CHAPTER 2

Derivatives

I 2.1 The Derivative of a Function  [IEEEEEEE

This chapter begins with the definition of the derivative. Two examples were in
Chapterl. When the distance i€, the velocity is2z. When £ (¢) = sint we found

v(t) = cost. The velocity is now called thderivative of f(z). As we move to a
more formal definition and new examples, we use new sympbénddf/d for the
derivative.

2A Attimet, thederivative f/(z) or df/dt or v(¢) is

iy e JEFAD— f(0)
fi(@)=lim ; .

At—0 A

D

The ratio on the right is the average velocity over a short thmeThe derivative, on
the left side, is its limit as the stepr (delta r) approaches zero.

Go slowly and look at each piece. The distance at timteA¢ is f(t + At). The
distance at time is f(¢). Subtraction gives thehange in distancebetween those
times. We often write\ f for this differenceA f = f(t + At) — f(¢). The average
velocity is the ratioA f/ At—change in distance divided by change in time.

The limit of the average velocity is the derivative, if this limit exists:

d
dt At—0 At

)

This is the neat notation that Leibniz inventedf /At approaches/f/dt. Behind
the innocent wordlimit” is a process that this course will help you understand.
Note thatA f is not A times f! It is the change in f. Similarly A¢ is not
A timest. It is the time step, positive or negative and eventually small. To have a
one-letter symbol we replack? by 4.

The right sides of1) and(2) contain average speeds. On the graphf@f), the
distanceupis divided by the distancacross That gives the average slopef/At.

The left sides of1) and(2) areinstantaneousspeeds!f/dt. They give the slope
at the instant. This is the derivativel/f /dt (whenAt andA f shrink to zero). Look
again at the calculation fof (1) = ¢2:
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Af  fl+At)—f@) 1242t Ar+(Ar)>—12
At At a At

Important point: Those steps are taken befaregoes to zerolf we setAr =0 too
soon we learn nothing The ratioA f/ At become®)/0 (which is meaningless).
The numbersA f and At must approach zero together, not separately. Here their
ratio is2¢ + At, the average speed.

To repeat: Success came by writing ¢t A¢)? and subtracting® and dividing
by Az. Then and only then can we approath= 0. The limit is the derivativ®z.

=2t + At. 3)

There are several new things in formu(d3 and(2). Some are easy but important,
others are more profound. The idea of a function we will come back to, and the
definition of a limit. But the notations can be discussed right away. They are used
constantly and you also need to know how to read them aloud:

f(t)="f of t" = the value of the functiorf at time¢
At ="deltar” = the time step forward or backward fram
f(t+ At)y="f of t plus deltar” = the value off attimer + At
A f ="delta f” = the changef (t + At) — f(¢)
A f/At ="delta f over deltar” = the average velocity
f'(t) =" f prime oft” = the value of the derivative at tinte
df/dt="d fdt" =the same ag” (the instantaneous velocity)

lim ="“limit as deltar goes to zero’= the process that starts with
A0 numbersA f/ At and produces the numbéy /d:.

From those last words you see what lies behind the notaltfg/t. The symbolAf¢
indicates a nonzero (usually short) length of time. The sym#dolindicates

an infinitesimal (even shorter) length of time. Some mathematicians work separately
with df anddt, anddf/dt is their ratio. For usif/dt is a single notation (don't
canceld and don’t cancel\). The derivativedf/dt is the limit of A f/At. When

that notationdf/dt is awkward, usef” or v.

Remark The notation hides one thing we should mention. The time step can be
negativgust as easily as positive. We can compute the avefafjeAt over a time
intervalbeforethe timet, instead of after. This ratio also approachg¢gd:.

The notation also hides another thinghe derivative might not existThe
averaged /At might not approach a limit (it has to be the same limit going forward
and backward from time). In that casef”(¢) is not defined. At that instant there is
no clear reading on the speedometer. This will happen in Example 2.

EXAMPLE 1 (Constant velocity’ = 2) The distancef is V' timest. The distance
attimer + At is V timest 4+ At. The differenceA f is V timesA¢:

Af—VAt—V 0 the limit is =V.
At At dt

The derivative of’¢ is V. The derivative ot is 2. The averagea f/ At are always
V =2, in this exceptional case of a constant velocity.



2.1 The Derivative of a Function

EXAMPLE 2 Constant velocit up to timer = 3, then stop

For small times we still havef(¢) = 2¢. But after the stopping time, the distance
is fixed at f(¢) = 6. The graph is flat beyond tim& Then f(t + At) = f(¢) and
A f =0 andthe derivative of a constant function is zero

] v e JO+HAD)—f() 0
£>3 f= AIItrD»O At N AILTO At 0 @)
In this examplahe derivative is not defined at the instant wheg= 3. The velocity
falls suddenly fron® to zero. The ratid\ f/ At depends, at that special moment, on
whetherAt is positive or negative. The average veloéfiertimer = 3 is zero. The
average velocitpeforethat time is2. When the graph off has a corner, the graph
of v has gump. It is astep function

One new part of that example is the notation (df fatfz f’ instead ofv). Please
look also at the third figure. It shows how the function takéen the left) to f(¢).
Especially it showg\¢ andA f. At the start,A /At is 2. After the stop at = 3, all
t's go to the samef (1) = 6. SoA f =0 anddf/dt =0.

time distance

6

v=dfldt=f f At

slope 0 t=3 Af

(]

—o0
slope undefined

f'(3) not defined slope 2

O ! I

3 3

Fig. 2.1 The derivative i then 0. It does not exist at = 3.

THE DERIVATIVE OF 1/¢

Here is a completely different slope, for the “demand functiofi(t) =1/t.
The demand id /¢ when the price ig. A high pricer means a low demantl/¢.
Increasing the price reduces the demand. The calculus questibtois:quickly
doesl1/t change whent changes? The “marginal demand” is the slope of the
demand curve.

The big thing is to find the derivative df/ t once and for all. Itis—1/¢2.

1 1 1 t—(1+ At At
EXAMPLE 3 f(t) = —hasAf = — —. This equals C+An _ '
! t+Ar 1 tt+At) 1t +A1)
Divide by Ar ard let Ar —0: 27 ! roaches? — —
-0 —=— ——
/ At An PP T

Line 1 is algebra, line is calculus. The first step in liné subtractsf(¢) from
f(t+ At). The difference id /(¢ + At) minus1/¢. The common denominator is
timest + Ar—this makes the algebra possible. We can'tAet=0 in line 2, until
we have divided byAz.

The averageid /At = —1/t(t + At). Now setAt = 0. The derivative is-1/12.
Section2.4 will discuss the first of many cases when substituting= 0 is not
possible, and the idea of a limit has to be made clearer.
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[

Fig. 2.2 Average slope is-¢, true slope is- ;. Increase i produces decrease

Check the algebra at=2 and¢ + At = 3. The demand /¢ drops from1/2 to
1/3. The difference isA f = —1/6, which agrees with-1/(2)(3) in line 1. As the
stepsA f and At get smaller, their ratio approached /(2)(2) = —1/4.

This derivative is negativeThe functionl/¢ is decreasingand A f is below
zero. The graph is goingownwardin Figure 2.2, and its slope is negative:

An increasing f(t) has positive slope A decreasingf(z) has negative slope

The slope—1/¢? is very negative for small. A price increase severely cuts demand.
The next figure makes a small but important point. There is nothing sacredrabout
Other letters can be used—especiallyA quantity can depend gposition instead
of time. The height changes as we go west. The area of a square changes as the side
changes. Those are not affected by the passage of time, and there is no reason to use
t. You will often seey = f(x), with x across ang up—connected by a functiofi
Similarly, f is not the only possibility. Not every function is namégd That letter
is useful because it stands for the word function—but we are perfectly entitled to write
y(x) or y(¢) instead of f(x) or f(¢). The distance up is a function of the distance
across. This relationship*of x” is all-important to mathematics.
The slope is also a function. Calculus is about two functigiis, anddy /dx.

Question If we add1 to y(x), what happens to the slopefhswerNothing.

Question If we add]1 to the slope, what happens to the heighfti?swer .

The symbols andx represenindependent variables-they take any value they
wantto (in the domain). Once they are sgt) andy (x) are determined. Thug and
y representiependent variablestheydependns andx. A changeAt produces a

(]

: Af negative
s Ay negative
241 H

Fig. 2.3 The derivative ofl /¢ is —1/¢%. The slope ofl /x is —1/x2.
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changeA f. A changeAx producesAy. Theindependent variable go@sside the
parentheses irf (1) andy(x). It is not the letter that matters, it is the idea:

independent variableor x
dependent variablg’ or g or y orz oru
derivativedf/dt ordf/dx ordy/dx or---

The derivatively /dx comes from [change in] divided by [change ix]. The time
step becomes a space step, forward or backward. The slope is the rate atywhich
changes withx. The derivative of a function is it§ rate of change’

| mention that physics books user) for distance. Darn it.

To emphasize the definition of a derivative, here it is again witmdx:

Ay y(x+Ax)—y(x) distance up dy . Ay

= — = lim =y'(x).
Ax Ax distance across dx Ax—0Ax '

The notationy’(x) pins down the point where the slope is computed.diy /dx that
extra precision is omitted. This book will try for a reasonable compromise between
logical perfection and ordinary simplicity. The notati@n/dx (x) is not good;y’(x)
is better; wherx is understood it need not be written in parentheses.

You are allowed to say that the functionyis= x? and the derivative ig’ = 2x—
even if the strict notation requiregx) = x2 andy’(x) = 2x. You can even say that
the function isx? and its derivative iQx and itssecond derivativés 2—provided
everybody knows what you mean.

Here is an example. It is a little early and optional but terrific. You get excellent
practice with letters and symbols, and out come new derivatives.

EXAMPLE 4 If u(x) has slopefu/dx, what is the slope of (x) = (u(x))??

From the derivative ofc? this will give the derivative ofx*. In that caseu = x2
and f = x*. First point: The derivative ofu? is not (du/dx)?. We do not square
the derivative2x. To find the “square rule” we start as we have to—with

Af=f(x+Ax)— f(x):
Af =u(x+Ax))%—w(x)?=[ulx+ Ax) +ux)][ulx+ Ax) —u(x)].

This algebra puts\ f in a convenient form. We factored® — b2 into [a + b] times
[a —b]. Notice that we don’t havéAu)?. We haveA f, the change in/?. Now
divide by A x and take the limit:

u(x +Ax)—u(x)
Ax

A _ [u(x + Ax) +u(x)] [

du
hes2u(x)—. (5
A } approaches u(x)dx 5)

This is thesquare rule The derivative ofu(x))? is 2u(x) timesdu /dx. From the
derivatives ofc? and1/x andsinx (all known) the examples give new derivatives.

EXAMPLE 5 (u = x?) The derivative ofc* is 2u du/dx = 2(x?)(2x) = 4x3.

EXAMPLE 6 (u = 1/x) The derivative ofl /x? is 2u du/dx = (2/x)(—1/x?) = —2/x3.

EXAMPLE 7 (u =sinx, du/dx = cosx) The derivative oft> = sirfx is 2sinx cosx.

Mathematics is really about ideas. The notation is created to express those ideas.
Newton and Leibniz invented calculus independently, and Newton’s friends spent
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a lot of time proving that he was first. He was, but it was Leibniowhought of
writing dy /d x—which caught on. Itis the perfect way to suggest the limihgf/ A x.
Newton was one of the great scientists of all time, and calculus was one of the great
inventions of all time-but the notation must help. You now can write and speak about
the derivative. What is needed is a longer list of functions and derivatives.

2.1 EXERCISES

Read-through questions

The derivative is the _a of Af/At as At approaches b .
Here Af equals__c . The stepAt can be positive or__d

The derivative is writterw or __e _or __ f . If f(x)=2x+3
andAx =4thenAf= g .If Ax=—1thenAf=_h

f
Ax=0thenAf=__i .Theslopeisnot/0butdf/dx= j

The derivative does not exist whep&(r) has a__k _andv(z)
hasa_ | .For f(r)=1/t the derivative is_m__. The slope of
y=4/xisdy/dx= __n__. A decreasing function has a o
derivative. The p variable ist or x and the g variable
is f or y. The slope ofy? (is) (is not) (dy/dx)?. The slope
of (u(x))? is __r__ by the square rule. The slope @Ix +3)2
is__s

1 Which of the following numbersgsis) givesdf/dt at timet ?
If in doubt test onf (r) =£2.

fa+A)—f@) S+2h)— 1)

@ % O
L Ja=A0—f0) St AD - f()
RN -y @ A

2 Supposef(x)=x2. Compute each ratio and skt=0:
fx+h)—f(x) f(x+5h) = f(x)

@ ; (®) -
S+ = fCr=h) fa+D— /@)
© = @

3 For f(x)=3x and g(x)=1+3x, find f(4+h) andg(4+h)
and f/(4) andg’(4). Sketch the graphs of and g—why do they
have the same slope ?

4 Find three functions with the same slopefis) = x2.

5 For f(x)=1/x, sketch the graphs of (x)+1 and f(x +1).
Which one has the derivativel/x2 ?

9 Find Ay/Ax for y(x) = x +x2. Then finddy /dx.
10 FindAy/Ax and dy/dx for y(x) =14 2x +3x2.

11 When f(t) =4/t, simplify the differencef (r + Ar) — f(¢), di-
vide by Az, and setAt =0. The resultisf /(7).

12 Find the derivative ofl /12 from A f(r) = 1/(t + At)? —1/12.
Write Af as a fraction with the denominato? (r + Ar)2. Divide
the numerator byAz to find A f// At. SetAt =0.

13 Supposef(t)=7t to t =1. Afterwards f(1)=7+9(t —1).
(@) Finddf/dt att =1 andt = 3.
(b) Why doesn’tf(¢) have a derivative at=1?

14 Find the derivative of the derivative (ttsecond derivative of
y = 3x2. What is the third derivative ?

15 Find numbers4 and B so that the straight liney = x fits
smoothly with the curveY = A+ Bx+x2 at x =1. Smoothly
means thay =Y anddy/dx =dY/dx atx =1.

16 Find numbers4 and B so that the horizontal lingy =4 fits
smoothly with the curvey = A+ Bx + x?2 at the pointx = 2.

17 True(with reason)or false(with example):

(@) If f(r)<Othendf/dt <O.

(b) The derivative of f(r))? is 2df/dt.

(c) The derivative oRf(¢) is2df/dt.

(d) The derivative is the limit of\ / divided by the limit ofAz.

18 For f(x)=1/x the centered differencef(x +h)— f(x —h)

is 1/(x+h)—1/(x—h). Subtract by using the common
denominator(x + /) (x — k). Then divide by2/4 and seth =0. Why
divide by2h to obtain the correct derivative ?

19 Supposey =mx+b for negativex and y=Mx+ B for
x =0. The graphs meet if . The two slopes are .
The slope atx =0 is (what is possible ?).

6 Choosec so that the liney = x is tangent to the parabola20 The slope ofy =1/x at x=1/4is y'=—1/x*=—16. At

y =x2 +c. They have the same slope where they touch.
7 Sketch the curvg (x) = 1 —x? and compute its slope at= 3.

8 If f(r)=1/t, what is the average velocity betwees- % and

h =1/12, which of these ratios is closest tol6 ?

yx+h)—yx) yx)—yx—h) yx+h)—yx—h)
h h 2h

t =27 What is the average betwees % andr=1? Whatisthe 21 Find the average slope of = x2 betveenx = x; andx = x».

average (to one decimal place) betweeﬂ% and ¢t =101/2007?

What does this average approachxaspproaches; ?
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22 Redraw Figure 2.1 when f(r)=3—-2¢ for <2 and
f(@)=—1fort>=2.Includedf/dt.

23 Redraw Figure 2.3 for the functiony(x)=1—(1/x).
Includedy/dx.

24 The limit of 0/ At asAtr — 0 is not0/0. Explain.

25 Guess the limits by an informal working rule. S&et =0.1 and
—0.1 and imagineAt becoming smaller:

1+ A1 |At|
@ A ®) 5
At +(A1)? q [TA!
© a2 @ =

*26 Suppose f(x)/x —7 as x —0. Deduce thatf(0)=0 and
f'(0) ="7. Give an example other thafi(x) = 7x.

fB+x)—-/0B)
X

27 Whatis lim if itexists ? What ifc - 1?

x—0

Problems 28-31 use the square rulef(u?)/dx = 2u(du/dx).
28 Takeu = x andfind the derivative ofc2 (a new way).

29 Takeu = x* andfind the derivative ofc® (usingdu/dx = 4x3).

30 If u=1thenu?=1.Thend1/dx is2timesd1/dx. How is this
possible ?

31 Takeu = +/x. The derivative ofu® = x is 1 = 2u(du/dx). So
what isdu/dx, the derivative of,/x ?

32 The left figure showsf(s) =2. Indicate distances’ (r + At)
andAt andA f. Draw lines that have slopa /At and f/(¢).

W
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33 The right figure showg'(x) andAx. Find A f/Ax and f/(2).
34 Draw f(x) and Ax so thatA f/Ax =0 but f/(x) #0.

35 If f=u? then df/dx=2u du/dx. If g=f?
then dg/dx=2fdf/dx. Together those giveg=u* and
dg/dx =

36 True or false asuming f(0) = 0:

(@) If f(x)<xforall x,thendf/dx <1.
(b) Ifdf/dx <1forall x, then f(x) <x.

37 The graphs showA f and A f/h for f(x) = x2. Why is2x +h
the equation foA £/ h ? If h is cut in half, draw in the new graphs.

38 Draw the corresponding graphs fgx) = %x.

39 Drawl/x and1/(x +h) andA f/ h—either by hand with = 1
or by computer to showt — 0.

40 Fory =e*, show on computer graphs thét/dx = y.

41 Explain the derivative in your own words
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I 2.2 Powers and Polynomials [ EEEEEEEG

This section has two main goals. One is to find the derivativeg ¢f) = x> and
x* andx> (and more generally(x) = x™). The poweror exponent: is at first a
positive integer. Later we allow” andx2-? and every”.

The other goal is different. While computing these derivatives, we look ahead to
their applications. In using calculus, we megpuations with derivatives in them
“differential equations’ It is too early to solve those equations. But it is not too
early to see the purpose of what we are doing. Our examples come from economics
and biology.

With n = 2, the derivative ofc? is 2x. With n = —1, the slope ofc~! is —1x~2.
Those are two pieces in a beautiful pattern, which it will be a pleasure to discover. We
begin withx3 and its derivativéx?, before jumping toc”.

EXAMPLE 1 If f(x)=x3thenAf = (x+h)3—x3 = (x3+3x2h+3xh?>+h3)—x3.
Step 1:Cancelx3. Step 2:Divide by A. Step 3:/4 goes to zero.

A d
l—f =3x2+3xh+h* approaches d_f =3x2.
1 [ X

That is straightforward, and you see the crucial step. The pawerh)? yields four
separate terms> + 3x2h +3xh% 4+ h3. (Notice 1, 3, 3, 1.) After x> is subtracted,
we can divide byz. At the limit (2 = 0) we have3x?2.

For f(x) = x" the plan is the same. A step of sizéeads tof (x + h) = (x + h)".
One reason for algebra is to calculate powers(ike- /)", and if you have forgotten
the binomial formula we can recapture its main point. Start with 4:

(x+h)(x+h)(x+h)(x+h) =x*+ 77 +h* (1)

Multiplying the fourx’s givesx*. Multiplying the fourk’s givesh*. These are the
easy terms, but not the crucial ones. The subtradtion #)* — x* will remove x4,
and the limiting steg — 0 will wipe out* (even after division byr). The products
that matter are those with exactly onfe In Example 1 with(x + /)3, this key term
was3x2h. Division by i left 3x2.

With only oneh, there aren places it can come fronEquation(1) has four
h’s in parentheses, and four ways to produéé. Therefore the key term i$x3/.
(Division by & leavestx3.) In general there are parentheses andways to produce
x"~1h, so thebinomial formula contains:x” 1 h:

(x+h)"=x"+nx""Th+ - +n". 2

2B Forn=1,2,3,4, ..., the derivative ofx” is nx"~!.

Subtractx” from (2). Divide byh. The key term iszx”~!. The rest disappears as
h—0:

M_(x—kh)"—x"_nx”_1h+---+h” ar _

Ax h h © I

The terms replaced by the dots involv& and/3 and higher powers. After dividing
by A, they still have at least one factbr All those terms vanish @sapproaches zero.

nxn—l
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EXAMPLE 2 (x +h)*=x*+4x3h+6x2h> +4xh3>+h*. This is n=4 in
detalil.

Subtracte*, divide by#, leth — 0. The derivative istx3. The coefficientd, 4,6,4, 1
are in Pascal’s triangle below. For + 1)> the nextrow isl, 5,10, 2 .

Remark The missing terms in the binomial formula (replaced by the dots) contain

all the productsc” /A7, An x or ank comes from each parenthesis. The binomial

coefficient “nchoosej” is the number of ways to choosgh’s out of n parenthe-

ses It involvesn factorial, which isn(n — 1) ---(1). Thus5!=5-4-3-2-1 =120.
These are numbers that gamblers know and love:

1 Pascal’s
11 triangle
!
“n choosej” :(n.):.’;. 121
i) jtn—=j)! 1331 n=3

14641 n=4

In the last row, the coefficient of3h is4!/1!13!'=4-3.2-1/1-3-2-1 =4. For the
x2h? term, with j =2, there are4-3-2-1/2-1-2-1 = 6 ways to choose twa’s.
Notice thatl +4 + 6 +4 + 1 equalsl6, which is2*. Each row of Pascal’s triangle
adds to a power df.

Choosingd numbers out o9 in a lottery, the odds aré9-48-47-46-45-44/6!
to 1. That numberisV = “49 chooseb” = 13,983, 816. Itis the coefficient ofc*3h6

in (x+h)*.If A timesN tickets are bought, the expected number of winness is
The chance of no winner is™*. The chance obnewinner isie~*. See Sectios.4.

Florida’s lottery in Septembdr990 (these rules) had six winners out 0i9, 163,

978 tickets.

DERIVATIVES OF POLYNOMIALS

Now we have an infinite list of functions and their derivatives:

xx2x3xt X 1 2x 3x2 4x3 5x% ...

The derivative ofx” is n times the next lower powet”~!. That rule extends
beyond these integers 2, 3,4, 5 to all powers:

f=1/x has f'=-1/x2: Example3 of section2.1 (n=—1)
f=1/x% has f'=-2/x3: Example6 of section2.1 (n = —2)
f=+/x has f'=1x"12: true but not yet checked (n=1)

Remember thatc—2 meansl/x2 andx~!/2 meansl//x. Negative powers lead
to decreasindgunctions, approaching zero asgets large. Their slopes have minus
signs.

Question What are the derivatives of'® and x2-2 andx~1/2 ?

Answer  10x° and2.2x!2 and —1x~3/2. Maybe (x + h)?% is a little unusual.
Pascal’s triangle can’t deal with this fractional power, but the formula stays firm:
After x22 comes2.2x!2h. The complete binomial formula is in Sectidf.5.

That list is a good start, but plenty of functions are left. What comes next is really
simple. A tremendous number of new functions are “linear combinations” like

1 1
f(x)=6x> or 6X3+5x2 or 6x3—5x2.
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What are their derivatives? The answers are knownfoand x2, and we want to
multiply by 6 or divide by2 or add or subtracDo the same to the derivatives

f'(x)=18x2 or 18x%2+x or 18x%—x.

2C The derivative of: times f(x) is ¢ times f'(x).

2D The derivative off (x) + g (x) is f'(x) + g'(x).

The numberc can be any constant. We can add (or subtract) any functions.
The rules allow any combination of and g: The derivative of9f(x) —7g(x)
iIs9f'(x) —7g"(x).

The reasoning is direct. Wheifi(x) is multiplied by ¢, so is f(x +h). The
differenceA f is also multiplied byc. All averagesA f/ h containc, so their limit is
¢f’. The only incomplete step is the last one (the limitje still have to say what
“limit” means

Rule 2D is similar. Adding f + g means adding\ /' + Ag. Now divide by#. In
the limit as# — 0 we reachf’ + g’—because a limit of sums is a sum of limits.
Any example is easy and so is the proof—it is the definition of limit that needs care
(Section2.6).

You can now find the derivative of every polynomia “polynomial” is a
combination of 1, x, x2, ..., x"—for example 942x —x>. That particular
polynomial has slop@ — 5x*. Note that the derivative df is zero! A constant just
raises or lowers the graph, without changing its slope. It alters the mileage before
starting the car.

The disappearance of constants is one of the nice things in differential calculus. The
reappearance of those constants is one of the headaches in integral calculus. When you
find v from £, the starting mileage doesn’t matter. The constanf imas no effect on
v. (A f is measured by a trip meteAs comes from a stopwatgiiro find distance
from velocity, you need to know the mileage at the start.

A LOOK AT DIFFERENTIAL EQUATIONS (FIND y FROM dy/dx)

We know thaty = x3 has the derivativedy /dx = 3x2. Starting with the function,
we found its slope. Now reverse that proceStart with the slope and find the
function. This is what science does all the time—and it seems only reasonable to say
so.

Begin withdy /dx = 3x2. The slope is given, the functionis not given.

Question Can you go backward to reagh= x> ?

Answer  Almost but not quite. You are only entitled to say that x3+ C. The
constaniC is the starting value of (whenx = 0). Then thedifferential equation
dy /dx = 3x? is solved.

Every time you find a derivative, you can go backward to solve a differential
equation. The functiory = x4 x has the slopely /dx = 2x + 1. In reverse, the
slope2x + 1 producesy? 4+ x—and all the other functions? + x + C, shifted up
and down. After going from distancg to velocity v, we return tof + C. But there
is a lot more to differential equations. Here are two crucial points:

1. We reachdy/dx by way of Ay /Ax, but we have no system to go backward.
With dy /dx = (sinx)/x we are lost. What function has this derivative ?
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2. Many equations have the same solutjos: x3. Economics hagly /dx = 3y/x.
Geometry hagly/dx = 3y2/3. These equations involve as well asdy/dx.
Function and slope are mixed together! This is typical of differential equations.

To summarizeChapter2-4 compute and use derivatives. Chadeyoes in reverse.
Integral calculus discovers the function from its slope. Giderldx we find y (x).
Then Chapteé solves the differential equatiaty /d¢ = y, function mixed with slope.
Calculus moves frorderivativeso integralsto differential equations

This discussion of the purpose of calculus should mention a specific example. Dif-
ferential equations are applied to an epidemic (like AIDS). In most epidemics the
number of cases grows exponentially. The peak is quickly reachef layd the epi-
demic dies down. Amazingly, exponential growth is not happening with AIDS—the
best fit to the data throughP88 is acubic polynomial(Los Alamos Scienc€989):

The number of cases fits a cubic withifo: y = 174.6(r — 1981.2)3 + 340.

This is dramatically different from other epidemics. Instedd/o/dt = y we have
dy/dt =3y/t. Before this book is printed, we may know what has been
preventing’ (fortunately). Eventually the curve will turn away from a cubic—I hope
that mathematical models will lead to knowledge that saves lives.

Added in proof In 1989 the curve for the U.S. dropped from to 2.

MARGINAL COST AND ELASTICITY IN ECONOMICS

First point about economics: Thearginal cost andmarginal income are crucially
important. The average cost of making automobiles ma§1fe000. But it is the

$8,000 cost of thenext carthat decides whether Ford makes ifTHe average
describes the past, the marginal predicts the futufer bank deposits or work

hours or wheat, which come in smaller units, the amounts are continuous variables.

Then the word “marginal” says one thingake the derivativer

The average pay over all the hours we ever worked may be low. We wouldn’t work
another hour for that! This average is rising, but the pay for each additional hour rises
faster—possibly it jumps. Whe#10/hour increases t&15/hour after a40-hour
week, a50-hour week pay$550. The average income i811/hour. The marginal
income is$15/hour—the overtime rate.

Concentrate next on cost. Le{x) be the cost of producing tons of steel. The
cost ofx + Ax tons isy(x 4+ Ax). The extra cost is the differenc®y. Divide by
Ax, the number of extra tons. The ratfoy /A x is the average cost per extra ton
WhenAx is an ounce instead of a ton, we are near the marginalgosfx.

Example: When the cost ie?, the average cost is*/x = x. The marginal cost is
2x. Figure 2.4 has increasing slope—an example of “diminishing returns to scale.”

This raises another point about economics. The units are arbitrary. In yen per
kilogram the numbers look different. The way to correct for arbitrary units is to work
with percentage changer relative change An increase ofAx tons is a relative
increase ofAx/x. A cost increase\y is a relative increase ohy/y. Those are
dimensionlesghe same in torydons or dollargdollars or yerfyen.

A third example isthe demand at price x. Now dy/dx is negative. But again
the units are arbitrary. The demand is in liters or gallons, the price is in dollars or
pesos.

tThese paragraphs show how calculus applies to economics. Yowtdeave to be an
economist to understand them. Certainly the author is not, probably the instructor is not,
possibly the student is not. We can all use/dx.
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costx X ' fixed supply
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any price
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/ slope 2x 3'—'?‘_[31_) ]"”-‘ any supply
24 average .v =i fixed price =~
’ 1
' > ®
x quantity equilibrium price price

Fig. 2.4 Marginal exceeds average. Constant elastiity¢ +1. Perfectly elastic to perfectly
inelastic (" curve).

Relative changes are better. When the price goes u®, the demand may drop
by 5%. If that ratio stays the same for small increaths, elasticity of demand |1§

Actually this number should be%. The price rose, the demand dropped. In our

definition, the elasticityill be —%. In conversation between economists the minus
sign is left out (I hope not forgotten).

DEFINITION  The elasticity of the demand functior(x) is

E(r)= lim 22y _dy/dx
Ax—0 Ax/x y/x

©)

Elasticity is “marginal” divided by“average’ E(x) is also relative change in
divided by relative change im. SometimesE (x) is the same at all prices—this
important case is discussed below.

EXAMPLE 4 Suppose the demandjs= c/x when the price isc. The derivative
dy/dx = —c/x? comes from calculus. The division/x = ¢/x? is only algebra.
TheratioisE = —1:

For the demandy = ¢/ x, the elasticity is(—c/x?)/(c/x?) = —1.

All demand curves are compared with this one. The demanidakastic when
|E| < 1. Itis elasticwhen |E| > 1. The demand0/+/x is inelastic(E = —1),
while x =3 is elastic(E = —3). The powery = cx”, whose derivative we knayis

the function with constant elasticity::
if y=cx” then dy/dx=cnx" ' and E =cnx""'/(cx"/x)=n.

Itis becausey = cx” sds the standard that we could come so early to economics.
In the special case when= ¢/ x, consumers spend the same at all prices. Brice
times quantityy remains constant aty = c.

EXAMPLE 5 The supply curve has¥l > 0—supply increases with price. Now
the baseline case is= cx. The slope is: and the average is/ x = c¢. The elasticity
iSE=c/c=1.

CompareE = 1 with £ =0andE = co. A constant supply is “perfectly inelastic.”
The powern is zero and the slope is zerg:= c¢. No more is available when the
harvest is over. Whatever the price, the farmer cannot suddenly grow more wheat.
Lack of elasticity makes farm economics difficult.

The other extremé’ = oo is “perfectly elastic.” The supply is unlimited at a fixed
price x. Once this seemed true of water and timber. In reality the steep curve
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x = constant is leveling off to a flat curve = constant. Fixed price is changing to
fixed supply,E = oo is becomingE = 0, and the supply of water follows a “gamma
curve” shaped likd".

EXAMPLE 6 Demand is an increasing function iwfcome—more income, more
demand. Thencome elasticityis E(I) =(dy/d1)/(y/I). A luxury hasE > 1
(elastic). Doubling your income more than doubles the demand for caviar. A necessity
hasE <1 (inelastic). The demand for bread does not double. Please recognize how
the central ideas of calculus provide a language for the central ideas of economics.

Important note on supply= demand This is the basic equation of microeconomics.
Where the supply curve meets the demand curve, the economy finds the equilibrium
price.Supply= demand assumes perfect competitiith many suppliers, no one
can raise the price. If someone tries, the customers go elsewhere.

The opposite case is monopoly—no competition. Instead of many small pro-
ducers of wheat, there is one producer of electricity. An airport is a monopolist (and
maybe the National Football League). If the price is raised, some demand remains.

Price fixingoccurs when several producers act like a monopoly-which antitrust
laws try to prevent. The price is not set by supglydemand. The calculus problem is
different—to maximize profitSection3.2 locates the maximum where the marginal
profit (the slope!) is zero.

Question on income elasticity From an income 0%$10,000 you save$500.
The income elasticity of savings & = 2. Out of the next dollar what fraction do
you save ?

Answer  The savings ig = cx? becauseE = 2. The number must give500 =
¢(10,000)2, soc is 5-107%. Then the slopely /dx is 2cx =10-10-107%-10* =
11—0. This is the marginal savings, ten cents on the do#aerage savings i$%,
marginal savings isl0%, and £ = 2.

2.2 EXERCISES

Read-through questions

The derivative of f =x* is f'= __a . That comes from 1 Starting with f =x®, write down f’ and thenf”. (This is “f
expanding(x +h)* into the five terms__b . Subtractingr* and double prime,” the derivative of ’.) After derivatives ofx®
dividing by % leaves the four terms_c¢ . ThisisAf/h, and its you reach a constant. What constant ?

limitis __d

2 Find a function that has® as ts derivative.

The derivative of f =x" is f'=__e . Now (x+h)" comes Find the derivatives of the functions in 3-10. Even ifn is
from the __f  theorem. The terms to look for are” 'k, negative or a fraction, the derivative ofx" is nx” 1.
containing only one g . There are__h _ of those terms,

O (x+h)"=x"+_1 +-.-. After subtracting | and 3 x247y45 4 14(7/x)+(5/x2)
dividing by 7, the limit of Af/h is __k . The coefficient of
x"=Jh/, not needed here, iz‘choosej” = | _,wheren! means 5 |4 424,344 6 (x2+1)2
m
7 x4 x—n 8 Xn/}’l!

The derivative ofx=2 is _ n . The derivative ofx!/2 is
- . ) 1, 1., 1, 2 3 2 spy
0 . The derivative of3x+(1/x) is p , which uses the 9 14+x4+ -—x?4+-x>4+ —x 10 Zx3/2 4 Zx5/
following rules: The derivative of3f(x) is g and the 2 6 24 3 5
derivative of f(x)+g(x) is __r . Integral calculus recovers
s fromdy/dx. \fdy/dx =x*theny(x)=__t . 11 Name two functions withlf /dx = 1/x2.
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12 Find the mistake x2 is x+x+---+x (with x terms). Its 31 What function f(x) has fourth derivative equal to?
derivative is1+1+---+1 (alsox terms). So the derivative of?

32 What functionf(x) hasnth derivative equal ta ?
seems to be.

33 Suppoself/dx =1 24 %3 Find )
13 What are the derivatives oBx!1/3 and —3x—1/3 and ppoself/dx =1+ x -+~ +x /()

(3x1/3)~12 34 Suppoself/dx =x~2—x73.Find f(x).

14 The slope ofc + (1/x) is zero whenx = “What does the 35 f(x) can be its own derivativeln the infinite polynomial

graph do at that point ? f=1l+x+4ix2+1x3+ | what numbers multiply x*
and x° if df /dx equalsf ?

15 Draw a graph ofy = x3 —x. Where is the slope zero ?

] ) ) ] 36 Write down a differential equatiorly/dx = that is
16 If df/dx is negative, is f(x) always negative? Isf(x) gplved byy = x2. Make the right side involve (not just2x).
negative for larger ? If you think otherwise, give examples.

37 True or false (a) The derivative ofx™ is 7x™.
(b) The derivative ofix™ /bx" isa/b.
(¢) Ifdf/dx=x*anddg/dx = x*thenf(x)=g(x).
(a) Find its average speeXlf /At fromt =0tot = % d) (f(x)— f())/(x —a) approacheg’’(a) asx —a.
(b) Find its average speeff/At fromt = % tor=1. (e) The slope of = (x — 1)3 is y/ = 3(x — 1)2.
(c) Whatisdf/dt att = %?
18 When f is in feet and is in seconds, what are the units ¢f

and its derivativef” ? In f = 161 —16¢2, the first16 is ft/sec but 38 When the cost isy = yo +cx, find E(x) = (dy/dx)/(y/x).
the second6 is . It approaches for largex.

17 A rock thrown upward with velocityi6 ft/sec reaches height
f =16t —16t2 attimer.

Problems 38—44 are about calculus in economics.

19 Graph y=x3+4x2—x from x=—-2 to x =2 and estimate 39 From an income ofx =$10,000 you spendy = $1,200 on
where it is decreasing. Check the transition points by solviygur car. If E = % what fraction of your next dollar will be
dy/dx =0.

20 At a point wheredy /dx = 0, what is special about the graph of PENt On the car? Compare /dx (marginal) withy /x (average).
y(x)? Test casey = x2. 40 Name a product whose price elasticity is

21 Find the slope ofy = 1/x by algebra (thert — 0): (@ high (b) low (c) negative (?)
Ay /x¥h—vX Vx+th—/x Vxth+x 41 The demandy =c/x hasdy/dx = —y/x. Show thatAy/Ax

is not —y/x. (Use numbers or algebra.) Finite steps miss the

h h h Vathty/x special feature of infinitesimal steps.
22 Imitate Problen21 to find the slope ofy = 1/4/x. 42 The demandy = x" hask = . The revenuexy (price

times demand) has elasticify =
23 Complete Pascal’s triangle for=5 andn =6. Why do the ) iy

numbers across each row add®to? 43 y=2x+3 grows with marginal cos2 from the fixed cos8.
5 5 . . Draw the graph of£ (x).
24 Complete (x +h)° =x>+ . What are the binomial
.- 5 5 5\, 44 From an incomel we save S(/). The marginal propensity
coefficients and 2 and 3)° to save is . Elasticity is not needed becausg and I
have the same . Applied to the whole economy this is

25 Compute(x +I’Z)3 — (X —h)3, divide by2h, and seti =0. Why (miCroeCOnOmiCS) (macroeconomics)l

divide by2# to find this slop& ) ] )
45 2! is doubled when increases by . 13 is doubled when

26 Solve the differential equation” = x to find y (x). ¢ increases to t. The doubling time for AIDS is proportional

27 For f(x)=x2+x3, write out f(x + Ax) and A f/Ax. What 7.
is the limit atAx = 0 and what rule about sums is confirmed ? 46 Biology also leads tdy/y = n dx/x, for the relative growth of

28 The derivative ofu(x))? is from Sectior2.1. Test this the headdy/y) andthe bodydx/x).1sn > 1orn <1forachild?
rule onu = x". 47 What functions havef/dx = x® anddf/dx = x™ ? Why does
S 7 7 . n = —1 give trouble ?
29 What are the derivatives af’ + 1 ard (x + 1)’ ? Shift the graph
of x7. 48 The slope ofy = x3 comes from this identity:
30 If df/dxis , what functions have these derivatives ? )3 —x3
f/dxisv(x) ) —x7 = (x+h)? + (x+h)x +x2.
(@) 4v(x) (b) v(x)+1 h

(© v(x+1) (d) v(x)+v'(x). (&) Check the algebra. Finth/dx ash — 0.
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(b) Write a similar identity fory = x*. 51 In the Massachusetts lottery you chodsaumbers out of36.

49 (Computer graphing) Find all the points Wheré{Vhatisyourchancetowin?

y=x*+2x3—7x2+3=0and wherely/dx = 0. 52 In what circumstances would it pay to buy a lottery ticket for
50 The graphs ofy1(x) = x* +x3 and y,(x) =7x—5 touch at &Y possible combination, so one of the tickets would win ?
the point whereys(x)= =0. Plot y3(x) to see what

is special. What does the graph ofx) do at a point where
y=y'=0?
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I 2.3 The Slope and the Tangent Line |

Chapter1 started with straight line graphs. The velocity was constant (at least
piecewise). The distance function was linear. Now we are facing polynomials like
x3 —2orx*— x2 + 3, with other functions to come soon. Their graphs are definitely
curved. Most functions are not close to linear—except if you focus all your attention
near a single point. That is what we will do.

Over a very short range a curve looks straiglitook through a microscope, or
zoom in with a computer, and there is no doubt. The graph of distance versus time
becomes nearly linear. Its slope is the velocity at that moment. We want to find the
line that the graph stays closest to—tharfgent liné—before it curves away.

The tangent line is easy to describe. We are at a particular point on the graph of
y = f(x). At that pointx equalsa andy equalsf(a) and the slope equalg’(a).

The tangent line goes through that poink =a,y = f(a) with that slope
m = f'(a). Figure 2.5 shows the line more clearly than any equation, but we have to
turn the geometry into algebra. We need the equation of the line.

EXAMPLE 1 Supposey = x* —x2+43. At the pointx =a =1, the height is
y = f(a) =3. The slope isdy/dx = 4x3 —2x. At x =1 the slope is# —2=2.
Thatis f'(a):

The numbersx =1, y =3, dy/dx =2 determine the tangent line

The equation of the tangent line js— 3 =2(x — 1), and this section explains

why.
y=3.1
curve
o s e= ")
y=x*-x2+3  iadi to(4,9)
2
_ ZOOM 2.5)

fla) =34 BOX
tangent

y=2x+1

y=29 X
x=09 a=1 x=11

Fig. 2.5 The tangent line has the same sl@pas the curve (especially after zoom).

THE EQUATION OF A LINE

A straight line is determined by two conditions. We know the linge know two of

its points. (We still have to write down the equation.) Also, if we kranve point and

the slopethe line is set. That is the situation for the tangent line, which has a known
slope at a known point:

1. The equation of a line has the form=mx + b
2. The numbem is the slope of the line, becaude/dx =m
3. The numbeb adjusts the line to go through the required point.

| will take those one at a time—first= mx + b, thenm, thenb.



2.3 The Slope and the Tangent Line

1. The graph ofy =mx +b is not curved. How do we know? For the specific
exampley = 2x + 1, take two points whose coordinatesy satisfy the equation:

x=0,y=1 and x=4,y=9 bothsatisfy y=2x+1.

Those pointg0, 1) and(4, 9) lie on the graphThe point halfway between has=2
andy = 5. That point also satisfies= 2x + 1. The halfway point is on the graph
If we subdivide again, the midpoint betweéh 1) and(2,5) is (1, 3). This also has
y =2x + 1. The graph contains all halfway points and must be straight.

2. What is the correct slopen for the tangent line? In our example it is
m= f'(a)=2.

The curve and its tangent line have the same slope at the crucial point
dy/dx =2.

Allow me to say in another way why the line= mx + b has slopen. At x =0
its height isy = b. At x = 1 its height isy =m + b. The graph has gonene unit
across(0 to 1) andm units up(b tom + b). The whole idea is

distance up m

slope= — = —.
distance across 1

D
Each unit across mean& units up, to2m +b or 3m + b. A straight line keeps a
constant slope, whereas the slopget x* — x? + 3 equal2 only atx = 1.

3. Finally we decide orb. The tangent liney =2x + b must go throughx =1,
y =3. Thereforeb = 1. With letters instead of numberg,=mx +b leads to
f(a) =ma+b. So we knowb:

2E The equation of the tangent line has= f(a) —ma:

y=mx+ f(a) —ma or y— f(a)=m(x —a). (2)

That last form is the besYou see immediately what happenscat a. The factor
x —a is zero. Thereforgy = f(a) as required. This is thpoint-slope formof the
equation, and we use it constantly:

y—3 distance up
= — = dlope2.
x—1 distance across

y—3=2(x—1) or

EXAMPLE 2 The curvey = x3 —2 goes througly = 6 whenx = 2. At that point
dy/dx = 3x? = 12. The point-slope equation of the tangent line uBasd6 and12:

y—6=12(x—2) whichisalso y=12x—18.

There is another important line. It iperpendicularto the tangent line and
perpendicularto the curve. This is theormal line in Figure 2.6. Its new feature
is its slope. When the tangent line has slepethe normal line has slope 1/m.
(Rule: Slopes of perpendicular lines multiply to givel.) Example 2 hasn = 12,
so the normal line has slopel /12:

tangentline y —6=12(x —2) normal line y —6= —ﬁ(x -2).

Light rays travel in the normal direction. So do brush fires—timeye perpendicular
to the fire line. Use the point-slope form! The tangent is 12x — 18, the normal is
noty = —x —18.
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EXAMPLE 3 You are on a roller-coaster whose track follows= x2 + 4. You see
a friend at(0, 0) and want to get there quickly. Where do you step off ?

Solution Your path will be the tangent line (at high speed). The probketm choose
x = a so the tangent line passes through= 0, y = 0. When you step offat = a,

the height isy = a2 + 4 and the slope i8a
the equation of the tangent lineys— (a2 +4) = 2a(x —a)
this line goes througto, 0) if —(a?+4) = —2a?ora = +2.

The same problem is solved by spacecraft controllers and baseball pitchers. Releasing
a ball at the right time to hit a targé0 feet away is an amazing display of calculus.
Quarterbacks with a moving target should read Chapter related rates.

Here is a better example than a roller-coaster. Stopping at a red light wastes gas. It
is smarter to slow down early, and then accelerate. When a car is waiting in front of
you, the timing needs calculus:

EXAMPLE 4 How much must you slow down when a red ligh7& meters away ?
In 4 seconds it will be green. The waiting car will accelerat8 atetergsec¢. You
cannot pass the car.

Strategy Slow down immediately to the speé&dat which you will just catch that car.
(If you wait and brake later, your speed will have to go belayAt the catchup time
T, the cars have the same speed and same distwoeconditions, so the distance
functions in Figure 2.6d are tangent.

Solution  Attime T, the other car’s speed T —4). That shows the delay df
seconds. Speeds are equal WB¢h —4) =V or T = %V + 4. Now require equal

distances. Your distance I5 timesT. The other car’s distance ® + %atzz
724+1.3(T—4)>=VT becomes 72+1-1v2=Vv (1v+4).
The solution isV = 12 metergsecond. This ig43 km/hr or27 miles per hour.

Without the other car, you only slow down 6= 72/4 = 18 metergsecond. As
the light turns green, you go throughtgt km/hr or40 miles per hour. Try it.

tangent line:
P dy distance
0P T dx A
track vT 4
-._ normal line: y = - 72 Wwaitinu 7+ catch up
. ) : = | car o T=8,V=12
slope — — ¢ .2 f
P m lone 2 4 - R
slope 2a _.*" your speed is |
: e+ {ime
xXp=a 0,0) a 4 T

. . 1 .
Fig. 2.6  Tangent liney — yo =m(x —xp). Normal line y — yo = ——(x — xp). Leaving a
m
roller-coaster and catching up to a car.
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THE SECANT LINE CONNECTING TWO POINTS ON A CURVE

Instead of the tangent line through one point, consides#éwmant line through two
points For the tangent line the points came together. Now spread them apart. The
point-slope form of a linear equation is replaced bytihie-point form

The equation of the curve is stilf = f(x). The first point remains at = a,
y = f(a). The other pointis at =c, y = f(c). The secant line goes between them,
and we want its equation. This time we don't start with the slope-#big easy to
find.

EXAMPLE 5 The curvey = x —2 goes throughr = 2, y = 6. It also goes through
x =3,y =25. The slope between those points is

changeiny 25—6
m= — = =109.
changeint  3-—2
The point-slope form (at the first point) js— 6 = 19(x — 2). This line automatically
goes through the second poif, 25). Check:25 — 6 equals19(3 —2). The secant
has the right slopé9 to reach the second point. It is thgerage slopé\y /Ax.

A look ahead The second point is going to approach the first point. The secant
slope Ay/Ax will approach the tangent slopéy/dx. We discover the derivative
(in the limit). That is the main point now—Dbut not forever.

Soon you will be fast at derivatives. The exatt/dx will be much easier
thanAy/Ax. The situation is turned around as soon as you knowxtfdtas slope
9x3. Near x = 1, the distanceup is about9 times the distancacross To find
Ay =1.001° —1°, just multiply Ax =.001 by 9. The quick approximation is
.009, the calculator givea\y = .009036. It is easier to follow the tangent line than
the curve.

Come back to the secant line, and change numbers to letters. What line connects
x=a,y= f(a) to x=c,y= f(c)? A mathematician puts formulas ahead of
numbers, and reasoning ahead of formulas, and ideas ahead of reasoning:

distanceup  f(c)— f(a)
distance across ¢ —a

(1) The slopeisn =

(2) The heightisy = f(a) atx =a

(3) The heightisy = f(c) atx = ¢ (automatic with correct slope).

2F Thetwo-point formuses the slope between the points:

[O=1@) -
c—da

secantline y— f(a)= (

At x =a the right side is zero. Sg = f(a) on the left side. Atx = ¢ the right
side has two factors — a. They cancel to leave = f(c). With equation(2) for the
tangent line and equatidB) for the secant line, we are ready for the moment of truth.
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THE SECANT LINE APPROACHES THE TANGENT LINE

What comes now is pretty basic. It matches what we did with veésci

A distance: f@+At)— f(2)

average velocit -
g ¥ A time At

The limitis df/dt. We now do exactly the same thing with slop&he secant line
turns into the tangent line ag: approaches::

Af _ )= f@)

slope of secant line:

Ax c—a
d A
slope of tangent line: —f = limit of —f
X Ax

There stands the fundamental idea of differential calculus! You have to imagine
more secant lines than | can draw in Figure 2.7¢ a®mes close ta. Everybody
recognizes —a asAx. Do you recognizef(c) — f(a) as f(x + Ax)— f(x)? It

is Af, the change in height. All lines go through=a,y = f(a). Their limit is

the tangent line

p Ax secant
) .- -
. secant secant y— f(a)= M(x —a)
j:‘; i secant c—a
fla) tangent y— f(a) = f'(a)(x —a)

rangent

a ¢ cc

Fig. 2.7  Secants approach tangent as their
slopesA f/Ax approachif/dx.

Intuitively, the limit is pretty clear. The two points come together, and the
tangent line touches the curveatepoint. (It could touch again at faraway points.)
Mathematically this limit can be tricky—it takes us from algebra to calculus. Algebra
stays away fronf)/0, but calculus gets as close as it can.

The new limit ford f//dx looks different, but it is the same as before:

f(0) = fla)

li
c—a c—a

@)= 4

EXAMPLE 6 Find the secant lines and tangent line foe f(x) = sinx atx = 0.

The starting point isc =0, y = sin0. This is the origin(0,0). The ratio of distance
up to distance across(sinc)/c:

. sinc .
secant equationy = —x tangent equation y = 1x.
C

As ¢ approaches zero, the secant line becomes the tangent line. The I{siitoj/c
is not0/0, which is meaningless, but which isdy /dx.

EXAMPLE 7  The gold you own will be worth/ million dollars in¢ years. When
does the rate of increase drop 6% of the current value, so you should sell the
gold and buy a bond ? At= 25, how far does that put you aheadgf = 5 ?
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Solution  The rate of increase is the derivative\gf, which is1/2+/¢. Thatis10%
of the current valug/t when1/2+/t =+/t/10. Therefore2t = 10 ort = 5. At that
time you sell the gold, leave the curve, and go onto the tangent line:

5
y—\/gz%(I—S) becomeSy—\/§:2\/§ a t=25.

With straight interest on the bond, not compounded, you have reached
y= 34/5 = 6.7 million dollars. The gold is worth a measly five million.

2.3 EXERCISES

Read-through questions

A straight line is determined by _a__ points, or one point and the10 For y =1/x the secant line from(a,1/a) to (c,1/c) has
b . The slope of the tangent line equals the slope of the . the equation . Simplify its slope and find the limit as
The point-slope form of the tangent equationvis- f(a)=__d . approaches.

; 3
= = e . . .
The tangent line toy =x+x at x=1 has slope_e . Its 11 What are the equations of the tangent line and normal

Lo . . linetoy=sinx atx =x/27?
equation is__f . It crosses they axis at g and thex axis Y xatx=mn/

a__h . The normal line at this pointl,2) has slope__i . Its 12 If ¢ anda both approach an in-between valwe= b, then the
equationisy—2= j .Thesecantline fronil,2)to(2,__k ) secantslopéf(c)— f(a))/(c—a) approaches .
has sl I .0t tion iy —2 =
a5 slope . Tis equation 1y —— 13 At x =a on the graph of = 1/x, compute
The point(c, f(c)) is on the liney — f(a) = m(x —a) provided (a) the equation of the tangent line
m=__n__.Asc approaches, the slopen approaches o .The

- i (b) the points where that line crosses the axes.
secant line approaches the p  line.

The triangle between the tangent line and the axes always has
1 (8 Findthe slope of =12/x. Find the slope ofy = 12/x. area .

(b) Find the equation of the tangent line(2t6).
(c) Find the equation of the normal line @ 6).
(d) Find the equation of the secant line(tg 3).

14 Supposeg(x) = f(x)+7. The tangent lines t¢g' andg atx =4
are . True or false The distance between those lines.is

) ) ) 15 Choose so thaty = 4x is tangent toy = x2 +¢. Match heights
2 Fory = x*+x find equations for as well as slopes.

(@) the tangent line and normal line@t 2);

, 16 Chooser so thaty = 5x —7 is tangent toy = x2 +cx.
(b) the secantline to = 1 +/,y = (1+h)% +(1+Ah). 4 gentioy=x=+c
17 Fory =x3+44x2—3x+1, find all points where the tangent is

3 A line goes through(1,—1) and (4,8). Write its equation in horizontal.

point-slope form. Then write it ag = mx +b.
18 y =4x can't be tangent to = cx2. Try to match heights and

) 3 L
4 The tangent line to y=x>+6x at the origin is slopes, or draw the curves.

y= . Does it cross the curve again ?
19 Determinec so that the straight line joining0, 3) and(5, —2) is

. _ 3_ 2 .. .
5 The tangent line toy=x"—3x“+x at the origin is tangent to the curve = ¢ /(x + 1).

y= . It is also the secant line to the point .
) . 20 Chooseb,c,d sothat the two parabolag = x2+bx +¢ and
2 _ _ ,Cy

6 Find the tangent line to = y~ atx =4,y =2. y = dx —x?2 are tangent to each otherat= 1, y =0.
7 For y =x2 the secant line from(a,a?) to (c,c?) has the
equation . Do the division byc—a to find the tangent

line asc approaches. (&) Another pointisc=c=1+h,y = f(c)=

8 Construct a function that has the same slope=atl andx = 2. (b) The change inf is Af = —
Then find two points where = x* —2x2 has the same tangent line () The slope of the secantis = .
(draw the graph). (d) Ash goes to zerap approaches .

21 The graph off(x) = x3 goes through, 1).

9 Find a curve that is tangent jo=2x —3 atx = 5. Find the nor- 22 Construct a functiory = f(x) whose tangent line at= 1 is the
mal line to that curve a5, 7). same as the secant that meets the curve again-a8.
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23 Draw two curves bending away from each other. Markl Draw a circle of radius 1 resting in the parabola
the points P and O where the curves are closest. At those =x2. At the touching point (a,a?), the equation of the

points, the tangent lines are and the normal lines are .

#24 If the parabolasy = x2+1 and y = x —x2 come closest at

(a,a®+1) and(c,c —c?), set up two equations ferandc.

normal line is . That line hasx =0 wheny = . The
distance to(a,a?) equals the radiud when a = . This
locates the touching point.

32 Follow Problem 31 for the flatter parabolayz%x2 and

25 Alight ray comes down the line = a. It hits the parabolic re- explain where the circle rests.

flectory = x2 at P = (a,a?).

33 You are applying for a 000 scholarship and your time is worth

(@) Find the tangent line ak. Locate the point) where that g a hour. If the chance of successlis-(1/x) from x hours of

line crosses thg axis.

writing, when should you stop ?

(b) Check thatP and Q are the same distance from the focus

atF =(0,%).
(c) Show from (b) that the figure has equal angles.

34 Supposd f(c) — f(a)| <|c—a] for every pair of points: and
c¢. Prove thatdf/dx| < 1.

(d) What law of physics makes every ray reflect off thd> From which pointx =a does the tangent line tg = 1/x? hit

parabola to the focus & ?

vertical ray
1

=

(]

|‘_'§
I
I

P=(a,a’)

focus|, 4

26 In abad reflectop =2/x, a ray down one special line=a is
reflected horizontally. What is ?

thex axis atx =37

36 If u(x)/v(x)=7findu’(x)/v'(x). Also find (u(x)/v(x))’.

37 Find f(c) = 1.0011° in two ways—Dby calculator and by(c) —
f(@)~ f'(a)(c —a). Chooser = 1 and f(x) = x1°.

38 At a distanceAx from x =1, how far is the curvey =1/x
above its tangent line ?

39 AtadistanceAx fromx =2, how far is the curve = x> above
its tangent line ?

40 Based on Problers® or 39, the distance between curve and tan-
gent line grows like what powdiA x)? ?

41 The tangent line tof(x)=x%2—1 at xg=2 crosses the
x axis at x1= . The tangent line atx;, crosses
the x axis at xp= . Draw the curve and the two
lines, which are the beginning dllewton’s methodto solve

27 For the paraboladpy =x2, where is the slope equal to/(x)=0.
1? At that point a vertical ray will reflect horizontally. So the,, (Puzzle) The equationy =mx +b requires two numbers

focus is at(0, ).
28 Why are these statements wrong ? Make them right.

(a) If y=2x is the tangent line atl,2) theny = —%x isthe
normal line.

(b) As ¢ approachesa, the secant slopd f(c)— f(a))/
(c —a) approaches f(a) — f(a))/(a —a).

(c) The line through2,3) with slope4 is y —2 = 4(x —3).

29 Aball goes around a circle: = cost, y =sint. At t =3x /4 the

the point-slope formy — f(a) = f'(a)(x —a) requiresthreg and
the two-point form requiresfour: a, f(a),c, f(c). How can
this be ?

43 Find the timeT at the tangent point in Example 4, when you
catch the car in front.

44 If the waiting car only accelerates 2ineers/se, what speed
V must you slow down to ?

45 A thief 40 meers away runs toward you a8 meters

ball flies off on the tangent line. Find the equation of that line anpkr second. What is the smallest acceleration so thatat

the point where the ball hits the grouiad = 0).

keeps you in front ?

30 If the tangent line toy = f(x) at x =a is the same as the46 With 8 meters to go in a relay race, you slow down badly
tangent line toy = g(x) at x = b, find two equations that must be( f = —8+ 61 — %tz). How fast should the next runner start

satisfied byz andb.

(choosev in f = vt) so you can just pass the baton ?
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B 2 2 The Derivative of the Sine and Cosine | NG

This section does two things. One is to compute the derivativesof andcosx.

The other is to explain why these functions are so important. They describe
oscillation, which will be expressed in words and equations. You will see a
“differential equation” It involves the derivative of an unknown functior(x).

The differential equation will say that tlecondierivative—the derivative of the
derivative—is equal and opposite tp. In symbols this isy” = —y. Distance in one
direction leads to acceleration in the other direction. That makasd y’ andy” all
oscillate. The solutions tp” = —y aresinx andcosx and all their combinations.

We begin with the slope. The derivative of=sinx is y’ = cosx. There is no
reason for that to be a mystery, but | still find it beautiful. Chaptéollowed a ball
around a circle; the shadow went up and down. Its heightsiras and its velocity
was cost. We now find that derivative byhe standard method of limits, when
y(x)=sinx:

dy Ay sin(x + ) — sino
9 _ imit of 2 = |jm SN +4) —sinx
dx Ax  h—0 h

D

Thesine is harder to work with than? or x3. Where we hadx + h)? or (x + h)3,
we now havesin(x + k). This calls for one of the basic “addition formulas” from
trigonometry, reviewed in Sectioh5 :

sin(x + /) = sin x cosh + cosx sinh (2)
cogx +h) = cosx cosh —sinx sinh. 3)

Equation(2) putsAy = sin(x + ) —sinx in a new form:

Ay sinxcosh+cosx sinh—sinx . cosh —1 sinh
== - =snx(——— |+cosx|—|. (4
X

The ratio splits into two simpler pieces on the right. Algebra and trigonometry got
us this far, and now comes the calculus problgvinat happens ag& — 0? Itis no
longer easy to divide b. (I will not even mention the unspeakable crime of writing
(sink)/ h = sin.) There are two critically important limits—the first is zero and the

second is one:

. cosh—1 . sin/
lim S~ and lim Lo 5)
h—0 h h—0 h

The careful reader will object that limits have not been defined! You may further
object to computing these limits separately, before combining them into eqéj}ion
Nevertheless—following the principle afleas now, rigor later—I would like to
proceed. It is entirely true that the limit ¢4) comes from the two limits if5):

Z:—y = (sin x)(first limit) + (cosx)(second limij = 0 + cosx. (6)
X

The secant slopAy/Ax has approached the tangent slape'dx.

2G The derivative ofy =sin x is dy/dx = cosx.
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1.00001. . .

e ] |
995
995 — cos /i

sin h

100. ..
Fig. 2.8

2 Applications of the Derivative

We cannot pass over the crucial step—the two limit§5h They contain the real
ideas.Both ratios become)/0 if we just substituter = 0. Remember that the
cosine of a zero angle i and the sine of a zero angle(s Figure 2.8a shows a
small anglé: (as near to zero as we could reasonably draw). The edge of Isimgth
is close to zero, and the edge of lengths/ is nearl. Figure 2.8b shows how the
ratio of sin 4 to i (both headed for zero) gives the slope of the sine curve at the start.

When two functions approach zero, their ratio might do anything. We might have

h? h vh
——>0 or ——1 or — —> 0.
h h h

No clue comes frod/0. When matters isvhether the top or bottom goes to zero
more quickly Roughly speaking, we want to show tt{@osh — 1)/ h is like h?/ h
and(sinh)/ his like h/ h.

Time out The graph ofinx is in Figure 2.9 (in black). The graph sfn(x + Ax)
sits just beside it (in red). The height differencéig’ when the shift distance & x.

Af sin A Af _sin (x + h)—sin x
. , = h - h
sin h 77 f(x) sin x 2 :

Fig. 2.9 sin(x+h) with 7 = 10° = /18 radians.A f/ Ax is close to cos.

X
‘ sin (x + h)

Now divide by that small numbeA x (or /). The second figure showsf/Ax.
Itis close tocosx. (Look how it starts—it is not quiteosx.) Mathematics will prove
that the limit iscosx exactly, whenAx — 0. Curiously, the reasoning concentrates
on only one poin{x = 0). The slope at that point i50s0 = 1.

We now prove thissin Ax divided by Ax goes tol. The sine curve starts with
slopel. By the addition formula fosin(x + /), this answer at one point will lead to
the slopecosx at all points.

Question Why does the graph of (x + Ax) shift left from f(x) whenAx >07?
Answer  Whenx = 0, the shifted graph is already showinff A x). In Figure 2.9a,
the red graph is shifteleft from the black graph. The red graph shaiis when the
black graph showsinO0.

THE LIMIT OF (sink)/h 1S 1

There are several ways to find this limit. The direct approaahlistta computer draw
a graph. Figure 2.10a is very convinciridhe function (sin/)/ h approached at
the key point: = 0. So doegtan’)/ k. In practice, the only danger is that you might
get a message like “undefined function” and no graph. (The machine may refuse to
divide by zero at: = 0. Probably you can get around that.) Because of the importance
of this limit, | want to give a mathematical proof that it equals

Figure 2.10b indicates, but still only graphically, tleh /2 stays below:. (The
first graph shows that togsin)/ 4 is below1.) We also see thdan/ stays above
h. Remember that the tangent is the ratio of sine to cosine. Dividing by the cosine is
enough to push the tangent abdneThe crucial inequalities (to be proved whitis
small and positive) are

sinh < h and tanh > h. @)
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tan h h

sin h

sin h
h

> h
-n/2 h=0 n/2

Fig. 2.10  (sinh)/h squeezed between casandl; (tank)/h decreases tb.

Sincetan’ = (sinh)/(cosh), those are the same as

sinh sinh
<1 and
h h

> COoSh. (8)

Wha happens ag goes to zero The ratio (sin/)/ h is squeezed betweawsh
and 1. Butcosr is approaching! The squeeze as— 0 leaves only one possibility
for (sinh)/ h, which is caught in betweeiThe ratio(sink)/ h approached.

Figure 2.10 shows that “squeeze pldffwo functions approach the same limit,
so does any function caught in betweghhis is proved at the end of Secti@rb.

For negative values @f, which are absolutely allowed, the result is the same. To the
left of zero,h reverses sign angln / reverses sign. The rat{gin )/ & is unchanged.
(The sine is an odd functiorsin(—4) = —sink.) The ratio is anevenfunction,
symmetric around zero and approachinigom both sides.

The proof depends osink < h < tanh, which is displayed by the graph but not
explained. We go back to right triangles.

~sin h
h

~sin h
~h

Fig. 2.11  Line shorter than ar@sink < 2h. Areas giveh < tanh.

Figure 2.11a shows whgin < h. The straight lineP Q has lengtt2 sini. The
circular arc must be longer, because the shortest distance between two points is a
straight linet The arcP Q has lengti2/. (Important:When the radius i$, the arc
length equals the angl&@he full circumference i€ and the full angle is alsdr.)

The straight distance sin is less than the circular distanc2h, sosini < h.

Figure 2.11b shows whiy < tanh. This time we look atireas The triangular area

is %(base)(heigh'@: %(1)(tanh). Inside that triangle is the shaded sector of the circle.

T1f we try to prove that, we will be here all night. Accept it as true.
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2 Applications of the Derivative

Its area ish /27 times the area of the whole circle (because the angle is that fraction
of the whole angle). The circle has area® =, so multiplication byh /27 gives
2h for the area of the sector. Comparing with the triangle arouniitan 7 > 5.

The inequalitiesinh < h <tanh are now proved. The squeeze in equat{8j
produces(sink)/h — 1. Q.E.D. Probleml3 shows how to provesins < h from
areas.

Note All anglesx andh are being measured in radiams.degreescosx is not
the derivative okinx. A degree is much less than a radian, ahg dx is reduced
by the factoR/360.

THE LIMIT OF (cosh —1)/h 1S 0

This second limit is different. We will show that— cosh shrinks to zeranore quickly
thank. Cosines are connected to sines(bin)? + (cosh)? = 1. We start from the
known factsin i < h and work it into a form involving cosines:

(1 —cosh)(1 +cosh) =1 — (cosh)? = (sinh)? < h?. 9)
Note that everything is positive. Divide through byand also byl + cosh:

1 —cosh h
< < .
h 1 +cosh

Ourratio is caught in the middlel'he right side goes to zero because» 0. This
is another $squeeze—there is no escape. Our ratio goes to zero.

Forcosh — 1 or for negative:, the signs change but minus zero is still zero. This
confirms equatioli6). The slope ofin x is cosx.

(10)

Remark Equation(10) also shows thai —cosh is approximately% h?. The

2 comes from1+cosh. This is a basic purpose of calculus—to find simple
approximations Iike%h? A “tangent parabolal — %hz is close to the top of the
cosine curve.

THE DERIVATIVE OF THE COSINE

This will be easy. The quick way to differentiat@sx is to shift the sine curve by
/2. That yields the cosine curve (solid line in Figure 2.12b). The derivative also
shifts by /2 (dotted line).The derivative ofcosx is —sinx.

Notice how the dotted line (the slope) goes below zero when the solid line
turns downward. The slope equals zero when the solid line is Iéveieasing
functions have positive slopes. Decreasing functions have negative sldjmes
is important, and we return to it.

There is more information iy /dx than “function rising” or “function falling.”
The slope tellhiow quicklythe function goes up or down. It gives trae of change
The slope ofy = cosx can be computed in the normal way, as the limit\of /A x:

Ay CoS(x + h) —cosx _ oS (cosh 1) sinx (smh)

Ax h
dy . .
- = (cosx)(0) — (sinx)(1) = —sinx. (11)

The first line came from formulg3) for cosx + /). The second line took limits,
reaching) and1 as before. This confirms the graphical proof that the slopznsfc
is —sinx.
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y=sinxis increasing

y = cos x is decreasing ‘

. 7 iti v = sin f bends dow
W' = cos v is positive y= bends do n

13

¥ =—sin v is negative ‘ Wi V' = cos t decreases

y" =—sin t is negative

Fig. 2.12  y(x) increases wherg’ is positive.y (x) bends up wherg” is positive.

THE SECOND DERIVATIVES OF THE SINE AND COSINE

We now introducéhe derivative of the derivativeThat is thesecond derivativef

the original function. It tells how fast the slope is changing, not how faitself is
changing. The second derivative is the “rate of change of the velocity.” A straight line
has constant slope (constant velocity), so its second derivative is zero:

f(t)=5t has df/dt=5 and d*f/dt*=0.
The parabola = x? has slop&x (linear) which has slop2 (constant). Similarly
f@ty==%ar* has df/di=ar and d*f/di*=a.

There stands the notatie? f/dt? (or d?y/dx?) for the second derivative. A short
formis f” or y”. (Thisis pronounceg double primeor y double primg. Example:
The second derivative of = x3 is y” = 6x.

In the distance-velocity problent,” is accelerationlt tells how fasw is changing,
while v tells how fastf is changing. Wheré/f/dt was distancetime, the second
derivative is distancgfime)?. The acceleration due to gravity is abGtft/se or
9.8 m/se?, which means thab increases b2 ft/sec in one second. It does not
mean that the distance increasesiByeet!

The graph ofy =sin¢ increases at the start. Its derivatices: is positive.
However the second derivative is sinz. The curve is bending down while
going up The arch is toncave dowhbecausey” = —sint is negative.

At t = i the curve reaches zero and goes negative. The second derivative becomes
positive.Now the curve bends upwarthe lower arch is “concave up

y" >0 means thay’ increases s¢ bends upward (concave up)
y” < 0 means thay’ decreases sp bends down (concave down).
Chapten studies these things properly—here we get an advance losifor
The remarkable fact about the sine and cosine isjtat —y. That is unusual and
special:acceleration= —distance The greater the distance, the greater the force
pulling back:
y=sint has dy/dt=+cost and d’y/di>=—sint=—y.
y=cost has dy/dt=-—sint and d?y/dt*>=—cost=—y.

Question Doesd?y/dt? <0 mean that the distanogt) is decreasing ?
Answer No. Absolutely not! It means thaty /dt is decreasing, not necessarjly
At the start of the sine curve, is still increasing bup” < 0.
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2 Applications of the Derivative

Sines and cosines gig#mple harmonic motioa-up and down, forward and back,
out and in, tension and compression. Stretch a spring, and the restoring force pulls
it back. Push a swing up, and gravity brings it down. These motions are controlled

by adifferential equation
d?y
dt?

—y. (12)

All solutions are combinations of the sine and cosjne: 4 sint + B cost.

This is not a course on differential equations. But you have to see the purpose of
calculus. It models events by equations. It models oscillation by equ@t)n Your
heart fills and empties. Balls bounce. Current alternates. The economy goes up and

down:

high prices— high production— low prices— ---

We can't live without oscillations (or differential equations).

2.4 EXERCISES

Read-through questions

The derivative ofy =sinx is y’=__a . The second derivative 7 The key to trigonometry is ¢899 =1—sin?6.
(the b of the derivative) is y”"=__ ¢ The fourth Set sindx~6@ to find codf~1—62. The square root is
derivative is y” =__d . Thusy =sinx satisfies the differential cosf ~ 1 —%02. Reason: Squaring gives o~ and the
equations y”"=__e and y"=_f So does correction term is very small nead = 0.
y = cosx, whose second derivativeis g 8 (Calculator) Compare c@swith 1 — 362 for

All these derivatives come from one basic limi{sink)/h
approaches__h . The sine of .01 radians is very close @ ¢=01 (b) #=05 (c) §=30° (d) &=30°

to i . So is the | of .01. The cosine of.01 is
not .99, becausel —cos/ is much __k than 4. The ratio
(1—cosh)/h? approaches_ | . Therefore co# is close to

1— %hz and cos.01 ~__m . We can replacé by x.

The differential equationy” =—y leads to__n . When y
is positive, y” is __o . Thereforey’ is p . Eventually y
goes below zero and” becomes q . Theny’ is _ r
Examples of oscillation inreal lifeare s and__t

1 Which of these ratios approadhash — 0 ?
h sith sinh sin(—h)
@) sinh (0) h2 © sin2h @ h

2 (Calculator) Find (sink)/h at h=0.5 and 0.1 and .0l.
Where doegsinh)/h go above 99 ?

3 Find the limits ag: — 0 of

sinth sin5h sin5h sink
b d —
@>== 05 0= o
4 Where does tah = 1.01h ? Where does talh="71"?
5 y=sinx has perio®x, which means that sin = . The
limit of (sin(2z +h)—sin2x)/h is 1 because . This gives

dy/dx atx =

6 Draw cogx + Ax) nextto cosc. Mark the height differencé y.
Then drawAy/Ax as in Figure 2.9.

9 Trigonometry gives co®=1—2sin? %0. The approximation
sindo ~ leads directly to cog ~ 1 —162.

10 Find the limits agh — 0:

1 —cosh 1—cogh
@ —3 ) —5—
1 —cosh 1 —cos2h
) —— d ——
© sinth @ h
11 Find by calculator or calculus:
sin3h . 1—cos2h
@ h—0 Sin2h (b) hIT?o l—cosh
12 Compute the slope at= 0 directly from limits:
(@) y=tanx (b) y=sin(—x)

13 The unmarked points in Figure 2.11 aeandS. Find the height
PS and the area of triangl@ PR. Prove by areas that sin< h.

14 The slopes of cos and1 — %xz are —sinx and . The

dlopes of sinv and are cosx and 1 — %xz.

15 Chapterl0 gives an infinite series for sim:
. X x3 XS
sinx =—— + —
1 3.2.1 5.4.3.2-1
From the derivative find the series for cos Then take its
derivative to get back te-sinx.
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16 A centered differenctr f(x) =sinx is
fOx+h)—f(x—h) sin(x+h)—sin(x—h)

2h 2h

Use the addition formula (2). Then lét— 0.

?

17 Repeat Problenh6 to find the slope of cos. Use formula (3) to
simplify cogx +h) —cos(x — h).
18 Find the tangent line tg =sinx at

@ x=0 (b) x=m (c) x=n/4

19 Where doeg = sinx + cosx have zero slope ?

20 Find the derivative of six + 1) in two ways:

(a) Expand to sirr cos1+cosxsinl. Computedy /dx.
(b) Divide Ay =sin(x + 1+ Ax)—sin(x +1) by Ax. Write
X instead ofx 4 1. Let Ax go to zero.

21 Show that(tank)/h is squeezed betweehand 1/cosh. As
h — 0 the limitis

22 Fory =sin2x, the ratioAy/h is

Sin2(x+h)—sin2x _ sin2x (cos2h —1) +cos2x sin2h
h N h '

Explain why the limitdy /dx is 2 cos2x.

23 Draw the graph ofy = sin %x. State its slope at =0,7/2, 7,
and2/m. Does% sin x have the same slopes ?
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24 Draw the graph of = sinx ++/3 cosx. Its maximum value is
y= atx = . The slope at that point is .

25 By combining sint ard cosx, find a combination that
starts atx =0 from y =2 with slope 1. This combination also
solvesy” =

26 True or false with reason:
(@) The derivative of sifw is cogx
(b) The derivative of cas-x) is sinx
(c) A positive function has a negative second derivative.
(d) If y"isincreasing then” is positive.
27 Find solutions taly/dx = sin3x anddy/dx = cos3x.

28 If y=sin5x then y’=5cos5x and y” =-25sin5x. So
this function satisfies the differential equatiph =

29 If h is measured in degrees, find }jm (sink)/A. You could
set your calculator in degree mode.

30 Write down a ratio that approachesy/dx at x=mx. For
y =sinx andAx = .01 compute that ratio.

31 By the square rule, the derivative 6f(x))? is 2u du/dx. Take
the derivative of each term in i +cos x = 1.

32 Give an example of oscillation that does not come from physics.

Is it simple harmonic motion (one frequency only) ?

33 Explain the second derivative in your own words.
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B S The Product and Quotient and Power Rules

What are the derivatives af+ sin x andx sin x and1/ sinx andx/ sinx andsin” x ?
Those are made up from the familiar piecesind sinx, but we need new rules.
Fortunately they are rules that apply to every function, so they can be established
once and for all. If we know the separate derivatives of two functioasdv, then

the derivatives oft + v anduv and1/v andu /v andu” are immediately available.

This is a straightforward section, with those five rules to learn. It is also an
important section, containing most of the working tools of differential calculus. But |
am afraid that five rules and thirteen examples (which we need—the eyes glaze over
with formulas alone) make a long list. At least the easiest rule comes/fiifgtn we

add functions,we add their derivatives

Sum Rule
du dv

d
The derivative of the sumu(x) +v(x) is —(u +v) = — + —.
dx dx dx

)

EXAMPLE 1 The derivative ofx +sinx is 1+cosx. That is tremendously
simple, but it is fundamental. The interpretation for distances may be more

confusing (and more interesting) than the rule itself:

Suppose a train moves with velocityThe distance attimeisz. On the train a
professor paces back and forth (in simple harmonic motion). His distance from

his seat isin¢. Then the total distance from his starting point is sin¢, and

his velocity (train speed plus walking speed] i$- cosz.

If you add distances, you add velocities. Actually that example is ridiculous, because
the professor’'s maximum speed equals the train speel). He is running like mad,

not pacing. Occasionally he is standing still with respect to the ground.

The sum rule is a special case of a bigger rule calletkarity.” It applies when
we add or subtract functions and multiply them by constants—akcir 4 Sinx.
By linearity the derivative i —4 cosx. The rule works for all functiong(x) and
v(x). A linear combinations y(x) = au(x) + bv(x), wherea andb are any real

numbers. Thed\y/Ax is

au(x + Ax) +bv(x+ Ax) —au(x) —bv(x) _au(x+ Ax)—u(x) +bv(x-i—Ax) —v(x)

Ax Ax

Ax

The limit on the leftisdy /dx. The limit on the rightis: du/dx + b dv/dx. We are

allowed to take limits separately and add. The result is what we hope for:

Rule of Linearity
du dv

d
Thederivative of au(x)+bv(x)is —(au+bv)=a—+b—.
dx dx dx

)

The product rule comes next. It can’t be so simple—products are not linear. The
sum rule is what you would have done anyway, but products give something new.
The derivative ofu timeswv is notdu/dx timesdv/dx. Example: The derivative
of x° is 5x*. Don’t multiply the derivatives ok> andx?. (3x? times2x is not5x*.)

For a product of two functions, the derivative has two terms
Product Rule(the key to this section)
dv du

d
The derivative of u(x)v(x) is E(M) = ua + UE.

©)
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EXAMPLE 2 u = x3 timesv = x? is uv = x°. The product rule leads tox*:

d d
B2 +x2—u =x3(2x) +x2(3x?) = 2x* + 3x* = 5x*.
dx dx

EXAMPLE 3 Inthe slope ofx sinx, | don't write dx/dx = 1 but it's there:

d . .

—(xsSin x) = xcosx +sinx.

dx
EXAMPLE 4 If u = sinx and v = Sinx thenuv = sinfx. We get two equal terms:

.d . d . .
sinx—(sinx) 4+sinx—(sinx) =2 sinx CcoSx.
dx dx

This confirms the “square rul€u du/dx, whenu is the same as. Similarly the
slope ofcog x is —2 cosx sinx (minus sign from the slope of the cosine).

Question Those answers fa@ir? x and cogx have opposite signs, so the derivative
of sirfx 4+ cogx is zero (sum rule). How do you see that more quickly ?

EXAMPLE 5 The derivative oftvw isuvw’ + uv’w + u’vw—one derivative at a
time. The derivative ok xx is xx + xx + xx.

u(x + h)

u Au v Av Av ulAv Aulv E Av
i e S e T dawww=d
product ;
v(x) b vAu : v(x)
sumu+v Au+Av 4

u(.x) Au Au

Fig. 2.13 Change in length= Au + Av. Change in area= u Av+v Au+ Au Av.

After those examples we prove the product rule. Figure 2.13 explains it best. The
area of the big rectangle isv. The important changes in area are the two strips
u Av and v Au. The corner aredu Av is much smaller. When we divide b x,
the strips giveu Av/Ax andv Au/Ax. The corner givesAu Av/Ax, which ap-
proaches zero.

Notice how the sum rule is in one dimension and the product rule is in two
dimensions. The rule forvw would be in three dimensions.

The extra area comes from the whole top strip plus the side strip. By algebra,

u(x +hv(x+h) —u()v(x) =u(x +h)v(x+h) —v)]+v)ux +h) —u(x)].  (4)

This increase ist(x + 1) Av + v(x) Au—top plus sideNow divide byh (or Ax)
and leth — 0. The left side of equatio®) becomes the derivative af(x)v(x). The
right side becomes(x) timesdv/dx—we can multiply the two limits-plusv(x)
timesdu/dx. That proves the product rule—definitely useful.

We could go immediately to the quotient rule iofx) /v(x). But start withu = 1.
The derivative ofl /x is —1/x? (known). What is the derivative df/v(x) ?

Reciprocal Rule

1 —dv/dx
Thederivative of is v/dx . (5)
v(x) v2
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The proof starts witl{v)(1/v) = 1. The derivative ofl is 0. Apply the product rule:
1 1 1 —
d (—) + Tdv_ 0 sothat di (—) = —dv/dx' (6)

vV— =
dx \v vdx x \v v2

It is worth checking the units—in the reciprocal rule and others. A test of
dimensions is automatic in science and engineering, and a good idea in
mathematics. The test ignores constants and plus or minus signs, but it prevents bad
errors. If v is in dollars andx is in hours,dv/dx is in dollars per hour Then
dimensions agree:

i 1 z(l/dollars) and also —dv/dxzdollars/hour.
dx \v hour v2 (dollars¥

From this test, the derivative df/v cannot bel /(dv/dx). A similar test shows that
Einstein’s formulae = mc? is dimensionally possible. The theory of relativity might
be correct! Both sides have the dimension of (mass)(distagahe)?, when mass
is converted to energy.

EXAMPLE 6 The derivatives ok —!,x =2, x " are—1x 2, —2x 3, —nx "1,
Those come from the reciprocal rule with= x andx? and anyx”:

d d (1 nx"1

L= =) = =

dx dx \ x" (x™)

The beautiful thing is that this answernx ! fits into the same pattern ag'.
Multiply by the exponent and reduce it by one

For negative and positive exponents the derivativexdfis nx"~1.  (7)
Reciprocal —. 1__—Av i
ﬁ' T vra T T A ;
. u+Au u  vAu—ulv
. uotient —_——=—
Av ¥ Q v+Av v v(v+Av) Ap D

Fig. 2.14  Reciprocal rule from(—Av)/v2. Quotient rule from(vAu —uAv)/v2.

L 1 1 +sinx —COSx
EXAMPLE 7 The derivatives of and — are an - .
COoSx sinx coSx Sintx

Those come directly from the reciprocal rule. In trigonomelpgosx is thesecant
of the anglex, and1/sinx is thecosecanbf x. Now we have their derivatives:

d (secx) sinx 1 shnx e x tan ®)
- X — = = X X.

dx ' co$x COSx COSx

d COSx 1 cosx

—(Ccscx) = — = —— - = —CSCx cotx. 9
dx( ) Sitx sinx sinx ©)

1 But only Einstein knew that the constantlis
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Those formulas are often seen in calculus. If you have a good methey are
worth storing. Like most mathematicians, | have to check them every time before
using them (maybe once a year). Itis really the rules that are basic, not the formulas.

The next rule applies to the quotientx)/v(x). That isu times1/v. Combining
the product rule and reciprocal rule gives something new and important;

Quotient Rule

u(x) is 1 du dv/dx vdu/dx—udv/dx
—-———1 = .

The derivative of 5 5

v(x) vdx v v

You must memorize that last formula. The? is familiar. The rest is new, but
not very new. Ifv =1 the result isdu/dx (of course). Foru =1 we have the
reciprocal rule. Figure 2.14b shows the differewe- Au)/(v + Av) — (u/v). The
denominatow (v + Av) is responsible fov?.

EXAMPLE 8 (only practice) Ifu /v = x° /x3 (whichisx?) the quotient rule give&x:

2x.

x3 x6 x6

d x*\  x3G5xH)—x(3x?)  5x7—3x7
dx - N -

EXAMPLE 9 (important) Fom = sinx andv = cosx, the quotientisinx/cosx =
tanx. The derivative otanx is se@x. Use the quotient rule areb$ x + sifx =1 :

d (Sinx)_COSx(COSx)—Sinx(—Sinx) 1

- = = sec?x. 11
dx \ cosx coSx coSx e (13

Again to memorize(tanx)’ = seéx. At x = 0, this slope is 1. The graphs sin x
andx andtanx all start with this slope (then they separate).;At /2 the sine
curve is flat(cosx = 0) and the tangent curve is vertiq@eéx = o0).

The slope generally blows up faster than the function. We dividedsx, once
for the tangent and twice for its slope. The slopé of is —1/x2. The slope is more
sensitive than the function, because of the square in the denominator.

EXAMPLE 10

dx
That one | hesitate to touch at= 0. Formally it become$/0. In reality it is more
like 03/02, and the true derivative is zero. Figure 2.10 showed graphicallysivat ) / x

is flat at the center point. The functionéven(symmetric across thg axis) so its
derivative can only be zero.

x2

d (sinx X COSx —Sinx
)= .

This section is full of rules, and | hope you will allow one more. It goes beyond
x" to (u(x))". A power ofx changes to a power af(x)—as in(sinx)® or (tanx)’
or (x2+1)3. The derivative containsu” ~! (copyingnx”~—1), butthere is an extra
factor du/dx. Watch that factor in6(sinx)>cosx and 7(tanx)®seéx and
8(x2+1)7(2x):
Power Rule
n—1 du

The derivative of [u(x)]n is n[u(x)} I (12

For n =1 this reduces tadu/dx =du/dx. For n =2 we get the square rule
2u du/dx. Next comesu3. The best approach is to useathematical induction
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which goes from each to the next powern + 1 by the product rule:

d 41 d du _,du du
= n — = (yh —nr n—1271 _ Du™ ==
I "™ I u"u)y=u I +u (nu dx) (n+1u I

That is exactly equatio(il2) for the power + 1. We get all positive powers this way,
going up fromn = 1—then the negative powers come from the reciprocal rule.

Figure 2.15 shows the power rule far=1,2,3. The cube makes the point
best. The three thin slabs areby u by Au. The change in volume is essentially
3u?Au. From multiplying out (u+ Au)3, the exact change in volume is
3u?Au +3u(Au)? + (Au)>—which also accounts for three narrow boxes and a
midget cube in the corner. This is the binomial formula in a picture.

/i /‘: 2] [ (Ati)"
R --: 2 1 cube
Rl it
ulu — (Au)? : & ; H I )
- n itk 3 bricks
2 uAu 3 .:4‘ 2 :. | i :-—_"_-’ 3 .
” " u“‘_, - = u® Au
T M 3 slabs
u Au u Au u Au

Fig. 2.15  Length change= Au; area change 2u Au; volume changex 3u? Au.

d . . .
EXAMPLE 11 o (sinx)" =n (sinx)"~! cosx. The extra factocosx isdu /dx.
X

Our last step finally escapes from a very undesirable restriction—#tihatist be
a whole number. We want to allow fractional powers= p/¢q, and keep the same
formula.The derivative ok” is still nx"~!.

To deal with square roots | can wrifg/x)? = x. Its derivative i21/x(1/x)" = 1.
Therefore(4/x)" is 1/24/x, which fits the formulawhen = 1. Now try n = p/q:

Fractional powers Write u = x?/9 as u? = x?. Take derivatives, assuming they
exist:

d
qui! d_” = pxP~1  (power rule on both sides)
X

d -1

d_u oy i : (cancelx? with u?)
X qu—

du o

Ix =nx" (replacep/q by n andu by x")
X

EXAMPLE 12 The slope ofx!/3 is 1x~2/3. The slope is infinite at =0 and
zero atx = 00. But the curve in Figure 2.16 keeps climbing. It doesn’t stay below an
“asymptote.”
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1 - I slope 4/3
slope 1/3
121
zero =
infinite slope slope '
/. ) 1/161 / )
1/8 1 1/8 1

Fig. 2.16 Infinite slope ofx” versus zero slope: the difference betw®enn <1 andn > 1.

EXAMPLE 13  The slope ofc#/3 is 2x1/3. The slope is zero at = 0 and infinite at
x = o0. The graph climbs faster than a line and slower than a paraédmt(etween
1 and2). Its slope follows the cube root curve (timé};

WE STOP NOW! | am sorry there were so many rules. A computer can memorize
them all, but it doesn’t know what they mean and you do. Together with the chain rule
that dominates Chaptdt they achieve virtually all the derivatives ever computed by
mankind. We list them in one place for convenience.

Rule of Linearity  (au +bv) =au’+bv’
Product Rule (uv) = uv' +vu’
Reciprocal Rule (1/v) = —v'/v?
Quotient Rule (u/v) = (vu' —uv')/v?
Power Rule ™) =nu"tu'

The power rule applies whenis negative or afraction, or any real number. The
derivative ofx™ is 7x™ !, according to Chaptef. The derivative of(sinx)” is
. And the derivatives of all six trigonometric functions are now established:
(sinx)’= cosx (tanx)' = seéx (secx)'= secxtanx
(cosx)'=—sinx (cotx)' = —cs@x (cscx)’'=—cscx cotx.

2.5 EXERCISES

Read-through questions

The derivatives of siix cosx and 1/cosx and siny/cosx and Even simpler is the rule of __o , which applies
ta®x come from the__a rule,__b rule,__c rule, and toau(x)+bv(x). The derivative is p . The slope o3sinx +
_d  rule. The product of siw times cosc has (uv)’ =uv’+ 4cosxis g . The derivative of(3 sin x +4 cosx)2 is __r

= __f . The derivative ofl /v is g , so the slope of The derivative of s is4sin3x cosx.

h . The derivative ofi /vis__i , so the slope of tan

. The derivative of tafw is__k . The slope ofc” is__| Find the derivatives of the functions in 1-26

and the slope ofu(x))" is_m__. With n = —1 the derivative of
(cosx)~lis__n , which agrees with the rule for sec

1 (x+1D)(x—1) 2 (x24+DE2-1)
1 n 1 4 1 n 1
1+x I1+sinx 14+x2  1-—sinx
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5 (x—1)(x=2)(x—3) 6 (x—1)2(x—2)2
7 x2cosx+2xsin x 8 xl/z(x—{—sinx)

3 2 ;
g x°+1 cgs;c 10 x“4+1 sinx

x+1  sinx x2—1 cosx
11 x1/2sin2x + (sinx)1/2 12 x3/2sin3x 4 (sinx)3/2
13 x*cosx +xcost*x 14 /X(/X+1D(/x+2)
15 1x2sinx—x cosx +sinx 16 (x—6)10 +sinl0x
17 se@x —tartx 18 cs@x —cofx
19 4 . 4 20 sinx —cosx

(x—=5)2/3 " (5—x)2/3 sinx +cosx
21 (sinx cosx)3 4 sin2x 22 x COSx CSCx
23 u(x)v(x)w(x)z(x) 24 [u()? [v()]?

1 1 .

25 —— 26 x sin x 4 cosx

tanx cotx
27 A growing box has length, width 1/(1 +¢), and height cos.

(&) What is the rate of change of the volume ?
(b) What is the rate of change of the surface area?

28
derivative of uvw is uvw’ +uv’w +u’vw. When a box with sides

With two applications of the product rule show that the

2 Derivatives

33 Find thesecondderivative of the produciu(x)v(x). Find the
third derivative. Test your formulas an=v = x.

34 Find functionsy (x) whose derivatives are

(@ x3 (b) 1/x3 (¢) 1—x)*2 (d) coxsinx
35 Find the distanceg (¢), starting from f(0) = 0, to match these
velocities:

(@) v(t) =cost sint (b) v(r) =tansseés

() vt)=+1+t
36 Apply the quotient rule tau(x))3/(u(x))? and —v’/v2. The
latter gives the second derivative of .
37 Draw a figure like2.13 to explain thesquare rule
38 Give an example whereu(x)/v(x) Iis
du/dx =dv/dx =1.

increasing but

39 True or false with a good reason:

(@) The derivative of?” is 2nx2" 1,

(b) By linearity the derivative ofa(x)u(x)+b(x)v(x) is
a(x)du/dx+b(x)dv/dx.

(c) The derivative ofx|? is 3| x|2.

(d) tarfx and seéx have the same derivative.

(e) (uv) =u'v’istrue whenu(x) =1.

u,v,w grows by Au, Av, Aw, three slabs are added with volume

uv Aw and and

29 Find the velocity if the distance ig(r) =

52 for 1 <10, 500+ 100+t —10 for t > 10.

. _ 132 _ 1
30 A cylinder has radius = m and height: = 1

(& What is the rate of change of its volume ?

40 The cost ofu shaes of stock av dollars per share igv dollars.
Check dimensions af (uv)/dt andu dv/dt andv du/dt.

41 If u(x)/v(x) is a ratio of polynomials of degree, what are the
degrees for its derivative ?

42 Fory =5x43,is(dy/dx)? the same ag?y/dx??

43 If you change from f(z)=tcost to its tangent line at
t = /2, find the two-part functiorlf/dt.

(b) What is the rate of change of its surface area (including top

and base) ?

31 The height of a model rocket ig(r) =13/(1+1).
(@) Whatis the velocity(z) ?
(b) What is the acceleratiatw/dt ?

32 Apply the product rule ta:(x)u2(x) to find the power rule
for u3(x).

44 Explain in your own words why the derivative ofx)v(x) has
two terms.

45 A plane starts its descent from height= 1 atx = —L to land
at (0,0). Choosea,b,c,d so its landing pathy = ax3 +bx2 +
c¢x+d is smooth With dx/dt =V =constant, finddy/dt and
d?y/dt* at x=0 and x=—L. (To keep d?y/dt* small, a
coast-to-coast plane starts down> 100 miles from the airport.)
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I 2.6 Limits [

You have seen enough limits to be ready for a definition. It is true that we have

survived this far without one, and we could continue. But this seems a reasonable

time to define limits more carefully. The goal is to achieve rigor without rigor mortis.
First you should know that limits oAy /Ax are by no means the only limits in

mathematics. Here are five completely different examples. They inuohsexo, not

Ax —O0:

. ap=(m-—3)/(n+3) (forlargen, ignore the3’s and finda, — 1)
an=32a,_1+4 (startwith anyz; and always: — 8)

a, = probability of living to yeam (unfortunatelyu,, — 0)

. a, = fraction of zeros among the firstdigits of = (a, — 1—10 7)

ay =.4,a;=.49, a3 = .493, ... No matter what the remaining decimals are,
thea’s converge to a limitPossiblya,, — .493000 ..., but not likely.

N

The problem is to say what the limit symbol—  really means

A good starting point is to ask about convergenceeéoa When does a sequence
of positive numbers approach zero? What does it mean to wyite>0? The
numbersiy,a,,as, ..., must become “small,” but that is too vague. We will propose
four definitions ofconvergence to zer@nd | hope the right one will be clear.

1. All the numbersa, are below 1019, That may be enough for practical
purposes, but it certainly doesn’t make theapproach zero.

2.The sequence is getting closer to zesacha,, ; is smaller than the preceding
a,. Thistestis metbyt.1, 1.01, 1.001, ... which converges td instead oD.

3. For any small number you think of, at least one of i#és is smaller That
pushes something toward zero, but not necessarily the whole sequence. The condition
would be satisfied by, 1.1,1,1, . ..., which does not approach zero.

4. For any small number you think of, tlag’s eventually go below that number
andstay belowThis is the correct definition.

| want to repeat that. To test for convergence to zero, startavimall number—
say 10710, Thea,’s must gobelow that number. They may come back up and go
below again—the first million terms make absolutely no difference. Neither do the
next billion, but eventually all terms must go beld—1°. After waiting longer
(possibly a lot longer), all terms drop belol®—2°. The tail end of the sequence
decides everything.

Question 1 Does the sequencel031072,107°,107>,107°,10°8, ...
approacio ?
Answer Yes, These up and down numbers eventually stay below. any

{J"

0 0

,<eifn>3 a, <eifn>6 non-convergence

Fig. 2.17 Convergence means: Only a finite numbew(f are outside any strip around L.
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Question 2 Does10~4,1076,10=4,10~8,10=4,10~19, ... approach zero ?
Answer No. This sequence goes belbW # but does not stay below.

There is a recognized symbol for “an arbitrarily small positive number.” By
worldwide agreement, it is the Greek lettetepsilor). Convergence to zero means
thatthe sequence eventually goes belevand stays thereThe smaller the,
the tougher the test and the longer we wait. Think afs the tolerance, and keep
reducing it.

To emphasize that comes from outside, Socrates can choose it. Whatever
proposes, the’s must eventually be smalleffter somezy, all thea’s are below
the tolerances. Here is the exact statement:

for any ¢ there is anN such thata, <eif n > N.
Once you see that idea, the rest is easy. Figure 2.1Nhas3 and then N = 6.

EXAMPLE 1 The sequencé. $. 3. ... starts upward but goes to zero. Notice that
1,4,9,...,100, ... are squares, ariti4,8, ..., 1024, ... are powers o2. Eventually

2" grows faster than?, as ina;o = 100/1024. The ratio goes below any

EXAMPLE 2 1,0, % 0, %,0, ...approacheszero. Thess do not decrease steadily
(the mathematical word for steadily is “monotonically”) but still their limit is zero.
The choices = 1/10 produces the right respondgeyondi,g; all terms are below
1/1000. SoN = 2001 for thate.

The sequencé, 1.2.1,1, 1 .. is much slower—but it also converges to zero.

Next we allow the numbets, to benegativeas well as positive. They can converge
upward toward zero, or they can come in from both sides. The test still requires the
a, to go inside any strip near zero (and stay there). But now the strip starts at

The distance from zero is the absolute valug|. Thereforea, — 0 means

|a,| — 0. The previous test can be applied|tn,|:

for any e there is anN such that|a,| < ¢if n > N.

EXAMPLE3 1,—1.1,—1 . convergesto zerobecaukel. 1,1, ... converges
to zero.

It is a short step to limits other than zefbhe limit is L if the numbersa, — L
converge to zeraOur final test applies to the absolute vajug — L|:

for any e there is anN such that|a, —L| <eif n > N.

This is the definition of convergence! Only a finite numbes sfare outside any strip
aroundL (Figure 2.18). We writer,, — L or lima, =L orlim,_,, a, = L.

L . 1 1 111
+ Sl — — e N T
& E @R - [ ) ™ 1 1 1 4.3 1 3 : 4 |5:6=7=8|
L—e =aioioioiooic . a,! ay! ay) ag)

““““““ 11 1111

° — pin

. l 1 14, 4,8888
N T ] T | DL

- 1 ) 2 2]

B 2 2

Fig. 2.18 a, —0 in Example 3;a, — 1 in Example 4;a, — o0 in Example 5 (but
an+1—an —0).
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EXAMPLE 4 The numbers, 2, I, ... converge tal = 1. After subtractingl the

differencesi, 1, 1. ... converge to zero. Those difference fwg — L|.

EXAMPLE 5 The sequencé, 1+3,1+3+1, 141 +1+4 1, ... fails to converge

The distance between terms is getting smaller. But those nwmbed,, as, aq, ...
go past any proposed limlt. The second term il;%. The fourth term adds oé + %,

s0 a4 goes past. The eighth term has four new fractiods+ 1 +1 + 1, totaling
more thang + 3 + 5 + g = 5. Thereforeas exceed2 3. Eight more terms will add

more thang8 timesll—G, S0 aj¢ is beyond3. The lines in Figure 2.18c are infinitely
long, not stopping at ani.

In the language of Chaptel0, the harmonic serie$ + 1 + 1 + ... does not
convergeThe sum is infinite, because the “partial sumg’go beyond every limi.
(aso00 is pastL = 9). We will come back to infinite series, but this example makes a

subtle point: The steps between thgcan go to zero while stilk,, — co.

Thus the conditioru,,+1 —a, — 0 is not sufficient for convergence. However
this condition isnecessarylf we do have convergence, thep+; —a, — 0. That
is a good exercise in the logic of convergence, emphasizing the difference between
“sufficient” and “necessary.” We discuss this logic below, after proving that [statement
A] implies [statemeni]:

If [a, convergestd.]then[a,+1 —a, convergesto zeto (1)

Proof Because the, corverge, there is a numbe¥ beyond which|a, —L| <&
and alsola,+1 — L| < ¢. Sincea,+1 —ay, is the sum ofz, 11 — L and L —a,, its
absolute value cannot exceed ¢ = 2¢. Thereforen, +1 — a, approaches zero.
Objection by Socrate§Ve only got below2e and he asked far. Our reply: If he
particularly wantga, +1 —a, | < 1/10, we start withe = 1/20. Then2¢ = 1/10. But
this juggling is not necessary. To stay beis just as convincing as to stay belew

THE LOGIC OF “IF” AND “ONLY IF”

The following page is inserted to help with the language of nmatites. In ordinary
language we might say “I will come if you call.” Or we might say “I will come only
if you call.” That is different! A mathematician might even say “I will confeand
only if you call.” Our goal is to think through the logic, because it is important and
not so familia;

Statementd above implies stateme®®. Statement4 is a, — L; statementB is
an+1—a, — 0. Mathematics has at least five ways of writing down= B, and
| though you might like to see them together. It seems excessive to have so many
expressions for the same idea, but authors get desperate for a little variety. Here are
the five ways that come to mind:

A= B
A implies B
if AthenB
A is a sufficient condition for B

B is trueif A is true

tLogical thinking is much more important tharand §.
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EXAMPLES If [positive numbers are decreasintjien [they converge to a limit].
If [sequences, andb, converge]then [the sequence, + b, converges].
If [f(x)istheintegral ofv(x)] then [v(x) is the derivative off (x)].

Those are all true, but not provedl.is the hypothesisB is the conclusion.

Now we go in the other direction. (It is called the “converse,” not the invel§e.)
exchanged and B. Of course stating the converse does not make it tRighight
imply A, or it might not. In the first two examples the converse was false-athe
can converge without decreasing, angl+ b, can converge when the separate
sequences do not. The converse of the third statement is true—and there are five
more ways to state it:

A< B
A is implied by B
if Bthen A
A is a necessarycondition for B

B is trueonly if A is true

Those words “necessary” and “sufficient” are not always easy to master. The same
is true of the deceptively short phrase “if and only if.” The two statemdnts B and
A < B are completely different anthey both require proofThat means two sepa-
rate proofs. But they can be stated together for convenience (when both are true):

A< B
A implies B and B implies A
A is equivalentto B
A is a necessary and sufficientondition for B
Aistrue ifand only if B istrue

EXAMPLES [a, — L] © [2ay, —2L] © [an+1—>L+1] < [a,— L —0].

RULES FOR LIMITS

Calculus needs definition of limits to definedy /dx. That derivative contains two
limits: Ax — 0andAy/Ax — dy/dx. Calculus also needsles for limits to prove
the sum rule and product rule for derivatives. We started on the definition, and now
we start on the rules.

Given two convergent sequences, — L and b, — M, other sequences also
converge:

Addition: a, +b, - L+ M Subtraction:a, —b, > L—M

Multiplication: anb, — LM Division: a, /b, — L/M (providedM # 0)
We check the multiplication rule, which uses a convenient identity:
anby —LM = (a, —L)Y(by—M)+M(a,— L)+ L(b,—M). (2)

Supposda, — L| < & beyond some poin¥V, and|b, — M| < & beyond some other
point N’. Then beyond the larger @&f andN’, the right side of2) is small. Itis less
thane-e 4+ Me+ Le. This proves tha(2) givesa, b, — LM.

An important special case isa, — cL. (The sequence df's is c,c,c,c,...)
Thus a constant can be brought “outside” the limit, to dine ca, = ¢ lim a,.
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THE LIMIT OF f(x) AS x —>a

The final step is to replace sequences by functions. Instead,ab, ... there is a
continuum of valuesf(x). The limit is taken ast approaches a specified point
(instead ofn — c0). Example: Asx approachea = 0, the function f(x) = 4 — x?
approaches = 4. Asx approaches = 2, the functiorox approaches = 10. Those
statements are fairly obvious, but we have to say what they mean. Somehow it must
be this:

if x is close taz then f(x) is close tol.

If x —a is small, thenf(x) — L should be small. As before, the wosdchalldoes not
say everything. We really mean “arbitrarily small,” or “below any The difference
f(x) — L must becomas small as anyone wantshenx gets neau. In that case
limy_4 f(x)= L. Orwewrite f(x) > L asx —a.

The statement is awkward because it involves limits The limitx — a is forcing
f(x) — L. (Previouslyn — oo forceda — L.) But it is wrong to expect the same
in both limits. We do not and cannot require thet-a| < ¢ produces) f(x) — L| <
e. It may be necessary to push extremely close ta: (closer thare). We must
guarantee that if is close enough ta, then| f(x) — L| <e.

We have come to thegpsilon-delta definitiof of limits. First, Socrates chooses
¢. He has to be shown thaft(x) is within ¢ of L, for everyx neara. Then somebody
else (maybe Plato) replies with a numierThat gives the meaning of “near.”
Plato’s goal is to gejf'(x) within ¢ of L, by keepingx within § of a:

if 0<|x—a|<é then |f(x)—L|<e. (3)

The input tolerance i$ (delta), the output tolerance & When Plato can find &
for everye, Socrates concedes that the limitis

EXAMPLE Prove thatlim2 5x =10. Inthis caser =2 andL = 10.

X
Socrates asks f¢fx — 10| < ¢. Plato responds by requirig — 2| < §. What$ should
he choose ? In this caséx — 10| is exactly5 times|x —2|. So Plato picks$ below
/5 (a smaller§ is always OK). Whenevex — 2| < ¢/5, multiplication by5 shows
that|5x — 10| <e.

Remarkl In Figure 2.19, Socrates chooses the height of the box. It extends above
and belowL, by the small numbes. Second, Plato chooses the width. He must make
the box narrow enough for the graph togot the sides. Thehf(x) — L| <e.

fixy=>Lasx—a limit L is not f(a) f(x) = step function
fla)t ® —
Y o | ' | nolimitL
/ Lt o 1 s asy—a
/ | Y { :
st x — X —+ — X
a-8 a+d a a

Fig. 2.19 Schooses heighte, then P chooses width§. Graph must go out the sides.



128

2 Derivatives

When f(x) has a jump, the box can’t hold it. A step function has no limitxas
approaches the jump, because the graph goes through the top or bottom—no matter
how thin the box.

Remark2 The second figure hag(x) — L, because in taking limitese ignore
the final pointx = a. The valuef'(a) can be anything, with no effect di. The first
figure has moref (a) equalsL. Then a special name applies—isfcontinuous. The
left figure shows a continuous function, the other figures do not.

We soon come back to continuous functions.

Remark3 Inthe example withf = 5x and§ = ¢/5, the numbe6 was theslope
That choice barely kept the graph in the box—it goes out the corners. A little narrower,
say§ =¢/10, and the graph goes safely out the sidésieasonable choice is to
divide ¢ by 2| f"(a)|. (We double the slope for safety.) | want to say why this
works—even if thee — § test is seldom used in practice.

Theratio of f(x) — L to x — a is distance up over distance across. This j§/ A x,
close to the slopg’(a). When the distance acrossdisthe distance up or down is
near§| f'(a)|. That equals/2 for our “reasonable choice” of—so we are safely
belowe. This choice solves most exercises. But Example 7 shows that a limit might
exist even when the slope is infinite.
EXAMPLE 7 Iim+ vVx—1=0 (aone-sided limi}

x—1

Notice the plus sign in the symhol— 17. The number approachea = 1 only
from aboveAn ordinary limitx — 1 requires us to accepton both sides ot (the
exact valuex = 1 is not considered). Since negative numbers are not allowed by the
square root, we haveane-sided limitltis L = 0.

Suppose is 1/10. Then the response could be= 1/100. A number belowl /100
has a square root beloly'10. In this case the box must be made extremely naréow,
much smaller tham, because the square root starts with infinite slope.

Those examples show the point of the- § definition. (Giveng, look for §. This
came from Cauchy in France, not Socrates in Greece.) We also see its bad feature: The
test is not convenient. Mathematicians do not go around prope&rand replying
with §’s. We may live a strange life, but not that strange.

It is easier to establish once and for all tttat approaches its obvious limit
5a. The same is true for other familiar functions” — 4" and sinx — sina
and (1—x)~!— (1 —a)~'—except ata =1. The correct limit L comes by
substitutingx = « into the function. This is exactly the property of a&bntinuous
function.” Before the section on continuous functions, we prove the Squeeze
Theorem using and$.

2H Squeeze TheorensBuppose f(x) < g(x) < h(x) for x neara. If f(x)—
L andh(x) — L asx — a, then the limit ofg(x) is alsoL.

Proof g(x) is squeezed betweef(x) and/(x). After subtractingL, g(x) — L is
betweenf(x) — L andh(x) — L. Therefore
lg(x)—L|<e if |f(x)—L|<e and |[h(x)—L|<e.

For anye, the last two inequalities hold in some regi@r< |x —a| < §. So the first
one also holds. This proves thatx) — L. Values atx = a are not involved—until
we get to continuous functions.
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2.6 EXERCISES

Read-through questions

The limit of a,, = (sinn)/n is __a . The limit ofa, =n*/2" is *5 If the sequencer;,as,as,... approaches zero, prove that we
b . Thelimitofa, =(—1)"is__c . The meaning of, —0 can put those numbers in any order and the new sequence still
is: Only __d __ of the numberga,| can be__e . The meaning approaches zero.

of ap, > L is: Forevery f thereisan g suchthat h “6 Supposef(x)— L andg(x)— M asx —a. Prove from the

if n>_1 . The sequencd,l+3,1+3+3,...08 N0t _|  definitions thatf (x) + g(x) — L + M asx —a.
because eventually those sums go past .

The limit of f(x)=sinx as x —»a is __ | . The limit of Findthe limits 724 if they exist. Ane —§ testis not required.

fx)=x/|x] asx—> -2 is m_, but the limit asx —0

. . . S r+3 2
does not_n__. This function only has o  -sided limits. The 7 lim 2+ 3 lim 743
meaning of limy_,, f(x) = L is: For everye there is & such that 1212 . 12 1—2 |
|[£()~L| < whenever p . o tim LEADZIC) (et 10 jim LIS
x-’ —0
Two rules for limits, when:,, — L andb,, — M, area,, +b, — 2y tanx
. . i sirthcosh 12 i
q andayb, — __r . The corresponding rules for functions11 h@oT S T sine

when f(x) > L andg(x) > M asx —a,are__s and__t

In all limits, |a, — L| or | f(x)— L| must eventually go below and13 |im x| (one-sided) 14 lim il (one-sided)
__u_ anypositive v . x—0F X x>0~ X
lim SNX fe)—f(a)
A= Bmeansthatlisa__w__condition forB. ThenB istrue ° M —— 16 lim — —
X ,fllstrue.A@B.means thaisa y condition forB. C x24925 o x2_25
ThenBistrue__z _Aistrue. 17 lim 18 lim
x—5 x—5 x—=5 x—5
i i imit L ? i i A 1+x—1 V2
1 What |si aq ard what is the limit L? After which N is 19 im +x (testx=.01) 20 lim X
lan — L| < 15 ?(Calculator allowed) x—0 X x—>24/64x
1 _1 11,11,1,1 _ 2 i —
@ “lhode ) Li+Li+iel 0 21 lim [f()—f@)](?) 22 lim (secr—tanx)
© 123 ap=n/ @ 1.1,1.11,21.111,... - sinx b i SO D)
(e) an= \/ﬁ () an=vn*+n—n x—0Sinx/2 iUy
1,2 1,3
@ 1+1L0+2)%0+3)... 25 Choose$ so that f(x)| < 1o If 0 <x <§.

2 Show by example that these statements are false:
(@) If a, — L andb, — L thena, /b, — 1

f(x)=10x f(x)=+x f(x)=sin2x f(x)=xsinx

(b) an — Lifand only ifa2 — L? 26 Which does the definition of a limit require ?
(¢) Ifay, <0anda, — L thenL <0 @D |f(x)—Lj<e = 0<|x—a|<3$.
(d) If infinitely many a,’s are inside every strip around zero(2) |f(x)—L|<e < 0<|x—a|<§.
thenay, — 0. @) |[f(x)—L|<e « 0<|x—a|<$.

3 Which of these statements are equivalenBte> A ? 27 The definition of “f(x) — L as x — " is this: For any
(@) If Aistrue soisB ¢ there is anX such that <e¢ if x> X. Give an example
(b) Aistrueif and only ifB is true in which f(x) — 4 asx — o0.

(c) B is asufficient condition for 28 Give a correct definition of f(x) — 0 asx — —o0.”
(d) Afs anecessary condition fd 29 The limit of f(x)=(sinx)/x as x — o is . For

4 Decide whethed = B or B = A or neither or both: ¢ =01 find a pointX beyond which f(x)|<e.

(@ A=lan—1] B=[—an— —1] 30 The limit of f(x)=2x/(1+x) as x—o is L=2. For
() A=[an—0] B=[an—an_1—0] ¢ =01 find a pointX beyond whicH f(x) —2| <e.

() A=[an<n] B=]lan=n] 31 The limit of f(x)=sinx asx — oo does not exist. Explain
(d) A=[a,—0] B=]sina, —0] why not.

(e) A=lap —>0] B =][l/ay,failsto convergg . L 1\*

(f) A=[an<n] B =I[an/nconvergek 32 (Calculator) Estimate the limit c(l + ;) asx — .
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33 For the polynomialf (x) = 2x —5x2 +7x3 find
@ lim f(x) (b) lim f(x)

() o fx)
(© [lim =3 (d  fim =3
34 For f(x) = 6x3+1000x find
@ lim /&) () lim f(f)
X—>0 X X—>0 X
- f(x) f(x)
(© x“_f:]/v‘x—4 (d) Rl M

Important rule As x — oo the ratio of polynomialsf(x)/g(x)
has the same Ilimit as the ratio of theieading terms
fx)=x3—x+2 has leading term  x3 and
g(x)=5x+x+1 has leading term 5x°  Therefore
f(x)/g(x) behaves likex3/5x® -0, g(x)/f(x) behaves like
5x%/x3 > w, (f(x))?/g(x) behaves likex®/5x% — 1/5.

35 Find the limit asx — oo if it exists:

3x2+2x +1 x4 x2 41000 1
34+2x+x2  x34x2  x3-1000

36 If a particular$ achieves | f(x)—L|<eg, why is it OK to
choose a smallet?

37 The sum of l+r+r2+... 41 is g, =(1—-r")/
(1—r). What is the limit ofa, asn—o00? For whichr does
the limit exist ?

38 If ay — L prove that there is a numbe¥ with this property:

2 Derivatives

39 No matter what decimals come latet =.4,a, = .49,
a3 =.493,... approaches a limiL.. How do we know (when we
can't know L) ? Cauchy’s tests passed: the’s get closer to each
other.

(a) Fromay4 onwards we havér, —ap | <
(b) After whichay is |am —an| <10772

40 Choose decimals in Proble®d sothe limitis L = .494. Choose
decimals so that your professor can't fihd

41 If every decimal in.abcde--- is picked at random from
0,1,....,9, what is the “average” limif. ?

42 If every decimal isO or 1 (at random), what is the average
limit L ?

43 Supposei, = %an,l +4 and start fronu; = 10. Find a» and
a3 and a connection between, —8 and a,_1 —8. Deduce that
an — 8.

44 “For every § there is ane such that|f(x)|<e if |x|<$.”
That test is twisted around. Firdwhen f(x) = cosx, which does
not converge to zero.

45 Prove the Squeeze Theorem for sequences, usitigz, — L
andc, — L anday, < b, <c, forn > N, thenb,, — L.

46 Explain in110 words the difference between “we will get there

If n >N andm > N then|a, —am| <2e. This is Cauchy’s test for if you hurry” and “we will get there only if you hurry” and “we will

convergence.

get there if and only if you hurry.”



2.7 Continuous Functions 131

I 2.7 Continuous Functions |

This will be a brief section. It was originally included with limits, but the
combination was too long. We are still concerned with the limitfdf) asx — «,
but a new number is involved. That numberfi¢a), the value off at x =a. For a
“limit,” x approached but never reached it—sf(a) was ignored. For a “continuous
function,” this final numberf (a) must be right.

May | summarize the usual (good) situationaapproaches ?

1. The numberf(a) exists (f is defined atr)
2. The limit of f(x) exists (it was called.)
3. Thelimit L equalsf(a) (f(a) is the right value)

In such a casef (x) is continuousat x = a. These requirements are often written in
a single line:f(x) — f(a) asx — a. By way of contrast, start with four functions
that arenot continuous at = 0.

Fig. 2.20  Four types of discontinuity (others are possible)at 0.

In Figure 2.20, the first function would be continuous if it h#gd0) = 0. But
it has f(0) = 1. After changing f(0) to the right value, the problem is gone. The
discontinuity isremovable Examples2, 3,4 are more important and more serious.
There is no “correct” value foy (0):

2. f(x) = step function  (jump frond to 1 atx =0)
3. f(x)=1/x? (infinite limit asx — 0)
4. f(x)=sin(1/x) (infinite oscillation asc — 0).

The graphs show how the limit fails to exist. The step function hasirap
discontinuity. It hasone-sided limits from the left and right. It does not have an
ordinary (two-sided) limit. The limit from the leftd— 07) is 0. The limit from the
right (x — 07) is 1. Another step function is/|x|, which jumps from—1 to 1.

In the graph ofl /x2, the only reasonable limit i& = + co. | cannot go on record
as saying that this limit exists. Officially, it doesn’t—but we often write it anyway:
1/x% — o0 asx — 0. This means thalt/x? goes (and stays) above evénasx — 0.

In the same unofficial way we write one-sided limits f6¢x) = 1/x:

1 . 1
From the left, im — = —oo. From the right, lim — = 4-o0. (1)
x—0— X x—0t+t X

Remark 1/x has a pole’ at x =0. So hasl/x? (a double pole). The function
1/(x?—x) has poles at =0 andx = 1. In each case the denominator goes to zero
and the function goes té-0o or —oo. Similarly 1/ sinx has a pole at every multiple
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of = (wheresin x is zero). Except foil /x? these poles aresimplé—the functions
are completely smooth at= 0 when we multiply them by:

(x) (i) =1and (x)(le—x) = e 11 and (x) (ﬁ) are continuous ak = 0.

1/x? has a double pole, since it needs multiplicationddy(not justx). A ratio of
polynomialsP (x)/ Q(x) has poles wher@® = 0, provided any common factors like
(x+1)/(x + 1) are removed first.

Jumps and poles are the most basic discontinuities, but others can occur. The
fourth graph shows thatin(1/x) has no limit asc — 0. This function does not blow
up; the sine never exceetlsAt x = 1 and 1 and 5 it equalssin3 andsin4 and
sin 1000. Those numbers are positive and negative and (? x gsts small and /x
gets large, the sine oscillates faster and faster. Its graph won't stay in a small box of
heighte, no matter how narrow the box.

CONTINUOUS FUNCTIONS

DEFINITION  f is “continuous atx = a” if f(a) is defined andf(x) — f(a)

asx —a. If f is continuous at every point where it is defined, it is@tinuous
function.

Objection The definition makesf(x) = 1/x a continuous function! It is not de-
fined atx = 0, so its continuity can’t fail. The logic requires us to accept this, but we
don't have to like it. Certainly there is n#(0) that would makel /x continuous at
x=0.

It is amazing but true that the definition of “continuous function” is still debated
(Mathematics TeacherMay 1989). You see the reason—we speak about a
discontinuity ofl /x, and at the same time call it a continuous function. The definition
misses the difference betweéyix and(sinx)/x. The functionf(x) = (sinx)/x
can be made continuous at all Just setf(0) = 1.

We call a function tontinuabl€ if its definition can be extendetb all x in a
way that makes it continuous. Th(sin x)/x and/x are continuable. The functions
1/x andtanx are not continuable. This suggestion may not end the debate, but | hope
it is helpful.

EXAMPLE 1 sinx andcosx and all polynomialsP (x) are continuous functions.

EXAMPLE 2 The absolute value|x| is continuous. Its slope jumps (not
continuable).

EXAMPLE 3 Any rational function P(x)/Q(x) is continuous except where
0=0.

EXAMPLE 4  The function that jumps betwedmtfractions and at non-fractions
is discontinuous everywher& here is a fraction between every pair of non-fractions
and vice versa. (Somehow there are many more non-fractions.)

EXAMPLE 5 The function0*” is zero for everyx, except thab® is not defined.
So define it as zero and this function is continuous. But see the next paragraph where
0° has to bel.
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We could fill the book with proofs of continuity, but usually thieustion is clear.
“A function is continuous if you can draw its graph without Ifg up your pen.”
At a jump, or an infinite limit, or an infinite oscillation, there no way across the
discontinuity except to start again on the other side. The functibis continuous
for n > 0. It is not continuable fom < 0. The functionx® equalsl for every x,
except that® is not defined. This time continuity requir@® = 1.

The interesting examples are the close ones—we have seen two of them:

sinx 1 —cosx i
EXAMPLE6 —— and ———— are both continuable at =0.
X X
Those were crucial for the slope sfnx. The first approache$ and the second
approached). Strictly speaking we must give these functions the correct values
(1 and0) at the limiting pointx = 0—which of course we do.

It is important to know what happens when the denominators change to

sinx 1 —cos
EXAMPLE 7 ——— blows up but ————

; OS% has the limit at x = 0.
X X 2
Since(sinx)/x approaches, dividing by anothex gives a function like /x. There
is a simple pole. It is an example 6f0, in which the zero fronx? is reached more
quickly than the zero fromsin x. The “race to zer® produces almost all interesting
problems about limits.

For1 —cosx andx? the race is almost even. Their ratioligo 2:

1 —cosx 1 —cogx sin’x 1 1
= = . d as x—)O,
x2 x2(1+ cosx) x2 14cosx 1+1
This answer% will be found again (more easily) by “I'Hépital's rule.” Here |

emphasize not the answer but the problem. A central question of differential
calculus isto know how fast the limit is approachebhe speed of approach is
exactly the information in the derivative

These three examples are all continuous &t 0. The race is controlled by the
slope—becausg(x) — f(0) is nearly £ (0) timesx:

derivative ofsinx is1 <« sinx decreases like

derivative ofsi’x is0 <  sin’x decreases faster than

1/3 1/3

derivative ofx*/?isoc0 < x'/° decreases more slowly than

DIFFERENTIABLE FUNCTIONS

The absolute valugx| is continuous at = 0 but has no derivative. The same is true
for x'/3. Asking for a derivative is more than asking for continuityrhe reason
is fundamental, and carries us back to the key definitions:

Continuousatx: f(x+ Ax)— f(x)—0asAx —0

S+ A~ f()
Ax

Derivativeat x:

f'(x)asAx —0.
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In the first caseA f goes to zero (maybe slowly). In the second cas¢, goes to
zeroas fast asA x (because\ f/Ax has a limit). That requirement is stronger:

2| At a point wheref(x) has a derivative, the function must be continugus.
But f(x) can be continuous with no derivative.

Proof The limit of A f = (Ax)(Af/Ax) is (0)(df/dx) =0. So f(x + Ax)—
f(x)—0.

The continuous function!/® has no derivative at = 0, because; x~2/3 blows
up. The absolute valuer| has no derivative because its slope jumps. The remarkable
function % cos3x + i cos9x + - -- is continuous a&ll pointsand has a derivative at
no points You can draw its graph without lifting your pen (but not easily—it turns
at every point). To most people, it belongs with space-filling curves and
unmeasurable areas—in a box of curiosities. Fractals used to go into the same box!
They are beautiful shapes, with boundaries that have no tangents. The theory of
fractals is very alive, for good mathematical reasons, and we touch on it in
Section3.7.

I hope you have a clear idea of these basic definitions of calculus:

1 Limit (n - o0 or x »a) 2 Continuity (atx =a) 3 Derivative(atx = a).

Those go back te and §, but it is seldom necessary to follow them so far. In the same
way that economics describes many transactions, or history describes many events,
a function comes from many valuggx). A few points may be special, like market
crashes or wars or discontinuities. At other poidf§/dx is the best guide to the
function.

This chapter ends with two essential facts al@oontinuous function on a closed
interval. The interval ist < x < b, written simply as{, b]. T At the endpoints and
b we requiref(x) to approachf(a) and f(b).

Extreme Value Property A continuous function on the finite intervit, b] has a
maximum valueM and a minimum value:. There are pointsmax andxmin in [a, b]
where it reaches those values:

S(xma) =M = f(x) = f(xmin) =m for all x in [a,b].

Intermediate Value Property If the numberF is betweenf(a) and f (), there is
a pointc betweern andb where f(c) = F. Thus if F is between the minimum
and the maximund/ , there is a point betweenxmin andxmax Where f(c¢) = F.

Examples show why we require closed intervals and continuous functions. For
0 < x < 1 the functionf(x) = x never reaches its minimum (zero). If we close the
interval by defining f(0) = 3 (discontinuous) the minimum is still not reached.
Because of the jump, the intermediate valtie= 2 is also not reached. The idea of
continuity was inescapable, after Cauchy defined the idea of a limit.

1 The intervalla, b] is closed(endpoints included). The interval (a, b)apen(a andb left
out). The infinite interval [0g0) contains allx > 0.
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2.7 EXERCISES

Read-through questions

Continuity requires the__a
to agree with__b
atx=01is _ ¢ . This function does have d
reason thatl/cosx is discontinuous at_e is _ f . The
reason that cad/x) is discontinuous atc=0is g . The
function f(x)=__h has a simple pole at =3, where 2 has
a__i_pole.

of f(x) to exist asx —»a and

limits. The

The powerx” is continuous at allx providedn is | . It
has no derivative att =0 whenn is __k . f(x)=sn(—x)/x
approaches__ | as x—0, so this is a__m __ function
provided we definef(0)=__n
be continuous at all_o

extended to every point sothat p

If f has a derivative aikx =« then f is necessarily ¢
at x=a. The derivative controls the speed at which(x)

approaches _r . On a closed intervald]b], a continuous f
has the__s  value property and the t
reachesits u M andits__v

w

In Problems 1-20, find the numbersc that make f(x) into
(A) a continuous function and (B) a differentiable function. In
one casef(x) — f(a) at every point, in the other caseA f/Ax
has a limit at every point.

1 f(x):{sincx x <1 5 f(x):{cofx X#m

x>l x=n
R OO R
cw={ia 15 ey ifz
7 f(x)={x2i1 e 8 f(x) :{g
9 f(x)={(sm)?/x2 iig 10 :{x“ ijz
11 f(x)={1c/x3 ’ 12 )= { vs0
13 f(x):{)fjf x#1 14 fx)= Pl s

2 x=1

15 f(x)= {(tanxc)/x ;Cfg 16 f(x)_{zx iii
17 f(x):{(c—l—((t)osx)/x iig 18 ()= xie]

. The reason that/|x| is not continuous

. A “continuous function” must
. A “continuable function” can be 25

#32 Let f(x)=x2sin1/x for x#£0 and f(0)=

9 .f(x)={(3i”x"‘)/ * 20 f(0)=x?+c)

x#0
0 x=0

Construct your own f(x) with these discontinuities at
x=1.

21 Removable discontinuity

22 Infinite oscillation

23 Limit for x —» 11, no limit for x —» 1~
24 A double pole

Iirrll fx)=4+ Iim+ f(x)
x—1= x—1
26 Iiml f(x)=o00but Iiml x=Df(x)=0

27 Iim1 x—=Df(x)=5

value property. It 28 The statementlx — 7 asx — 1" is false. Choose anfor which
m, and it takes on every valueno § can be found. The statemerix'— 3 asx — 1" is true. For

e = 1 choose a suitablé.

29 How many derivatives f’,f”,... are continuable
functions ?
(@ f=x3? (b) f=x*?sinx (c) f=(sinx)/?

30 Find one-sided limits at points where there is no two-sidedtlim
Give a3-part formula for function (c).

@ 2 (0) sin|x]

31 Let f(1)=1 ad f(—=1)=1 and f(x)=x%2—x)/(x2-1)
otherwise. Decide whethef is continuous at

@ x=1 (b) x=0 () x=-1

d 2
~x2-1
© -1

0. If the limits
exist, find

@ lim f(x)

33 If f(0)=0 and f’(0)=3, rank these functions from
smallest to largest asdecreases to zero:

fG). x, xf(x), f)+2x, 2(f(x)=x), (f(x)*

34 Create a discontinuous functioff(x) for which f2(x) is
continuous.

(b) df/dxatx=0 (c) lim f'(x)

35 True or false with an example to illustrate:
(@ If f(x) is continuous at allx,
value M.

(b) If f(x)<7forall x,then f reaches its maximum.

(c) If f(1)=1andf(2)= -2, then somewherg(x)=0.
(d) If f(1)=1andf(2)=-2and f is continuous orl,2],
then somewhere on that intervA(x) = 0.

it has a maximum
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36 The functions cos and 2x are continuous. Show from the40 Explain the difference between a continuous function and
property that cos = 2x at some point betweedand1. a ontinuable function. Are continuous functions always

continuable ?
37 Show by example that these statements are false:

] ) ] o 41 f(x) is any continuous function withf (0) = f(1).
(& If a function reaches its maximum and minimum then the (a) Draw atypicalf (x). Mark where f(x) = /(x + L)
function is continuous. yp : J(xX)= 2)-

: _ 1
(b) If f(x) reaches its maximum and minimum and all () Explainwhyg(x) = f(x+3)— f(x) has

values betweerf (0) and f(1), it is continuous at = 0. g(3)=—¢g(0).
(c) (mostly for instructors) If f(x) has the intermediate  (C) Deduce from (b) that (a) is always FiOSSIb“:“i Therestbe
value property between all points and b, it must be a point whereg(x) =0 and f(x) = f(x + 3).
continuous. 42 Create anf(x) that is continuous only at = 0.
38 Explain with words and a graph why'(x) =xsin(1/x) is 43 If f(x)is continuous and < f(x) <1 for all x, then there is a
continuous but has no derivative.at= 0. Set 1(0) = 0. point where f (x*) = x*. Explain with a graph and prove with the

39 Which of these functions amontinuable and why ? intermediate value theorem.

44 In the -6 ddinition of a limit, change0 < |x —a|<§ to
sinx x<0 sinl/x x<0 _ i i —?
) :{ fz(x)={ / |x —a| < 8. Why is f(x) now continuousatx = a =

cosx x>1 cosl/x  x>1 45 A function has a at x=0 if and only if

f3(x) = ﬁ whensinx £0  f4(x)=x0+0%" (f(x)—= f£(0))/xis atx =0.
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