CHAPTER 1

Introduction to Calculus

I 1.1 Velocity and Distance |G

The right way to begin a calculus book is with calculus. This chapter will jump
directly into the two problems that the subject was invented to solve. You will see
what the questions are, and you will see an important part of the answer. There are
plenty of good things left for the other chapters, so why not get started ?

The book begins with an example that is familiar to everybody who drives a car. Itis
calculus in action—the driver sees it happening. The example is the relation between
the speedometeand theodometer One measures the speed {etocity); the other
measures thdistance traveledWe will write v for the velocity, andf for how far
the car has gone. The two instruments sit together on the dashboard:

Fig. 1.1 Velocity v and total distancef (at one instant of time).

Notice that the units of measurement are differentf@nd f. The distancef is
measured in kilometers or miles (it is easier to say miles). The velod#yneasured
in km/hr or miles per hour A unit of time enters the velocity but not the distance.
Every formula to compute from f will have f divided by time.

The central question of calculus is the relation betweerand f.
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1 Introduction to Calculus

Can you findv if you know £, and vice versa, and how ? If we know the velocity over

the whole history of the car, we should be able to compute the total distance traveled.
In other words, if the speedometer record is complete but the odometer is missing,
its information could be recovered. One way to do it (without calculus) is to put in

a new odometer and drive the car all over again at the right speeds. That seems like
a hard way; calculus may be easier. But the point is thatinformation is there

If we know everything about, there must be a method to find

What happens in the opposite direction, whéis known ? If you have a complete
record of distance, could you recover the complete velocity ? In principle you could
drive the car, repeat the history, and read off the speed. Again there must be a better
way.

The whole subject of calculus is built on the relation betweand f. The question
we are raising here is not some kind of joke, after which the book will get serious
and the mathematics will get started. On the contreeyn serious now-and the
mathematics has already started. We need to know how to find the velocity from a
record of the distance. (That is calléifferentiation, and it is the central idea of
differential calculus) We also want to compute the distance from a history of the
velocity. (That isintegration, and it is the goal ointegral calculus)

Differentiation goes fromf' to v; integration goes fronv to f. We look first at
examples in which these pairs can be computed and understood.

CONSTANT VELOCITY

Suppose the velocity is fixed at= 60 (miles per hour). Thery increases at this
constant rate. After two hours the distancefis= 120 (miles). After four hours
f =240 and aftersr hours /' = 60zt. We say thatf increasedinearly with time—
its graph is a straight line.

velocity v(r) distance f(t)
240
60 *——.-—: v==60
Area =240 :
——t—t—t—> time ¢
2 4

Fig. 1.2 Constant velocityw = 60 ard linearly increasing distancg = 60z¢.

Notice that this example starts the car at full velocity. No time is spent picking up
speed. (The velocity is a “step function.”) Notice also that the distance starts at zero;
the car is new. Those decisions make the graphsaofd / as neat as possible. One is
the horizontal linev = 60. The other is the sloping ling = 60¢. Thisv, £, ¢ relation
needs algebra but not calculus:

If vis constant andf starts at zero thenf = vr.

The opposite is also true. Whefiincreases linearlyy is constantThe division by
time gives the slope. The distancefis= 120 miles when the time is; =2 hours.
Later f» =240 miles att, = 4 hours. At both points, the ratig/¢ is 60 miles/hour.
Geometricallythe velocity is the slope of the distance graph

change in distance vt
slope= — =—=u.
change in time t




1.1 Velocity and Distance

A
60 g U = 60 =20+ 60t
Area 30
0 ; t t
Area—15 1/2
11 S p——— - v=-30

Fig. 1.3  Straight linesf =20+ 60z (slope60) and f = —30¢ (slope—30).

The slope of thg'-graph gives the-graph Figure 1.3 shows two more possibilities:

1. The distance starts ab instead of0. The distance formula changes frait:
to 20+ 60¢. The numbef0 cancels when we computbangen distance—so
the slope is stilb0.

2. Whenv is negative, the graph of goesdownward The car goes backward
and the slope of = —30¢ isv = —30.

I don’t think speedometers go below zero. But driving backwards, it's not that safe
to watch. If you go fast enough, Toyota says they measure “absolute values"—the
speedometer reads30 when the velocity is-30. For the odometer, as far as | know

it just stops. It should go backwaid.

VELOCITY vs. DISTANCE: SLOPE vs. AREA

How do you computef from v ? The point of the question is to s¢e= vt on the
graphs We want to start with the graph ofand discover the graph ¢f Amazingly,
the opposite of slope @rea

The distancef is the area under thev-graph. Whenv is constant, the region
under the graph is a rectangle. Its height ists width is¢, and its area is timest.
This isintegration to go fromv to f by computing the area. We are glimpsing two
of the central facts of calculus.

1A The slope of thef-graph gives the velocity. The area under thev-graph
gives the distance.

That is certainly not obvious, and | hesitated a long time before | wrote it down in
this first section. The best way to understand it is to look first at more examples. The
whole point of calculus is to deal with velocities that a constant, and from now
onv has several values.

EXAMPLE (Forward and bacR There is a motion that you will understand right
away. The car goes forward with velocity, and comes back at the same speed. To
say it more correctly, theelocity in the second part is V. If the forward part lasts
until + = 3, and the backward part continueg te: 6, the car will come back where it
started The total distance after both parts will e= 0.

1 This actually happened iRerris Bueller's Day Off when the hero borrowed his father’s
sports car and ran up the mileage. At home he raised the car and drove in reverse. | forget if
it worked.
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1 Introduction to Calculus

v(r) = slope of f(r) 3V 1

|4 velocity V velocity —V
area

3V 13 6

t t
area 6
-3V ‘ 3

-vi

Fig. 1.4  Velocities+V and —V gives motion forward and back, ending #t6) = 0.

Thev-graph shows velocities-V and—V. The distance starts up with slogel
and reaches’ =3V. Then the car starts backward. The distance goes down with
slope—V and returns tof =0 att = 6.

Notice what that means. The total area “under” thgraph is zero! A negative
velocity makes the distance graph downward(negative slope). The car is moving
backwardArea below the axis in the-graph is counted as negative

FUNCTIONS

This forward-back example gives practice with a crucially amant idea—the
concept of a “functior’ We seize this golden opportunity to explain functions:

The numberuv(¢) is the value of the functiorw at the timer.

The timet is theinput to the function. The velocity(z) at that time is theutput
Most people say ¥ of :” when they read)(¢). The number ¥ of 2” is the velocity
whent =2. The forward-back example hag2) = +V andwv(4) = —V. The func-
tion contains the whole history, like a memory bank that has a recarcbéactr.

It is simple to convert forward-back motion into a formula. Here(is:

+V if 0<r<3
v(t)= 7 0f =3
-V if 3<t<6

The right side contains the instructions for finding@). The inputs is converted into
the output+V or —V. The velocityv(¢) depends on. In this case the function is
“discontinuous,” because the needle jumps-at3. The velocity is not defined at that
instant There is now(3). (You might argue that is zero at the jump, but that leads
to trouble.) The graph of has a corner, and we can't give its slope.

The problem also involves a second function, namely the distance. The principle
behind f(¢) is the same () is the distance at time. It is the net distance forward,
and again the instructions change at 3. In the forward motion,f(¢) equalsl’t as
before. In the backward half, a calculation is built into the formulafar):

Vit if 0<r<3
1) =
Y { Ve—t) if 3<t<6

At the switching time the right side gives two instructions (one on each line). This
would be bad except that they agre&3) = 3V.1 The distance function is “continu-
ous” There is no jump inf, even when there is a jump in After r = 3 the distance
decreases because-e¥'t. At t = 6 the second instruction correctly givgs6) = 0.

+A function is only allowedne valuef(z) or v(¢) at each time.
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Notice something more. The functions were given by graphs béifiery were given
by formulas. The graphs tell yofi andv at every timez—sometimes more clearly
than the formulas. The valugdqr) andv(¢) can also be given by tables or equations
or a set of instructions. (In some way all functions are instructions—the function tells
how to find f* at timer.) Part of knowingf is knowing all its inputs and outputs—its
domainandrange:

The domain of a function is the set of inputs. The range is the sébutputs.

The domain off corsists of all time9) <t < 6. The range consists of all distances
0< f(¢t) <3V. (The range ofv contains only the two velocities-V and —V.)

We mention now, and repeat later, that every “linear” function has a formula
f(@)=vt+C. Its graph is a line and is the slope. The consta6t moves the line

up and down. It adjusts the line to go through any desired starting point.

SUMMARY: MORE ABOUT FUNCTIONS

May | collect together the ideas brought out by this example Zh&detwo functions

v and f. One wasvelocity, the other waslistance Each function had domain and
arange and most important graph For the f-graph we studied the slope (which
agreed withv). For thev-graph we studied the area (which agreed wfith Calculus
produces functions in pairs, and the best thing a book can do early is to show you
more of them.

in inputr —  function f/ — output f(¢) in
the input2 —  functionv — outputv(2) the
domain | input7 — f(t)=2t+6 — f(7)=20 range

Note about the definition of a function.The idea behind the symbof(¢) is
absolutely crucial to mathematics. Words don't do it justice! By definition, a function
is a “rule” that assigns one member of the range to each member of the domain. Or,
a function is a set of pairg, f(z)) with not appearing twice. (These are “ordered
pairs” because we write before f(¢).) Both of those definitions are correct—but
somehow they are too passive.

In practice what matters is the active part. The numbe) is produced from the
number:. We read a graph, plug into a formula, solve an equation, run a computer
program. The input is “mapped” to the outpuf(¢), which changes aschanges.
Calculus is about theate of change This rate is our other function

e
3 3 fir-2)=21-3

g
(8]

range fin=2r+1 21

l L
range / domain
0 t 0 + 1 0 + +
domain / 1 | 2 3
1

Fig. 1.5 Subtracting2 from f affects the range. Subtracting 2 franaffects the domain.
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It is quite hard at the beginning, and not automatic, to see fifereince between
f(t)—2and f(t —2). Those are both new functions, created out of the origfi{a).
In f(tr)—2, we subtrac® from all the distances. That moves the whole greptvn
In f(t—2), we subtrac from the time. That moves the graph ouerthe right
Figure 1.5 shows both movements, starting frgn) =2z + 1. The formula to find
f({—2)is2(t —2)+ 1, which is27 —3.

A graphing calculator also moves the graph, when you change the viewing window.
You can pick any rectanglg <t < B,C < f(t) < D. The screen shows that part of
the graph. But on the calculatdine functionf(¢) remains the samét is the axes that
get renumbered. In our figures the axes stay the same and the function is changed.
There are two more basic ways to change a function. (We are always creating new
functions—that is what mathematics is all about.) Instead of subtracting or adding,
we canmultiply the distance by. Figure 1.6 showg f(¢). And instead of shifting
the time, we caispeed it upThe function becomeg(2¢). Everything happens twice
as fast (and takes half as long). On the calculator those changes corresporatinia
—on the f axis or ther axis. We soon come back to zooms.

6
range 2f(t) =41+ 2
slope 4
3 3
range f(/)=21+ 1 2 2 f(?.l):4l+ |
slope 2 slope 4
| 1
domain
0 t 0 ——— ¢ 0 t
domain | 1 1/2

Fig. 1.6  Doubling the distance or speeding up the time doubles the slope.

1.1 EXERCISES

Each section of the book contains read-through questions. under thev-graph up to time.5is__o . The domain off isthe
They allow you to outline the section yourself—more actively time interval p , and the range is the distance intervalg
than reading a summary. This is probably the best way to The range ofv(z)isonly__r .

remember the important ideas.

Starting from f(0) =0 at constant velocitw, the distance func-
tionis f(t)=__a .Whenf(t) =55t the velocityisv=__b .

When f(t) = 55t + 1000 the velocity is still__c __ and the starting 19
valueis f(0)=__d .Ineachcase isthe__e _of the graph of

f-When__f _is negative, the graph of g goes downward. In

that case area in thegraph countsas h .

The value of f(t) =3t +1atr=2is f(2)=__s . The value
equals f (__t ). The differencef(4)— f(1)= _u_ . That
is the change in distance, wheh—1 is the change in_v_.
The ratio of those changes equalsw__, whichisthe__x__ofthe

graph. The formula forf(r) +2 is 3t +3 whereasf (z +2) equals

Forward motion fromf(0) =0to f(2)=10hasv=__i__.Then y . Those functions have the samez _as f: the graph
backward motion tof(4) =0 hasv= | . The distance function of f(¢)+2 is shifted__A _and f(¢+2) is shifted__B . The
is f(t)=5t for 0<r<2 and thenf(r)= __k __ (not—5¢). The formulafor f(5¢)is__C . The formula for5f(¢t)is__D .The

slopesare | _and__m .Thedistancef(3)=__n .The area sope has jumped frodito__E
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The set of inputs to a function is its F . The set of outputs Draw the distance graph that goes with each velocity graph.
isits__G__. The functionsf(r) =7+3(t —2) and f(r)=vt+C Startfrom f =0 ats =0 and mark the distance.

are__H . Theirgraphs are | _with slopesequalto J and
K . They are the same functionpit=_ L andC=_M . 13 4 0 i v
Draw the velocity graph that goes with each distance graph. 2071 | l
; ¢ |
12 T 2F 3T
1 f f
60 20 -40 14a 14b
[\, W/
t t 14 v v
2 4.6 1 2 30 J[ 30 4
2 + 1
30 +f f I I 2. 3 2 4 6
20 I 13a -30 13b
10 ] ) ) ]
t P 15 Write down formulas forv(f) in Problem 14, starting with
10 20 30 v=—40 for 0 <t < 1. Find the average velocities to=2.5 and
t =3T.

3 Write down three-part formulas for the velocitiagr) in . .
Problem2. starting from (¢) =2 for 0 < < 10. 16 Give 3-part formulas for the areaf(r) underv(z) in 13.
17 The distance ifl4a garts with f(t) = —40z for 0<t < 1. Find

4 The distance inlb serts with f(1) =10—10¢ for 0z <1, f(¢) in the other part, which passes throufi=0 ats = 2.

Give a formula for the second part.

5 In the middle of grapRa find f(15) and f(12) and f(¢). F(t)=20+1for2<t <3

, _ . "
6 Ingraph2b find f(1.4T). If T =3 whatis f(4) 7 19 Draw rough graphs ofy=+yx and y=+x—4 and
7 Find theaverage speetbeweens =0 ands =5 in graphla. y =+/x—4. They are “half-parabolas” with infinite slope at the

18 Draw the velocity and distance graphsif) =8 for 0 <t <2,

What is the speed at=57? start.
8 What is the average speed between0 andr =2 in graphlb? 20 What is the break-even point if yearbooks cost $,200 4 30x
The average speed is zero betvveeﬂ% andr = . to produce and the income #x ? The slope of the cost line is
(cost per additional book). If it goes above you can't

9 (recommended) A car goes at speed 20 into a brick wall at
distancef = 4. Give two-part formulas fow(¢) and f(¢) (before
and after), and draw the graphs. 21 What are the domains and ranges of the distance functions in

14a and 14b—all values of and f(¢) if f(0)=07

break even.

10 Draw any reasonable graphs and f(¢r) when
Y graphstalt) S 22 What is the range ob(¢) in 14b? Why ist =1 not in the

(a) the driver backs up, stops to shift gear, then goes fast; domain ofv(r) in 14a?
(b) the driver slows ta5 for a police car;
(c) inarough gear change, the car accelerates in jumps;

i . ) Problems 23-28 involvelinear functions f(¢t)=vt+C. Find
(d) the driver waits for a light that turns green.

the constantsv and C.

11 Your bank account earns simple interest on the opening ) . 5
baance f(0). What are the interest rates per year ? 23 What linear function hag'(0) = 3 and f(2) = —117

24 Findtwo linear functions whose domain@s<¢ < 2 and whose

120 range isl < f(r) <9.
100 ’ 100
f(r) 80 £(1) 25 Find the linear function withy'(1) = 4 and slopes.
26 What functions have/(r +1) = f(t)+2?
+—> | + + !
! 2 I - 27 Find the linear function with f(t+2)= f(1)+6 and
F(1)=10.
12 The earth’s population is growing at= 100 million a year, 28 Find the only f = vt that hasf(2¢) =4f(¢). Show that every
starting fromf = 5.2 billion in 1990. Graph f(¢) and find f (2000). f = %azz has this property. To go times as far in twice the

time, you must accelerate.
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29 Sketch the graph of (r) = |5—2¢| (absolute value) fojr| <2 45 (a) Draw the graph off(r) =741 for —1 < <1. Find the
and find its slopes and range. domain, range, slope, and formula for

30 Sketch the graph of (1) =4—1¢ — |4 —¢| for 2 <t <5 and find (b) 21@t) (©) f(z—=3) d) —f@) (e f(=0).
its slope and range.

31 Suppose =8 up b timeT, and after that = —2. Starting from 46 If /(1) =t—1whatare2f(3:) and f(1~7) and f( = 1)?
zero, when doeg’ return to zero ? Give formulas foi(z) and f(1). 47 In the forward-back example (Figure 1.4) find(37) and
32 Suppose =3 up b time T = 4. What new velocity will lead to ./ (3T). Verify that those agree with the areas “under” thgraph.

J(7)=30if f(0)=07 Give formulas fow () and / (2). 48 Find formulas for the outputg; () and /> () which come from
33 What function F(C) converts Celsius temperature C tbe inputs:
Fahrenheit temperature F? The slope is , which is the (1) inside=input #3 (2) insidec input +6

number of Fahrenheit degrees equivalent €. output=inside +3 outpute inside 3

34 What function C(F) converts Fahrenheit to Celsius (%

Certigrade), and what is its slope ? ote BASIC and FORTRAN (and calculus itself) use in-

stead of— . But the symbolk— or := is in some ways better. The
35 What function converts the weight in grams to the weight instructions « ¢ + 6 produces a new equal to the old plus six.
f(w) in kilograms ? Interpret the slope gi(w). The equation = ¢ + 6 is not intended.

36 (Newspaper of March989) Ten hours after the accident the alag your computer can add and multiply. Starting with the number
cohol reading wag)61. Blood alcohol is eliminated ab15 per hour. | andthe input called, give a list of instructions to lead to these
What was the reading at the time of the accident? How much laggfputs:

Id it drop t0.04 (th i t by the Coast Guard)? Th
would it drop t0.04 (the maximum set by the Coast Guard) e fl(t):t2+t B =A@ )= FG+1).

usual limit on drivers is10 percent.
50 In fifty words or less explain whatfanction is.
Which points betweent =0 and ¢t = 5 can be in the domain of

£(r)? With this domain find the range in 37-42. The last questions are challenging but possible.
51 If f(r)=3t—1 for 0 <t <2 give formulas (with domain) and

37 fO)=vi—-1 38 f)=1/vi-1 find the slopes of these six functions:
39 f(1)= |t —4| (absolute value) 40 f®)y=1/( —4)2 (@ f(t+2) (b) f(t)+2 (© 2f@)
a1 f=2" 42 fy=2" (d) f(20) (e) f(=0) ® fUf@).
43 (a) Draw the graph off (t) = %t +3 with domain0 <r <2. 52 For f(t) =vt + C find the formulas and slopes of

Then give a formula and graph for (@) 3f(t)+1 () f(3t+1) ©) 2f(41)

(b) f()+1 (© f@+1) (d) f(=0) (e fO-fO 6 Q).

@ 4/ € s@n. 53 (hardest) The forward-back function isf(tr)=2¢ for

0<r<3, f(t)=12—2¢ for 3<r <6. Graph f(f(¢)) and find its

44 (a) Draw the graph otU(r) = step function= {0 for r <0, four-part formula. First tryt = 1.5 and3.

1 for ¢ = 0}. Then draw
(b)y U@)+2 (© Ut+2)
(d) 3U() (e) UB).

54 (a) Why is the letterX not the graph of a function ?
(b) Which capital letters are the graphs of functions ?
(c) Draw graphs of their slopes.
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I 1.2 Calculus Without Limits | NN

The next page is going to reveal one of the key ideas behind calculus. The discussion is
just about numbers—functions and slopes can wait. The numbers are not even special,
they can be any numbers. The crucial point is to look at their differences:

Suppose the numbersafe=0 2 6 7 4 9
Their differences are = 2 41 -3 5

The differences are printed in between, to shaw0=2 and 6—2=4 and
7—6=1. Notice how4 —7 gives a negative answer3. The numbers inf can go

up or down, the differences incan be positive or negative. The idea behind calculus
comes when yoadd up those differences

24+4+1-3+5=9

The sum of differences i8. This is the last number on the top line (ff). Is this an
accident, or is this always true ? If we stop earlier, ater4 + 1, we get the7 in f.
Test any prediction on a second example:

Suppose the numbersafe=1 3 7 8 5 10
Their differences are = 2 41 =35

The f’s are increased by. The differences are exactly the same—no change. The
sum of differences is stil). But the lastf is now10. That prediction is not right, we
don’t always get the last.

The first f is now 1. The answeb® (the sum of differences) i0 — 1, the last f
minus the first £. What happens when we change tfis in the middle ?

Suppose the numbersafe=1 5 12 7 10
Their differences are = 4 7 =53

The differences add té+7—5+3 =9. This is still 10 — 1. No matter whatf’s we
choose or how many, the sum of differences is controlled by the firahd last /.
If this is always true, there must be a clear reason thieymiddle /s cancel out

The sum of differences ig5—1)+ (12—5)+(7—12)+(10—-7) =10—1.

The5'’s cancel, thd2’s cancel, and th&'s cancel. Itis onlyl0 — 1 that doesn’t cancel.
This is the key to calculus!

1B The differences of thef’s add up to (fiast— frirst)-

EXAMPLE 1 The numbersgrowlinearly;f = 2 3 4 5 6 7
Their differencesareconstant:= 1 1 1 1 1

The sum of differences is certainy. This agrees with7 —2 = flast— fiirst. The
numbers i remind us of constant velocity. The numbergfinemind us of a straight
line f =vt+C. This example has =1 and the f’s start at2. The straight line
would come fromf =t +2.

EXAMPLE 2 The numbers are squareg:= 0 1 4 9 16
Their differences grow linearlyp= 1 3 5 7

1+3+5+7 agrees withd? = 16. It is a beautiful fact that the first odd numbers
always add up tg 2. Thev'’s are the odd numbers, th&s are perfect squares.
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Note The letter; is sometimes useful to tell which number jhwe are looking at.
For this example the zeroth numberfis= 0 and thejth numberisf; = j2. Thisis a
part of algebra, to give a formula for th&s instead of a list of numbers. We can also
use; to tell which difference we are looking at. The firstis the first odd number
v = 1. The jth difference is thg'th odd numbep; =2 —1. (Thusvs is8—1="7.)

It is better to start the differences wijh= 1, since there is no zeroth odd numlvgr
With this notation the jth difference isv; = f; — f;_1. Sooner or later you will
get comfortable with subscripts like and j — 1, but it can be later. The important
point is that the sum of the's equals flast— fiirst. WWe now connect the’s to slopes

and thef’s to areas.

’ f4=16
v, =77 ) it 5
DJ-=2J—1 & _,5:_,'
U3=35 - i
2 > £,=9
s
[)2=% = ~
1 2 i
o, =
I i + + > t fi=l + ; ; = !
1 2 3 4 1 2 3 4

Fig. 1.7 Linearincrease im = 1,3,5,7. Squares in the distancgs=0, 1,4,9, 16.

Figure 1.7 shows a natural way to graph Example 2, with the odd numberard
the squares irf. Notice an important difference between thgraph and the-graph.
The graph off is “piecewise lineat We plotted the numbersifi and connected them
by straight lines. The graph ofis “piecewise constaritWe plotted the differences
as constant over each piece. This reminds us of the distance-velocity graphs, when
the distancef(¢) is a straight line and the velocity(z) is a horizontal line.
Now make the connection to slopes:

distanceup  changeinf

The sl f thef- hi S N
e slope of thef-grap ISdistanceac:ross change in

Over each piece, the changedn(across) isl. The change inf (upward) is the

difference that we are calling The ratio is the slope/1 or justv. The slope makes

a sudden change at the breakpoints1,2,3, .... At those special points the slope

of the f-graph is not defined—we connected thg by vertical lines but this is very

debatableThe main idea is that between the breakpoints, the slopeg¢f) is v(z).
Now make the connection to areas:

The total area under the)-graph is fiast— ffirst.

This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle ig. The heights of the rectangles are this. So the areas also
equal thev's, and the total area is the sum of this. This area iSfiast— fiirst.

Even more is true. We could start at any time and end at any later time—
not necessarily at the special times 0, 1,2,3,4. Suppose we stop at=3.5. Only
half of the last rectangular area (undee 7) will be counted. The total area is
14345+ 1(7)=12.5. This stil agrees with fiast— first=12.5—0. At this
new ending time = 3.5, we are only halfway up the last step in tfiegraph. Halfway
betweerp and16 is 12.5.
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1C Thev’sare slopes off (z). The area under thev-graph is f(tend) — f (¢star -

This is nothing less than the Fundamental Theorem of Calculus. But we have only
used algebra (no curved graphs and no calculations involving limits). For now the
Theorem is restricted to piecewise line@(t) and piecewise constant(z). In
Chapters that restriction will be overcome.

Notice that a proof of +3+ 5+ 7 = 42 is suggested by Figure 1.7a. The triangle
under the dotted line has the same area as the four rectangles under the staircase. The
area of the triangle i% -baseheight= %-4-8, which is the perfect squarg. When
there arej rectangles instead df we get% -j-2j = j? for the area.

The next examples show other patterns, whgrandv increase exponentially or
oscillate around zero. | hope you like them but | don’t think you have to learn them.
They are like the special functio?$ and sirv and cog—except they go in steps.

You get a first look at the important functions of calculus, but you only need algebra.
Calculus is needed for a steadily changing velocity, when the graphy'd curved.

The last example will bancome tax—which really does go in steps. Then
Sectionl.3 will introduce the slope of a curve. The crucial step for curves is working
with limits. That will take us from algebra to calculus.

EXPONENTIAL VELOCITY AND DISTANCE

Start with the numberg =1,2,4,8,16. These are “powers &f.” They start with the
zeroth power, which i€° = 1. The exponential starts dt and not0. After j steps
there arej factors of2, and f; equals2’/. Please recognize the difference between
2j and j2 and2/. The number&; grow linearly, the numberg? grow quadratically,
the numberg’/ grow exponentially. Atj = 10 these arQ0 and 100 and 1024. The
exponential/ quickly becomes much larger than the others.

The differences off =1,2,4,8,16 are exactlyv =1,2,4,8. We get the same
beautiful numbersWhen the f’'s are powers of2, so are thev’s. The formula
v; =2/~ lis slightly different fromf; = 2/, because the firstis numbered; . (Then
v =2°% = 1. The zeroth power of every numberlisexcept thad® is meaningless.)
The two graphs in Figure 1.8 use the same numbers but they look different, because
f is piecewise linear and is piecewise constant.

v, =81 e =81
U.r'=2j_1

v,=4 =4

r:2=2~-_,—— fHi=2 %

vy =11 fo=11

1 -2 2, -4 I 2 & .4
Fig. 1.8  The velocity and distance grow exponentially (powerg)of
Where will calculus come in? It works with the smooth curf&) = 2'. This

exponential growth is critically important for population and money in a bank and the
national debt. You can spot it by the following testr) is proportional to f(z).
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Remark The function2? is trickier thanz2. For f =t? the slope isv =2¢. It is
proportional tor and notr2. For f =2’ the slope iv = c2?, and we won't find the
constantt =.693... until Chapter6. (The number is the natural logarithm o2.)
Problem37 estimates with a calculator—the important thing is that it's constant.

OSCILLATING VELOCITY AND DISTANCE

We have seen a forward-back motion, veloditjollowed by—V. That is oscillation
of the simplest kind. The graph gf goes linearly up and linearly down. Figure 1.9
shows another oscillation that returns to zero, but the path is more interesting.

The numbers inf are nowo,1,1,0,—1,—1,0. Since f¢ = 0 the motion brings us
back to the start. The whole oscillation can be repeated.

The differences in are1,0,—1,—1,0,1. They add up to zero, which agrees with
fast— frirst. Itis the same oscillation as ifi (and also repeatable), but shifted in time.

The f-graph resembles (roughly)sine curve Thev-graph resembles (even more
roughly) acosine curve The waveforms in nature are smooth curves, while these are
“digitized"—the way a digital watch goes forward in jumps. You recognize that the
change from analog to digital brought the computer revolution. The same revolution
is coming in CD players. Digital signals (off or obor 1) seem to win every time.

The piecewise and f start again at = 6. The ordinary sine and cosine repeat at
t =2m. A repeating motion igperiodic—here the “period” is6 or 2. (With ¢ in
degrees the period #0—a full circle. The period becomé@s when angles are mea-
sured inradians We virtually always use radians—which are degrees t2ag's$60.)
A watch has a period df2 hours. If the dial showaM andPM, the periodis .

v(r)

1 3 5 6 | \_/
=

Fig. 1.9 Piecewise constant “cosine” and piecewise linear “sine.” Tinath repeat.

A SHORT BURST OF SPEED

The next example is a car that is driven fast for a short time. PeredisV’ until the
distance reaches = 1, when the car suddenly stops. The graplfafoes up linearly
with slopeV/, and then across with slope zero:

V upto =T Vit upto t=T
)= )=
v(®) {O after =T /0 {1 after =T

This is another example of “function notation.” Notice the general tinamd the
particular stopping timel”. The distance isf(z). The domain of f (the inputs)
includes all times > 0. The range off (the outputs) includes all distanc@s f < 1.

Figure 1.10 allows us to compare three cars—a Jeep and a Corvette and a Maserati.
They have different speeds but they all regck- 1. So the areas under thegraphs
are alll. The rectangles have heightand basd" =1/V.
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Vm EQUAL AREAS EQUAL DISTANCES "
Maserati delta y function
aserati "
1 step
Vol=g= 1 X
€ —: Corvette 1' function
V; " I
I Jeep I
$ —
Ty Te T, Ty Tc T,

Fig. 1.10 Bursts of speed with/ys Ty = Ve Te = V; Ty = 1. Step function has infinite
slope.

Optional remark It is natural to think about faster and faster speeds, which means
steeper slopes. Thé-graph reaches in shorter times. The extreme case istap
function, when the graph off goes straight up. This is the unit stéf§z), which is

zero up tor =0 and jumps immediately t&/ =1 for ¢t > 0.

What is the slope of the step function Tt is zero except at the jump. At that moment,
which ist = 0, the slope isnfinite. We don’t have an ordinary velocity(¢)—instead
we have an impulse that makes the car jump. The graph is a spike over the single point
t =0, and it is often denoted bi—so the slope of the step function is calleddzlta
function.” The area under the infinite spike is

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Our last example is a real-world application of slopes ands rates—to explain “how
taxes work.” Note especially the difference between tax rates and tax brackets and
total tax. The rates ang the brackets are an, the total tax isf.

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .28, .31.

Suppose you are single with taxable incomerafollars (Form1040, line 37—after
all deductions). These are thh@91 instructions from the Internal Revenue Service:

If x is notover 0,350, the tax is15% of x.
If $20,350 < x < $49,300, the tax is $052.50 +28% of the amount over2, 350.

If x is over $9,300, the tax is $1, 158.50 + 31% of the amount over4®, 300.

The first bracket i9 < x < $20,350. (The IRS never uses this symbg| but | think
itis OK here.We know what it means.) Thesecond bracke2is 350 < x < $49, 300.
The top brackek > $49,300 pays tax at the top rate 81 %. But only the incomen
that bracketis taxed at that rate.

Figure 1.11 shows the rates and the brackets and the tax due. Thosearerage
rates, they arenarginal rates. Total tax divided by total income would be the average
rate. The marginal rate a8 or .31 gives the tax on eadcdditionaldollar ofincome—
it is the slope at the point. Taxis like areaor distance—it adds up.Tax rateis like
slopeor velocity—it depends where you are. This is often unclear in the news media.

Question What is the equation for the straight line in the top bracket ?

Answer  The bracket begins at = $49,300 when the tax isf(x) = $11, 158.50.
The slope of the line is the tax ratgl. When we know a point on the line and the
slope, we know the equation. This is important enough to be highlighted.
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40 + 180
DZ =60+ LI.E 180

tax to pay flx)

31%

11,158

tax rate =
slope .28

v, =20 [ area | 3,052

20350 49,300

Fig. 1.11 The tax rate i, the total tax isf. Tax brackets end at breakpoints.

1D For x in the top bracket the tax i§(x) = $11, 158.50 + .31 (x — $49,300).
This is the tax on &9, 300 plus the extra tax on extra income.

Section2.3 presents this “point-slope equation” for any straight line. Here you see it
for one specific example. Where does the number $11, 158cfde from? It is the
tax at theendof the middle bracket, so it is the tax at thigrt of the top bracket.

Figure 1.11 also shows a distance-velocity example. The distance=atis
f(2) =40 miles. After that time the velocity i60 miles per hour. So the line with
slope60 on the f-graph has the equation

f(t) = starting distancet+ extra distance= 40+ 60(t —2).
The starting point ig2,40). The new speed0 multiplies the extra time —2. The
point-slope equation makes sendé now review this section, with comments

Central idea Start with any numbers iff. Their differences go im. Then the sum of
those differences igjast— fiirst.

Subscript notationThe numbers arefy, f1,... and the first difference is
v1 = f1 — fo. Atypical number isf; and thejth differenceisy; = f; — f;_1. When
those differences are added, Al in the middle (like f1) cancel out:

v+t tv; =1 —f)+ oSO+ -+ ;= F,0=f;—fo
Examples f; = or j2 or 2/. Thenv; =1 (constant) or2j —1 (odd numbers)
or2/-1,

Functions Connect thef’s to be piecewise linear. Then the slapis piecewise con-
stant. The area under thegraph from anys,:to anyteng equalsf (fend) — f (fstard -

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate in
(dollars paid) (dollars earned). Tax rate is a percentage I#& with no units.

1.2 EXERCISES

Read-through questions

Start with the numbers f =1,6,2,5. Their differences are With distancesl,5,25 at unit times, the velocities are g
v= __a . The sum of those differencesis b . Thisis equal These are the h _ of the f-graph. The slope of the tax graph
to flastminus__ ¢ . The numbers and 2 have no effect on this is the tax__i . If f(¢) is the postage cost far ounces ort
answer, because i6—1) + (2—6) + (5—2) the numbers and2 grams, the slope isthe j per__k . For distance$,1,4,9 the

d . The slope of the line betweefi(0)=1 and f(1)=6 is velocities are__| . The sum of the firstj odd numbers is

e . The equation of that line ig(t)=__ f . fi=_m_ .Thenfjpis__n andthe velocityois__o
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The piecewise linear sine has slopesp . Those form a
piecewise q cosine. Both functions have r equal to 6,
which means thatf(t+6)= __ s for everyt. The velocities
v=12,4,8,... have v; = t . In that casefp=1 and
fi= u . The sum ofl1,2,4,8,16 is __v__ . The difference
2/ —27-1 equals__w . After a burst of speed to time 7', the
distance is__x

onlytoT= 'y

z __function. The velocities approach a A __ function, which

is concentrated at=0 but has area_B _ under its graph. The

slope of a step functionis C .
Problems 1-4 are about numbers and differencesv.

1 From the numberg’ =0,2,7, 10 find the difference® and the

sum of the three’s. Write down anotherf that leads to the same

v's. For f =0,3,12, 10 the sum of the’s is still .

65

Problems 12—-18 are based on Example 3 about income taxes.

12 What are the income taxes on=$10,000 and x = $30, 000
andx = $50,000 ?

13 What is the equation for income tgi(x) in the second bracket
$20,350 < x <$49,300 ? How is the numbet1, 158.50 connected

. If f(T) = 1 andV increases, the burst lastswvith the other numbers in the tax instructions ?
. WhenV approaches infinityf (¢) approaches a

14 Write the tax functionF (x) for amarried couple if the IRS treats
them as two single taxpayers each with taxable incanfiz (This

is not done.)

15 In the 15% hracket, with 5% state tax as a deduction, the
combined rate is no20% but . Think about the tax on an
extra $100.

16 A piecewise linear function isontinuouswhen f(¢) at the end
of each interval equalg(z) at the start of the following interval. If

2 Starting from f =1,3,2, 4 draw the f-graph (linear pieces) and f(t) = 5t up tor =1 andv () =2 for ¢ > 1, define f beyondr = 1

the v-graph. What are the areas “under” thegraph that add to

so it is (a) continuous (b) discontinuous. (c) Define a tax function

4—17? If the next number inf is 11, what is the area under thef(x) with rates.15 and.28 so you would lose by earning an extra

nextv ?

3 Fromv=1,2,1,0,—1 find the f’s starting atfo = 3. Graphv
and f. The maximum value off occurs when = . Where
is the maximumf whenv=1,2,1,—17?

4 For f =1,b,c,7 find the differences;, v,,v3 and add them up.
Do the same forf =a,b,c,7. Do the same foif =a,b,c.d.
Problems 5-11 are about linear functions and constant slopes.

5 Write down the slopes of these linear functions:

@ f()=11t (b) f(t)=1-2t (C) f(t)=4+5(t—6).

dollar beyond the breakpoint.

17 The difference between a tasredit and adeductionfrom
income is the difference betweef(x) —c and f(x —d). Which is
more desirable, a credit of=$1000 or a deduction of! = $1000,
and why ? Sketch the tax graphs whgx) = .15x.

18 The average tax rate on the taxable incomea(x) = f(x)/x.
This is the slope betwee(®,0) and the point(x, f(x)). Draw a
rough graph of:(x). The average rate is below the marginal rate
v because .

Problems 19-30 involve numbers fy, f1, f2,... and their
differencesv; = f; — f;_1. They give practice with subscripts

Compute f(6) and f(7) for each function and confirm thatp . . ;.

f(7)— f(6) equals the slope.

6 If f(r)=5+3(t—1)andg(r)=1.54+2.5(t — 1) whatish(r) =
f(t)—g(t)? Find the slopes of, g andh.

7 Supposev(t) =2fort <5andv(t) =3 for¢ > 5.

(@) If £(0) =0 find a two-part formula forf (¢).

(b) Check thatf(10) equals the area under the graphvdf)
(two rectangles) up to= 10.

8 Supposev(r) =10 forr < 1/10,v(¢t) =0 for > 1/10. Starting
from f(0) =1 find f(¢) in two pieces.

9 Supposeg(r) =2t+1 and f(r) =4t. Find g(3) and f(g(3))
and f(g(¢)). How is the slope off (g(¢)) related to the slopes of
andg ?

10 For the same functions, what arg(3) and g(f(3)) and
g(f(t))? Whery is changed tdt, distance increases times
as fast and the velocity is multiplied by .

11 Compute f(6) ard f(8) for the functions in Problent.
Confirm that the slopes agree with

S(®)— f(6) change inf

8—6  changein

slope=

19 Find the velocities);,v2,v3 and formulas for ; and f;:
(b) f=0,1,01,... (c)f=0.3.2.Z....

20 Find f1, f2. f3 and a formula forf; with fo =0:
(@ v=1,2,48, ... (b) v=—1,1,—1,1,...

@ f=13.5.7,...

21 The areas of these nested squareslaré?,32, .... What are
the areas of the L-shaped bands (the differences between squares) ?
How does the figure show that-3+5+7 =427

L 2 3 3 1

22 From the area under the staircase (by rectangles and then by
triangles) show that the first whole numbersl to j add up to
172+ L) Find 142+ +100.
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23 If v=1,3,5... then f;=;2 If v=1,11,... then 38 Supposefo=1andv; =2f; 1=v;.Find fs.

fi= . Add those to find the sum 4,6, ...,2j. Divide 11 1s L
by 2 to find the sum ofl, 2,3, ..., j. (Compare Probler2.) 39 (@) Fromf =13 7.5 findvi,v2,v3, and predicv;.
(b) Checkf3—f0:v1+v2+v3 andfj—fj_lzvj.

40 Supposev; =r/. Shav that f; = (r/T1—1)/(r—1) starts
from fo=1 and hasf; — f;_1 =v;. (Then this is the correct
fi=1+r+--- +r/ = sum of a geometric series.)

24 True (with reason)r false (with example).

(&) When thef’s are increasing so are theés.
(b) When thev’s are increasing so are thés.
(c) When thef’s are periodic so are thes.

(d) When thev's are periodic so are thg's. 41 From f; = (—1)/ computev;. Whatisvy + vy +--+v; ?

25 If f(z) =12, compute f(99) and f(101). Between those times, 42 Estimate the slope of () = e! att =0. Use a calculator that
what is the increase iff divided by the increase in? knowse (or else takee = 2.78) to compute

26 If f(t)=1t>+t, compute £(99) and f(101). Between those F@) = f0) e—1 el 1 01 _1

times, what is the increase ifi divided by the increase in? P 1 and 1 and 01

27 If fj = j?+ j+1findaformula forv;.

28 Suppose the's increase byt at every step. Show by examplePrObIems 43-47 are about/(r) = step from 0 to 1 at 7 =0.

and then by algebra that the “second differeng§”y 1 —2f; + 43 Graph the four function&/(r —1) and U(z) —2 and U(3¢) and

fj—1 equalst. 4U(t). Then graphf(t) =4U(3t —1) —2.

29 Suppose fo =0 and the v's are 1,4.2, 2.1 2 2 For 44 Graph the square waw(:)—U(z — 1). If this is the velocity
which j doesf; =57 v(t), graph the distancg (¢). If this is the distancef (), graph the
30 Show that a;=f;j11—-2f;+fj—1 always equals velocity.

v;j+1—vj. If vis velocity theru stands for . 45 Two bursts of speed lead to the same distafiee 10:
Problems 31-34 involve periodic f’s and v's (like sins v=__tor=.001 v=Vtor=

and cost). AsV — oo the limit of the f(¢)'s is .

31 Forthe discrete sing =0,1,1,0,—1,—1,0 find the second dif- 46 Draw the staircase functio/(t)+U(t —1)+U(t —2). Its
ferencesi; = f>» —2f1 + fo andas = f3—2f>+ f1 andas. Com- slope is a sum of three functions.

parea; with f;. 47 Which capital letters likeL are the graphs of functions when

32 If the sequencevi,vs, ... has periodé and wq,w», ... has Stes are allowed? The slope bfis minus a delta function. Graph
period10, what is the period of{ +w;,v2 + w2, ...? theslopes of the others.

33 Draw the graph of f(t) starting from fo=0 when 48 Write a subroutine FINDV whose input is a sequence

v=1,—1,—1,1. If v has periodt find f(12), £(13), £(100.1). fo, f1,....fn and whose output isvl,vz,..z.,vN,lnclude
hical output if ible. Test ofy =2 and d2/.

34 Graph f(¢) from fo =0to f4 =4 whenv=1,2,1,0. If v has graphical output if possible. Test ofy Jandj=an

period 4, find £(12) and f(14) and f(16). Why doesn’t f have 49 Write a subroutine FINDF whose input ig,...,vy. and fo,

period4 ? and whose output iy, f1, ..., f§. The default value offy is zero.
Include graphical output if possible. Test = ;.

Problems 35-42 are about exponential’s and /”s. 50 If FINDV is applied to the output of FINDF, what sequence

35 Findthev'sfor f =1,3,9,27. Predictvs, andv ;. Algebra gives is returned ? If FINDF is applied to the output of FINDV, what

33/ 1=(3— 153]‘71 sequence is returned ? Watgh

36 Findl4+24+4+--+32and alsol+%+%+-~-+%. 51 Arrange2;j ard j2 and2/ and,/j in increasing order
.. L s L1
37 Estimate the slope off(r)=2' atr=0. Use a calculator to (@) Wwhenjislarge:j =9 (b) whenj is small:j = 5.

compute (increase iff)/(increase in) whent is small: 52 The average age of your family sin¢@70 is a piecewise linear

f)—f0) 2-1 21 201 _ 1 2001 _| function A(r). Is it continuous or does it jump ? What is its slope ?

- N and 3 and ol and o0l Graph it the best you can.
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I 1.3 The Velocity atan Instant [ IEEEEEE

We have arrived at the central problems that calculus was invented to solve. There are
two questions, in opposite directions, and | hope you could see them coming.

1. If the velocity is changindjow can you compute the distance traveted
2. Ifthe graph off(¢) is not a straight lineywhat is its slop&@

Find the distance from the velocity, find the velocity from the distance. Our goal is to
do both—but not in one section. Calculus may be a good course, but it is not magic.
The first step is to let the velocity change in the steadiest possible way.

Question 1 Suppose the velocity at each timés v(r) = 2¢. Find f(z).

With v = 2¢, a physicist would say that the acceleration is constant (it eqyalhe

driver steps on the gas, the car accelerates, and the speedometer goes steadily up. The
distance goes up too—faster and faster. If we measurseconds and in feet per

second, the distancg comes out in feet. Aftet0 seconds the speed 2§ feet per

second. After4 seconds the speed88 feet/second (which i$0 miles/hour). The
acceleration is cleabut how far has the car gone

Question 2 The distance traveled by timeis f(z) =¢2. Find the velocityv(z).

The graph of f(r) =2 is on the right of Figure 1.12. It is parabola The curve
starts at zero, when the car is new. /At 5 the distance isf =25. By t =10, f
reached00.

Velocity is distance divided by time, but what happens when the speed is changing ?
Dividing f =100 by r =10 givesv = 10—the average velocityover the first ten
seconds. Dividingf = 121 by ¢t = 11 gives the average speed ovdrseconds. But
how do we find thanstantaneous velocity—the reading on the speedometer at the
exact instant when=10"?

| change in slope 2t + h
, distance approaches
1(t+ )2 =12 v=21
I

h

time ¢ t t+h 1

Fig. 1.12  The velocityv = 2¢ is linear. The distancg’ = 12 is quadratic.

| hope you see the problem. As the car goes faster, the graghgats steeper—
because more distance is covered in each second. The average velocity betwéen
andr = 11 is a good approximation—but only an approximation—to the speed at the
moment: = 10. Averages are easy to find:
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distance at = 10is £(10) =102 =100 distance at=11is f(11)=112=121

JSaD=£(10)  121-100
T o11-10 1 -

average velocity i 21.

The car coveredl feet in thatl second. Its average speed Wadeet/second. Since
it was gaining speed, the velocity at the beginning of that second was bBélow

Geometrically, what is the average ? It is a slope, but not the slope of the curve.
The average velocity is the slope of a straight lifEhe line goes between two points
on the curve in Figure 1.12. When we compute an average, we pretend the velocity is
constant—so we go back to the easiest case. It only requires a division of distance by
time:
changein f

average velocit) —.
g ¥ change irr

N

Calculus and the Law You enter a highway at : 00. If you exit 150 miles away at
3:00, your average speedi$ miles per hour. I'm not sure if the police can give you

a ticket. You could say to the judge, “When was | do#tdg? ” The police would have

to admit that they have no idea—but they would have a definite feeling that you must
have been doing@5 sometime;:

We return to the central problem—computingl0) at the instant = 10. The
average velocity over the next secon®is We can also find the average over the
half-secondbetweens = 10.0 and ¢ = 10.5. Divide the change in distance by the
changein time:

£(10.5)— £(10.0) _ (10.5%—(10.0)> 110.25—100
10.5—10.0 5 B B

20.5.

That average d20.5 is closer to the speed at= 10. It is still not exact.

The way to findv(10) is to keep reducing the time intervarhis is the basis for
Chapter2, and the key to differential calculufind the slope between points that
are closer and closer on the curve. The “limit” is the slope at a single point.

Algebra gives the average velocity between 10 and any later time =10+ A.
The distance increases frori? to (10 + 4)2. The change in time is. So divide:

(10+/)?—10> 100420k +h*—100

=20+h. 2
h h o )

Vawerage=
This formula fits our previous calculations. The interval from 10 to ¢t =11 had
h=1, and the average wag0+/i=21. When the time step Wah:%, the
average wa90+% =20.5. Over a millionth of a second the average will be
plus1/1,000,000—which is very nea20.

Conclusion The velocity atr =10 is v =20. That is the slope of the curvdt
agrees with the-graph on the left side of Figure 1.12, which also hag)) = 20.

+This is our first encounter with the much despised “Mean Value Theorem.” If the judge can
prove the theorem, you are dead. A fevgraphs andf-graphs will confuse the situation.
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We now show that the two graphs match at all timesf (f) = ¢2 thenv(¢) = 2¢.
You are seeing the key computation of calculus, and we can put it into words before
equations. Compute the distance at timeh, subtractthe distance at time, and
divideby &. That gives the average velocity:

_fa+h)—f@)  (+h)?>—1* >+ 2h+h*—1?
N h N h N h

This fits the previous calculation, wherevas10. The average wa&0 + 4. Now the
average iQ¢ + h. It depends on the time stép because the velocity is changing. But

we can see what happeas/ approaches zerolThe average is closer and closer to
the speedometer reading2f, at the exact moment when the clock shows time

=2+h.  (3)

Vawe

1E Ash approaches zero, the average veloQity+ i approaches () = 2¢.

Note The computation (3) shows how calculus needs algebra. If we want the whole
v-graph, we have to let time be adriable” It is represented by the letterNumbers
are enough at the specific time= 10 and the specific stepp= 1—but algebra gets
beyond that. The average between aayd any 4/ is 2¢ + h. Please don't hesitate
to put back numbers for the letters—that checks the algebra.

There is also a step beyond algebra! Calculus requireéirttieof the average
As h shrinks to zero, the points on the graph come closer. “Average over an interval”
becomes “velocity at an instant.” The general theory of limits is not particularly
simple, but here we don’t need it. (It isn’t particularly hard either.) In this example
the limiting value is easy to identiffhe averag@r + i approache3t, ash — 0.

What remains to do in this section? We answered Quegteto find velocity
from distance. We have not answered Questidfi v(¢r) = 2¢ increases linearly with
time, what is the distance ? This goes in the opposite directionifitegratior).

The Fundamental Theorem of Calculus says that no new work is necd§siagy.
slope of f(¢) leads tov(¢), then the area under that-graph leads back to the
f-graph. The odometer readingg =? produced speedometer readings- 2t.
By the Fundamental Theorem, the area urtdeshould ber?. But we have certainly
not proved any fundamental theorems, so it is better to be safe—by actually
computing the area.

Fortunately, it is the area of a triangle. The base of the trianglamsl the height is
v =2¢. The area agrees witfi(¢):

area= 3 (basg(heighy = 1(1)(21) =1>. (4)

EXAMPLE 1 The graphs areshifted in time. The car doesn't start untik=1.
Thereforev =0 and f =0 up to that time. After the car starts we have-2(t — 1)
and 1 = (t —1)2. You see how the time delay dfenters the formulas. Figure 1.13
shows how it affects the graphs.

EXAMPLE 2  The acceleration changes frano another constant. The velocity
changes fromv =2¢ to v = at. The acceleration is the slope of the velocity cutve
The distance is also proportionaldgbut notice the factoé—:

acceleratiom < velocityv=at < distancef:%atz.

If a equalsl, thenv=r and f = %12. That is one of the most famous pairs in
calculus. Ifa equals the gravitational constagt thenv = gt is the velocity of a
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v=2(-1)

1 2

Fig. 1.13  Delayed velocity and distance. The pairs=at +b and f = %at2 +bt.

falling body. The speed doesn’t depend on the mass (tested by Galileo at the
Leaning Tower of Pisa). Maybe he saw the distaifce %gt2 more easily than the
speedy = gt. Anyway, this is the most famous pair in physics.

EXAMPLE 3 Supposef(t) = 3t +t2. The average velocity fromto ¢t + & is

f+h)y—f(@t) 3(@t+h) +@+h)?*-=3t—12
Vave = = .
h h
The change in distance has an ex@kgcoming from3(z + 4) minus3¢). The velocity
contains an additional (coming from3/ divided by /). When3¢ is added to the

distance3} is added to the velocity. If Galileo had thrown a weight instead of dropping
it, the starting velocity, would have added,¢ to the distance.

FUNCTIONS ACROSS TIME

The idea of slope is not difficult—for one straight line. Divittee change inf" by
the change in. In Chapter2, divide the change ity by the change inr. Experience
shows that the hard part is to see what happens to the slope as the line moves.

Figure 1.14a shows the line between poititand B on the curve. This is a “secant
line.” Its slope is amaveragevelocity. What calculus does is to bring that poilit
down the curve toward.

speed
fa+hm+ 60+ d
car C
vorf?
fin+ 3071
car D
+ - - + ——t> [ forv?
t t+h 1 I & 1
4 2 4 L

Fig. 1.14  Slope of line, slope of curve. Two velocity grapWghich is which?

Question 1  What happens to the “change fit—the height ofB aboveA ?
Answer The change irf deaeases to zero. So does the change in
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Question 2 As B approachesd, does the slope of the line increase or decrease ?
Answer | am not going to answer that question. It is too important. Drawatlaer
secant line withB closer to4A. Compare the slopes.

This question was created by Steve Monk at the University of Washington—where
57% of the class gave the right answer. Proba®l% would have found the right
slope from a formula. Figure 1.14b shows the opposite problem. We know the
velocity, not the distance. But calculus answers questions about both functions.

Question 3 Which car is going faster at time=3/4?
Answer CarC has higher speed. Ca@r has greater acceleration.

Question 4  If the cars start together, & cathing up toC at the end ? Between

t= % and ¢t = 1, do the cars get closer or further apart ?

Answer  This time more than half the class got it wrong. You won't but yan see

why they did. You have to look at the speed graph and imagine the distance graph.
When carC is going faster, the distance between them .

To repeat: The cars start together, but they don't finish together. They reach the
same speed at= 1, not the same distance. Garwent faster. You really should draw
their distance graphs, to see how they bend.

These problems help to emphasize one more point. Finding the speed (or slope) is
entirely different from finding the distance (or area):

1. To find theslopeof the f-graph at a particular timg youdon't have to know
the whole history.

2. To find thearea under thev-graph up to a particular timg you do have to
know the whole history.

A short record of distance is enough to recov@rn. Point B moves toward poin#.
The problem of slope imcal—the speed is completely decided i) near pointA.

In contrast, a short record of speechist enougho recover the total distance. We
have to know what the mileage was earlier. Otherwise we can only knowwdrease
in mileage, not the total.

1.3 EXERCISES

Read-through questions

Between the distances f(2)=100 and f(6)=200, the at Bisfoundby o .When the velocity is positive, the distance

average velocity is_a . If f(t):%t2 then f(6)= _b is p .When the velocity is increasing, the carisq .
and f(8)= __c . The average velocity in between is d . .
The }irrgsiantMS velocitiesgat:6 a)r/1d /=8 are e 1 Compute the average velocity betwees 5 and: = 8:
and f . @ f@)=6t (b) f@r)=6t+2
© f@)=zar? d f)y=t—1>
The average velocity is computed fronf(z) and f (s +h) (e) f()=6 ) v@)=21
by vae= g .If f(t)=1t%thenvae=_h .Fromr=1to ) _
t=1.1 the average is_i . The instantaneous velocity is the 2 FOr the same functions computef (s +h) — f(1)]/h. This
i of vae. If the distance isf(t) = Lar? then the velocity is depends om andh. Find the limit ash — 0.
v(f)=__k _andthe accelerationis | . 3 If the odometer readg(r) = t2 +¢(f in miles or kilometerst

in hours), find the average speed between

Onthe graph off (¢), the average velocity betweehand B is the (@ r=1and t=2
slope of _m . The velocity at4 isfound by__n__. The velocity (b) t=1 and r=1.1
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() t=1 and t=1+h (&) Graph this parabola and its slope.
(d) r=1 and t =.9 (noteh = —.1) (b) Find the time in the air and maximum height.

: _3
4 For the samef(r) = 12 + ¢, find the average speed between (c) Prove Half the time you are above = .

(@) ¢=0andl () t=0 and% © t=0andh. Basketball players “hang” in the air partly because of (c).
16 Graphf(r)=r?ardg(t) = f(t)—2andh(r) = f(21), all from
5 In the answer to 3(c), find the limit d@s— 0. What does that ; _ ({0 s = 1. Find the velocitie];. /
limit tell us ? o
17 (Recommended) An up and down velocityvi§) = 2¢ for t <

6 Set h=0 in your answer to 4(c). Draw the graph of ;)= 12—2/fors > 3. Draw the piecewise paraboj(). Check

f(t)=1?+1 and show its slope at=0. that f(6) = area under the graph oft).
7 Draw the graph ofy(¢) = 1+2¢. From geometry find the area; g Supposev(t) =t for 1 <2 and v(r) =2 for t >2. Draw the
under it from0 to ¢. Find the slope of that area functigfi(z). graph of £(¢) out to = 3.
8 Draw the graphs of(z) =3 —2r and the ared (1). 19 Draw f(¢) uptot = 4 whenw(r) increases linearly from
9 True or false @ 0to2 (b) —1tol (© —2100.
(8 If the distancef (¢) is positive, so i9)(¢).
(b) If the distancef (¢) is increasing, so is(z). 20 (Recommended) Supposé€) is the piecewise linear sine func-
(c) If f(¢) is positive,u(z) is increasing. tion of Sectionl.2. (In Figure 1.8 it was the distance.) Find the area
(d) If v(r) is positive, £ (¢) is increasing. underv(z) betweensr =0 and¢ =1,2,3,4,5,6. Plot those points

f(), ..., f(6) and draw the complete piecewise parabfia).
10 If f(r)=6¢2 find the slope of thef-graph and also the

v-graph. The slope of the-graph is the _ 21 Draw the graph off (1) = |1 —¢2| for 0<¢ <2. Find a three-

part formula forv(¢).
11 If f(r)=1? what is the average velocity betweer=.9 and

¢ =1.17? What is the average between 1 andz +/ ? 22 Draw the graphs of (¢) for these velocities (to= 2):
H=1-t
12 (a) Show that forf(r) = %azz the average velocity between EZ; Zit)) — =]

t —h andr + h is exactly the velocity at.
] © v)=Q—-1)+|1—1].
(b) The area under(t) =at fromt—h tot+h is exactly the
base2/ times ] 23 When doesf (t) = t> — 3¢ reach10? Find the average velocity
) ) ) up to that time and the instantaneous velocity at that time.
13 Find f(¢) fromv(¢) =20t if f(0)=12. Alsoif f(1)=12.
. 24 If f(t)=2%at®>+bt+c, what isv(r)? What is the slope of
14 True or false for any distance curves. v(t)? When doesf (1) equaldl, ifa =h=c =12
(@) The slope of the line froml to B is the average velocity
between those points.
(b) Secant lines have smaller slopes than the curve.
(c) If f(r) and F(¢) start together and finish together, th
average velocities are equal.
(d) If v(r) and V(¢) start together and finish together, the7 For f(¢) =2 find vaye(t) betweend ands. Graphvaye(t) and
increases in distance are equal. v(t).

25 If f(r) =12 thenv(r) = 2¢. Does the speeded-up functigit4r)
have velocityv(4¢) or 4v(t) or 4v(4t) ?

g6 If f(t)=1t—1*find v(r) and f(3t). Does the slope off (3)
equalv(3t) or3v(z) or3v(3t) ?

15 When you jump up and fall back your heightjis=2r —1% in 28 If you know the average velocityave(t), how can you find the
the right units. distancef'(¢t) ? Start fromf(0) =0.
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I 1.4 Circular Motion |

This section introduces completely new distances and velocities—the sines and
cosines from trigonometry As | write that last word, | ask myself how much
trigonometry it is essential to know. There will be the basic picture of a right
triangle, with sides cos and sint and 1. There will also be the crucial equation
(cost)? +(sint)? =1, which is Pythagoras’ law? + 52 = ¢2. The squares of two
sides add to the square of the hypotenuse (and tisereally 12). Nothing else is
needed immediately. If you don’'t know trigonometry, don’t stop—an important part
can be learned now.

You will recognize the wavy graphs of the sine and cosifve.intend to find the
slopes of those graph¥hat can be done without using the formulas for(si# y)
and cogx + y)—which later give the same slopes in a more algebraic way. Here it is
only basic things that are needgénd anyway, how complicated can a triangle be ?

Remark You might think trigonometry is only for surveyors and navigators
(people with triangles). Not at all! By far the biggest applications ametation and
vibration and oscillation. It is fantastic that sines and cosines are so perfect for
“repeating motion"—around a circle or up and down.

v=cost f=sint

\

b4
radians

o /r 90°  180° 270°

COs [

Fig. 1.15 Asthe angle changes, the graphs show the sides of the right triangle.

Our underlying goal is to offer one more example in which the velocity can be
computed by common sense. Calculus is mainly an extension of common sense, but
here that extension is not needed. We will find the slope of the sine curve. The straight
line f = vt was easy and the parabofa= %at2 was harder. The new example also
involves realistic motion, seen every day. We start witbular motion, in which the
position is given and the velocity will be found.

A ball goes around a circle of radius oneThe center is akk =0,y =0 (the
origin). Thex andy coordinates satisfy? + y2 = 12, to keep the ball on the circle.
We specify its position in Figure 1.16a by giving its angle with the horizontal. And
we make the ball travel with constant speed, by requiringttimiangle is equal to
the time¢. The ball goes counterclockwise. At tiniet reaches the point where the
angle equald. The angle is measured fadiansrather than degrees, so a full circle
is completed at = 27 instead off = 360.

The ball starts on the axis, where the angle is zero. Now find it at time

The ball is at the point wherer = cost and y = sint.

+Sines and cosines are so important that | added a review of trigonometry in Seéti@ut
the concepts in this section can be more valuable than formulas.
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This is where trigonometry is useful. The cosine oscillatesvbehl and—1, as the
ball goes from far right to far left and back again. The sine also oscillates befween
and —1, starting from sird = 0. At time /2 the sine (the height) increases to one.
The cosine is zero and the ball reaches the top poiabd, y = 1. Attime r the cosine

is —1 and the sine is back to zero—the coordinates(are 0). At r =27 the circle

is complete (the angle is algar), andx = cos2z =1, y =sin 2z =0.

—sin t

- —— =y

_ vertical
S AROR = i
Y velocity

vertical
distance

Fig. 1.16  Circular motion with speed, angle ¢, height sir¢, upward velocity cos.

Important point: The distance around the circle (its circumferenc2yis= 2,
because the radius Is The ball travels a distancer in a time2x. The speed equals
1. It remains to find the velocity, which involves not only speedditgction

Degrees vs. radiansA full circle is 360 degrees anéx radians. Therefore

1 radian=360/27 degrees: 57.3 degrees
1 degree=27/360 radians~ .01745 radians

Radians were invented to avoid those numbers! The speed idyexaceaching:
radians at time. The speed would b®1745, if the ball only reached degrees. The
ball would complete the circle at tim€ = 360. We cannot accept the division of the
circle into360 pieces (by whom ?), which produces these numbers.

To check degree mode vs. radian mode, verify that $in .017 and sinl ~ .84.

VELOCITY OF THE BALL

At time ¢, which direction is the ball going ? Calculus watches the motion between
ard¢ + h. For a ball on a string, we don’t need calculus—just letBee direction of
motion is tangent to the circléWith no force to keep it on the circléhe ball goes off

on a tangentlf the ball is the moon, the force is gravity. If it is a hammer swinging
around on a chain, the force is from the center. When the thrower lets go, the hammer
takes off—and it is an art to pick the right moment. (I once saw a friend hit by a
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that same
tangent direction, when the pointstaands + 4 come close.

The “velocity trianglé€ is in Figure 1.16b. It is the same as the position triangle,
but rotated througl0°. The hypotenuse is tangent to the circle, in the direction the
ball is moving. Its length equalk (the speed). The anglestill appears, but now it
is the angle with the vertical.lhe upward component of velocity isost, when the
upward component of position isinz. That is our common sense calculation, based
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on a figure rather than a formula. The rest of this section depemds—and we check
v = cost at special points.

At the starting time = 0, the movement is all upward. The height is 8ig 0 and
the upward velocity is co= 1. At time /2, the ball reaches the top. The height
is sinw/2 =1 and the upward velocity is cag/2 = 0. At that instant the ball is not
moving up or down.

The horizontal velocity contains a minus sign. At first the ball travels téettheThe
value ofx is cost, butthe speed in the direction is—sinz. Half of trigonometry
is in that figure (the good half), and you see how’sificost = 1 is so basic. That
equation applies to position and velocity, at every time.

Application of plane geometry: The right triangles in Figure 1.16 are the same
size and shape. They look congruent and they are—the amdleve the ball equals
the angle at the center. That is because the three angles at the ball a8é°to

OSCILLATION: UP AND DOWN MOTION

We now use circular motion to studyraight-line motion That line will be they axis.
Instead of a ball going around a circle, a mass will move up and down. It oscillates
betweeny =1 andy = —1. The mass is thé shadow of the balf as we explainin a
moment.

There is a jumpy oscillation that we do not want, with=1 andv = —1. That
“bang-bang” velocity is like a billiard ball, bouncing between two walls without
slowing down. If the distance between the wall®ighen at: = 4 the ball is back
to the start. The distance graph is a zigzag (or sawtooth) from Selcfion

We prefer a smoother motion. Instead of velocities that jump betwedeand—1,

a real oscillatiorslows down to zerand gradually builds up speed again. The mass

is on a spring, which pulls it back. The velocity drops to zero as the spring is fully
stretched. Them is negative, as the mass goes the same distance in the opposite
direction. Simple harmonic motionis the most important back and forth motion,
while f =vtand f = %atz are the most important one-way motions.

LT n
sin—=1 4, cos —=0 turn
mass ball 2 : 2
1
_ 1
II'}ulji_(:os‘rl sin0=0 + cos0=1 up
_,f'“p =sint °
sint=0 * cos T =-1 down
B
f
1
il 3
sin—=-1 1 cos En =0 turn

Fig. 1.17  Circular motion of the ball and harmonic motion of the mass tisdew).

How do we describe this oscillation ? The best way is to match it with the ball on
the circle.The height of the ball will be the height of the mas$he “shadow of the
ball” goes up and down, level with the ball. As the ball passes the top of the circle, the
mass stops at the top and starts down. As the ball goes around the bottom, the mass
stops and turns back up threaxis. Halfway up (or down), the speedlis

Figure 1.17a shows the mass at a typical tim&he height isy = f(r) = sint,
level with the ball. This height oscillates betwe¢n=1 and f = —1. But the mass
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does not move with constant speé&tie speed of the mass is changing although the
speed of the ball is alwayk The time for a full cycle is stilk, but within that cycle
the mass speeds up and slows down. The problem is to find the changing velocity
Since the distance ig = sint, the velocity will be theslope of the sine curve.

THE SLOPE OF THE SINE CURVE

At the top and bottoms(= = /2 and ¢t =37 /2) the ball changes direction amd= 0.

The slope at the top and bottom of the sine curve is.zémtime zero, when the ball

is going straight up, the slope of the sine curve is 1. At t = &, when the ball and

mass ang‘-graph are going down, the velocityis= —1. The mass goes fastest at the
center. The mass goes slowest (in fact it stops) when the height reaches a maximum
or minimum. The velocity triangle yields at every time.

To find the upward velocity of the mass, look at the upward velocity of the ball.
Those velocities are the same! The mass and ball stay level, and wekfrom
circular motion:The upward velocity i3 = cost.

Figure 1.18 shows the result we want. On the rights sin¢ gives the height. On
the left is the velocity = cost. That velocity is the slope of th¢-curve. The height
and velocity (red lines) are oscillating together, but they are out of phase—just as the
position triangle and velocity triangle were at right angles. This is absolutely fantastic,
that in calculus the two most famous functions of trigonometry form a phai:slope
of the sine curve is given by the cosine curve

When the distance igf(¢) = sin¢, the velocity isv(t) = cost.

Admission of guilt: The slope of sin was not computed in the standard way.
Previously we compared + 4)? with ¢2, and divided that distance Iy This average
velocity approached the slo@e asi became smallFor sint we could have done
the same

changeinsin _ sin(t +h) —sint

average velocit - =
g ¥ changeinr h

oy

This is where we need the formula for &iR- /), coming soon. Somehow the ratio
in (1) should approach casas’ — 0. (It does.) The sine and cosine fit the same
pattern ag? and2¢r—our shortcut was to watch the shadow of motion around a circle.

| 4 - 11 -

! U=cost \ ! f=sint !
I

—_

Fig. 1.18 v =cost when f =sin¢ (red);v = —sinz when f = cost (black).

+That looks easy but you will see later that it is extremely importabta maximum or
minimum the slope is zerdThe curve levels off.
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Question 1 What if the ball goes twice as fast, to reach angleattimer ?

Answer  The speed is nov2. The time for a full circle is onlyxr. The ball’s
position isx = cos2t andy =sin2t. The velocity is still tangent to the circle—but
the tangent is at angler where the ball is. Therefore c@s enters the upward
velocity and —sin2¢ enters the horizontal velocity. The difference is thhé
velocity triangle is twice as bigrhe upward velocity is not cd@ but2cos2¢. The
horizontal velocity is-2sin2¢. Notice thes@’s!

Question 2  What is the area under the cosine curve from=0tor =7 /2?

You can answer that, if you accept the Fundamental Theorem ofulDal—
computing areas is the opposite of computing slop@&se slope of sin is cost,
so the area under coss the increase in sin No reason to believe that yet, but we
use it anyway.

From sin0=0 to sinz/2 =1, the increase id. Please realize the power of
calculus. No other method could compute the area under a cosine curve so fast.

THE SLOPE OF THE COSINE CURVE

| cannot resist uncovering another distance and velocitytfeng’-v pair) with no
extra work. This timef is the cosine. The time clock stadsthe top of the circle
The old timer = /2 is nowt = 0. The dotted lines in Figure 1.18 show the new start.
But the shadow has exactly the same motion—the ball keeps going around the circle,
and the mass follows it up and down. Tliiegraph andy-graph are still correct, both
with a time shift ofr /2.

The newf-graph is the cosineThe newv-graph isminus the sine The slope of
the cosine curve follows theegativeof the sine curve. That is another famous pair,
twins of the first:

When the distance igf(¢) = cost, the velocity isv(t) = — sint.

You could see that coming, by watching the ball go left and rigtgtéad of up and
down). Its distance across j6= cost. Its velocity across i® = —sinz. That twin
pair completes the calculus in Chaptgtrigonometry to come). We review the ideas:

v is thevelocity
theslopeof the distance curve
thelimit of average velocity over a short time
thederivativeof f.

f is thedistance
theareaunder the velocity curve
thelimit of total distance over many short times
theintegral of v.

Differential calculus: Computev from f. Integral calculus Conpute f fromv.

With constant velocityf equalsvz. With constant acceleration=at and f = %at?

In harmonic motiony = cost and f =sinz. One part of our goal is to extend that
list—for which we need the tools of calculus. Another and more important part is to
put these ideas to use.

Before the chapter ends, may | add a note about the book and the course? The
book is more personal than usual, and | hope readers will approve. What | write is

77
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very close to what | would say, if you were in this room. The secdsrare spoken
before they are writte.Calculus is alive and moving forward—it needs to be taught
that way.

One new part of the subject has come with the computer. It works with a finite step
h, not an ‘“infinitesimal” limit. What it can do, it does quickly—even if it
cannot find exact slopes or areas. The result is an overwhelming growth in the range
of problems that can be solved. We landed on the moon becAuws®a v were so
accurate. (The moon’s orbit has sines and cosines, the spacecraft staris=with
and f = %aﬂ. Only the computer can account for the atmosphere and the sun’s
gravity and the changing mass of the spacecrdftgdern mathematics is a
combination of exact formulas and approximate computatiomMdeither part can be
ignored, and | hope you will see numerically what we derive algebraically. The
exercises are to help you master both parts.

The course has made a quick start—not with an abstract discussion of sets or
functions or limits, but with the concrete questions that led to those ideas. You have
seen a distance functiofi and a limitv of average velocities. We will meet more
functions and more limits (and their definitions!) but it is crucial to study important
examples early. There is a lot to do, but the course has definitely begun.

1.4 EXERCISES

Read-through questions

A ball at anglet on the unit circle has coordinates= __a 3 Aball goes around a circle of radidsAt timer (when it reaches
and y = b . It completes a full circle at = c . Its angler) find
speed is__d . Its velocity points in the direction of the e ,

which is __f _ to the radius coming out from the center. The
upward velocity is g and the horizontal velocity is h .

(@) itsx andy coordinates
(b) the speed and the distance traveled
(c) the vertical and horizontal velocity.

A mass going up and down level with the ball has height; on a circle of radiusk find the x and y coordinates at time
f(t)= _i_. This is called simple j motion. The velocity (and angle). Draw the velocity triangle and find theandy veloc-
is v(t)= k . When t=x/2 the height is f = I ities.
and the velocity isv = m . If a speeded-up mass reaches
f =sin2r attimet, its velocity isv= __n__. A shadow traveling 5 A ball travels around a unit circle (radiug with speeds3,
underthe ball hasf = cost andv=__0 . Whenf is distance= starting from angle zero. At timg
area=integralvis p = q =_r

(@) what angle does it reach ?
(b) what are itst andy coordinates ?
1 For a ball going around a unit circle with speéd (c) what are itst andy velocities ? This part is harder.

@) hovx_/ long does it take f95 revolutions ? 6 If another ball staysr/2 radians ahead of the ball with speed
(b) attimer =3 /2 where is the ball ? 3, find its angle, itst and y coordinates, and its vertical velocity at
(c) att =22 where is the ball (approximately) ? timezr.

2 For the same motion find the exaetard y coordinates at 7 A mass moves on the axis under or over the original ball (on
t = 2w /3. At what time would the ball hit ther axis, if it goes off the unit circle with speed). What is the positionx = f(¢) ? Findx
on the tangent at=2x/37? andv att = /4. Plotx andv up tot = 7.

10On television you know immediately when the words are live. The same with writing.
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8 Does the new mass (under or over the ball) meet the old massFind the slope of the sine curve at 7/3 from v = cost.
(level with the ball)? What is the distance between the massesThen find an average slope by dividing &2 —sinz/3 by the
timetr ? time differencer/2 — /3.

9 Draw graphs of f(tr)=cos3t and cont and 2mwcost, 24 The slope off =sint at t =0 is cosO = 1. Compute average
marking the time axes. How long until eaghrepeats ? slopes(sint) /¢t fort =1,.1,.01,.001.

10 Draw graphs of f_ZSi”(“F”)?and v=cot+x). This The pall at x =cost, y = sint circles (1) counterclockwise (2)
oscillation stays level with what ball - with radius 1 (3) starting from x =1,y =0 (4) at speed!. Find
11 Draw graphs off = sin(x/2—t) andv = —cog(r/2—1). This (1)(2)(3)(4) for the motions 25-30.

oscillation stays level with a ball going which way starting where 25 . _ ~53; y = —sin3t
12 Draw a graph of f(1) =sinz+cos:. Estimate its greatest,s y —3cos4r, y =3 sin 4t
height (maximum f) and the time it reaches that height. By )

computing f2 check your estimate. 27 x=15s8In2t, y = 50082t

13 How fast should you run across the circle to meet the ball agaif® * = 1 +€0st, y =sinz

It travels at speed. 29 x=cos(t+1), y =sin(z +1)

14 A mass falls from the top of the unit circle when the ball of speet) x = cos(t), y =sin(—¢)
1 passes by. What acceleratiaris necessary to meet the ball at the

bottom ? The oscillation x =0,y =sinr goes (1) up and down (2)
between —1 and 1 (3) starting from x=0,y=0 (4) at
Find the area under v = cost from the change in f =sinz: velocity v = cost. Find (1)(2)(3)(4) for the oscillations 31-36.
31 x=cost, y=0 32 x=0, y=sin5t
15 fromt=0tor=m 16 fromt=0tor=7x/6 33 x=0, y=2sin(t +6) 34 x =cost, y = cost
17 fromt=0tot=2n 18 fromt=m/2t0t =3m/2. 35 x=0,y=—2cos%t 36 x = coPt, y =sin’

37 If the ball on the unit circle reachesdegeesat timet, find its

19 The distance curvef =sin4: yields the velocity curve o X
position and speed and upward velocity.

v = 4cos4t. Explain both4’s.
38 Choose the numbdrso hatx = coskt, y = sinkt completes a

20 The distance curvef =2cos3t yields the velocity curve - . :
4 y y rotation atr = 1. Find the speed and upward velocity.

v = —6sin3¢. Explain the—6.
39 If a pitcher doesn't pause before starting to throw, a balk is
caled. The American League decided mathematically that there is
always a stop between backward and forward motion, even if the
22 The velocityv = 5sin 5¢ yields what distance ? time is too short to see it. (Therefore no balk.) Is that true ?

21 The velocity curve v =cos4t yields the distance curve

f = %sin4r. Explain thes.
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I 1.5 A Review of Trigonometry [ EEEEEEEE

Trigonometry begins with a right triangle. The size of the triangle is not as important
asthe angles. We focus on one particular angle—cd@lHtand on theatios between

the three sides, y,r. The ratios don’t change if the triangle is scaled to another size.
Three sides give six ratios, which are the basic functions of trigonometry:

X near side r 1
cosf=—= — seCl=—=——
r hypotenuse x cos#

. opposite side - 1
y y Sm@:’—:7pp CSC@ZI—:—.
r  hypotenuse y sinf

opposite side X 1
2 tan o= L = 2PPOTESIE g X
) X near side y tané

Fig. 1.19

Of course those six ratios are not independent. The three origthitecome directly
from the three on the left. And the tangent is the sine divided by the cosine:

tanf = ﬂ = M = X.

cosd x/r x
Note that “tangent of an angle” and “tangent to a circle” and “tangent line to a graph”
are different uses of the same word. As the cosiné gbes to zero, the tangent of
0 goes to infinity. The sider becomes zerd} approache®0°, and the triangle is
infinitely steep. The sine df0°is y/r = 1.
Triangles have a serious limitation. They are excellent for angles @p°toand

they are OK up tal 80°, but after that they fail. We cannot put2d0° angle into a
triangle. Therefore we change now to a circle.

2T y = 2sin®

4 y=sin20

®|

-2 4

Fig. 1.20 Trigonometry on a circle. Compa®ssin 6 with sin 26 and tand (periods2rx, 7, ).

Angles are measured from the positiveaxis (counterclockwise). Thug0° is
straight up,180° is to the left, and60° is in the same direction &. (Then450° is
the same a90°.) Each angle yields a point on the circle of radiuShe coordinates
andy of that point can be negativeift neverr). As the point goes around the circle,
the six ratios co$, sin 6, tan 6, ... trace out six graphs. The cosine waveform is the
same as the sine waveform—just shiftedi#9y.

One more change comes with the move to a circle. Degrees are out. Radians are
in. The distance around the whole circl&isr. The distance around to other points
is Or. We measure the angle by that multipte For a half-circle the distance isr,
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so the angle isr radans—which is180°. A quarter-circle ist/2 radians 090°. The
distance around to anglé is r timesf.

Whenr = 1 this is the ultimate in simplicityThe distance i§. A 45° angle is% of a
circle and2r/8 radians—and the length of the circular ar@is/8. Similarly for 1°:

360° =2x radians  1°=2x/360radians 1 radian=360/2x degrees.

An angle going clockwise iregative The angle-z/3 is —60° and takes u% of the
wrongway around the circle. What is the effect on the six functions ?

Certainly the radius is not changed when we go te. Also x is not changed (see
Figure 1.20a). Buy reverses sign, becaus# is below the axis wher-6 is above.
This change iry affectsy/r andy/x but notx/r:

cog—6) =cosh sin(—0)=—sinf tan(—0) = —tan6.

The cosine igven (no change). The sine and tangentade (change sign).

The same point i% of theright way around. Therefor§ of 2z radians (01300°)
gives the same direction asz/3 radians or—60°. A difference of2z makes no
difference tox, y,r. Thus sinf and co¥ and the other four functions have period
2. We can go five times or a hundred times around the circle, addirngor 2007
to the angle, and the six functions repeat themselves.

EXAMPLE Evaluate the six trigonometric functionstae 27/3 (or 6 = —4x/3).

This angle is shown in Figure 1.20a (where: 1). The ratios are

cos=x/r=—1/2 sinf=y/r=+3/2 tanf=y/x=—/3
sech=-2 csch=2//3 cotf=—1//3

Those numbers illustrate basic facts about the sizes of four functions:
|cosf| < 1 [sing| <1 |sect| >1 |csch| > 1.

The tangent and cotangent can fall anywhere, as long as-edt/ tan 6.

The numbers reveal more. The tangent/3 is the ratio of sine to cosine. The
secant—2 is 1/ cos6. Their squares arg and4 (differing by 1). That may not seem
remarkable, but itis. There are three relationships isthareof those six numbers,
and they are the key identities of trigonometry:

co20 +sintd =1 1 +tartd = seéd coh + 1 =csx0

Everything flows from the Pythagoras formula? + y? = r2. Dividing by 2 gives
(x/r)2+(y/r)*=1. That is cod6 +sirn* 6 = 1. Dividing by x2 gives the second
identity, which isl + (y/x)? = (r/x)?2. Dividing by y? gives the third. All three will
be needed throughout the book—and the first one has to be unforgettable.

DISTANCES AND ADDITION FORMULAS

To compute the distance between points we stay with Pythagbinaspoints are in
Figure 1.21a. They are known by theirand y coordinates, and is the distance
between them. The third point completes a right triangle.
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For thex distance along the bottom we don’t need help. btis- x; (or |xz — x|
since distances can't be negative). The distance up the sjde-isy;|. Pythagoras
immediately gives the distanck

distance between points d = \/(xz —x1)2+(y2—y1)2. Q)

X=CoSs
y=sins
x=cos(s=1)

R y=sin(s—1)
] X= -

y=sinft 1 d

\.I' \5—!

ad= \'I." .

__A )

|-,

]
non

Fig. 1.21  Distance between points and equal distances in two circles.

By applying this distance formula in two identical circles, we discover the cosine
of s —t. (Subtracting angles is important.) In Figure 1.21b, the distance squared is

d?* = (change inx)? + (change iny)?
= (coss —cost)? + (sins —sint)?. 2)

Figure 1.21c shows the same circle and triangle (but rotated). The same distance
squared is

d? = (cogs —1)—1)* +(sin(s —1))>. (3)

Now multiply out the squares in equations (2) and (3). When@asing? + (sine)?
appears, replace it by The distances are the same,(3p= (3):

(2)=141—2coss cost —2sins sint
(3)=14+1-2cogs—1).

After cancelingl + 1 and then-2, we have the &ddition formula’ for cos(s —¢):

The cosine ofs —¢ equals cos cost +sins sint. 4)
The cosine ofs +¢ equals coss cost —sins sint. (5)

The easiest ist =0. Then cog =1 and sirt =0. The equations reduce to
COSs = COSs.

To go from (4) to (5) in all cases, replacby —z. No change in cos, but a “minus”
appears with the sine. In the special caset, we have cog +¢) = (cost)(cost) —
(sint)(sint). This is a much-used formula for cos:

Double angle cos2t = cot —sin*t =2codt —1=1-—2sin’*t.  (6)

| am constantly using c@s + sin’s = 1, to switch between sines and cosines.
We also need addition formulas and double-angle formulas faittemf s —r and
s+t and2¢. For that we connect sine to cosine, rather ttgine)? to (cosing?. The
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connection goes back to the ratig r in our original triangle. This is the sine of the
anglef and also the cosine of ttemplementary angle/2 — 6:

sing =coqn/2—0) and cod) =sin(z/2—0). (7

The complementary angle is/2—6 because the two angles add w2 (a
right angle). By making this connection in Problé® formulas (4—5-6) move from
cosines to sines:

sin(s —t) = sins cost —coss sin ¢ (8)
sin(s +¢) = sins cost 4 coss sint 9)
sin2t = sin(t +¢) =2 sint cost (20)

| want to stop with these ten formulas, even if more are possible. Trigonometry is
full of identities that connect its six functions—basically because all those functions
come from a single right triangle. The y,r ratios and the equatiat? + y? = r?2
can be rewritten in many ways. But you have now seen the formulas that are needed
by calculus: They give derivatives in Chapté@r and integrals in Chaptef. And
it is typical of our subject to add something of its own—a limit in which an angle
approaches zerdhe essence of calculus is in that limit

Review of the ten formulasFigure 1.22 showd? = (0 — %)2 +(1-+/3/2).

14 T T . T .T N S S 4 T .7
COS— =C0S—C0S— 48N —sin —~ (s—¢) Sin—=s8N—C0S— —CO0S—Sin —
6 2 3 2 3 6 2 3 2 3

5w T T 1 . 5w LT b4 T,
COS— =C0S—C0S— —Sin—sin— (s+f) SN — =8N —C0S— +C0S—sSn —
6 2 3 2 3 6 2 3 2 3

cos2Z =cot T _sitZ (21) sin2Z =2sin X cost
3 3 3 3 3 3
T T T 4 T
COS— =8N — =+/3/2 (——9) sin—=cos—=1/2
6 3 \/_/ 2 6 3 /
1 3
9.1 d ot g s=% s—1=
n N3 1
6 % r=% s+i= 2 2
g ™ \4
AW 1,0

Fig. 1.22

. o o _1
Quespon 1  Draw graphs for eque}uonﬁ_ sin2x, y =2sinmx, y = 5€0S2xx,
y =sinx +cosx, and mark three points.
Question 2 Which of the six trigonometric functions are infinite at what &g

Question 3 Draw rough graphs or computer graphg sint and sin4z sinz from
0to2m.

fCalculus turns (6) around to cts= £ (14 cos2¢) and sirft = £ (1 —cos21).
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1.5 EXERCISES

Read-through questions

Startingwitha__a _triangle, the six basic functions are theb (c) cosf —secH =sind tand
of the sides. Two ratios (the cosingr and the ¢ ) are belowl. (d) sin2r—8)=sind

Two ratios (the secant/x and the__d ) are abovel. Two ratios
(the__e andthe f )cantake any value. The six functions are2 Simplify sin(z —0), co(m —6),sin(zr/2+6),cos(w/2 +0).

defined for all angle®), by changing from a triangletoa g .

13 From the formula for ca@t +¢) find cos3t in terms of cos.
The anglef is measured in_h . Afull circleis8=__1i

when the distance around s r. The distance to anglé is  j

All six functions have period k . Going clockwise changesis By averaging cos —t) and cogs +¢) in (4-5) find a formula

the sign of and__| _and__m . Since cost-0) = cosb, the for coss cost. Find a similar formula for sin sin.
cosineis_ n

14 From the formula for si(2z +¢) find sin3z in terms of siry.

. o 16 Show that(cas? + i sin7)? = cos2t +i sin2t, if i2 = —1.
Coming from x2+y% =r2 are the three identities $if +
coff=1and_o and p .(Dividebyr2and q and 17 Drawcosf andsect on the same graph. Find all points where

r_.) The distance from(2,5) to (3.4) is d= __s . The CO0S6 =sect.
distance from (1,0) to (coss—1),sin(s —7)) leads to the ;g5 Fing )l angless ands between0 and 2 where sifis +1) =
addition formula cog —t) =__t . Changing the sign of gives sins +sinz.
cogs+t)= u . Choosings=t gives cot=_vVv _ or
w__. Thereforel (1 +cos2¢)=__x_, aformulaneeded incal- 19 Complementary angles have $ir=cos(z/2—6). Write
culus. sin(s+t) as co¢$r/2—s—t) and apply formula (4) with
1 /2 —s instead ofs. In this way derive the addition formula (9).

1 Ina60—60—60 triangle show why si30° = 3

2 Convert =, 3n, —n/4 to degrees and60°,90°,270° to
radians. What angles betwe@and2z correspond t@ = 480° and 21 Check the addition formulas (4-5) and (8-9) for
0=—-1°7 s=t=mn/4

3 Draw graphs of tar§ andcot® from 0 to 2z. What is their 22 Use (5) and (9) to find a formula for té-¢).
(shortest) period ?

20 If formula (9) is true, how do you prove (8) ?

In 23-28 find 6 that satisfies th tion.
4 Show that cog6 ard co£6 have periodr and draw them on : indeveryv that safisties the equation

the same graph. )
. . . 23 sinf=-—1 24 sech=-—-2
5 At 6 =3x/2 compute the six basic functions and checks-

sin?0,se@6 —tartd, csc26 — cot2f. 25 siné = cost 26 sing =0

6 Prepare a table showing the values of the six basic function€ At e +csCf =1 28 tanf =0
0=0,n/4, /3, 7/2, 7.

7 The area of a circle igr2. What is the area of the sector tha
has anglé ? Itis a fraction of the whole area.

8 Find the distance froml,0) to (0, 1) along (a) a straight line (b)

a quarter-circle (c) a semicircle centerec(ét %) .

29 Rewrite co®+sinf as v2sin(@+¢) by choosing the
borrect “phase angle’p. (Make the equation correct & =0.
Square both sides to check.)

30 Match asinx +bcosx with Asin(x +¢). From equation (9)
show thata = Acos¢ and b = Asing. Square and add to find

A= . Divide to find tang = b/a.
9 Find the distance/ from (1,0) to (%,\/5/2) and show on a W =b/

circle why 6d is less tharer 31 Draw the base of a triangle from the origi® = (0,0)
' to P =(a,0). The third corner is atQ = (b cosf,b sing).

10 In Figure 1.22 compute? and (with calculator)12d. Why is what are the side length®P and 0Q? From the distance

12d close to and belowr ? formula (1) show that the sid2Q has length
11 Decide whether these equations are true or false: 5 2 o .
sn @ 1+ cosé d“=a“+b"—2abcosf (law of cosines)
@ 1—cosf _ sinf
secd 4+ csch 32 Extend the same triangle to a parallelogram with its fourth

(b) and ~ootd — sin 6 4+ cos6 comer at R=(a+b cosh,bsind). Find the length squared of
ane +co the other diagonaDR.
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I 1.6 A Thousand Points of Light | EEESE

The figures drawn below show y=sinn. This is very different
from y =sinx. The graph of sinc is one continuous curve. By the time it reaches
x =10,000, the curve has gone up and dow,000/2x7 times. Thosel591
oscillations would be so crowded that you couldn’t see anything. The graph of sin
has pickedLO, 000 pointsfrom the curve—and for some reason those points seem to
lie on more thanrl0 separate sine curves.

The second graph shows the fit600 points. Theydon'tseem to lie on sine curves.
Most people see hexagomut they are the same thousand poiiitss hard to believe
that the graphs are the same, but | have learned what fltithe second graph and
look from the side at a narrow angleNow the first graph appears. | believe you will
see “diamonds.” The narrow angle compressesrtlagis—back to the scale of the
first graph.

[}
L

T T

77 200,400, 600 - 800" ' 1000

The effect of scale is something we don't think of. We understand it for maps.
Computers can zoom in or zoom out—those are changes of scale. What our eyes see
depends on what is “close.” We think we see sine curves il th@00 point graph,
and they raise several questions:

1. Which points are nedgp,0) ?
2. How many sine curves are there ?
3. Where does the middle curve, going upward fr@m0), come back to zero ?

A point near(0,0) really means that sim is close to zero. That is certainly not true
of sin1 (1 is one radian!). In fact sif is up the axis at84, at the start of the seventh
sine curve. Similarly sir2 is .91 and sin3 is .14. (The numbers and.14 make us
think of . The sine oB equals the sine of —3. Then sin.14 is near.14.) Similarly
sin4, sin5, ..., sin21 are not especially close to zero.

The first point to come close isin 22. This is becaus@2/7 is nearr. Then22 is
close to7x, whose sine is zero:

sin22 = sin(7x —22) ~ sin(—.01) ~ —.01.

That is the first point to the right of0,0) and slightly below. You can see it on
graphl, and more clearly on grapgh It begins a curve downward.
The next point to come close is sii. This is becausé4 is just pasti4r.

44 ~ 147+ .02 S0 sind4 ~ sin.02 ~ .02.
This point (44, sin 44) starts the middle sine curvéNext is(88, sin88).
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Now we know somethinglhere are44 curves They begin near the heighgi 0,
sinl, ...,sin43. Of these44 curves,22 start upward an@2 start downward. | was
confused at first, because | could only figiticurves. The reason is thgin 11 equals
—0.99999 andsin33 equals 9999. Those are so close to the bottom and top that
you can't see their curves. The sineldfis near—1 becausesin 22 is near zero. It is
almost impossible to follow a single curve past the top—coming back down it is not
the curve you think it is.

The points on the middle curve arerat= 0 and44 and88 and every numbet4 N.
Where does that curve come back to zero? In other words, wherdddésome
very closeto a multiple ofr ? We know that4 is 147 +.02. More exactly44 is
14w 4 .0177. So we multiply.0177 until we reachr:

if N=n/.0177 then 44N = (147 +.0177)N =147 N +=.

This givesN = 177.5. At that point44 N = 7810. This is half the period of the sine
curve The sine of7810 is very near zero.

If you follow the middle sine curve, you will see it come back to zero alit8id).
The actual points on that curve hawe=44-177 andn = 44 -178, with sines just
above and below zero. Halfway betweemis- 7810. The equation for the middle
sine curve isy = sin(xx/7810). Its period isl 5, 620—beyond our graph.

Question The fourth point on that middle curve looks the same as the fqoit
coming down fromsin 3. What is this “double point?”
Answer 4 times44 is 176. On the curve going up, the point($76,sin176). On the
curve coming down it ig179,sin179). The sines ofLt76 and 179 differ only by
.00003.

The second graph spreads out this double point. Look ab®§end 179, at the
center of a hexagon. You can follow the sine curve all the way across graph

Only a little question remains. Why does graphave hexagons ?don’t know
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted
points on straight lines as well as sine curves. Giaphows y = fractional part of
n/2m. Then he made a second copy, turned it over, and placed it on top. That produced
graph4—uwith hexagons. Graplsand4 are on the next page.

Pk
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250 500 750 100012501500 1750

This is called aVoiré pattern If you can get a transparent copy of graghand
turn it slowly over the original, you will see fantastic hexagons. They come from
interference between periodic patterns—in our éais€7 and25/4 and19/3 are near
27. This interference is an enemy of printers, when color screens don’t line up. It can
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing
Moiré patterns move. There are good applications in engineering and optics—but
we have to get back to calculus.
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