
CHAPTER 1

Introduction to Calculus

1.1 Velocity and Distance

The right way to begin a calculus book is with calculus. This chapter will jump
directly into the two problems that the subject was invented to solve. You will see
what the questions are, and you will see an important part of the answer. There are
plenty of good things left for the other chapters, so why not get started ?

The book begins with an example that is familiar to everybody who drives a car. It is
calculus in action—the driver sees it happening. The example is the relation between
the speedometerand theodometer. One measures the speed (orvelocity); the other
measures thedistance traveled. We will write v for the velocity, andf for how far
the car has gone. The two instruments sit together on the dashboard:

Fig. 1.1 Velocityv and total distancef (at one instant of time).

Notice that the units of measurement are different forv andf: The distancef is
measured in kilometers or miles (it is easier to say miles). The velocityv is measured
in km=hr or miles per hour. A unit of time enters the velocity but not the distance.
Every formula to computev from f will havef divided by time.

The central question of calculus is the relation betweenv and f:
51



52 1 Introduction to Calculus

Can you findv if you knowf; and vice versa, and how ? If we know the velocity over
the whole history of the car, we should be able to compute the total distance traveled.
In other words, if the speedometer record is complete but the odometer is missing,
its information could be recovered. One way to do it (without calculus) is to put in
a new odometer and drive the car all over again at the right speeds. That seems like
a hard way; calculus may be easier. But the point is thatthe information is there.
If we know everything aboutv; there must be a method to findf:

What happens in the opposite direction, whenf is known? If you have a complete
record of distance, could you recover the complete velocity ? In principle you could
drive the car, repeat the history, and read off the speed. Again there must be a better
way.

The whole subject of calculus is built on the relation betweenv andf: The question
we are raising here is not some kind of joke, after which the book will get serious
and the mathematics will get started. On the contrary,I am serious now—and the
mathematics has already started. We need to know how to find the velocity from a
record of the distance. (That is calleddifferentiation, and it is the central idea of
differential calculus.) We also want to compute the distance from a history of the
velocity. (That isintegration, and it is the goal ofintegral calculus.)

Differentiation goes fromf to v; integration goes fromv to f: We look first at
examples in which these pairs can be computed and understood.

CONSTANT VELOCITY

Suppose the velocity is fixed atvD 60 (miles per hour). Thenf increases at this
constant rate. After two hours the distance isf D 120 (miles). After four hours
f D 240 and aftert hoursf D 60t: We say thatf increaseslinearly with time—
its graph is a straight line.

Fig. 1.2 Constant velocityvD 60 and linearly increasing distancef D 60t:

Notice that this example starts the car at full velocity. No time is spent picking up
speed. (The velocity is a “step function.”) Notice also that the distance starts at zero;
the car is new. Those decisions make the graphs ofv andf as neat as possible. One is
the horizontal linevD 60: The other is the sloping linef D 60t: Thisv, f; t relation
needs algebra but not calculus:

If v is constant andf starts at zero thenf D vt:

The opposite is also true. Whenf increases linearly,v is constant.The division by
time gives the slope. The distance isf1 D 120 miles when the time ist1 D 2 hours.
Laterf2 D 240 miles att2 D 4 hours. At both points, the ratiof=t is 60 miles=hour.
Geometrically,the velocity is the slope of the distance graph:

slopeD
change in distance

change in time
D
vt

t
D v:
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Fig. 1.3 Straight linesf D 20C60t (slope60) andf D�30t (slope�30).
The slope of thef -graph gives thev-graph. Figure 1.3 shows two more possibilities:

1. The distance starts at20 instead of0: The distance formula changes from60t
to 20C60t: The number20 cancels when we computechangein distance—so
the slope is still60:

2. Whenv is negative, the graph off goesdownward. The car goes backward
and the slope off D�30t is vD�30:

I don’t think speedometers go below zero. But driving backwards, it’s not that safe
to watch. If you go fast enough, Toyota says they measure “absolute values”—the
speedometer readsC30 when the velocity is�30: For the odometer, as far as I know
it just stops. It should go backward.�

VELOCITY vs. DISTANCE: SLOPE vs. AREA

How do you computef from v ? The point of the question is to seef D vt on the
graphs. We want to start with the graph ofv and discover the graph off: Amazingly,
the opposite of slope isarea.

The distancef is the area under thev-graph. Whenv is constant, the region
under the graph is a rectangle. Its height isv, its width is t , and its area isv timest:
This is integration, to go fromv to f by computing the area. We are glimpsing two
of the central facts of calculus.

1A The slope of thef-graph gives the velocityv. The area under thev-graph
gives the distancef.

That is certainly not obvious, and I hesitated a long time before I wrote it down in
this first section. The best way to understand it is to look first at more examples. The
whole point of calculus is to deal with velocities that arenot constant, and from now
onv has several values.

EXAMPLE (Forward and back) There is a motion that you will understand right
away. The car goes forward with velocityV; and comes back at the same speed. To
say it more correctly, thevelocity in the second part is�V: If the forward part lasts
until t D 3, and the backward part continues tot D 6, the car will come back where it
started. The total distance after both parts will bef D 0:

�This actually happened inFerris Bueller’s Day Off, when the hero borrowed his father’s
sports car and ran up the mileage. At home he raised the car and drove in reverse. I forget if
it worked.
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Fig. 1.4 VelocitiesCV and�V gives motion forward and back, ending atf .6/D 0:

Thev-graph shows velocitiesCV and�V: The distance starts up with slopeCV

and reachesf D 3V: Then the car starts backward. The distance goes down with
slope�V and returns tof D 0 at t D 6:

Notice what that means. The total area “under” thev-graph is zero! A negative
velocity makes the distance graph godownward(negative slope). The car is moving
backward.Area below the axis in thev-graph is counted as negative.

FUNCTIONS

This forward-back example gives practice with a crucially important idea—the
concept of a “function.” We seize this golden opportunity to explain functions:

The numberv.t/ is the value of the functionv at the timet .

The timet is the input to the function. The velocityv.t/ at that time is theoutput.
Most people say “v of t” when they readv.t/: The number “v of 2” is the velocity
when t D 2: The forward-back example hasv.2/D CV andv.4/D�V: The func-
tion contains the whole history, like a memory bank that has a record ofv at eacht:

It is simple to convert forward-back motion into a formula. Here isv.t/:

v.t/D

$'&'% CV if 0  t   3
‹ if t D 3�V if 3  t   6

The right side contains the instructions for findingv.t/: The inputt is converted into
the outputCV or �V: The velocityv.t/ depends ont: In this case the function is
“discontinuous,” because the needle jumps att D 3: The velocity is not defined at that
instant. There is nov.3/: (You might argue thatv is zero at the jump, but that leads
to trouble.) The graph off has a corner, and we can’t give its slope.

The problem also involves a second function, namely the distance. The principle
behindf .t/ is the same:f .t/ is the distance at timet: It is the net distance forward,
and again the instructions change att D 3: In the forward motion,f .t/ equalsV t as
before. In the backward half, a calculation is built into the formula forf .t/:

f .t/D

#
V t if 0¤ t ¤ 3
V.6� t/ if 3¤ t ¤ 6

At the switching time the right side gives two instructions (one on each line). This
would be bad except that they agree:f .3/D 3V:� The distance function is “continu-
ous.” There is no jump inf; even when there is a jump inv: After t D 3 the distance
decreases because of�V t: At t D 6 the second instruction correctly givesf .6/D 0:

�A function is only allowedone valuef .t/ or v.t/ at each timet:
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Notice something more. The functions were given by graphs before they were given
by formulas. The graphs tell youf andv at every timet—sometimes more clearly
than the formulas. The valuesf .t/ andv.t/ can also be given by tables or equations
or a set of instructions. (In some way all functions are instructions—the function tells
how to findf at timet:) Part of knowingf is knowing all its inputs and outputs—its
domainandrange:

The domain of a function is the set of inputs. The range is the setof outputs.

The domain off consists of all times0¤ t ¤ 6: The range consists of all distances
0¤ f .t/¤ 3V: (The range ofv contains only the two velocitiesCV and �V:)
We mention now, and repeat later, that every “linear” function has a formula
f .t/D vtCC: Its graph is a line andv is the slope. The constantC moves the line
up and down. It adjusts the line to go through any desired starting point.

SUMMARY: MORE ABOUT FUNCTIONS

May I collect together the ideas brought out by this example ? Wehad two functions
v andf: One wasvelocity, the other wasdistance. Each function had adomain, and
a range, and most important agraph. For thef -graph we studied the slope (which
agreed withv). For thev-graph we studied the area (which agreed withf ). Calculus
produces functions in pairs, and the best thing a book can do early is to show you
more of them.

in
the

domain

$&% input t Ñ function f Ñ outputf .t/
input 2 Ñ function v Ñ outputv.2/
input 7 Ñ f .t/D 2tC6 Ñ f .7/D 20

,.- in
the

range

Note about the definition of a function.The idea behind the symbolf .t/ is
absolutely crucial to mathematics. Words don’t do it justice! By definition, a function
is a “rule” that assigns one member of the range to each member of the domain. Or,
a function is a set of pairs.t;f .t// with no t appearing twice. (These are “ordered
pairs” because we writet beforef .t/:) Both of those definitions are correct—but
somehow they are too passive.

In practice what matters is the active part. The numberf .t/ is produced from the
numbert: We read a graph, plug into a formula, solve an equation, run a computer
program. The inputt is “mapped” to the outputf .t/, which changes ast changes.
Calculus is about therate of change. This rate is our other functionv:

Fig. 1.5 Subtracting2 from f affects the range. Subtracting 2 fromt affects the domain.
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It is quite hard at the beginning, and not automatic, to see the difference between
f .t/�2 andf .t�2/: Those are both new functions, created out of the originalf .t/:

In f .t/�2, we subtract2 from all the distances. That moves the whole graphdown.
In f .t�2/, we subtract2 from the time. That moves the graph overto the right.
Figure 1.5 shows both movements, starting fromf .t/D 2tC1: The formula to find
f .t�2/ is 2.t�2/C1, which is2t�3:

A graphing calculator also moves the graph, when you change the viewing window.
You can pick any rectangleA¤ t ¤B;C ¤ f .t/¤D: The screen shows that part of
the graph. But on the calculator,the functionf .t/ remains the same. It is the axes that
get renumbered. In our figures the axes stay the same and the function is changed.

There are two more basic ways to change a function. (We are always creating new
functions—that is what mathematics is all about.) Instead of subtracting or adding,
we canmultiply the distance by2: Figure 1.6 shows2f .t/: And instead of shifting
the time, we canspeed it up. The function becomesf .2t/: Everything happens twice
as fast (and takes half as long). On the calculator those changes correspond to a “zoom”
—on thef axis or thet axis. We soon come back to zooms.

Fig. 1.6 Doubling the distance or speeding up the time doubles the slope.

1.1 EXERCISES

Each section of the book contains read-through questions.
They allow you to outline the section yourself—more actively
than reading a summary. This is probably the best way to
remember the important ideas.

Starting fromf .0/D 0 at constant velocityv, the distance func-
tion isf .t/D a . Whenf .t/D 55t the velocity isvD b .
Whenf .t/D 55tC1000 the velocity is still c and the starting
value isf .0/D d . In each casev is the e of the graph of
f: When f is negative, the graph of g goes downward. In
that case area in thev-graph counts as h .

Forward motion fromf .0/D 0 to f .2/D 10 hasvD i .Then
backward motion tof .4/D 0 hasvD j . The distance function
is f .t/D 5t for 0¤ t ¤ 2 and thenf .t/D k (not�5t). The
slopes are l and m . The distancef .3/D n . The area

under thev-graph up to time1:5 is o . The domain off is the
time interval p , and the range is the distance intervalq .
The range ofv.t/ is only r .

The value off .t/D 3tC1 at t D 2 is f .2/D s . The value
19 equalsf ( t ). The differencef .4/�f .1/D u . That
is the change in distance, when4�1 is the change in v .
The ratio of those changes equalsw , which is the x of the
graph. The formula forf .t/C2 is 3tC3 whereasf .tC2/ equals

y . Those functions have the same z as f W the graph
of f .t/C2 is shifted A andf .tC2/ is shifted B . The
formula forf .5t/ is C . The formula for5f .t/ is D . The
slope has jumped from3 to E .
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The set of inputs to a function is its F . The set of outputs
is its G . The functionsf .t/D 7C3.t �2/ andf .t/D vtCC

are H . Their graphs are I with slopes equal to J and
K . They are the same function, ifvD L andC D M .

Draw the velocity graph that goes with each distance graph.

1

2

3 Write down three-part formulas for the velocitiesv.t/ in
Problem2; starting fromv.t/D 2 for 0  t   10:
4 The distance in1b starts with f .t/D 10�10t for 0¤ t ¤ 1:

Give a formula for the second part.

5 In the middle of graph2a find f .15/ andf .12/ andf .t/:

6 In graph2b findf .1:4T /: If T D 3 what isf .4/?

7 Find theaverage speedbetween t D 0 and t D 5 in graph1a.
What is the speed att D 5?

8 What is the average speed betweent D 0 andt D 2 in graph1b ?
The average speed is zero betweent D 1

2 and t D :

9 (recommended) A car goes at speedvD 20 into a brick wall at
distancef D 4: Give two-part formulas forv.t/ andf .t/ (before
and after), and draw the graphs.

10 Draw any reasonable graphs ofv.t/ andf .t/ when

(a) the driver backs up, stops to shift gear, then goes fast;
(b) the driver slows to55 for a police car;

(c) in a rough gear change, the car accelerates in jumps;

(d) the driver waits for a light that turns green.

11 Your bank account earns simple interest on the opening
balancef .0/: What are the interest rates per year ?

12 The earth’s population is growing atvD 100 million a year,
starting fromf D 5:2 billion in 1990: Graphf .t/ and findf .2000/:

Draw the distance graph that goes with each velocity graph.
Start from f D 0 at t D 0 and mark the distance.

13

14

15 Write down formulas forv.t/ in Problem14; starting with
vD�40 for 0  t   1: Find the average velocities tot D 2:5 and
t D 3T:

16 Give3-part formulas for the areasf .t/ underv.t/ in 13:

17 The distance in14a starts withf .t/D�40t for 0¤ t ¤ 1: Find
f .t/ in the other part, which passes throughf D 0 at t D 2:

18 Draw the velocity and distance graphs ifv.t/D 8 for 0  t   2,
f .t/D 20C t for 2¤ t ¤ 3:
19 Draw rough graphs of yD

?
x and yD

?
x�4 and

yD
?
x�4: They are “half-parabolas” with infinite slope at the

start.

20 What is the break-even point ifx yearbooks cost $1;200C30x

to produce and the income is40x ? The slope of the cost line is
(cost per additional book). If it goes above you can’t

break even.

21 What are the domains and ranges of the distance functions in
14a and14b—all values oft andf .t/ if f .0/D 0 ?

22 What is the range ofv.t/ in 14b ? Why is t D 1 not in the
domain ofv.t/ in 14a ?

Problems 23–28 involvelinear functions f .t/D vtCC: Find
the constantsv andC:

23 What linear function hasf .0/D 3 andf .2/D�11 ?

24 Find two linear functions whose domain is0¤ t ¤ 2 and whose
range is1¤f .t/¤ 9:
25 Find the linear function withf .1/D 4 and slope6:

26 What functions havef .tC1/D f .t/C2 ?

27 Find the linear function with f .tC2/D f .t/C6 and
f .1/D 10:

28 Find the onlyf D vt that hasf .2t/D 4f .t/: Show that every
f D 1

2at
2 has this property. To go times as far in twice the

time, you must accelerate.
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29 Sketch the graph off .t/D |5�2t | (absolute value) for|t |¤ 2
and find its slopes and range.

30 Sketch the graph off .t/D 4� t�|4� t | for 2¤ t ¤ 5 and find
its slope and range.

31 SupposevD 8 up to timeT , and after thatvD�2:Starting from
zero, when doesf return to zero ? Give formulas forv.t/ andf .t/:

32 SupposevD 3 up to timeT D 4:What new velocity will lead to
f .7/D 30 if f .0/D 0 ? Give formulas forv.t/ andf .t/:

33 What function F(C) converts Celsius temperature C to
Fahrenheit temperature F ? The slope is , which is the
number of Fahrenheit degrees equivalent to1�C.

34 What function C(F) converts Fahrenheit to Celsius (or
Centigrade), and what is its slope ?

35 What function converts the weightw in grams to the weight
f .w/ in kilograms ? Interpret the slope off .w/:

36 (Newspaper of March1989) Ten hours after the accident the al-
cohol reading was:061: Blood alcohol is eliminated at:015 per hour.
What was the reading at the time of the accident ? How much later
would it drop to:04 (the maximum set by the Coast Guard) ? The
usual limit on drivers is:10 percent.

Which points betweent D 0 and t D 5 can be in the domain of
f .t/? With this domain find the range in 37–42.

37 f .t/D
?
t�1

39 f .t/D |t�4| (absolute value)

41 f .t/D 2t

38 f .t/D 1=
?
t�1

40 f .t/D 1=.t�4/2
42 f .t/D 2�t

43 (a) Draw the graph off .t/D 1
2 tC3 with domain0¤ t ¤ 2:

Then give a formula and graph for

(b) f .t/C1

(d) 4f .t/

(c) f .tC1/

(e) f .4t/:

44 (a) Draw the graph ofU.t/D step functionD t0 for t   0;
1 for t ¥ 0u: Then draw

(b) U.t/C2

(d) 3U.t/

(c) U.tC2/

(e) U.3t/:

45 (a) Draw the graph off .t/D tC1 for �1¤ t ¤ 1: Find the
domain, range, slope, and formula for

(b) 2f .t/ (c) f .t�3/ (d) �f .t/ (e) f .�t/:
46 If f .t/D t�1 what are2f .3t/ andf .1� t/ andf .t�1/ ?

47 In the forward-back example (Figure 1.4) findf
�

1
2T
�

and
f
�

3
2T
�

: Verify that those agree with the areas “under” thev-graph.

48 Find formulas for the outputsf1.t/ andf2.t/ which come from
the inputt :

(1) insideD input �3
outputD inside C3

(2) inside� input C6

output� inside�3
Note BASIC and FORTRAN (and calculus itself) useD in-
stead of� : But the symbol� or ´ is in some ways better. The
instructiont� tC6 produces a newt equal to the oldt plus six.
The equationt D tC6 is not intended.

49 Your computer can add and multiply. Starting with the number
1 andthe input calledt , give a list of instructions to lead to these
outputs:

f1.t/D t2 C t f2.t/Df1.f1.t// f3.t/Df1.tC1/:

50 In fifty words or less explain what afunction is.

The last questions are challenging but possible.

51 If f .t/D 3t�1 for 0¤ t ¤ 2 give formulas (with domain) and
find the slopes of these six functions:

(a) f .tC2/

(d) f .2t/

(b) f .t/C2

(e) f .�t/ (c) 2f .t/

(f) f .f .t//:

52 Forf .t/D vtCC find the formulas and slopes of

(a) 3f .t/C1

(d) f .�t/ (b) f .3tC1/

(e) f .t/�f .0/ (c) 2f .4t/

(f) f .f .t//:

53 (hardest) The forward-back function isf .t/D 2t for
0¤ t ¤ 3; f .t/D 12�2t for 3¤ t ¤ 6: Graphf .f .t// and find its
four-part formula. First tryt D 1:5 and3:

54 (a) Why is the letterX not the graph of a function ?

(b) Which capital letters are the graphs of functions ?

(c) Draw graphs of their slopes.
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1.2 Calculus Without Limits

The next page is going to reveal one of the key ideas behind calculus. The discussion is
just about numbers—functions and slopes can wait. The numbers are not even special,
they can be any numbers. The crucial point is to look at their differences:

Suppose the numbers aref D 0 2 6 7 4 9

Their differences arevD 2 4 1 �3 5

The differences are printed in between, to show2�0D 2 and 6�2D 4 and
7�6D 1: Notice how4�7 gives a negative answer�3: The numbers inf can go
up or down, the differences inv can be positive or negative. The idea behind calculus
comes when youadd up those differences:

2C4C1�3C5D 9

The sum of differences is9: This is the last number on the top line (inf ). Is this an
accident, or is this always true ? If we stop earlier, after2C4C1, we get the7 in f:
Test any prediction on a second example:

Suppose the numbers aref D 1 3 7 8 5 10

Their differences arevD 2 4 1 �3 5

Thef ’s are increased by1: The differences are exactly the same—no change. The
sum of differences is still9: But the lastf is now10: That prediction is not right, we
don’t always get the lastf:

The firstf is now1: The answer9 (the sum of differences) is10�1, the lastf
minus the firstf: What happens when we change thef ’s in the middle ?

Suppose the numbers aref D 1 5 12 7 10

Their differences arevD 4 7 �5 3

The differences add to4C7�5C3D 9: This is still 10�1: No matter whatf ’s we
choose or how many, the sum of differences is controlled by the firstf and lastf:
If this is always true, there must be a clear reason whythe middlef ’s cancel out.

The sum of differences is.5�1/C.12�5/C.7�12/C.10�7/D 10�1:
The5’s cancel, the12’s cancel, and the7’s cancel. It is only10�1 that doesn’t cancel.
This is the key to calculus!

1B The differences of thef ’s add up to (flast�ffirst).

EXAMPLE 1 The numbers grow linearly:f D 2 3 4 5 6 7

Their differences are constant:vD 1 1 1 1 1

The sum of differences is certainly5: This agrees with7�2Dflast�ffirst: The
numbers inv remind us of constant velocity. The numbers inf remind us of a straight
line f D vtCC: This example hasvD 1 and thef ’s start at2: The straight line
would come fromf D tC2:

EXAMPLE 2 The numbers are squares:f D 0 1 4 9 16

Their differences grow linearly:vD 1 3 5 7

1C3C5C7 agrees with42 D 16: It is a beautiful fact that the firstj odd numbers
always add up toj 2: Thev’s are the odd numbers, thef ’s are perfect squares.
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Note The letterj is sometimes useful to tell which number inf we are looking at.
For this example the zeroth number isf0 D 0 and thej th number isfj D j 2: This is a
part of algebra, to give a formula for thef ’s instead of a list of numbers. We can also
usej to tell which difference we are looking at. The firstv is the first odd number
v1 D 1: Thej th difference is thej th odd numbervj D 2j �1: (Thusv4 is 8�1D 7:)
It is better to start the differences withj D 1, since there is no zeroth odd numberv0:

With this notation thej th difference isvj Dfj �fj�1: Sooner or later you will
get comfortable with subscripts likej andj �1, but it can be later. The important
point is that the sum of thev’s equalsflast�ffirst: We now connect thev’s to slopes
and thef ’s to areas.

Fig. 1.7 Linear increase invD 1;3;5;7: Squares in the distancesf D 0;1;4;9;16:

Figure 1.7 shows a natural way to graph Example 2, with the odd numbers inv and
the squares inf: Notice an important difference between thev-graph and thef-graph.
The graphoff is “piecewise linear.” We plotted the numbers inf and connected them
by straight lines. The graph ofv is “piecewise constant.” We plotted the differences
as constant over each piece. This reminds us of the distance-velocity graphs, when
the distancef .t/ is a straight line and the velocityv.t/ is a horizontal line.

Now make the connection to slopes:

The slope of thef -graph is
distance up

distance across
D

change inf

change int
D v:

Over each piece, the change int (across) is1: The change inf (upward) is the
difference that we are callingv: The ratio is the slopev=1 or justv: The slope makes
a sudden change at the breakpointst D 1;2;3; : : :. At those special points the slope
of thef -graph is not defined—we connected thev’s by vertical lines but this is very
debatable.The main idea is that between the breakpoints, the slope off .t/ is v.t/.

Now make the connection to areas:

The total area under thev-graph isflast�ffirst:

This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle is1: The heights of the rectangles are thev’s. So the areas also
equal thev’s, and the total area is the sum of thev’s. This area isflast�ffirst:

Even more is true. We could start at any time and end at any later time—
not necessarily at the special timest D 0;1;2;3;4: Suppose we stop att D 3:5: Only
half of the last rectangular area (undervD 7) will be counted. The total area is
1C3C5C 1

2
.7/D 12:5: This still agrees withflast�ffirst D 12:5�0: At this

new ending timet D 3:5, we are only halfway up the last step in thef -graph. Halfway
between9 and16 is 12:5:
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1C Thev’s are slopes off .t/: The area under thev-graph isf .tend/�f .tstart/:

This is nothing less than the Fundamental Theorem of Calculus. But we have only
used algebra (no curved graphs and no calculations involving limits). For now the
Theorem is restricted to piecewise linearf .t/ and piecewise constantv.t/: In
Chapter5 that restriction will be overcome.

Notice that a proof of1C3C5C7D 42 is suggested by Figure 1.7a. The triangle
under the dotted line has the same area as the four rectangles under the staircase. The
area of the triangle is1

2
�base�heightD 1

2
�4 �8, which is the perfect square42: When

there arej rectangles instead of4, we get1
2
�j �2j D j 2 for the area.

The next examples show other patterns, wheref andv increase exponentially or
oscillate around zero. I hope you like them but I don’t think you have to learn them.
They are like the special functions2t and sint and cost—except they go in steps.
You get a first look at the important functions of calculus, but you only need algebra.
Calculus is needed for a steadily changing velocity, when the graph off is curved.

The last example will beincome tax—which really does go in steps. Then
Section1:3 will introduce the slope of a curve. The crucial step for curves is working
with limits. That will take us from algebra to calculus.

EXPONENTIAL VELOCITY AND DISTANCE

Start with the numbersf D 1;2;4;8;16: These are “powers of2:” They start with the
zeroth power, which is20 D 1: The exponential starts at1 and not0. After j steps
there arej factors of2, andfj equals2j : Please recognize the difference between
2j andj 2 and2j . The numbers2j grow linearly, the numbersj 2 grow quadratically,
the numbers2j grow exponentially. Atj D 10 these are20 and100 and1024: The
exponential2j quickly becomes much larger than the others.

The differences off D 1;2;4;8;16 are exactlyvD 1;2;4;8: We get the same
beautiful numbers.When thef ’s are powers of2; so are thev’s. The formula
vj D 2j�1 is slightly different fromfj D 2j , because the firstv is numberedv1: (Then
v1 D 20 D 1: The zeroth power of every number is1, except that00 is meaningless.)
The two graphs in Figure 1.8 use the same numbers but they look different, because
f is piecewise linear andv is piecewise constant.

Fig. 1.8 The velocity and distance grow exponentially (powers of2).

Where will calculus come in ? It works with the smooth curvef .t/D 2t : This
exponential growth is critically important for population and money in a bank and the
national debt. You can spot it by the following test:v.t/ is proportional tof .t/:
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Remark The function 2t is trickier thant2: For f D t2 the slope isvD 2t: It is
proportional tot and nott2: For f D 2t the slope isvD c2t , and we won’t find the
constantcD :693 : : : until Chapter6: (The numberc is the natural logarithm of2:)
Problem37 estimatesc with a calculator—the important thing is that it’s constant.

OSCILLATING VELOCITY AND DISTANCE

We have seen a forward-back motion, velocityV followed by�V: That is oscillation
of the simplest kind. The graph off goes linearly up and linearly down. Figure 1.9
shows another oscillation that returns to zero, but the path is more interesting.

The numbers inf are now0;1;1;0;�1;�1;0: Sincef6 D 0 the motion brings us
back to the start. The whole oscillation can be repeated.

The differences inv are1;0;�1;�1;0;1: They add up to zero, which agrees with
flast�ffirst: It is the same oscillation as inf (and also repeatable), but shifted in time.

Thef -graph resembles (roughly) asine curve. Thev-graph resembles (even more
roughly) acosine curve. The waveforms in nature are smooth curves, while these are
“digitized”—the way a digital watch goes forward in jumps. You recognize that the
change from analog to digital brought the computer revolution. The same revolution
is coming in CD players. Digital signals (off or on,0 or 1) seem to win every time.

The piecewisev andf start again att D 6: The ordinary sine and cosine repeat at
t D 2�: A repeating motion isperiodic—here the “period” is6 or 2�: (With t in
degrees the period is360—a full circle. The period becomes2� when angles are mea-
sured inradians. We virtually always use radians—which are degrees times2�=360:)
A watch has a period of12 hours. If the dial showsAM andPM, the period is :

Fig. 1.9 Piecewise constant “cosine” and piecewise linear “sine.” Theyboth repeat.

A SHORT BURST OF SPEED

The next example is a car that is driven fast for a short time. The speed isV until the
distance reachesf D 1, when the car suddenly stops. The graph off goes up linearly
with slopeV , and then across with slope zero:

v.t/D

#
V up to t DT

0 after t DT
f .t/D

"
V t up to t DT

1 after t DT

This is another example of “function notation.” Notice the general timet and the
particular stopping timeT: The distance isf .t/: The domain off (the inputs)
includes all timest ¥ 0: The range off (the outputs) includes all distances0¤ f ¤ 1:

Figure 1.10 allows us to compare three cars—a Jeep and a Corvette and a Maserati.
They have different speeds but they all reachf D 1: So the areas under thev-graphs
are all1: The rectangles have heightV and baseT D 1=V:
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Fig. 1.10 Bursts of speed withVMTM D VCTC D VJ TJ D 1: Step function has infinite
slope.

Optional remark It is natural to think about faster and faster speeds, which means
steeper slopes. Thef -graph reaches1 in shorter times. The extreme case is astep
function, when the graph off goes straight up. This is the unit stepU.t/, which is
zero up tot D 0 and jumps immediately toU D 1 for t ¡ 0:
What is the slope of the step function ?It is zero except at the jump. At that moment,
which ist D 0, the slope isinfinite. We don’t have an ordinary velocityv.t/—instead
we have an impulse that makes the car jump. The graph is a spike over the single point
t D 0, and it is often denoted byı—so the slope of the step function is called a “delta
function.” The area under the infinite spike is1:

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Our last example is a real-world application of slopes ands rates—to explain “how
taxes work.” Note especially the difference between tax rates and tax brackets and
total tax. The rates arev, the brackets are onx, the total tax isf:

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates:15; :28; :31:

Suppose you are single with taxable income ofx dollars (Form1040; line 37—after
all deductions). These are the1991 instructions from the Internal Revenue Service:

If x is not over $20;350; the tax is15% of x:

If $20;350¤ x¤ $49;300; the tax is $3052:50C28% of the amount over $20;350:

If x is over $49;300; the tax is $11;158:50C31% of the amount over $49;300:

The first bracket is0¤ x¤ $20;350: (The IRS never uses this symbol¤, but I think
it is OK here.We know what it means.)Thesecond bracket is $20;350¤ x¤ $49;300:
The top bracketx¥ $49;300 pays tax at the top rate of31%: But only the incomein
that bracketis taxed at that rate.

Figure 1.11 shows the rates and the brackets and the tax due. Those are notaverage
rates, they aremarginal rates. Total tax divided by total income would be the average
rate. The marginal rate of .28 or :31 gives the tax on eachadditionaldollar of income—
it is the slope at the pointx: Tax is like areaor distance—it adds up.Tax rate is like
slopeor velocity—it depends where you are. This is often unclear in the news media.

Question What is the equation for the straight line in the top bracket ?
Answer The bracket begins atxD $49;300 when the tax isf .x/D $11;158:50:
The slope of the line is the tax rate:31: When we know a point on the line and the
slope, we know the equation. This is important enough to be highlighted.
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Fig. 1.11 The tax rate isv, the total tax isf: Tax brackets end at breakpoints.

1D For x in the top bracket the tax isf .x/D $11;158:50C :31.x�$49;300/:
This is the tax on $49;300 plus the extra tax on extra income.

Section2:3 presents this “point-slope equation” for any straight line. Here you see it
for one specific example. Where does the number $11;158:50come from ? It is the
tax at theendof the middle bracket, so it is the tax at thestart of the top bracket.

Figure 1.11 also shows a distance-velocity example. The distance att D 2 is
f .2/D 40 miles. After that time the velocity is60 miles per hour. So the line with
slope60 on thef -graph has the equation

f .t/D starting distanceC extra distanceD 40C60.t�2/:
The starting point is.2;40/: The new speed60 multiplies the extra timet�2: The
point-slope equation makes sense.We now review this section, with comments.

Central idea Start with any numbers inf: Their differences go inv: Then the sum of
those differences isflast�ffirst:

Subscript notationThe numbers aref0;f1; : : : and the first difference is
v1 Df1�f0: A typical number isfj and thej th difference isvj Dfj �fj�1:When
those differences are added, allf ’s in the middle (likef1) cancel out:

v1 Cv2 C � � �Cvj D .f 1�f 0/C.f 2�f 1/C � � �C.f j �f j�1/D f j �f 0:

Examplesfj D j or j 2 or 2j : Then vj D 1 (constant) or2j �1 (odd numbers)
or 2j�1:

Functions Connect thef ’s to be piecewise linear. Then the slopev is piecewise con-
stant. The area under thev-graph from anytstart to anytend equalsf .tend/�f .tstart/:

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate in
(dollars paid)=(dollars earned). Tax rate is a percentage like:28, with no units.

1.2 EXERCISES

Read-through questions

Start with the numbersf D 1;6;2;5: Their differences are
vD a . The sum of those differences is b . This is equal
to flast minus c . The numbers6 and 2 have no effect on this
answer, because in.6�1/C.2�6/C.5�2/ the numbers6 and2

d . The slope of the line betweenf .0/D 1 and f .1/D 6 is
e . The equation of that line isf .t/D f .

With distances1;5;25 at unit times, the velocities are g .
These are the h of the f -graph. The slope of the tax graph
is the tax i . If f .t/ is the postage cost fort ounces ort
grams, the slope is the j per k . For distances0;1;4;9 the
velocities are l . The sum of the firstj odd numbers is
fj D m . Thenf10 is n and the velocityv10 is o .



1.2 Calculus Without Limits 65

The piecewise linear sine has slopes p . Those form a
piecewise q cosine. Both functions have r equal to 6,
which means thatf .tC6/D s for every t: The velocities
vD 1;2;4;8; : : : have vj D t . In that casef0 D 1 and
fj D u . The sum of1;2;4;8;16 is v . The difference
2j �2j�1 equals w . After a burst of speedV to time T , the
distance is x . If f .T / = 1 andV increases, the burst lasts
only toT D y . WhenV approaches infinity,f .t/ approaches a

z function. The velocities approach a A function, which
is concentrated att D 0 but has area B under its graph. The
slope of a step function is C .

Problems 1–4 are about numbersf and differencesv:

1 From the numbersf D 0;2;7;10 find the differencesv and the
sum of the threev’s. Write down anotherf that leads to the same
v’s. Forf D 0;3;12;10 the sum of thev’s is still :

2 Starting fromf D 1;3;2;4 draw thef -graph (linear pieces) and
the v-graph. What are the areas “under” thev-graph that add to
4�1 ? If the next number inf is 11, what is the area under the
nextv ?

3 FromvD 1;2;1;0;�1 find thef ’s starting atf0 D 3: Graphv
andf: The maximum value off occurs whenvD : Where
is the maximumf whenvD 1;2;1;�1 ?

4 Forf D 1;b;c;7 find the differencesv1;v2;v3 and add them up.
Do the same forf Da;b;c;7: Do the same forf D a;b;c;d:

Problems 5–11 are about linear functions and constant slopes.

5 Write down the slopes of these linear functions:

(a) f .t/D 1:1t (b) f .t/D 1�2t (c) f .t/D 4C5.t �6/:
Compute f .6/ and f .7/ for each function and confirm that
f .7/�f .6/ equals the slope.

6 If f .t/D 5C3.t�1/ andg.t/D 1:5C2:5.t �1/what ish.t/D

f .t/�g.t/? Find the slopes off;g andh:

7 Supposev.t/D 2 for t   5 andv.t/D 3 for t ¡ 5:
(a) If f .0/D 0 find a two-part formula forf .t/:

(b) Check thatf .10/ equals the area under the graph ofv.t/

(two rectangles) up tot D 10:

8 Supposev.t/D 10 for t   1=10;v.t/D 0 for t ¡ 1=10: Starting
from f .0/D 1 find f .t/ in two pieces.

9 Supposeg.t/D 2tC1 and f .t/D 4t: Find g.3/ andf .g.3//
andf .g.t//: How is the slope off .g.t// related to the slopes off
andg ?

10 For the same functions, what aref .3/ and g.f .3// and
g.f .t//? Whent is changed to4t , distance increases times
as fast and the velocity is multiplied by :

11 Compute f .6/ and f .8/ for the functions in Problem5:
Confirm that the slopesv agree with

slopeD
f .8/�f .6/

8�6 D
change inf

change int
:

Problems 12–18 are based on Example 3 about income taxes.

12 What are the income taxes onxD $10;000 and xD $30;000
andxD $50;000 ?

13 What is the equation for income taxf .x/ in the second bracket
$20;350¤x¤$49;300 ? How is the number11;158:50 connected
with the other numbers in the tax instructions ?

14 Write the tax functionF.x/ for a married couple if the IRS treats
them as two single taxpayers each with taxable incomex=2: (This
is not done.)

15 In the 15% bracket, with 5% state tax as a deduction, the
combined rate is not20% but . Think about the tax on an
extra $100:

16 A piecewise linear function iscontinuouswhenf .t/ at the end
of each interval equalsf .t/ at the start of the following interval. If
f .t/D 5t up to t D 1 andv.t/D 2 for t ¡ 1, definef beyondt D 1

so it is (a) continuous (b) discontinuous. (c) Define a tax function
f .x/ with rates:15 and :28 so you would lose by earning an extra
dollar beyond the breakpoint.

17 The difference between a taxcredit and a deduction from
income is the difference betweenf .x/�c andf .x�d/: Which is
more desirable, a credit ofcD $1000 or a deduction ofd D $1000,
and why ? Sketch the tax graphs whenf .x/D :15x:

18 The average tax rate on the taxable incomex is a.x/D f .x/=x:

This is the slope between.0;0/ and the point.x;f .x//: Draw a
rough graph ofa.x/: The average ratea is below the marginal rate
v because :

Problems 19–30 involve numbersf0;f1;f2; : : : and their
differencesvj D fj �fj�1: They give practice with subscripts
0; : : : ;j:

19 Find the velocitiesv1;v2;v3 and formulas forvj andfj :

(a)f D 1;3;5;7; : : : (b) f D 0;1;0;1; : : : (c) f D 0; 1
2 ;

3
4 ;

7
8 ; : : :

20 Findf1;f2;f3 and a formula forfj with f0 D 0:

(a) vD 1;2;4;8; : : : (b) vD�1;1;�1;1; : : :
21 The areas of these nested squares are12;22;32; : : :. What are
the areas of the L-shaped bands (the differences between squares) ?
How does the figure show that1C3C5C7D 42 ?

22 From the area under the staircase (by rectangles and then by
triangles) show that the firstj whole numbers1 to j add up to
1
2j

2 C 1
2j: Find 1C2C � � �C100:
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23 If vD 1;3;5; : : : then fj D j 2: If vD 1;1;1; : : : then
fj D : Add those to find the sum of2;4;6; : : : ;2j: Divide
by 2 to find the sum of1;2;3; : : : ;j: (Compare Problem22:)

24 True (with reason)or false(with example).

(a) When thef ’s are increasing so are thev’s.

(b) When thev’s are increasing so are thef ’s.

(c) When thef ’s are periodic so are thev’s.
(d) When thev’s are periodic so are thef ’s.

25 If f .t/D t2, computef .99/ andf .101/: Between those times,
what is the increase inf divided by the increase int ?

26 If f .t/D t2 C t , computef .99/ and f .101/: Between those
times, what is the increase inf divided by the increase int ?

27 If fj D j 2 Cj C1 find a formula forvj :

28 Suppose thev’s increase by4 at every step. Show by example
and then by algebra that the “second difference”fj C1�2fj C

fj�1 equals4:

29 Supposef0 D 0 and the v’s are 1; 1
2 ;

1
2 ;

1
4 ;

1
4 ;

1
4 ;

1
4 ; : : :. For

whichj doesfj D 5 ?

30 Show that aj D fj C1�2fj Cfj�1 always equals
vj C1�vj : If v is velocity thena stands for :

Problems 31–34 involve periodic f ’s and v’s (like sin t
and cost).

31 For the discrete sinef D 0;1;1;0;�1;�1;0 find the second dif-
ferencesa1 D f2�2f1 Cf0 anda2 D f3�2f2 Cf1 anda3: Com-
pareaj with fj :

32 If the sequencev1;v2; : : : has period6 and w1;w2; : : : has
period10, what is the period ofv1 Cw1;v2 Cw2; : : : ?

33 Draw the graph of f .t/ starting from f0 D 0 when
vD 1;�1;�1;1: If v has period4 find f .12/;f .13/;f .100:1/:

34 Graphf .t/ from f0 D 0 to f4 D 4 whenvD 1;2;1;0: If v has
period 4, find f .12/ and f .14/ andf .16/: Why doesn’tf have
period4 ?

Problems 35–42 are about exponentialv’s andf ’s.

35 Find thev’s for f D 1;3;9;27: Predictv4, andvj :Algebra gives
3j �3j�1 D .3�1/3j�1:

36 Find1C2C4C � � �C32 and also1C 1
2 C 1

4 C � � �C 1
32 :

37 Estimate the slope off .t/D 2t at t D 0: Use a calculator to
compute (increase inf )=(increase int) whent is small:

f .t/�f .0/
t

D
2�1
1

and
2:1�1
:1

and
2:01�1
:01

and
2:001�1
:001

:

38 Supposef0 D 1 and vj D 2fj�1 D vj : Findf4:

39 (a) Fromf D 1; 1
2 ;

1
4 ;

1
8 find v1;v2;v3, and predictvj :

(b) Checkf3�f0 D v1 Cv2 Cv3 andfj �fj�1 D vj :

40 Supposevj D rj : Show that fj D .rj C1�1/=.r�1/ starts
from f0 D 1 and hasfj �fj�1 D vj : (Then this is the correct
fj D 1CrC � � �Crj D sum of a geometric series.)

41 Fromfj D .�1/j computevj : What isv1 Cv2 C � � �Cvj ?

42 Estimate the slope off .t/D et at t D 0: Use a calculator that
knowse (or else takeeD 2:78) to compute

f .t/�f .0/
t

D
e�1
1

and
e:1�1
:1

and
e:01�1
:01

:

Problems 43–47 are aboutU.t/D step from 0 to 1 at t D 0:

43 Graph the four functionsU.t�1/ andU.t/�2 andU.3t/ and
4U.t/: Then graphf .t/D 4U.3t�1/�2:
44 Graph the square waveU.t/�U.t�1/: If this is the velocity
v.t/, graph the distancef .t/: If this is the distancef .t/, graph the
velocity.

45 Two bursts of speed lead to the same distancef D 10:
vD to t D :001 vDV to t D :

AsV Ñ8 the limit of thef .t/’s is :

46 Draw the staircase functionU.t/CU.t�1/CU.t�2/: Its
slope is a sum of three functions.

47 Which capital letters likeL are the graphs of functions when
steps are allowed ? The slope ofL is minus a delta function. Graph
theslopes of the others.

48 Write a subroutine FINDV whose input is a sequence
f0;f1; : : : ;fN and whose output isv1;v2; : : : ;vN : Include
graphical output if possible. Test onfj D 2j andj 2 and2j :

49 Write a subroutine FINDF whose input isv1; : : : ;vN : andf0,
and whose output isf0;f1; : : : ;fN : The default value off0 is zero.
Include graphical output if possible. Testvj D j:

50 If FINDV is applied to the output of FINDF, what sequence
is returned ? If FINDF is applied to the output of FINDV, what
sequence is returned ? Watchf0:

51 Arrange2j and j 2 and2j and
?
j in increasing order

(a) whenj is large:j D 9 (b) whenj is small:j D 1
9 :

52 The average age of your family since1970 is a piecewise linear
functionA.t/: Is it continuous or does it jump ? What is its slope ?
Graph it the best you can.
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1.3 The Velocity at an Instant

We have arrived at the central problems that calculus was invented to solve. There are
two questions, in opposite directions, and I hope you could see them coming.

1. If the velocity is changing,how can you compute the distance traveled?

2. If the graph off .t/ is not a straight line,what is its slope?

Find the distance from the velocity, find the velocity from the distance. Our goal is to
do both—but not in one section. Calculus may be a good course, but it is not magic.
The first step is to let the velocity change in the steadiest possible way.

Question 1 Suppose the velocity at each timet is v.t/D 2t: Findf .t/:

With vD 2t , a physicist would say that the acceleration is constant (it equals2). The
driver steps on the gas, the car accelerates, and the speedometer goes steadily up. The
distance goes up too—faster and faster. If we measuret in seconds andv in feet per
second, the distancef comes out in feet. After10 seconds the speed is20 feet per
second. After44 seconds the speed is88 feet=second (which is60 miles=hour). The
acceleration is clear,but how far has the car gone?

Question 2 The distance traveled by timet is f .t/D t2: Find the velocityv.t/:

The graph off .t/D t2 is on the right of Figure 1.12. It is aparabola. The curve
starts at zero, when the car is new. Att D 5 the distance isf D 25: By t D 10;f

reaches100:
Velocity is distance divided by time, but what happens when the speed is changing?

Dividing f D 100 by t D 10 givesvD 10—the average velocityover the first ten
seconds. Dividingf D 121 by t D 11 gives the average speed over11 seconds. But
how do we find theinstantaneous velocity—the reading on the speedometer at the
exact instant whent D 10?

Fig. 1.12 The velocityvD 2t is linear. The distancef D t2 is quadratic.

I hope you see the problem. As the car goes faster, the graph oft2 gets steeper—
because more distance is covered in each second. The average velocity betweent D 10

andt D 11 is a good approximation—but only an approximation—to the speed at the
momentt D 10: Averages are easy to find:
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distance att D 10 is f .10/D 102 D 100 distance att D 11 is f .11/D 112 D 121

average velocity is
f .11/�f .10/

11�10 D
121�100

1
D 21:

The car covered21 feet in that1 second. Its average speed was21 feet=second. Since
it was gaining speed, the velocity at the beginning of that second was below21:

Geometrically, what is the average ? It is a slope, but not the slope of the curve.
The average velocity is the slope of a straight line. The line goes between two points
on the curve in Figure 1.12. When we compute an average, we pretend the velocity is
constant—so we go back to the easiest case. It only requires a division of distance by
time:

average velocityD
change inf

change int
: (1)

Calculus and the LawYou enter a highway at1 W 00: If you exit 150 miles away at
3 W 00, your average speed is75miles per hour. I’m not sure if the police can give you
a ticket. You could say to the judge, “When was I doing75? ” The police would have
to admit that they have no idea—but they would have a definite feeling that you must
have been doing75 sometime.�

We return to the central problem—computingv.10/ at the instantt D 10: The
average velocity over the next second is21: We can also find the average over the
half-secondbetweent D 10:0 and t D 10:5: Divide the change in distance by the
change in time:

f .10:5/�f .10:0/
10:5�10:0 D

.10:5/2�.10:0/2
:5

D
110:25�100

:5
D 20:5:

That average of20:5 is closer to the speed att D 10: It is still not exact.
The way to findv.10/ is to keep reducing the time interval. This is the basis for

Chapter2; and the key to differential calculus.Find the slope between points that
are closer and closer on the curve. The “limit” is the slope at a single point.

Algebra gives the average velocity betweent D 10 and any later timet D 10Ch:

The distance increases from102 to .10Ch/2: The change in time ish: So divide:

vaverageD
.10Ch/2�102

h
D
100C20hCh2�100

h
D 20Ch: (2)

This formula fits our previous calculations. The interval fromt D 10 to t D 11 had
hD 1, and the average was20ChD 21: When the time step washD 1

2
, the

average was20C 1
2

D 20:5: Over a millionth of a second the average will be20
plus1=1;000;000—which is very near20:

Conclusion: The velocity att D 10 is vD 20. That is the slope of the curve. It
agrees with thev-graph on the left side of Figure 1.12, which also hasv.10/D 20:

�This is our first encounter with the much despised “Mean Value Theorem.” If the judge can
prove the theorem, you are dead. A fewv-graphs andf -graphs will confuse the situation.
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We now show that the two graphs match at all times. Iff .t/D t2 thenv.t/D 2t:

You are seeing the key computation of calculus, and we can put it into words before
equations. Compute the distance at timetCh, subtractthe distance at timet , and
divideby h: That gives the average velocity:

vave D
f .tCh/�f .t/

h
D
.tCh/2� t2

h
D
t2 C2thCh2� t2

h
D 2tCh: (3)

This fits the previous calculation, wheret was10: The average was20Ch: Now the
average is2tCh: It depends on the time steph, because the velocity is changing. But
we can see what happensash approaches zero. The average is closer and closer to
the speedometer reading of2t , at the exact moment when the clock shows timet :

1E Ash approaches zero, the average velocity2tCh approachesv.t/D 2t:

Note The computation (3) shows how calculus needs algebra. If we want the whole
v-graph, we have to let time be a “variable.” It is represented by the lettert: Numbers
are enough at the specific timet D 10 and the specific stephD 1—but algebra gets
beyond that. The average between anyt and anytCh is 2tCh: Please don’t hesitate
to put back numbers for the letters—that checks the algebra.

There is also a step beyond algebra! Calculus requires thelimit of the average.
As h shrinks to zero, the points on the graph come closer. “Average over an interval”
becomes “velocity at an instant.” The general theory of limits is not particularly
simple, but here we don’t need it. (It isn’t particularly hard either.) In this example
the limiting value is easy to identify. The average2tCh approaches2t , ashÑ 0:

What remains to do in this section ? We answered Question2—to find velocity
from distance. We have not answered Question1: If v.t/D 2t increases linearly with
time, what is the distance ? This goes in the opposite direction (it isintegration).

The Fundamental Theorem of Calculus says that no new work is necessary.If the
slope off .t/ leads tov.t/, then the area under thatv-graph leads back to the
f -graph. The odometer readingsf D t2 produced speedometer readingsvD 2t:

By the Fundamental Theorem, the area under2t should bet2: But we have certainly
not proved any fundamental theorems, so it is better to be safe—by actually
computing the area.

Fortunately, it is the area of a triangle. The base of the triangle ist and the height is
vD 2t: The area agrees withf .t/:

areaD 1
2
.base/.height/D 1

2
.t/.2t/D t2: (4)

EXAMPLE 1 The graphs areshifted in time. The car doesn’t start untilt D 1:

ThereforevD 0 andf D 0 up to that time. After the car starts we havevD 2.t�1/
andf D .t�1/2: You see how the time delay of1 enters the formulas. Figure 1.13
shows how it affects the graphs.

EXAMPLE 2 The acceleration changes from2 to another constanta: The velocity
changes fromvD 2t to vD at: The acceleration is the slope of the velocity curve!
The distance is also proportional toa, but notice the factor1

2
:

accelerationa � velocityvD at � distancef D 1
2
at2:

If a equals1, then vD t and f D 1
2
t2: That is one of the most famous pairs in

calculus. Ifa equals the gravitational constantg, thenvDgt is the velocity of a
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Fig. 1.13 Delayed velocity and distance. The pairsvD atCb and f D 1
2at

2 Cbt:

falling body. The speed doesn’t depend on the mass (tested by Galileo at the
Leaning Tower of Pisa). Maybe he saw the distancef D 1

2
gt2 more easily than the

speedvDgt: Anyway, this is the most famous pair in physics.

EXAMPLE 3 Supposef .t/D 3tC t2: The average velocity fromt to tCh is

vaveD
f .tCh/�f .t/

h
D
3.tCh/C.tCh/2�3t� t2

h
:

The change in distance has an extra3h (coming from3.tCh/minus3t). The velocity
contains an additional3 (coming from3h divided byh). When3t is added to the
distance,3 is added to the velocity. If Galileo had thrown a weight instead of dropping
it, the starting velocityv0 would have addedv0t to the distance.

FUNCTIONS ACROSS TIME

The idea of slope is not difficult—for one straight line. Dividethe change inf by
the change int: In Chapter2; divide the change iny by the change inx: Experience
shows that the hard part is to see what happens to the slope as the line moves.

Figure 1.14a shows the line between pointsA andB on the curve. This is a “secant
line.” Its slope is anaveragevelocity. What calculus does is to bring that pointB
down the curve towardA:

Fig. 1.14 Slope of line, slope of curve. Two velocity graphs.Which is which?

Question 1 What happens to the “change inf ”—the height ofB aboveA ?
Answer The change inf decreases to zero. So does the change int:
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Question 2 AsB approachesA, does the slope of the line increase or decrease ?
Answer I am not going to answer that question. It is too important. Draw another
secant line withB closer toA: Compare the slopes.

This question was created by Steve Monk at the University of Washington—where
57% of the class gave the right answer. Probably97% would have found the right
slope from a formula. Figure 1.14b shows the opposite problem. We know the
velocity, not the distance. But calculus answers questions about both functions.

Question 3 Which car is going faster at timet D 3=4?
Answer CarC has higher speed. CarD has greater acceleration.

Question 4 If the cars start together, isD catching up toC at the end ? Between
t D 1

2
and t D 1, do the cars get closer or further apart ?

Answer This time more than half the class got it wrong. You won’t but you can see
why they did. You have to look at the speed graph and imagine the distance graph.
When carC is going faster, the distance between them :

To repeat: The cars start together, but they don’t finish together. They reach the
same speed att D 1, not the same distance. CarC went faster. You really should draw
their distance graphs, to see how they bend.

These problems help to emphasize one more point. Finding the speed (or slope) is
entirely different from finding the distance (or area):

1. To find theslopeof thef -graph at a particular timet , youdon’t have to know
the whole history.

2. To find thearea under thev-graph up to a particular timet , you do have to
know the whole history.

A short record of distance is enough to recoverv.t/: PointB moves toward pointA:
The problem of slope islocal—the speed is completely decided byf .t/ near pointA:

In contrast, a short record of speed isnot enoughto recover the total distance. We
have to know what the mileage was earlier. Otherwise we can only know theincrease
in mileage, not the total.

1.3 EXERCISES

Read-through questions

Between the distancesf .2/D 100 and f .6/D 200, the
average velocity is a . If f .t/D 1

4 t
2 then f .6/D b

and f .8/D c . The average velocity in between is d .
The instantaneous velocities att D 6 and t D 8 are e
and f .

The average velocity is computed fromf .t/ and f .tCh/

by vaveD g . If f .t/D t2 thenvaveD h . From t D 1 to
t D 1:1 the average is i . The instantaneous velocity is the

j of vave: If the distance isf .t/D 1
2at

2 then the velocity is
v.t/D k and the acceleration is l .

On the graph off .t/, the average velocity betweenA andB is the
slope of m . The velocity atA is found by n . The velocity

at B is found by o . When the velocity is positive, the distance
is p . When the velocity is increasing, the car isq .

1 Compute the average velocity betweent D 5 andt D 8:

(a) f .t/D 6t

(c) f .t/D 1
2at

2

(e) f .t/D 6

(b) f .t/D 6tC2

(d) f .t/D t� t2
(f) v.t/D 2t

2 For the same functions computeŒf .tCh/�f .t/�=h: This
depends ont andh: Find the limit ashÑ 0:

3 If the odometer readsf .t/D t2 C t.f in miles or kilometers,t
in hours), find the average speed between

(a) t D 1 and t D 2

(b) t D 1 and t D 1:1
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(c) t D 1 and t D 1Ch

(d) t D 1 and t D :9 (notehD�:1)
4 For the samef .t/D t2 C t , find the average speed between

(a) t D 0 and1 (b) t D 0 and 1
2 (c) t D 0 andh:

5 In the answer to 3(c), find the limit ashÑ 0: What does that
limit tell us ?

6 Set hD 0 in your answer to 4(c). Draw the graph of
f .t/D t2 C t and show its slope att D 0:

7 Draw the graph ofv.t/D 1C2t: From geometry find the area
under it from0 to t: Find the slope of that area functionf .t/:

8 Draw the graphs ofv.t/D 3�2t and the areaf .t/:

9 True or false
(a) If the distancef .t/ is positive, so isv.t/:

(b) If the distancef .t/ is increasing, so isv.t/:

(c) If f .t/ is positive,v.t/ is increasing.
(d) If v.t/ is positive,f .t/ is increasing.

10 If f .t/D 6t2 find the slope of thef -graph and also the
v-graph. The slope of thev-graph is the .

11 If f .t/D t2 what is the average velocity betweent D :9 and
t D 1:1 ? What is the average betweent�h andtCh ?

12 (a) Show that forf .t/D 1
2at

2 the average velocity between
t�h andtCh is exactly the velocity att:

(b) The area underv.t/D at from t�h to tCh is exactly the
base2h times :

13 Find f .t/ from v.t/D 20t if f .0/D 12: Also if f .1/D 12:

14 True or false, for any distance curves.

(a) The slope of the line fromA to B is the average velocity
between those points.

(b) Secant lines have smaller slopes than the curve.

(c) If f .t/ and F.t/ start together and finish together, the
average velocities are equal.

(d) If v.t/ and V.t/ start together and finish together, the
increases in distance are equal.

15 When you jump up and fall back your height isyD 2t� t2 in
the right units.

(a) Graph this parabola and its slope.

(b) Find the time in the air and maximum height.

(c) Prove: Half the time you are aboveyD 3
4 :

Basketball players “hang” in the air partly because of (c).

16 Graphf .t/D t2 andg.t/D f .t/�2 andh.t/D f .2t/, all from
t D 0 to t D 1: Find the velocities.

17 (Recommended) An up and down velocity isv.t/D 2t for t ¤
3;v.t/D 12�2t for t ¥ 3:Draw the piecewise parabolaf .t/:Check
thatf .6/D area under the graph ofv.t/:

18 Supposev.t/D t for t ¤ 2 and v.t/D 2 for t ¥ 2: Draw the
graph off .t/ out tot D 3:

19 Drawf .t/ up to t D 4 whenv.t/ increases linearly from

(a) 0 to 2 (b) �1 to 1 (c) �2 to 0:

20 (Recommended) Supposev.t/ is the piecewise linear sine func-
tion of Section1:2: (In Figure 1.8 it was the distance.) Find the area
underv.t/ betweent D 0 and t D 1;2;3;4;5;6: Plot those points
f .1/; : : : ;f .6/ and draw the complete piecewise parabolaf .t/:

21 Draw the graph off .t/D |1� t2| for 0¤ t ¤ 2: Find a three-
part formula forv.t/:

22 Draw the graphs off .t/ for these velocities (tot D 2):

(a) v.t/D 1� t
(b) v.t/D |1� t |
(c) v.t/D .1� t/C |1� t |:

23 When doesf .t/D t2�3t reach10 ? Find the average velocity
up to that time and the instantaneous velocity at that time.

24 If f .t/D 1
2at

2 CbtCc, what isv.t/ ? What is the slope of
v.t/? When doesf .t/ equal41, if aD bD cD 1?

25 If f .t/D t2 thenv.t/D 2t:Does the speeded-up functionf .4t/
have velocityv.4t/ or 4v.t/ or 4v.4t/ ?

26 If f .t/D t� t2 find v.t/ andf .3t/: Does the slope off .3t/
equalv.3t/ or 3v.t/ or 3v.3t/ ?

27 For f .t/D t2 find vave.t/ between0 and t: Graphvave.t/ and
v.t/:

28 If you know the average velocityvave.t/, how can you find the
distancef .t/? Start fromf .0/D 0:
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1.4 Circular Motion

This section introduces completely new distances and velocities—the sines and
cosines from trigonometry. As I write that last word, I ask myself how much
trigonometry it is essential to know. There will be the basic picture of a right
triangle, with sides cost and sint and 1: There will also be the crucial equation
.cost/2 C.sin t/2 D 1, which is Pythagoras’ lawa2 Cb2 D c2: The squares of two
sides add to the square of the hypotenuse (and the1 is really 12). Nothing else is
needed immediately. If you don’t know trigonometry, don’t stop—an important part
can be learned now.

You will recognize the wavy graphs of the sine and cosine.We intend to find the
slopes of those graphs. That can be done without using the formulas for sin.xCy/

and cos.xCy/—which later give the same slopes in a more algebraic way. Here it is
only basic things that are needed.� And anyway, how complicated can a triangle be ?

Remark You might think trigonometry is only for surveyors and navigators
(people with triangles). Not at all! By far the biggest applications are torotation and
vibration and oscillation. It is fantastic that sines and cosines are so perfect for
“repeating motion”—around a circle or up and down.

Fig. 1.15 Asthe anglet changes, the graphs show the sides of the right triangle.

Our underlying goal is to offer one more example in which the velocity can be
computed by common sense. Calculus is mainly an extension of common sense, but
here that extension is not needed. We will find the slope of the sine curve. The straight
line f D vt was easy and the parabolaf D 1

2
at2 was harder. The new example also

involves realistic motion, seen every day. We start withcircular motion, in which the
position is given and the velocity will be found.

A ball goes around a circle of radius one. The center is atxD 0;yD 0 (the
origin). Thex andy coordinates satisfyx2 Cy2 D 12, to keep the ball on the circle.
We specify its position in Figure 1.16a by giving its angle with the horizontal. And
we make the ball travel with constant speed, by requiring thatthe angle is equal to
the timet: The ball goes counterclockwise. At time1 it reaches the point where the
angle equals1: The angle is measured inradiansrather than degrees, so a full circle
is completed att D 2� instead oft D 360:

The ball starts on thex axis, where the angle is zero. Now find it at timet :

The ball is at the point wherexD cos t and yD sin t:

�Sines and cosines are so important that I added a review of trigonometry in Section1:5: But
the concepts in this section can be more valuable than formulas.
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This is where trigonometry is useful. The cosine oscillates between1 and�1, as the
ball goes from far right to far left and back again. The sine also oscillates between1

and�1, starting from sin0D 0: At time �=2 the sine (the height) increases to one.
The cosine is zero and the ball reaches the top pointxD 0;yD 1:At time� the cosine
is�1 and the sine is back to zero—the coordinates are.�1;0/: At t D 2� the circle
is complete (the angle is also2�), andxD cos2�D 1; yD sin 2� D 0:

Fig. 1.16 Circular motion with speed1; angle t , height sint , upward velocity cost:

Important point: The distance around the circle (its circumference) is2�r D 2�,
because the radius is1: The ball travels a distance2� in a time2�: The speed equals
1: It remains to find the velocity, which involves not only speed butdirection.

Degrees vs. radiansA full circle is 360 degrees and2� radians. Therefore

1 radianD360=2� degrees� 57:3 degrees

1 degreeD2�=360 radians� :01745 radians

Radians were invented to avoid those numbers! The speed is exactly 1; reachingt
radians at timet: The speed would be:01745; if the ball only reachedt degrees. The
ball would complete the circle at timeT D 360: We cannot accept the division of the
circle into360 pieces (by whom ? ), which produces these numbers.

To check degree mode vs. radian mode, verify that sin1�� :017 and sin1� :84:
VELOCITY OF THE BALL

At time t , which direction is the ball going ? Calculus watches the motion betweent

and tCh: For a ball on a string, we don’t need calculus—just let go.The direction of
motion is tangent to the circle.With no force to keep it on the circle,the ball goes off
on a tangent. If the ball is the moon, the force is gravity. If it is a hammer swinging
around on a chain, the force is from the center. When the thrower lets go, the hammer
takes off—and it is an art to pick the right moment. (I once saw a friend hit by a
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that same
tangent direction, when the points att andtCh come close.

The “velocity triangle” is in Figure 1.16b. It is the same as the position triangle,
but rotated through90�: The hypotenuse is tangent to the circle, in the direction the
ball is moving. Its length equals1 (the speed). The anglet still appears, but now it
is the angle with the vertical.The upward component of velocity iscost; when the
upward component of position issin t: That is our common sense calculation, based
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on a figure rather than a formula. The rest of this section dependson it—and we check
vD cost at special points.

At the starting timet D 0, the movement is all upward. The height is sin0D 0 and
the upward velocity is cos0D 1: At time �=2, the ball reaches the top. The height
is sin�=2D 1 and the upward velocity is cos�=2D 0: At that instant the ball is not
moving up or down.

The horizontal velocity contains a minus sign. At first the ball travels to theleft. The
value ofx is cost , but the speed in thex direction is�sin t: Half of trigonometry
is in that figure (the good half), and you see how sin2tCcos2t D 1 is so basic. That
equation applies to position and velocity, at every time.

Application of plane geometry: The right triangles in Figure 1.16 are the same
size and shape. They look congruent and they are—the anglet above the ball equals
the anglet at the center. That is because the three angles at the ball add to180�.

OSCILLATION: UP AND DOWN MOTION

We now use circular motion to studystraight-line motion. That line will be they axis.
Instead of a ball going around a circle, a mass will move up and down. It oscillates
betweenyD 1 andyD�1: The mass is the“shadow of the ball,” as we explain in a
moment.

There is a jumpy oscillation that we do not want, withvD 1 andvD�1: That
“bang-bang” velocity is like a billiard ball, bouncing between two walls without
slowing down. If the distance between the walls is2; then att D 4 the ball is back
to the start. The distance graph is a zigzag (or sawtooth) from Section1:2:

We prefer a smoother motion. Instead of velocities that jump betweenC1 and�1,
a real oscillationslows down to zeroand gradually builds up speed again. The mass
is on a spring, which pulls it back. The velocity drops to zero as the spring is fully
stretched. Thenv is negative, as the mass goes the same distance in the opposite
direction.Simple harmonic motionis the most important back and forth motion,
while f D vt andf D 1

2
at2 are the most important one-way motions.

Fig. 1.17 Circular motion of the ball and harmonic motion of the mass (its shadow).

How do we describe this oscillation ? The best way is to match it with the ball on
the circle.The height of the ball will be the height of the mass. The “shadow of the
ball” goes up and down, level with the ball. As the ball passes the top of the circle, the
mass stops at the top and starts down. As the ball goes around the bottom, the mass
stops and turns back up they axis. Halfway up (or down), the speed is1:

Figure 1.17a shows the mass at a typical timet: The height isyDf .t/D sin t ,
level with the ball. This height oscillates betweenf D 1 andf D�1: But the mass
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does not move with constant speed.Thespeed of the mass is changing although the
speed of the ball is always1. The time for a full cycle is still2�, but within that cycle
the mass speeds up and slows down. The problem is to find the changing velocityv:

Since the distance isf D sin t , the velocity will be theslope of the sine curve.

THE SLOPE OF THE SINE CURVE

At the top and bottom (t D�=2 and t D 3�=2) the ball changes direction andvD 0:

The slope at the top and bottom of the sine curve is zero.� At time zero, when the ball
is going straight up, the slope of the sine curve isvD 1: At t D�, when the ball and
mass andf -graph are going down, the velocity isvD�1: The mass goes fastest at the
center. The mass goes slowest (in fact it stops) when the height reaches a maximum
or minimum. The velocity triangle yieldsv at every timet:

To find the upward velocity of the mass, look at the upward velocity of the ball.
Those velocities are the same! The mass and ball stay level, and we knowv from
circular motion:The upward velocity isvD cost:

Figure 1.18 shows the result we want. On the right,f D sin t gives the height. On
the left is the velocityvD cost: That velocity is the slope of thef -curve. The height
and velocity (red lines) are oscillating together, but they are out of phase—just as the
position triangle and velocity triangle were at right angles. This is absolutely fantastic,
that in calculus the two most famous functions of trigonometry form a pair:The slope
of the sine curve is given by the cosine curve.

When the distance isf .t/D sin t , the velocity isv.t/D cost:

Admission of guilt: The slope of sint was not computed in the standard way.
Previously we compared.tCh/2 with t2, and divided that distance byh: This average
velocity approached the slope2t ash became small.For sin t we could have done
the same:

average velocityD
change in sint

change int
D

sin.tCh/�sin t

h
: (1)

This is where we need the formula for sin.tCh/, coming soon. Somehow the ratio
in (1) should approach cost ashÑ 0: (It does.) The sine and cosine fit the same
pattern ast2 and2t—our shortcut was to watch the shadow of motion around a circle.

Fig. 1.18 vD cost whenf D sin t (red);vD�sin t whenf D cost (black).

�That looks easy but you will see later that it is extremely important.At a maximum or
minimum the slope is zero. The curve levels off.
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Question 1 What if the ball goes twice as fast, to reach angle2t at time t ?

Answer The speed is now2: The time for a full circle is only�: The ball’s
position isxD cos2t andyD sin2t: The velocity is still tangent to the circle—but
the tangent is at angle2t where the ball is. Therefore cos2t enters the upward
velocity and�sin2t enters the horizontal velocity. The difference is thatthe
velocity triangle is twice as big. The upward velocity is not cos2t but 2cos2t: The
horizontal velocity is�2sin2t: Notice these2’s!

Question 2 What is the area under the cosine curve fromt D 0 to t D�=2?

You can answer that, if you accept the Fundamental Theorem of Calculus—
computing areas is the opposite of computing slopes. The slope of sint is cost ,
so the area under cost is the increase in sint: No reason to believe that yet, but we
use it anyway.

From sin0D 0 to sin�=2D 1, the increase is1: Please realize the power of
calculus. No other method could compute the area under a cosine curve so fast.

THE SLOPE OF THE COSINE CURVE

I cannot resist uncovering another distance and velocity (anotherf -v pair) with no
extra work. This timef is the cosine. The time clock startsat the top of the circle.
The old timet D�=2 is nowt D 0: The dotted lines in Figure 1.18 show the new start.
But the shadow has exactly the same motion—the ball keeps going around the circle,
and the mass follows it up and down. Thef -graph andv-graph are still correct, both
with a time shift of�=2:

The newf -graph is the cosine. The newv-graph isminus the sine. The slope of
the cosine curve follows thenegativeof the sine curve. That is another famous pair,
twins of the first:

When the distance isf .t/D cost; the velocity isv.t/D�sin t:

You could see that coming, by watching the ball go left and right (instead of up and
down). Its distance across isf D cost: Its velocity across isvD�sin t: That twin
pair completes the calculus in Chapter1 (trigonometry to come). We review the ideas:

v is thevelocity
theslopeof the distance curve

the limit of average velocity over a short time

thederivativeof f:

f is thedistance
theareaunder the velocity curve

the limit of total distance over many short times

the integral of v:

Differential calculus: Computev fromf . Integral calculus: Computef fromv:

With constant velocity,f equalsvt:With constant acceleration,vD at andf D 1
2
at2:

In harmonic motion,vD cost andf D sin t: One part of our goal is to extend that
list—for which we need the tools of calculus. Another and more important part is to
put these ideas to use.

Before the chapter ends, may I add a note about the book and the course ? The
book is more personal than usual, and I hope readers will approve. What I write is



78 1 Introduction to Calculus

very close to what I would say, if you were in this room. The sentences are spoken
before they are written.� Calculus is alive and moving forward—it needs to be taught
that way.

One new part of the subject has come with the computer. It works with a finite step
h, not an “infinitesimal” limit. What it can do, it does quickly—even if it
cannot find exact slopes or areas. The result is an overwhelming growth in the range
of problems that can be solved. We landed on the moon becausef andv were so
accurate. (The moon’s orbit has sines and cosines, the spacecraft starts withvD at

and f D 1
2
at2: Only the computer can account for the atmosphere and the sun’s

gravity and the changing mass of the spacecraft.)Modern mathematics is a
combination of exact formulas and approximate computations. Neither part can be
ignored, and I hope you will see numerically what we derive algebraically. The
exercises are to help you master both parts.

The course has made a quick start—not with an abstract discussion of sets or
functions or limits, but with the concrete questions that led to those ideas. You have
seen a distance functionf and a limitv of average velocities. We will meet more
functions and more limits (and their definitions!) but it is crucial to study important
examples early. There is a lot to do, but the course has definitely begun.

1.4 EXERCISES

Read-through questions

A ball at anglet on the unit circle has coordinatesxD a
and yD b . It completes a full circle att D c . Its
speed is d . Its velocity points in the direction of the e ,
which is f to the radius coming out from the center. The
upward velocity is g and the horizontal velocity is h .

A mass going up and down level with the ball has height
f .t/D i . This is called simple j motion. The velocity
is v.t/D k . When t D�=2 the height is f D I
and the velocity isvD m . If a speeded-up mass reaches
f D sin 2t at timet , its velocity isvD n . A shadow traveling
under the ball hasf D cost andvD o . Whenf is distanceD
areaD integral,v is p D q D r .

1 For a ball going around a unit circle with speed1,

(a) how long does it take for5 revolutions ?

(b) at timet D 3�=2 where is the ball ?

(c) at t D 22 where is the ball (approximately) ?

2 For the same motion find the exactx and y coordinates at
t D 2�=3: At what time would the ball hit thex axis, if it goes off
on the tangent att D 2�=3 ?

3 A ball goes around a circle of radius4: At timet (when it reaches
anglet) find

(a) itsx andy coordinates

(b) the speed and the distance traveled

(c) the vertical and horizontal velocity.

4 On a circle of radiusR find the x andy coordinates at timet
(and anglet). Draw the velocity triangle and find thex andy veloc-
ities.

5 A ball travels around a unit circle (radius1) with speed3,
starting from angle zero. At timet ,

(a) what angle does it reach ?

(b) what are itsx andy coordinates ?

(c) what are itsx andy velocities ? This part is harder.

6 If another ball stays�=2 radians ahead of the ball with speed
3; find its angle, itsx andy coordinates, and its vertical velocity at
time t:

7 A mass moves on thex axis under or over the original ball (on
the unit circle with speed1). What is the positionxD f .t/? Findx
andv at t D�=4: Plotx andv up tot D�:

�On television you know immediately when the words are live. The same with writing.
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8 Does the new mass (under or over the ball) meet the old mass
(level with the ball) ? What is the distance between the masses at
time t ?

9 Draw graphs of f .t/D cos3t and cos2�t and 2� cost ,
marking the time axes. How long until eachf repeats ?

10 Draw graphs of f D sin.tC�/ and vD cos.tC�/: This
oscillation stays level with what ball ?

11 Draw graphs off D sin.�=2� t/ andvD�cos.�=2� t/: This
oscillation stays level with a ball going which way starting where ?

12 Draw a graph off .t/D sin tCcost: Estimate its greatest
height (maximumf ) and the time it reaches that height. By
computingf 2 check your estimate.

13 How fast should you run across the circle to meet the ball again ?
It travels at speed1:

14 A mass falls from the top of the unit circle when the ball of speed
1 passes by. What accelerationa is necessary to meet the ball at the
bottom ?

Find the area undervD cost from the change inf D sin t :

15 from t D 0 to t D�

17 from t D 0 to t D 2�

16 from t D 0 to t D�=6

18 from t D�=2 to t D 3�=2:

19 The distance curvef D sin4t yields the velocity curve
vD 4cos4t: Explain both4’s.

20 The distance curvef D 2cos3t yields the velocity curve
vD�6sin3t: Explain the�6:
21 The velocity curve vD cos4t yields the distance curve
f D 1

4 sin 4t: Explain the1
4 :

22 The velocityvD 5sin5t yields what distance ?

23 Find the slope of the sine curve att D�=3 from vD cost:
Then find an average slope by dividing sin�=2�sin�=3 by the
time difference�=2��=3:
24 The slope off D sin t at t D 0 is cos0D 1: Compute average
slopes.sin t/=t for t D 1; :1; :01; :001:

The ball at xD cost;yD sin t circles (1) counterclockwise (2)
with radius 1 (3) starting from xD 1;yD 0 (4) at speed1: Find
(1)(2)(3)(4) for the motions 25–30.

25 xD cos3t; yD�sin3t

26 xD 3 cos4t; yD 3 sin 4t

27 xD 5 sin2t; yD 5cos2t

28 xD 1Ccost; yD sin t

29 xD cos.tC1/; yD sin.tC1/

30 xD cos.�t/; yD sin.�t/
The oscillation xD 0;yD sin t goes (1) up and down (2)
between �1 and 1 (3) starting from xD 0;yD 0 (4) at
velocity vD cost: Find (1)(2)(3)(4) for the oscillations 31–36.

31 xD cost; yD 0

33 xD 0; yD 2 sin.tC�/

35 xD 0; yD�2 cos 1
2 t

32 xD 0; yD sin 5t

34 xD cost; yD cost

36 xD cos2t; yD sin2t

37 If the ball on the unit circle reachest degreesat timet , find its
position and speed and upward velocity.

38 Choose the numberk so thatxD coskt;yD sinkt completes a
rotation att D 1: Find the speed and upward velocity.

39 If a pitcher doesn’t pause before starting to throw, a balk is
called. The American League decided mathematically that there is
always a stop between backward and forward motion, even if the
time is too short to see it. (Therefore no balk.) Is that true ?
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1.5 A Review of Trigonometry

Trigonometry begins with a right triangle. The size of the triangle is not as important
asthe angles. We focus on one particular angle—call it�—and on theratiosbetween
the three sidesx;y;r: The ratios don’t change if the triangle is scaled to another size.
Three sides give six ratios, which are the basic functions of trigonometry:

Fig. 1.19
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Of course those six ratios are not independent. The three on the right come directly
from the three on the left. And the tangent is the sine divided by the cosine:

tan � D
sin �

cos�
D
y=r

x=r
D
y

x
:

Note that “tangent of an angle” and “tangent to a circle” and “tangent line to a graph”
are different uses of the same word. As the cosine of� goes to zero, the tangent of
� goes to infinity. The sidex becomes zero,� approaches90�; and the triangle is
infinitely steep. The sine of90� is y=rD 1:

Triangles have a serious limitation. They are excellent for angles up to90�; and
they are OK up to180�; but after that they fail. We cannot put a240� angle into a
triangle. Therefore we change now to a circle.

Fig. 1.20 Trigonometry on a circle.Compare2sin � with sin 2� and tan� (periods2�;�;�).

Angles are measured from the positivex axis (counterclockwise). Thus90� is
straight up,180� is to the left, and360� is in the same direction as0�: (Then450� is
the same as90�:) Each angle yields a point on the circle of radiusr: The coordinatesx
andy of that point can be negative (but neverr). As the point goes around the circle,
the six ratios cos�; sin �; tan �; : : : trace out six graphs. The cosine waveform is the
same as the sine waveform—just shifted by90�:

One more change comes with the move to a circle. Degrees are out. Radians are
in. The distance around the whole circle is2�r: The distance around to other points
is � r: We measure the angle by that multiple� . For a half-circle the distance is�r ,
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so the angle is� radians—which is180�: A quarter-circle is�=2 radians or90�: The
distance around to angle� is r times� .

Whenr D 1 this is the ultimate in simplicity:The distance is�:A 45� angle is1
8

of a
circle and2�=8 radians—and the length of the circular arc is2�=8: Similarly for 1�:
360� D 2� radians 1� D 2�=360 radians 1 radianD 360=2� degrees.

An angle going clockwise isnegative. The angle��=3 is�60� and takes us1
6

of the
wrongway around the circle. What is the effect on the six functions ?

Certainly the radiusr is not changed when we go to��: Also x is not changed (see
Figure 1.20a). Buty reverses sign, because�� is below the axis whenC� is above.
This change iny affectsy=r andy=x but notx=r :

cos.��/D cos� sin.��/D�sin � tan.��/D� tan�:

The cosine iseven (no change). The sine and tangent areodd (change sign).
The same point is5

6
of theright way around. Therefore5

6
of 2� radians (or300�)

gives the same direction as��=3 radians or�60�: A difference of2� makes no
difference tox;y;r . Thus sin� and cos� and the other four functions have period
2�: We can go five times or a hundred times around the circle, adding10� or 200�
to the angle, and the six functions repeat themselves.

EXAMPLE Evaluate the six trigonometric functions at� D 2�=3 (or � D�4�=3).
This angle is shown in Figure 1.20a (wherer D 1). The ratios are

cos�Dx=r D�1=2 sin�Dy=rD
?
3=2 tan�Dy=xD�?3

sec �D�2 csc�D2=
?
3 cot �D�1=?3

Those numbers illustrate basic facts about the sizes of four functions:|cos� | ¤ 1 |sin � | ¤ 1 |sec� | ¥ 1 |csc� | ¥ 1:
The tangent and cotangent can fall anywhere, as long as cot� D 1= tan �:

The numbers reveal more. The tangent�?3 is the ratio of sine to cosine. The
secant�2 is 1=cos�: Their squares are3 and4 (differing by 1). That may not seem
remarkable, but it is. There are three relationships in thesquaresof those six numbers,
and they are the key identities of trigonometry:

cos2�Csin2� D 1 1C tan2� D sec2� cot2�C1D csc2�

Everything flows from the Pythagoras formulax2 Cy2 D r2: Dividing by r2 gives
.x=r/2 C.y=r/2 D 1: That is cos2�Csin2 � D 1: Dividing by x2 gives the second
identity, which is1C.y=x/2 D .r=x/2: Dividing by y2 gives the third. All three will
be needed throughout the book—and the first one has to be unforgettable.

DISTANCES AND ADDITION FORMULAS

To compute the distance between points we stay with Pythagoras. The points are in
Figure 1.21a. They are known by theirx andy coordinates, andd is the distance
between them. The third point completes a right triangle.
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For thex distance along the bottom we don’t need help. It isx2�x1 (or |x2�x1|
since distances can’t be negative). The distance up the side is|y2�y1|: Pythagoras
immediately gives the distanced :

distance between pointsD d D
a
.x2�x1/2 C .y2�y1/2: (1)

Fig. 1.21 Distance between points and equal distances in two circles.

By applying this distance formula in two identical circles, we discover the cosine
of s� t: (Subtracting angles is important.) In Figure 1.21b, the distance squared is

d 2 D .change inx/2 C.change iny/2

D .coss�cost/2 C.sin s�sin t/2: (2)

Figure 1.21c shows the same circle and triangle (but rotated). The same distance
squared is

d 2 D .cos.s� t/�1/2 C.sin.s� t//2: (3)

Now multiply out the squares in equations (2) and (3). Whenever.cosine/2 C.sine/2

appears, replace it by1: The distances are the same, so.2/D .3/:

.2/D 1C1�2 coss cost�2 sins sin t

.3/D 1C1�2 cos.s� t/:
After canceling1C1 and then�2, we have the “addition formula” for cos.s� t/:

The cosine ofs� t equals coss cost Csin s sin t: (4)

The cosine ofsC t equals coss cost�sin s sin t: (5)

The easiest is t D 0: Then cost D 1 and sint D 0: The equations reduce to
cossD coss:

To go from (4) to (5) in all cases, replacet by�t:No change in cost , but a “minus”
appears with the sine. In the special casesD t , we have cos.tC t/D .cost/.cos t/�
.sin t/.sin t/: This is a much-used formula for cos2t :

Double angle: cos2t D cos2t�sin2t D 2cos2t�1 D 1�2sin2t: (6)

I amconstantly using cos2tCsin2t D 1, to switch between sines and cosines.
We also need addition formulas and double-angle formulas for thesineof s� t and

sC t and2t: For that we connect sine to cosine, rather than.sine/2 to .cosine/2: The
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connection goes back to the ratioy=r in our original triangle. This is the sine of the
angle� and also the cosine of thecomplementary angle�=2�� :

sin� D cos.�=2��/ and cos� D sin.�=2��/: (7)

The complementary angle is�=2�� because the two angles add to�=2 (a
right angle). By making this connection in Problem19; formulas (4–5–6) move from
cosines to sines:

sin.s� t/ D sin s cost�coss sin t (8)

sin.sC t/ D sin s costCcoss sin t (9)

sin2t D sin.tC t/D 2 sin t cost (10)

I want to stop with these ten formulas, even if more are possible. Trigonometry is
full of identities that connect its six functions—basically because all those functions
come from a single right triangle. Thex;y;r ratios and the equationx2 Cy2 D r2

can be rewritten in many ways. But you have now seen the formulas that are needed
by ca1culus.� They give derivatives in Chapter2 and integrals in Chapter5: And
it is typical of our subject to add something of its own—a limit in which an angle
approaches zero.The essence of calculus is in that limit.

Review of the ten formulasFigure 1.22 showsd 2 D .0� 1
2
/2 C.1�?3=2/2:
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Fig. 1.22

Question 1 Draw graphs for equationsyD sin2x, yD 2 sin�x, yD 1
2

cos2�x,
yD sinxCcosx, and mark three points.

Question 2 Which of the six trigonometric functions are infinite at what angles ?

Question 3 Draw rough graphs or computer graphs oft sin t and sin4t sin t from
0 to 2�:

�Calculus turns (6) around to cos2t D 1
2
.1Ccos2t/ and sin2t D 1

2
.1�cos2t/:
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1.5 EXERCISES

Read-through questions

Starting with a a triangle, the six basic functions are theb
of the sides. Two ratios (the cosinex=r and the c ) are below1:
Two ratios (the secantr=x and the d ) are above1: Two ratios
(the e and the f ) can take any value. The six functions are
defined for all angles� , by changing from a triangle to a g .

The angle� is measured in h . A full circle is � D i ,
when the distance around is2�r: The distance to angle� is j .
All six functions have period k . Going clockwise changes
the sign of� and l and m . Since cos.��/D cos� , the
cosine is n .

Coming from x2 Cy2 D r2 are the three identities sin2 �C

cos2 � D 1 and o and p . (Divide by r2 and q and
r .) The distance from.2;5/ to .3;4/ is d D s . The

distance from .1;0/ to .cos.s� t/; sin.s� t// leads to the
addition formula cos.s� t/D t : Changing the sign oft gives
cos.sC t/D u . Choosing sD t gives cos2t D v or

w . Therefore1
2 .1Ccos2t/D x , a formula needed in cal-

culus.

1 In a60�60�60 triangle show why sin30� D 1
2 :

2 Convert �; 3�; ��=4 to degrees and60�; 90�; 270� to
radians. What angles between0 and2� correspond to� D 480� and
� D�1� ?

3 Draw graphs of tan� and cot� from 0 to 2�: What is their
(shortest) period ?

4 Show that cos2� and cos2� have period� and draw them on
the same graph.

5 At � D 3�=2 compute the six basic functions and check cos2�C

sin2�;sec2�� tan2�;csc2��cot2�:

6 Prepare a table showing the values of the six basic functions at
� D 0; �=4; �=3; �=2; �:

7 The area of a circle is�r2: What is the area of the sector that
has angle� ? It is a fraction of the whole area.

8 Find the distance from.1;0/ to .0;1/ along (a) a straight line (b)

a quarter-circle (c) a semicircle centered at
�

1
2 ;

1
2

�

:

9 Find the distanced from .1;0/ to
�

1
2 ;
?
3=2

�

and show on a

circle why6d is less than2�:

10 In Figure 1.22 computed2 and(with calculator)12d: Why is
12d close to and below2� ?

11 Decide whether these equations are true or false:

(a)
sin �

1�cos�
D
1Ccos�

sin�

(b)
sec�Ccsc�

tan�Ccot �
D sin �Ccos�

(c) cos��sec� D sin� tan�

(d) sin.2���/D sin�

12 Simplify sin.���/;cos.���/;sin.�=2C�/;cos.�=2C�/:

13 From the formula for cos.2tC t/ find cos3t in terms of cost:

14 From the formula for sin.2tC t/ find sin3t in terms of sint:

15 By averaging cos.s� t/ and cos.sC t/ in (4–5) find a formula
for coss cost: Find a similar formula for sins sin t:

16 Show that.cos t C i sin t/2 D cos2tC i sin2t , if i2 D�1:
17 Draw cos� andsec� on the same graph. Find all points where
cos� D sec�:

18 Find all angless and t between0 and2� where sin.sC t/D

sinsCsin t:

19 Complementary angles have sin� D cos.�=2��/: Write
sin.sC t/ as cos.�=2�s� t/ and apply formula (4) with
�=2�s instead ofs: In this way derive the addition formula (9).

20 If formula (9) is true, how do you prove (8) ?

21 Check the addition formulas (4–5) and (8–9) for
sD t D�=4:

22 Use (5) and (9) to find a formula for tan.sC t/:

In 23–28 findevery� that satisfies the equation.

23 sin� D�1
25 sin� D cos�

27 sec2 �Ccsc2 � D 1

24 sec� D�2
26 sin� D �

28 tan� D 0

29 Rewrite cos�Csin � as
?
2sin.�C�/ by choosing the

correct “phase angle”�: (Make the equation correct at� D 0:

Square both sides to check.)

30 Match asinxCb cosx with Asin.xC�/: From equation (9)
show thataDAcos� and bDAsin�: Square and add to find
AD : Divide to find tan�D b=a:

31 Draw the base of a triangle from the originO D .0;0/

to P D .a;0/: The third corner is atQD .b cos�;b sin�/:
What are the side lengthsOP and OQ ? From the distance
formula (1) show that the sidePQ has length

d2 D a2 Cb2�2ab cos� (law of cosines):

32 Extend the same triangle to a parallelogram with its fourth
corner at RD .aCb cos�;b sin�/: Find the length squared of
the other diagonalOR:
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1.6 A Thousand Points of Light

The figures drawn below show y D sin n: This is very different
from yD sinx: The graph of sinx is one continuous curve. By the time it reaches
xD 10;000, the curve has gone up and down10;000=2� times. Those1591
oscillations would be so crowded that you couldn’t see anything. The graph of sinn

has picked10;000 pointsfrom the curve—and for some reason those points seem to
lie on more than40 separate sine curves.

The second graph shows the first1000 points. Theydon’tseem to lie on sine curves.
Most people see hexagons.But they are the same thousand points! It is hard to believe
that the graphs are the same, but I have learned what to do.Tilt the second graph and
look from the side at a narrow angle.Now the first graph appears. I believe you will
see “diamonds.” The narrow angle compresses thex axis—back to the scale of the
first graph.

The effect of scale is something we don’t think of. We understand it for maps.
Computers can zoom in or zoom out—those are changes of scale. What our eyes see
depends on what is “close.” We think we see sine curves in the10;000 point graph,
and they raise several questions:

1. Which points are near.0;0/?
2. How many sine curves are there ?
3. Where does the middle curve, going upward from.0;0/, come back to zero ?

A point near.0;0/ really means that sinn is close to zero. That is certainly not true
of sin1 (1 is one radian!). In fact sin1 is up the axis at:84; at the start of the seventh
sine curve. Similarly sin2 is :91 and sin3 is :14: (The numbers3 and:14 make us
think of �: The sine of3 equals the sine of��3: Then sin:14 is near:14:) Similarly
sin4; sin5; . . . , sin21 are not especially close to zero.

The first point to come close issin 22: This is because22=7 is near�: Then22 is
close to7�, whose sine is zero:

sin22D sin.7��22/� sin.�:01/��:01:
That is the first point to the right of.0;0/ and slightly below. You can see it on
graph1; and more clearly on graph2: It begins a curve downward.

The next point to come close is sin44: This is because44 is just past14�:

44� 14�C :02 so sin44� sin :02� :02:
This point .44; sin 44/ starts the middle sine curve. Next is.88; sin88/:
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Now we know something.There are44curves. They begin near the heightssin0;
sin1; : : : ;sin43: Of these44 curves,22 start upward and22 start downward. I was
confused at first, because I could only find42 curves. The reason is thatsin11 equals�0:99999 andsin33 equals .9999: Those are so close to the bottom and top that
you can’t see their curves. The sine of11 is near�1 becausesin22 is near zero. It is
almost impossible to follow a single curve past the top—coming back down it is not
the curve you think it is.

The points on the middle curve are atnD 0 and44 and88 and every number44N:
Where does that curve come back to zero ? In other words, when does44N come
very closeto a multiple of� ? We know that44 is 14�C :02: More exactly44 is
14�C :0177: So we multiply:0177 until we reach� :

if N D�=:0177 then 44N D .14�C :0177/N D 14�NC�:

This givesN D 177:5:At that point44N D 7810:This is half the period of the sine
curve. The sine of7810 is very near zero.

If you follow the middle sine curve, you will see it come back to zero above7810:
The actual points on that curve havenD 44 �177 andnD 44 �178, with sines just
above and below zero. Halfway between isnD 7810: The equation for the middle
sine curve isyD sin.�x=7810/. Its period is15;620—beyond our graph.

Question The fourth point on that middle curve looks the same as the fourthpoint
coming down fromsin3:What is this “double point ? ”
Answer 4 times44 is176:On the curve going up, the point is.176;sin176/:On the
curve coming down it is.179;sin179/: The sines of176and 179differ only by
.00003:

The second graph spreads out this double point. Look above176 and179; at the
center of a hexagon. You can follow the sine curve all the way across graph2:

Only a little question remains. Why does graph2 have hexagons ?I don’t know.
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted
points on straight lines as well as sine curves. Graph3 showsyD fractional part of
n=2�:Then he made a second copy, turned it over, and placed it on top. That produced
graph4—with hexagons. Graphs3 and4 are on the next page.

This is called aMoiré pattern. If you can get a transparent copy of graph3; and
turn it slowly over the original, you will see fantastic hexagons. They come from
interference between periodic patterns—in our case44=7 and25=4 and19=3 are near
2�: This interference is an enemy of printers, when color screens don’t line up. It can
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing
Moiré patterns move. There are good applications in engineering and optics—but
we have to get back to calculus.
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