving,s  0 is spending,cy is interest

Complete solution y.t/D� s
c

CAect (anyA gives a solution)

yD� s
c

is a constant solution withcyCsD 0 and
dy

dt
D 0 andAD 0

For that solution, the spendings exactly balances the incomecy

ChooseA to start fromy.0/ at t D 0 y.t/D� s
c

C
�

y.0/C
s

c

�

ect
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Now add a nonlinear termsP 2 coming from competition

P.t/D world population at timet (for example) follows a new equation

dP

dt
D cP�sP2 cD birth rate minus death rate

“LOGISTIC EQN” P 2 since each person competes with each person

To bring back a linear equation setyD
1

P

Then
dy

dt
D�dP=dt

P 2
D
.�cP CsP 2/

P 2
D� c

P
CsD�cyCs

yD 1=P produced our linear equation (noy2) with �c notCc

y.t/D
s

c
CAe�ct D

s

c
C
�

y.0/� s
c

�

e�ct D old solution with change to�c
At t D 0 we correctly gety.0/ CORRECT START

As tÑ8 ande�ct Ñ 0 we gety.8/D
s

c
andP.8/D

c

s

The populationP.t/ increases along anS -curve approaching
c

s

P D
c

2s
hasP 2 D 0 Inflection point Bending changes from up to down

CHECK
d 2P

dt2
D
d

dt

�

cP �sP 2
�

D .c�2sP /dP
dt

D 0 at P D
c

2s

World population approaches the limit
c

s
� 12 billion (FOR THIS MODEL!)

Population now� 7 billion Try Google for “World population”
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Practice Questions

dy

dt
D cy�s hassD spending rate not savings rate (with minus sign)

1. The constant solution isyD when
dy

dt
D 0

In that case interest income balances spending:cyD s

2. The complete solution isy.t/D
s

c
CAect : Why isADy.0/� s

c
?

3. If you start withy.0/¡ s

c
why does wealth approach8 ?

If you start withy.0/  s

c
why does wealth approach�8 ?

4. The complete solution to
dy

dt
D s isy.t/D stCA

What solutiony.t/ starts fromy.0/ at t D 0 ?

5. If
dP

dt
D�sP2 andyD

1

P
explain why

dy

dt
D s

Pure competition. Show thatP.t/Ñ 0 astÑ8
6. If

dP

dt
D cP�sP4 find a linear equation foryD

1

P 3

Differential Equations of Motion

A differential equation fory.t/ can involvedy=dt and alsod 2y=dt2

Here are examples with solutionsC andD can be any numbers

d 2y

dt2
D�y and

d2y

dt2
D�!2y Solutions

yDC costCD sin t
yD C cos!t CD sin !t

Now includedy=dt and look for a solution method

m
d 2y

dt2
C2r

dy

dt
CkyD 0 has a damping term2r

dy

dt
: Try y D e�t

Substitutinge�t gives m�2e�t C2r�e�t Cke�t D 0

Cancele�t to leave the key equation for� m�2
C2r �Ck D 0

The quadratic formula gives� D
�r�?r2�km

m
Two solutions�1 and�2

The differential equation is solved byy D Ce�1t
CDe�2t

Special caser2 D km has�1 D�2 Thent entersyDCe�1t CDte�1t
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EXAMPLE 1
d 2y

dt2
C6

dy

dt
C8yD 0 mD 1 and2rD 6 andkD 8

�1;�2 D
�r�?r2�km

m
is�3�?9�8 Then

�1 D�2

�2 D�4

Solution y D Ce�2t
CDe�4t Overdamping with no oscillation

EXAMPLE 2 Change tokD 10 �D�3�?9�10 has
�1 D�3Ci

�2 D�3�i

Oscillations from the imaginary part of� Decayfrom the real part�3
Solution yDCe�1t CDe�2t DCe.�3Ci/t CDe.�3�i/t

ei t D costC i sin t leads toyD .C CD/e�3t costC.C �D/e�3t sin t

EXAMPLE 3 Change tokD 9 Now �D�3;�3 (repeated root)

Solution yDCe�3t CDte�3t includes the factort

Practice Questions

1. For
d 2y

dt2
D 4y find two solutionsyDCeat CDebt : What area andb ?

2. For
d 2y

dt2
D�4y find two solutionsyDC cos!tCD sin!t: What is! ?

3. For
d 2y

dt2
D 0y find two solutionsyDCe0t and (???)

4. PutyD e�t into 2
d 2y

dt2
C3

dy

dt
CyD 0 to find �1 and�2 (real numbers)

5. PutyD e�t into 2
d 2y

dt2
C5

dy

dt
C3yD 0 to find�1 and�2 (complexnumbers)

6. PutyD e�t into
d 2y

dt2
C2

dy

dt
CyD 0 to find �1 and�2 (equalnumbers)

Now yDCe�1t CDte�1t : The factort appears when�1 D�2
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Power Series and Euler’s Formula

At xD 0, thenth derivative ofxn is the numbern! Other derivatives are0:

Multiply the nth derivatives off .x/ by xn=nŠ to match function with series

TAYLOR
SERIES

f .x/Df .0/Cf 1.0/x
1

Cf 2.0/x2

2
C � � �Cf .n/.0/

xn

nŠ
C � � �

EXAMPLE 1 f .x/D ex All derivativesD 1 atxD 0 Match withxn=n !

Taylor Series
Exponential Series

D ex D 1C1
x

1
C1

x2

2
C � � �C1xn

nŠ
C � � �

EXAMPLE 2 f D sinx f 1 D cosx f 2 D�sinx f 3 D�cosx

At xD 0 this is 0 1 0 �1 0 1 0 �1 REPEAT

sin x D 1 � x
1
�1x3

3Š
C1

x5

5Š
��� � ODD POWERS sin.�x/D�sinx

EXAMPLE 3 f D cosx produces1 0 �1 0 1 0 �1 0 REPEAT

cosx D 1�1x2

2Š
C1

x4

4Š
��� � EVEN POWERS

d

dx
.cosx/D�sinx

Imaginary i2 D�1 and theni3 D�i Find the exponentialeix

eix D1C ix C
1

2Š
.ix/2 C

1

3Š
.ix/3 C � � �

D

�

1� x2

2Š
C � � ��C i

�

x� x3

3Š
C � � �� Those are

cosx Ci sin x

EULER’S GREAT FORMULA eix D cosxC i sinx

ei�

cos�

i sin� ei�

� Real
part

ei� D cos�C i sin�

ei� Ce�i� D 2cos�

ei� D�1 combines4 great numbers

Two more examples of Power Series (Taylor Series forf .x/)

f .x/D
1

1�x
D 1CxCx2 Cx3 C � � � “Geometric series”

f .x/D� ln.1�x/ D
x

1
C
x2

2
C
x3

3
C
x4

4
C � � � “Integral of geometric series”
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Summary: Six Functions, Six Rules, Six Theorems

Integrals Six Functions Derivatives

xnC1=.nC1/; n¤�1 xn nxn�1�cosx sin x cosx

sinx cosx �sinx

ecx=c ecx cecx

x lnx�x ln x 1=x

Ramp function Step function Delta function

0

x

0

1

0

Infinite spike

has areaD 1

Six Rules of Differential Calculus

1. The derivative ofaf .x/Cbg.x/ is a
df

dx
Cb

dg

dx
Sum

2. The derivative off .x/g.x/ is f .x/
dg

dx
Cg.x/

df

dx
Product

3. The derivative of
f .x/

g.x/
is

�

g
df

dx
�f dg

dx

��

g2 Quotient

4. The derivative off .g.x// is
df

dy

dy

dx
whereyDg.x/ Chain

5. The derivative ofxD f �1.y/ is
dx

dy
D

1

dy=dx
Inverse

6. Whenf .x/Ñ 0 andg.x/Ñ 0 as xÑ a, what aboutf .x/=g.x/ ? l’Hôpital

lim
f .x/

g.x/
D lim

df=dx

dg=dx
if these limits exist. Normally this is

f 1.a/

g1.a/

Fundamental Theorem of Calculus

If f .x/D

» x

a

s.t/dt thenderivative of integral D
df

dx
D s.x/

If
df

dx
D s.x/ thenintegral of derivative D

» b

a

s.x/dxD f .b/�f .a/

Both parts assume thats.x/ is a continuous function.

All Values Theorem Supposef .x/ is a continuous function fora¤ x¤ b:
Then on that interval,f .x/ reaches its maximum valueM and its minimumm:
And f .x/ takes all values betweenm andM (there are no jumps).
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Mean Value Theorem If f .x/ has a derivative fora¤ x¤ b then

f .b/�f .a/
b�a D

df

dx
.c/ at somec betweena andb

“At some momentc, instant speedD average speed”

Taylor Series Match all the derivativesf .n/ Ddnf=dxn at the basepointxD a

f .x/Df .a/Cf 1.a/.x�a/C 1

2
f 2.a/.x�a/2 C � � �

D

8
X

nD0

1

nŠ
f .n/.a/ .x�a/n

Stopping at.x�a/n leaves the errorf nC1.c/.x�a/nC1=.nC1/Š

[c is somewhere betweena andx] [nD 0 is the Mean Value Theorem]

The Taylor series looks best aroundaD 0 f .x/D

8
X

nD0

1

nŠ
f .n/.0/ xn

Binomial Theorem shows Pascal’s triangle

.1Cx/ 1C1x

.1Cx/2 1C2xC1x2

.1Cx/3 1C3xC3x2 C1x3

.1Cx/4 1C4xC6x2 C4x3 C1x4

Those are just the Taylor series forf .x/D .1Cx/p whenpD 1;2;3;4

f .n/.x/D .1Cx/p p.1Cx/p�1 p.p�1/.1Cx/p�2 � � �
f .n/.0/D 1 p p.p�1/ � � �

Divide bynŠ to find the Taylor coefficientsD Binomial coefficients

1

nŠ
f .n/.0/D

p.p�1/ � � �.p�nC1/

n.n�1/ � � � .1/ D
pŠ

.p�n/Š nŠ D

�

p

n

�

The series stops atxn whenpDn Infinite series for otherp

Every.1Cx/p D 1CpxC
p.p�1/
.2/.1/

x2 C
p.p�1/.p�2/
.3/.2/.1/

x3 C � � �
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Practice Questions

1. Check that the derivative ofyDx lnx�x is dy=dxD lnx:

2. The “sign function” isS.x/D

#
1 for x© 0�1 for x  0

What ramp functionF.x/ has
dF

dx
DS.x/ ? F is the integral ofS:

Why is the derivative
dS

dx
D 2 delta.x/ ? (Infinite spike atxD 0 with area2)

3. (l’H Oopital) What is the limit of
2xC3x2

5xC7x2
asxÑ 0? What aboutxÑ8?

4. l’H Oopital’s Rule says that lim
xÑ0

f .x/

x
D ?? whenf .0/D 0: Hereg.x/Dx:

5. Derivative is like Difference Integral is like Sum

Difference of sums Iffn D s1 Cs2 C � � �Csn, what isfn�fn�1 ?

Sums of differences What is.f1�f0/C.f2�f1/C � � �C.fn�fn�1/ ?

Those are theFundamental Theoremsof “Difference Calculus”

6. Draw a non-continuous graph for0¨ x¨ 1 where your function does NOT
reach its maximum value.

7. Forf .x/Dx2, which in-between pointc gives
f .5/�f .1/

5�1 D
df

dx
.c/ ?

8. If your average speed on the Mass Pike is75, then at some instant your
speedometer will read :

9. Find three Taylor coefficientsA;B;C for
?
1Cx (aroundxD 0).

.1Cx/
1
2 DACBxCCx2 C � � �

10. Find the Taylor (D Binomial) series forf D
1

1Cx
aroundxD 0 .pD�1/:
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0.5 Graphs and Graphing Calculators

This book started with the sentence “Calculus is about functions.” When these
functions are given by formulas likeyDxCx2 , we now know a formula for the
slope (and even the slope of the slope). When we only have a rough graph of the
function, we can’t expect more than a rough graph of the slope. But graphs are very
valuable in applications of calculus!

From a graph ofy.x/, this section extracts the basic information about the growth
rate (the slope) and the minimum=maximum and the bending (and area too). A
big part of that information is contained ina plus or minus sign. Isy.x/ increasing ?
Is its slope increasing ? Is the area under its graph increasing ? In each case some
number is greater than zero. The three numbers aredy=dx andd 2y=dx2 andy.x/
itself.

When one of those numbers isexactly zerowe always have a special situation. It is
a good thing that mathematics invented zero, we need it.

This section is organized by two themes:

(1) Graphs that are drawn without a formula fory.x/. From that graph you can
draw other graphs—the slopedy=dx, the second derivatived 2y=dx2, the area
A.x/ under the graph.

You can also identify where those functions are positive or negative—and
especially the points wheredy=dx or d 2y=dx2 or y.x/ is zero.

(2) Graphs that are drawn by a calculator or computer. Now there is a formula for
y.x/. The display allows us to guess rules for derivatives:

Chain Rule Inverse Rule l’Hôpital’s Rule

These rules come into later chapters of the book. They are also explained in
Highlights of Calculus, the video lectures that are available to everyone. One
specific goal is to see how the derivative of2x is proportional to2x.

This section was much improved by ideas that were offered by Benjamin Goldstein.

GRAPH WITHOUT FORMULAS

x

y.x/
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1. Suppose this is the graph of some functiony.x/

a. At what value(s) ofx doesy.x/ have a local minimum ?

b. At what value(s) ofx doesy.x/ have a local maximum ?

c. At what value(s) ofx doesy.x/ have an inflection point ? (Estimate.)

2. Let’s change the problem. Suppose this is the graph ofdy=dx, the derivative
of y.x/. Answer the following questions abouty.x/, the original function.

a. At what value(s) ofx doesy.x/ have a local minimum ?

b. At what value(s) ofx doesy.x/ have a local maximum ?

c. At what value(s) ofx doesy.x/ have an inflection point ?

3. One more variation. Suppose this is the graph of the second derivatived 2y=dx2

(slope of the slope). If any of these questions can’t be answered, explain why.

a. At what value(s) ofx doesy.x/ have a local minimum ?

b. At what value(s) ofx doesy.x/ have a local maximum ?

c. At what value(s) ofx doesy.x/ have an inflection point ?

4. Answer the same 9 questions for this second graph.

A

B

C

D

E

F

5. The following table shows the velocity of a car at selected times.

time 0 5 10 15 20 25 30 35

velocity 45 40 30 40 45 40 30 25

a. Was there any timet when the car was moving with acceleration
d 2y=dt2 D 0 ? Justify your answer.

b. If y.t/ represents the car’s position as a function of time, was there ever
a time whend 3y=dt3 D 0 ? Justify your answer. The third derivative is
sometimes referred to as ‘jerk’ because it indicates the jerkiness of the
motion. This isimportantto roller-coaster designers.

c. What assumptions have you made abouty.t/ and (more importantly)dy=dt
in your answers to parts (a) and (b) ? Are the assumptions reasonable?
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THE CHAIN RULE ON A CALCULATOR

a. On your calculator, graph Y1 D sin.X/ and its slope Y2 D nDeriv.Y1;X;X/:Make
sure you are in radian mode, and select the trigonometric viewing window.

1. What function does Y2 appear to be ?

2. Change Y1 to Y1 D sin.2X/: Now what function does Y2 appear to be ?
Check your guess by graphing the true derivative.

3. Finally, change Y1 to Y1 D sin.3X/: What does Y2 appear to be this time ?

4. Conjecture: Ifk is some constant, then the derivative of sin.kx/ is :

b. Those functions arechains(also calledcompositions). They can be written in the
form Y Df .g.x//: For sin.kx/ the outer function isf .x/D and the inner
function isg.x/D :

c. So far the inner functiong.x/ has been linear, but it doesn’t have to be. Let
Y D sin.

?
x/:

Conjecture:
dY

dx
D wheng.x/D

?
x:

Check your conjecture by graphingY and comparing to the graph of the numerical
derivative.

d. Now we generalize. Supposeg.x/ is any function. If yD sin.g.x//; then
dy=dxD :

e. There is nothing magical about the sine function. Whenever we have a composition
of an outer and an inner function, the chain rule applies. Predict the following
derivatives and check by graphing the numerical derivative on your calculator.

1. yD .2xC4/3; dy=dxD

3. yD cos.x2/; dy=dxD

2. yD cos2 xD .cosx/2; dy=dxD

4. yD Œsin.x2 C1/�3; dy=dxD

COMPUTING IN CALCULUS

Software is available for calculus courses—a lot of it. The packages keep getting
better. Which program to use (if any) depends on cost and convenience and purpose.
How to use it is a much harder question. These pages identify some of the goals. Our
aim is to support, with examples, the effort to use computing to help learning.

For calculus,the greatest advantage of the computer is to offer graphics. You
see the function, not just the formula. As you watch,f .x/ reaches a maximum or
a minimum or zero. A separate graph shows its derivative. Those statements are not
100% true, as everybody learns right away—as soon as a few functions are typed in.
But the power tosee this subjectis enormous, because it is adjustable. If we don’t like
the picture we change to a new viewing window.

This is computer-based graphics. It combinesnumerical computation withgraph-
ical computation. You get pictures as well as numbers—a powerful combination. The
computer offers the experience of actually working with a function. The domain and
range are not just abstract ideas.You choose them. May I give a few examples.
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EXAMPLE 1 Certainlyx3equals3x whenxD3.Do those graphs ever meet again?
At this point we don’t know the full meaning of3x , except whenx is a nice number.
(Neither does the computer.) Checking atxD2 and4, the functionx3 is smaller both
times:23 is below32 and43D64 is below34D81. If x3 is always less than3x we
ought to know—these are among the basic functions of mathematics.

The computer will answer numerically or graphically. At our command, it solves
x3D3x . At another command, it plots both functions—this shows more. The screen
proves a point of logic (or mathematics) that escaped us. If the graphs cross once, they
must cross again—because3x is higher at2 and4. A crossing point near2:5 is seen
by zooming in. I am less interested in the exact number than its position—it comes
beforexD3 rather than after.

A few conclusions from such a basic example:

1. A supercomputer is not necessary.

2. High-level programming is not necessary.

3. We can do mathematics without completely understanding it.

The third point doesn’t sound so good.Write it differently:We can learn mathematics
while doing it. The hardest part of teaching calculus is to turn it from a spectator
sport into a workout. The computer makes that possible.

EXAMPLE 2 (mental computer) Comparex2 with 2x . The functions meet atxD2.
Where do they meet again ? Is it before or after2?

That is mental computing because the answer happens to be a whole number (4). Now
we are on a different track. Does an accident like24D42 ever happen again ? Can the
machine tell us about integers ? Perhaps it can plot the solutions ofxb Dbx . I asked
Mathematicafor a formula, hoping to discoverx as a function ofb—but the program
just gave back the equation. For once the machine typed HELP instead of the user.

Well, mathematics is not helpless. I am proud of calculus. There is a new exercise
at the end of Section6:4, to show that we never see whole numbers again.

EXAMPLE 3 Find the numberb for whichxb Dbx has onlyonesolution (atxDb).

Whenb is 3, the second solution is below3. Whenb is 2, the second solution.4/ is
above2. If we moveb from 2 to 3, there must be a special “double point”—where
the graphs barely touch but don’t cross. For that particularb—and only for that one
value—the curvexb never goes abovebx .

This special pointb can be found with computer-based graphics. In many ways
it is the “center point of calculus.” Since the curves touch but don’t cross, they are
tangent. They have the same slope at the double point. Calculus was created to work
with slopes, and we already know the slope ofx2. Soon comesxb . Eventually we
discover the slope ofbx , and identify the most important number in calculus.

The point is that this number can be discovered first by experiment.

EXAMPLE 4 Graphy.x/D ex�xe . Locate its minimum. Zoom in nearxD e:

From the derivatives ofex andxe ; show thatdy=dxD 0 atxD e:

If you try, you can also find the next derivatived 2y=dx2: Can you see why
d 2y=dx2¡ 0 atxD e ?
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The next example was proposed by Don Small. Solvex4�11x3 C5x�2D 0. The
first tool is algebra—try to factor the polynomial. That succeeds for quadratics, and
then gets extremely hard. Even if the computer can do algebra better than we can,
factoring is seldom the way to go. In reality we have two good choices:

1. (Mathematics) Use the derivative. Solve by Newton’s method.

2. (Graphics) Plot the function and zoom in.

Both will be done by the computer. Both have potential problems!Newton’s method
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is also
fast—but solutions can be outside the viewing window. This particular function is zero
only once, in the standard window from�10 to 10. The graph seems to be leaving
zero, but mathematics again predicts a second crossing point. So we zoom out before
we zoom in.

The use of the zoom is the best part of graphing. Not only do wechoosethe domain
and range, wechangethem. The viewing window is controlled by four numbers.
They can be the limitsA¤ x¤B andC¤ y¤D. They can be the coordinates of two
opposite corners:.A;C / and.B;D/. They can be the center position.a;b/ and the
scale factorsc andd . Clicking on opposite corners of the zoom box is the fastest
way, unless the center is unchanged and we only need to give scale factors. (Even
faster: Use the default factors.) Section3:4 discusses thecentering transformand
zoom transform—a change of picture on the screen and a change of variable within
the function.

EXAMPLE 5 Find all real solutions tox4�11x3 C5x�2D0:

EXAMPLE 6 Zoom out and in on the graphs ofyD cos40x andyDx sin.1=x/.
Describe what you see.

EXAMPLE 7 What doesyD.tanx�sinx/=x3 approach atxD0 ? For smallx
the machine eventually can’t separate tanx from sinx. It may giveyD0. Can you
get close enough to see the limit ofy asxÑ 0?

SYMBOLIC COMPUTATION

In symbolic computation, answers can beformulasas well as numbers and graphs.
The derivative ofyDx2 is seen as “2x.” The derivative of sint is “cost .” The slope
of bx is known to the program. The computer does more than substitute numbers into
formulas—it operates directly on the formulas. We need to think where this fits with
learning calculus.

In a way, symbolic computing is close to what we ourselves do. Maybe too close—
there is some danger that symbolic manipulation isall we do. With a higher-level
language and enough power, a computer can print the derivative of sin.x2/. So why
learn the chain rule ? Because mathematics goes deeper than “algebra with formulas.”
We deal withideas.

I want to say clearly:Mathematics is not formulas or computations or even proofs,
but ideas. The symbols and pictures are the language. The book and the professor and
the computer can join in teaching it. The computer should be non-threatening (like
this book and your professor)—you can work at your own pace. Your part is to learn
by doing.
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EXAMPLE 8 A computer algebra system quickly finds100 factorial. This is
100ŠD.100/.99/.98/ : : :.1/. The number has158 digits (not written out here). The
last 24 digits are zeros. For10ŠD3628800 there are seven digits and two zeros.
Between10 and100, and beyond, are simple questions that need ideas:

1. How many digits (approximately) are in the numberNŠ ?
2. How many zeros (exactly) are at the end ofNŠ ?

For Question1, the computer shows more thanN digits whenND100. It will
never show more thanN 2 digits, because none of theN terms can have more than
N digits. A much tighter bound would be2N , but is it true ?Does NŠ always have
fewer than 2N digits ?

For Question2, the zeros in10Š can be explained. One comes from10, the other
from 5 times2. .10 is also5 times2:/ Can you explain the24 zeros in100Š? An idea
from the card game blackjack applies here too:Count the fives.

Hard question: How many zeros at the end of200Š?

Writing in Calculus May I emphasize the importance of writing ? We totally miss
it, when the answer is just a number. A one-page report is harder on instructors as
well as students—but much more valuable. You can’t write sentences without being
forced to organize ideas—and part of yourself goes into it.

I will propose a writing exercise with options. If you have computer-based
graphing, follow through on Examples1�4 above and report. Without a computer,
pick a paragraph from this book that should be clearer andmake it clearer. Rewrite it
with examples. Identify the key idea at the start, explain it, and come back to express
it differently at the end. Ideas are like surfaces—they can be seen many ways.

Mathematics can be learned bytalking and writing—it is a human activity. Our
goal is not to test but to teach and learn.
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