CHAPTER O

Highlights of Calculus

I 0.1 Distance and Speed // Height and Slope |

Calculus is about functionsl use that word “functions” in the first sentence,
because we can’t go forward without it. Like all other words, we learn this one in
two different ways: Wedefinethe word and weisethe word.

| believe that seeing examples of functions, and using the word to explain those
examples, is a fast and powerful way to learn. | will start with three examples:

Linear function y(x)=2x
Squaring function y(x) =x2
Exponential function y(x)=2"

The first point is that those are not the same! Their formulas invbbedx in very
different ways. When | draw their graphs (this is a good way to understand functions)
you see that all three are increasing whes positive. The slopes are positive.

When the inputx increases (moving to the right), the outputalso increases
(the graph goes upward). The three functions increase at diffierst

y

8 y= 23

4r y= 2%x

2 .

; Exponential
L. oy
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Near the start at =0, the first function increases the fastest. But the others soon
catch up. All three graphs reach the same heigkt4 whenx =2. Beyond that
point the second graph = x? pulls ahead. Atx = 3 the squaring function reaches
y =32 =9, while the height of the third graph is onjy= 23 =8.

Don’t be deceivedthe exponential will winlt pulls even atx = 4, becausd? and
2% are both16. Theny =2* moves ahead of = x? and it stays ahead. When you
reachx = 10, the third graph will have = 21° = 1024 compared toy = 102 = 100.

The graphs themselves arestraight line and aparabola and anexponential
The straight line has constant growth rate. The parabola has increasing growth rate.
The exponential curve has exponentially increasing growth rate. | emphasize these
because calculus is all about growth rates.

The whole point of differential calculus is to discover the growth rate of a function,
and to use that information. So there are actualyp functions in play at the
same time—the original function and its growth rate. Before | go further down
this all-important road, let me give a working definition of a functidar):

A function has inputs x and outputs y (x). To eachx it assigns oney.

The inputsx come from the “domain” of the function. In our graphs the domain
contained all numbers > 0. The outputsy form the “range” of the function. The
ranges for the first two functions =2x and y = x? contained all numbers > 0.
But the range foy = 2* is limited to y > 1 when the domain is > 0.

Since these examples are so important, let me also allot® be negative.
The three graphs are shown below. Strictly speaking, these are new functions! Their
domains have been extendedalbreal numbersy. Notice that the three ranges are
also different:

The range ofy = 2x is all real numbery
The range ofy = x2 is all nonnegative numbens> 0
The range ofy = 2* is all positive numbers > 0

One more note about the idea of a function, and then calculus can begin. We have
seen the three most popular ways to describe a function:

1. Give aformulato find y from x. Example:y(x) = 2x.
2. Give agraphthat showst (distance across) and(distance up).
3. Give theinput-output pairgx in the domain ang in the range).
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In a high-level definition, the “function” is the set of all thepmt-output pairs. We
could also say: The function is the rule that assigns an oytputhe range to every
inputx in the domain.

This shows something that we see for other words too. Logically, the definition
should come first. Practically, we understand the definition better after we know
examples that use the word. Probably that is the way we learn other words and also
the way we will learn calculus. Examples show the general idea, and the definition
is more precise. Together, we get it right.

The first words in this book wer€alculus is about functiondNow | have to
update that.

PAIRS OF FUNCTIONS

Calculus is about pairs of functionsCall them Function {) and Function (2).
Our graphs ofy =2x and y =x2 and y =2* were intended to be examples of
Function (). Then we discussed the growth rates of those three exanies.
growth rate of Function (1) is Function (2). This is our first task—to find the
growth rate of a function. Differential calculus starts with a formula for
Function(1) and aims to produce a formula for Functi@).

Let me say right away how calculus operates. There are two ways to compute how
quickly y changes when changes:

Ch i A
Method 1 (Limits): Write m =22 Take the limit of this ratio ag\ x — 0.
Changeix  Ax

Method?2 (Ruleg: Follow a rule to produce new growth rates from known rates.

For each new functiony(x), look to see if it can be produced from known
functions—obeying one of the rules. An important part of learning calculus is
to see different ways of producing new functions from old. Then we follow the
rules for the growth rate.

Suppose the new function igot produced from known function2t is not
produced from2x or x2). Then we have to find its growth rate directly. By
“directly” | mean that we compute a limit which is Function (2). This book will
explain what a “limit” means and how to compute it.

Here we begin with examples—almost always the best way. | will state the
growth rates dy /dx” for the three functions we are working with:

Function (1) y=2x y=x2 P =nT
. dy dy dy .
Function (2) Iy =2 Iy =2x Iy =2*(n2)

The linear functiony =2x has constant growth ratéy/dx = 2. This section will
take that first and easiest step. It is our opportunity to connect the growth rate to the
slope of the graph The ratio ofup to acrossis 2x/x which is2.

Section).2 takes the next step. The squaring functjos x? has linear growth rate
dy/dx =2x.(This requires the idea of a limit—so fundamental to calculus.) Then we
can introduce our first two rules:

Constant factor  The growth rate o€y (x) is C times the growth rate of (x).
Sum of functions The growth rate of; + y, is the sum of the two growth rates.
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The first rule says thap = 5x? has growth ratelOx. The factorC =5 multiplies
the growth rate2x. The second rule says that + y, = 5x% +2x has growth rate
10x +2. Notice how we immediately toakx? as a functiory, with a known growth
rate. Together, the two rules give the growth rate for any “linear combination” of
y1 andy;:

Th , N dyi dyz

e growth rate of Cyy1+ Czy, isthat same combinationCy Ir + CZE'

Inwords, the step from Function (1) to Function (2)iiear. The slope ofy = x2 —x
isdy/dx =2x—1. This rule is simple but so important.

Finally, Section0.3 will present the exponential functions=2* and y =e*.

Our first job is their meaning—what is2“to the powerz”? We understand
23 =8 and2* = 16, but how can we multipl{ by itself = times?

When we meet*, we are seeing the great creation of calculus. This is a function
with the remarkable property thdy /dx = y. The slope equals the functionThis
requires the amazing number which was never seen in algebra—because it only
appears when you take the right limit.

So these first sections compute growth rates for three essential functions. We are
ready fory = 2x.

THE SLOPE OF A GRAPH

The slope is distance up divided by distance acrostam thinking now about the
graph of a functiony(x). The “distance across” is the change— x; in the inputs,
from x; to x,. The “distance up” is the change — y; in the outputs, frony; to y,.
The slope is large and the graph is steep whenr y, is much larger than, — x; .
Change iny divided by change in matches our ordinary meaning of the word slope:

change iny _ yo—y1 _ Ay

Average slope= — = = .
9 P change ik xp—x; Ax

1)

| introduced the very useful Greek lettAr(delta), as a symbol farthange We take
a step of lengthAx to go fromx; to x,. For the heighty(x) on the graph, that
produces a stepy = y, — y;. The ratio of Ay to Ax, up divided by across, is the
average slope betwean andx,. The slope is the steepness.
Important point: | had to say “average” because the slope could be changing as
we go. The graph of = x? shows an increasing slope. Betwegn= 1 andx, =2,
what is the average slope for= x2 ? Divide Ay by Ax:
n=latx=1 Average slope= -l _dy_ 3.
yo=4atx, =2 2—1 Ax
Betweenx; =0 and x, =2, we get a different answer (né). This graph ofx?
shows the problem of calculus, to deal with changes in slope and changes in speed.
The graph ofy =2x has constant slope. The ratio afy to Ax, distance up to
distance across, is alwags

Ay _ya=y1 _ 2x2-2x1 _

2.
Ax X3 —Xx1 X2 — X1

Constant slope

The mathematics is easy, which gives me a chance to emphasize the words and the
ideas:

Function (1)= Height of the graph Function (ZF Slopeof the graph
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When Function (1) iy = Cx, the ratioAy/Ax is alwaysC. A linear function has
a constant slope. And those same functions can come from driving a car at constant
speed:

Function (1)= Distancetraveled= Ct Function (2)= Speedof the car=C

For a graph of Function (1), its rate of change is #iepe When Function (1)
measures distance traveled, its rate of change isspeed (or velocity). When
Function(1) measures our height, its rate of change isgromwth rate.

The first point is thatfunctions are everywherd-or calculus, those functions
come in pairsFunction(2) is the rate of change of Functiqn).

The second point is that Function (1) and Function (2) are measured in different
units. That is natural:
. miles . o . . N
(Speed mm) multiplies (Tlme in hours) to glve(Dlstance wrmles)

._inches . _ . S
(Growth rate in year ) multiplies (T|me myears) to glve(He|ght mmches)

When time is in seconds and distance is in meters, then speed is automatically in
meters per second. We can choose two units, and they decide the third. Function (2)
always involves a division‘Ay is divided byAx or distance is divided by time.

The delicate and tricky part of calculus is coming next. We wanstbpe at one
pointand thespeed at one instantVhat is the rate of change #ero time?

The distance across isx =0 at a point. The distance up 5§y =0. Formally,
their ratio is %. Itis the inspiration of calculus to give this a useful meaning.
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Big Picture

Calculus connects Function (1) with Function &Y ate of changeof (1)
Function (1) Distance traveleflr) Function (2) Speesi(t) =df/dt
Function (1) Height of graph(x) Function (2) Slopa(x)=dy/dx
Function (2) tells how quickly Function (1) is changing

Distancef Distance up

KEY Constant speegl= . Constantslopg = ——
Timet Distance across

Graphs of (1) and (2)
f = increasing distance

s = constant speed

J
f=st s
t t
Slope of f-graph= a:rF(J)ssz St—t =

Area under-graph= area of rectangle- st = f

Now run the car backwards
Speed is negative
Distance goes down

Area “under”s(¢) is zero

(@) s(1)
+s

t
This area
is negative
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Example with increasing speed Then distance has steeper slope

f=10¢?
s =20t

When speed is changing, algebra is not enough- % iswrong
. . 1
Still true that area under= triangle area= E(t)(ZOZ) =102=f

Still true thats = dope of f = % = “derivative” of f

When f is increasing, the slopeis positive
When f is decreasing, the slopds negative
When f is at its maximum or minimum, the slopés zero

The graphs of any'(¢) and f(¢) + 10 have the same slope at every

To recoverf = Function (1) fromj—{, good to know a starting heighf(0)
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Practice Questions

1. Draw a graph off (¢) that goes up and down and up again.

Then draw a reasonable graph of its slope.

f S

2. The world populationf () increased slowly at first, now quickly, the
slowly again (we hope and expect). Maybe a limifL2 or 14 billion.

d
Draw a graph forf(¢) and its slope(z) = d_{

3. Supposef(r) =2t fort <1andthenf(z)=3r+2forr > 1
Describe the slope graplir). Compare its area out to= 3 with f(3)

]

4. Draw a graph off (#) = cost. Then sketch a graph of its slope. At what ang
t is the slope zero (slope 0 when £(¢) is “flat”).
5. Suppose the graph of(¢) is shaped like the capital lett®/. Describe the

graph of its slope(r) = % What is the total area under the graphs&f

6. A train goes a distanc¢ at constant speed Inside the train, a passeng
walks forward a distancd at walking speedS. What distance does th

passenger go? At what speed? (Measure distance from the train statior

~ (O W
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I 0.2 The Changing Slope of y =x?and y =x" [N

The second of our three examplesis- x2. Now the slope is changing as we move
up the curve. The average slope is stilt / A x, but that is not our final goal. We have
to answer the crucial questions of differential calculus:

What is the meaning of “slope at a point and how can we compute i?

My video lecture onBig Picture Derivativesalso faces those questions. Every
student of calculus soon reaches this same problem. What is the meaning of “rate
of change” when we are at a single moment in time, and nothing actually changes
in that moment? Good question.

The answers will come in two steps. Algebra produssgg A x, and then calculus
findsdy/dx. Those stepgly anddx are infinitesimally short, so formally we are
looking at0/0. Trying to definedy anddx and0/0 is not wise, and | won't do it.

The successful plan is to realize that the ratio®of to Ax is clearly defined, and
those two numbers can become very snifithat ratio Ay/Ax approaches a limit,
we have a perfect answer

Ay _y+An)-y(x)

The slope atx isthe limit of
P Ax Ax

The distance across, fromto x + Ax, is just Ax. The distance up is from(x) to
y(x + Ax). Let me show how algebra leads directlyfy /Ax wheny = x2:

Ay  (x+Ax)2—x? _x?4+2xAx+(Ax)?—x?

Notice that calculation! The “leading terms? and —x? cancel. The important term
here is2xAx. This “first-order term” is responsible for most afy. The “second-
order term” in this example i6Ax)?2. After we divide byAx, this term is still small.
That part(Ax)2/Ax will disappear as the step sizex goes to zero.

That limiting process Ax — 0 produces the slopedy/dx at a point. The first-
order term survives idy /dx and higher-order terms disappear.

. d - A -
Slope at a point &Y _limit of 22X = limit of 2x + Ax =2x.
dx Ax

Algebra producedAy/Ax. In the limit, calculus gave ugly/dx. Look at the
graph, to see the geometry of those steps. The rafiaarpss= Ay/Ax is the slope
between two points on the grapfihe two points come together in the limit
Then Ay/Ax approaches the slopgy/dx at asingle point
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Ax

X x+Ax X x+Ax

x+dx

The color lines connecting points on the first two graphs are called “chords.”
They approach the color line on the third graph, which touches at ampoint.
This is the tangent line” to the curve. Here is the idea of differential calculus:

. . d
Slope of tangent line= Slope of curve= Function(2) = d_y =2x.
X

To find the equation for this tangent line, return to algebra. Choose any specific
value xo. Above that position on ther axis, the graph is at heighto = x2.

The slope of the tangent line at that point of the graphdis/dx =2xy.

We want the equation for the line through that point with that slope.

Equation for the tangent line v —yo = (2x0)(x —x9) Q)

At the point wherex = x( and y = yy, this equation becomés= 0. The equation is
satisfied and the point is on the line. Furthermore the slope of the line matches the
slope2x, of the curve. You see that directly if you divide both sidesiby x,:

up y—Jyo
across x—Xxp

. . d
Tangent line =2xy isthe correct sloped—y.
X

Let me say this again. The curve= x? is bending, the tangent line is straight.
This line stays as close to the curve as possible, near the point where they touch.
The tangent line giveslinear approximation to the nonlinear function= x2:

: L d
Linear approximation  y =~ yo+ (2x0)(x —x9) = yo + d—y(x —x0) (@
X

| only moved y, to the right side of equation (1). Then | used the symisofor
“approximately equal” because the symbelwould be wrong: The curve bends.

Important for the futureThis bending comes from treecond derivativef y = x2.
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THE SECOND DERIVATIVE

The first derivative is the slopéy/dx = 2x. The second derivative is the slope
of the slope By good luck we found the slope @f in the previous section (easy to
do, it is just the constant 2). Notice the syml@ly /dx? for the slope of the slope:

.. d? d .
Second derlvatlve—y The slope of—y =2x is
dx? dx

d?y

ax?

2. 3)

In ordinary language, the first derivative /dx tells how fast the functiow (x) is
changing. The second derivative tells whether wespeeding up or slowing down
The exampley = x? is certainly speeding up, since the graph is getting steeper. The
curve is bending and the tangent line is steepening.

Think also abouty = x2 on the left side (the negative side) of=0. The graph
is coming down to zero. Its slope is certainly negative. But the curve is still bending
upwards! The algebra agrees with this picture: The slbp&ix = 2x is negativeon
the left side ofr = 0, but the second derivativé? y /dx? = 2 is still positive.

An economist or an investor watches all three of those numbéx3:tells where
the economy is, andy/dx tells which way it is going (short term, close to the
tangent line). But it isd2y/dx? that reveals the longer term prediction. | am
writing these words near the end of the economic downturn (I hope). | am sorry that
dy/dx has been negative but happy thidty /dx? has recently been positive.

DISTANCE AND SPEED AND ACCELERATION

An excellent example of (x) and dy/dx andd?y/dx? comes from driving a car.

The functiony is thedistance traveledts rate of change (first derivative) is thpeed

The rate of change of the speed (second derivative) iaticeleration If you are
pressing on the gas pedal, all three will be positive. If you are pressing on the brake,
the distance and speed are probably still positive but the acceleration is negative:
The speed is dropping. If the carirsreverseand you ardoraking what then ?

The speed is negative (going backwards)
The speed is increasing (less negative)
The acceleration is positive (increasing speed).

The video lecture mentions that car makers don’t know calculus. The distance
meter on the dashboard does not go back toward zero (in reverse gear it should).
The speedometer does not go below zero (it should). There is no meter at all (on my
car) for acceleration. Spaceships do have accelerometers, and probably aircraft too.

We often hear that an astronaut or a test pilot is subjected to a high numpisr of
The ordinary acceleration in free fall is oge from the gravity of the Earth. An
airplane in a dive and a rocket at takeoff will have a high second derivative—the
rocket may be hardly moving but it is accelerating like mad.

One more very useful point about this example of motitime natural letter to use
is notx butz. The distance is a function éime. The slope of a graph is ypcross,
but now the right ratio is (change of distance) divided by (change in time):

Ay _y+AD—y(@)
At At

: . d A
Speed att itself (instant speed) d—f = limit of A—f asAt—0

Average speed betweenand ¢ + At
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The words “rate of change” and “rate of growth” suggestrhe word “slope”

suggestse. But calculus doesn’t worry much about the letters we use. If we graph

the distance traveled as a function of time, then thaxis (across) becomes the

t axis. And the slope of that graph becomes the speed (velocity is the best word).
Here is something not often seen in calculus books—sbeond difference.

We know the first difference\y = y(t + At)—y(¢). It is the change iny. The

second differencA?y is the change inAy:

A2y d?y

a0z arz @

Second

difference A7V =0 +AD = y(0) = ()~ y(t — A1)

A%y simplifies to y(t+A1)—2y(@)+y(t—Ar). We divide by (Ar)? to
approximate the acceleration. In the limit ast — 0, this ratio A%y/(At)?
becomes theecond derivatived 2y /dt?.

THE SLOPE OF y =x"

The slope ofy = x? is dy/dx = 2x. Now | want to compute the slopes of= x3
andy =x* and all succeeding powess= x". The rate of increase of” will be
found again in Sectior2.2. But there are two reasons to discover these special
derivatives early:

: . . d
1. Their pattern is simpleThe slope of each powely =x" is d_y =nx""1.
X

. . _ . . d
2. The next section can then introduge- ¢*. This amazing function hagz =y.
X
Of coursey = x? fits into this pattern for”. The exponent drops by from n =2
ton—1=1. Alson = 2 multiplies that lower power to givex” ! = 2x.
The slope ofy = x3 is dy/dx = 3x?. Watch how3x? appears im\y/Ax:
Ay (x+ Ax)3 —x3 _ x34+3x2 Ax +3x(Ax)? + (Ax)3 —x3
Ax Ax N Ax '
Cancelx?® with —x3. Then divide byA x:

()

Average slope % =3x243xAx+ (Ax)2.

When the step length x goes to zero, the limit valuéy /dx is 3x2. This isnx"~1.

To establish this pattern far=4,5,6, ... the only hard part i$x + Ax)". When
n was 3, we multiplied this out in equation (5) above. The result will always start
with x”. We claim that the next term (the “first-order term”A) will be nx”~! Ax.
When we divide this part oAy by Ax, we have the answer we want—the correct
derivativenx™~! of y(x) = x".

How to see that ternmuex”~1Ax ? Our multiplications showed thatcAx and
3x2Ax are correct forn =2 and3. Then we can reach= 4 fromn = 3:

(x+Ax)* = (x + Ax)3 times(x + Ax)
= (x> +3x2Ax +---) times(x 4+ Ax)

That multiplication produces* and4x3Ax, exactly what we want. We can go from
eachn to the next one in the same way (this is called “induction”). The derivatives of
all the powerse?, x°, ..., x" aredx3, 5x*, ..., nx"~1L.
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Section2.2 of the book shows you a slightly different proof of this formula.
And the video lecture on thBroduct Ruleexplains one more way. Look at’*!
as the product at” timesx, and use the rule for the slope pf timesy,:

Product Rule  Slope ofy; y2 = y2 (slope of y1) + y1 (slope of y;) (6)

With y; = x" and y, = x, the slope ofy; y, = x"*! comes out right:
x(slope ofx”) + x" (slope ofx) = x(nx"~1) +x" (1) = (n + 1)x". @)

Again we can increase one step at a time. Soon comes the truly valuable fact that
this derivative formula is correct faall powers y = x". The exponent can be
negative, or a fraction, or any number at all. The sldpgdx is alwaysnx” 1.

By combining different powers aof, you know the slope of every “polynomial.”
An example isy = x +x2/2+x3/3. Computedy/dx one term at a time, as the
Sum Rule allows:

d x2 X3 | 5
dx(x+ > + 3 )— +x+x~.

The slope of the slope 2y /dx? = 1 +2x. The fourth derivative is zero!

Function (1) tells us the heighyy above each point
The problemis to find the “instant slope” at

d
This slopes(x) is Writtend—y It is Function (2)
X

dy

Ay _ y(x+Ax)—y(x)  up approachesd— as Ax—0
x

KEY: — =
Ax Ax across

. d .
Compute theénstant sloped—y for the functiony = x3
X

First find the average slope betweeand x + Ax

A Ax)? —x3
Average S|ope: _y - M
Ax Ax

Write (x + Ax)? = x3 +3x2Ax +3x(Ax)2 + (Ax)3
Subtracty® and divide by Ax

Ay 3x?Ax +3x(Ax)*+(Ax)?

AT " =3x2+3xAx+(Ax)?
. dy 2 d 1
WhenAx — 0, this becomes— = 3x —(x")=nx"
dx dx

d
y =Cx" has slope&Cnx"~!  The slope ofy = 7x? is d_y =14x
X

Multiply y by C — Multiply Ay by C — Multiply Z—y by C
X
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Y
Neat Fact: The slope ofy =sinx is d_y = COS x
X
The graphs show this is reasonable

Slope at the start is 1 (to find later)

/N NS
{ vn dopecoss l\n =

Sine curve climbing—» Cosine curve> 0
Top of sine curve (flat}» Cosine is zero at the first bullet
Sine curve falling— Cosine curve< 0 between bullets

Bottom of sine curve (flat}> Cosine back to zero at the second bullet

Practice Questions

. A
1. Fory =2x3, what is the average sIopeA—y fromx=1tox=27
X

. . _d?
2. What is the instant slope of=2x3 atx=1?  What |sd—)2) ?
X
d _d 1
3. y=x" hasZY — nxn—1 what is &2 wheny(x)=—=x"1?
dx dx X

. A 1
4. Fory =x~!, what is the average sIopAeX fromx = 3 tox=17?
X

. . 1
5. What is the instant slope of=x"! atx = 3 ?

6. Suppose the graph ofx) climbs up to its maximum at = 1

Then it goes downward for > 1

6A. What is the sign oﬁl for x <1 and then forxe > 17
X
6B. What is the instant slope at=17?

. . . A .
7 If y =sin x, write an expression foAr—y at any pointx.
X

A
We see later that thvzl approaches cos
X
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I 0.3 The Exponential y =¢* |

The great function that calculus creates is the exponentiaé™. There are different
ways to reach this function, and Section 6.2 of this textbook mentions five ways.
Here | will describe the approach & that | now like best. It uses the derivative of
x", the first thing we learn.

In all approaches, a “limiting step” will be involved. So the amazing number
e=2.7... is not seen in algebrae (is not a fraction). The question is where to
take that limiting step, and my answer starts with this truly remarkable fact:
Wheny = ¢* is Function (1), it is also Function (2).

. . . d
The exponential functiony = e* solves the equatloell =y.
X

The function equals its slope This is a first example of differential equation—

connecting an unknown functionwith its own derivatives. Fortunately /dx =y

is the most important differential equation—a model that other equations try to follow.
| will add one more requirement, to eliminate solutions like-2e* andy = 8¢*.

When y =e* solves our equation, all other functioifs* solve it too. C =2

and C =8 will appear on both sides ofy/dx =y, and they cancel.) Ak =0,

% will be the “zeroth power” of the positive number All zeroth powers arel.

So we wanty = e* to equal 1 whenx = 0:

. . d
y =e* is the solution ofd—y =y that starts fromy =1 atx =0.
X

Before solvingdy/dx =y, look at what this equation means. Whenstarts
from 1 atx =0, its slope is also 1. Sg¢ increases. Therefowgy /dx also increases,
staying equal toy. So y increases faster. The graph gets steeper as the function
climbs higher. This is what “growing exponentially” means.

INTRODUCING e*

Exponential growth is quite ordinary and reasonable. When & pays interest on
your money, the interest is proportional to the amount you have. After the interest is
added, you have more. The new interest is based on the higher amount. Your wealth
is growing “geometrically,” one step at a time.

At the end of this section oa*, | will come back tocontinuouscompounding—
interest is added at every instant instead of every year. That word “continuous”
signals that we need calculus. There is a limiting step, from every year or month
or day or second to every instant. You don’t get infinite interest, you do get
exponentially increasing interest.

I will also describe other ways to introdueé&. This is an important question with
many answers! | like equation (1) below, because we know the derivative of each
powerx”. If you take their derivatives in equation (1), you get back the same
amazing So that sum solvegy /dx = y, starting fromy = 1 as we wanted.

The difficulty is that the sum involves every powet: aninfinite series When
| go step by step, you will see that those powers are all needed. For this infinite
series, | am asking you to believe that everything wolkie. can add the series
to gete*, and we can add all derivatives to see that the slope o ¢~.

For me, the advantage of using only the powetss overwhelming.
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CONSTRUCTING y =e*

| will solve dy/dx = y a step at a time. At the stast,= 1 means thatly /dx = 1:

y=1+x

y=1 d_y y=1+x
dyjdx=1 CMaNgey . iy

Start dx dy/dx=1+x

Change

After the first changey =1+ x has the correct derivativéy /dx = 1. But then |
had to changéy/dx to keep it equal to). And | can’t stop there:

dy/dii } ii Update y to 1 4+x + %xz Then update:% tol+x+ %xz
The extra%x2 gave the correck in the slope. Ther%x2 also had to go intely /dx,
to keep it equal tgy. Now we need a new term with this derivati%az.

The term that gives.x? has x3 divided by6. The derivative ofc” is nx"~!, so |
must divide byn (to cancel correctly). Then the derivative.ot/6 is 3x2/6 = 1 x2
aswe wanted. After that comes' divided by 24:

3 3 2

r__ v has slope r
6~ 30 P¢ 2
x4 x4 3 3

—=—————hasslope L =
24 (B3 P »HR@1) 6

The pattern becomes more clear. Tifeterm is divided by: factorial, which isn! =
(m)(n—1)...(1). The first five factorials arel,2,6,24,120. The derivative

of that term x"/n! is the previous term x"~!/(n —1)! (because tha’s cancel).
As long as we don't stop, this sum of infinitely many terms does achigyéx = y:

y(x)=ex=1+x+%x2+%x3+---+ni!x"+--- 1)

If we substitutex = 10 into this series, do the infinitely many terms add to a finite
numbere!®? Yes The numbers:! grow much faster than £0(or any otherx™).
So the termsc” /n! in this “exponential series” become extremely smalhas co.
Analysis shows that the sum of the series (which is e¢*) does achievey /dx = y.

Note 1 Let me just remember a series that you kndw; 1 +1+1+...=2.
If I replace 1 by x, this becomes thgeometric seried + x +x2 +x3+--- and
it adds up tol/(1—x). This is the most important series in mathematics, but it
runs into a problem at = 1: the infinite suml +1+1+1+--- doesn't “converge.”

I emphasize that the series fer is always safe, because the powers
are divided by the rapidly growing numberd =n factorial. This is a great
example to meet, long before you learn more about convergence and divergence.

Note 2 Here is another way to look at that series & Start withx” and take
its derivativen times. First getnx"~! and thenn(n—1)x"~2. Finally the nth
derivative isn(n —1)(n —2)...(1)x°, which isn factorial. When we divide by that
numberthe nth derivative of x” /n! is equal to1.

Now look ate*. All its derivatives are stille*. They all equal 1 atx =0.
The series is matching every derivative of the funct¢at the starting pointc = 0.
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Setx =1 in the exponential seriesThis tells us the amazing numbe&r = e:

The number e e=1+1+1+2+ L+ L+ @)

The first three terms add to 2.5. The first five terms almost reach\@€fever reach
2.72. With quite a few terms (how many ?) you can pass 2.71828. It is certain that
is not a fraction. It never appears in algebra, but it is the key number for calculus.

MULTIPLYING BY ADDING EXPONENTS

We write e? in the same way that we write?. Is it true thate timese equalse? ?
Up to now,e and e? come from settingr =1 and x =2 in the infinite series.
The wonderful fact is that for every, the series produces thath power of the
numbere.” Whenx = —1, we gete—! which is 1/e:
1 1 1 1 1
Setx =—1 T sl o ——— -
* ¢ T 2T T 0"

If we multiply that series foil /e by the series foe, we getl.

The best way is to go straight for all multiplicationsedftimes any powee* . The
rule of adding exponents says that the answef ¥ . The series must say this too!
Whenx =1 andX = —1, this rule produces® frome! timese!.

Add the exponents (e*)(eX)=e*+X )

We only knowe* and e from the infinite series. For this all-important rule, we can
multiply those series and recognize the answer as the serie$fér. Make a start:

. 1 1
Multiply each term eX=1+x+=-x2 +-x3 4.

2 6
e* times eX 1 1
_ eX=1+X+-X2+-X3+--
Hoping for 2 6
1 1
e +X E)EM)=1+x+X  +x7 X + X4 ()

Certainly you see + X. Do you seeé—(x + X)? in equation4) ? No problem:

1 1
E(x +X)2= E(x2 +2xX +X?) matches the “second degree” terms.

The step to third degree takes a little longer, but it also succeeds:
1 s s 3,03 1, :
g(x+X) =¥ +€x X+€xX +5X matches the next terms in (4).

For high powers ofr + X we need theébinomial theorem(or a healthy trust that
mathematics comes out right). Wheri multiplies eX, the coefficient ofx” X"
will be 1/n! times 1/m!. Now look for that same term in the series X :

nXm

X n+m ) nym ] ! ] ]
7(x+ ) includes— t|mes—(n-:-m) which gives
n.m

(n+m)! (n+m)! ! ®)

n'm!

17
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That binomial numbegn +m)!/n! m! is known to successful gamblers. It counts the
number of ways to chooseaces out of: +m aces. Out of 4 aces, you could choose
2 aces i4!/212! = 6 ways. To a mathematician, there are 6 ways to chQosis
out of xxxx. This number 6 will be the coefficient af X2 in (x 4+ X)*.

That 6 shows up in the fourth degree term. It is divided by 4! (to producé).
Whene* multipliese®, 1x2 multiplies 3 X2 (which also produces/4). All terms
are good, but we are not going there—we ac¢ept(eX ) = e**+X as now confirmed.

Note A different way to see this rule fae*)(e¥) is based only/dx = y. Starting
from y =1 at x = 0, follow this equation. At the point, you reachy = ¢*. Now go
an additional distanc¥ to arrive ate*+X

Notice that the additional part starts fraem (instead of starting from 1). That
starting valuez* will multiply e¥ in the additional part. Se* timese* must be the
same ag* X (This is a “differential equations proof” that the exponents are added.
Personally, | was happy to multiply the series and match the terms.)

The rule immediately gives® timese*. The answer ig* ™~ = ¢2~_ If we multiply
again bye*, we find (e*)3. This is equal te?*+* = ¢3*. We are finding a new rule
for all powers(e*)"” = (e*)(e*)--- (e¥):

Multiply exponents (e*)" =e"* (6)

This is easy to see for=1,2,3,... and therm = —1,-2,—3,...It remains true for
all numbersx andn.

That last sentence about “all numbers” is important! Calculus cannot develop
properly without working with all exponents (not just whole numbers or fractions).
The infinite series (1) defines® for every x and we are on our way. Here is the
graph:Function (1) = Function (2) = e* = exp(x).

e?=7388...T y = e*
dy o
E =e
(ex)(eX) — ex+X
(ex)n = enx
Iny _
e=2.718... 1 e =Yy
eln2_2
=1
e~ 1=368
Il Il x
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THE EXPONENTIALS 2* AND b*

We know that23 =8 and2* = 16. But what is the meaning & ? One way to get
close to that number is to replageby 3.14 which is314/100. As long as we have a
fraction in the exponent, we can live without calculus:

Fractional power ~ 2314/190 — 314th power of thel 00th root2'/1°,

But this is only “close” to2”. And in calculus, we will want the slope of the curve
y =2%. The good way is to conne2t with ¢*, whose slope we know (it is* again).
So we need to conne2twith e.

The key number is thievgarithm of 2. This is written “In2” and it is the power
of e that produceg. It is specially marked on the graph of:

Natural logarithm of 2 en2=2

This number Ir2 is about7/10. A calculator knows it with much higher accuracy.
In the graph ofy = ¢*, the number Ir2 on thex axis produces = 2 on they axis.

This is an example where we want the output2 and we ask for the input
x=In2. That is the opposite of knowing and asking fory. “The logarithm
x =In y is theinverseof the exponentiay = ¢*.” This idea will be explained in
Section4.3 and in two video lectures—inverse functions are not always simple.

Now 2* has a meaning for every. When we have the number lh meeting the
requiremen® = ¢ 2, we can take theth power of both sides:

Powers of 2 from powers ofe 2=¢"2 and 2* =e*M2 (7)

All powers of e are defined by the infinite series. The new functidnalso grows
exponentially, but not as fast a8 (because is smaller thare). Probablyy = 2*
could have the same graph a8, if | stretched out thex axis. That stretching
multiplies the slope by the constant factoinHere is the algebra:

d

Slope ofy =2* —zX=iex N2 —(In2)e*"2 = (In 2)2*.
dx dx
For any positive numbeb, the same approach leads to the functioe- 5*.

First, find the natural logarithm lb. This is the number (positive or negative) so
thath = ¢ 2. Then take therth power of both sides:

Connectbtoe b=¢"? and b* =e*? and di b*=(nb)b*  (8)
X

Whenb ise (the perfect choice), lh=Ine =1. Whenb is ¢”, then Inb =Ine” =n.
“The logarithm is the exponert Thanks to the series that defines for everyx,
that exponent can be any number at all.

Allow me to mention Euler’s Great Formuld* = cosx +i sinx. The exponent
ix has become aimaginary number. (You know thati? = —1.) If we faithfully
use cosc+i sinx at 90° and 180° (wherex = /2 andx = r), we arrive at these
amazing facts:

Imaginary exponents e/ =i and €™ =-1. 9)

Those equations are not imaginary, they come from the great series for
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CONTINUOUS COMPOUNDING OF INTEREST

There is a different and important way to reachnde” (not by an infinite series).
We solve the key equatiaty /dx = y in small steps. As these steps approach zero
(a limit is always involved !) the small-step solution becomes the exace*.

| can explain this idea in two different languages. Each step multiplidstbs x:

1. Compound interestAfter each stepAx, the interest is added tp. Then the

next step begins with a larger amount, gniohcreases exponentially.
2. Finite differencesThe continuougy/dx is replaced by small stepsY / A x:

d Y Ax)-Y
& y changesto (x+Ax) = Y(x)
dx Ax

This is Euler's method of approximatioF(x) approaches(x) asAx — 0.

=Y(x) withY(0)=1.  (10)

Let me compute compound interest when 1 year is divided into 12 months, and
then 365 days. The interest rate is 100% and you start ¥ith = $1. If you only
getinterest once, at the end of the year, then you lgvg= $2.

If interest is added every month, you now gﬁt of 100% each time (12 times).
SoY is multiplied each month by (The bank adds’ for every 1 you have.)
Do this 12 times and the final value $2 is improved to $2.61.:

1 12
After 12 months Y(1)= (1 + E) =%$2.61

1.

Now add interest every day(0) = $1 is multiplied 365 times by + 3=:

365

Very few banks use minutes, and nobody divides the year Mte31,536,000
seconds. It would add less than a penny to $2.71. But many banks are willing to
usecontinuous compoundinthe limit asN — oo. After one year you haved$

365
After 365 days Y(1)= (1 + —) =%$2.71 ¢lose toe)

N
Another limit gives e (1 + %) —e=2.718...asN - (11)

You could invest at the 100% rate faryears. Now each of thev steps is for
x/N years. Again the bank multiplies at every step byg. The 1 keeps what
you have, thec/ N adds the interest in that step. Aft8rsteps you are close td':

A formula for e* 1+ %)N —e* asN - w (12)

Finally, I will change the interest rate to Go for x years at the interest rate
The differential equation changes fraim/dx =y tody/dx = ay. The exponential
function still solves it, but now that solution js= e*:

Change the rate toa Z—y =ay is solved byy(x) =e?* (13)
X
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You can write down the serie$* =1+ax + %(ax)z + -+ and take its derivative:

d
d—(e“x)=a+a2x+---:a(l+ax+---)=ae‘”‘ (14)
X

The derivative ob%* brings down the extra factar. Soy = e?* solvesdy/dx =ay.

The Exponential y =e*

. . : . .d
Looking for a functiony (x) that equals its own derlvatlvg)—}
X
A differential equation! We start at=0 with y =1

x2 X3 x"
Infinite SerieSy(x)z1+x+;+§+---+(—')+---

) . dy x2 xnfl
Take derivative — =0+1 4.
dx it +((n—l)!)+

d . - . .
Term by termd—y agrees withy Limit step= add up this series
X

n!=(n)(n—1)---(1) grows much faster thar® so the terms get very small

At x =1 the numbely (1) is callede. Setx = 1 in the series to find

111
=141+ -+ 4 +---=2.71828...
e=l+l++-+0+

GOAL Show thaty(x) agrees withe* for all x  Series gives powers ef

Check that the series follows the rule to add exponents e&eth= ¢°
Directly multiply seriese* timeseX to gete* X

1 . 1 .
(1 +x+ Exz) tlmes<1 +X+ EXZ) produces the right start fa*+¥

1
I+ @+X)+5(c+X)>+- HIGHER TERMS ALSO WORK

The series gives us* for EVERY x, not just whole numbers

de* . x+Ax _ ,x . Ax_l
CHECK £ —jim&——% _ox(1im& — ¢ YES!
dx Ax Ax

SECOND KEY RULE (e*)" =e™* for everyx andn

Another approach te* uses multiplication instead of an infinite sum

Start with §.. Earn interest every day at yearly rate

365
Multiply 365 times by(l + 3%5) . End the year with {1 + %)

Now payn times in the year. End the year Wi(h + f)n —$e* asn — o
n

. AY . . d
We are solvmg—A =Y inn short stepsAx. The limit solvesd—y =y.
X X

21
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Practice Questions

10 9
1. What is the derivative 0% ? What is the derivative 0%—' ?

xn
2. How to see that—' gets small ast — 0 ?
n:

2
Start with? and % possibly big. But we multiply by;ﬁ, % --- which gets small.

o1 .
3. Why is— the same a8™* ?  Use equation (3) and also use (6).
e

. 1 1 1 1
4, Why|3e—1:1—1+——€+--- betweeng andE?Then2<e<3.

2

d .
5. Canyou solvedl =y darting fromy =3 atx=07
X
Why isy = 3e* the right answer?  Notice ho8y multipliese*.
dy .
6. Canyou solved— =5y darting fromy =1atx =07
X

Why is y = e>* the right answer? Noticgin the exponent!

eAx

1 .
7. Why doesT approachl asAx gets smaller? Use the** series.

X

8. Draw the graph of =In y, just by flipping the graph of = ¢* across thé5°
line y = x. Remember thap stays positive but =In y can be negative.
. 1 1

9. What is the exact sum af+In 2 + E(In 2)2+ y(ln 2342
10. Ifyou replace Ir2 by 0.7, what is the sum of those four terms ?
11. From Euler’s Great Formuld* = cosx +i sinx, what number ig?7! ?

1 10
12. How close is(l + E) toe?
1\2V

13. What is the limit of(l + N) aSN —w?
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B 0./ Video Summaries and Practice Problems |

This section is to help readers who also look at #Highlights of Calculus video
lectures. The first five videos are just releasedoer.mit.edu as | write these
words. Sections 0.1-0.2-0.3 discussed the content of three lectures in full detail. The
summaries and practice problems for the other two will come first in this section:

4, Maximum and Minimum and Second Derivative

5. Big Picture of Integrals

That Lecture 5 is a taste dftegral Calculus A second set of video lectures goes
deeper intdifferential Calculus—the rules for computing and using derivatives.

This second set is right now with the video editors, to zoom in when | write on the
blackboard and zoom out for the big picture. | just borrowed a video camera from
MIT’s OpenCourseWare and set it up in an empty room. | am not good at looking at
the audience anyway, so it was easier with nobody watching!

I hope it will be helpful to print here the summaries and practice problems that are
planned to accompany those videos. Here are the topics:

6. Derivative of the Sine and Cosine
7. Product and Quotient Rules

8. Chain Rule for the Slope of (g(x))
9. Inverse Functions and Logarithms

10. Growth Rates and Log Graphs

11 Linear Approximation and Newton’s Method

12. Differential Equations of Growth

13. Differential Equations of Motion

14. Power Series and Euler's Formula

15. Six Functions, Six Rules, Six Theorems

That last lecture summarizes the theory of differential calculus. The other lectures
explain the steps. Here are the first lines written for the max-min video.

Maximum and Minimum and Second Derivative

To find the maximum and minimum values of a functipfx)

d . .
Solved—y =0 to find pointsx* whereslope= zero
X

Test eachy* for a possible minimum or maximum

dy

Exampley(x) =x3—12x ——=3x2-12 Solve3x?=12
X

. d
The slope |sd—y:0atx* =2andx*= -2
X

At those pointy(2) =8 —24 = —16 =min andy(—2) = —8 +24 = 16 = max
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. - d (d L
x* =2isaminimum Look at— [ 22"} = second derivative
dx \ dx
d?y o . L
T2 derivative of 3x2 —12.  This second derivative iSx.
X
d? dy .
ay >0 9 increases Slope goes from down to upét= 2
dx? dx
The bending is upwards and thig is aminimum
d? d
27 0 2 decreases Slope goes from up to downcét= —2

dx? dx
The bending is downwards and is amaximum

. . . . d .
Find the maximum of (x) = sin x 4 cosx usmgd—y =Cc0Sx —Sinx
X

. . b/ .
The slope is zero when cas=sin x atx* =45 degrees= 1 radians

. . 2 2

That pointx* hasy = sin 2 tcosZ= i + i =2
4 4 2 2

2

o.d .
The second derivative |s—d z = —sSinx —COSx
X

At x* = % thisis< 0 y is bending down x* is amaximum

d? 2
2y > 0 when the curve bends up Z—)Z)
X

Ix2 < 0 when the curve bends down
X

I : o . d?
Direction of bending changes apaint of inflection whered—i =0
X

Which x* gives the minimum of = (x —1)%2 + (x —2)% + (x —6)%?
You can writey = (x? —2x + 1) + (x? —4x +4) + (x> — 12x + 36)

. d - .
The slope |sd—y =2x—2+42x—4+42x—12 =0 at the minimum poink*
X

Then6x* =18 andx* =3 Minimum point is the average df, 2, 6

Key for max/ min word problems is to choose a suitable meaningifor
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Practice Questions

. . - d
1. Whichx* gives the minimum of (x) = x2 +2x ? Solved—y =0.
X

d2
2. Find d—); for y(x) = x2 +2x. This is> 0 so the parabola bends up.
X

3. Find the maximum height of(x) = 2 + 6x — x2. Solve;{—y =0.
X

d?y

4, Find —
! dx?

to show that this parabola bends down.

dy

5. Fory(x) =x*—2x2? showthat-— =0at x = —1,0, 1.

dx

Find y(—1), y(0), y(1). Check max versus min by the signa#ty /dx2.
2

6. Ata minimum point explain whydl =0and d—y > 0.

dx dx?

. d?y . d?y .
7. Bending down| —= < 0] changes to bending up——= >0 at a point
dx? dx?

d?y

of : At this pointﬁ =0 Doesy =sinx have such a point?
X

8. Suppose + X = 12. What is the maximum of timesX ?

This question asks for the maximumpt= x (12 — x) = 12x — x2.

. d . -
Find where the slop?ll =12—2x is zero. What isc times X ?
X

The Big Picture of Integrals

d
Key problem Recover the integra(x) from its derivatived—y
X

Find the total distance traveled from a record of the speed

Find Function(1) = total height knowing Functiof2) = slope since the start
. _d L
Simplest way Recogmzedl asderivative of a known y(x)
X

d . 1 :
If d_y = x3 then itsintegral y(x) waszx4 + C = Function (1)
X

dy ox 1
- = theny = —e?* +C
dx ¢ Y 26 +

Integral Calculus is the reverse of Differential Calculus

If

y(x)= J d—ydx adds up the whole history of slopglyr tofind y(x)
dx X

Integral is like sum Derivative is like difference

25
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Sums Yo )1 V2 3 Y4
Differences  yi—yo y2—y1  y3—)y2 Ya—)3
Notice cancellatiorfy; — yo) + (y2 — y1) = y2 — yo = change in height

Divide and multiply the differences by the step sixe

Ay Y1—Yo Y2 — 1 L
Sumof— Ax="—-"A = < Axisstill —
Ax . Ax X+ Ax . y2= Yo

. d
Now letAx —0 Sum changes to mtegr{ld—ydx = Yend — Ystart
X

d
Fundamental Theorem of Calculus Jd—ydx =yx)+C
X

The integral reverses the derivative and brings baok

Integration and Differentiation are inverse operations
d X
Fundamental Theorem in the opposite order Ix J, s(t)dt =s(x)
X Jo

X
KEY Whatis the meaning of an integral s(¢) d¢ ? Add up short .
0

Example s(z) = 6¢ shows increasing speed and slope. Fir{g).

Method 1y = 3¢2 has the required derivative (this is the simplest way !)
Method 2 The triangle under the graph eft) = 61 has aredt?

. 1
FromO to ¢, base=t and height= 61 and area= Et(6t).

[Most shapes are more difficult! Area comes from integratig or s(x)]
Method 3 (fundamental) Add up short time steps each at constant speed
In a stepAt, the distance is close tqz*) At

t* is the starting time for that step an¢ *) is the starting speed

This is not exact because the speed changes a little withindime

The total distance becomes exactas— 0 andsum — integral

Picture of each step shows a tall thin rectangle

s(y) = ot s(t*)At = height times base
= area of rectangle
t* = start point of the time step
o At

Sum ofs(¢*)At = total area of all rectangles
Now At — 0 The rectangles fill up the triangle

Integral ofs(¢) dt = exact areay(¢) under the graph
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Fundamental TheoremArea y(¢) has the desired derivativgr)

ReasonAy is the thin area undelt) betweerr andr + At

S

At is the base of that thin “rectangle”

% isthe height of that thin “rectangle”

At

This heightAy /At approaches(t) as the basar — 0

Practice Questions

1. What functiong(¢) have the constant derivatiyé€) =7 ?

2. What is the area froiato ¢ under the graph of(r) =7?

2
3. Fromt =0to 2, find the integraU, 7dt =
0

4. What functiony () has the derivative(z) =7+ 6t ?

2
5. Fromt =0to 2, find area= integralj (7+61)dt.
0

. . d(are
6. At this instant =2, what is ( ; 6)?

7. From0 to ¢, the area under the curye=e’ IS NOT y = ¢’
If ¢ is small, the area must be small. The wrong answés not small !
8. From0 to ¢, the correct area under=e’ isy = e’ —1.

The slope‘;—); is and now the starting areg0) is

9. Same for sums. Noticg in (y1 —yo) + (y2—y1)+ (3 —y2) = .

A
The sum ofAy = A—fAt becomes the integral oi%dt

The area unders(¢) from 0 to ¢ becomesy (¢) — y (0).

27
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Derivative of the Sine and Cosine

: d . d .
This lecture shows tha{-}— (sin x) =cosx and—(cosx) = —sinx
x dx
We have to measure the angién radians 2 radians= full 360 degrees

All the way around the circle2¢r radians) Length =2z when the radius is 1
Part way around the circle (radians) Length = x when the radius is 1

slopel atx =0

+1 Slope cost
y=sinx
atx=0 slopel =cos0
0 | | | X

‘ atx=n/2 dope0=cosz/2
4 /2 ”W” atx=n  sope—1=cosx
—1

+1
Ry = CcoSsx / Slope —sinx
0 ; s x atx=0 dope=0=—sin0
n/ T 27 .
\/ atx=nx/2 dope—1=-sinx/2
atx=m dope=0=—sinx

A sin Ax)—sinx . _ ( Ax)? —x?
Problem: =2 — (x+4x) Y isnotas simple a x+Ax) —x
Ax Ax Ax
. A sn A
Good ideato startat=0 Show =2 — ad
Ax Ax
Draw a right triangle with anglé x to seesin Ax < Ax

approaches 1

straight piece
curved arc straight length =sin Ax
curved length = Ax

straight piece is shortegt

sin Ax

IDEA <1and S'ZAX

. SinAx
> cosAx will squeeze—A —1asAx—0
X X X

snA
To prove ol

> cosAx whichis tanAx > Ax Go to a bigger triangle

. 1
Triangle area = 5(1)(tan Ax) greater than

A 1
Circular area = (—x) (whole circle)= = (Ax)
2 2

Full angle2s
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sin Ax
t approaches 1
Ax

Ax
< 1 tells us tha

sin
The squeeze casx <

sinAx)? 1 —cosA
((Ai)xz) <1 means(Aix)(l +COSAx) < Ax
X X

1—cosA .
So —Ar * 0 Cosine curve has slope=0
X

For the slope at otherx remember a formula from trigonometry:

sin(x + Ax) =sinx cosAx +cosx Sin Ax

We wantAy =sin(x + Ax) —sinx Divide that byAx

A _ CosAx —1 sin A
_yz(smx)(ix)+(coszc)( A x) Now let Ax — 0
X

Ax Ax
) . I .
In the limit d_y = (sin x)(0) + (cosx)(1) = cosx = Derivative of sinx
X
- d .
For y = cosx the formula for coéx + Ax) leads similarly tod—y =-—sinx
X

Practice Questions
1. What is the slope of =sinx atx =7 and atx =27 ?
2. What is the slope of =cosx atx =z/2 andx =37n/2?

3. The slope ofsinx)? is 2sinx cosx. The slope ofcosx)? is —2 cosx Sin x.
Combined, the slope d@&in x)? + (cosx)? is zero. Why is this true ?

4. What is thesecond derivative of y = sin x (derivative of the derivative) ?

5. At what anglex doesy = sinx + cosx have zero slope ?

6. Here are amazing infinite series for simnd cosx. e’* = cosx +i sinx
X x3 x>
sinx = — — — odd powers of
¥T1 7320 T 542 (oddp )

x? x4

cosx = 1 — — _ = .. even powers af
* 21 T isaa (evenp )

7. Take the derivative of the sine series to see the cosine series.
8. Take the derivative of the cosine series tormgsus the sine series.

9. Those series tell us that for small angks x ~ x and cosx %l—%xz.
With these approximations check tlfsin x)? + (cosx)? is close tol.
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Product and Quotient Rules

Goal To find the derivative oy = f(x)g(x) from Z—f and Z—g
X X

Idea Write Ay = f(x+ Ax)g(x+ Ax) — f(x)g(x) by separating\ f andAg
Thatsame\y is f(x+ Ax)[g(x+Ax) —g(x)]+g(x) [f(x + Ax) — f(x)]

Ay Ag Af dy dg
— = Ax)== —. ProductRule —= = =
A f(x+Ax) Ax +g(x) Ax roduct Rule I f(x)dx +g(x)

af
dx

. d .
Example y=x2sinx Product Ruled—y =x2 cosx +2x sinx
X

A picture shows the two unshaded piece\of= f(x + Ax)Ag+g(x)Af

Ag —toparea=(f(x)+Af)Ag

g(x) «—side area=g(x)Af

f(x) Af

Example  f(x)=x" gx)=x y=f(x)g(x)=x"*!
dy L, dx dx"
Product Rule Ix X Ix +Xx I

The correct derivative af” leads to the correct derivative of !

=x"4+xnx""'=m+1)x"

- _ SO e af 48 /,2
Quotient Rule If y = () then Ir = (g(x) Ix f(x) dx)/g

EXAMPLE —
dx \ cosx

d (snx
X

) = (cosx(cosx) —sinx(—sin x))/ cos? x

=sec?x  (Notice(cosx)? +(sinx)2=1)

This says thatd— tanx =
dx cos?x

EXAMPLE — =
x8 x

dx
. _J+Ax)  fx) _ f+Af f
Prove the Quotient Rule Ay = CG Ay ) s+As g

s +Af)—flg+Ag) _gAf —fAg
g(g+Ag) g(g+Ag)
Now divide thatAy by Ax  As Ax — 0 we have the Quotient Rule

d (1 4times0— 1 times4x?® —4 .
(—4) =2 v This isnx™ 1
X

Write thisAy as
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Practice Questions

1. Product Rule: Find the derivative of= (x3)(x*). Simplify and explain.
2. Product Rule: Find the derivative of= (x2)(x~2). Simplify and explain.

: . o cos
3. Quotient Rule: Find the derivative pf= sinx

) sin .
4. Quotient Rule: Show that = 'Y has a maximum (zero slope) at=0.
X

. . L sin
5. Product and Quotient! Find the derivativeyot XCOS x.
X

d’g

- d
6. g(x) has a minimum whelcuﬁ =0and —>
dx dx?

>0 The graph is bending up

1 . . dy d?y
y = —— has amaximunat that point: Show that— =0 and — <0
g(x) dx dx?

Chain Rule for the Slope of f'(g(x))

y=g(x) z=f(y) — thechainis z= f(g(x))
y=x> z=y* — thechainis z = (x)*=x?°

A A A
Average slope 22 _(22)(22) aust cancelAy
AXx Ay Ax
d dz d . .
Instant slope 4z _ 228 _ cHAIN RULE (like cancellingdy)
dx dydx

You MUST changey to g(x) in the final answer

d d
Example of chain  z = y* = (x°)* az _ 4y3 4y _
dy dx

. dz  (dz\(dy\ . 5 coa a0 3.4
Chain rule P (dy) (dx) = (4y°)(5x%) =20y°>x

5x4

Replacey by x> to get onlyx Z—Z =20(x%)3x*=20x"1°
X

d
CHECK z=(x%)*=x2° does have d—z —20x19
X

. d . d
1. Find i for z = cos(4x) Write y = 4x andz = cosy so—Z =
dx dx

- d _ d
2. Find & forz = (1+4x)? Write y = 1 +4x andz = y? s0f =
dx dx

d
CHECK (14+4x)2 =1+ 8x +16x2 sod—Z -
X
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Practice Questions

3. Find Z—h for h(x) = (sin3x)(cos3x)
X

Productrule first ~ Then the Chain rule for each factor

dh . d d .
— = (sin 3x) —(cos3x) + (cos3x)—(sin 3x)
dx dx dx

= (sin3x)(CHAIN) + (cos3x)(CHAIN) = ?

4. Tough challenge: Find theecond derivativeof z (x) = f(g(x))

FIRST dz _ (dz\ (dy Function of y (x)
DERIV dx \dy ) \dx times function ofx

PRODUCT  d% _ (d=\ d (dr  (dv)d (dz
RULE dx2  \dy) dx \dx dx ) dx \dy

SECOND dz\ (d?*y dy\ (d?z\ (dy\ dy .
— =1+l )l )l5) - twice
DERIV dy dx? dx dy? dx dx

2
Checky =x° z=y*=x%° d—Z =20x1° d—Z =380x!8
dx dx?
SEER/ND (4y3)(20x3) + (5x*)(12y?)(5x*) 80 +300 =380 OK

Inverse Functions and Logarithms

A function assigns anutput y = f(x) to eachinput x
A one-to-one function has different outpytgor different inputsx

For theinverse functionthe input isy and the output is = £ ~1(y)
Example Ify = f(x)=x>thenx=f"1(y)= y%
-b . .

= inverse function

a
Notice thate = f =1 (f(x)) andy = £ (/' (»))
Thechain rule will connect the derivatives of ~! and f

KEY If y=ax+b then solve forx = Y

The great function of calculus = e*

Its inverse function is th&natural logarithm” x =Iny
Remember that isthe exponentiry = e*

The rulee*eX = e*+X tells us thatn(yY) =Iny +InY
Add logarithms because you add exponeimté2e3) =5
(e¥)" = e™* (multiply exponent) tells us than (y”) =niny
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We can change from basdo basel0: New functiony = 10*

The inverse function is the logarithm to bage Call it log: x =log y

1
Thenlogl00=2 and Iogﬁ:—z and logl=0

d 1
We will soon find the beautiful derivative of jn d—(ln y)=—
y y

. d 1
You can change letters to write thatg&(lnx) =—
X X

Practice Questions

. Whatisx = f~1(y) if y =50x?
. Whatisx = f~1(y) if y =x*? Why do we keep >0?

. Draw a graph of an increasing functipr= f(x). This has different outputs

for differentx. Flip the graph (switch the axes) to sea = £ ~1(y)

. This graph has the sanyefrom two x’s. There is no f ~1(y)

y X

Jf(x)

X y
f (x) is NOT one-to-one f~1(y) is NOT a function

o N o v

. The natural logarithm of = 1/e is In(e~!) = ? What is Ir{\/e) ?

The natural logarithm of = 1isIn1 =7 and also base 10 has lbg- ?

. The natural logarithm af?)>° is ? The bas0 logarithm of(10%)°? is ?

. | believe thatln y = (In10)(log y) because we can writg¢ in two ways
y=eNY and alsoy = 10109Y = ((IN10)(109y) ' Explain those last steps.

. Change from base and basd 0 to base 2 Now y =2* meansx =log, y.

What are log 32 and log, 2 ? Why is log,(e) > 1 ?

33
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Growth Rates and Log Graphs

In order of fast growth as gets large

log x x,x2% x3 2%, e*,10* x!,x*

logarithmic polynomial exponential factorial

X

Choosex = 1000 = 103 so that logt =3 OK to usex!~ x—x
e

log1000=3 103,105,10° 10300 10434 101000 (2566 13000

Why is 10001000 = 103000 7

Logarithms are best for big numbers

Logarithms are exponents! log 10° =9

Logarithms 3,6,9

300,434,1000

log log x is VERY slow
25663000

Polynomial growth Exponential growth« Factorial growth

Decay to zero for NEGATIVE powers and exponents

1 1
— = x~2 decays much more slowly than the exponentiak= e~ *
X e

Logarithmic scale shows = 1, 10, 100 equally spaced. NO ZERO!

-3 -2 -1 0 1 2 3 log x

X

1/1000 1/100 1/10 1 f 10 100 1000
logv/10=1

Question If x =1,2,4,8 are plotted, what would you see ?
Answer THEY ARE EQUALLY SPACED TOO!

log-log graphs(log scale up and also across)
If y = Ax", how to seed andn on the graph ?
Plot log y versus logy to get a straight line

logy =logA +rlogx  Slope on alog-log graph is the exponent

logy =1.5logx
y=x15
logA=0
; logx
—1 1
A=1 n=15 slopen =1.5

Fory = Ab* use semilog(x versus log is now a line) logy =log A+ xlog b
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. . A d
New type of question  How quickly doesA—f aoproachd—f asAx—07?
X X

A df . .
The errorE = —f — —f willbe E ~ A(Ax)" Whatisn ?
Ax dx

A _
Usual one-sidedAff = SO+ 4%) — i) only hasn =1
AXx Ax
Ax)— —-A
Centered differencaf(x-’_ X;A S x) hasn =2
X

Centered is much better than one-sided E ~ (Ax)? VSE ~ Ax

IDEA FOR f(x)=e* | One-sidedE vs centered
PROJECT atr=0 Graph logE vs logAx Should see sloptor2

Practice Questions

1. Doesx!'% grow faster or slower thas® asx gets large ?
2. Doesl00 Inx grow faster or slower than asx gets large ?

3. Put these in increasing order for large
10"
n!

1
—, nlogn, n'!,
n

4, Put these in increasing order for large

1 1
X2 xl1o0

5. Describe the log-log graph of= 10x> (graph logy vs logx)
Why don’t we seey =0 at x =0 on this graph ?

What is the slope of the straight line on the log-log graph ?
The line crosses the verticalaxiswhes= ~~ andy=__
Thenlogx=0andlogy=

The line crosses the horizontal axis whesa: andy =1

Then logx = and logy =0
6. Draw the semilog graph (a line) of=10¢* (graph logy versusx)

7. Thatline cross the = 0 axis at which logy ? What is the slope ?
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Linear Approximation and Newton’s Method

Start atx = a with known f'(a) = height andf’(a) = slope
f(x)—f(a)
X —a

KEY IDEA f'(a) ~ whenx is neara

Tangent line has slopé’(a) f) /
Solve for f(x) fla) /*

fx)~ f@)+(x—a)f'(a)

~ means “approximately”
curvex line nearx =a

Examples of linear approximation t6(x)

1. f(x)=e* f(0)=e’=1andf’(0)=e"=1are known atz =0
Follow the tangentline e*~1+(x—0)1=1+x

1+ x is the linear part of the series fer

2. f(x)=x"Yandf’(x)=10x°> f(1)=1andf’(1)=10known ata = 1
Follow the tangentling'® ~ 14 (x —1)10 nearx =1

Takex =1.1 (1.1)!° is approximatelyl +1=2

Newton’s Method (looking forx to nearly solvef(x) = 0)
Go back tof”(a) ~ f®-j/@
X—d

f(a) and f'(a) are again known

f(x)
exactx
Solve forx when f(x) =0 a v
f(@)
—a~— @ Newton x Newton.x
Line crossing near curve crossing
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Examples of Newton’s Method  Solv&(x) =x2—1.2=0
l.a=1lgvesf(a)=1-12=—-2andf'(a)=2a =2
(=2

Tangentline hit® at x — 1 = = Newton’s x will be 1.1

2. For a bettex, Newton starts again from that point=1.1
Now f(a)=1.12—12=.01 and f'(a)=2a=2.2

. .01 . .
The new tangent line has— 1.1 = ~35 For thisx, x2 is very close td .2

Practice Questions
1. The graphof = f(a)+ (x —a) f'(a) is a straight
At x =a the heightisy=
At x =a theslopeisly/dx=
Thisgraphist  ttothe graph off(x) atx =a

For f(x) = x? at a = 3 this linear approximation is =

2. y=f(a)+(x—a)f'(a) hasy =0whenx —a =

Instead of the curve/(x) crossing), Newton has tangent ling crossing)

f(x)=x3—8.12ata=2hasf(a)=  andf'(a)=3a®=
Newton’s method gives —2 = — ]{,((il)) =

This Newtonx = 2.01 nearly hasc3 = 8.12. It actually hag2.01)3 =

Differential Equations of Growth

d .
& _ cy Complete solution y(r) = Ae’ forany 4

dt
Starting fromy (0) y(t) = y(0)e®’ A=y (0)
Now include a constant source tesm  This gives a new equation

d . . . . .
d_)t; =cy+s s>0issaving,s <0is spendingcy is interest

Complete solution y(¢) = 2 + Ae! (any A gives a solution)
c
: . . d
y= —2 isa constant solution withy +s =0 andd—f =0andA=0
c
For that solution, the spendingexactly balances the income

Choosed to start fromy(0) att =0 y(¢) = iy (y 0) + i) et
Cc 4
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Now add a nonlinear termw? coming from competition

P(t) = world population at time (for example) follows a new equation

dpP . .
YTl ¢P —sP? ¢ = birth rate minus death rate

“LOGISTIC EQN” P? since each person competes with each person

. . . 1
To bring back a linear equation set= —

P/dt —cP +sP?
d_y:_d [di _ (b s )——i—i-s:—cy—i-s

Then = =
dt P2 P2 P

y =1/ P produced our linear equation (nd) with —c not+c
N S N . .
y()=—+Ae ' =—+ (y(O) — —) e~ ¢! = old solution with change te-c
C C C
At t =0 we correctly gey(0) CORRECT START
Ast — oo ande ¢! — 0 we gety(o0) = 2 and P(0) = ¢
c N

The populationP(¢) increases along a$i-curve approachingE
N

+ Population P(t)

c/s

I

c/2s approaching c/s

T Time t

point of symmetry

0

P = 2i has P” =0 Inflection point Bending changes from up to down
S

d*pP d dp c
CHECK ——=—(cP—sP?)=(c—2sP)— =0aP=—
dr?2  dt (cP=sP?)=(e=2s )dz 2s

World population approaches the linit~ 12 billion (FOR THIS MODELY)
N

Population nows 7 billion  Try Google for “World population”
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Practice Questions

d . . . . .
d_)t) = cy —s hass = spending rate not savings rate (with minus sign)

Lo d
1. The constant solution is= Whend—J; =0

In that case interest income balances spending: s

2. The complete solution ig(¢) = ) + Ae’. Why is A = y(0) — 2o
c c
3. If you start withy (0) > 2 why does wealth approach ?
Cc

If you start withy (0) < 2 why does wealth approachoo ?
Cc

.od .
4. The complete solution t% =sisy(t)=st+A4

What solutiony (¢) starts fromy(0) at =0 ?

dpP 2 1 . dy
5. If 7 —sP*andy = 7 explain whyz =
Pure competition. Show tha® (r) — 0 ast — o

dP 4 . . 1
6. If I ¢P —sP*? find a linear equation foy = rs

Differential Equations of Motion

A differential equation fory (¢) can involvedy /dt and alsad?y /dt?

Here are examples with solutions” and D can be any numbers

d?y d?y ) _y=C cost + D sint
arz - Y andﬁ =—w"y Solutions y=C coswt + D sinwt
Now includedy/dt and look for a solution method
d?y dy . dy
—— 4+2r—+ky=0has adamping terr —. Try y =e?!
md[2+rd[+y ping rd[ yy=e

Substitutinge* gives  mA2e* +2rder + ke =0
Cancele’ to leave the key equation far mA2+4+2rA+k =0

—r+~Nr2—km
m

The quadratic formula gives =

The differential equation is solved byy = Ce*1* 4+ De*2?

Special case? =km hasA; =X, Thenr entersy = Cet1? + Dtett?

Two solutionsi; andA,
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d?y dy
EXAMPLE 1 —+6E+8y:0 m=1and2r =6 andk =8
—r+r2—k Ay=-2
Al A= ! ! m|s 3+49—8 Then ,11 4
2=

Solution y=Ce~2*+De~%"  Overdamping with no oscillation

A1=-34+1i
EXAMPLE2 Changetk =10 A=-3++9-10 has Al 3+f
2=—-3—-1

Oscillationsfrom the imaginary partof ~ Decayfrom the real part-3

Solutlon y=CeM! 4 Det2t = Ce(3+D 4 pe(-3-01
=cost +i sint leads toy = (C + D)e 3 cost + (C — D)e 3 sint

EXAMPLE 3 Changetdk =9 Now A = —3,-3 (repeated root)

Solution  y =Ce~ 4 Dte—3! includes the factor

Practice Questions

2

d . .
1. Ford—t; =4y find two solutionsy = Ce? 4 Deb?. What arez andb ?

d? i . . .
2. Ford—i = —4y find two solutionsy = C cosw? + D sinwt. What isw ?

2

d
3. Ford—ti =0y find two solutionsy = Ce® and (???)

d?y _dy
4. Puty =’ into Zﬁ +3d— +y=0 tofindA; andA, (real numbers)

d?y dy
+5—+3y 0to find A, andA, (complexnumbers)

5. Puty = e* into2—=
y=e FTERRT,

d*>y _dy
6. Puty =e* into — 72 +2d— +y=0tofind A; and\, (equal numbers)

Now y = Ce*1! + DteM1?. The factor appears whei; = A,
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Power Series and Euler's Formula

At x =0, thenth derivative ofx” is the numben! Other derivatives ar8.

Multiply the nth derivatives off(x) by x” /n! to match function with series

2 n
eres S0 = SO+ S OF + 11O+t OO

EXAMPLE1  f(x)=e* All derivatives=1atx=0 Match withx"/n!

2 n

i X X X
Taylor Series ex:1+1T+17+,..+1_'+...
n:

Exponential Series —

EXAMPLE2 f=sinx f’'=cosx f"=-—sinx f"”=-cosx
Atx=0thisis0 1 0 —1 0 1 0 -1 REPEAT

x3 x>

sinx=1§—1§+1§—--- ODD POWERS sif—x) = —sinx

EXAMPLE3 f=cosxproducess 0 —1 0 1 0 —1 0 REPEAT

x? x4 d .
cosx=1-1—+1——---| EVEN POWERS —(cosx) = —sinx
2! 41 dx
Imaginary i?=—1andthen3=—i Find the exponentiale®*

) 1 1
ix — | : —(iv)2 —(iv)3
¢ T 2!(lx) + 3!(lx) + Those are

2 3 ..
. X . X COSx +1 Sinx

EULER’S GREAT FORMULA ¢'* =cosx +i sinx

ising e

¢'? =cosh +isind

el 4 Real €'?+e ' =2cosh

cosf Part  ,im — _1 combinest great number

Two more examples of Power Series (Taylor Seriesffor))

1 . .
f(x)= == I+x+x24+x3+.--  “Geometric series”
—X

2 3 4

)

f(x)=—In(l—-x)= ? + % + % + XT +---  “Integral of geometric series’
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Summary: Six Functions, Six Rules, Six Theorems

Integrals Six Functions Derivatives

X"t/ (m+1), n#—1 x" nx"1
—CO0SXx sinx COSXx

sinx cosx —sinx
ecx/c er CeL‘X
xInx—x Inx 1/x

Ramp function Step function Delta function
1 —
Infinite spike
X has area= 1

Six Rules of Differential Calculus

df  dg

1. The derivative ofaf (x) +bg(x) is ad— +bd Sum
X
2. The derivative off (x)g(x) is f(x)—+ (x )df Product
3. The derivative ot% is ( ﬁ —fdg)/ Quotient
g(x
4. The derivative off (g(x)) is d_fd_y wherey = g(x) Chain
o 1 . dx 1
5. The derivative ofc = f = (y) is — = Inverse

dy dy/dx
6. When f(x) -0 andg(x) -0 as x —a, what aboutf(x)/g(x)? [I'Hopital

4
f(x) =lim df/dx if these limits exist. Normally this ,J(_
g(x) dg/dx g'(a)

Fundamental Theorem of Calculus

If f(x) :J s(t)dt thenderivative of integral = Z—f =s5(x)
a X
df _ - b
If i s(x) thenintegral of derivative = f s(x)dx = f(b)— f(a)
X a
Both parts assume thatx) is a continuous function.

All Values Theorem Suppose f(x) is a continuous function for < x <b.
Then on that intervalf(x) reaches its maximum valud and its minimurn.
And f(x) takes all values betweem and M (there are no jumps).
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Mean Value Theorem If f(x) has a derivative fon < x <b then

f)—f(a) = ﬂ(c) at somec betweeru andb
b—a dx

“At some moment, instant speee- average speed”

Taylor Series Match all the derivativeg’ ™ = d"f/dx" at the basepoint = a
1
fx)=fla)+ f'(a) (x—a)+ Ef"(a)(x—a)z-F"'
=Y @ G-
n.
n=0

Stopping ai(x —a)” leaves the errof "1 (c) (x —a)" ' /(n +1)!
[c is somewhere betweenand x] [z = 0 is the Mean Value Theorem]

. 1
The Taylor series looks best aroume= 0 f(x) =) — F™(0) x™
n!

n=0
Binomial Theorem shows Pascal’s triangle

(14+x) 1+ 1x
(14x)? 14 2x + 1x?
(1+x)3 14 3x 4 3x% + 13
(1+x)*  14+4x+6x2+43+ 14

Those are just the Taylor series f(x) = (1 +x)” whenp=1,2,3,4

FO@= A+07 p+077" p(p—D(1+x)72 -
fmo)= 1 p p(p—1)

Divide by n! to find the Taylor coefficients- Binomial coefficients

p(p—1)---(p—n+1)  p! (p)

1w — _
n!f )= nn—1)---(1) C(p—n)ln! \n

The series stops att whenp =n Infinite series for othep

pp=1) , pPP=D(pP=2) 5

Every(1+x)? =1+ px+ o) 3@
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1.

2.

What ramp functionf (x) hasj—F =S8(x)? F istheintegral ofS.
X

ds
Why is the derivative— =2 delta(x) ? (Infinite spike ak = 0 with area2)
X

Practice Questions
Check that the derivative gf=xInx —x isdy/dx =Inx.

1 forx>0

The “sign function” isS(x) =
9 (x) { —1 forx<O

d
. : L 2x+3x?
3. ('Hdpital) What is the limit ofori)C asx —07? What about — o0 ?
5x +7x2
4. I'Hopital's Rule says that Ii()n& =?? when £(0) = 0. Hereg(x) = x.
X—> X

5. Derivative is like Difference Integral is like Sum

Difference of sums  Iff, =5y +s2+---+s,, Whatisf, — f,_1?

Sums of differences  What g1 — fo)+ (fa— fi)+- -+ (fu — fa—1) ?

Those are th&€undamental Theoremsof “Difference Calculus”
6. Draw a non-continuous graph for< x <1 where your function does NOT

reach its maximum value.

. o 5—fA d
7. For f(x) = x2, which in-between point g|ves% = d—f(c) ?
— X

8. If your average speed on the Mass Pike7i then at some instant you

speedometer will read .
9. Find three Taylor coefficientd, B, C for /1 + x (aroundx = 0).

(1+x)2 =A+Bx+Cx>+---
. . . _ 1
10. Find the Taylor£ Binomial) series forf = Tox aroundx =0 (p =—1).
X

=
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I 0.5 Graphs and Graphing Calculators | IS

This book started with the sentencedl@ulus is about functions When these
functions are given by formulas like = x +x2, we now know a formula for the
slope (and even the slope of the slope). When we only have a rough graph of the
function, we can’t expect more than a rough graph of the slope. But graphs are very
valuable in applications of calculus!

From a graph of (x), this section extracts the basic information about the growth
rate (the slope) and the minimymaximum and the bending (and area too). A
big part of that information is contained &plus or minus signls y(x) increasing ?

Is its slope increasing? Is the area under its graph increasing? In each case some
number is greater than zero. The three numberg/ay@x andd?y/dx? andy(x)
itself.

When one of those numbersdgactly zerave always have a special situation. It is
a good thing that mathematics invented zero, we need it.

This section is organized by two themes:

(1) Graphs that are drawn without a formula fpfx). From that graph you can
draw other graphs—the slope /dx, the second derivativé?y /dx?, the area
A(x) under the graph.

You can also identify where those functions are positive or negative—and
especially the points wheegy /dx or d?y/dx? or y(x) is zera

(2) Graphs that are drawn by a calculator or computer. Now there is a formula for
y(x). The display allows us to guess rules for derivatives:

Chain Rule Inverse Rule I'Hépital's Rule

These rules come into later chapters of the book. They are also explained in
Highlights of Calculusthe video lectures that are available to everyone. One
specific goal is to see how the derivative2dfis proportional t@2*.

This section was much improved by ideas that were offered by Benjamin Goldstein.

GRAPH WITHOUT FORMULAS

y(x)
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. Suppose this is the graph of some functiax)

a. At what value(s) ok doesy(x) have a local minimum ?
b. At what value(s) of doesy(x) have a local maximum ?
c. At what value(s) of doesy(x) have an inflection point? (Estimate.)

. Let's change the problem. Suppose this is the grapthygtix, the derivative
of y(x). Answer the following questions aboufx), the original function.
a. At what value(s) ok doesy(x) have a local minimum ?
b. At what value(s) ok doesy(x) have a local maximum ?
c. At what value(s) of doesy(x) have an inflection point?

. One more variation. Suppose this is the graph of the second derigativel x>
(slope of the slope). If any of these questions can’t be answered, explain why.

a. Atwhat value(s) ok doesy(x) have a local minimum ?
b. At what value(s) of doesy(x) have a local maximum ?

c. At what value(s) ok doesy(x) have an inflection point ?

. Answer the same 9 questions for this second graph.

5. The following table shows the velocity of a car at selected times.

time 0 5 10 15 20 25 30 35

velocity 45 40 30 40 45 40 30 25

a. Was there any time when the car was moving with acceleration
d?y/dt*=07? Justify your answer.

b. If y(¢) represents the car’s position as a function of time, was there ever
a time whend3y/dt3 =07? Justify your answer. The third derivative is
sometimes referred to agetk’ because it indicates the jerkiness of the
motion. This isimportantto roller-coaster designers.

¢. What assumptions have you made abquj and (more importantlydy/dt
in your answers to parts (a) and (b) ? Are the assumptions reasonable ?
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THE CHAIN RULE ON A CALCULATOR

a. Onyour calculator, graph,¥= sin(X) and its slope ¥ = nDeriv(Y 1, X, X). Make
sure you are in radian mode, and select the trigonometric viewing window.
1. What function does Yappear to be ?

2. Change Y to Y; =sin(2X). Now what function does Y appear to be?
Check your guess by graphing the true derivative.

3. Finally, change Yto Y; =sin(3X). What does ¥ appear to be this time ?
4. Conjecture: Ik is some constant, then the derivative of(&in) is
b. Those functions arehains(also calledcompositions They can be written in the

formY = f(g(x)). For sin(kx) the outer function isf(x) = and the inner
functionisg(x) =

¢. So far the inner functiorg(x) has been linear, but it doesn’'t have to be. Let

Y =sin(y/x).
. dYy
ConJecture:d— = wheng(x) = +/x.
X

Check your conjecture by graphirfgand comparing to the graph of the numerical
derivative.

d. Now we generalize. Supposg(x) is any function. If y =sin(g(x)), then
dy/dx =

e. Thereis nothing magical about the sine function. Whenever we have a composition
of an outer and an inner function, the chain rule applies. Predict the following
derivatives and check by graphing the numerical derivative on your calculator.

1. y=02x+4)3 dy/dx = 2. y=co¢ x = (cosx)?; dy/dx =
3. y=cos(x?); dy/dx = 4. y=[sin(x2+1)]?; dy/dx =

COMPUTING IN CALCULUS

Software is available for calculus courses—a lot of it. Thekpges keep getting

better. Which program to use (if any) depends on cost and convenience and purpose.

Howto use it is a much harder question. These pages identify some of the goals. Our
aim is to support, with examples, the effort to use computing to help learning.

For calculusthe greatest advantage of the computer is to offer graphi¥su
see the function, not just the formula. As you wat¢l{x) reaches a maximum or
a minimum or zero. A separate graph shows its derivative. Those statements are not
100% true, as everybody learns right away—as soon as a few functions are typed in.
But the power tsee this subjeés enormous, because it is adjustable. If we don't like
the picture we change to a new viewing window.

This is computer-based graphics. It combinamerical computation withgraph-
ical computation. You get pictures as well as numbers—a powerful combination. The
computer offers the experience of actually working with a function. The domain and
range are not just abstract ideasu choose thenMay | give a few examples.

a7
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EXAMPLE 1 Certainlyx3equals3* whenx =3.Do those graphs ever meet again
At this point we don’t know the full meaning 6f, except whenx is a nice number.
(Neither does the computer.) Checkingrat2 and4, the functionx? is smaller both
times: 23 is below3? and43=64 is below3*=81. If x3 is always less tha@* we
ought to know—these are among the basic functions of mathematics.

The computer will answer numerically or graphically. At our command, it solves
x3=3%. At another command, it plots both functions—this shows more. The screen
proves a point of logic (or mathematics) that escaped us. If the graphs cross once, they
must cross again—becaudeis higher a2 and4. A crossing point neat.5 is seen
by zooming in. | am less interested in the exact number than its position—it comes
beforex =3 rather than after.

A few conclusions from such a basic example:

1. A supercomputer is not necessary.
2. High-level programming is not necessary.
3. We can do mathematics without completely understanding it.

The third point doesn’t sound so good.Write it differentie can learn mathematics
while doing it. The hardest part of teaching calculus is to turn it from a spectator
sport into a workout. The computer makes that possible.

EXAMPLE 2 (mental computer) Compan€ with 2*. The functions meet at=2.
Where do they meet again? Is it before or aftér

That is mental computing because the answer happens to be a whole number (4). Now

we are on a different track. Does an accident like-42 ever happen again ? Can the

machine tell us about integers? Perhaps it can plot the solutiarfs=eb*. | asked

Mathematicdor a formula, hoping to discoveras a function ob—but the program

just gave back the equation. For once the machine typed HELP instead of the user.
Well, mathematics is not helpless. | am proud of calculus. There is a new exercise

at the end of Sectio6.4, to show that we never see whole numbers again.

EXAMPLE 3  Find the numbeb for which x? =b* has onlyonesolution (atx =b).

Whenb is 3, the second solution is belogv Whenb is 2, the second solutio#) is
above2. If we moveb from 2 to 3, there must be a special “double point"—where
the graphs barely touch but don’t cross. For that partickHamnd only for that one
value—the curver® never goes above®.

This special poinb can be found with computer-based graphics. In many ways
it is the “center point of calculus Since the curves touch but don'’t cross, they are
tangent. They have the same slope at the double point. Calculus was created to work
with slopes, and we already know the slopexdf Soon comes?. Eventually we
discover the slope df*, and identify the most important number in calculus.

The point is that this number can be discovered first by experiment.

EXAMPLE 4 Graphy(x) =e* —x*. Locate its minimum. Zoom in near=e.

From the derivatives of* andx®, show thatdy /dx =0 atx =e.
If you try, you can also find the next derivative?y/dx?. Can you see why
d?y/dx*>>0atx=e?
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The next example was proposed by Don Small. Sefve 11x3+5x —2=0. The
first tool is algebra—try to factor the polynomial. That succeeds for quadratics, and
then gets extremely hard. Even if the computer can do algebra better than we can,
factoring is seldom the way to go. In reality we have two good choices:

1. (Mathematicd Use the derivative. Solve by Newton’s method.
2. (Graphicg Plot the function and zoom.n

Both will be done by the computer. Both have potential problexestton’s method
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is also
fast—Dbut solutions can be outside the viewing window. This particular functionis zero
only once, in the standard window from10 to 10. The graph seems to be leaving
zero, but mathematics again predicts a second crossing point. So we zoom out before
we zoom in.

The use of the zoom is the best part of graphimgpt only do wechoosdhe domain
and range, wehangethem. The viewing window is controlled by four numbers.
They can be the limitgl < x < B andC < y < D. They can be the coordinates of two
opposite cornerg:4,C) and(B, D). They can be the center positigm, ») and the
scale factorg andd. Clicking on opposite corners of the zoom box is the fastest
way, unless the center is unchanged and we only need to give scale factors. (Even
faster: Use the default factors.) Sectidd discusses theentering transformand
zoom transform—a change of picture on the screen and a change of variable within
the function.

EXAMPLE 5 Find all real solutions ta* — 11x3 +5x —2=0.

EXAMPLE 6 Zoom out and in on the graphs of=cos40x andy = x sin(1/x).
Describe what you see.

EXAMPLE 7 What doesy = (tanx —sinx)/x3 approach atc=0? For smallx
the machine eventually can’t separate fafrom sinx. It may give y =0. Can you
get close enough to see the limitpasx —»07?

SYMBOLIC COMPUTATION

In symbolic computation, answers can foemulasas well as numbers and graphs.
The derivative ofy =x? is seen as “2& The derivative of sim is “cost.” The slope

of b* is known to the program. The computer does more than substitute numbers into
formulas—it operates directly on the formulas. We need to think where this fits with
learning calculus.

In a way, symbolic computing is close to what we ourselves do. Maybe too close—
there is some danger that symbolic manipulatioaliswve do. With a higher-level
language and enough power, a computer can print the derivative(@fsirbo why
learn the chain rule ? Because mathematics goes deeper than “algebra with formulas.”
We deal withideas

| want to say clearly:Mathematics is not formulas or computatis or even proofs,
but ideas The symbols and pictures are the language. The book and the professor and
the computer can join in teaching it. The computer should be non-threatening (like
this book and your professor)—you can work at your own pace. Your part is to learn
by doing.
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EXAMPLE 8 A computer algebra system quickly find$0 factorial. This is
100!=(100)(99)(98)...(1). The number ha$58 digits (not written out here). The
last 24 digits are zeros. Fot0!=3628800 there are seven digits and two zeros.
Betweenl 0 and100, and beyond, are simple questions that need ideas:

1. How many digits (approximately) are in the numéy?
2. How many zeros (exactly) are at the end\of?

For Questionl, the computer shows more tha¥ digits when N =100. It will
never show more thaw? digits, because none of thé terms can have more than
N digits. A much tighter bound would b2V, but is it true ?Does N always have
fewer than 2N digits ?

For Questior?, the zeros inl0! can be explained. One comes frd@, the other
from 5 times2. (10 is also5 times2.) Can you explain the4 zeros in100! ? An idea
from the card game blackjack applies here Gount the fives

Hard question: How many zeros at the en@d! ?

Writing in Calculus  May | emphasize the importance of writing ? We totally miss

it, when the answer is just a number. A one-page report is harder on instructors as
well as students—but much more valuable. You can’t write sentences without being
forced to organize ideas—and part of yourself goes into it.

I will propose a writing exercise with options. If you have computer-based
graphing, follow through on Examplds-4 above and report. Without a computer,
pick a paragraph from this book that should be clearemaakie it clearerRewrite it
with examples. Identify the key idea at the start, explain it, and come back to express
it differently at the end. Ideas are like surfaces—they can be seen many ways.

Mathematics can be learned kglking and writing—it is a human activity. Our
goal is not to test but to teach and learn.
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