
CHAPTER 2

Derivatives

2.1 The Derivative of a Function

This chapter begins with the definition of the derivative. Two examples were in
Chapter1: When the distance ist2, the velocity is2t: Whenf .t/D sin t we found
v.t/D cost: The velocity is now called thederivative of f .t/: As we move to a
more formal definition and new examples, we use new symbolsf 1 anddf=dt for the
derivative.

2A At time t , thederivativef 1.t/ or df=dt or v.t/ is

f 1.t/D lim
�tÑ0

f .tC�t/�f .t/
�t

: (1)

The ratio on the right is the average velocity over a short time�t: The derivative, on
the left side, is its limit as the step�t (delta t ) approaches zero.

Go slowly and look at each piece. The distance at timetC�t is f .tC�t/: The
distance at timet is f .t/: Subtraction gives thechange in distance, between those
times. We often write�f for this difference:�f D f .tC�t/�f .t/:The average
velocity is the ratio�f=�t—change in distance divided by change in time.

The limit of the average velocity is the derivative, if this limit exists:

df

dt
D lim

�tÑ0

�f

�t
: (2)

This is the neat notation that Leibniz invented:�f=�t approachesdf=dt: Behind
the innocent word “limit” is a process that this course will help you understand.

Note that�f is not� times f ! It is the change inf: Similarly �t is not
� times t: It is the time step, positive or negative and eventually small. To have a
one-letter symbol we replace�t by h:

The right sides of(1) and (2) contain average speeds. On the graph off .t/, the
distanceup is divided by the distanceacross. That gives the average slope�f=�t:

The left sides of(1) and(2) areinstantaneousspeedsdf=dt: They give the slope
at the instantt: This is the derivativedf=dt (when�t and�f shrink to zero). Look
again at the calculation forf .t/D t2:
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88 2 Derivatives

�f

�t
D
f .tC�t/�f .t/

�t
D
t2 C2t �tC .�t/2� t2

�t
D 2tC�t: (3)

Important point: Those steps are taken before�t goes to zero.If we set�t D 0 too
soon, we learn nothing. The ratio�f=�t becomes0=0 (which is meaningless).
The numbers�f and�t must approach zero together, not separately. Here their
ratio is2tC�t , the average speed.

To repeat: Success came by writing out.tC�t/2 and subtractingt2 and dividing
by�t: Then and only then can we approach�t D 0: The limit is the derivative2t:

There are several new things in formulas(1) and(2). Some are easy but important,
others are more profound. The idea of a function we will come back to, and the
definition of a limit. But the notations can be discussed right away. They are used
constantly and you also need to know how to read them aloud:

f .t/D “f of t ” D the value of the functionf at time t

�t D “delta t ” D the time step forward or backward fromt

f .tC�t/D “f of t plus deltat ” D the value off at time tC�t

�f = “deltaf ” D the changef .tC�t/�f .t/
�f=�t D “deltaf over deltat ” D the average velocity

f 1.t/D “f prime oft ” D the value of the derivative at timet

df=dt D “d f d t ” D the same asf 1 (the instantaneous velocity)

lim
�Ñ0

D “limit as delta t goes to zero”D the process that starts with
numbers�f=�t and produces the numberdf=dt:

From those last words you see what lies behind the notationdf=dt: The symbol�t
indicates a nonzero (usually short) length of time. The symboldt indicates
an infinitesimal (even shorter) length of time. Some mathematicians work separately
with df anddt , anddf=dt is their ratio. For usdf=dt is a single notation (don’t
canceld and don’t cancel�). The derivativedf=dt is the limit of�f=�t: When
that notationdf=dt is awkward, usef 1 or v:

Remark The notation hides one thing we should mention. The time step can be
negativejust as easily as positive. We can compute the average�f=�t over a time
intervalbeforethe timet , instead of after. This ratio also approachesdf=dt:

The notation also hides another thing:The derivative might not exist. The
averages�f=�t might not approach a limit (it has to be the same limit going forward
and backward from timet ). In that casef 1.t/ is not defined. At that instant there is
no clear reading on the speedometer. This will happen in Example 2.

EXAMPLE 1 (Constant velocityV D 2) The distancef isV timest: The distance
at timetC�t is V timestC�t: The difference�f is V times�t :

�f

�t
D
V�t

�t
DV so the limit is

df

dt
DV:

The derivative ofV t isV: The derivative of2t is 2: The averages�f=�t are always
V D 2, in this exceptional case of a constant velocity.
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EXAMPLE 2 Constant velocity2 up to timet D 3, then stop.

For small times we still havef .t/D 2t: But after the stopping time, the distance
is fixed atf .t/D 6: The graph is flat beyond time3. Thenf .tC�t/D f .t/ and
�f D 0 andthe derivative of a constant function is zero:

t ¡ 3W f 1.t/D lim
�tÑ0

f .tC�t/�f .t/
�t

D lim
�tÑ0

0

�t
D 0: (4)

In this examplethe derivative is not defined at the instant whent D 3. The velocity
falls suddenly from2 to zero. The ratio�f=�t depends, at that special moment, on
whether�t is positive or negative. The average velocityafter time t D 3 is zero. The
average velocitybeforethat time is2: When the graph off has a corner, the graph
of v has ajump. It is astep function.

One new part of that example is the notation (df=dtor f 1 instead ofv). Please
look also at the third figure. It shows how the function takest (on the left) tof .t/:
Especially it shows�t and�f: At the start,�f=�t is 2. After the stop att D 3, all
t ’s go to the samef .t/D 6: So�f D 0 anddf=dt D 0:

Fig. 2.1 The derivative is2 then 0: It does not exist att D 3:

THE DERIVATIVE OF 1=t

Here is a completely different slope, for the “demand function”f .t/D 1=t:
The demand is1=t when the price ist: A high price t means a low demand1=t:
Increasing the price reduces the demand. The calculus question is:How quickly
does1=t change whent changes? The “marginal demand” is the slope of the
demand curve.

The big thing is to find the derivative of1=t once and for all. It is�1=t2:
EXAMPLE 3 f .t/D

1

t
has�f D

1

tC�t
� 1
t
: This equals

t� .tC�t/

t.tC�t/
D

��t
t.tC�t/

:

Divide by�t and let�tÑ 0 W
�f

�t
D

�1
t.tC�t/

approaches
df

dt
D
�1
t2
:

Line 1 is algebra, line2 is calculus. The first step in line1 subtractsf .t/ from
f .tC�t/: The difference is1=.tC�t/ minus1=t: The common denominator ist
timestC�t—this makes the algebra possible. We can’t set�t D 0 in line 2; until
we have divided by�t:

The average is�f=�t D�1=t.tC�t/:Now set�t D 0:The derivative is�1=t2:
Section2:4 will discuss the first of many cases when substituting�t D 0 is not
possible, and the idea of a limit has to be made clearer.
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Fig. 2.2 Average slope is�1
6 , true slope is�1

4 : Increase int produces decrease inf:

Check the algebra att D 2 and tC�t D 3: The demand1=t drops from1=2 to
1=3: The difference is�f D�1=6, which agrees with�1=.2/.3/ in line 1. As the
steps�f and�t get smaller, their ratio approaches�1=.2/.2/D�1=4:

This derivative is negative. The function1=t is decreasing, and�f is below
zero. The graph is goingdownwardin Figure 2.2, and its slope is negative:

An increasingf .t/ has positive slope. A decreasingf .t/ has negative slope.

The slope�1=t2 is very negative for smallt: A price increase severely cuts demand.
The next figure makes a small but important point. There is nothing sacred aboutt:

Other letters can be used—especiallyx: A quantity can depend onposition instead
of time. The height changes as we go west. The area of a square changes as the side
changes. Those are not affected by the passage of time, and there is no reason to use
t: You will often seeyD f .x/, with x across andy up—connected by a functionf:

Similarly,f is not the only possibility. Not every function is namedf ! That letter
is useful because it stands for the word function—but we are perfectly entitled to write
y.x/ or y.t/ instead off .x/ or f .t/: The distance up is a function of the distance
across. This relationship “y of x” is all-important to mathematics.

The slope is also a function. Calculus is about two functions,y.x/ anddy=dx:

Question If we add1 to y.x/, what happens to the slope ?AnswerNothing.

Question If we add1 to the slope, what happens to the height ?Answer :

The symbolst andx representindependent variables—they take any value they
want to (in the domain). Once they are set,f .t/ andy.x/ are determined. Thusf and
y representdependent variables—theydependon t andx: A change�t produces a

Fig. 2.3 The derivative of1=t is�1=t2: The slope of1=x is�1=x2:
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change�f: A change�x produces�y: The independent variable goesinside the
parentheses inf .t/ andy.x/: It is not the letter that matters, it is the idea:

independent variablet or x

dependent variablef or g or y or z or u

derivativedf=dt or df=dx or dy=dx or � � �
The derivativedy=dx comes from [change iny] divided by [change inx]. The time
step becomes a space step, forward or backward. The slope is the rate at whichy
changes withx: The derivative of a function is its“ rate of change.”

I mention that physics books usex.t/ for distance. Darn it.
To emphasize the definition of a derivative, here it is again withy andx:

�y

�x
D
y.xC�x/�y.x/

�x
D

distance up

distance across

dy

dx
D lim

�xÑ0

�y

�x
D y 1.x/:

The notationy 1.x/ pins down the pointx where the slope is computed. Indy=dx that
extra precision is omitted. This book will try for a reasonable compromise between
logical perfection and ordinary simplicity. The notationdy=dx.x/ is not good;y 1.x/
is better; whenx is understood it need not be written in parentheses.

You are allowed to say that the function isyD x2 and the derivative isy 1 D 2x—
even if the strict notation requiresy.x/D x2 andy 1.x/D 2x: You can even say that
the function isx2 and its derivative is2x and itssecond derivativeis 2—provided
everybody knows what you mean.

Here is an example. It is a little early and optional but terrific. You get excellent
practice with letters and symbols, and out come new derivatives.

EXAMPLE 4 If u.x/ has slopedu=dx, what is the slope off .x/D .u.x//2 ?

From the derivative ofx2 this will give the derivative ofx4: In that caseuD x2

andf D x4: First point:The derivative ofu2 is not .du=dx/2. We do not square
the derivative2x: To find the “square rule” we start as we have to—with
�f D f .xC�x/�f .x/:
�f D .u.xC�x//2� .u.x//2 D Œu.xC�x/Cu.x/�Œu.xC�x/�u.x/�:

This algebra puts�f in a convenient form. We factoreda2�b2 into ŒaCb� times
Œa�b�: Notice that we don’t have.�u/2: We have�f , the change inu2: Now
divide by�x and take the limit:

�f

�x
D Œu.xC�x/Cu.x/�

�

u.xC�x/�u.x/
�x

�

approaches2u.x/
du

dx
: (5)

This is thesquare rule: The derivative of.u.x//2 is 2u.x/ timesdu=dx. From the
derivatives ofx2 and1=x andsinx (all known) the examples give new derivatives.

EXAMPLE 5 .uD x2/ The derivative ofx4 is 2u du=dxD 2.x2/.2x/D 4x3:

EXAMPLE 6 .uD 1=x/ The derivative of1=x2 is 2u du=dxD .2=x/.�1=x2/D�2=x3:

EXAMPLE 7 .uD sinx; du=dxD cosx/ The derivative ofu2 D sin2x is 2sinx cosx:

Mathematics is really about ideas. The notation is created to express those ideas.
Newton and Leibniz invented calculus independently, and Newton’s friends spent
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a lot of time proving that he was first. He was, but it was Leibniz who thought of
writing dy=dx—which caught on. It is the perfect way to suggest the limit of�y=�x:
Newton was one of the great scientists of all time, and calculus was one of the great
inventions of all time-but the notation must help. You now can write and speak about
the derivative. What is needed is a longer list of functions and derivatives.

2.1 EXERCISES

Read-through questions

The derivative is the a of �f=�t as�t approaches b .
Here �f equals c . The step�t can be positive or d .
The derivative is writtenv or e or f . If f .x/D 2xC3

and�xD 4 then�f D g . If �xD�1 then�f D h . If
�xD 0 then�f D i . The slope is not0=0 butdf=dxD j .

The derivative does not exist wheref .t/ has a k andv.t/
has a l . Forf .t/D 1=t the derivative is m . The slope of
yD 4=x is dy=dxD n . A decreasing function has a o
derivative. The p variable ist or x and the q variable
is f or y: The slope ofy2 (is) (is not) .dy=dx/2: The slope
of .u.x//2 is r by the square rule. The slope of.2xC3/2

is s .

1 Which of the following numbers (as is) givesdf=dt at timet ?
If in doubt test onf .t/D t2:

(a)
f .tC�t/�f .t/

�t

(c) lim
�tÑ0

f .t��t/�f .t/��t (b) lim
hÑ0

f .tC2h/�f .t/
2h

(d) lim
tÑ0

f .tC�t/�f .t/
�t

2 Supposef .x/D x2: Compute each ratio and sethD 0:

(a)
f .xCh/�f .x/

h

(c)
f .xCh/�f .x�h/

2h

(b)
f .xC5h/�f .x/

5h

(d)
f .xC1/�f .x/

h

3 For f .x/D 3x and g.x/D 1C3x, find f .4Ch/ andg.4Ch/

andf 1.4/ andg1.4/: Sketch the graphs off andg—why do they
have the same slope ?

4 Find three functions with the same slope asf .x/Dx2:

5 For f .x/D 1=x, sketch the graphs off .x/C1 andf .xC1/:

Which one has the derivative�1=x2 ?

6 Choosec so that the lineyDx is tangent to the parabola
yD x2 Cc: They have the same slope where they touch.

7 Sketch the curvey.x/D 1�x2 and compute its slope atxD 3:

8 If f .t/D 1=t , what is the average velocity betweent D 1
2 and

t D 2 ? What is the average betweent D 1
2 and t D 1 ? What is the

average (to one decimal place) betweent D 1
2 and t D 101=200 ?

9 Find�y=�x for y.x/D xCx2: Then finddy=dx:

10 Find�y=�x and dy=dx for y.x/D 1C2xC3x2 :

11 Whenf .t/D 4=t , simplify the differencef .tC�t/�f .t/, di-
vide by�t , and set�t D 0: The result isf 1.t/:
12 Find the derivative of1=t2 from�f .t/D 1=.tC�t/2�1=t2:
Write �f as a fraction with the denominatort2.tC�t/2: Divide
the numerator by�t to find�f=�t: Set�t D 0:

13 Supposef .t/D 7t to t D 1: Afterwards f .t/D 7C9.t�1/:
(a) Finddf=dt at t D 1

2 and t D 3
2 :

(b) Why doesn’tf .t/ have a derivative att D 1 ?

14 Find the derivative of the derivative (thesecond derivative) of
yD 3x2: What is the third derivative ?

15 Find numbersA and B so that the straight lineyD x fits
smoothly with the curveY DACBxCx2 at xD 1: Smoothly
means thatyDY anddy=dxD dY=dx atxD 1:

16 Find numbersA andB so that the horizontal lineyD 4 fits
smoothly with the curveyDACBxCx2 at the pointxD 2:

17 True(with reason)or false(with example):

(a) If f .t/  0 thendf=dt   0:
(b) The derivative of.f .t//2 is 2df=dt:
(c) The derivative of2f .t/ is 2df=dt:

(d) The derivative is the limit of�f divided by the limit of�t:

18 For f .x/D 1=x the centered differencef .xCh/�f .x�h/
is 1=.xCh/�1=.x�h/: Subtract by using the common
denominator.xCh/.x�h/: Then divide by2h and sethD 0: Why
divide by2h to obtain the correct derivative ?

19 SupposeyDmxCb for negative x and yDMxCB for
x¥ 0: The graphs meet if : The two slopes are :

The slope atxD 0 is (what is possible ? ).

20 The slope ofyD 1=x at xD 1=4 is y1 D�1=x2 D�16: At
hD 1=12, which of these ratios is closest to�16?

y.xCh/�y.x/
h

y.x/�y.x�h/
h

y.xCh/�y.x�h/
2h

21 Find the average slope ofyD x2 betweenxD x1 andxD x2:

What does this average approach asx2 approachesx1 ?
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22 Redraw Figure 2.1 whenf .t/D 3�2t for t ¤ 2 and
f .t/D�1 for t ¥ 2: Includedf=dt:

23 Redraw Figure 2.3 for the functiony.x/D 1�.1=x/:
Includedy=dx:

24 The limit of 0=�t as�tÑ 0 is not0=0: Explain.

25 Guess the limits by an informal working rule. Set�t D 0:1 and�0:1 and imagine�t becoming smaller:

(a)
1C�t

2C�t

(c)
�tC.�t/2

�t�.�t/2 (b)
|�t |
�t

(d)
tC�t

t��t�26 Supposef .x/=xÑ 7 as xÑ 0: Deduce thatf .0/D 0 and
f 1.0/D 7: Give an example other thanf .x/D 7x:

27 What is lim
xÑ0

f .3Cx/�f .3/
x

if it exists ? What ifxÑ 1 ?

Problems 28–31 use the square rule:d.u2/=dxD 2u.du=dx/:

28 TakeuD x andfind the derivative ofx2 (a new way).

29 TakeuD x4 andfind the derivative ofx8 (usingdu=dxD 4x3).

30 If uD 1 thenu2 D 1: Thend1=dx is 2 timesd1=dx: How is this
possible ?

31 TakeuD
?
x: The derivative ofu2 D x is 1D 2u.du=dx/: So

what isdu=dx, the derivative of
?
x ?

32 The left figure showsf .t/D t2: Indicate distancesf .tC�t/
and�t and�f: Draw lines that have slope�f=�t andf 1.t/:

33 The right figure showsf .x/ and�x: Find�f=�x andf 1.2/:
34 Drawf .x/ and�x so that�f=�xD 0 butf 1.x/¤ 0:

35 If f Du2 then df=dxD 2u du=dx: If gD f 2

then dg=dxD 2f df=dx: Together those givegDu4 and
dg=dxD :

36 True or false, assumingf .0/D 0:

(a) If f .x/¤x for all x, thendf=dx¤ 1:
(b) If df=dx¤ 1 for all x, thenf .x/¤x:

37 The graphs show�f and�f=h for f .x/Dx2: Why is2xCh

the equation for�f=h? If h is cut in half, draw in the new graphs.

38 Draw the corresponding graphs forf .x/D 1
2x:

39 Draw1=x and1=.xCh/ and�f=h—either by hand withhD 1
2

or by computer to showhÑ 0:

40 ForyD ex , show on computer graphs thatdy=dxD y:

41 Explain the derivative in your own words.
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2.2 Powers and Polynomials

This section has two main goals. One is to find the derivatives off .x/D x3 and
x4 andx5 (and more generallyf .x/D xn). Thepoweror exponentn is at first a
positive integer. Later we allowx� andx2:2 and everyxn:

The other goal is different. While computing these derivatives, we look ahead to
their applications. In using calculus, we meetequations with derivatives in them—
“differential equations.” It is too early to solve those equations. But it is not too
early to see the purpose of what we are doing. Our examples come from economics
and biology.

With nD 2, the derivative ofx2 is 2x: With nD�1, the slope ofx�1 is�1x�2:
Those are two pieces in a beautiful pattern, which it will be a pleasure to discover. We
begin withx3 and its derivative3x2, before jumping toxn:

EXAMPLE 1 If f .x/D x3 then�f D .xCh/3�x3 D .x3 C3x2hC3xh2 Ch3/�x3:

Step 1:Cancelx3: Step 2:Divide byh: Step 3:h goes to zero.

�f

h
D 3x2 C3xhCh2 approaches

df

dx
D 3x2:

That is straightforward, and you see the crucial step. The power.xCh/3 yields four
separate termsx3 C3x2hC3xh2 Ch3: (Notice1, 3, 3, 1:) After x3 is subtracted,
we can divide byh: At the limit .hD 0/ we have3x2:

Forf .x/D xn the plan is the same. A step of sizeh leads tof .xCh/D .xCh/n:
One reason for algebra is to calculate powers like.xCh/n, and if you have forgotten
the binomial formula we can recapture its main point. Start withnD 4:

.xCh/.xCh/.xCh/.xCh/D x4C ‹‹‹ Ch4: (1)

Multiplying the fourx’s givesx4: Multiplying the fourh’s givesh4: These are the
easy terms, but not the crucial ones. The subtraction.xCh/4�x4 will removex4,
and the limiting stephÑ 0will wipe outh4 (even after division byh). The products
that matter are those with exactly oneh. In Example 1 with.xCh/3, this key term
was3x2h: Division byh left 3x2:

With only oneh, there aren places it can come from. Equation(1) has four
h’s in parentheses, and four ways to producex3h: Therefore the key term is4x3h:
(Division byh leaves4x3:) In general there aren parentheses andn ways to produce
xn�1h, so thebinomial formula containsnxn�1h:

.xCh/n D xn Cnxn�1hC � � �Chn: (2)

2B For nD 1;2;3;4; : : : ; the derivative ofxn is nxn�1:

Subtractxn from (2). Divide byh: The key term isnxn�1: The rest disappears as
hÑ 0:

�f

�x
D
.xCh/n�xn

h
D
nxn�1hC � � �Chn

h
so

df

dx
D nxn�1:

The terms replaced by the dots involveh2 andh3 and higher powers. After dividing
byh, they still have at least one factorh: All those terms vanish ash approaches zero.
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EXAMPLE 2 .xCh/4 D x4 C4x3hC6x2h2 C4xh3 Ch4: This is nD 4 in
detail.

Subtractx4, divide byh, lethÑ 0: The derivative is4x3: The coefficients1;4;6;4;1
are in Pascal’s triangle below. For.xCh/5 the next row is1;5;10; ? .

Remark The missing terms in the binomial formula (replaced by the dots) contain
all the productsxn�jhj : An x or anh comes from each parenthesis. The binomial
coefficient “nchoosej ” is the number of ways to choosej h’s out of n parenthe-
ses. It involvesn factorial, which isn.n�1/ � � �.1/: Thus5ŠD 5 �4 �3 �2 �1D 120:

These are numbers that gamblers know and love:

“n choosej ” D

�

n

j

�

D
nŠ

j Š.n�j /Š 1 Pascal’s
1 1 triangle
1 2 1
1 3 3 1 nD 3
1 4 6 4 1 nD 4

In the last row, the coefficient ofx3h is 4Š=1Š3ŠD 4 �3 �2 �1=1 �3 �2 �1D 4: For the
x2h2 term, withj D 2, there are4 �3 �2 �1=2 �1 �2 �1D 6 ways to choose twoh’s.
Notice that1C4C6C4C1 equals16; which is24: Each row of Pascal’s triangle
adds to a power of2:

Choosing6 numbers out of49 in a lottery, the odds are49 �48 �47 �46 �45 �44=6Š
to1: That number isN D “49 choose6” D 13;983;816: It is the coefficient ofx43h6

in .xCh/49: If � timesN tickets are bought, the expected number of winners is�:
The chance of no winner ise��: The chance ofonewinner is�e��: See Section8:4:

Florida’s lottery in September1990 (these rules) had six winners out of109, 163,
978 tickets.

DERIVATIVES OF POLYNOMIALS

Now we have an infinite list of functions and their derivatives:

x x2 x3 x4 x5 � � � 1 2x 3x2 4x3 5x4 � � �
The derivative ofxn is n times the next lower powerxn�1: That rule extends
beyond these integers1;2;3;4;5 to all powers:

f D 1=x has f 1 D�1=x2 W Example3 of section2:1 .nD�1/
f D 1=x2 has f 1 D�2=x3 W Example6 of section2:1 .nD�2/
f D

?
x has f 1 D 1

2
x�1=2 W true but not yet checked .nD 1

2
/

Remember thatx�2 means1=x2 andx�1=2 means1=
?
x: Negative powers lead

to decreasingfunctions, approaching zero asx gets large. Their slopes have minus
signs.

Question What are the derivatives ofx10 and x2:2 andx�1=2 ?
Answer 10x9 and2:2x1:2 and�1

2
x�3=2: Maybe.xCh/2:2 is a little unusual.

Pascal’s triangle can’t deal with this fractional power, but the formula stays firm:
After x2:2 comes2:2x1:2h. The complete binomial formula is in Section10:5:

That list is a good start, but plenty of functions are left. What comes next is really
simple. A tremendous number of new functions are “linear combinations” like

f .x/D 6x3 or 6x3 C
1

2
x2 or 6x3� 1

2
x2:
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What are their derivatives ? The answers are known forx3 andx2, and we want to
multiply by 6 or divide by2 or add or subtract.Do the same to the derivatives:

f 1.x/D 18x2 or 18x2 Cx or 18x2�x:
2C The derivative ofc timesf .x/ is c timesf 1.x/:
2D The derivative off .x/Cg.x/ is f 1.x/Cg1.x/:

The numberc can be any constant. We can add (or subtract) any functions.
The rules allow any combination off andg: The derivative of9f .x/�7g.x/
is 9f 1.x/�7g1.x/:

The reasoning is direct. Whenf .x/ is multiplied by c, so is f .xCh/: The
difference�f is also multiplied byc: All averages�f=h containc, so their limit is
cf 1: The only incomplete step is the last one (the limit).We still have to say what
“ limit” means.

Rule2D is similar. Addingf Cg means adding�f C�g: Now divide byh: In
the limit ashÑ 0 we reachf 1Cg1—because a limit of sums is a sum of limits.
Any example is easy and so is the proof—it is the definition of limit that needs care
(Section2:6).

You can now find the derivative of every polynomial. A “polynomial” is a
combination of 1; x; x2; : : : ; xn—for example 9C2x�x5: That particular
polynomial has slope2�5x4: Note that the derivative of9 is zero! A constant just
raises or lowers the graph, without changing its slope. It alters the mileage before
starting the car.

The disappearance of constants is one of the nice things in differential calculus. The
reappearance of those constants is one of the headaches in integral calculus. When you
find v fromf , the starting mileage doesn’t matter. The constant inf has no effect on
v: (�f is measured by a trip meter;�t comes from a stopwatch.) To find distance
from velocity, you need to know the mileage at the start.

A LOOK AT DIFFERENTIAL EQUATIONS (FIND y FROM dy=dx)

We know thatyD x3 has the derivativedy=dxD 3x2: Starting with the function,
we found its slope. Now reverse that process.Start with the slope and find the
function. This is what science does all the time—and it seems only reasonable to say
so.

Begin withdy=dxD 3x2: The slope is given, the functiony is not given.

Question Can you go backward to reachyD x3 ?
Answer Almost but not quite. You are only entitled to say thatyD x3 CC: The
constantC is the starting value ofy (whenxD 0). Then thedifferential equation
dy=dxD 3x2 is solved.

Every time you find a derivative, you can go backward to solve a differential
equation. The functionyD x2 Cx has the slopedy=dxD 2xC1: In reverse, the
slope2xC1 producesx2 Cx—and all the other functionsx2 CxCC , shifted up
and down. After going from distancef to velocityv, we return tof CC: But there
is a lot more to differential equations. Here are two crucial points:

1. We reachdy=dx by way of�y=�x, but we have no system to go backward.
With dy=dxD .sinx/=x we are lost. What function has this derivative?
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2. Many equations have the same solutionyD x3:Economics hasdy=dxD 3y=x:
Geometry hasdy=dxD 3y2=3: These equations involvey as well asdy=dx:
Function and slope are mixed together! This is typical of differential equations.

To summarize: Chapters2-4 compute and use derivatives. Chapter5 goes in reverse.
Integral calculus discovers the function from its slope. Givendy=dx we findy.x/:
Then Chapter6 solves the differential equationdy=dt D y, function mixed with slope.
Calculus moves fromderivativesto integralsto differential equations.

This discussion of the purpose of calculus should mention a specific example. Dif-
ferential equations are applied to an epidemic (like AIDS). In most epidemics the
number of cases grows exponentially. The peak is quickly reached byet , and the epi-
demic dies down. Amazingly, exponential growth is not happening with AIDS—the
best fit to the data through1988 is acubic polynomial(Los Alamos Science, 1989):

The number of cases fits a cubic within2% W yD 174:6.t�1981:2/3C340:

This is dramatically different from other epidemics. Instead of dy=dt D y we have
dy=dt D 3y=t: Before this book is printed, we may know what has been
preventinget (fortunately). Eventually the curve will turn away from a cubic—I hope
that mathematical models will lead to knowledge that saves lives.

Added in proof: In 1989 the curve for the U.S. dropped fromt3 to t2:

MARGINAL COST AND ELASTICITY IN ECONOMICS

First point about economics: Themarginal cost andmarginal income are crucially
important. The average cost of making automobiles may be$10;000: But it is the
$8;000 cost of thenext car that decides whether Ford makes it. “The average
describes the past, the marginal predicts the future.” For bank deposits or work
hours or wheat, which come in smaller units, the amounts are continuous variables.
Then the word “marginal” says one thing:Take the derivative.�

The average pay over all the hours we ever worked may be low. We wouldn’t work
another hour for that! This average is rising, but the pay for each additional hour rises
faster—possibly it jumps. When$10=hour increases to$15=hour after a40-hour
week, a50-hour week pays$550: The average income is$11=hour. The marginal
income is$15=hour—the overtime rate.

Concentrate next on cost. Lety.x/ be the cost of producingx tons of steel. The
cost ofxC�x tons isy.xC�x/: The extra cost is the difference�y: Divide by
�x, the number of extra tons. The ratio�y=�x is the average cost per extra ton.
When�x is an ounce instead of a ton, we are near the marginal costdy=dx:

Example: When the cost isx2, the average cost isx2=xD x: The marginal cost is
2x: Figure 2.4 has increasing slope—an example of “diminishing returns to scale.”

This raises another point about economics. The units are arbitrary. In yen per
kilogram the numbers look different. The way to correct for arbitrary units is to work
with percentage changeor relative change. An increase of�x tons is a relative
increase of�x=x: A cost increase�y is a relative increase of�y=y: Those are
dimensionless, the same in tons=tons or dollars=dollars or yen=yen.

A third example isthe demandy at pricex. Now dy=dx is negative. But again
the units are arbitrary. The demand is in liters or gallons, the price is in dollars or
pesos.

�These paragraphs show how calculus applies to economics. You donot have to be an
economist to understand them. Certainly the author is not, probably the instructor is not,
possibly the student is not. We can all usedy=dx:
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Fig. 2.4 Marginal exceeds average. Constant elasticityE D�1: Perfectly elastic to perfectly
inelastic (� curve).

Relative changes are better. When the price goes up by10%, the demand may drop
by 5%: If that ratio stays the same for small increases,the elasticity of demand is1

2
:

Actually this number should be�1
2
: The price rose, the demand dropped. In our

definition, the elasticitywill be�1
2
: In conversation between economists the minus

sign is left out (I hope not forgotten).

DEFINITION The elasticity of the demand functiony.x/ is

E.x/D lim
�xÑ0

�y=y

�x=x
D
dy=dx

y=x
: (3)

Elasticity is “marginal” divided by“average.” E.x/ is also relative change iny
divided by relative change inx: SometimesE.x/ is the same at all prices—this
important case is discussed below.

EXAMPLE 4 Suppose the demand isyD c=x when the price isx: The derivative
dy=dxD�c=x2 comes from calculus. The divisiony=xD c=x2 is only algebra.
The ratio isED�1:

For the demandyD c=x, the elasticity is.�c=x2/=.c=x2/D�1:
All demand curves are compared with this one. The demand isinelastic when|E|   1: It is elastic when |E| ¡ 1: The demand20=

?
x is inelastic.ED�1

2
/,

while x�3 is elastic.ED�3/: The poweryD cxn, whose derivative we know, is
the function with constant elasticityn:

if yD cxn then dy=dxD cnxn�1 and ED cnxn�1=.cxn=x/D n:

It is becauseyD cxn sets the standard that we could come so early to economics.
In the special case whenyD c=x, consumers spend the same at all prices. Pricex

times quantityy remains constant atxyD c:

EXAMPLE 5 The supply curve hasE¡ 0—supply increases with price. Now
the baseline case isyD cx: The slope isc and the average isy=xD c: The elasticity
isED c=cD 1:

CompareED 1withED 0 andED8:A constant supply is “perfectly inelastic.”
The powern is zero and the slope is zero:yD c: No more is available when the
harvest is over. Whatever the price, the farmer cannot suddenly grow more wheat.
Lack of elasticity makes farm economics difficult.

The other extremeED8 is “perfectly elastic.” The supply is unlimited at a fixed
price x: Once this seemed true of water and timber. In reality the steep curve
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xD constant is leveling off to a flat curveyD constant. Fixed price is changing to
fixed supply,ED8 is becomingED 0, and the supply of water follows a “gamma
curve” shaped like�:

EXAMPLE 6 Demand is an increasing function ofincome—more income, more
demand. Theincome elasticityis E.I /D .dy=dI /=.y=I /: A luxury hasE¡ 1
(elastic). Doubling your income more than doubles the demand for caviar. A necessity
hasE  1 (inelastic). The demand for bread does not double. Please recognize how
the central ideas of calculus provide a language for the central ideas of economics.

Important note on supplyD demand This is the basic equation of microeconomics.
Where the supply curve meets the demand curve, the economy finds the equilibrium
price.SupplyD demand assumes perfect competition. With many suppliers, no one
can raise the price. If someone tries, the customers go elsewhere.

The opposite case is amonopoly—no competition. Instead of many small pro-
ducers of wheat, there is one producer of electricity. An airport is a monopolist (and
maybe the National Football League). If the price is raised, some demand remains.

Price fixingoccurs when several producers act like a monopoly-which antitrust
laws try to prevent. The price is not set by supplyD demand. The calculus problem is
different—to maximize profit. Section3:2 locates the maximum where the marginal
profit (the slope!) is zero.

Question on income elasticity From an income of$10;000 you save$500:
The income elasticity of savings isED 2: Out of the next dollar what fraction do
you save ?

Answer The savings isyD cx2 becauseED 2: The numberc must give500D
c.10;000/2, soc is 5 �10�6: Then the slopedy=dx is 2cxD 10 �10 �10�6 �104 D
1
10
: This is the marginal savings, ten cents on the dollar.Average savings is5%;

marginal savings is10%; andED 2.

2.2 EXERCISES

Read-through questions

The derivative of f D x4 is f 1 D a . That comes from
expanding.xCh/4 into the five terms b . Subtractingx4 and
dividing by h leaves the four terms c . This is�f=h, and its
limit is d .

The derivative off D xn is f 1 D e . Now .xCh/n comes
from the f theorem. The terms to look for arexn�1h,
containing only one g . There are h of those terms,
so .xCh/n D xn C i C � � � : After subtracting j and
dividing by h, the limit of �f=h is k . The coefficient of
xn�jhj , not needed here, is “n choosej ” D l , wheren! means

m .

The derivative ofx�2 is n . The derivative ofx1=2 is
o . The derivative of3xC.1=x/ is p , which uses the

following rules: The derivative of3f .x/ is q and the
derivative of f .x/Cg.x/ is r . Integral calculus recovers

s from dy=dx: If dy=dxD x4 theny.x/D t .

1 Starting withf Dx6, write downf 1 and thenf 2: (This is “f
double prime,” the derivative off 1:) After derivatives ofx6

you reach a constant. What constant ?

2 Find a function that hasx6 as its derivative.

Find the derivatives of the functions in 3–10. Even ifn is
negative or a fraction, the derivative ofxn is nxn�1:

3 x2 C7xC5 4 1C.7=x/C.5=x2/

5 1CxCx2 Cx3 Cx4 6 .x2 C1/2

7 xn Cx�n 8 xn=nŠ

9 1CxC
1

2
x2 C

1

6
x3 C

1

24
x4 10

2

3
x3=2 C

2

5
x5=2

11 Name two functions withdf=dxD 1=x2:
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12 Find the mistake: x2 is xCxC � � �Cx (with x terms). Its
derivative is1C1C � � �C1 (alsox terms). So the derivative ofx2

seems to bex:

13 What are the derivatives of3x1=3 and �3x�1=3 and
.3x1=3/�1 ?

14 The slope ofxC.1=x/ is zero whenxD :What does the
graph do at that point ?

15 Draw a graph ofyD x3�x:Where is the slope zero ?

16 If df=dx is negative, isf .x/ always negative ? Isf .x/
negative for largex ? If you think otherwise, give examples.

17 A rock thrown upward with velocity16 ft=sec reaches height
f D 16t�16t2 at timet:

(a) Find its average speed�f=�t from t D 0 to t D 1
2 :

(b) Find its average speed�f=�t from t D 1
2 to t D 1:

(c) What isdf=dt at t D 1
2 ?

18 Whenf is in feet andt is in seconds, what are the units off 1
and its derivativef 2 ? In f D 16t�16t2, the first16 is ft=sec but
the second16 is :

19 Graph yD x3 Cx2�x from xD�2 to xD 2 and estimate
where it is decreasing. Check the transition points by solving
dy=dxD 0:

20 At a point wheredy=dxD 0, what is special about the graph of
y.x/? Test case:yDx2:

21 Find the slope ofyD
?
x by algebra (thenhÑ 0):

�y

h
D

?
xCh�?x

h
D

?
xCh�?x

h
D

?
xChC

?
x?

xChC
?
x
:

22 Imitate Problem21 to find the slope ofyD 1=
?
x:

23 Complete Pascal’s triangle fornD 5 and nD 6: Why do the
numbers across each row add to2n ?

24 Complete .xCh/5 D x5 C : What are the binomial

coefficients
�

5

1

�

and
�

5

2

�

and
�

5

3

�

?

25 Compute.xCh/3�.x�h/3, divide by2h, and sethD 0: Why
divide by2h to find this slope?

26 Solve the differential equationy2 D x to findy.x/:

27 For f .x/D x2 Cx3, write outf .xC�x/ and�f=�x: What
is the limit at�xD 0 and what rule about sums is confirmed ?

28 The derivative of.u.x//2 is from Section2:1: Test this
rule onuD xn:

29 What are the derivatives ofx7 C1 and .xC1/7 ? Shift the graph
of x7:

30 If df=dx is v.x/, what functions have these derivatives ?

(a) 4v.x/

(c) v.xC1/

(b) v.x/C1

(d) v.x/Cv1.x/:

31 What functionf .x/ has fourth derivative equal to1 ?

32 What functionf .x/ hasnth derivative equal to1 ?

33 Supposedf=dxD 1CxCx2 Cx3: Findf .x/:

34 Supposedf=dxD x�2�x�3: Findf .x/:

35 f .x/ can be its own derivative. In the infinite polynomial
f D 1CxC 1

2x
2 C 1

6x
3 C , what numbers multiplyx4

and x5 if df=dx equalsf ?

36 Write down a differential equationdy=dxD that is
solved byyD x2: Make the right side involvey (not just2x).

37 True or false: (a) The derivative ofx� is �x� :

(b) The derivative ofaxn=bxn is a=b:

(c) If df=dxD x4 anddg=dxD x4 thenf .x/Dg.x/:

(d) .f .x/�f .a//=.x�a/ approachesf 1.a/ asxÑa:

(e) The slope ofyD .x�1/3 is y1 D 3.x�1/2:
Problems 38–44 are about calculus in economics.

38 When the cost isyD y0 Ccx, find E.x/D .dy=dx/=.y=x/:

It approaches for largex:

39 From an income ofxD $10;000 you spendyD $1;200 on
your car. If E D 1

2 , what fraction of your next dollar will be

spent on the car ? Comparedy=dx (marginal) withy=x (average).

40 Name a product whose price elasticity is

(a) high (b) low (c) negative ( ? )

41 The demandyD c=x hasdy=dxD�y=x: Show that�y=�x
is not �y=x: (Use numbers or algebra.) Finite steps miss the
special feature of infinitesimal steps.

42 The demandyD xn hasED : The revenuexy (price
times demand) has elasticityED :

43 yD 2xC3 grows with marginal cost2 from the fixed cost3:
Draw the graph ofE.x/:

44 From an incomeI we save S.I /: The marginal propensity
to save is : Elasticity is not needed becauseS and I

have the same : Applied to the whole economy this is
(microeconomics) (macroeconomics).

45 2t is doubled whent increases by : t3 is doubled when
t increases to t: The doubling time for AIDS is proportional
to t:

46 Biology also leads tody=yDndx=x, for the relative growth of
the head.dy=y/ and the body.dx=x/: Isn¡ 1 orn  1 for a child ?

47 What functions havedf=dxD x9 anddf=dxD xn ? Why does
nD�1 give trouble ?

48 The slope ofyD x3 comes from this identity:

.xCh/3�x3

h
D .xCh/2 C.xCh/xCx2:

(a) Check the algebra. Finddy=dx ashÑ 0:
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(b) Write a similar identity foryD x4:

49 (Computer graphing) Find all the points where
yD x4 C2x3�7x2 C3D 0 and wheredy=dxD 0:

50 The graphs ofy1.x/D x4 Cx3 and y2.x/D 7x�5 touch at
the point wherey3.x/D D 0: Plot y3.x/ to see what
is special. What does the graph ofy.x/ do at a point where
yD y1 D 0 ?

51 In the Massachusetts lottery you choose6 numbers out of36:
What is your chance to win ?

52 In what circumstances would it pay to buy a lottery ticket for
every possible combination, so one of the tickets would win ?
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2.3 The Slope and the Tangent Line

Chapter1 started with straight line graphs. The velocity was constant (at least
piecewise). The distance function was linear. Now we are facing polynomials like
x3�2 or x4�x2 C3, with other functions to come soon. Their graphs are definitely
curved. Most functions are not close to linear—except if you focus all your attention
near a single point. That is what we will do.

Over a very short range a curve looks straight. Look through a microscope, or
zoom in with a computer, and there is no doubt. The graph of distance versus time
becomes nearly linear. Its slope is the velocity at that moment. We want to find the
line that the graph stays closest to—the “tangent line”—before it curves away.

The tangent line is easy to describe. We are at a particular point on the graph of
yD f .x/: At that pointx equalsa andy equalsf .a/ and the slope equalsf 1.a/:
The tangent line goes through that pointxD a;yD f .a/ with that slope
mD f 1.a/. Figure 2.5 shows the line more clearly than any equation, but we have to
turn the geometry into algebra. We need the equation of the line.

EXAMPLE 1 SupposeyD x4�x2 C3: At the point xD aD 1, the height is
yD f .a/D 3: The slope isdy=dxD 4x3�2x: At xD 1 the slope is4�2D 2:
That isf 1.a/:

The numbersxD 1; yD 3; dy=dxD 2 determine the tangent line.

The equation of the tangent line isy�3D 2.x�1/, and this section explains
why.

Fig. 2.5 The tangent line has the same slope2 as the curve (especially after zoom).

THE EQUATION OF A LINE

A straight line is determined by two conditions. We know the lineif we know two of
its points. (We still have to write down the equation.) Also, if we knowone point and
the slope, the line is set. That is the situation for the tangent line, which has a known
slope at a known point:

1. The equation of a line has the formyDmxCb

2. The numberm is the slope of the line, becausedy=dxDm

3. The numberb adjusts the line to go through the required point.

I will take those one at a time—firstyDmxCb, thenm, thenb:
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1. The graph ofyDmxCb is not curved. How do we know ? For the specific
exampleyD 2xC1, take two points whose coordinatesx;y satisfy the equation:

xD 0;yD 1 and xD 4;yD 9 both satisfy yD 2xC1:

Those points.0;1/ and.4;9/ lie on the graph.The point halfway between hasxD 2
andyD 5. That point also satisfiesyD 2xC1:The halfway point is on the graph.
If we subdivide again, the midpoint between.0;1/ and.2;5/ is .1;3/: This also has
yD 2xC1: The graph contains all halfway points and must be straight.

2. What is the correct slopem for the tangent line ? In our example it is
mD f 1.a/D 2:

The curve and its tangent line have the same slope at the crucial point:
dy=dxD 2:

Allow me to say in another way why the lineyDmxCb has slopem: At xD 0
its height isyD b: At xD 1 its height isyDmCb: The graph has goneone unit
across.0 to 1/ andm units up.b tomCb/: The whole idea is

slopeD
distance up

distance across
D
m

1
: (1)

Each unit across meansm units up, to2mCb or 3mCb: A straight line keeps a
constant slope, whereas the slope ofyD x4�x2 C3 equals2 only atxD 1:

3. Finally we decide onb: The tangent lineyD 2xCb must go throughxD 1;
yD 3: ThereforebD 1: With letters instead of numbers,yDmxCb leads to
f .a/DmaCb: So we knowb:

2E The equation of the tangent line hasbD f .a/�ma:

yDmxCf .a/�ma or y�f .a/Dm.x�a/: (2)

That last form is the best. You see immediately what happens atxD a: The factor
x�a is zero. ThereforeyD f .a/ as required. This is thepoint-slope formof the
equation, and we use it constantly:

y�3D 2.x�1/ or
y�3
x�1 D

distance up

distance across
D slope2:

EXAMPLE 2 The curveyD x3�2 goes throughyD 6 whenxD 2: At that point
dy=dxD 3x2 D 12: The point-slope equation of the tangent line uses2 and6 and12:

y�6D 12.x�2/ which is also yD 12x�18:
There is another important line. It isperpendicular to the tangent line and

perpendicularto the curve. This is thenormal line in Figure 2.6. Its new feature
is its slope. When the tangent line has slopem, the normal line has slope�1=m:
(Rule: Slopes of perpendicular lines multiply to give�1:) Example 2 hasmD 12,
so the normal line has slope�1=12:

tangent line: y�6D 12.x�2/ normal line: y�6D� 1
12
.x�2/:

Light rays travel in the normal direction. So do brush fires—theymove perpendicular
to the fire line. Use the point-slope form! The tangent isyD 12x�18, the normal is
notyD� 1

12
x�18:
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EXAMPLE 3 You are on a roller-coaster whose track followsyD x2 C4: You see
a friend at.0;0/ and want to get there quickly. Where do you step off ?

Solution Your path will be the tangent line (at high speed). The problem is to choose
xD a so the tangent line passes throughxD 0;yD 0:When you step off atxD a,

the height isyD a2 C4 and the slope is2a

the equation of the tangent line isy� .a2 C4/D 2a.x�a/
this line goes through.0;0/ if �.a2 C4/D�2a2 or aD�2:

The same problem is solved by spacecraft controllers and baseball pitchers. Releasing
a ball at the right time to hit a target60 feet away is an amazing display of calculus.
Quarterbacks with a moving target should read Chapter4 on related rates.

Here is a better example than a roller-coaster. Stopping at a red light wastes gas. It
is smarter to slow down early, and then accelerate. When a car is waiting in front of
you, the timing needs calculus:

EXAMPLE 4 How much must you slow down when a red light is72meters away ?
In 4 seconds it will be green. The waiting car will accelerate at3meters=sec2: You
cannot pass the car.

Strategy Slow down immediately to the speedV at which you will just catch that car.
(If you wait and brake later, your speed will have to go belowV:) At the catchup time
T , the cars have the same speed and same distance.Two conditions, so the distance
functions in Figure 2.6d are tangent.

Solution At time T , the other car’s speed is3.T �4/: That shows the delay of4
seconds. Speeds are equal when3.T �4/DV or T D 1

3
V C4: Now require equal

distances. Your distance isV timesT: The other car’s distance is72C 1
2
at2:

72C 1
2
�3.T �4/2 DV T becomes 72C 1

2
� 1

3
V 2 DV

�

1
3
V C4

�

:

The solution isV D 12meters=second. This is43 km=hr or27miles per hour.
Without the other car, you only slow down toV D 72=4D 18meters=second. As

the light turns green, you go through at65 km=hr or40miles per hour. Try it.

Fig. 2.6 Tangent liney�y0 Dm.x�x0/: Normal liney�y0 D� 1

m
.x�x0/: Leaving a

roller-coaster and catching up to a car.



2.3 The Slope and the Tangent Line 105

THE SECANT LINE CONNECTING TWO POINTS ON A CURVE

Instead of the tangent line through one point, consider thesecant line through two
points. For the tangent line the points came together. Now spread them apart. The
point-slope form of a linear equation is replaced by thetwo-point form.

The equation of the curve is stillyD f .x/: The first point remains atxD a;
yD f .a/: The other point is atxD c;yD f .c/: The secant line goes between them,
and we want its equation. This time we don’t start with the slope—butm is easy to
find.

EXAMPLE 5 The curveyD x3�2 goes throughxD 2;yD 6: It also goes through
xD 3;yD 25: The slope between those points is

mD
change iny

change inx
D
25�6
3�2 D 19:

The point-slope form (at the first point) isy�6D 19.x�2/:This line automatically
goes through the second point.3;25/: Check:25�6 equals19.3�2/: The secant
has the right slope19 to reach the second point. It is theaverage slope�y=�x.

A look ahead The second point is going to approach the first point. The secant
slope�y=�x will approach the tangent slopedy=dx: We discover the derivative
(in the limit). That is the main point now—but not forever.

Soon you will be fast at derivatives. The exactdy=dx will be much easier
than�y=�x: The situation is turned around as soon as you know thatx9 has slope
9x8: Near xD 1, the distanceup is about9 times the distanceacross. To find
�yD 1:0019�19, just multiply �xD :001 by 9: The quick approximation is
:009, the calculator gives�yD :009036: It is easier to follow the tangent line than
the curve.

Come back to the secant line, and change numbers to letters. What line connects
xD a;yD f .a/ to xD c;yD f .c/ ? A mathematician puts formulas ahead of
numbers, and reasoning ahead of formulas, and ideas ahead of reasoning:

(1) The slope ismD
distance up

distance across
D
f .c/�f .a/

c�a
(2) The height isyD f .a/ atxD a

(3) The height isyD f .c/ atxD c (automatic with correct slope).

2F Thetwo-point formuses the slope between the points:

secant lineW y�f .a/D

�

f .c/�f .a/
c�a �

.x�a/: (3)

At xD a the right side is zero. SoyD f .a/ on the left side. AtxD c the right
side has two factorsc�a: They cancel to leaveyD f .c/:With equation(2) for the
tangent line and equation(3) for the secant line, we are ready for the moment of truth.
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THE SECANT LINE APPROACHES THE TANGENT LINE

What comes now is pretty basic. It matches what we did with velocities:

average velocityD
� distance

� time
D
f .tC�t/�f .t/

�t
:

The limit is df=dt: We now do exactly the same thing with slopes.The secant line
turns into the tangent line asc approachesa:

slope of secant line:
�f

�x
D
f .c/�f .a/

c�a
slope of tangent line:

df

dx
D limit of

�f

�x
:

There stands the fundamental idea of differential calculus! You have to imagine
more secant lines than I can draw in Figure 2.7, asc comes close toa: Everybody
recognizesc�a as�x: Do you recognizef .c/�f .a/ asf .xC�x/�f .x/ ? It
is �f , the change in height. All lines go throughxD a;yD f .a/: Their limit is
the tangent line.

Fig. 2.7 Secants approach tangent as their
slopes�f=�x approachdf=dx:

secant y�f .a/D
f .c/�f .a/

c�a .x�a/
tangent y�f .a/Df 1.a/.x�a/

Intuitively, the limit is pretty clear. The two points come together, and the
tangent line touches the curve atonepoint. (It could touch again at faraway points.)
Mathematically this limit can be tricky—it takes us from algebra to calculus. Algebra
stays away from0=0, but calculus gets as close as it can.

The new limit fordf=dx looks different, but it is the same as before:

f 1.a/D lim
cÑa

f .c/�f .a/
c�a : (4)

EXAMPLE 6 Find the secant lines and tangent line foryD f .x/D sinx atxD 0:

The starting point isxD 0;yD sin0: This is the origin.0;0/: The ratio of distance
up to distance across is.sinc/=c:

secant equationyD
sinc

c
x tangent equation yD 1x:

As c approaches zero, the secant line becomes the tangent line. The limit of.sinc/=c
is not0=0, which is meaningless, but1; which isdy=dx:

EXAMPLE 7 The gold you own will be worth
?
t million dollars in t years. When

does the rate of increase drop to10% of the current value, so you should sell the
gold and buy a bond ? Att D 25, how far does that put you ahead of

?
t D 5 ?
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Solution The rate of increase is the derivative of
?
t , which is1=2

?
t : That is10%

of the current value
?
t when1=2

?
t D

?
t=10: Therefore2t D 10 or t D 5: At that

time you sell the gold, leave the curve, and go onto the tangent line:

y�?5D

?
5

10
.t�5/ becomes y�?5D 2

?
5 at t D 25:

With straight interest on the bond, not compounded, you have reached
yD 3

?
5D 6:7million dollars. The gold is worth a measly five million.

2.3 EXERCISES

Read-through questions

A straight line is determined by a points, or one point and the
b . The slope of the tangent line equals the slope of thec .

The point-slope form of the tangent equation isy�f .a/D d .
The tangent line toyD x3 Cx at xD 1 has slope e . Its

equation is f . It crosses they axis at g and thex axis
at h . The normal line at this point.1;2/ has slope i . Its
equation isy�2D j . The secant line from.1;2/ to .2; k /

has slope l . Its equation isy�2D m .

The point.c;f .c// is on the liney�f .a/Dm.x�a/ provided
mD n . As c approachesa, the slopem approaches o . The
secant line approaches the p line.

1 (a) Find the slope ofyD 12=x: Find the slope ofyD 12=x:

(b) Find the equation of the tangent line at.2;6/:

(c) Find the equation of the normal line at.2;6/:

(d) Find the equation of the secant line to.4;3/:

2 ForyDx2 Cx find equations for

(a) the tangent line and normal line at.1;2/;
(b) the secant line toxD 1Ch;y D .1Ch/2 C.1Ch/:

3 A line goes through.1;�1/ and .4;8/: Write its equation in
point-slope form. Then write it asyDmxCb:

4 The tangent line to yD x3 C6x at the origin is
yD : Does it cross the curve again ?

5 The tangent line toyDx3�3x2 Cx at the origin is
yD : It is also the secant line to the point :

6 Find the tangent line toxD y2 atxD 4;yD 2:

7 For yD x2 the secant line from.a;a2/ to .c;c2/ has the
equation : Do the division byc�a to find the tangent
line asc approachesa:

8 Construct a function that has the same slope atxD 1 andxD 2:

Then find two points whereyD x4�2x2 has the same tangent line
(draw the graph).

9 Find a curve that is tangent toyD 2x�3 atxD 5: Find the nor-
mal line to that curve at.5;7/:

10 For yD 1=x the secant line from.a;1=a/ to .c;1=c/ has
the equation : Simplify its slope and find the limit asc
approachesa:

11 What are the equations of the tangent line and normal
line toyD sinx atxD�=2 ?

12 If c anda both approach an in-between valuexD b, then the
secant slope.f .c/�f .a//=.c�a/ approaches :

13 At xD a on the graph ofyD 1=x, compute

(a) the equation of the tangent line

(b) the points where that line crosses the axes.

The triangle between the tangent line and the axes always has
area :

14 Supposeg.x/D f .x/C7: The tangent lines tof andg atxD 4

are : True or false: The distance between those lines is7:

15 Choosec so thatyD 4x is tangent toyDx2 Cc:Match heights
as well as slopes.

16 Choosec so thatyD 5x�7 is tangent toyD x2 Ccx:

17 For yD x3 C4x2�3xC1, find all points where the tangent is
horizontal.

18 yD 4x can’t be tangent toyD cx2: Try to match heights and
slopes, or draw the curves.

19 Determinec so that the straight line joining.0;3/ and.5;�2/ is
tangent to the curveyD c=.xC1/:

20 Chooseb;c;d so that the two parabolasyD x2 CbxCc and
yD dx�x2 are tangent to each other atxD 1;yD 0:

21 The graph off .x/D x3 goes through.1;1/:

(a) Another point isxD cD 1Ch;y D f .c/D :

(b) The change inf is�f D :

(c) The slope of the secant ismD :

(d) As h goes to zero,m approaches :

22 Construct a functionyD f .x/whose tangent line atxD 1 is the
same as the secant that meets the curve again atxD 3:
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23 Draw two curves bending away from each other. Mark
the points P and Q where the curves are closest. At those
points, the tangent lines are and the normal lines are :�24 If the parabolasyD x2 C1 and yD x�x2 come closest at
.a;a2 C1/ and.c;c�c2/, set up two equations fora andc:

25 A light ray comes down the linexD a: It hits the parabolic re-
flectoryD x2 atP D .a;a2/:

(a) Find the tangent line atP: Locate the pointQ where that
line crosses they axis.

(b) Check thatP andQ are the same distance from the focus
atF D .0; 1

4 /:

(c) Show from (b) that the figure has equal angles.

(d) What law of physics makes every ray reflect off the
parabola to the focus atF ?

26 In a bad reflectoryD 2=x, a ray down one special linexD a is
reflected horizontally. What isa ?

27 For the parabola4pyDx2, where is the slope equal to
1? At that point a vertical ray will reflect horizontally. So the
focus is at.0; /:

28 Why are these statements wrong ? Make them right.

(a) If yD 2x is the tangent line at.1;2/ thenyD�1
2x is the

normal line.

(b) As c approachesa, the secant slope.f .c/�f .a//=
.c�a/ approaches.f .a/�f .a//=.a�a/:
(c) The line through.2;3/ with slope4 is y�2D 4.x�3/:

29 A ball goes around a circle:xD cost;yD sin t: At t D 3�=4 the
ball flies off on the tangent line. Find the equation of that line and
the point where the ball hits the ground.yD 0/:

30 If the tangent line toyD f .x/ at xD a is the same as the
tangent line toyDg.x/ at xD b, find two equations that must be
satisfied bya andb:

31 Draw a circle of radius 1 resting in the parabola
yD x2: At the touching point .a;a2/, the equation of the
normal line is : That line hasxD 0 whenyD : The
distance to.a;a2/ equals the radius1 when aD : This
locates the touching point.

32 Follow Problem 31 for the flatter parabolayD 1
2x

2 and
explain where the circle rests.

33 You are applying for a $1000 scholarship and your time is worth
$10 a hour. If the chance of success is1�.1=x/ from x hours of
writing, when should you stop ?

34 Suppose|f .c/�f .a/|¤ |c�a| for every pair of pointsa and
c: Prove that|df=dx|¤ 1:
35 From which pointxD a does the tangent line toyD 1=x2 hit
thex axis atxD 3 ?

36 If u.x/=v.x/D 7 find u1.x/=v1.x/: Also find .u.x/=v.x//1:
37 Findf .c/D 1:00110 in two ways—by calculator and byf .c/�
f .a/� f 1.a/.c�a/: ChooseaD 1 andf .x/D x10:

38 At a distance�x from xD 1, how far is the curveyD 1=x

above its tangent line ?

39 At a distance�x fromxD 2, how far is the curveyD x3 above
its tangent line ?

40 Based on Problem38 or 39; the distance between curve and tan-
gent line grows like what power.�x/p ?

41 The tangent line tof .x/D x2�1 at x0 D 2 crosses the
x axis at x1 D : The tangent line atx1, crosses
the x axis at x2 D : Draw the curve and the two
lines, which are the beginning ofNewton’s methodto solve
f .x/D 0:

42 (Puzzle) The equationyDmxCb requires two numbers,
the point-slope formy�f .a/D f 1.a/.x�a/ requiresthree, and
the two-point form requiresfour: a;f .a/;c;f .c/: How can
this be ?

43 Find the timeT at the tangent point in Example 4, when you
catch the car in front.

44 If the waiting car only accelerates at2 meters=sec2, what speed
V must you slow down to ?

45 A thief 40 meters away runs toward you at8 meters
per second. What is the smallest acceleration so thatvD at

keeps you in front ?

46 With 8 meters to go in a relay race, you slow down badly
.f D�8C6t� 1

2 t
2/: How fast should the next runner start

(choosev in f D vt) so you can just pass the baton ?
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2.4 The Derivative of the Sine and Cosine

This section does two things. One is to compute the derivatives ofsin x andcosx:
The other is to explain why these functions are so important. They describe

oscillation, which will be expressed in words and equations. You will see a
“differential equation.” It involves the derivative of an unknown functiony.x/:

The differential equation will say that thesecondderivative—the derivative of the
derivative—is equal and opposite toy: In symbols this isy2 D�y: Distance in one
direction leads to acceleration in the other direction. That makesy andy 1 andy2 all
oscillate. The solutions toy2 D�y aresinx andcosx and all their combinations.

We begin with the slope. The derivative ofyD sinx is y 1 D cosx: There is no
reason for that to be a mystery, but I still find it beautiful. Chapter1 followed a ball
around a circle; the shadow went up and down. Its height wassin t and its velocity
was cost: We now find that derivative bythe standard method of limits, when
y.x/D sinx:

dy

dx
D limit of

�y

�x
D lim

hÑ0

sin.xCh/�sinx

h
: (1)

Thesine is harder to work with thanx2 or x3: Where we had.xCh/2 or .xCh/3,
we now havesin.xCh/: This calls for one of the basic “addition formulas” from
trigonometry, reviewed in Section1:5 W

sin.xCh/ D sin x coshCcosx sinh (2)

cos.xCh/ D cosx cosh�sinx sinh: (3)

Equation(2) puts�yD sin.xCh/�sinx in a new form:

�y

�x
D

sin x coshCcosx sinh�sinx

h
D sin x

�

cosh�1
h

�

Ccosx

�

sinh

h

�

: (4)

The ratio splits into two simpler pieces on the right. Algebra and trigonometry got
us this far, and now comes the calculus problem.What happens ashÑ 0 ? It is no
longer easy to divide byh: (I will not even mention the unspeakable crime of writing
.sinh/=hD sin:) There are two critically important limits—the first is zero and the
second is one:

lim
hÑ0

cosh�1
h

D 0 and lim
hÑ0

sinh

h
D 1: (5)

The careful reader will object that limits have not been defined! You may further
object to computing these limits separately, before combining them into equation(4).
Nevertheless—following the principle ofideas now, rigor later—I would like to
proceed. It is entirely true that the limit of(4) comes from the two limits in(5):

dy

dx
D .sinx/.first limit/C .cosx/.second limit/D 0Ccosx: (6)

The secant slope�y=�x has approached the tangent slopedy=dx:

2G The derivative ofyD sin x is dy=dxD cosx:
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Fig. 2.8

We cannot pass over the crucial step—the two limits in(5). They contain the real
ideas.Both ratios become0=0 if we just substitutehD 0. Remember that the
cosine of a zero angle is1, and the sine of a zero angle is0: Figure 2.8a shows a
small angleh (as near to zero as we could reasonably draw). The edge of lengthsinh
is close to zero, and the edge of lengthcosh is near1: Figure 2.8b shows how the
ratio of sinh to h (both headed for zero) gives the slope of the sine curve at the start.

When two functions approach zero, their ratio might do anything. We might have

h2

h
Ñ 0 or

h

h
Ñ 1 or

?
h

h
Ñ8:

No clue comes from0=0: When matters iswhether the top or bottom goes to zero
more quickly. Roughly speaking, we want to show that.cosh�1/=h is like h2=h
and.sinh/=h is like h=h:

Time out The graph ofsinx is in Figure 2.9 (in black). The graph ofsin.xC�x/
sits just beside it (in red). The height difference is�f when the shift distance is�x:

Fig. 2.9 sin.xCh/ with hD 10� D�=18 radians.�f=�x is close to cosx:

Now divide by that small number�x (or h). The second figure shows�f=�x:
It is close tocosx: (Look how it starts—it is not quitecosx:) Mathematics will prove
that the limit iscosx exactly, when�xÑ 0: Curiously, the reasoning concentrates
on only one point.xD 0/: The slope at that point iscos0D 1:

We now prove this:sin�x divided by�x goes to1: The sine curve starts with
slope1: By the addition formula forsin.xCh/, this answer at one point will lead to
the slopecosx at all points.

Question Why does the graph off .xC�x/ shift left fromf .x/ when�x¡ 0 ?
Answer WhenxD 0, the shifted graph is already showingf .�x/: In Figure 2.9a,
the red graph is shiftedleft from the black graph. The red graph showssinh when the
black graph showssin0:

THE LIMIT OF .sin h/=h IS 1

There are several ways to find this limit. The direct approach is to let a computer draw
a graph. Figure 2.10a is very convincing.The function .sinh/=h approaches1 at
the key pointhD 0. So does.tanh/=h: In practice, the only danger is that you might
get a message like “undefined function” and no graph. (The machine may refuse to
divide by zero athD 0:Probably you can get around that.) Because of the importance
of this limit, I want to give a mathematical proof that it equals1:

Figure 2.10b indicates, but still only graphically, thatsinh stays belowh: (The
first graph shows that too;.sinh/=h is below1:) We also see thattanh stays above
h: Remember that the tangent is the ratio of sine to cosine. Dividing by the cosine is
enough to push the tangent aboveh: The crucial inequalities (to be proved whenh is
small and positive) are

sinh  h and tanh¡ h: (7)
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Fig. 2.10 .sinh/=h squeezed between cosx and1I.tanh/=h decreases to1:

SincetanhD .sinh/=.cosh/, those are the same as

sinh

h
  1 and

sinh

h
¡ cosh: (8)

What happens ash goes to zero ?The ratio .sinh/=h is squeezed betweencosh
and1. But cosh is approaching1! The squeeze ashÑ 0 leaves only one possibility
for .sinh/=h, which is caught in between:The ratio.sinh/=h approaches1.

Figure 2.10 shows that “squeeze play.”If two functions approach the same limit,
so does any function caught in between. This is proved at the end of Section2:6:

For negative values ofh, which are absolutely allowed, the result is the same. To the
left of zero,h reverses sign andsinh reverses sign. The ratio.sinh/=h is unchanged.
(The sine is an odd function:sin.�h/D�sinh:) The ratio is anevenfunction,
symmetric around zero and approaching1 from both sides.

The proof depends onsinh  h  tanh, which is displayed by the graph but not
explained. We go back to right triangles.

Fig. 2.11 Line shorter than arc:2 sinh  2h: Areas giveh  tanh:

Figure 2.11a shows whysinh  h: The straight linePQ has length2 sinh: The
circular arc must be longer, because the shortest distance between two points is a
straight line.� The arcPQ has length2h: (Important:When the radius is1, the arc
length equals the angle. The full circumference is2� and the full angle is also2�:)
The straight distance2 sinh is less than the circular distance2h; sosinh  h.

Figure 2.11b shows whyh  tanh: This time we look atareas. The triangular area
is 1

2
(base)(height)D 1

2
.1/.tanh/: Inside that triangle is the shaded sector of the circle.

� If we try to prove that, we will be here all night. Accept it as true.
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Its area ish=2� times the area of the whole circle (because the angle is that fraction
of the whole angle). The circle has area�r2 D� , so multiplication byh=2� gives
1
2
h for the area of the sector. Comparing with the triangle around it,1

2
tan h¡ 1

2
h:

The inequalitiessinh  h  tanh are now proved. The squeeze in equation(8)
produces.sinh/=hÑ 1: Q.E.D. Problem13 shows how to provesinh  h from
areas.

Note All anglesx andh are being measured in radians.In degrees,cosx is not
the derivative ofsinx. A degree is much less than a radian, anddy=dx is reduced
by the factor2�=360:

THE LIMIT OF .cosh�1/=h IS 0

This second limit is different. We will show that1�cosh shrinks to zeromore quickly
thanh: Cosines are connected to sines by.sinh/2 C .cosh/2 D 1:We start from the
known factsinh  h and work it into a form involving cosines:

.1�cosh/.1Ccosh/D 1� .cosh/2 D .sinh/2  h2: (9)

Note that everything is positive. Divide through byh and also by1Ccosh:

0  1�cosh

h
  h

1Ccosh
: (10)

Our ratio is caught in the middle.The right side goes to zero becausehÑ 0. This
is another “squeeze”—there is no escape. Our ratio goes to zero.

For cosh�1 or for negativeh, the signs change but minus zero is still zero. This
confirms equation(6). The slope ofsinx is cosx:

Remark Equation (10) also shows that1�cosh is approximately1
2
h2: The

2 comes from1Ccosh: This is a basic purpose of calculus—to find simple
approximations like1

2
h2: A “tangent parabola”1� 1

2
h2 is close to the top of the

cosine curve.

THE DERIVATIVE OF THE COSINE

This will be easy. The quick way to differentiatecosx is to shift the sine curve by
�=2: That yields the cosine curve (solid line in Figure 2.12b). The derivative also
shifts by�=2 (dotted line).The derivative ofcosx is�sinx.

Notice how the dotted line (the slope) goes below zero when the solid line
turns downward. The slope equals zero when the solid line is level.Increasing
functions have positive slopes. Decreasing functions have negative slopes. That
is important, and we return to it.

There is more information indy=dx than “function rising” or “function falling.”
The slope tellshow quicklythe function goes up or down. It gives therate of change.
The slope ofyD cosx can be computed in the normal way, as the limit of�y=�x:

�y

�x
D

cos.xCh/�cosx

h
D cosx

�

cosh�1
h

��sinx

�

sinh

h

�

dy

dx
D .cosx/.0/� .sinx/.1/D�sinx: (11)

The first line came from formula(3) for cos.xCh/: The second line took limits,
reaching0 and1 as before. This confirms the graphical proof that the slope ofcosx
is�sinx:
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Fig. 2.12 y.x/ increases wherey1 is positive.y.x/ bends up wherey2 is positive.

THE SECOND DERIVATIVES OF THE SINE AND COSINE

We now introducethe derivative of the derivative. That is thesecond derivativeof
the original function. It tells how fast the slope is changing, not how fasty itself is
changing. The second derivative is the “rate of change of the velocity.” A straight line
has constant slope (constant velocity), so its second derivative is zero:

f .t/D 5t has df=dt D 5 and d2f=dt2 D 0:

The parabolayD x2 has slope2x (linear) which has slope2 (constant). Similarly

f .t/D 1
2
at2 has df=dt D at and d2f=dt2 D a:

There stands the notationd2f=dt2 (or d2y=dx2) for the second derivative. A short
form isf 2 ory2: (This is pronouncedf double primeory double prime). Example:
The second derivative ofyD x3 is y2 D 6x:

In the distance-velocity problem,f 2 is acceleration. It tells how fastv is changing,
while v tells how fastf is changing. Wheredf=dt was distance=time, the second
derivative is distance=(time)2: The acceleration due to gravity is about32 ft=sec2 or
9:8 m=sec2, which means thatv increases by32 ft=sec in one second. It does not
mean that the distance increases by32 feet!

The graph ofyD sin t increases at the start. Its derivativecost is positive.
However the second derivative is�sin t: The curve is bending down while
going up. The arch is “concave down” becausey2 D�sin t is negative.

At t D� the curve reaches zero and goes negative. The second derivative becomes
positive.Now the curve bends upward. The lower arch is “concave up.”

y2¡ 0means thaty 1 increases soy bends upward (concave up)

y2  0means thaty 1 decreases soy bends down (concave down).

Chapter3 studies these things properly—here we get an advance look forsin t:
The remarkable fact about the sine and cosine is thaty2 D�y: That is unusual and

special:accelerationD�distance: The greater the distance, the greater the force
pulling back:

yD sin t has dy=dt D Ccost and d2y=dt2 D�sin t D�y:
yD cost has dy=dt D�sin t and d2y=dt2 D�cost D�y:

Question Doesd2y=dt2  0mean that the distancey.t/ is decreasing?
Answer No. Absolutely not! It means thatdy=dt is decreasing, not necessarilyy:
At the start of the sine curve,y is still increasing buty2  0:
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Sines and cosines givesimple harmonic motion—up and down, forward and back,
out and in, tension and compression. Stretch a spring, and the restoring force pulls
it back. Push a swing up, and gravity brings it down. These motions are controlled
by adifferential equation:

d2y

dt2
D�y: (12)

All solutions are combinations of the sine and cosine:yDA sin tCB cost:
This is not a course on differential equations. But you have to see the purpose of

calculus. It models events by equations. It models oscillation by equation(12). Your
heart fills and empties. Balls bounce. Current alternates. The economy goes up and
down:

high pricesÑ high productionÑ low pricesÑ �� �
We can’t live without oscillations (or differential equations).

2.4 EXERCISES

Read-through questions

The derivative ofyD sinx is y1 D a . The second derivative
(the b of the derivative) is y2 D c . The fourth
derivative is y4 D d . ThusyD sin x satisfies the differential
equations y2 D e and y4 D f . So does
yD cosx, whose second derivative is g .

All these derivatives come from one basic limit:.sinh/=h
approaches h . The sine of :01 radians is very close
to i . So is the j of :01: The cosine of :01 is
not :99, because1�cosh is much k than h: The ratio
.1�cosh/=h2 approaches l . Therefore cosh is close to
1� 1

2h
2 and cos:01� m . We can replaceh by x:

The differential equationy2 D�y leads to n . When y
is positive, y2 is o . Thereforey1 is p . Eventually y
goes below zero andy2 becomes q . Then y1 is r .
Examples of oscillation in real life are s and t .

1 Which of these ratios approach1 ashÑ 0 ?

(a)
h

sinh (b)
sin2h

h2
(c)

sinh

sin2h
(d)

sin.�h/
h

2 (Calculator) Find .sinh/=h at hD 0:5 and 0:1 and :01:

Where does.sinh/=h go above:99 ?

3 Find the limits ashÑ 0 of

(a)
sin2h

h
(b)

sin5h

5h
(c)

sin5h

h
(d)

sinh

5h
4 Where does tanhD 1:01h ? Where does tanhD h?

5 yD sinx has period2�, which means that sinxD : The
limit of .sin.2�Ch/�sin2�/=h is 1 because : This gives
dy=dx atxD :

6 Draw cos.xC�x/ next to cosx:Mark the height difference�y:
Then draw�y=�x as in Figure 2.9.

7 The key to trigonometry is cos2 � D 1�sin2 �:

Set sin� � � to find cos2 � � 1��2: The square root is
cos� � 1� 1

2 �
2. Reason: Squaring gives cos2 � � and the

correction term is very small near� D 0:

8 (Calculator) Compare cos� with 1� 1
2�

2 for

(a) � D 0:1 (b) � D 0:5 (c) � D 30� (d) � D 30�:
9 Trigonometry gives cos� D 1�2sin2 1

2�: The approximation
sin 1

2� � leads directly to cos� � 1� 1
2�

2:

10 Find the limits ashÑ 0:

(a)
1�cosh

h2

(c)
1�cos2h

sin2h

(b)
1�cos2h

h2

(d)
1�cos2h

h

11 Find by calculator or calculus:

(a) lim
hÑ0

sin3h

sin2h
(b) lim

hÑ0

1�cos2h

1�cosh
:

12 Compute the slope atxD 0 directly from limits:

(a) yD tanx (b) yD sin.�x/
13 The unmarked points in Figure 2.11 areP andS: Find the height
PS and the area of triangleOPR: Prove by areas that sinh  h:
14 The slopes of cosx and1� 1

2x
2 are�sinx and : The

slopes of sinx and are cosx and 1� 1
2x

2:

15 Chapter10 gives an infinite series for sinx:

sinxD
x

1
� x3

3 �2 �1 C
x5

5 �4 �3 �2 �1 � �� � :
From the derivative find the series for cosx: Then take its
derivative to get back to�sinx:
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16 A centered differencefor f .x/D sinx is

f .xCh/�f .x�h/
2h

D
sin.xCh/�sin.x�h/

2h
D‹

Use the addition formula (2). Then lethÑ 0:

17 Repeat Problem16 to find the slope of cosx: Use formula (3) to
simplify cos.xCh/�cos.x�h/:
18 Find the tangent line toyD sinx at

(a) xD 0 (b) xD� (c) xD�=4

19 Where doesyD sinxCcosx have zero slope ?

20 Find the derivative of sin.xC1/ in two ways:

(a) Expand to sinx cos1Ccosx sin1: Computedy=dx:

(b) Divide �yD sin.xC1C�x/�sin.xC1/ by �x: Write
X instead ofxC1: Let�x go to zero.

21 Show that.tanh/=h is squeezed between1 and 1=cosh: As
hÑ 0 the limit is :

22 For yD sin2x, the ratio�y=h is

sin2.xCh/�sin2x

h
D

sin 2x .cos2h�1/Ccos2x sin2h

h
:

Explain why the limitdy=dx is 2 cos2x:

23 Draw the graph ofyD sin 1
2x: State its slope atxD 0;�=2;�;

and2=�: Does1
2 sin x have the same slopes ?

24 Draw the graph ofyD sinxC
?
3 cosx: Its maximum value is

yD atxD : The slope at that point is :

25 By combining sinx and cosx, find a combination that
starts atxD 0 from yD 2 with slope 1: This combination also
solvesy2 D :

26 True or false, with reason:

(a) The derivative of sin2x is cos2x

(b) The derivative of cos.�x/ is sinx
(c) A positive function has a negative second derivative.

(d) If y1 is increasing theny2 is positive.

27 Find solutions tody=dxD sin3x anddy=dxD cos3x:

28 If yD sin5x then y1 D 5cos5x and y2 D�25 sin5x: So
this function satisfies the differential equationy2 D :

29 If h is measured in degrees, find limhÑ0 .sinh/=h: You could
set your calculator in degree mode.

30 Write down a ratio that approachesdy=dx at xD�: For
yD sinx and�xD :01 compute that ratio.

31 By the square rule, the derivative of.u.x//2 is 2udu=dx: Take
the derivative of each term in sin2 xCcos2xD 1:

32 Give an example of oscillation that does not come from physics.
Is it simple harmonic motion (one frequency only) ?

33 Explain the second derivative in your own words.
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2.5 The Product and Quotient and Power Rules

What are the derivatives ofxCsin x andx sinx and1=sinx andx=sinx andsinnx ?
Those are made up from the familiar piecesx and sinx, but we need new rules.
Fortunately they are rules that apply to every function, so they can be established
once and for all. If we know the separate derivatives of two functionsu andv, then
the derivatives ofuCv anduv and1=v andu=v andun are immediately available.

This is a straightforward section, with those five rules to learn. It is also an
important section, containing most of the working tools of differential calculus. But I
am afraid that five rules and thirteen examples (which we need—the eyes glaze over
with formulas alone) make a long list. At least the easiest rule comes first.When we
add functions,we add their derivatives.

Sum Rule

Thederivative of the sumu.x/Cv.x/ is
d

dx
.uCv/D

du

dx
C
dv

dx
: (1)

EXAMPLE 1 The derivative ofxCsinx is 1Ccosx: That is tremendously
simple, but it is fundamental. The interpretation for distances may be more
confusing (and more interesting) than the rule itself:

Suppose a train moves with velocity1: The distance at timet is t:On the train a
professor paces back and forth (in simple harmonic motion). His distance from
his seat issin t: Then the total distance from his starting point istCsin t , and
his velocity (train speed plus walking speed) is1Ccost:

If you add distances, you add velocities. Actually that example is ridiculous, because
the professor’s maximum speed equals the train speed.D 1/:He is running like mad,
not pacing. Occasionally he is standing still with respect to the ground.

The sum rule is a special case of a bigger rule called “linearity.” It applies when
we add or subtract functions and multiply them by constants—as in3x�4sinx:
By linearity the derivative is3�4cosx: The rule works for all functionsu.x/ and
v.x/: A linear combinationis y.x/D au.x/Cbv.x/, wherea andb are any real
numbers. Then�y=�x is

au.xC�x/Cbv.xC�x/�au.x/�bv.x/
�x

D a
u.xC�x/�u.x/

�x
Cb

v.xC�x/�v.x/
�x

:

The limit on the left isdy=dx: The limit on the right isa du=dxCb dv=dx:We are
allowed to take limits separately and add. The result is what we hope for:

Rule of Linearity

Thederivative of au.x/Cbv.x/ is
d

dx
.auCbv/D a

du

dx
Cb

dv

dx
: (2)

Theproduct rule comes next. It can’t be so simple—products are not linear. The
sum rule is what you would have done anyway, but products give something new.
The derivative ofu timesv is not du=dx timesdv=dx. Example: The derivative
of x5 is 5x4: Don’t multiply the derivatives ofx3 andx2: (3x2 times2x is not5x4:)
For a product of two functions, the derivative has two terms.

Product Rule(the key to this section)

The derivative of u.x/v.x/ is
d

dx
.uv/Du

dv

dx
Cv

du

dx
: (3)
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EXAMPLE 2 uD x3 timesvD x2 is uvD x5: The product rule leads to5x4:

x3 dv

dx
Cx2du

dx
D x3.2x/Cx2.3x2/D 2x4 C3x4 D 5x4:

EXAMPLE 3 In the slope ofx sinx, I don’t write dx=dxD 1 but it’s there:

d

dx
.x sin x/D x cosxCsinx:

EXAMPLE 4 If uD sinx andvD sinx thenuvD sin2x:We get two equal terms:

sinx
d

dx
.sin x/Csinx

d

dx
.sin x/D 2 sinx cosx:

This confirms the “square rule”2u du=dx, whenu is the same asv: Similarly the
slope ofcos2x is�2 cosx sinx (minus sign from the slope of the cosine).

Question Those answers forsin2x andcos2x have opposite signs, so the derivative
of sin2xCcos2x is zero (sum rule). How do you see that more quickly ?

EXAMPLE 5 The derivative ofuvw isuvw1Cuv1wCu1vw—one derivative at a
time. The derivative ofxxx is xxCxxCxx:

Fig. 2.13 Change in lengthD�uC�v: Change in areaDu�vCv�uC�u�v:

After those examples we prove the product rule. Figure 2.13 explains it best. The
area of the big rectangle isuv: The important changes in area are the two strips
u�v and v�u. The corner area�u�v is much smaller. When we divide by�x,
the strips giveu�v=�x andv�u=�x: The corner gives�u�v=�x, which ap-
proaches zero.

Notice how the sum rule is in one dimension and the product rule is in two
dimensions. The rule foruvw would be in three dimensions.

The extra area comes from the whole top strip plus the side strip. By algebra,

u.xCh/v.xCh/�u.x/v.x/Du.xCh/Œv.xCh/�v.x/�Cv.x/Œu.xCh/�u.x/�: (4)

This increase isu.xCh/�vCv.x/�u—top plus side.Now divide byh (or �x)
and lethÑ 0. The left side of equation(4) becomes the derivative ofu.x/v.x/: The
right side becomesu.x/ timesdv=dx—we can multiply the two limits—plusv.x/
timesdu=dx: That proves the product rule—definitely useful.

We could go immediately to the quotient rule foru.x/=v.x/: But start withuD 1:
The derivative of1=x is�1=x2 (known). What is the derivative of1=v.x/ ?

Reciprocal Rule

Thederivative of
1

v.x/
is
�dv=dx
v2

: (5)
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The proof starts with.v/.1=v/D 1: The derivative of1 is 0: Apply the product rule:

v
d

dx

�

1

v

�

C
1

v

dv

dx
D 0 so that

d

dx

�

1

v

�

D
�dv=dx
v2

: (6)

It is worth checking the units—in the reciprocal rule and others. A test of
dimensions is automatic in science and engineering, and a good idea in
mathematics. The test ignores constants and plus or minus signs, but it prevents bad
errors. If v is in dollars andx is in hours,dv=dx is in dollars per hour. Then
dimensions agree:

d

dx

�

1

v

�� .1=dollars/

hour
and also

�dv=dx
v2

� dollars=hour

(dollars)2
:

From this test, the derivative of1=v cannot be1=.dv=dx/: A similar test shows that
Einstein’s formulaeDmc2 is dimensionally possible. The theory of relativity might
be correct! Both sides have the dimension of (mass)(distance)2=(time)2, when mass
is converted to energy.�

EXAMPLE 6 The derivatives ofx�1;x�2;x�n are�1x�2;�2x�3;�nx�n�1:

Those come from the reciprocal rule withvD x andx2 and anyxn:

d

dx
.x�n/D

d

dx

�

1

xn

�

D�nxn�1

.xn/2
D�nx�n�1:

The beautiful thing is that this answer�nx�n�1 fits into the same pattern asxn:
Multiply by the exponent and reduce it by one.

For negative and positive exponents the derivative ofxn is nxn�1: (7)

Reciprocal
1

vC�v
� 1
v

D
��v

v.vC�v/

Quotient
uC�u

vC�v
� u
v

D
v�u�u�v
v.vC�v/

Fig. 2.14 Reciprocal rule from.��v/=v2: Quotient rule from.v�u�u�v/=v2:

EXAMPLE 7 The derivatives of
1

cosx
and

1

sinx
are

Csinx

cos2x
and

�cosx

sin2x
:

Those come directly from the reciprocal rule. In trigonometry,1=cosx is thesecant
of the anglex, and1=sinx is thecosecantof x: Now we have their derivatives:

d

dx
.sec x/ D

sinx

cos2x
D

1

cosx

sin x

cosx
D secx tanx: (8)

d

dx
.csc x/ D �cosx

sin2x
D� 1

sinx

cosx

sinx
D�cscx cotx: (9)

�But only Einstein knew that the constant is1:
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Those formulas are often seen in calculus. If you have a good memory they are
worth storing. Like most mathematicians, I have to check them every time before
using them (maybe once a year). It is really the rules that are basic, not the formulas.

The next rule applies to the quotientu.x/=v.x/: That isu times1=v: Combining
the product rule and reciprocal rule gives something new and important:

Quotient Rule

Thederivative of
u.x/

v.x/
is

1

v

du

dx
�udv=dx

v2
D
vdu=dx�udv=dx

v2
:

You must memorize that last formula. Thev2 is familiar. The rest is new, but
not very new. IfvD 1 the result isdu=dx (of course). ForuD 1 we have the
reciprocal rule. Figure 2.14b shows the difference.uC�u/=.vC�v/� .u=v/:The
denominatorv.vC�v/ is responsible forv2:

EXAMPLE 8 (only practice) Ifu=vD x5=x3 (which isx2) the quotient rule gives2x:

d

dx

�

x5

x3

�

D
x3.5x4/�x5.3x2/

x6
D
5x7�3x7

x6
D 2x:

EXAMPLE 9 (important) ForuD sinx andvD cosx, the quotient issinx=cosxD
tanx:The derivative oftanx is sec2x. Use the quotient rule andcos2xCsin2xD 1 W

d

dx

�

sin x

cosx

�

D
cosx .cosx/�sinx .�sinx/

cos2x
D

1

cos2x
D sec2x: (11)

Again to memorize:.tanx/1 D sec2x: At xD 0, this slope is 1. The graphs ofsinx
andx and tanx all start with this slope (then they separate). AtxD�=2 the sine
curve is flat.cosxD 0/ and the tangent curve is vertical.sec2xD8/:

The slope generally blows up faster than the function. We divide bycosx, once
for the tangent and twice for its slope. The slope of1=x is�1=x2: The slope is more
sensitive than the function, because of the square in the denominator.

EXAMPLE 10
d

dx

�

sin x

x

�

D
x cosx�sinx

x2
:

That one I hesitate to touch atxD 0: Formally it becomes0=0: In reality it is more
like 03=02, and the true derivative is zero. Figure 2.10 showed graphically that.sinx/=x
is flat at the center point. The function iseven(symmetric across they axis) so its
derivative can only be zero.

This section is full of rules, and I hope you will allow one more. It goes beyond
xn to .u.x//n: A power ofx changes to a power ofu.x/—as in.sinx/6 or .tanx/7

or .x2 C1/8: The derivative containsnun�1 (copyingnxn�1), but there is an extra
factor du=dx: Watch that factor in6.sinx/5 cosx and 7.tanx/6sec2x and
8.x2 C1/7.2x/:

Power Rule

Thederivative of
h

u.x/
in

is n
h

u.x/
in�1 du

dx
: (12)

For nD 1 this reduces todu=dxD du=dx: For nD 2 we get the square rule
2u du=dx: Next comesu3: The best approach is to usemathematical induction,
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which goes from eachn to the next powernC1 by the product rule:

d

dx
.unC1/D

d

dx
.unu/Dundu

dx
Cu

�

nun�1du

dx

�

D .nC1/un du

dx
:

That is exactly equation(12) for the powernC1:We get all positive powers this way,
going up fromnD 1—then the negative powers come from the reciprocal rule.

Figure 2.15 shows the power rule fornD 1;2;3: The cube makes the point
best. The three thin slabs areu by u by�u: The change in volume is essentially
3u2�u: From multiplying out .uC�u/3, the exact change in volume is
3u2�uC3u.�u/2 C .�u/3—which also accounts for three narrow boxes and a
midget cube in the corner. This is the binomial formula in a picture.

Fig. 2.15 Length changeD�u; area change� 2u�u; volume change� 3u2�u:

EXAMPLE 11
d

dx
.sinx/n D n.sinx/n�1 cosx: The extra factorcosx isdu=dx:

Our last step finally escapes from a very undesirable restriction—thatn must be
a whole number. We want to allow fractional powersnDp=q, and keep the same
formula.The derivative ofxn is still nxn�1.

To deal with square roots I can write.
?
x/2 D x: Its derivative is2

?
x.
?
x/1 D 1:

Therefore.
?
x/1 is 1=2

?
x, which fits the formula whennD 1

2
: Now try nDp=q:

Fractional powers Write uD xp=q as uq D xp: Take derivatives, assuming they
exist:

quq�1
du

dx
Dpxp�1 (power rule on both sides)

du

dx
D
px�1

qu�1
(cancelxp with uq)

du

dx
Dnxn�1 (replacep=q by n andu by xn)

EXAMPLE 12 The slope ofx1=3 is 1
3
x�2=3: The slope is infinite atxD 0 and

zero atxD8: But the curve in Figure 2.16 keeps climbing. It doesn’t stay below an
“asymptote.”
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Fig. 2.16 Infinite slope ofxn versus zero slope: the difference between0 n  1 andn¡ 1:
EXAMPLE 13 The slope ofx4=3 is 4

3
x1=3: The slope is zero atxD 0 and infinite at

xD8: The graph climbs faster than a line and slower than a parabola (4
3

is between

1 and2). Its slope follows the cube root curve (times4
3
).

WE STOP NOW! I am sorry there were so many rules. A computer can memorize
them all, but it doesn’t know what they mean and you do. Together with the chain rule
that dominates Chapter4; they achieve virtually all the derivatives ever computed by
mankind. We list them in one place for convenience.

Rule of Linearity .auCbv/1D au1Cbv1
Product Rule .uv/1 Duv1Cvu1
Reciprocal Rule .1=v/1 D�v1=v2

Quotient Rule .u=v/1 D .vu1�uv1/=v2

Power Rule .un/1 D nun�1u1
The power rule applies whenn is negative, or afraction, or any real number. The
derivative ofx� is �x��1, according to Chapter6: The derivative of.sinx/� is

: And the derivatives of all six trigonometric functions are now established:

.sin x/1D cosx .tanx/1D sec2x .secx/1D secx tanx

.cosx/1D�sinx .cotx/1D�csc2x .cscx/1D�cscx cotx:

2.5 EXERCISES

Read-through questions

The derivatives of sinx cosx and 1=cosx and sinx=cosx and
tan3x come from the a rule, b rule, c rule, and

d rule. The product of sinx times cosx has .uv/1 Duv1C
e D f . The derivative of1=v is g , so the slope of

sec x is h . The derivative ofu=v is i , so the slope of tanx
is j . The derivative of tan3x is k . The slope ofxn is l
and the slope of.u.x//n is m . With nD�1 the derivative of
.cosx/�1 is n , which agrees with the rule for secx:

Even simpler is the rule of o , which applies
to au.x/Cbv.x/: The derivative is p . The slope of3sin xC

4 cosx is q . The derivative of.3 sin xC4 cosx/2 is r .

The derivative of s is 4sin3x cosx:

Find the derivatives of the functions in 1–26.

1 .xC1/.x�1/ 2 .x2 C1/.x2�1/
3

1

1Cx
C

1

1Csin x
4

1

1Cx2
C

1

1�sinx
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5 .x�1/.x�2/.x�3/ 6 .x�1/2.x�2/2
7 x2 cosxC2x sin x 8 x1=2.xCsinx/

9
x3 C1

xC1
C

cosx

sinx
10

x2 C1

x2�1 C
sinx

cosx

11 x1=2sin2xC.sinx/1=2 12 x3=2sin3xC.sinx/3=2

13 x4 cosxCxcos4x 14
?
x.
?
xC1/.

?
xC2/

15 1
2x

2 sin x�x cosxCsinx 16 .x�6/10 Csin10x

17 sec2x� tan2x 18 csc2x�cot2x

19
4

.x�5/2=3
C

4

.5�x/2=3
20

sinx�cosx

sinxCcosx

21 .sinx cosx/3 Csin2x 22 x cosx cscx

23 u.x/v.x/w.x/z.x/ 24 Œu.x/�2 Œv.x/�2

25
1

tanx
� 1

cotx
26 x sin xCcosx

27 A growing box has lengtht , width1=.1C t/, and height cost:

(a) What is the rate of change of the volume ?

(b) What is the rate of change of the surface area ?

28 With two applications of the product rule show that the
derivative of uvw is uvw1Cuv1wCu1vw: When a box with sides
u;v;w grows by�u;�v;�w, three slabs are added with volume
uv �w and and :

29 Find the velocity if the distance isf .t/D

5t2 for t ¤ 10; 500C100
?
t�10 for t ¥ 10:

30 A cylinder has radiusr D
t3=2

1C t3=2
and heighthD

1

1C t
:

(a) What is the rate of change of its volume ?
(b) What is the rate of change of its surface area (including top
and base) ?

31 The height of a model rocket isf .t/D t3=.1C t/:

(a) What is the velocityv.t/?

(b) What is the accelerationdv=dt ?

32 Apply the product rule tou.x/u2.x/ to find the power rule
for u3.x/:

33 Find thesecondderivative of the productu.x/v.x/: Find the
third derivative. Test your formulas onuD vD x:

34 Find functionsy.x/ whose derivatives are

(a) x3 (b) 1=x3 (c) .1�x/3=2 (d) cos2x sinx

35 Find the distancesf .t/, starting fromf .0/D 0, to match these
velocities:

(a) v.t/D cost sin t

(c) v.t/D
?
1C t

(b) v.t/D tant sec2t

36 Apply the quotient rule to.u.x//3=.u.x//2 and�v1=v2: The
latter gives the second derivative of :

37 Draw a figure like2:13 to explain thesquare rule.

38 Give an example whereu.x/=v.x/ is increasing but
du=dxD dv=dxD 1:

39 True or false, with a good reason:

(a) The derivative ofx2n is 2nx2n�1:

(b) By linearity the derivative ofa.x/u.x/Cb.x/v.x/ is
a.x/du=dxCb.x/dv=dx:

(c) The derivative of|x|3 is 3|x|2:
(d) tan2x and sec2x have the same derivative.

(e) .uv/1 Du1v1 is true whenu.x/D 1:

40 The cost ofu shares of stock atv dollars per share isuv dollars.
Check dimensions ofd.uv/=dt andudv=dt andv du=dt:

41 If u.x/=v.x/ is a ratio of polynomials of degreen, what are the
degrees for its derivative ?

42 ForyD 5xC3, is .dy=dx/2 the same asd2y=dx2 ?

43 If you change from f .t/D t cost to its tangent line at
t D�=2, find the two-part functiondf=dt:

44 Explain in your own words why the derivative ofu.x/v.x/ has
two terms.

45 A plane starts its descent from heightyD h at xD�L to land
at .0;0/: Choosea;b;c;d so its landing pathyD ax3 Cbx2 C

cxCd is smooth. With dx=dt DV Dconstant, finddy=dt and
d2y=dt2 at xD 0 and xD�L: (To keep d2y=dt2 small, a
coast-to-coast plane starts downL¡ 100 miles from the airport.)
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2.6 Limits

You have seen enough limits to be ready for a definition. It is true that we have
survived this far without one, and we could continue. But this seems a reasonable
time to define limits more carefully. The goal is to achieve rigor without rigor mortis.

First you should know that limits of�y=�x are by no means the only limits in
mathematics. Here are five completely different examples. They involvenÑ8, not
�xÑ 0:

1. an D .n�3/=.nC3/ (for largen, ignore the3’s and findanÑ 1)
2. an D 1

2
an�1 C4 (start with anya1 and alwaysaÑ 8)

3. an D probability of living to yearn (unfortunatelyanÑ 0)
4. an D fraction of zeros among the firstn digits of� .anÑ 1

10
‹/

5. a1 D :4; a2 D :49; a3 D :493; : : :No matter what the remaining decimals are,
thea’s converge to a limit. PossiblyanÑ :493000 . . . , but not likely.

The problem is to say what the limit symbolÑ really means.
A good starting point is to ask about convergence tozero. When does a sequence

of positive numbers approach zero ? What does it mean to writeanÑ 0 ? The
numbersa1;a2;a3; : : : ;must become “small,” but that is too vague. We will propose
four definitions ofconvergence to zero, and I hope the right one will be clear .

1. All the numbersan are below10�10. That may be enough for practical
purposes, but it certainly doesn’t make thean approach zero.

2.The sequence is getting closer to zero—eachanC1 is smaller than the preceding
an: This test is met by1:1, 1:01, 1:001, . . . which converges to1 instead of0:

3. For any small number you think of, at least one of thean’s is smaller. That
pushes something toward zero, but not necessarily the whole sequence. The condition
would be satisfied by1; 1

2
;1; 1

3
;1; 1

4
; : : :, which does not approach zero.

4.For any small number you think of, thean’s eventually go below that number
andstay below. This is the correct definition.

I want to repeat that. To test for convergence to zero, start witha small number—
say10�10: Thean’s must gobelow that number. They may come back up and go
below again—the first million terms make absolutely no difference. Neither do the
next billion, but eventually all terms must go below10�10: After waiting longer
(possibly a lot longer), all terms drop below10�20: The tail end of the sequence
decides everything.

Question 1 Does the sequence10�3;10�2;10�6;10�5;10�9;10�8; : : :
approach0 ?
Answer Yes, These up and down numbers eventually stay below any":

Fig. 2.17 Convergence means: Only a finite number ofa’s are outside any strip around L.
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Question 2 Does10�4;10�6;10�4;10�8;10�4;10�10; : : : approach zero ?
Answer No. This sequence goes below10�4 but does not stay below.

There is a recognized symbol for “an arbitrarily small positive number.” By
worldwide agreement, it is the Greek letter" (epsilon). Convergence to zero means
that the sequence eventually goes below" and stays there. The smaller the",
the tougher the test and the longer we wait. Think of" as the tolerance, and keep
reducing it.

To emphasize that" comes from outside, Socrates can choose it. Whatever" he
proposes, thea’s must eventually be smaller.After someaN , all thea’s are below
the tolerance". Here is the exact statement:

for any " there is anN such thatan  " if n¡N:
Once you see that idea, the rest is easy. Figure 2.17 hasN D 3 and thenN D 6:

EXAMPLE 1 The sequence1
2
; 4

4
; 9

8
; : : : starts upward but goes to zero. Notice that

1;4;9; : : : ;100; : : : are squares, and2;4;8; : : : ;1024; : : : are powers of2:Eventually
2n grows faster thann2, as ina10 D 100=1024: The ratio goes below any":

EXAMPLE 2 1;0; 1
2
;0; 1

3
;0; : : : approaches zero. Thesea’s do not decrease steadily

(the mathematical word for steadily is “monotonically”) but still their limit is zero.
The choice"D 1=10 produces the right response:Beyonda2001 all terms are below
1=1000: SoN D 2001 for that":

The sequence1; 1
2
; 1

2
; 1

3
; 1

3
; 1

3
; : : : is much slower—but it also converges to zero.

Next we allow the numbersan to benegativeas well as positive. They can converge
upward toward zero, or they can come in from both sides. The test still requires the
an to go inside any strip near zero (and stay there). But now the strip starts at�":

The distance from zero is the absolute value|an|. ThereforeanÑ 0 means|an|Ñ 0: The previous test can be applied to|an|:
for any " there is anN such that |an|   " if n¡N .

EXAMPLE 3 1;�1
2
; 1

3
;�1

4
; : : : converges to zero because1; 1

2
; 1

3
; 1

4
; : : : converges

to zero.

It is a short step to limits other than zero.The limit is L if the numbersan�L
converge to zero. Our final test applies to the absolute value|an�L|:

for any " there is anN such that |an�L|   " if n¡N .

This is the definition of convergence! Only a finite number ofa’s are outside any strip
aroundL (Figure 2.18). We writeanÑL or lim an DL or limnÑ8 an DL:

Fig. 2.18 anÑ 0 in Example 3; anÑ 1 in Example 4; anÑ8 in Example 5 (but
anC1�anÑ 0).
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EXAMPLE 4 The numbers3
2
; 5

4
; 7

6
; : : : converge toLD 1: After subtracting1 the

differences1
2
; 1

4
; 1

6
; : : : converge to zero. Those difference are|an�L|:

EXAMPLE 5 The sequence1; 1C 1
2
; 1C 1

2
C 1

3
; 1C 1

2
C 1

3
C 1

4
; : : : fails to converge.

The distance between terms is getting smaller. But those numbersa1; a2; a3; a4; : : :
go past any proposed limitL: The second term is11

2
: The fourth term adds on1

3
C 1

4
,

so a4 goes past2: The eighth term has four new fractions1
5

C 1
6

C 1
7

C 1
8
, totaling

more than1
8

C 1
8

C 1
8

C 1
8

D 1
2
: Thereforea8 exceeds21

2
: Eight more terms will add

more than8 times 1
16

, so a16 is beyond3: The lines in Figure 2.18c are infinitely
long, not stopping at anyL:

In the language of Chapter10, the harmonic series1C 1
2

C 1
3

C : : : does not
converge. The sum is infinite, because the “partial sums”an go beyond every limitL
(a5000 is pastLD 9). We will come back to infinite series, but this example makes a
subtle point: The steps between thean can go to zero while stillanÑ8:

Thus the conditionanC1�anÑ 0 is not sufficient for convergence. However
this condition isnecessary. If we do have convergence, thenanC1�anÑ 0: That
is a good exercise in the logic of convergence, emphasizing the difference between
“sufficient” and “necessary.” We discuss this logic below, after proving that [statement
A] implies [statementB]:

If Œan converges toL� then ŒanC1�an converges to zero�: (1)

Proof Because thean converge, there is a numberN beyond which|an�L|   "
and also|anC1�L|   ": SinceanC1�an is the sum ofanC1�L andL�an, its
absolute value cannot exceed"C"D 2": ThereforeanC1�an approaches zero.

Objection by Socrates: We only got below2" and he asked for": Our reply: If he
particularly wants|anC1�an|   1=10, we start with"D 1=20:Then2"D 1=10:But
this juggling is not necessary. To stay below2" is just as convincingas to stay below":

THE LOGIC OF “IF” AND “ONLY IF”

The following page is inserted to help with the language of mathematics. In ordinary
language we might say “I will come if you call.” Or we might say “I will come only
if you call.” That is different! A mathematician might even say “I will comeif and
only if you call.” Our goal is to think through the logic, because it is important and
not so fami1iar.�

StatementA above implies statementB: StatementA is anÑL; statementB is
anC1�anÑ 0: Mathematics has at least five ways of writing downAñB, and
I though you might like to see them together. It seems excessive to have so many
expressions for the same idea, but authors get desperate for a little variety. Here are
the five ways that come to mind:

AñB

A impliesB

if A thenB

A is a sufficient condition forB

B is trueif A is true

�Logical thinking is much more important than" and ı:
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EXAMPLES If [positive numbers are decreasing]then [they converge to a limit].
If [sequencesan andbn converge]then [the sequencean Cbn converges].
If [f .x/ is the integral ofv.x/] then [v.x/ is the derivative off .x/].

Those are all true, but not proved.A is the hypothesis,B is the conclusion.
Now we go in the other direction. (It is called the “converse,” not the inverse.)We

exchangeA andB. Of course stating the converse does not make it true!B might
imply A, or it might not. In the first two examples the converse was false—thean

can converge without decreasing, andan Cbn can converge when the separate
sequences do not. The converse of the third statement is true—and there are five
more ways to state it:

AðB

A is implied byB

if B thenA

A is a necessarycondition forB

B is trueonly if A is true

Those words “necessary” and “sufficient” are not always easy to master. The same
is true of the deceptively short phrase “if and only if.” The two statementsAñB and
AðB are completely different andthey both require proof. That means two sepa-
rate proofs. But they can be stated together for convenience (when both are true):

A�B

A impliesB andB impliesA

A is equivalent toB

A is a necessary and sufficientcondition forB

A is true if and only if B is true

EXAMPLES ŒanÑL� � Œ2anÑ 2L� � Œan C1ÑLC1�� Œan�LÑ 0�:

RULES FOR LIMITS

Calculus needs adefinition of limits, to definedy=dx: That derivative contains two
limits:�xÑ 0 and�y=�xÑ dy=dx:Calculus also needsrules for limits, to prove
the sum rule and product rule for derivatives. We started on the definition, and now
we start on the rules.

Given two convergent sequences, anÑL and bnÑM , other sequences also
converge:

Addition: an CbnÑLCM Subtraction:an�bnÑL�M
Multiplication: anbnÑLM Division: an=bnÑL=M .providedM ¤ 0/

We check the multiplication rule, which uses a convenient identity:

anbn�LM D .an�L/.bn�M/CM.an�L/CL.bn�M/: (2)

Suppose|an�L|   " beyond some pointN , and|bn�M |   " beyond some other
pointN 1: Then beyond the larger ofN andN 1, the right side of.2/ is small. It is less
than" �"CM"CL": This proves that.2/ givesanbnÑLM:

An important special case iscanÑ cL: (The sequence ofb’s is c;c;c;c; : : :)
Thus a constant can be brought “outside” the limit, to givelim can D c lim an:
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THE LIMIT OF f .x/ AS xÑ a

The final step is to replace sequences by functions. Instead ofa1;a2; : : : there is a
continuum of valuesf .x/: The limit is taken asx approaches a specified pointa
(instead ofnÑ8). Example: Asx approachesaD 0, the functionf .x/D 4�x2

approachesLD 4:Asx approachesaD 2, the function5x approachesLD 10:Those
statements are fairly obvious, but we have to say what they mean. Somehow it must
be this:

if x is close toa thenf .x/ is close toL.

If x�a is small, thenf .x/�L should be small. As before, the wordsmalldoes not
say everything. We really mean “arbitrarily small,” or “below any":” The difference
f .x/�Lmust becomeas small as anyone wants, whenx gets neara: In that case
limxÑa f .x/DL: Or we writef .x/ÑL asxÑ a:

The statement is awkward because it involvestwo limits. The limitxÑ a is forcing
f .x/ÑL: (PreviouslynÑ8 forcedaÑL:) But it is wrong to expect the same"
in both limits. We do not and cannot require that|x�a|   " produces)|f .x/�L|  
": It may be necessary to pushx extremely close toa (closer than"). We must
guarantee that ifx is close enough toa, then|f .x/�L|   ":

We have come to the “epsilon-delta definition” of limits. First, Socrates chooses
": He has to be shown thatf .x/ is within " ofL, for everyx neara: Then somebody
else (maybe Plato) replies with a numberı: That gives the meaning of “neara:”
Plato’s goal is to getf .x/ within " of L, by keepingx within ı of a:

if 0  |x�a|   ı then |f .x/�L|   ": (3)

The input tolerance isı (delta), the output tolerance is": When Plato can find aı
for every", Socrates concedes that the limit isL:

EXAMPLE Prove thatlim
xÑ2

5xD 10: In this caseaD 2 andLD 10:

Socrates asks for|5x�10|   ":Plato responds by requiring|x�2|   ı:Whatı should
he choose ? In this case|5x�10| is exactly5 times|x�2|: So Plato picksı below
"=5 (a smallerı is always OK). Whenever|x�2|   "=5, multiplication by5 shows
that|5x�10|   ":
Remark1 In Figure 2.19, Socrates chooses the height of the box. It extends above
and belowL, by the small number": Second, Plato chooses the width. He must make
the box narrow enough for the graph to goout the sides. Then|f .x/�L|   ":

Fig. 2.19 Schooses height2", then P chooses width2ı: Graph must go out the sides.
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Whenf .x/ has a jump, the box can’t hold it. A step function has no limit asx
approaches the jump, because the graph goes through the top or bottom—no matter
how thin the box.

Remark2 The second figure hasf .x/ÑL, because in taking limitswe ignore
the final pointxD a. The valuef .a/ can be anything, with no effect onL: The first
figure has more:f .a/ equalsL: Then a special name applies—fis continuous. The
left figure shows a continuous function, the other figures do not.

We soon come back to continuous functions.

Remark3 In the example withf D 5x andıD "=5, the number5 was theslope.
That choice barely kept the graph in the box—it goes out the corners. A little narrower,
say ıD "=10, and the graph goes safely out the sides.A reasonable choice is to
divide " by 2|f 1.a/|. (We double the slope for safety.) I want to say why thisı
works—even if the"�ı test is seldom used in practice.

The ratio off .x/�L tox�a is distance up over distance across. This is�f=�x,
close to the slopef 1.a/: When the distance across isı, the distance up or down is
nearı|f 1.a/|: That equals"=2 for our “reasonable choice” ofı—so we are safely
below": This choice solves most exercises. But Example 7 shows that a limit might
exist even when the slope is infinite.

EXAMPLE 7 lim
xÑ1C

?
x�1D 0 (a one-sided limit).

Notice the plus sign in the symbolxÑ 1C. The numberx approachesaD 1 only
from above. An ordinary limitxÑ 1 requires us to acceptx on both sides of1 (the
exact valuexD 1 is not considered). Since negative numbers are not allowed by the
square root, we have aone-sided limit. It isLD 0:

Suppose" is 1=10: Then the response could beıD 1=100:A number below1=100
has a square root below1=10: In this case the box must be made extremely narrow,ı
much smaller than", because the square root starts with infinite slope.

Those examples show the point of the"�ı definition. (Given", look for ı: This
came from Cauchy in France, not Socrates in Greece.) We also see its bad feature: The
test is not convenient. Mathematicians do not go around proposing"’s and replying
with ı’s. We may live a strange life, but not that strange.

It is easier to establish once and for all that5x approaches its obvious limit
5a: The same is true for other familiar functions:xnÑ an and sinxÑ sina
and .1�x/�1Ñ .1�a/�1—except ataD 1: The correct limit L comes by
substitutingxD a into the function. This is exactly the property of a “continuous
function.” Before the section on continuous functions, we prove the Squeeze
Theorem using" andı:

2H Squeeze TheoremSupposef .x/¤ g.x/¤ h.x/ for x neara: If f .x/Ñ
L andh.x/ÑL asxÑ a, then the limit ofg.x/ is alsoL:

Proof g.x/ is squeezed betweenf .x/ andh.x/: After subtractingL, g.x/�L is
betweenf .x/�L andh.x/�L: Therefore|g.x/�L|   " if |f .x/�L|   " and |h.x/�L|   ":
For any", the last two inequalities hold in some region0  |x�a|   ı: So the first
one also holds. This proves thatg.x/ÑL: Values atxD a are not involved—until
we get to continuous functions.
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2.6 EXERCISES

Read-through questions

The limit of an D .sinn/=n is a . The limit of an Dn4=2n is
b . The limit of an D .�1/n is c . The meaning ofanÑ 0

is: Only d of the numbers|an| can be e . The meaning
of anÑL is: For every f there is an g such that h

if n¡ i . The sequence1;1C 1
2 ;1C 1

2 C 1
3 ; : : : is not j

because eventually those sums go pastk .

The limit of f .x/D sinx as xÑ a is l . The limit of
f .x/D x=|x| as xÑ�2 is m , but the limit as xÑ 0

does not n . This function only has o -sided limits. The
meaning of limxÑa f .x/DL is: For every" there is aı such that|f .x/�L|  " whenever p .

Two rules for limits, whenanÑL andbnÑM , arean CbnÑ
q andanbnÑ r . The corresponding rules for functions,

when f .x/ÑL andg.x/ÑM asxÑa, are s and t .
In all limits, |an�L| or |f .x/�L| must eventually go below and

u any positive v .

AñB means thatA is a w condition forB: ThenB is true
x A is true.A�B means thatA is a y condition forB:

ThenB is true z A is true.

1 What is a4 and what is the limit L ? After which N is|an�L|  1
10 ?(Calculator allowed)

(a) �1;C 1
2 ;�1

3 ; : : :

(c) 1
2 ;

2
4 ;

3
8 ; : : : an Dn=2n

(e) an D n
?
n

(b) 1
2 ;

1
2 C 1

4 ;
1
2 C 1

4 C 1
6 ; : : :

(d) 1:1;1:11;1:111; : : :

(f) an D
?
n2 Cn�n

(g) 1C1;.1C 1
2 /

2; .1C 1
3 /

3; : : :

2 Show by example that these statements are false:

(a) If anÑL andbnÑL thenan=bnÑ 1

(b) anÑL if and only if a2
nÑL2

(c) If an  0 andanÑL thenL  0
(d) If infinitely many an’s are inside every strip around zero
thenanÑ 0:

3 Which of these statements are equivalent toBñA?

(a) If A is true so isB

(b) A is true if and only ifB is true
(c) B is a sufficient condition forA

(d) A is a necessary condition forB:

4 Decide whetherAñB orBñA or neither or both:

(a) AD ŒanÑ 1�

(b) AD ŒanÑ 0�

(c) AD Œan¤n�
(d) AD ŒanÑ 0�

(e) AD ŒanÑ 0�

(f) AD Œan n�
B D Œ�anÑ�1�
B D Œan�an�1Ñ 0�

B D Œan Dn�

B D ŒsinanÑ 0�

B D Œ1=an fails to converge�

B D Œan=n converges�

�5 If the sequencea1;a2;a3; : : : approaches zero, prove that we
can put those numbers in any order and the new sequence still
approaches zero.�6 Supposef .x/ÑL andg.x/ÑM asxÑa: Prove from the
definitions thatf .x/Cg.x/ÑLCM asxÑa:

Find the limits 7–24 if they exist. An"�ı test is not required.

7 lim
tÑ2

tC3

t2�2 8 lim
tÑ2

t2 C3

t�2
9 lim

xÑ0

f .xCh/�f .x/
h

(careful) 10 lim
hÑ0

f .1Ch/�f .1/
h

11 lim
hÑ0

sin2hcos2h

h2
12 lim

xÑ0

2x tanx

sinx

13 lim
xÑ0C

|x|
x

(one-sided) 14 lim
xÑ0� |x|x (one-sided)

15 lim
xÑ1

sinx

x
16 lim

cÑa

f .c/�f .a/
c�a

17 lim
xÑ5

x2 C25

x�5 18 lim
xÑ5

x2�25
x�5

19 lim
xÑ0

?
1Cx�1
x

(testxD :01) 20 lim
xÑ2

?
4�x?
6Cx

21 lim
xÑa

Œf .x/�f .a/� ( ? ) 22 lim
xÑ�=2

.secx� tanx/

23 lim
xÑ0

sinx

sinx=2
24 lim

xÑ1

sin.x�1/
x2�1

25 Chooseı so that|f .x/|  1
100 if 0 x  ı:

f .x/D 10x f .x/D
?
x f .x/D sin 2x f .x/D x sinx

26 Which does the definition of a limit require ?

(1) |f .x/�L|  " ñ 0 |x�a|  ı:
(2) |f .x/�L|  " ð 0 |x�a|  ı:
(3) |f .x/�L|  " � 0 |x�a|  ı:

27 The definition of “f .x/ÑL as xÑ8” is this: For any
" there is anX such that   " if x¡X: Give an example
in whichf .x/Ñ 4 asxÑ8:
28 Give a correct definition of “f .x/Ñ 0 asxÑ�8:”
29 The limit of f .x/D .sinx/=x as xÑ8 is : For
"D :01 find a pointX beyond which|f .x/|  ":
30 The limit of f .x/D 2x=.1Cx/ as xÑ8 is LD 2: For
"D :01 find a pointX beyond which|f .x/�2|  ":
31 The limit of f .x/D sinx as xÑ8 does not exist. Explain
why not.

32 (Calculator) Estimate the limit of

�

1C
1

x

�x

asxÑ8:
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33 For the polynomialf .x/D 2x�5x2 C7x3 find

(a) lim
xÑ1

f .x/

(c) lim
xÑ8 f .x/x3

(b) lim
xÑ8f .x/

(d) lim
xÑ�8 f .x/x3

34 For f .x/D 6x3 C1000x find

(a) lim
xÑ8 f .x/x

(c) lim
xÑ8 f .x/x4

(b) lim
xÑ8 f .x/x2

(d) lim
xÑ8 f .x/

x3 C1

Important rule As xÑ8 the ratio of polynomialsf .x/=g.x/
has the same limit as the ratio of theirleading terms.
f .x/D x3�xC2 has leading term x3 and
g.x/D 5x6 CxC1 has leading term 5x6: Therefore
f .x/=g.x/ behaves likex3=5x6Ñ 0, g.x/=f .x/ behaves like
5x6=x3Ñ8, .f .x//2=g.x/ behaves likex6=5x6Ñ 1=5:

35 Find the limit asxÑ8 if it exists:

3x2 C2xC1

3C2xCx2

x4

x3 Cx2

x2 C1000

x3�1000 x sin
1

x
:

36 If a particular ı achieves |f .x/�L|  ", why is it OK to
choose a smallerı ?

37 The sum of 1CrCr2 C � � �Crn�1 is an D .1�rn/=

.1�r/: What is the limit of an as nÑ8 ? For which r does
the limit exist ?

38 If anÑL prove that there is a numberN with this property:
If n¡N andm¡N then|an�am|  2": This is Cauchy’s test for
convergence.

39 No matter what decimals come later,a1 D :4;a2 D :49;

a3 D :493; : : : approaches a limitL: How do we know (when we
can’t knowL) ? Cauchy’s testis passed: thea’s get closer to each
other.

(a) Froma4 onwards we have|an�am|  :

(b) After whichaN is |am�an|  10�7 ‹

40 Choose decimals in Problem39 sothe limit isLD :494: Choose
decimals so that your professor can’t findL:

41 If every decimal in :abcde � � � is picked at random from
0;1; : : : ;9, what is the “average” limitL ?

42 If every decimal is0 or 1 (at random), what is the average
limit L ?

43 Supposean D 1
2an�1 C4 and start froma1 D 10: Find a2 and

a3 and a connection betweenan�8 and an�1�8: Deduce that
anÑ 8:

44 “For every ı there is an " such that|f .x/|  " if |x|  ı:”
That test is twisted around. Find" whenf .x/D cosx, which does
not converge to zero.

45 Prove the Squeeze Theorem for sequences, using": If anÑL

andcnÑL andan¤ bn¤ cn for n¡N , thenbnÑL:

46 Explain in110 words the difference between “we will get there
if you hurry” and “we will get there only if you hurry” and “we will
get there if and only if you hurry.”
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2.7 Continuous Functions

This will be a brief section. It was originally included with limits, but the
combination was too long. We are still concerned with the limit off .x/ asxÑ a,
but a new number is involved. That number isf .a/, the value off at xD a. For a
“limit,” x approacheda but never reached it—sof .a/was ignored. For a “continuous
function,” this final numberf .a/must be right.

May I summarize the usual (good) situation asx approachesa ?

1. The numberf .a/ exists (f is defined ata)

2. The limit of f .x/ exists (it was calledL)

3. The limitL equalsf .a/ (f .a/ is the right value)

In such a case,f .x/ is continuousatxD a: These requirements are often written in
a single line:f .x/Ñ f .a/ asxÑ a: By way of contrast, start with four functions
that arenot continuous atxD 0:

Fig. 2.20 Four types of discontinuity (others are possible) atxD 0:

In Figure 2.20, the first function would be continuous if it hadf .0/D 0: But
it hasf .0/D 1: After changingf .0/ to the right value, the problem is gone. The
discontinuity isremovable. Examples2;3;4 are more important and more serious.
There is no “correct” value forf .0/:

2.f .x/D step function (jump from0 to 1 atxD 0)
3.f .x/D 1=x2 (infinite limit asxÑ 0)
4.f .x/D sin.1=x/ (infinite oscillation asxÑ 0).

The graphs show how the limit fails to exist. The step function has ajump
discontinuity. It hasone-sided limits, from the left and right. It does not have an
ordinary (two-sided) limit. The limit from the left (xÑ 0�) is 0: The limit from the
right (xÑ 0C) is 1: Another step function isx=|x|, which jumps from�1 to 1:

In the graph of1=x2, the only reasonable limit isLD C8: I cannot go on record
as saying that this limit exists. Officially, it doesn’t—but we often write it anyway:
1=x2Ñ8 asxÑ 0: This means that1=x2 goes (and stays) above everyL asxÑ 0:

In the same unofficial way we write one-sided limits forf .x/D 1=x:

From the left, lim
xÑ0� 1x D�8: From the right, lim

xÑ0C

1

x
D C8: (1)

Remark 1=x has a “pole” at xD 0: So has1=x2 (a double pole). The function
1=.x2�x/ has poles atxD 0 andxD 1: In each case the denominator goes to zero
and the function goes toC8 or�8: Similarly 1=sinx has a pole at every multiple
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of � (wheresin x is zero). Except for1=x2 these poles are “simple”—the functions
are completely smooth atxD 0 when we multiply them byx:

.x/

�

1

x

�

D 1 and .x/

�

1

x2�x�D
1

x�1 and .x/

�

1

sinx

�

are continuous atxD 0:

1=x2 has a double pole, since it needs multiplication byx2 (not justx). A ratio of
polynomialsP.x/=Q.x/ has poles whereQD 0, provided any common factors like
.xC1/=.xC1/ are removed first.

Jumps and poles are the most basic discontinuities, but others can occur. The
fourth graph shows thatsin.1=x/ has no limit asxÑ 0: This function does not blow
up; the sine never exceeds1: At xD 1

3
and 1

4
and 1

1000
it equalssin3 andsin4 and

sin1000: Those numbers are positive and negative and ( ? ). Asx gets small and1=x
gets large, the sine oscillates faster and faster. Its graph won’t stay in a small box of
height", no matter how narrow the box.

CONTINUOUS FUNCTIONS

DEFINITION f is “continuous atxD a” if f .a/ is defined andf .x/Ñ f .a/
asxÑ a: If f is continuous at every point where it is defined, it is acontinuous
function.
Objection The definition makesf .x/D 1=x a continuous function! It is not de-
fined atxD 0, so its continuity can’t fail. The logic requires us to accept this, but we
don’t have to like it. Certainly there is nof .0/ that would make1=x continuous at
xD 0:

It is amazing but true that the definition of “continuous function” is still debated
(Mathematics Teacher, May 1989). You see the reason—we speak about a
discontinuity of1=x, and at the same time call it a continuous function. The definition
misses the difference between1=x and.sinx/=x: The functionf .x/D .sinx/=x
can be made continuous at allx. Just setf .0/D 1:

We call a function “continuable” if its definition can be extendedto all x in a
way that makes it continuous. Thus.sinx/=x and

?
x are continuable. The functions

1=x andtanx are not continuable. This suggestion may not end the debate, but I hope
it is helpful.

EXAMPLE 1 sinx andcosx and all polynomialsP.x/ are continuous functions.

EXAMPLE 2 The absolute value|x| is continuous. Its slope jumps (not
continuable).

EXAMPLE 3 Any rational functionP.x/=Q.x/ is continuous except where
QD 0:

EXAMPLE 4 The function that jumps between1 at fractions and0 at non-fractions
is discontinuous everywhere. There is a fraction between every pair of non-fractions
and vice versa. (Somehow there are many more non-fractions.)

EXAMPLE 5 The function0x2
is zero for everyx, except that00 is not defined.

So define it as zero and this function is continuous. But see the next paragraph where
00 has to be1:
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We could fill the book with proofs of continuity, but usually the situation is clear.
“A function is continuous if you can draw its graph without lifting up your pen.”
At a jump, or an infinite limit, or an infinite oscillation, thereis no way across the
discontinuity except to start again on the other side. The functionx2 is continuous
for n¡ 0: It is not continuable forn  0: The functionx0 equals1 for everyx,
except that00 is not defined. This time continuity requires00 D 1:

The interesting examples are the close ones—we have seen two of them:

EXAMPLE 6
sinx

x
and

1�cosx

x
are both continuable atxD 0:

Those were crucial for the slope ofsinx: The first approaches1 and the second
approaches0: Strictly speaking we must give these functions the correct values
(1 and0) at the limiting pointxD 0—which of course we do.

It is important to know what happens when the denominators change tox2:

EXAMPLE 7
sinx

x2
blows up but

1�cosx

x2
has the limit

1

2
at xD 0:

Since.sinx/=x approaches1, dividing by anotherx gives a function like1=x: There
is a simple pole. It is an example of0=0, in which the zero fromx2 is reached more
quickly than the zero fromsinx: The “race to zero” produces almost all interesting
problems about limits.

For1�cosx andx2 the race is almost even. Their ratio is1 to 2:

1�cosx

x2
D

1�cos2x

x2.1Ccosx/
D

sin2x

x2
� 1

1Ccosx
Ñ 1

1C1
as xÑ 0:

This answer1
2

will be found again (more easily) by “l’Hôpital’s rule.” Here I
emphasize not the answer but the problem. A central question of differential
calculus isto know how fast the limit is approached. The speed of approach is
exactly the information in the derivative.

These three examples are all continuous atxD 0: The race is controlled by the
slope—becausef .x/�f .0/ is nearlyf 1.0/ timesx:

derivative ofsinx is 1 Ø sinx decreases likex

derivative ofsin2x is 0 Ø sin2x decreases faster thanx

derivative ofx1=3 is8 Ø x1=3 decreases more slowly thanx:

DIFFERENTIABLE FUNCTIONS

The absolute value|x| is continuous atxD 0 but has no derivative. The same is true
for x1=3: Asking for a derivative is more than asking for continuity. The reason
is fundamental, and carries us back to the key definitions:

Continuousat x: f .xC�x/�f .x/Ñ0 as�xÑ 0

Derivativeat x:
f .xC�x/�f .x/

�x
Ñf 1.x/ as�xÑ 0:
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In the first case,�f goes to zero (maybe slowly). In the second case,�f goes to
zeroas fast as�x (because�f=�x has a limit). That requirement is stronger:

2I At a point wheref .x/ has a derivative, the function must be continuous.
But f .x/ can be continuous with no derivative.

Proof The limit of �f D .�x/.�f=�x/ is .0/.df=dx/D 0: So f .xC�x/�
f .x/Ñ 0:

The continuous functionx1=3 has no derivative atxD 0, because1
3
x�2=3 blows

up. The absolute value|x| has no derivative because its slope jumps. The remarkable
function 1

2
cos3xC 1

4
cos9xC � � � is continuous atall pointsand has a derivative at

no points. You can draw its graph without lifting your pen (but not easily—it turns
at every point). To most people, it belongs with space-filling curves and
unmeasurable areas—in a box of curiosities. Fractals used to go into the same box!
They are beautiful shapes, with boundaries that have no tangents. The theory of
fractals is very alive, for good mathematical reasons, and we touch on it in
Section3:7:

I hope you have a clear idea of these basic definitions of calculus:

1 Limit .nÑ8 or xÑ a/ 2 Continuity (atxD a) 3 Derivative(atxD a).

Those go back to" and ı, but it is seldom necessary to follow them so far. In the same
way that economics describes many transactions, or history describes many events,
a function comes from many valuesf .x/: A few points may be special, like market
crashes or wars or discontinuities. At other pointsdf=dx is the best guide to the
function.

This chapter ends with two essential facts abouta continuous function on a closed
interval. The interval isa¤ x¤ b, written simply as [a;b]. � At the endpointsa and
b we requiref .x/ to approachf .a/ andf .b/:

Extreme Value Property A continuous function on the finite intervalŒa;b� has a
maximum valueM and a minimum valuem: There are pointsxmax andxmin in Œa;b�
where it reaches those values:

f .xmax/DM ¥ f .x/¥ f .xmin/Dm for all x in Œa;b�:

Intermediate Value Property If the numberF is betweenf .a/ andf .b/, there is
a pointc betweena andb wheref .c/DF: Thus ifF is between the minimumm
and the maximumM , there is a pointc betweenxmin andxmax wheref .c/DF:

Examples show why we require closed intervals and continuous functions. For
0  x¤ 1 the functionf .x/D x never reaches its minimum (zero). If we close the
interval by definingf .0/D 3 (discontinuous) the minimum is still not reached.
Because of the jump, the intermediate valueF D 2 is also not reached. The idea of
continuity was inescapable, after Cauchy defined the idea of a limit.

�The intervalŒa;b� is closed(endpoints included). The interval (a, b) isopen(a andb left
out). The infinite interval [0,8) contains allx¥ 0:



2.7 Continuous Functions 135

2.7 EXERCISES

Read-through questions

Continuity requires the a of f .x/ to exist asxÑa and
to agree with b . The reason thatx=|x| is not continuous
at xD 0 is c . This function does have d limits. The
reason that1=cosx is discontinuous at e is f . The
reason that cos.1=x/ is discontinuous atxD 0 is g . The
function f .x/D h has a simple pole atxD 3, wheref 2 has
a i pole.

The powerxn is continuous at allx provided n is j . It
has no derivative atxD 0 when n is k . f .x/D sin.�x/=x
approaches l as xÑ 0, so this is a m function
provided we definef .0/D n : A “continuous function” must
be continuous at all o . A “continuable function” can be
extended to every pointx so that p .

If f has a derivative atxD a then f is necessarily q
at xD a: The derivative controls the speed at whichf .x/
approaches r . On a closed interval [a;b], a continuousf
has the s value property and the t value property. It
reaches its u M and its v m, and it takes on every value

w .

In Problems 1–20, find the numbersc that make f .x/ into
(A) a continuous function and (B) a differentiable function. In
one casef .x/Ñf .a/ at every point, in the other case�f=�x
has a limit at every point.

1 f .x/D

#
sinx x  1
c x¥ 1 2 f .x/D

#
cos3x x¤�

c xD�

3 f .x/D

#
cx x  0
2cx x¥ 0 4 f .x/D

#
cx x  1
2cx x¥ 1

5 f .x/D

#
cCx x  0
c2 Cx2 x¥ 0 6 f .x/D

#
x3 x¤ c�8 xD c

7 f .x/D

#
2x x  c
xC1 x¥ c 8 f .x/D

#
xc x¤ 0

0 xD 0

9 f .x/D

#
.sinx/=x2 x¤ 0

c xD 0
10 f .x/D

#
xCc x¤ c
1 x¡ c

11 f .x/D

#
c x¤ 4

1=x3 xD 4
12 f .x/D

#
c x¤ 0

secx x¥ 0
13 f .x/D

$&%x2 Cc

x�1 x¤ 1

2 xD 1

14 f .x/D

$&%x2�1
x�c x¤ c

2c xD c

15 f .x/D

#
.tanx/=x x¤ 0

c xD 0
16 f .x/D

#
x2 x¤ c
2x x¡ c

17 f .x/D

#
.cCcosx/=x x¤ 0

0 xD 0
18 f .x/D |xCc|

19 f .x/D

#
.sinx�x/=xc x¤ 0

0 xD 0
20 f .x/D |x2 Cc2|

Construct your own f .x/ with these discontinuities at
xD 1:

21 Removable discontinuity

22 Infinite oscillation

23 Limit for xÑ 1C, no limit for xÑ 1�
24 A double pole

25 lim
xÑ1�f .x/D 4C lim

xÑ1C
f .x/

26 lim
xÑ1

f .x/D8 but lim
xÑ1

.x�1/f .x/D 0

27 lim
xÑ1

.x�1/f .x/D 5

28 The statement “3xÑ 7 asxÑ 1” is false. Choose an" for which
no ı can be found. The statement “3xÑ 3 asxÑ 1” is true. For
"D 1

2 choose a suitableı:

29 How many derivatives f 1;f 2; : : : are continuable
functions ?

(a) f D x3=2 (b) fDx3=2 sinx (c) fD.sinx/5=2

30 Find one-sided limits at points where there is no two-sided limit.
Give a3-part formula for function (c).

(a)
|x|
7x

(b) sin |x| (c)
d

dx
|x2�1|

31 Let f .1/D 1 and f .�1/D 1 and f .x/D .x2�x/=.x2�1/
otherwise. Decide whetherf is continuous at

(a) xD 1 (b) xD 0 (c) xD�1�32 Let f .x/D x2 sin 1=x for x¤ 0 and f .0/D 0: If the limits
exist, find

(a) lim
xÑ0

f .x/ (b) df=dx atxD 0 (c) lim
xÑ0

f 1.x/
33 If f .0/D 0 and f 1.0/D 3, rank these functions from
smallest to largest asx decreases to zero:

f .x/; x; xf .x/; f .x/C2x; 2.f .x/�x/; .f .x//2:

34 Create a discontinuous functionf .x/ for which f 2.x/ is
continuous.

35 True or false, with an example to illustrate:

(a) If f .x/ is continuous at allx, it has a maximum
valueM:
(b) If f .x/¤ 7 for all x, thenf reaches its maximum.

(c) If f .1/D 1 andf .2/D�2, then somewheref .x/D 0:

(d) If f .1/D 1 andf .2/D�2 andf is continuous onŒ1;2�,
then somewhere on that intervalf .x/D 0:
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36 The functions cosx and 2x are continuous. Show from the
property that cosxD 2x at some point between0 and1:

37 Show by example that these statements are false:

(a) If a function reaches its maximum and minimum then the
function is continuous.

(b) If f .x/ reaches its maximum and minimum and all
values betweenf .0/ andf .1/, it is continuous atxD 0:

(c) (mostly for instructors) Iff .x/ has the intermediate
value property between all pointsa and b, it must be
continuous.

38 Explain with words and a graph whyf .x/D x sin.1=x/ is
continuous but has no derivative atxD 0: Setf .0/D 0:

39 Which of these functions arecontinuable, and why ?

f1.x/D

#
sinx x  0
cosx x¡ 1 f2.x/D

#
sin1=x x  0
cos1=x x¡ 1

f3.x/D
x

sinx
whensinx¤ 0 f4.x/D x0 C0x2

40 Explain the difference between a continuous function and
a continuable function. Are continuous functions always
continuable ?�41 f .x/ is any continuous function withf .0/D f .1/:

(a) Draw a typicalf .x/:Mark wheref .x/D f .xC 1
2 /:

(b) Explain whyg.x/D f .xC 1
2 /�f .x/ has

g.1
2 /D�g.0/:

(c) Deduce from (b) that (a) is always possible: Theremustbe
a point whereg.x/D 0 andf .x/D f .xC 1

2 /:

42 Create anf .x/ that is continuous only atxD 0:

43 If f .x/ is continuous and0¤f .x/¤ 1 for all x, then there is a
point wheref .x�/D x�: Explain with a graph and prove with the
intermediate value theorem.

44 In the "–ı definition of a limit, change0 |x�a|  ı to|x�a|  ı: Why isf .x/ now continuousatxD a ?

45 A function has a at xD 0 if and only if
.f .x/�f .0//=x is atxD 0:
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