
CHAPTER 3

Applications of the Derivative

Chapter 2 concentrated on computing derivatives. This chapter concentrates onusing
them. Our computations produceddy=dx for functions built fromxn andsinx and
cosx. Knowing the slope, and if necessary also the second derivative, we can answer
the questions aboutyD f .x/ that this subject was created for:

1. How doesy change whenx changes?
2. What is the maximum value ofy? Or the minimum?
3. How can you tell a maximum from a minimum, using derivatives?

The information indy=dx is entirely local. It tells what is happening close to
the point and nowhere else. In Chapter 2,�x and�y went to zero. Now we want
to get them back. The local information explains the larger picture,because�y is
approximatelydy=dx times�x.

The problem is to connect the finite to the infinitesimal—the average slope to the
instantaneous slope. Those slopes are close, and occasionally they are equal. Points
of equality are assured by the Mean Value Theorem—which is the local-global
connection at the center of differential calculus. But we cannot predictwheredy=dx
equals�y=�x: Therefore we now find other ways to recover a function from its
derivatives—or to estimate distance from velocity and acceleration.

It may seem surprising that we learn abouty from dy=dx: All our work has been
going the other way! We struggled withy to squeeze outdy=dx:Now we usedy=dx
to studyy: That’s life. Perhaps it really is life, to understand one generation from later
generations.
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3.1 Linear Approximation

The book started with a straight linef D vt: The distance is linear when the velocity
is constant. As soon asv begins to change,f D vt falls apart. Which velocity do we
choose, whenv.t/ is not constant? The solution is to take very short time intervals,
in whichv is nearly constant:

f D vt is completely false

�f D v�t is nearly true

df D vdt is exactly true

For a brief moment the functionf .t/ is linear—and stays near its tangent line.
In Section 2.3 we found the tangent line toyD f .x/: At xD a, the slope of the

curve and the slope of the line aref 1.a/: For points on the line, start atyD f .a/:
Add the slope times the “increment”x�a:

Y D f .a/Cf 1.a/.x�a/: (1)

We write a capitalY for the line and a smally for the curve. The whole point of
tangents is that they are close.provided we don’t move too far froma/:

y�Y or f .x/� f .a/Cf 1.a/.x�a/: (2)

That is the all-purposelinear approximation. Figure 3.1 shows the square root
functionyD

?
x and its tangent line atxD aD 100: At the pointyD

?
100D 10,

the slope is1=2
?
xD 1=20: The table beside the figure comparesy.x/ with Y.x/:

Fig. 3.1 Y.x/ is the linear approximation to
?
x nearxD aD 100:

x Y yD
?
x

100 10 10Ñ 102 10:1 10:0995

110 10:5 10:49

200 15 14:1

400 25 20

The accuracy gets worse asx departs from100: The tangent line leaves the curve.
The arrow points to a good approximation at102, and at101 it would be even better.
In this exampleY is larger thany—the straight line is above the curve. The slope
of the line stays constant, and the slope of the curve is decreasing. Such a curve will
soon be called “concave downward,” and its tangent lines are above it.

Look again atxD 102, where the approximation is good. In Chapter 2, when we
were approachingdy=dx, we started with�y=�x:

slope� ?102�?100
102�100 : (3)
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Now that is turned around! The slope is1=20:What we don’t know is
?
102:?

102�?100C (slope).102�100/: (4)

You work with what you have. Earlier we didn’t knowdy=dx, so we used.3/: Now
we are experts atdy=dx, and we use.4/: After computingy 1 D 1=20 once and for
all, the tangent line stays near

?
x for every number near100: When that nearby

number is100C�x, notice the error as the approximation is squared:
�?

100C
1

20
�x

�2

D 100C�xC
1

400
.�x/2:

The desired answer is100C�x, and we are off by the last term involving.�x/2:
The whole point of linear approximation is to ignore every term after�x:

There is nothing magic aboutxD 100, except that it has a nice square root. Other
points and other functions allowy�Y: I would like to express this same idea in
different symbols.Instead of starting froma and going tox, we start fromx and go
a distance�x to xC�x. The letters are different but the mathematics is identical.

3A At any pointx, and for any smooth functionyD f .x/,

slope atx� f .xC�x/�f .x/
�x

: (5)

For the approximation tof .xC�x/, multiply both sides by�x and addf .x/:

f .xC�x/� f .x/C .slope atx/.�x/: (6)

EXAMPLE 1 An important linear approximation: .1Cx/n� 1Cnx for x near zero.

EXAMPLE 2 A second important approximation: 1=.1Cx/n� 1�nx for x near zero.

Discussion Those are really the same. By changingn to �n in Example 1, it
becomes Example 2. These are linear approximations using the slopesn and�n
atxD 0:

.1Cx/n� 1C .slope at zero/ times.x�0/D 1Cnx:

Here is the same thing withf .x/D xn: The basepoint in equation(6) is now1 or x:

.1C�x/n� 1Cn�x .xC�x/n� xn Cnxn�1�x:

Better than that, here are numbers. FornD 3 and�1 and100, take�xD :01:

.1:01/3� 1:03 1

1:01
� :99 �

1C
1

100

�100� 2
Actually that last number is no good. The100th power is too much. Linear
approximation gives1C100�xD 2, but a calculator gives.1:01/100 D 2:7 : : :: This
is close toe, the all-important number in Chapter 6. The binomial formula shows why
the approximation failed:

.1C�x/100 D 1C100�xC
.100/.99/

.2/.1/
.�x/2 C � � � :

Linear approximation forgets the.�x/2 term. For�xD 1=100 that error is nearly
1
2
: It is too big to overlook. The exact error is1

2
.�x/2f 2.c/, where the Mean Value

Theorem in Section 3.8 placesc betweenx andxC�x: You already see the point:

y�Y is of order.�x/2: Linear approximation, quadratic error.
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DIFFERENTIALS

There is one more notation for this linear approximation. It hasto be presented,
because it is often used. The notation is suggestive and confusing at the same time—it
keeps the same symbolsdx and dy that appear in the derivative. Earlier we
took great pains to emphasize thatdy=dx is not an ordinary fraction.� Until this
paragraph,dx and dy have had no independent meaning. Now they become
separate variables, likex andy but with their own names. These quantitiesdx anddy
are calleddifferentials.

The symbolsdx anddy measure changesalong the tangent line. They do for the
approximationY.x/ exactly what�x and�y did for y.x/: Thusdx and�x both
measure distance across.

Figure 3.2 has�xD dx: But the change iny does not equal the change inY:
One is�y (exact for the function). The other isdy (exact for the tangent line).The
differential dy is equal to�Y , the change along the tangent line. Where�y is
the true change,dy is its linear approximation.dy=dx/dx:

You often seedy written asf 1.x/dx:
�yDchange iny (along curve)
dyDchange inY (along tangent)
Fig. 3.2 The linear approximation to�y is

dyD f 1.x/dx:
EXAMPLE 3 yD x2 hasdy=dxD 2x so dyD 2xdx: The table has basepoint
xD 2: The predictiondy differs from the true�y by exactly.�x/2 D :01 and:04
and:09:

dx dy �x �y

yD x2 .1 0.4 .1 0.41 �yD .2C�x/2�22

dyD 4dx .2 0.8 .2 0.84 �yD 4�xC .�x/2

.3 1.2 .3 1.29

ThedifferentialdyD f 1.x/dx is consistent with the derivativedy=dxD f 1.x/:
We finally havedyD .dy=dx/dx, but this is not as obvious as it seems! It looks like
cancellation—it is really a definition. Entirely new symbols could be used, butdx and
dy have two advantages: They suggest small steps and they satisfydyD f 1.x/dx:
Here are three examples and three rules:

d.xn/Dnxn�1dx d.f Cg/Ddf Cdg
d.sinx/Dcosx dx d.cf /Dc df
d.tanx/Dsec2x dx d.fg/Df dgCg df

Science and engineering and virtually all applications of mathematics depend on
linear approximation. The true function is “linearized,” using its slopev:

�Fraction or not, it is absolutely forbidden to cancel thed ’s
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Increasing the time by�t increases the distance by� v�t
Increasing the force by�f increases the deflection by� v�f
Increasing the production by�p increases its value by� v�p:

The goal of dynamics or statics or economics is to predict this multiplierv—the
derivative that equals the slope of the tangent line. The multiplier gives alocal
predictionof the change in the function. The exact law is nonlinear—but Ohm’s law
and Hooke’s law and Newton’s law are linear approximations.

ABSOLUTE CHANGE, RELATIVE CHANGE, PERCENTAGE CHANGE

The change�y or�f can be measured in three ways. So can�x:

Absolute change �f �x

Relative change
�f

f .x/

�x

x

Percentage change
�f

f .x/
�100 �x

x
�100

Relative change is often more realistic than absolute change. If we know the distance
to the moon within three miles, that is more impressive than knowing our own height
within one inch. Absolutely, one inch is closer than three miles. Relatively, three miles
is much closer:

3miles

300;000miles
  1 inch

70 inches
or :001%  1:4%:

EXAMPLE 4 The radius of the Earth is within80miles ofr D 4;000miles.
(a) Find the variationdV in the volumeV D 4

3
�r3, using linear approximation.

(b) Compute the relative variationsdr=r anddV=V and�V=V:

Solution The job of calculus is to produce the derivative. AfterdV=dr D 4�r2,
its work is done. The variation in volume isdV D 4�.4000/2.80/ cubic miles. A
2% relative variation inr gives a6% relative variation inV :

dr

r
D

80

4000
D 2%

dV

V
D
4�.4000/2.80/

4�.4000/3=3
D 6%:

Without calculus we need the exact volume atr D 4000C80 (also atr D 3920):

�V

V
D
4�.4080/3=3�4�.4000/3=3

4�.4000/3=3
� 6:1%

One comment ondV D 4�r2dr: This is (area of sphere) times (change in radius).
It is the volume of a thin shell around the sphere. The shell is added when the radius
grows bydr: The exact�V=V is 3917312=640000%; but calculus just calls it6%:
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3.1 EXERCISES

Read-through questions

On the graph, a linear approximation is given by the a
line. At xD a, the equation for that line isY D f .a/C b .
Near xD aD 10, the linear approximation toyD x3 is
Y D 1000C c . At xD 11 the exact value is.11/3 D d .
The approximation isY D e . In this case�yD f and
dyD g . If we know sinx, then to estimate sin.xC�x/ we
add h .

In terms of x and �x, linear approximation is
f .xC�x/�f .x/C i . The error is of order.�x/p or
.x�a/p with pD j . The differentialdy equals k times
the differential l . Those movements are along them line,
where�y is along the n .

Find the linear approximation Y to yD f .x/ near xD a W

1 f .x/D xCx4; aD 0 2 f .x/D 1=x; aD 2

3 f .x/D tan x; aD�=4

5 f .x/D x sin x; aD 2�

4 f .x/D sin x; aD�=2

6 f .x/D sin2x; aD 0

Compute 7–12 within :01 by deciding on f .x/; choosing the
basepoint a; and evaluating f .a/Cf 1.a/.x�a/: A calculator
shows the error.

7 .2:001/6

9 cos.:03/

11 1=:98

8 sin.:02/

10 .15:99/1=4

12 sin.3:14/

Calculate the numerical error in these linear approximations
and compare with1

2 .�x/
2f 2.x/:

13 .1:01/3� 1C3.:01/

15 .sin:01/2� 0C0.:01/

17
�

1C 1
10

�10� 2 14 cos.:01/� 1C0.:01/

16 .1:01/�3� 1�3.:01/
18

?
8:99� 3C 1

6 .�:01/

Confirm the approximations 19–21 by computingf 1.0/:
19

?
1�x� 1� 1

2x

20 1=
a
1�x2� 1C 1

2x
2 (usef D 1=

?
1�u, then putuD x2/

21
?
c2 Cx2� cC

1

2

x2

c
(use f .u/D

?
c2 Cu, then put

uD x2)

22 Write down the differentialsdf for f .x/D cosx and
.xC1/=.x�1/ and.x2 C1/2:

In 23–27 find the linear changedV in the volume or dA in the
surface area.

23 dV if the sides of a cube change from10 to 10:1:

24 dA if the sides of a cube change fromx to xCdx:

25 dA if the radius of a sphere changes bydr:

26 dV if a circular cylinder withr D 2 changes height from3
to 3:05 (recallV D�r2h).

27 dV if a cylinder of height3 changes fromr D 2 to r D 1:9:

Extra credit : What isdV if r andh both change.dr anddh/?

28 In relativity the mass ism0=
a
1�.v=c/2 at velocity v: By

Problem 20 this is nearm0 C for small v: Show that
the kinetic energy 1

2mv
2 and the change in mass satisfy

Einstein’s equationeD .�m/c2:

29 Enter 1:1 on your calculator. Press the square root key5
times (slowly). What happens each time to the number after the dec-
imal point? This is because

?
1Cx � :

30 In Problem29 the numbers you see are less than1:05;1:025; : : : :

The second derivative of
?
1Cx is so the linear approxima-

tion is higher than the curve.

31 Enter 0:9 on your calculator and press the square root
key 4 times. Predict what will appear the fifth time and press
again. You now have the root of 0:9: How many decimals
agree with1� 1

32 .0:1/?
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3.2 Maximum and Minimum Problems

Our goal is to learn aboutf .x/ from df=dx: We begin with two quick questions.
If df=dx is positive, what does that say aboutf ? If the slope is negative, how is that
reflected in the function? Then the third question is the critical one:

How do you identify amaximumor minimum?
Normal answer:The slope is zero.

This may be the most important application of calculus, to reachdf=dxD 0:

Take the easy questions first. Supposedf=dx is positive for every x between
a andb: All tangent lines slope upward.The functionf .x/ is increasingasx goes
froma to b.

3B If df=dx¡ 0 then f .x/ is increasing. If df=dx  0 then f .x/
is decreasing.

To define increasing and decreasing, look at any two pointsx X: “Increasing”
requiresf .x/  f .X/: “Decreasing” requiresf .x/¡ f .X/:A positive slope does
not mean a positive function. The function itself can be positive or negative.

EXAMPLE 1 f .x/D x2�2x has slope2x�2: This slope is positive whenx¡ 1
and negative whenx  1: The function increases afterxD 1 and decreases before
xD 1:

Fig. 3.3 Slopes are�C : Slope isC�C�C sof is up-down-up-down-up.

We say that without computingf .x/ at any point! The parabola in Figure 3.3 goes
down to its minimum atxD 1 and up again.

EXAMPLE 2 x2�2xC5 has the same slope. Its graph is shifted up by5, a
number that disappears indf=dx: All functions with slope2x�2 are parabolas
x2�2xCC , shifted up or down according toC: Some parabolas cross thex axis
(those crossings are solutions tof .x/D 0/:Other parabolas stay above the axis. The
solutions tox2�2xC5D 0 are complex numbers and we don’t see them. The
special parabolax2�2xC1D .x�1/2 grazes the axis atxD 1: It has a “double
zero,” wheref .x/D df=dxD 0:
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EXAMPLE 3 Suppose df=dxD .x�1/.x�2/.x�3/.x�4/: This slope is
positive beyondxD 4 and up toxD 1 (df=dxD 24 at xD 0). And df=dx is
positive again between2 and 3: At xD 1;2;3;4, this slope is zero andf .x/
changes direction.

Heref .x/ is a fifth-degree polynomial, becausef 1.x/ is fourth-degree. The graph
of f goes up-down-up-down-up. It might cross thex axis five times.It must cross
at least once(like this one). When complex numbers are allowed, every fifth-degree
polynomial has five roots.

You may feel that “positive slope implies increasing function” is obvious—perhaps
it is. But there is still something delicate. Starting fromdf=dx¡ 0 at everysingle
point, we have to deducef .X/¡f .x/ at pairsof points. That is a “local to global”
question, to be handled by the Mean Value Theorem. It could also wait for the
Fundamental Theorem of Calculus:The differencef .X/�f .x/ equals the area
under the graph ofdf=dx. That area is positive, sof .X/ exceedsf .x/:

MAXIMA AND MINIMA

Which x makesf .x/ as large as possible? Where is the smallestf .x/? Without
calculus we are reduced to computing values off .x/ and comparing. With calculus,
the information is indf=dx:

Suppose the maximum or minimum is at a particular pointx: It is possible that
the graph has a corner—and no derivative.But if df=dx exists, it must be zero. The
tangent line is level. The parabolas in Figure 3.3 change from decreasing to increasing.
The slope changes from negative to positive. At this crucial pointthe slope is zero.

3C Local Maximum or Minimum Suppose the maximum or minimum
occurs at a pointx inside an interval wheref .x/ anddf=dx are defined. Then
f 1.x/D 0:

The word “local” allows the possibility that in other intervals,f .x/ goes higher or
lower.We only look nearx, and we use the definition ofdf=dx:

Start withf .xC�x/�f .x/: If f .x/ is the maximum, this difference is negative
or zero. The step�x can be forward or backward:

if �x¡ 0 W
f .xC�x/�f .x/

�x
D

negative

positive
¤ 0 and in the limit

df

dx
¤ 0:

if �x  0 W
f .xC�x/�f .x/

�x
D

negative

negative
¥ 0 and in the limit

df

dx
¥ 0:

Both arguments apply. Both conclusionsdf=dx¤ 0 anddf=dx¥ 0 are correct. Thus
df=dxD 0:

Maybe Richard Feynman said it best. He showed his friends a plastic curve that
was made in a special way—“no matter how you turn it, the tangent at the lowest
point is horizontal.” They checked it out. It was true.

Surely You’re Joking, Mr. Feynman! is a good book (but rough on
mathematicians).

EXAMPLE 3 (continued) Look back at Figure 3.3b. The points that stand out
are not the “ups” or “downs” but the “turns.” Those arestationary points, where
df=dxD 0: We see two maxima and two minima. None of them are absolute
maxima or minima, becausef .x/ starts at�8 and ends atC8:
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EXAMPLE 4 f .x/D 4x3�3x4 has slope12x2�12x3: That derivative is zero
whenx2 equalsx3, at the two pointsxD 0 andxD 1: To decide between minimum
and maximum (local or absolute), the first step is to evaluatef .x/ at thesestationary
points. We findf .0/D 0 andf .1/D 1:

Now look at largex: The function goes down to�8 in both directions. (You can
mentally substitutexD 1000 andxD�1000). For largex;�3x4 dominates4x3:

Conclusion f D 1 is an absolute maximum.f D 0 is not a maximum or minimum
(local or absolute). We have to recognize this exceptional possibility, that a curve (or a
car) can pause for an instant.f 1 D 0/ and continue in the same direction. The reason
is the “double zero” in12x2�12x3, from its double factorx2:

Fig. 3.4 The graphs of4x3�3x4 andxCx�1: Check rough points and endpoints.

EXAMPLE 5 Definef .x/D xCx�1 for x¡ 0: Its derivative1�1=x2 is zero at
xD 1: At that pointf .1/D 2 is the minimum value. Every combination like1

3
C3

or 2
3

C 3
2

is larger thanfmin D 2: Figure 3.4 shows thatthe maximum ofxCx�1 is
C8:�
Important The maximum always occurs at astationary point(wheredf=dxD 0)
or a rough point (no derivative) or anendpointof the domain. These are the three
types ofcritical points. All maxima and minima occur at critical points! At every
other pointdf=dx¡ 0 or df=dx  0: Here is the procedure:

1. Solvedf=dxD 0 to find the stationary pointsf .x/:
2. Compute f .x/ at every critical point—stationary point, rough point,

endpoint.
3. Take the maximum and minimum of those critical values off .x/:

EXAMPLE 6 (Absolute valuef .x/D |x|) The minimum is zero at a rough point.
The maximum is at an endpoint. There are no stationary points.

The derivative ofyD |x| is never zero. Figure 3.4 shows the maximum and
minimum on the intervalŒ�3;2�: This is typical of piecewise linear functions.

Question Could the minimum be zero when the function never reachesf .x/D 0?
Answer Yes, f .x/D 1=.1Cx/2 approaches but never reaches zero asxÑ8:
�A good word isapproachwhen f .x/Ñ8: Infinity is not reached. But I still say “the
maximum is8:”
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Remark1 xÑ�8 andf .x/Ñ�8 are avoided whenf is continuous on a
closed intervala¤ x¤ b: Then f .x/ reaches its maximum and its minimum
(Extreme Value Theorem). ButxÑ8 andf .x/Ñ8 are too important to rule out.
You testxÑ8 by considering largex: You recognizef .x/Ñ8 by going above
every finite value.

Remark2 Note the difference between criticalpoints(specified byx) and critical
values(specified byf .x/). The examplexCx�1 had the minimumpointxD 1 and
the minimumvaluef .1/D 2:

MAXIMUM AND MINIMUM IN APPLICATIONS

To find a maximum or minimum, solvef 1.x/D 0: The slope is zero at the top and
bottom of the graph. The idea is clear—and then check rough points and endpoints.
But to be honest, that is not where the problem starts.

In a real application, the first step (often the hardest) is to choose the unknown
andfind the function. It is we ourselves who decide onx andf .x/: The equation
df=dxD 0 comes in the middle of the problem, not at the beginning. I will start on a
new example, with a question instead of a function.

EXAMPLE 7 Where should you get onto an expressway for minimum driving time,
if the expressway speed is60mph and ordinary driving speed is30mph?

I know this problem well—it comes up every morning. The Mass Pike goes to MIT
and I have to join it somewhere. There is an entrance near Route128 and another
entrance further in. I used to take the second one, now I take the first. Mathematics
should decide which is faster—some mornings I think they are maxima.

Most models are simplified, to focus on the key idea. We will allow the expressway
to be entered atany pointx (Figure 3.5). Instead of two entrances (a discrete problem)
we have a continuous choice (a calculus problem). The trip has two parts, at speeds
30 and60:

a distance
?
a2 Cx2 up to the expressway, in

?
a2 Cx2=30 hours

a distanceb�x on the expressway, in.b�x/=60 hours

Problem Minimizef .x/D total timeD
1

30

?
a2 Cx2 C

1

60
.b�x/:

We have the functionf .x/: Now comes calculus. The first term uses the power rule:
The derivative ofu1=2 is 1

2
u�1=2du=dx: HereuD a2 Cx2 hasdu=dxD 2x:

f 1.x/D
1

30

1

2
.a2 Cx2/�1=2.2x/� 1

60
: (1)

To solvef 1.x/D 0, multiply by 60 and square both sides:

.a2 Cx2/�1=2.2x/D 1 gives 2xD .a2 Cx2/1=2 and 4x2 D a2 Cx2: (2)

Thus 3x2 D a2: This yields two candidates,xD a=
?
3 and xD�a=?3: But a

negativex would mean useless driving on the expressway. In factf 1 is not zero
atxD�a=?3: That false root entered when we squared2x:
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Fig. 3.5 Join the freeway atx—minimize the driving timef .x/:

I notice something surprising. The stationary pointxD a=
?
3 does not depend on

b: The total time includes the constantb=60, which disappeared indf=dx: Somehow
b must enter the answer, and this is a warning to go carefully. The minimum might
occur at a rough point or an endpoint. Those are the other critical points off , and
our drawing may not be realistic. Certainly we expectx¤ b, or we are entering the
expressway beyond MIT.

Continue with calculus. Compute the driving timef .x/ for an entrance at
x� D a=

?
3:

f .x/D
1

30

a
a2 C .a2=3/C

1

60

�

b� a?
3

�

D

?
3a

60
C
b

60
D f �:

The square root of4a2=3 is2a=
?
3:We combined2=30�1=60D 3=60and divided

by
?
3: Is this stationary valuef � a minimum? You must look also atendpoints:

enter atxD 0: travel time isa=30Cb=60D f ��
enter atxD b: travel time is

?
a2 Cb2=30D f ���:

The comparisonf �  f �� should be automatic. Entering atxD 0 was a candidate
and calculus didn’t choose it. The derivative is not zero atxD 0: It is not smart to
go perpendicular to the expressway.

The second comparison hasxD b: We drive directly to MIT at speed30: This
option has to be taken seriously. In fact it is optimal whenb is small ora is large.

This choicexD b can arise mathematically in two ways. If all entrances are
between0 andb, thenb is anendpoint. If we can enter beyond MIT, thenb is a
rough point. The graph in Figure 3.5c has a corner atxD b, where the derivative
jumps. The reason is that distance on the expressway is theabsolute value|b�x|—
never negative.

Either wayxD b is a critical point.The optimal x is the smaller ofa=
?
3

and b.

if a=
?
3¤ b W stationary point wins, enter atxD a=

?
3; total timef �

if a=
?
3¥ b W no stationary point, drive directly to MIT, timef ���

The heart of this subject is in “word problems.” All the calculus is in a few lines,
computingf 1 and solvingf 1.x/D 0: The formulation took longer. Step1 usually
does:

1. Express the quantity to be minimized or maximized as a functionf .x/:
The variablex has to be selected.
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2. Computef 1.x/, solvef 1.x/D 0, check critical points forfmin andfmax:

A picture of the problem (and the graph off .x/) makes all the difference.

EXAMPLE 7 (continued) Choosex as anangle instead of a distance. Figure 3.6
shows the triangle with anglex and sidea: The driving distance to the expressway
is asecx: The distance on the expressway isb�a tanx: Dividing by the speeds30
and60, the driving time has a nice form:

f .x/D total timeD
a sec x

30
C
b�a tanx

60
: (3)

Thederivatives ofsecx andtanx go intodf=dx:

df

dx
D
a

30
sec x tanx� a

60
sec2x: (4)

Now setdf=dxD 0, divide bya, and multiply by30cos2x:

sinxD 1
2
: (5)

This answer is beautiful. The anglex is 30�! That optimal angle (�=6 radians)
hassinxD 1

2
: The triangle with sidea and hypotenusea=

?
3 is a30–60–90 right

triangle.
I don’t know whether you prefer

?
a2 Cx2 or trigonometry. The minimum is

exactly as before—either at30� or going directly to MIT.

Fig. 3.6 (a) Driving at anglex: (b) Energies of spring and mass. (c) ProfitD income� cost.

EXAMPLE 8 In mechanics,nature chooses minimum energy. A spring is pulled
down by a mass, the energy isf .x/, and df=dxD 0 gives equilibrium. It is a
philosophical question why so many laws of physics involve minimum energy or
minimum time—which makes the mathematics easy.

The energy has two terms—for the spring and the mass. The spring energy is
1
2
kx2—positive in stretching (x¡ 0 is downward) and also positive in compression
.x  0/: The potential energy of the mass is taken as�mx—decreasing as the mass
goes down. The balance is at the minimum off .x/D 1

2
kx2�mx:

I apologize for giving you such a small problem, but it makes a crucial point.
Whenf .x/ is quadratic, the equilibrium equationdf=dxD 0 is linear.

df=dxD kx�mD 0:

Graphically,xDm=k is at the bottom of the parabola. Physically,kxDm is a
balance of forces—the spring force against the weight.Hooke’s lawfor the spring
force is elastic constantk times displacementx:
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EXAMPLE 9 Derivative of cost D marginal cost (our first management
example).

The paper to printx copies of this book might costC D 1000C3x dollars. The
derivative isdC=dxD 3: This is themarginal costof paper for each additional book.
If x increases by one book, the costC increases by$3: The marginal cost is like the
velocity and the total cost is like the distance.

Marginal cost is in dollars per book. Total cost is in dollars.On the plus
side, the income isI.x/ and the marginal income isdI=dx: To apply calculus, we
overlook the restriction to whole numbers.

Suppose the number of books increases bydx:� The cost goes up by
.dC=dx/dx: The income goes up by.dI=dx/dx: If we skip all other costs, then
profit P.x/D incomeI.x/� costC.x/. In most casesP increases to a maximum
and falls back.

At the high point on the profit curve,the marginal profit is zero:

dP=dxD 0 or dI=dxD dC=dx: (6)

Profit is maximized when marginal incomeI 1 equals marginal costC 1.
This basic rule of economics comes directly from calculus, and we give an example:

C.x/Dcost ofx advertisementsD 900C400x�x2

setup cost 900, print cost400x; volume savingsx2

I.x/D income due tox advertisementsD 600x�6x2

sales600 per advertisement, subtract6x2 for diminishing returns

optimal decisiondC=dxD dI=dx or 400�2xD 600�12x or xD 20

profitD income�costD 9600�8500D 1100:

The next section shows how to verify that this profit is a maximum not a minimum.
The first exercises ask you to solvedf=dxD 0: Later exercises also look

for f .x/:

3.2 EXERCISES

Read-through questions

If df=dx¡ 0 in an interval thenf .x/ is a . If a maximum
or minimum occurs atx then f 1.x/D b . Points where
f 1.x/D 0 are called c points. The functionf .x/D 3x2�x
has a (minimum)(maximum) atxD d . A stationary point that
isnot a maximum or minimum occurs forf .x/D e .

Extreme values can also occur where f is not defined
or at the g of the domain. The minima of|x| and 5x for�2¤x¤ 2 are at xD h and xD i , even though
df=dx is not zero. x� is an absolute j when
f .x�/¥ f .x/ for all x: A k minimum occurs when
f .x�/¤ f .x/ for all x nearx�:

The minimum of12ax
2�bx is l atxD m .

Find the stationary points and rough points and endpoints.
Decide whether each point is a local or absolute minimum or
maximum.

1 f .x/D x2 C4xC5;�8 x 8
2 f .x/D x3�12x;�8 x 8
3 f .x/D x2 C3;�1¤ x¤ 4
4 f .x/D x2 C.2=x/;1¤x¤ 4
5 f .x/D .x�x2/2;�1¤x¤ 1

�Maybedx is a differential calculus book. I apologize for that.
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6 f .x/D 1=.x�x2/;0 x  1
7 f .x/D 3x4 C8x3�18x2;�8 x 8
8 f .x/D tx2�4x for 0¤x¤ 1;x2�4 for 1¤x¤ 2u
9 f .x/D

?
x�1C

?
9�x;1¤ x¤ 9

10 f .x/D xCsinx;0¤x¤ 2�
11 f .x/D x3.1�x/6;�8 x 8
12 f .x/D x=.1Cx/;0¤x¤ 100
13 f .x/D distance fromx¥ 0 to nearest whole number

14 f .x/D distance fromx¥ 0 to nearest prime number

15 f .x/D |xC1|C |x�1|;�3¤x¤ 2
16 f .x/D x

a
1�x2;0¤x¤ 1

17 f .x/D x1=2�x3=2;0¤x¤ 4
18 f .x/D sinxCcosx;0¤x¤ 2�
19 f .x/D xCsinx;0¤ x¤ 2�
20 f .�/D cos2� sin �;�� ¤ � ¤�
21 f .�/D 4sin��3cos�;0¤ � ¤ 2�
22 f .x/D tx2 C1 for x¤ 1;x2�4xC5 for x¥ 1u:
In applied problems, choose metric units if you prefer.

23 The airlines accept a box if lengthCwidthCheightD
l CwCh¤622 or 158 cm. If h is fixed show that the
maximum volume.62�w�h/wh is V D h.31� 1

2h/
2: Choose

h to maximizeV: The box with greatest volume is a :

24 If a patient’s pulse measures70, then 80, then 120, what
least squares value minimizes .x�70/2 C.x�80/2 C

.x�120/2? If the patient got nervous, assign120 a lower weight
and minimize.x�70/2 C.x�80/2 C 1

2 .x�120/2:
25 At speed v, a truck usesavC.b=v/ gallons of fuel per
mile. How many miles per gallon at speedv? Minimize the fuel
consumption. Maximize the number of miles per gallon.

26 A limousine gets .120�2v/=5 miles per gallon. The
chauffeur costs $10=hour, the gas costs $1=gallon:

(a) Find the cost per mile at speedv:
(b) Find the cheapest driving speed.

27 You should shoot a basketball at the angle� requiring
minimum speed. Avoid line drives and rainbows. Shooting
from .0;0/ with the basket at .a;b/, minimize
f .�/D 1=.asin� cos��bcos2�/:

(a) If bD 0 you are level with the basket. Show that
� D 45� is best (Jabbar sky hook).

(b) Reducedf=d� D 0 to tan2� D�a=b: Solve whenaD b:

(c) Estimate the best angle for a free throw.

The same angle allows the largest margin of error (Sports
Scienceby Peter Brancazio). Section 12.2 gives the flight path.

28 On the longest and shortest days, in June and December, why
does the length of day change the least?

29 Find the shortestY connectingP;Q, and B in the figure.
Originally B was a birdfeeder. The length ofY is
L.x/D .b�x/C2?a2 Cx2:

(a) Choosex to minimizeL(not allowingx¡ b).

(b) Show that the center of theY has120�angles.

(c) The bestY becomes aV whena=bD :

30 If the distance function isf .t/D .1C3t/=.1C3t2/, when
does the forward motion end? How far have you traveled?
Extra credit: Graphf .t/ anddf=dt:

In 31–34; we make and sell x pizzas: The income is
R.x/D axCbx2 and the cost isC.x/D cCdxCex2.

31 The profit is ….x/D : The average profit per
pizza is D : The marginal profit per additional pizza
is d…=dxD : We should maximize the (profit)(average
profit)(marginal profit).

32 We receiveR.x/D axCbx2 when the price per pizza is
p.x/D : In reverse: When the price isp we sellxD

pizzas (a function ofp). We expectb  0 because :

33 Findx to maximize the profit….x/:At thatx the marginal profit
is d…=dxD :

34 Figure B showsR.x/D 3x�x2 and C1.x/D 1Cx2 and
C2.x/D 2Cx2:With costC1, which salesx makes a profit? Which
x makes the most profit? With higher fixed cost inC2, the best plan
is :

The cookie box and popcorn box were created by Kay Dundas
from a 122�122 square: A box with no top is a calculus classic.
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35 Choosex to find the maximum volume of the cookie box.

36 Choosex to maximize the volume of the popcorn box.

37 A high-class chocolate box adds a strip of widthx down
across the front of the cookie box. Find the new volumeV.x/
and the x that maximizes it. Extra credit: Show thatVmax is
reduced by more than20%:

38 For a box with no top, cut four squares of sidex from the
corners of the122 square. Fold up the sides so the height isx:Max-
imize the volume.

Geometry provides many problems, more applied than they
seem.

39 A wire four feet long is cut in two pieces. One piece forms
a circle of radiusr , the other forms a square of sidex: Choose
r to minimize the sum of their areas. Then chooser to
maximize.

40 A fixed wall makes one side of a rectangle. We have200
feet of fence for the other three sides. Maximize the areaA in 4
steps:

1 Draw a picture of the situation.

2 Select one unknown quantity asx (but notA!).

3 Find all other quantities in terms ofx:

4 SolvedA=dxD 0 and check endpoints.

41 With no fixed wall, the sides of the rectangle satisfy
2xC2y D 200: Maximize the area. Compare with the area of
a circle using the same fencing.

42 Add 200meters of fence to an existing straight100–meter fence,
to make a rectangle of maximum area (invented by Professor Klee).

43 How large a rectangle fits into the triangle with sides
xD 0;yD 0, andx=4Cy=6D 1? Find the point on this third side
that maximizes the areaxy:

44 The largest rectangle in Problem43 may not sit straight
up. Put one side alongx=4Cy=6D 1 and maximize the area.

45 The distance around the rectangle in Problem43 is
P D 2xC2y: Substitute fory to find P.x/: Which rectangle has
PmaxD 12?

46 Find the right circular cylinder of largest volume that fits in a
sphere of radius1:

47 How large a cylinder fits in a cone that has base radiusR

andheightH? For the cylinder, chooser andh on the sloping sur-
facer=RCh=H D 1 to maximize the volumeV D�r2h:

48 The cylinder in Problem47 has side areaAD 2�rh:

MaximizeA instead ofV:

49 Including top and bottom, the cylinder has area

AD 2�rhC2�r2 D 2�rH.1�.r=R//C2�r2 :

MaximizeA whenH ¡R: MaximizeA whenR¡H:

�50 A wall 8 feet high is1 foot from a house. Find the lengthL of
the shortest ladder over the wall to the house. Draw a triangle with
heighty, base1Cx, and hypotenuseL:

51 Find the closed cylinder of volumeV D�r2hD 16� that has
the least surface area.

52 Draw a kite that has a triangle with sides1;1;2x next to
a triangle with sides2x;2;2: Find the areaA and thex that
maximizes it.Hint: In dA=dx simplify

a
1�x2�x2=

a
1�x2 to

.1�2x2/=
a
1�x2:

In 53–56; x and y are nonnegative numbers withxCy D 10:

Maximize and minimize:

53 xy 54 x2 Cy2 55 y�.1=x/ 56 sinx siny

57 Find the total distancef .x/ from A to X to C: Show that
df=dxD 0 leads to sinaD sinc: Light reflects at an equal angle
to minimize travel time.

58 Fermat’s principle says that light travels fromA to B on the
quickest path. Its velocity above thex axis isv and below thex axis
isw:

(a) Find the time T .x/ from A to X to B: On AX;

timeD distance=velocityD
?
r2 Cx2=v:

(b) Find the equation for the minimizingx:

(c) DeduceSnell’s law.sina/=vD .sinb/=w:

“Closest point problems” are models for many applications.

59 Where is the parabolayD x2 closest toxD 0, yD 2?

60 Where is the lineyD 5�2x closest to.0;0/?

61 What point on yD�x2 is closest to what point on
yD 5�2x? At the nearest points, the graphs have the same slope.
Sketch the graphs.

62 Where is yD x2 closest to .0; 1
3 /? Minimizing

x2 C.y� 1
3 /

2 D yC.y� 1
3 /

2 givesy  0: What went wrong?

63 Draw the lineyDmx passing near.2;3/; .1;1/, and .�1;1/:
For a least squares fit, minimize

.3�2m/2 C.1�m/2 C.1Cm/2:
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64 A triangle has corners (�1;1/; .x;x2/, and .3;9/ on the
parabola yD x2: Find its maximum area forx between�1
and 3: Hint: The distance from.X;Y / to the lineyDmxCb is|Y �mX�b|=?1Cm2:

65 Submarines are located at.2;0/ and .1;1/: Choose the
slope m so the lineyDmx goes between the submarines but
stays as far as possible from the nearest one.

Problems 66–72 go back to the theory.

66 To find where the graph ofy.x/ has greatest slope, solve
: For yD 1=.1Cx2/ this point is :

67 When the difference betweenf .x/ andg.x/ is smallest, their
slopes are : Show this point on the graphs off D 2Cx2 and
gD 2x�x2:

68 Supposey is fixed. The minimum ofx2 Cxy�y2 (a function
of x) ism.y/D : Find the maximum ofm.y/:

Now x is fixed. The maximum ofx2 Cxy�y2 (a function of
y) isM.x/D . Find the minimum ofM.x/:

69 For eachm the minimum value of f .x/�mx occurs at
xDm: What isf .x/?

70 yD xC2x2 sin.1=x/ has slope1 at xD 0: But show thaty
is not increasing on aninterval aroundxD 0, by finding points
wheredy=dxD 1�2 cos.1=x/C4x sin.1=x/ is negative.

71 True or false, with a reason: Between two local minima of a
smooth functionf .x/ there is a local maximum.

72 Create a functiony.x/ that has its maximum at a rough point
and its minimum at an endpoint.

73 Draw a circular pool with a lifeguard on one side and
a drowner on the opposite side. The lifeguard swims with
velocity v and runs around the rest of the pool with velocity
wD 10v: If the swim direction is at angle� with the direct
line, choose� to minimize and maximize the arrival time.
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3.3 Second Derivatives: Bending and Acceleration

When f 1.x/ is positive,f .x/ is increasing. Whendy=dx is negative,y.x/ is
decreasing. That is clear, but what about thesecondderivative? From looking at the
curve, can you decide the sign off 2.x/ or d2y=dx2? The answer isyesand the key
is in thebending.

A straight line doesn’t bend. The slope ofyDmxCb ism(a constant). The second
derivative is zero. We have to go to curves, to see a changing slope. Changes in the
derivative show up inf 2.x/:

f Dx2 hasf 1 D 2x andf 2 D 2 (this parabola bendsup)

yD sinx hasdy=dxD cosx andd2y=dx2 D�sinx (the sine bendsdown)

The slope2x gets largereven when the parabola is falling. The sign off or f 1 is
not revealed byf 2: The second derivative tells aboutchange in slope.

A function withf 2.x/¡ 0 is concave up. It bends upward as the slope increases.
It is also calledconvex. A function with decreasing slope—this meansf 2.x/  0—is
concave down. Note howcosx and1Ccosx and even1C 1

2
xCcosx change from

concave down to concave up atxD�=2: At that pointf 2 D�cosx changes from
negative to positive. The extra1C 1

2
x tilts the graph but the bending is the same.

Fig. 3.7 Increasing slopeD concave up.f 2¡ 0/:Concave down isf 2  0: Inflection pointf 2 D 0

Here is another way to see the sign off 2: Watch the tangent lines.When the
curve is concave up, the tangent stays below it. A linear approximation is too low.
This section computes aquadraticapproximation—which includes the term with
f 2¡0: When the curve bends down.f 2  0/, the opposite happens—the tangent
lines are above the curve. The linear approximation is too high, andf 2 lowers it.

In physical motion,f 2.t/ is the acceleration—in units of distance=.time/2:
Acceleration is rate of change of velocity. The oscillationsin2t hasvD 2cos2t
(maximum speed2) andaD�4sin2t (maximum acceleration4).

An increasing population meansf 1¡ 0: An increasing growth rate means
f 2¡ 0. Those are different. The rate can slow down while the growth continues.

MAXIMUM VS. MINIMUM

Remember thatf 1.x/D 0 locates a stationary point. That may be aminimumor
a maximum.The second derivative decides! Instead of computingf .x/ at many
points, we computef 2.x/ at one point—the stationary point. It is a minimum if
f 2.x/¡ 0:



154 3 Applications of the Derivative

3D Whenf 1.x/D 0 andf 2.x/¡ 0, there is alocal minimum atx:
Whenf 1.x/D 0 andf 2.x/  0, there is alocal maximumatx:

To the left of a minimum, the curve is falling. After the minimum, the curve rises. The
slope has changed from negative to positive. The graph bends upward andf 2.x/¡ 0:

At a maximum the slope drops from positive to negative. In the exceptional case,
whenf 1.x/D 0 and alsof 2.x/D 0, anything can happen. An example isx3, which
pauses atxD 0 and continues up (its slope is3x2¥ 0). Howeverx4 pauses and goes
down (with a very flat graph).

We emphasize that the information fromf 1.x/ andf 2.x/ is only “local.” To be
certain of anabsoluteminimum or maximum, we need information over the whole
domain.

EXAMPLE 1 f .x/D x3�x2 has f 1.x/D 3x2�2x and f 2.x/D 6x�2:
To find the maximum and=or minimum, solve3x2�2xD 0: The stationary points
arexD 0 andxD 2

3
. At those points we need the second derivative. It isf 2.0/D�2

(local maximum) andf 2�2
3

�

D C2 (local minimum).
Between the maximum and minimum is theinflection point. That is where

f 2.x/D 0. The curve changes from concave down to concave up. This example has
f 2 D 6x�2, so the inflection point is atxD 1

3
:

INFLECTION POINTS

In mathematics it is a special event when a function passes through zero. When the
function isf , its graph crosses the axis. When the function isf 1, the tangent line is
horizontal. Whenf 2 goes through zero, we have aninflection point.

The direction of bending changes at an inflection point. Your eye picks that out
in a graph. For an instant the graph is straight (straight lines havef 2 D 0). It is easy
to see crossing points and stationary points and inflection points. Very few people can
recognize wheref 3 D 0 or f 4 D 0: I am not sure if those points have names.

There is a genuine maximum or minimum whenf 1.x/ changes sign. Similarly,
there is a genuine inflection point whenf 2.x/ changes sign.The graph is concave
down on one side of an inflection point and concave up on the other side.�
The tangents are above the curve on one side and below it on the other side. At an
inflection point,the tangent line crosses the curve(Figure 3.7b).

Notice that a parabolayD ax2 CbxCc has no inflection points:y2 is constant.
A cubic curve has one inflection point, becausef 2 is linear. A fourth-degree curve
might or might not have inflection points—the quadraticf 2.x/ might or might not
cross the axis.

EXAMPLE 2 x4�2x2 isW-shaped,4x3�4x has two bumps,12x2�4 isU-shaped.
Thetable shows the signs at the important values ofx:

x �?2 �1 �1=?3 0 1=
?
3 1

?
2

f .x/ 0 � � 0;0 � � 0

f 1.x/ 0 C 0 � 0

f 2.x/ 0 � 0

�That rules outf .x/D x4, which hasf 2 D 12x2¡ 0 on both sides of zero. Its tangent line
is the x axis. The line stays below the graph—so no inflection point



3.3 Second Derivatives: Bending and Acceleration 155

Between zeros off .x/ come zeros off 1.x/ (stationary points). Between zeros of
f 1.x/ come zeros off 2.x/ (inflection points). In this examplef .x/ has a double
zero at the origin, so a single zero off 1 is caught there. It is a local maximum, since
f 2.0/  0:

Inflection points are important—not just for mathematics. We know the world
population will keep rising. We don’t know if therate of growth will slow down.
Remember:The rate of growth stops growing at the inflection point. Here is the
1990 report of the UN Population Fund.

The next ten years will decide whether the world population trebles or merely
doubles before it finally stops growing. This may decide the future of the earth as a
habitation for humans. The population, now5:3 billion, is increasing by a quarter
of a million every day. Between90 and100 million people will be added every
year during the1990s; a billion people—a whole China—over the decade. The
fastest growth will come in the poorest countries.

A few years ago it seemed as if the rate of population growth was slowing�
everywhere except in Africa and parts of South Asia. The world’s population
seemed set to stabilize around10:2 billion towards the end of the next century.

Today, the situation looks less promising. The world has overshot the marker
points of the1984 “most likely” medium projection. It is now on course for an
eventual total that will be closer to11 billion than to10 billion.

If fertility reductions continue to be slower than projected, the mark could be
missed again. In that case the world could be headed towards a total of up to14
billion people.

Starting with a census, the UN follows each age group in each country. They
estimate the death rate and fertility rate—the medium estimates are published. This
report is saying that we are not on track with the estimate.

Section 6.5 will come back to population, with an equation that predicts10 billion.
It assumes we are now at the inflection point. But China’s second census just started
on July1, 1990:When it’s finished we will know if the inflection point is still ahead.

You now understand the meaning off 2.x/:Its sign gives the direction of bending—
the change in the slope.The rest of this section computeshow much the curve
bends—using thesizeof f 2 and not just its sign. We find quadratic approximations
based onf 2.x/: In some courses they are optional—the main points are highlighted.

CENTERED DIFFERENCES AND SECOND DIFFERENCES

Calculus begins with average velocities, computed on either side ofx:

f .xC�x/�f .x/
�x

and
f .x/�f .x��x/

�x
are close tof 1.x/ (1)

We never mentioned it, but a better approximation tof 1.x/ comes fromaveraging
those two averages. This produces acentered difference, which is based onxC�x
andx��x: It divides by2�x:

f 1.x/� 1

2

�

f .xC�x/�f .x/
�x

C
f .x/�f .x��x/

�x

�

D
f .xC�x/�f .x��x/

2�x
: (2)

We claim this is better. The test is to try it on powers ofx:

�The United Nations watches the second derivative!
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For f .x/D x these ratios all givef 1 D 1 (exactly). Forf .x/D x2, only the
centered difference correctly givesf 1 D 2x: The one-sided ratio gave2xC�x
(in Chapter 1 it was2tCh). It is only “first-order accurate.” But centering leaves no
error. We are averaging2xC�x with 2x��x: Thus the centered difference
is “second-order accurate.”

I ask now:What ratio converges to the second derivative? One answer is to take
differences of the first derivative. Certainly�f 1=�x approachesf 2: But we want
a ratio involvingf itself. A natural idea is to takedifferences of differences, which
brings us to “second differences”:

f .xC�x/�f .x/
�x

� f .x/�f .x��x/
�x

�x
D
f .xC�x/�2f .x/Cf .x��x/

.�x/2
Ñ d2f

dx2
: (3)

On the top, the difference of the difference is�.�f /D�2f: It corresponds tod2f:
On the bottom,.�x/2 corresponds todx2 . This explains the way we place the2’s in
d2f=dx2: To say it differently:dx is squared,df is not squared—as in distance=.time/2:

Note that.�x/2 becomes much smaller than�x: If we divide�f by .�x/2, the
ratio blows up. It is the extra cancellation in the second difference�2f that allows
the limit to exist. That limit isf 2.x/:
Application The great majority of equations can’t be solved exactly. A typical case
is f 2.x/D�sinf .x/ (the pendulum equation). To compute a solution, I would
replacef 2.x/ by the second difference in equation(3). Approximations at points
spaced by�x are a very large part of scientific computing.

To test the accuracy of these differences, here is an experiment onf .x/D
sinxCcosx: The table shows the errors atxD 0 from formulas.1/, .2/, .3/:

step length�x one-sided errors centered errors second difference errors

1=4 .1347 .0104 �:0052
1=8 .0650 .0026 �:0013
1=16 .0319 .0007 �:0003
1=32 .0158 .0002 �:0001

The one-sided errors are cut in half when�x is cut in half. The other columns
decrease like.�x/2: Each reduction divides those errors by 4.The errors from
one-sided differences areO.�x/ and the errors from centered differences are
O.�x/2.

The “big O” notation When the errors are of order�x, we writeEDO.�x/:
This means thatE¤C�x for some constantC: We don’t computeC—in fact we
don’t want to deal with it. The statement “one-sided errors are Oh of deltax” captures
what is important. The main point of the other columns isEDO.�x/2 .

LINEAR APPROXIMATION VS. QUADRATIC APPROXIMATION

The second derivative gives a tremendous improvement over linear approximation
f .a/Cf 1.a/.x�a/: A tangent line starts out close to the curve, butthe line has
no way to bend. After a while it overshoots or undershoots the true function (see
Figure 3.8). That is especially clear for the modelf .x/D x2, when the tangent is the
x axis and the parabola curves upward.
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You can almost guess the term with bending.It should involvef 2, and also.�x/2:
It might be exactlyf 2.x/ times .�x/2 but it is not. The model functionx2 has
f 2 D 2: There must be a factor1

2
to cancel that2:

3E Thequadratic approximationto a smooth functionf .x/ nearxD a is

f .x/� f .a/Cf 1.a/.x�a/C 1
2
f 2.a/.x�a/2: (4)

At the basepoint this isf .a/D f .a/: The derivatives also agree atxD a: Further-
more the second derivatives agree. On both sides of.4/, the second derivative at
xD a is f 2.a/:

The quadratic approximation bends with the function. It is not the absolutely
final word, because there is a cubic term1

6
f 3.a/.x�a/3 and a fourth-degree term

1
24
f 4.a/.x�a/4 and so on. The whole infinite sum is a “Taylor series.” Equation(4)

carries that series through the quadratic term—which for practical purposes gives a
terrific approximation. You will see that in numerical experiments.

Two things to mention. First, equation(4) shows whyf 2¡ 0 brings the curve
above the tangent line. The linear part gives the line, while the quadratic part is
positive and bends upward. Second, equation(4) comes from.2/ and .3/: Where
one-sided differences givef .xC�x/� f .x/Cf 1.x/�x, centered differences
give the quadratic:

from.2/ W f .xC�x/� f .x��x/C2f 1.x/�x
from.3/ W f .xC�x/� 2f .x/�f .x��x/Cf 2.x/.�x/2:

Add and divide by2: The result isf .xC�x/� f .x/Cf 1.x/�xC 1
2
f 2.x/.�x/2:

This is correct through.�x/2 and misses by.�x/3, as examples show:

Fig. 3.8

EXAMPLE 3 .xC�x/3� .x3/C .3x2/.�x/C 1
2
.6x/.�x/2 Cerror.�x/3:

EXAMPLE 4 .1Cx/n� 1CnxC 1
2
n.n�1/x2:

The first derivative atxD 0 is n: The second derivative isn.n�1/: The cubic term
would be1

6
n.n� l/.n�2/x3:We are just producing the binomial expansion!

EXAMPLE 5
1

1�x � 1CxCx2 D start of a geometric series.

1=.1�x/ has derivative1=.1�x/2: Its second derivative is2=.1�x/3: At xD 0
those equal1;1;2: The factor 1

2
cancels the2, which leaves1;1;1: This explains

1CxCx2:

The next terms arex3 andx4: The whole series is1=.1�x/D 1CxCx2Cx3 C � � � :
Numerical experiment 1=

?
1Cx� 1� 1

2
xC 3

8
x2 is tested for accuracy.

Dividing x by 2 almost divides the error by8: If we only keep the linear part1� 1
2
x,

the error is only divided by4: Here are the errors atxD 1
4
; 1

8
and 1

16
:

linear approximation

�

error� 3

8
x2

�

W :0194 :0053 :0014

quadratic approximation

�

error� �5
16
x3

�

W�:00401 � :00055 � :00007
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3.3 EXERCISES

Read-through questions

The direction of bending is given by the sign of a . If the
second derivative is b in an interval, the function is concave
up (or convex). The graph bends c . The tangent lines are

d the graph. Iff 2.x/  0 then the graph is concave e ,
and the slope is f .

At a point wheref 1.x/D 0 andf 2.x/¡ 0, the function has a
g . At a point where h , the function has a maximum. A

point wheref 2.x/D 0 is an i point, providedf 2 changes sign.
The tangent line j the graph.

The centered approximation tof 1.x/ is Œ k �=2�x: The
3-point approximation tof 2.x/ is Œ l �=.�x/2: The second
order approximation tof .xC�x/ is f .x/Cf 1.x/�xC m .
Without that extra term this is just the n approximation. With
that term the error is O( o ).

1 A graph that is concave upward is inaccurately said to
“hold water.” Sketch a graph withf 2.x/¡ 0 that would not hold
water.

2 Find a function that is concave down forx  0 and concave
up for0 x  1 and concave down forx¡ 1:
3 Can a function be always concave down and never cross zero?

Can it be always concave down and positive? Explain.

4 Find a function with f 2.2/D 0 and no other inflection
point.

True or false, when f .x/ is a 9th degree polynomial with
f 1.1/D 0 andf 1.3/D 0: Give (or draw) a reason.

5 f .x/D 0 somewhere betweenxD 1 and xD 3:

6 f 2.x/D 0 somewhere betweenxD 1 andxD 3:

7 There is no absolute maximum atxD 3:

8 There are seven points of inflection.

9 If f .x/ has nine zeros, it has seven inflection points.

10 If f .x/ has seven inflection points, it has nine zeros.

In 11–16 decide which stationary points are maxima or
minima.

11 f .x/D x2�6x
13 f .x/D x4�6x3

15 f .x/D sinx�cosx

12 f .x/D x3�6x2

14 f .x/D x11�6x10

16 f .x/D xCsin 2x

Locate the inflection points and the regions wheref .x/ is
concave up or down.

17 f .x/D xCx2�x3 18 f .x/D sinxC tan x

19 f .x/D .x�2/2.x�4/2 20 f .x/D sinxC.sin x/3

21 If f .x/ is an even function, the centered difference
Œf .�x/�f .��x/�=2�x exactly equalsf 1.0/D 0: Why?

22 If f .x/ is an odd function, the second difference
Œf .�x/�2f .0/Cf .��x/�=.�x/2 exactly equals f 2.0/D 0:

Why?

Write down the quadratic f .0/Cf 1.0/xC 1
2f

2.0/x2 in
23–26.

23 f .x/D cosxCsin x

25 f .x/D .sinx/=x

24 f .x/D tanx

26 f .x/D 1CxCx2

In 26, findf .1/Cf 1.1/.x�1/C 1
2f

2.1/.x�1/2 aroundaD 1:

27 FindA andB in
?
1�x� 1CAxCBx2 :

28 FindA andB in 1=.1�x/2� 1CAxCBx2:

29 Substitute the quadratic approximation into
Œf .xC�x/�f .x/�=�x, to estimate the error in this one-sided
approximation tof 1.x/:
30 What is the quadratic approximation atxD 0 to f .��x/?
31 Substitute for f .xC�x/ and f .x��x/ in the centered
approximation Œf .xC�x/�f .x��x/�=2�x, to get
f 1.x/C error. Find the�x and .�x/2 terms in this error. Test
onf .x/D x3 atxD 0:

32 Guess a third-order approximationf .�x/�f .0/C
f 1.0/�xC 1

2f
2.0/.�x/2 C : Test it onf .x/D x3

Construct a table as in the text; showing the actual errors
at xD 0 in one-sided differences; centered differences; second
differences; and quadratic approximations: By hand take two
values of�x; by calculator take three; by computer take four.

33 f .x/D x3 Cx4 34 f .x/D 1=.1�x/
35 f .x/D x2 Csinx

36 Example5 was 1=.1�x/� 1CxCx2: What is the error at
xD 0:1? What is the error atxD 2?

37 Substitute xD :01 and xD�0:1 in the geometric series
1=.1�x/D 1CxCx2 C � � � to find 1=:99 and 1=1:1—first to
four decimals and then to all decimals.

38 Compute cos1� by equation (4) withaD 0: OK to check
on a calculator. Also compute cos1: Why so far off?

39 Why is sinx�x not only a linear approximation but also a
quadratic approximation?xD 0 is an point.

40 If f .x/ is an even function, find its quadratic approximation
at xD 0: What is the equation of the tangent line?



3.3 Second Derivatives: Bending and Acceleration 159

41 For f .x/D xCx2 Cx3, what is the centered difference
Œf .3/�f .1/�=2, and what is the true slopef 1.2/?
42 For f .x/D xCx2 Cx3, what is the second difference
Œf .3/�2f .2/Cf .1/�=12, and what is the exactf 2.2/?
43 The error inf .a/Cf 1.a/.x�a/ is approximately12f

2.a/.x�
a/2: This error is positive when the function is : Then the tan-
gent line is the curve.

44 Draw a piecewise lineary.x/ that is concave up. Define
“concave up” without using the testd2y=dx2¥ 0: If derivatives
don’t exist, a new definition is needed.

45 What do these sentences say aboutf or f 1 or f 2 or f 3?

1. The population is growing more slowly.

2. The plane is landing smoothly.

3. The economy is picking up speed.

4. The tax rate is constant.

5. A bike accelerates faster but a car goes faster.
6. Stock prices have peaked.

7. The rate of acceleration is slowing down.

8. This course is going downhill.

46 (Recommended) Draw a curve that goes up-down-up.
Below it draw its derivative. Then draw its second derivative.
Mark the same points on all curves—the maximum, minimum,
and inflection points of the first curve.

47 Repeat Problem 46 on a printout showing y.x/D

x3�4x2 CxC2 anddy=dx andd2y=dx2 on the same graph.
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3.4 Graphs

Reading a graph is like appreciating a painting. Everything is there, but you have to
know what to look for. One way to learn is by sketching graphs yourself, and in the
past that was almost the only way. Now it is obsolete to spend weeks drawing curves—
a computer or graphing calculator does it faster and better. That doesn’t remove the
need to appreciate a graph (or a painting), since a curve displays a tremendous amount
of information.

This section combines two approaches. One is to study actual machine-produced
graphs (especially electrocardiograms). The other is to understand the mathematics of
graphs—slope, concavity, asymptotes, shifts, and scaling. We introduce thecentering
transform andzoom transform. These two approaches are like the rest of calculus,
where special derivatives and integrals are done by hand and day-to-day applications
are by computer. Both are essential—the machine can do experiments that we could
never do. But without the mathematics our instructions miss the point. To create good
graphs you have to know a few of them personally.

READING AN ELECTROCARDIOGRAM (ECG or EKG)

The graphs of an ECG show the electrical potential during a heartbeat. There are
twelve graphs—six from leads attached to the chest, and six from leads to the arms
and left leg. (It doesn’t hurt, but everybody is nervous. You have to lie still, because
contraction of other muscles will mask the reading from the heart.) The graphs record
electrical impulses, as the cells depolarize and the heart contracts.

What can I explain in two pages? The graph shows the fundamental pattern of the
ECG.Note theP wave, the QRScomplex, and theT wave. Those patterns, seen
differently in the twelve graphs, tell whether the heart is normal or out of rhythm—or
suffering an infarction (a heart attack).

First of all the graphs show theheart rate. The dark vertical lines are by convention
1
5

second apart. The light lines are1
25

second apart. If the heart beats every1
5

second
(one dark line) the rate is5 beats per second or300 per minute. That is extreme
tachycardia—not compatible with life. The normal rate is between three dark lines
per beat (3

5
second, or100 beats per minute) and five dark lines (one second between

beats,60 per minute). A baby has a faster rate, over100 per minute. In this figure the
rate is : A rate below60 is bradycardia, not in itself dangerous. For a resting
athlete that is normal.

Doctors memorize the six rates300;150;100;75;60;50:Those correspond to1;2;
3;4;5;6 dark lines between heartbeats. The distance is easiest to measure between
spikes (the peaks of the R wave). Many doctors put a printed scale next to the chart.
One textbook emphasizes that “Where the next wave falls determines the rate. No
mathematical computation is necessary.” But you see where those numbers come
from.
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The next thing to look for isheart rhythm. The regular rhythm is set by the
pacemaker, which produces the P wave. A constant distance between waves is good—
and then each beat is examined. When there is a block in the pathway, it shows as a
delay in the graph. Sometimes the pacemaker fires irregularly. Figure 3.10 shows
sinus arrythmia(fairly normal). The time between peaks is changing. In disease or
emergency, there are potential pacemakers in all parts of the heart.

I should have pointed out the main parts. We have four chambers, an atrium
ventricle pair on the left and right. The SA node should be the pacemaker. The
stimulus spreads from the atria to the ventricles— from the small chambers that “prime
the pump” to the powerful chambers that drive blood through the body. The P wave
comes with contraction of the atria. There is a pause of1

10
second at the AV node.

Then the big QRS wave starts contraction of the ventricles, and the T wave is when
the ventricles relax. The cells switch back to negative charge and the heart cycle is
complete.

Fig. 3.9 Happy person with a heart and a normal electrocardiogram.

TheECG shows when the pacemaker goes wrong. Other pacemakers take over—
the AV node will pace at60=minute: An early firing in the ventricle can give a wide
spike in the QRS complex, followed by a long pause. The impulses travel by a slow
path. Also the pacemaker can suddenly speed up (paroxysmal tachycardia is
150�250=minute). But the most critical danger isfibrillation.

Figure 3.10b shows a dying heart. The ECG indicates irregular contractions—no
normal PQRST sequence at all. What kind of heart would generate such a rhythm?
The muscles are quivering or “fibrillating” independently. The pumping action is
nearly gone, which means emergency care. The patient needs immediate CPR—
someone to do the pumping that the heart can’t do. Cardio-pulmonary resuscitation
is a combination of chest pressure and air pressure (hand and mouth) to restart the
rhythm. CPR can be done on the street. A hospital applies a defibrillator, which shocks
the heart back to life. It depolarizesall the heart cells, so the timing can be reset. Then
the charge spreads normally from SA node to atria to AV node to ventricles.

This discussion has not used all twelve graphs to locate the problem. That needs
vectors. Look ahead at Section 11.1 for the heart vector, and especially at Section 11.2
for its twelve projections. Those readings distinguish between atrium and ventricle,
left and right, forward and back. This information is of vital importance in the event
of a heart attack. A “heart attack” is amyocardial infarction(MI).

An MI occurs when part of an artery to the heart is blocked (a coronary occlusion).
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Fig. 3.10 Doubtful rhythm. Serious fibrillation. Signals of a heart attack.

An area is without blood supply—therefore without oxygen or glucose. Often the
attack is in the thick left ventricle, which needs the most blood. The cells are first
ischemic, then injured, and finally infarcted (dead). The classical ECG signals involve
those three I’s:

Ischemia: Reduced blood supply, upside-down T wave in the chest leads.
Injury: An elevated segment between S and T means a recent attack.
Infarction: The Q wave, normally a tiny dip or absent, is as wide as a small
square (1

25
second). It may occupy a third of the entire QRS complex.

The Q wave gives the diagnosis. You can find all three I’s in Figure 3.10c.
It is absolutely amazing how much a good graph can do.

THE MECHANICS OF GRAPHS

From the meaning of graphs we descend to the mechanics. A formulais now given for
f .x/: The problem isto create the graph. It would be too old-fashioned to evaluate
f .x/ by hand and draw a curve through a dozen points. A computer has a much better
idea of a parabola than an artist (who tends to make it asymptotic to a straight line).
There are some things a computer knows, and other things an artist knows, and still
others that you and I know—because we understand derivatives.

Our job is to apply calculus. We extract information fromf 1 andf 2 as well asf:
Small movements in the graph may go unnoticed, but the important properties come
through. Here are the main tests:

1. The sign off .x/ (above or below axis:f D 0 atcrossing point)
2. The sign off 1.x/ (increasing or decreasing:f 1 D 0 atstationary point)
3. The sign off 2.x/ (concave up or down:f 2 D 0 at injection point)
4. The behavior off .x/ asxÑ8 andxÑ�8
5. The points at whichf .x/Ñ8 or f .x/Ñ�8
6. Even or odd? Periodic? Jumps inf or f 1? Endpoints? f .0/?

EXAMPLE 1 f .x/D
x2

1�x2
f 1.x/D

2x

.1�x2/2
f 2.x/D

2C6x2

.1�x2/3

The sign off .x/ depends on1�x2: Thusf .x/¡ 0 in the inner interval where
x2  1: The graph bends upwards (f 2.x/¡ 0) in that same interval. There are no
inflection points, sincef 2 is never zero. The stationary point wheref 1 vanishes is
xD 0:We have alocal minimumatxD 0:

The guidelines (orasymptotes) meet the graph at infinity. For largex the important
terms arex2 and�x2: Their ratio isCx2=�x2 D�1—which is the limit asxÑ8, andxÑ�8: The horizontal asymptote is the lineyD�1.

The other infinities, wheref blows up, occur when1�x2 is zero. That happens at
xD 1 andxD�1: The vertical asymptotes are the linesxD 1 andxD�1. The
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graph in Figure 3.11a approaches those lines.

if f .x/Ñ b asxÑ8 or�8, the lineyD b is ahorizontal asymptote
if f .x/ÑC8 or�8 asxÑ a, the linexD a is avertical asymptote
if f .x/� .mxCb/Ñ 0 asxÑC8 orÑ�8, the lineyDmxCb is asloping asymptote.

Finally comes the vital fact that this function iseven: f .x/D f .�x/ because
squaringx obliterates the sign. The graph is symmetric across they axis.

To summarize the effect of dividing by1�x2: No effect nearxD 0: Blowup at1
and�1 from zero in the denominator. The function approaches�1 as|x|Ñ8:
EXAMPLE 2 f .x/D

x2

x�1 f 1 D x2�2x
.x�1/2 f 2 D

2

.x�1/3
This example divides byx�1: ThereforexD 1 is a vertical asymptote, wheref .x/
becomes infinite. Vertical asymptotes come mostly fromzero denominators.

Look beyondxD 1: Both f .x/ andf 2.x/ are positive forx¡ 1: The slope is
zero atxD 2: That must be a local minimum.

What happens asxÑ8 ? Dividing x2 by x�1, the leading term isx: The
function becomes large. It grows linearly—we expect asloping asymptote. To find
it, do the division properly:

x2

x�1 D xC1C
1

x�1: (1)

The last term goes to zero. The function approachesyD xC1 as the asymptote.
This function is not odd or even. Its graph is in Figure 3.11b. Withzoom outyou

see the asymptotes.Zoom in for f D 0 or f 1 D 0 or f 2 D 0:

Fig. 3.11 The graphs ofx2=.1�x2/ andx2=.x�1/ and sinxC 1
3 sin 3x:

EXAMPLE 3 f .x/D sinxC 1
3

sin 3x has the slope f 1.x/D cosxCcos3x:

Above all these functions areperiodic. If x increases by2� , nothing changes. The
graphs from2� to 4� are repetitions of the graphs from0 to 2�: Thusf .xC2�/D
f .x/ and the period is2�: Any interval of length2� will show a complete picture,
and Figure 3.11c picks the interval from�� to �:

The second outstanding property is thatf is odd. The sine functions satisfy
f .�x/D�f .x/: The graph is symmetric through the origin. By reflecting the right
half through the origin, you get the left half. In contrast, the cosines inf 1.x/ are even.

To find the zeros off .x/ andf 1.x/ andf 2.x/, rewrite those functions as

f .x/D 2 sinx� 4
3

sin3x f 1.x/D�2 cosxC4cos3x f 2.x/D�10 sinxC12sin3x:
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We changedsin3x to 3 sinx�4sin3x: For the derivatives usesin2xD 1�cos2x:
Now find the zeros—thecrossing points, stationary points, andinflection points:

f D 0 2 sin xD 4
3

sin3xñ sin xD 0 or sin2xD 3
2
ñ xD 0;��

f 1 D 0 2 cosxD 4 cos3xñ cosxD 0 or cos2xD 1
2
ñ xD��=4;��=2;�3�=4

f 2 D 0 5 sin xD 6 sin3xñ sin xD 0 or sin2xD 5
6
ñ xD 0;�66�;�114�;��

That is more than enough information to sketch the graph. The stationary points
�=4;�=2;3�=4 are evenly spaced. At those pointsf .x/ is

?
8=3 (maximum),2=3

(local minimum),
?
8=3 (maximum). Figure 3.11c shows the graph.

I would like to mention a beautiful continuation of this same pattern:

f .x/D sinxC 1
3

sin 3xC 1
5

sin 5xC � � � f 1.x/D cosxCcos3xCcos5xC � � �
If we stop after ten terms,f .x/ is extremely close to astep function. If we don’t
stop,the exact step function contains infinitely many sines. It jumps from��=4 to
C�=4 asx goes past zero. More precisely it is a “square wave,” because the graph
jumps back down at� and repeats. The slopecosxCcos3xC � � � also has period
2�: Infinitely many cosines add up to a delta function! (The slope at the jump is an
infinite spike.) These sums of sines and cosines areFourier series.

GRAPHS BY COMPUTERS AND CALCULATORS

We have come to a topic of prime importance. If you havegraphing softwarefor
a computer, or if you have agraphing calculator, you can bring calculus to life. A
graph presentsy.x/ in a new way—different from the formula. Information that is
buried in the formula is clear on the graph.But don’t throw awayy.x/ anddy=dx.
The derivative is far from obsolete.

These pages discuss how calculus and graphs go together. We work on a crucial
problem of applied mathematics—to find wherey.x/ reaches its minimum. There is
no need to tell you a hundred applications. Begin with the formula. How do you find
the pointx� wherey.x/ is smallest ?

First, draw the graph. That shows the main features. We should see (roughly) where
x� lies. There may be several minima, or possibly none. But what we see depends on
a decision that is ours to make—the range ofx andy in the viewing window.

If nothing is known abouty.x/, the range is hard to choose. We can accept a default
range, and zoom in or out. We can use the autoscaling program in Section 1.7.
Somehowx� can be observed on the screen. Then the problem is to compute it.

I would like to work with a specific example. We solved it by calculus—to find
the best pointx� to enter an expressway. The speeds in Section 3.2 were30 and60:
The length of the fast road will bebD 6: The range of reasonable values for the
entering point is0¤ x¤ 6: The distance to the road in Figure 3.12 isaD 3: We
drive a distance

?
32 Cx2 at speed30 and the remaining distance6�x at speed60:

driving time y.x/D
1

30

a
32 Cx2 C

1

60
.6�x/: (2)

This is the function to be minimized. Its graph is extremely flat.
It may seem unusual for the graph to be so level. On the contrary, it is common.

A flat graph is the whole point ofdy=dxD 0:
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The graph near the minimum looks likeyDCx2: It is a parabola sitting on a
horizontal tangent. At a distance of�xD :01, we only go up byC.�x/2 D :0001C:
UnlessC is a large number, this�y can hardly be seen.

Fig. 3.12 Enter atx: The graph of driving timey.x/: Zoom boxes locatex�.
The solution is to change scale. Zoom in onx�: The tangent line stays flat, since

dy=dx is still zero. But the bending fromC is increased. Figure 3.12 shows thezoom
boxblown up into a new graph ofy.x/:

A calculator has one or more ways to findx�: With a TRACE mode, you direct
a cursor along the graph. From the display ofy values, readymax andx� to the
nearest pixel. A zoom gives better accuracy, because it stretches the axes—each
pixel represents a smaller�x and�y: The TI-81 stretches by4 as default. Even
better, let the whole process be graphical—draw the actualZOOM BOX on the
screen. Pick two opposite corners, pressENTER, and the box becomes the new
viewing window (Figure 3.12).

The first zoom narrows the search forx�: It lies betweenxD 1 andxD 3:We build
a newZOOM BOX and zoom in again. Now1:5¤ x�¤ 2: Reasonable accuracy
comes quickly. High accuracy does not come quickly. It takes time to create the box
and execute the zoom.

Question 1 What happens as we zoom in, if all boxes are square (equal scaling) ?

Answer The picture gets flatter and flatter. We are zooming in to the tangent line.
Changingx toX=4 andy toY=4, the parabolayD x2 flattens toY DX2=4: To see
any bending,we must use a long thin zoom box.

I want to change to a totally different approach. Suppose we have a formula for
dy=dx: That derivative was produced by an infinite zoom! The limit of �y=�x
came by brainpower alone:

dy

dx
D

x

30
?
32 Cx2

D� 1

60
: Call this f .x/:

This function is zero atx�: The computing problem is completely changed: Solve
f .x/D 0: It is easier to find a root off .x/ than a minimum ofy.x/. The graph of
f .x/ crosses thex axis. The graph ofy.x/ goes flat—this is harder to pinpoint.



166 3 Applications of the Derivative

Fig. 3.13

Take the model functionyD x2 for |x|   :01: The slopef D 2x changes
from�:02 to C:02: The value ofx2 moves only by:0001 —its minimum point is
hard to see.

To repeat: Minimization is easier withdy=dx: The screen shows an order of
magnitude improvement, when we trace or zoom onf .x/D 0: In calculus, we have
been taking the derivative for granted. It is natural to get blasé aboutdy=dxD 0:We
forget how intelligent it is, to work with the slope instead of the function.

Question 2 How do you get another order of magnitude improvement?
Answer Use the next derivative! With a formula fordf=dx, which isd2y=dx2,
the convergence is even faster. In two steps the error goes from:01 to :0001 to
:00000001: Another infinite zoom went into the formula fordf=dx, andNewton’s
methodtakes account of it. Sections 3.6 and 3.7 studyf .x/D 0:

The expressway example allows perfect accuracy. We can solvedy=dxD 0 by
algebra. The equation simplifies to60xD 30

?
32 Cx2: Dividing by 30 and squaring

yields4x2 D 32 Cx2: Then3x2 D 32: The exact solution isx� D
?
3D 1:73205 : : :

A model like this is a benchmark, to test competing methods. It also displays what
we never appreciated—the extreme flatness of the graph. The difference in driving
time between entering atx� D

?
3 andxD 2 is one second.

THE CENTERING TRANSFORM AND ZOOM TRANSFORM

For a photograph we do two things—point the right way and stand at the right
distance. Then take the picture. Those steps are the same for a graph. First we pick
the new center point. The graph isshifted, to move that point from.a;b/ to .0;0/:
Then we decide how far the graph should reach. It fits in a rectangle, just like the
photograph.Rescalingto x=c andy=d puts the desired section of the curve into the
rectangle.

A good photographer does more (like an artist). The subjects are placed and
the camera is focused. For good graphs those are necessary too. But an everyday
calculator or computer or camera is built to operate without an artist—just aim
and shoot. I want to explain how to aim atyD f .x/:

We are doing exactly what a calculator does, with one big difference.It doesn’t
change coordinates. We do. WhenxD 1,yD�2moves to the center of the viewing
window, the calculator still shows that point as.1;�2/: When the centering
transform acts on yC2Dm.x�1/, those numbers disappear. This will be
confusing unlessx andy also change.The new coordinates areX D x�1 and
Y D yC2. Then the new equation isY DmX .

The main point (for humans) is to make the algebra simpler. The computer has no
preference forY DmX overy�y0 Dm.x�x0/: It accepts2x2�4x as easily as
x2: But we do preferY DmX andyD x2, partly because their graphs go through
.0;0/: Ever since zero was invented, mathematicians have liked that number best.

3F A centering transformshifts left by a and down byb:

X D x�a andY D y�b changeyD f .x/ into Y CbD f .XCa/:

EXAMPLE 4 The parabolayD 2x2�4x has its minimum whendy=dxD
4x�4D 0: Thus xD 1 and yD�2: Move this bottom point to the center:
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yD 2x2�4x is

Y C2D 2.X�1/2�4.X�1/ or Y D 2X2:

The new parabolaY D 2X2 has its bottom at.0;0/: It is the same curve, shifted
across and up. The only simpler parabola isyD x2: This final step is the job of the
zoom.

Next comes scaling. We may want more detail (zoom in to see the tangent line).
We may want a big picture (zoom out to check asymptotes). We might stretch one
axis more than the other, if the picture looks like a pancake or a skyscraper.

3G A zoom transformscales theX andY axes byc andd :

x D cX and y D dY change Y DF.X/ to y D dF.x=c/:

The newx andy are boldface letters, and the graph is rescaled. OftencD d:

EXAMPLE 5 Start with Y D 2X2: Apply a square zoom withcD d: In the
new xy coordinates, the equation isy=cD 2.x=c/2: The number2 disappears if
cD d D 2: With the right centering and the right zoom, every parabola that opens
upward isy D x2:

Question 3 What happens to the derivatives (slope and bending) after a zoom ?
Answer The slope (first derivative) is multiplied byd=c: Apply the chain rule to
y D dF.x=c/: A square zoom hasd=cD 1—lines keep their slope. The second
derivative is multiplied byd=c2, which changes the bending. A zoom out divides
by small numberscD d , so the big picture is more, curved.

Combining the centering and zoom transforms, as we do in practice, givesy in
terms ofx:

yD f .x/ becomes Y D f .XCa/�b and then y D d

�

f

�

x
c

Ca

��b� :
Fig. 3.14 Change of coordinates by centering and zoom. Calculators stillshow.x;y/:

Question 4 Findx andy ranges after two transforms. Start between�1 and1:
Answer The window after centering is�1¤ x�a¤ 1 and�1¤ y�b¤ 1: The
window after zoom is�1¤ c.x�a/¤ 1 and�1¤ d.y�b/¤ 1: The point.1;1/
was originally in the corner. The point.c�1 Ca;d�1 Cb/ is now in the corner.

The numbersa;b;c;d are chosen to produce a simpler function (likey D x2).
Or else—this is important in applied mathematics—they are chosen to makex andy
“dimensionless.” An example isyD 1

2
cos8t: The frequency8 has dimension

1=time. The amplitude1
2

is a distance. Withd D 2 cm andcD 8 sec, the units are
removed andy D cost:
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May I mention one transform thatdoes change the slope ? It is arotation.
The whole plane is turned. A photographer might use it—but normally people are
supposed to be upright. You use rotation when you turn a map or straighten a picture.
In the next section, an unrecognizable hyperbola is turned intoY D 1=X:

3.4 EXERCISES

Read-through questions

The position, slope, and bending ofyD f .x/ are decided by
a , b and c . If |f .x/|Ñ8 as xÑa, the line

xD a is a vertical d . If f .x/Ñ b for large x, then yD

b is a e . If f .x/�mxÑ b for large x, then yDmxCb

is a f . The asymptotes ofyD x2=.x2�4/ are g . This
function is even becausey.�x/D h . The function sinkx has
period i .

Near a point wheredy=dxD 0, the graph is extremely j .
For the modelyDCx2, xD :1 gives yD k . A box around
the graph looks long and l . We m in to that box for an-
other digit ofx�: But solvingdy=dxD 0 is more accurate, because
its graph n the x axis. The slope ofdy=dx is o . Each
derivative is like an p zoom.

To move .a;b/ to .0;0/, shift the variables toX D q and
Y D r . This s transform changesyD f .x/ to Y D t .
The original slope at.a;b/ equals the new slope at u . To stretch
the axes byc andd , setx D cX and v . The w transform
changesY DF.X/ to y D x . Slopes are multiplied by y .
Second derivatives are multiplied by z .

1 Find the pulse rate when heartbeats are1
2 second or two dark

lines orx seconds apart.

2 Another way to compute the heart rate uses marks for
6-second intervals. Doctors count the cycles in an interval.

(a) How many dark lines in6 seconds ?

(b) With 8 beats per interval, find the rate.
(c) Rule: Heart rateD cycles per interval times :

Which functions in 3–18 are even or odd or periodic ? Find
all asymptotes:yD b or xD a or yDmxCb: Draw roughly by
hand or smoothly by computer.

3 f .x/D x�.9=x/ 4 f .x/D xn (any integern)

5 f .x/D
1

1�x2 6 f .x/D
x3

4�x2

7 f .x/D
x2 C3

x2 C1
8 f .x/D

x2 C3

xC1

9 f .x/D .sinx/.sin2x/ 10 f .x/D cosxCcos3xCcos5x

11 f .x/D
x sinx

x2�1 12 f .x/D
x

sinx

13 f .x/D
1

x3 Cx2
14 f .x/D

1

x�1 �2x
15 f .x/D

x3 C1

x3�1 16 f .x/D
sin xCcosx

sinx�cosx

17 f .x/D x�sinx 18 f .x/D .1=x/�?x
In 19–24 constructf .x/ with exactly these asymptotes.

19 xD 1 andyD 2 20 xD 1, xD 2, yD 0

21 yD x andxD 4 22 yD 2xC3 and xD 0

23 yD x.xÑ8/, yD�x.xÑ�8/
24 xD 1;xD 3;yD x

25 ForP.x/=Q.x/ to haveyD 2 as asymptote, the polynomialsP
andQ must be :

26 For P.x/=Q.x/ to have a sloping asymptote, the degrees of
P andQ must be :

27 For P.x/=Q.x/ to have the asymptoteyD 0, the degrees of
P and Q must : The graph ofx4=.1Cx2/ has what
asymptotes ?

28 Both 1=.x�1/ and 1=.x�1/2 have xD 1 and yD 0 as
asymptotes. The most obvious difference in the graphs is

:

29 If f 1.x/ has asymptotesxD 1 and yD 3 then f .x/ has
asymptotes :

30 True (with reason) orfalse(with example).

(a) Every ratio of polynomials has asymptotes

(b) If f .x/ is even so isf 2.x/
(c) If f 2.x/ is even so isf .x/
(d) Between vertical asymptotes,f 1.x/ touches zero.

31 Construct anf .x/ that is “even aroundxD 3:”

32 Constructg.x/ to be “odd aroundxD�:”

Create graphs of 33–38 on a computer or calculator.

33 y.x/D .1C1=x/x ;�3¤x¤ 3
34 y.x/D x1=x ;0:1¤x¤ 2
35 y.x/D sin.x=3/Csin.x=5/

36 y.x/D .2�x/=.2Cx/;�3¤x¤ 3



3.4 Graphs 169

37 y.x/D 2x3 C3x2�12xC5 on Œ�3;3� andŒ2:9;3:1�

38 100Œsin.xC :1/�2 sinxCsin.x� :1/�
In 39–40 show the asymptotes on large-scale computer graphs.

39 (a) yD
x3 C8x�15
x2�2 (b) yD

x4�6x3 C1

2x4 Cx2

40 (a) yD
x2�2

x3 C8x�15 (b) yD
x2�xC2

x2�2xC1

41 RescaleyD sinx soX is in degrees, not radians, andY changes
from meters to centimeters.

Problems 42–46 minimize the driving timey.x/ in the text: Some
questions may not fit your software.

42 Trace along the graph ofy.x/ to estimatex�: Choose an
xy range or use the default.

43 Zoomin bycD d D 4: How many zooms until you reachx� D

1:73205 or 1:7320508 ?

44 Ask your program for the minimum ofy.x/ and the solution of
dy=dxD 0: Same answer ?

45 What are the scaling factorsc and d for the two zooms in
Figure 3.12 ? They give the stretching of thex andy axes.

46 Show thatdy=dxD�1=60 and d2y=dx2 D 1=90 at xD 0:

Linear approximation givesdy=dx��1=60Cx=90: So the slope
is zero nearxD : This is Newton’s method, using the next
derivative.

Change the function toy.x/D
?
15Cx2=30C.10�x/=60.

47 Findx� using only the graph ofy.x/:

48 Findx� using also the graph ofdy=dx:

49 What are thexy and XY and xy equations for the line in
Figure 3.14 ?

50 Define fn.x/D sin xC 1
3 sin 3xC 1

5 sin 5xC � � � (n terms).
Graph f5 and f10 from �� to �: Zoom in and describe the
Gibbs phenomenonatxD 0:

On the graphs of 51–56; zoom in to all maxima and minima
(3 significant digits). Estimate inflection points.

51 yD 2x5�16x4 C5x3�37x2 C21xC683

52 yD x5�x4�?3xC1�2
53 yD x.x�1/.x�2/.x�4/
54 yD 7 sin2xC5 cos3x

55 yD .x3�2xC1/=.x4�3x2�15/;�3¤x¤ 5
56 yD x sin.1=x/;0:1¤x¤ 1
57 A 10-digit computer showsyD 0 and dy=dxD :01 at
x� D 1: This root should be correct to about (8 digits) (10 digits)
(12 digits). Hint: SupposeyD :01.x�1C error). What errors
don’t show in10 digits ofy ?

58 Which is harder to compute accurately: Maximum point
or inflection point ? First derivative or second derivative ?
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3.5 Parabolas, Ellipses, and Hyperbolas

Here is a list of the most important curves in mathematics, so you can tell what is
coming. It is not easy to rank the top four:

1. straight lines
2. sines and cosines(oscillation)
3. exponentials(growth and decay)
4. parabolas,ellipses, and hyperbolas(using1;x;y;x2;xy;y2).

The curves that I wrote last, the Greeks would have written first. It is so natural to
go from linear equations to quadratic equations. Straight lines use1;x;y: Second
degree curves includex2;xy;y2: If we go on tox3 andy3, the mathematics gets
complicated. We now study equations of second degree, and the curves they produce.

It is quite important to see both theequationsand thecurves. This section connects
two great parts of mathematics—analysisof the equation andgeometryof the curve.
Together they produce “analytic geometry.” You already know about functions and
graphs. Even more basic: Numbers correspond to points. We speak about “the point
.5;2/:” Euclid might not have understood.

Where Euclid drew a45� line through the origin, Descartes wrote downyD x:
Analytic geometry has become central to mathematics—we now look at one part of it.

Fig. 3.15 The cutting plane gets steeper: circle to ellipse to parabola tohyperbola.

CONIC SECTIONS

The parabola and ellipse and hyperbola have absolutely remarkable properties. The
Greeks discovered that all these curves come fromslicing a cone by a plane. The
curves are “conic sections.” A level cut gives acircle, and a moderate angle produces
an ellipse. A steep cut gives the two pieces of ahyperbola(Figure 3.15d). At the
borderline, when the slicing angle matches the cone angle, the plane carves out a
parabola. It has one branch like an ellipse, but it opens to infinity like a hyperbola.

Throughout mathematics, parabolas are on the border between ellipses and
hyperbolas.

To repeat: We can slice through cones or we can look for equations. For a cone
of light, we see an ellipse on the wall. (The wall cuts into the light cone.) For an
equationAx2 CBxyCCy2 CDxCEyCF D 0, we will work to make it simpler.
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The graph will be centered and rescaled (and rotated if necessary), aiming for an
equation likeyD x2: Eccentricity and polar coordinates are left for Chapter 9.

THE PARABOLA y D ax2
Cbx Cc

You knew this function long before calculus. The graph crosses the x axis when
yD 0: The quadratic formula solvesyD 3x2�4xC1D 0, and so does factoring
into .x�1/.3x�1/: The crossing pointsxD 1 andxD 1

3
come from algebra.

The other important point is found by calculus. It is theminimumpoint, where
dy=dxD 6x�4D 0:Thex coordinate is4

6
D 2

3
, halfway between the crossing points.

The height isymin D�1
3
: This is thevertexV in Figure 3.16a—at the bottom of the

parabola.
A parabola has no asymptotes. The slope6x�4 doesn’t approach a constant.

To center the vertexShift left by 2
3

and up by 1
3
: So introduce the new

variablesX D x� 2
3

and Y D yC 1
3
: Then xD 2

3
and yD�1

3
correspond to

X D Y D 0—which is the new vertex:

yD 3x2�4xC1 becomes Y D 3X2: (1)

Check the algebra.Y D 3X2 is the same asyC 1
3

D 3
�

x� 2
3

�2
: That simplifies to

the original equationyD 3x2�4xC1:The second graph shows the centered parabola
Y D 3X2, with the vertex moved to the origin.

To zoom in on the vertex RescaleX andY by the zoom factora:

Y D 3X2 becomes y=aD 3.x=a/2:

The final equation hasx andy in boldface. WithaD 3 we findy D x2—the graph is
magnified by3: In two steps we have reached the model parabola opening upward.

Fig. 3.16 Parabola with minimum atV: Rays reflect to focus. Centered in (b), rescaled in (c).

A parabola has another important point—thefocus. Its distance from the vertex is
calledp: The special parabolay D x2 haspD 1=4, and other parabolasY D aX2

havepD 1=4a: You magnify by a factora to gety D x2: The beautiful property of a
parabola is thatevery ray coming straight down is reflected to the focus.

Problem2:3:25 located the focusF—here we mention two applications. A solar
collector and a TV dish are parabolic. They concentrate sun rays and TV signals
onto a point—a heat cell or a receiver collects them at the focus. The1982 UMAP
Journalexplains how radar and sonar use the same idea. Car headlights turn the idea
around, and send the light outward.

Here is a classical fact about parabolas.From each point on the curve, the
distance to the focus equals the distance to the “directrix.”The directrix is the
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line yD�p below the vertex (so the vertex is halfway between focus and directrix).
With pD 1

4
, the distance down from any.x;y/ isyC 1

4
:Match that with the distance

to the focus at
�

0; 1
4

�

— this is the square root below. Out comes the special parabola
yD x2:

yC 1
4

D

b
x2 C

�

y� 1
4

�2 ���Ñ (square both sides)���Ñ yD x2: (2)

The exercises give practice with all the steps we have taken—center the parabola to
Y D aX2, rescale it toy D x2, locate the vertex and focus and directrix.

Summary for other parabolas yD ax2 CbxCc has its vertex wheredy=dx is
zero. Thus2axCbD 0 andxD�b=2a:Shifting across to that point is “completing
the square”:

ax2 CbxCc equals a

�

xC
b

2a

�2

CC: (3)

Here C D c� .b2=4a/ is the height of the vertex. The centering transform
X D xC .b=2a/,Y D y�C producesY D aX2: It moves the vertex to.0;0/, where
it belongs.

For the ellipse and hyperbola, our plan of attack is the same:

1. Center the curve to remove any linear termsDx andEy:
2. Locate each focus and discover the reflection property.
3. Rotate to removeBxy if the equation contains it.

ELLIPSES
x2

a2
C

y2

b2
D 1 (CIRCLES HAVE a D b)

This equation makes the ellipse symmetric about.0;0/—the center. Changingx to�x or y to�y leaves the same equation. No extra centering or rotation is needed.
The equation also shows thatx2=a2 andy2=b2 cannot exceed one. (They add

to one and can’t be negative.) Thereforex2¤ a2, andx stays between�a anda:
Similarly y stays betweenb and�b: The ellipse is inside a rectangle.

By solving fory we get a function (or two functions!) ofx:

y2

b2
D 1� x2

a2
gives

y

b
D�1� x2

a2
or yD�b

a

a
a2�x2:

The graphs are the top half.C/ and bottom half.�/ of the ellipse. To draw the ellipse,
plot them together. They meet whenyD 0, atxD a on the far right of Figure 3.17
and atxD�a on the far left. The maximumyD b and minimumyD�b are at the
top and bottom of the ellipse, where we bump into the enclosing rectangle.

A circle is a special case of an ellipse, whenaD b. The circle equationx2 C
y2 D r2 is the ellipse equation withaD bD r:This circle is centered at.0;0/; other
circles are centered atxD h;yD k: The circle is determined by itsradiusr and its
center.h;k/:

Equation of circleW .x�h/2 C .y�k/2 D r2: (4)

In words, the distance from.x;y/ on the circle to.h;k/ at the center isr: The
equation has linear terms�2hx and�2ky—they disappear when the center is.0;0/:
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EXAMPLE 1 Find the circle that has a diameter from.1;7/ to .5;7/:

Solution The center is halfway at.3;7/: Sor D 2 and.x�3/2 C .y�7/2 D 22:

EXAMPLE 2 Find the center and radius of the circlex2�6xCy2�14yD�54:
Solution Completex2�6x to the square.x�3/2 by adding 9: Complete
y2�14y to .y�7/2 by adding49: Adding 9 and49 to both sides of the equation
leaves.x�3/2 C .y�7/2 D 4—the same circle as in Example 1.

Quicker Solution Match the given equation with.4/: ThenhD 3, kD 7, andr D 2:
x2�6xCy2�14yD�54 must agree with x2�2hxCh2 Cy2�2kyCk2 D r2:

The change toX D x�h andY D y�k moves the center of the circle from.h;k/
to .0;0/: This is equally true for an ellipse:

The ellipse
.x�h/2
a2

C
.y�k/2
b2

D 1 becomes
X2

a2
C
Y 2

b2
D 1

When we rescale byxDX=a andyD Y=b, we get the unit circlex2 Cy2 D 1:
The unit circle has area�: The ellipse has area�ab (proved later in the book).

The distance around the circle is2�: The distance around an ellipse does not rescale—
it has no simple formula.

Fig. 3.17 Uncentered circle. Centered ellipsex2=32 Cy2=22 D 1: The distance from center
to far right is alsoaD 3: All rays fromF2 reflect toF1:

Now we leave circles and concentrate on ellipses. They havetwo foci (pronounced
fo-sigh). For a parabola, the second focus is at infinity. For a circle, both foci are at
the center. The foci of an ellipse are on its longer axis (itsmajor axis), one focus on
each side of the center:

F1 is atxD cD
a
a2�b2 and F2 is atxD�c:

The right triangle in Figure3.17 has sidesa;b;c: From the top of the ellipse, the
distance to each focus isa: From the endpoint atxD a, the distances to the foci are
aCc anda�c: Adding .aCc/C .a�c/ gives2a: As you go around the ellipse,
the distance toF1 plus the distance toF2 is constant(always2a).

3H At all points on the ellipse, the sum of distances from the foci is2a: This
is another equation for the ellipse:

fromF1 andF2 to .x;y/ W
a
.x�c/2 C y2 C

a
.xCc/2 Cy2 D 2a: (5)
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To draw an ellipse, tie a string of length2a to the foci. Keep the string taut and your
moving pencil will create the ellipse. This description usesa andc—the other form
usesa andb (rememberb2 Cc2 D a2). Problem24 asks you to simplify equation(5)
until you reachx2=a2 Cy2=b2 D 1:

The “whispering gallery” of the United States Senate is an ellipse. If you stand at
one focus and speak quietly, you can be heard at the other focus (and nowhere else).
Your voice is reflected off the walls to the other focus—following the path of the
string. For a parabola the rays come in to the focus from infinity—where the second
focus is.

A hospital uses this reflection property to split up kidney stones. The patient sits
inside an ellipse with the kidney stone at one focus. At the other focus alithotripter
sends out hundreds of small shocks. You get a spinal anesthetic (I mean the patient)
and the stones break into tiny pieces.

The most important focus is the Sun. The ellipse is the orbit of the Earth. See
Section 12.4 for a terrible printing mistake by the Royal Mint, on England’s
last pound note. They put the Sun at the center.

Question 1 Why do the whispers (and shock waves) arrive together at the second
focus ?
Answer Whichever way they go, the distance is2a: Exception: straight path is2c:

Question 2 Locate the ellipse with equation4x2 C9y2 D 36:

Answer Divide by36 to change the constant to1: Now identifya andb:

x2

9
C
y2

4
D 1 so aD

?
9 andbD

?
4: Foci at�?9�4D�?5:

Question 3 Shift the center of that ellipse across and down toxD 1, yD�5:
Answer Change x to x�1: Change y to yC5: The equation becomes
.x�1/2=9C .yC5/2=4D 1: In practice we start with this uncentered ellipse and
go the other way to center it.

HYPERBOLAS
y2

a2
� x2

b2
D 1

Notice the minus sign for a hyperbola. That makes all the difference. Unlike an
ellipse,x andy can both be large. The curve goes out to infinity. It is still symmetric,
sincex can change to�x andy to�y:

The center is at.0;0/: Solving fory again yields two functions (C and�):

y2

a2
� x2

b2
D 1 gives

y

a
D�1C

x2

b2
or yD�a

b

a
b2 Cx2: (6)

The hyperbola has two branches that never meet. The upper branch, with a plus sign,
hasy¥a: ThevertexV1 is atxD 0;yD a—the lowest point on the branch. Much
further out, whenx is large, the hyperbola climbs up beside itssloping asymptotes:

if
x2

b2
D 1000 then

y2

a2
D 1001: So

y

a
is close to

x

b
or � x

b
:
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Fig. 3.18 The hyperbola1
4y

2� 1
9x

2 D 1 has aD 2;bD 3;cD
?
4C9: The distances toF1

andF2 differ by 2aD 4:

The asymptotes are the linesy=aD x=b andy=aD�x=b: Their slopes area=b and�a=b: You can’t miss them in Figure 3.18.
For a hyperbola, the foci are inside the two branches. Their distance from the

center is still calledc: But now cD
?
a2 Cb2, which is larger thana and b: The

vertex is a distancec�a from one focus andcCa from the other. Thedifference
(not the sum) is.cCa/� .c�a/D 2a:

All points on the hyperbola have this property:The difference between distances
to the foci is constantly2a: A ray coming in to one focus is reflected toward the
other. The reflection is on theoutsideof the hyperbola, and theinsideof the ellipse.

Here is an application to navigation. Radio signals leave two fixed transmitters at
the same time. A ship receives the signals a millisecond apart. Where is the ship ?
Answer: It is on a hyperbola with foci at the transmitters. Radio signals travel
186 miles in a millisecond, so186D 2a: This determines the curve. In Long Range
Navigation (LORAN) a third transmitter gives another hyperbola. Then the ship is
located exactly.

Question 4 How do hyperbolas differ from parabolas, far from the center ?
Answer Hyperbolas have asymptotes. Parabolas don’t.

The hyperbola has a natural rescaling. The appearance ofx=b is a signal to change
to X: Similarly y=a becomesY: ThenY D 1 at the vertex, and we have a standard
hyperbola:

y2=a2�x2=b2 D 1 becomes Y 2�X2 D 1:

A 90� turn givesX2�Y 2 D 1—the hyperbola opens to the sides. A45� turn
produces2XY D 1: We show below how to recognizex2 CxyCy2 D 1 as an
ellipse andx2 C3xyCy2 D 1 as a hyperbola. (They are not circles because of the
xy term.) When thexy coefficient increases past2, x2 Cy2 no longer indicates an
ellipse.

Question 5 Locate the hyperbola with equation9y2�4x2 D 36:

Answer Divide by36: Theny2=4�x2=9D 1: RecognizeaD
?
4 andbD

?
9:

Question 6 Locate the uncentered hyperbola9y2�18y�4x2�4xD 28:
Answer Complete9y2�18y to 9.y�1/2 by adding9: Complete4x2 C4x to

4.xC 1
2
/2 by adding4

�

1
2

�2
D 1: The equation is rewritten as9.y�1/2�4.xC 1

2
/2 D

28C9�1: This is the hyperbola in Question5—except its center is.�1
2
;1/:
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To summarize: Find the center by completing squares. Then read off a andb:

THE GENERAL EQUATION Ax2
CBxy CCy2

CDx CEy CF D 0

This equation is of second degree, containing any and all of1;x;y;x2;xy;y2:
A plane is cutting through a cone.Is the curve a parabola or ellipse or
hyperbola? Start with the most important caseAx2 CBxyCCy2 D 1:

3I The equationAx2 CBxyCcy2 D 1 produces a hyperbola ifB2¡ 4AC and
an ellipse ifB2  4AC: A parabola hasB2 D 4AC:

To recognize the curve, we removeBxy by rotating the plane. This also changesA
and C—but the combinationB2�4AC is not changed (proof omitted). An
example is2xyD 1, with B2 D 4: It rotates toy2�x2 D 1, with�4AC D 4: That
positive number4 signals a hyperbola—sinceAD�1 andC D 1 have opposite signs.

Another example isx2 Cy2 D 1: It is a circle (a special ellipse). However we
rotate, the equation stays the same. The combinationB2�4AC D 0�4 �1 �1 is
negative, as predicted for ellipses.

To rotate by an anglę, changex andy to new variablesx1 andy 1:
xDx1 cos˛�y 1 sin˛
yDx1 sin˛Cy 1 cos˛ and

x1D x cos˛Cy sin˛
y 1D�y sin˛Cx cos˛: (7)

Substituting forx andy changesAx2 CBxyCCy2 D 1 to A1x12 CB 1x1y 1CC 1y 12 D
1: The formulas forA1, B 1, C 1 are painful so I go to the key point:

B 1 is zero if the rotation anglę has tan2˛DB=.A�C/:
WithB 1 D 0, the curve is easily recognized fromA1x12 CC 1y 12 D 1: It is a hyperbola
if A1 andC 1 have opposite signs. ThenB 12�4A1C 1 is positive. The originalB2�4AC
was also positive, because this special combination stays constant during rotation.

After thexy term is gone, we deal withx andy—by centering. To find the center,
complete squares as in Questions3 and6: For total perfection, rescale to one of the
model equationsy D x2 or x2 Cy2 D 1 or y2�x2 D 1:

The remainingquestion is aboutF D 0:What is the graph ofAx2 CBxyCCy2 D 0 ?
The ellipse-hyperbola-parabola have disappeared. But if the Greeks were right, the
cone is still cut by a plane. The degenerate caseF D 0 occurs when the plane cuts
right through the sharp point of the cone.

A level cut hits only that one point.0;0/: The equation shrinks tox2 Cy2 D 0,
a circle with radius zero. A steep cut gives two lines. The hyperbola becomesy2�
x2 D 0, leaving only its asymptotesyD�x: A cut at the exact angle of the cone
gives only one line, as inx2 D 0: A single point, two lines, andone lineare very
extreme cases of an ellipse, hyperbola, and parabola.

All these “conic sections” come from planes and cones. The beauty of the geometry,
which Archimedes saw, is matched by the importance of the equations. Galileo
discovered that projectiles go along parabolas (Chapter 12). Kepler discovered that

the Earth travels on an ellipse (also Chapter 12). Finally Einstein discovered that
light travels on hyperbolas. That is in four dimensions, and not in Chapter 12.
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equation vertices foci

P yD ax2 CbxCc

�� b

2a
;c� b2

4a

�

1

4a
above vertex, also infinity

E
x2

a2
C
y2

b2
D 1;a¡ b .a;0/ and.�a;0/ .c;0/ and.�c;0/ W cD

?
a2�b2

H
y2

a2
� x2

b2
D 1 .0;a/ and.0;�a/ .0;c/ and.0;�c/ W cD

?
a2 Cb2

3.5 EXERCISES

Read-through questions

The graph of yD x2 C2xC5 is a a . Its lowest point
(the vertex) is .x;y/D ( b ). Centering byX D xC1 and
Y D c moves the vertex to.0;0/: The equation becomes
Y D d . The focus of this centered parabola ise . All rays
coming straight down are f to the focus.

The graph ofx2 C4y2 D 16 is an g . Dividing by h

leaves x2=a2 Cy2=b2 D 1 with aD i and bD j . The
graph lies in the rectangle whose sides arek . The area
is �abD l . The foci are atxD�cD m . The sum of
distances from the foci to a point on this ellipse is always

n . If we rescale toX D x=4 and Y D y=2 the equation
becomes o and the graph becomes a p .

The graph ofy2�x2 D 9 is a q . Dividing by 9 leaves
y2=a2�x2=b2 D 1 with aD r andbD s . On the upper
branchy¥ t : The asymptotes are the lines u . The foci
are atyD�cD v . The w of distances from the foci to a
point on this hyperbola is x .

All these curves are conic sections—the intersection of a
y and a z . A steep cutting angle yields a A . At

the borderline angle we get a B . The general equation is
Ax2C C CF D 0: If DDED 0 the center of the graph is at

D . The equationAx2 CBxyCCy2 D 1 gives an ellipse when
E . The graph of4x2 C5xyC6y2 D 1 is a F .

1 The vertex of yD ax2 CbxCc is at xD�b=2a: What is
special about thisx ? Show that it givesyD c�.b2=4a/:

2 The parabola yD 3x2�12x has xmin= : At this
minimum, 3x2 is as large as12x: IntroducingX D x�2
andY D yC12 centers the equation to :

Draw the curves 3–14 by hand or calculator or computer:
Locate the vertices and foci.

3 yD x2�2x�3
5 4yD�x2

7 .x�1/2 C.y�1/2 D 1

4 yD .x�1/2
6 4xD y2

8 x2 C9y2 D 9

9 9x2 Cy2 D 9 10 x2=4�.y�1/2 D 1

11 y2�4x2 D 1

13 y2�x2 D 0

12 .y�1/2�4x2 D 1

14 xyD 0

Problems 15–20 are about parabolas; 21–34 are about ellipses;
35–41 are about hyperbolas.

15 Find the parabolayD ax2 CbxCc that goes through
.0;0/ and.1;1/ and.2;12/:

16 yD x2�x has vertex at : To move the vertex to
.0;0/ setX D andY D : ThenY DX2:

17 (a) In equation (2) change14 to p: Square and simplify.

(b) Locate the focus and directrix ofY D 3X2: Which
points are a distance1 from the directrix and focus ?

18 The parabola yD 9�x2 opens with vertex at
: Centering byY D y�9 yieldsY D�x2:

19 Find equations for all parabolas which

(a) open to the right with vertex at.0;0/

(b) open upwards with focus at.0;0/
(c) open downwards and go through.0;0/ and.1;0/:

20 A projectile is at xD t , yD t� t2 at time t: Find dx=dt

anddy=dt at the start, the maximum height, and anxy equation
for the path.

21 Find the equation of the ellipse with extreme points at
.�2;0/ and.0;�1/: Then shift the center to.1;1/ and find the new
equation.

22 On the ellipse, x2=a2 Cy2=b2 D 1, solve for y when
xD cD

a
a2�b2: This height above the focus will be valuable in

proving Kepler’s third law.

23 Find equations for the ellipses with these properties:

(a) through.5;0/ with foci at .�4;0/
(b) with sum of distances to.1;1/ and.5;1/ equal to12
(c) with both foci at.0;0/ and sum of distancesD 2aD 10:
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24 Move a square root to the right side of equation (5) and
square both sides. Then isolate the remaining square root and square
again. Simplify to reach the equation of an ellipse.

25 Decide between circle-ellipse-parabola-hyperbola, based on the
XY equation withX D x�1 andY D yC3:

(a) x2�2xCy2 C6yD 6

(b) x2�2x�y2�6yD 6

(c) x2�2xC2y2 C12y D 6

(d) x2�2x�yD 6:

26 A tilted cylinder has equation .x�2y�2z/2 C

.y�2x�2z/2 D 1: Show that the water surface atzD 0 is an el-
lipse. What is its equation and what isB2�4AC ?

27 .4;9=5/ is above the focus on the ellipsex2=25Cy2=9D 1:

Finddy=dx at that point and the equation of the tangent line.

28 (a) Check that the linexx0 Cyy0 D r2 is tangent to the
circlex2 Cy2 D r2 at .x0;y0/:

(b) For the ellipsex2=a2 Cy2=b2 D 1 show that the tangent
equation isxx0=a

2 Cyy0=b
2 D 1: (Check the slope.)

29 The slope of the normal line in FigureA is
sD�1=.slope of tangent/D : The slope of the line from
F2 isS D : By the reflection property,

S D cot2� D
1

2
.cot�� tan�/D

1

2

�

s� 1
s

�

:

Test your numberss andS against this equation.

30 Figure B proves the reflecting property of an ellipse.
R is the mirror image ofF1 in the tangent line;Q is any other point
on the line. Deduce steps2;3;4 from 1;2;3:

1. PF1 CPF2 QF1 CQF2 (left sideD 2a,Q is outside)
2. PRCPF2 QRCQF2

3. P is on the straight line fromF2 toR
4. ˛Dˇ: the reflecting property is proved.

31 The ellipse .x�3/2=4C.y�1/2=4D 1 is really a
with center at and radius : ChooseX and Y to
produceX2 CY 2 D 1:

32 Compute the area of a square that just fits inside the
ellipsex2=a2 Cy2=b2 D 1:

33 Rotate the axes ofx2 CxyCy2 D 1 by using equation (7)
with sin˛D cos̨ D 1=

?
2: The x1y1 equation should show an

ellipse.

34 What area;b;c for the Earth’s orbit around the sun ?

35 Find an equation for the hyperbola with

(a) vertices.0;�1/, foci .0;�2/
(b) vertices.0;�3/, asymptotesyD�2x
(c) .2;3/ on the curve, asymptotesyD�x

36 Find the slope of y2�x2 D 1 at .x0;y0/: Show that
yy0�xx0 D 1 goes through this point with the right slope (it has
to be the tangent line).

37 If the distances from.x;y/ to .8;0/ and .�8;0/ differ by
10, what hyperbola contains.x;y/?

38 If a cannon was heard by Napoleon and one second later
by the Duke of Wellington, the cannon was somewhere on a
with foci at :

39 y2�4y is part of .y�2/2 D and 2x2 C12x

is part of2.xC3/2 D : Thereforey2�4y�2x2�12xD 0

gives the hyperbola.y�2/2�2.xC3/2 D : Its center is
and it opens to the :

40 Following Problem 39 turn y2 C2yD x2 C10x into
Y 2 DX2 CC with X;Y; andC equal to :

41 Draw the hyperbolax2�4y2 D 1 and find its foci and
asymptotes.

Problems 42–46 are about second-degree curves (conics).

42 For whichA;C;F doesAx2 CCy2 CF D 0 have no solution
(empty graph) ?

43 Show that x2 C2xyCy2 C2xC2yC1D 0 is the equation
(squared) of a single line.

44 Given any points in the plane, a second-degree
curveAx2 C � � �CF D 0 goes through those points.

45 (a) When the planezD axCbyCc meets the conez2 D

x2 Cy2, eliminatez by squaring the plane equation. Rewrite
in the formAx2 CBxyCCy2 CDxCEyCF D 0:

(b) ComputeB2�4AC in terms ofa andb:

(c) Show that the plane meets the cone in an ellipse if
a2 Cb2  1 and a hyperbola ifa2 Cb2¡ 1 (steeper).

46 The roots of ax2 CbxCcD 0 also involve the special
combinationb2�4ac: This quadratic equation has two real roots if

and no real roots if : The roots come together when
b2 D 4ac, which is the borderline case like a parabola.
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3.6 Iterations xnC1 D F.xn/

Iteration means repeating the same function. Suppose the function isF.x/D
cosx: Choose any starting value, sayx0 D 1: Take its cosine:x1 D cosx0 D :54:
Then take the cosine ofx1. That producesx2 D cos:54D :86: The iteration is
xnC1 D cosxn. I am in radian mode on a calculator, pressing “cos” each time. The
early numbers are not important, what is important is the output after12 or 30 or 100
steps:

EXAMPLE 1 x12 D :75; x13 D :73; x14 D :74; : : : ; x29 D :7391; x30 D :7391:

The goal is to explain why thex’s approachx� D :739085 : : : : Every starting value
x0 leads to this same numberx�:What is special about:7391 ?

Note on iterations Do x1 D cosx0, andx2 D cosx1, mean thatx2 D cos2x0 ?
Absolutely not! Iteration creates a new and different functioncos.cosx/: It uses the
cos button, not the squaring button. The third step createsF.F.F.x///: As soon as
you can, iterate withxnC1 D 1

2
cosxn:What limit do thex’s approach? Is it1

2
.:7931/ ?

Let me slow down to understand these questions.The central idea is expressed
by the equationxnC1 DF.xn/. Substitutingx0 into F givesx1: This outputx1 is
the input that leads tox2: In its turn,x2 is the input and out comesx3 DF.x2/: This
is iteration, and it produces the sequencex0;x1;x2; : : : :

The x’s may approach a limitx�, depending on the functionF: Sometimesx�
also depends on the starting valuex0: Sometimes there isno limit. Look at a second
example, which does not need a calculator.

EXAMPLE 2 xnC1 DF.xn/D 1
2
xn C4: Starting fromx0 D 0 the sequence is

x1 D 1
2
�0C4D 4; x2 D 1

2
�4C4D 6; x3 D 1

2
�6C4D 7; x4 D 1

2
�7C4D 71

2
; : : : :

Those numbers0;4;6;7;71
2
; : : : seem to be approachingx� D 8: A computer would

convince us. So will mathematics, when we see what is special about8:

When thex’s approachx�, the limit ofxnC1 D 1
2
xn C4

isx� D 1
2
x�C4: This limiting equation yieldsx� D 8:

8 is the “steady state” whereinput equals output: 8DF.8/: It is thefixed point.
If we start atx0 D 8, the sequence is8;8;8; : : : : When we start atx0 D 12, the

sequence goes back toward8:

x1 D 1
2
�12C4D 10; x2 D 1

2
�10C4D 9; x3 D 1

2
�9C4D 8:5; : : : :

Equation for limit: If t he iterationsxnC1 DF.xn/ converge tox�, thenx� DF.x�/.
To repeat:8 is special because it equals1

2
�8C4: The number:7391 : : : is special

because it equalscos:7391 : : :: The graphs ofyD x and yDF.x/ intersect at
x�. To explainwhythex’s converge (or why they don’t) is the job of calculus.

EXAMPLE 3 xnC1 D x2
n has two fixed points: 0D 02 and 1D 12: Here

F.x/D x2:

Starting fromx0 D 1
2

the sequence1
4
; 1

16
; 1

256
; : : : goes quickly tox� D 0: The only

approaches tox� D 1 are fromx0 D 1 (of course) and fromx0 D�1: Starting from
x0 D 2 we get4;16;256; : : : andthe sequence diverges toC8:
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Each limitx� has a “basin of attraction.” The basin contains all starting pointsx0

that lead tox�: For Examples1 and2, everyx0 led to :7391 and8: The basins were
the whole line (that is still to be proved). Example 3 had three basins—the interval�1  x0  1, the two pointsx0 D�1, and all the rest. The outer basin|x0| ¡ 1 led
to�8: I challenge you to find the limits and the basins of attraction (by calculator)
for F.x/D x� tanx:

In Example 3,x� D 0 is attracting. Points nearx� move towardx�: The fixed
pointx� D 1 is repelling. Points near1move away. We now find the rule that decides
whetherx� is attracting or repelling.The key is the slopedF=dx at x�.

3J Start from anyx0 near a fixed pointx� DF.x�/:
x� is attracting if |dF=dx| is below1 atx�
x� is repelling if |dF=dx| is above1 atx�:

First I will give a calculus proof. Then comes a picture of convergence, by “cobwebs.”
Both methods throw light on this crucial test for attraction:|dF=dx|   1:

First proof: Subtractx� DF.x�/ fromxnC1 DF.xn/: The differencexnC1�x�
is the same asF.xn/�F.x�/: This is�F: The basic idea of calculus is that�F
is close toF 1�x:

xnC1�x� DF.xn/�F.x�/�F 1.x�/.xn�x�/: (1)

The“error” xn�x� is multiplied by the slopedF=dx: The next errorxnC1�x� is
smaller or larger, based on|F 1|   1 or |F 1| ¡ 1 at x�: Every step multiplies
approximately byF 1.x�/: Its size controls the speed of convergence.

In Example 1,F.x/ is cosx andF 1.x/ is �sinx: There is attraction to:7391
because|sinx�|   1: In Example 2,F is 1

2
xC4 and F 1 is 1

2
: There is attraction to

8: In Example 3,F is x2 andF 1 is 2x: There is superattraction tox� D 0 (where
F 1 D 0). There is repulsion fromx� D 1 (whereF 1 D 2).

I admit one major difficulty. The approximation in equation(1) only holdsnear
x�: If x0 is far away, does the sequence still approachx� ? When there are several
attracting points, whichx� do we reach ? This section starts with good iterations,
which solve the equationx� DF.x�/ orf .x/D 0:At the end we discoverNewton’s
method. The next section produces crazy but wonderful iterations, not converging and
not blowing up. They lead to “fractals” and “Cantor sets” and “chaos.”

The mathematics of iterations is not finished. It may never be finished, but we are
converging on the answers. Please choose a function and join in.

THE GRAPH OF AN ITERATION: COBWEBS

The iterationxnC1 DF.xn/ involves two graphs at the same time. One is the graph
of yDF.x/: The other is the graph ofyD x (the45� line). The iteration jumps back
and forth between these graphs. It is a very convenient way to see the whole process.

Example 1 wasxnC1 D cosxn: Figure 3.19 shows the graph ofcosx and the
“cobweb.” Starting at.x0;x0/ on the45� line, the rule is based onx1 DF.x0/:

From.x0;x0/ go up or down to.x0;x1/ on the curve.

From.x0;x1/ go across to.x1;x1/ on the45� line.
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These steps are repeated forever. Fromx1 go up to the curve atF.x1/: That height
is x2: Now cross to the45� line at.x2;x2/: The iterations are aiming for.x�;x�/D
.:7391; :7391/:This is thecrossing pointof the two graphsyDF.x/ andyD x:

Fig. 3.19 Cobwebs go from.x0;x0/ to .x0;x1/ to .x1;x1/—line to curve to line.

Example 2 wasxnC1 D 1
2
xn C4: Both graphs are straight lines. The cobweb is

one-sided, from.0;0/ to .0;4/ to .4;4/ to .4;6/ to .6;6/: Notice howy changes
(vertical line) and thenx changes (horizontal line). The slope ofF.x/ is 1

2
, so the

distance to8 is multiplied by 1
2

at every step.
Example 3 wasxnC1 D x2

n: The graph ofyD x2 crosses the45� line at two fixed
points:02 D 0 and12 D 1: Figure 3.20a starts the iteration close to1, but it quickly
goes away. This fixed point is repelling becauseF 1.1/D 2: Distance fromx� D 1
is doubled (at the start). One path moves down tox� D 0—which issuperattractive
becauseF 1 D 0: The path fromx0¡ 1 diverges to infinity.

EXAMPLE 4 F.x/ has two attracting pointsx� (a repellingx� is always between).

Figure 3.20b shows two crossings with slope zero. The iterations and cobwebs
converge quickly. In between, the graph ofF.x/must cross the45� line from below.
That requires a slope greater than one. Cobwebs diverge from this unstable point,
which separates the basins of attraction. The fixed pointxD� is in a basin by itself!

Note1 To draw cobwebs on a calculator, graphyDF.x/ on top ofyD x: On
a Casio, one way is to plot.x0;x0/ and give the commandLINE: PLOTX,Y followed byEXE. Now move the cursor vertically toyDF.x/ and pressEXE. Then move horizontally toyD x and pressEXE. Continue. Each step draws
a line.

For the TI-81 (and also the Casio) a short program produces a cobweb. StoreF.x/
in theYD function slotY1. Set the range (square window or autoscaling). Run the
program and answer the prompt withx0:PrgmC:COBWEB :Disp ''INITIAL X�'' :Input X :All-off:Y1-On :''X''ÑY4 :Lbl 1 :XÑS :Y1ÑT :Line (S,S,S,T):Line(S,T,T,T) :TÑX :Pause :Goto 1
Note2 Thex’s approachx� from one side when0  dF=dx  1:
Note3 A basin of attraction can include farawayx0’s (basins can come in infinitely
many pieces). This makes the problem interesting. If no fixed points are attracting,
see Section 3.7 for “cycles” and “chaos.”
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Fig. 3.20 Converging and diverging cobwebs:F.x/D x2 andF.x/D x�sinx:

THE ITERATION xnC1 D Xn�cf .xn/

At this point we offer the reader a choice. One possibility is to jump ahead to the
next section on “Newton’s Method.” That method is an iteration to solvef .x/D 0:
The functionF.x/ combinesxn andf .xn/ andf 1.xn/ into an optimal formula
for xnC1:We will see how quickly Newton’s method works (when it works). It isthe
outstanding algorithm to solve equations, and it is totally built on tangent
approximations.

The other possibility is to understand (through calculus) a whole family of
iterations. This family depends on a numberc, which is at our disposal.The best
choice ofc produces Newton’s method. I emphasize that iteration is by no means a
new and peculiar idea.It is a fundamental technique in scientific computing.

We start by recognizing that there are many ways to reachf .x�/D 0: (I write
x� for the solution.) A good algorithm may switch to Newton as it gets close. The
iterations usef .xn/ to decide on the next pointxnC1:

xnC1 DF.xn/D xn�cf .xn/: (2)

Notice howF.x/ is constructed fromf .x/—they are different! We movef to the
right side and multiply by a “preconditioner”c: The choice ofc (or cn, if it changes
from step to step)is absolutely critical. The starting guessx0 is also important—but
its accuracy is not always under our control.

Suppose thexn converge tox�: Then the limit of equation(2) is

x� D x��cf .x�/: (3)

That givesf .x�/D 0: If the xn’s have a limit, it solves the right equation. It is a
fixed point ofF (we can assumecnÑ c¤ 0 andf .xn/Ñ f .x�/). There are two
key questions, and both of them are answered by the slopeF 1.x�/:

1. How quickly doesxn approachx� (or do thexn diverge)?

2. What is a good choice ofc (or cn) ?

EXAMPLE 5 f .x/D ax�b is zero at x� D b=a: The iteration xnC1 D
xn�c.axn�b/ intends to findb=a without actually dividing. (Early computers
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could not divide; they used iteration.) Subtractingx� from both sides leaves an
equation for the error:

xnC1�x� D xn�x��c.axn�b/:
Replaceb by ax�: The right side is.1�ca/.xn�x�/: This “error equation” is

(error)nC1 D .1�ca/(error)n: (4)

At every step the error is multiplied by.1�ca/, which isF 1: The error goes to
zero if|F 1| is less than1. The absolute value|1�ca| decides everything:

xn converges tox� if and only if �1  1�ca  1: (5)

Theperfect choice (if we knew it) iscD 1=a, which turns the multiplier1�ca into
zero. Then one iteration gives the exact answer:x1 D x0� .1=a/.ax0�b/D b=a:
That is the horizontal line in Figure 3.21a, converging in one step. But look at the
other lines.

This example did not need calculus. Linear equations never do. The key idea is that
close tox� the nonlinear equationf .x/D 0 is nearly linear. We apply the tangent
approximation. You are seeing how calculus is used, in a problem that doesn’t start
by asking for a derivative.

THE BEST CHOICE OF c

The immediate goal is to study the errorsxn�x�: They go quickly to zero, if
the multiplier is small. To understandxnC1 D xn�cf .xn/, subtract the equation
x� D x��cf .x�/:

xnC1�x� D xn�x��c.f .xn/�f .x�//: (6)

Now calculus enters.When you see a difference off ’s think of df=dx: Replace
f .xn/�f .x�/ byA.xn�x�/, whereA stands for the slopedf=dx atx�:

xnC1�x�� .1�cA/.xn�x�/: (7)

This is theerror equation. The new error at stepnC1 is approximately the old error
multiplied bymD 1�cA: This corresponds tomD 1�ca in the linear example.
We keep returning to the basic test|m|D |F 1.x�/|   1:

3K Starting nearx�; the errorsxn�x� go to zero if multiplier has|m|   1: The
perfect choice iscD 1=AD 1=f 1.x�/: ThenmD 1�cAD 0:

There is only one difficulty:We don’t knowx�. Therefore we don’t know the
perfectc: It depends on the slopeAD f 1.x�/ at the unknown solution. However we
can come close, by using the slope atxn:

Choosecn D 1=f 1.xn/: ThenxnC1 D xn�f .xn/=f
1.xn/DF.xn/.

This is Newton’s method. The multipliermD 1�cA is as near to zero as we can
make it. By buildingdf=dx into F.x/, Newton speeded up the convergence of the
iteration.
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Fig. 3.21 The error multiplier ismD 1�cf 1.x�/: Newton hascD 1=f 1.xn/ andmÑ 0:

EXAMPLE 6 Solvef .x/D 2x�cosxD 0with different iterations (differentc’s).

The lineyD 2x crosses the cosine curve somewhere nearxD 1
2
: The intersection

point where2x� D cosx� has no simple formula. We start fromx0 D 1
2

and iterate
xnC1 D xn�c.2xn�cosxn/ with three different choicesof c:

TakecD 1 or cD 1=f 1.x0/ or updatec by Newton’s rulecn D 1=f 1.xn/:

x0 D :50 cD 1 cD 1=f 1.x0/ cn D 1=f 1.xn/

x1 D :38 :45063 :45062669

x2 D :55 :45019 :45018365

x3 D :30 :45018 :45018361 : : :

The column withcD 1 is diverging (repelled fromx�). The second column shows
convergence (attracted tox�). The third column (Newton’s method) approachesx�
so quickly that:4501836 and seven more digitsare exact forx3:

How does this convergence match the prediction ? Note thatf 1.x/D 2Csinx so
AD 2:435: Look to see whether the actual errorsxn�x�, going down each column,
are multiplied by the predictedm below that column:

cD 1 cD 1=.2Csin1
2
/ cn D 1=.2Csinxn/

x0�x� D 0:05 4:98 �10�2 4:98 �10�2

x1�x� D �0:07 4:43 �10�4 4:43 �10�4

x2�x� D 0:10 7:88 �10�6 3:63 �10�8

x3�x� D �0:15 1:41 �10�7 2:78 �10�16

multiplier mD�1:4 mD :018 mÑ 0 (Newton)

The first column shows a multiplier below�1: The errors grow at every step. Because
m is negative the errors change sign—the cobweb goes outward.

The second column shows convergence withmD :018: It takes one genuine
Newton step, thenc is fixed. After n steps the error is closely proportional to
mn D .:018/n— that is “linear convergence” with a good multiplier.

The third column shows the “quadratic convergence” of Newton’s method.
Multiplying the error bym is more attractive than ever, becausemÑ 0: In factm
itself is proportional to the error, soat each step the error is squared. Problem
3:8:31 will show that.error/nC1¤M.error/2n: This squaring carries us from10�2

to10�4 to10�8 to “machine"” in three steps. The number of correct digits is doubled
at every step as Newton converges.
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Note 1 The choicecD 1 producesxnC1 D xn�f .xn/: This is “successive
substitution.” The equationf .x/D 0 is rewritten asxD x�f .x/, and eachxn is
substituted back to producexnC1: Iteration withcD 1 does not always fail!

Note2 Newton’s method is successive substitution forf=f 1, notf: Thenm� 0:
Note3 Edwards and Penney happened to choose the same example2xD cosx:
But they cleverly wrote it asxnC1 D 1

2
cosxn, which has|F 1|D |1

2
sin x|   1: This

iteration fits into our family withcD 1
2
, and it succeeds. We asked earlier if its limit

is 1
2
.:7391/:No, it is x� D :450 : : ::

Note4 The choicecD 1=f 1.x0/ is “modified Newton.” After one step of Newton’s
method,c is fixed. The steps are quicker, because they don’t require a newf 1.xn/:
But we need more steps. Millions of dollars are spent on Newton’s method, so speed
is important. In all its forms,f .x/D 0 is the central problem of computing.

3.6 EXERCISES

Read-through questions

xnC1 D x3
n describes, an a . After one stepx1 D b .

After two steps x2 DF.x1/D c . If it happens that
input D output, orx� D d , thenx� is a e point.F D x3

has f fixed points, atx� D g . Starting near a fixed
point, the xn will converge to it if h   1: That is because
xnC1�x� DF.xn/�F.x�/� i . The point is called j .
The xn are repelled if k . For F D x3 the fixed points have
F 1 D l . The cobweb goes from.x0;x0/ to ( , ) to ( , ) and con-
verges to.x�;x�/D m . This is an intersection ofyD x3 and
yD n , and it is superattracting becauseo .

f .x/D 0 can be solved iteratively byxnC1 D xn�cf .xn/,
in which caseF 1.x�/D p . Subtractingx� D x��cf .x�/,
the error equation isxnC1�x��m �

q
�

. The multiplier
is mD r . The errors approach zero if s . The choice
cn D t produces Newton’s method. The choicecD 1 is
“successive u ” and cD v is modified Newton.
Convergence tox� is w certain.

We have three ways to study iterationsxnC1 DF.xn/:
.1/ computex1; x2; : : : from differentx0 .2/ find the fixed points
x� and test|dF=dx|  1 .3/ draw cobwebs.

In Problems 1–8 start from x0 D :6 and x0 D 2: Compute
x1; x2; : : : to test convergence:

1 xnC1 D x2
n� 1

2

3 xnC1 D
?
xn

5 xnC1 D 3xn.1�xn/

7 xnC1 D 1
2xn�1 2 xnC1 D 2xn.1�xn/

4 xnC1 D 1=
?
xn

6 xnC1 Dx2
n Cxn�2

8 xnC1 D |xn|
9 CheckdF=dx at all fixed points in Problems 1–6. Are they

attracting or repelling ?

10 From x0 D�1 compute the sequencexnC1 D�x3
n: Draw the

cobweb with its “cycle.” Two steps producexnC2 D x9
n, which has

the fixed points :

11 Draw the cobwebs forxnC1 D 1
2xn�1 and xnC1 D 1� 1

2xn

starting fromx0 D 2: Rule: Cobwebs are two-sided whendF=dx
is :

12 Draw the cobweb for xnC1 Dx2
n�1 starting from the

periodic point x0 D 0: Another periodic point is : Start
nearby at x0 D :1 to see if the iterations are attracted to
0;�1;0;�1; : : : :
Solve equations 13–16 within 1% by iteration.

13 xD cos 1
2x

15 xD cos
?
x

14 xD cos2x

16 xD 2x�1(??)

17 For which numbersa does xnC1 D a.xn�x2
n/ converge to

x� D 0?

18 For which numbersa does xnC1 D a.xn�x2
n/ converge to

x� D .a�1/=a ?

19 Iterate xnC1 D 4.xn�x2
n/ to see chaos. Why don’t thexn

approachx� D 3
4 ?

20 One fixed point ofF.x/D x2� 1
2 is attracting, the other is

repelling. By experiment or cobwebs, find the basin ofx0’s that go
to the attractor.

21 (important) Find the fixed point forF.x/D axCs: When is it
attracting ?

22 What happens in the linear casexnC1 D axn C4 when aD 1

and whenaD�1 ?

23 Starting with $1;000, you spend half your money each year
and a rich but foolish aunt gives you a new $1;000: What is
your steady state balancex� ? What isx� if you start with a
million dollars ?
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24 The US national debt was once $1 trillion. Inflation
reduces its real value by5% each year (so multiply byaD :95), but
overspending adds another $100 billion. What is the steady state debt
x� ?

25 xnC1 D b=xn has the fixed point x� D
?
b: Show that|dF=dx|D 1 at that point—what is the sequence starting fromx0 ?

26 Show that both fixed points ofxnC1 D x2
n Cxn�3 are

repelling. What do the iterations do ?

27 A $5 calculator takes square roots but not cube roots. Explain
why xnC1 D

a
2=xn converges to3

?
2:

28 Start the cobwebs forxnC1 D sinxn and xnC1 D tanxn: In
both casesdF=dxD 1 at x� D 0: (a) Do the iterations converge ?
(b) Propose a theory based onF 2 for cases whenF 1 D 1:

Solvef .x/D 0 in 29–32 by the iterationxnC1 D xn�cf .xn/; to
find a c that succeeds and ac that fails.

29 f .x/D x2�4
31 f .x/D .x�2/9�1 30 f .x/D x2�4xC3

32 f .x/D .1�x/�1�3
33 Newton’s method computes a newcD 1=f 1.xn/ at each
step. Write out the iteration formulas forf .x/Dx3�2D 0 and
f .x/D sinx� 1

2 D 0:

34 Apply Problem33 to find the first six decimals of3
?
2 and

�=6:

35 By experiment find eachx� and its basin of attraction,
when Newton’s method is applied tof .x/D x2�5xC4:

36 Test Newton’s method onx2�1D 0, starting far out at
x0 D 106: At first the error is reduced by aboutmD 1

2 : Near
x� D 1 the multiplier approachesmD 0:

37 Find the multiplier m at each fixed point of xnC1 D

xn�c.x2
n�xn/: Predict the convergence for differentc (to which

x� ? ).

38 Make a table of iterations forcD 1 and cD 1=f 1.x0/ and
cD 1=f 1.xn/, whenf .x/D x2� 1

2 and x0 D 1:

39 In the iteration forx2�2D 0, finddF=dx atx�:

xnC1 D
1

2

�

xn C
2

xn

�

:

(b) Newton’s iteration hasF.x/D x�f .x/=f 1.x/: Show
that F 1 D 0 when f .x/D 0: The multiplier for Newton is
mD 0.

40 What are the solutions off .x/Dx2 C2D 0 and why is
Newton’s method sure to fail ? But carry out the iteration to see
whetherxnÑ8:
41 Computer projectF.x/D x� tanx has fixed points where
tanx� D 0: Sox� is any multiple of�: Fromx0 D 2:0 and1:8 and
1:9, which multiple do you reach ? Test points in1:7 x0  1:9 to
find basins of attraction to�;2�;3�;4�:

Between any two basins there are basins foreverymultiple of�:
And more basins between these (a fractal). Mark them on the line
from 0 to �: Magnify the picture aroundx0 D 1:9 (in color ? ).

42 Graph cosx and cos.cosx/ and cos.cos.cosx//: Also .cos/8x:
What are these graphs approaching ?

43 Graph sinx andsin.sinx/ and.sin/8x: What are these graphs
approaching ? Why so slow ?
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3.7 Newton’s Method (and Chaos)

The equation to be solved isf .x/D 0: Its solutionx� is the point where the graph
crosses thex axis. Figure 3.22 showsx� and a starting guessx0: Our goal is to come
as close as possible tox�, based on the informationf .x0/ andf 1.x0/.

Section 3.6 reached Newton’s formula forx1 (the next guess). We now do that
directly.

What do we see atx0 ? The graph has heightf .x0/ and slopef 1.x0/: We know
where we are, and which direction the curve is going. We don’t know if the curve
bends (we don’t havef 2). The best plan isto follow the tangent line, which uses
all the information we have.

Newton replacesf .x/ by its linear approximation (D tangent approximation):

f .x/� f .x0/Cf 1.x0/.x�x0/: (1)

We want the left side to be zero. The best we can do is to make the right side zero!
The tangent line crosses the axis atx1, while the curve crosses atx�: The new guess
x1 comes fromf .x0/Cf 1.x0/.x1�x0/D 0: Dividing by f 1.x0/ and solving for
x1, this is step1 of Newton’s method:

x1 D x0� f .x0/

f 1.x0/
: (2)

At this new point, computef .x1/ andf 1.x1/—the height and slope atx1: They
give a new tangent line, which crosses atx2: At every step we wantf .xnC1/D 0
and we settle forf .xn/Cf 1.xn/.xnC1�xn/D 0. After dividing byf 1.xn/, the
formula forxnC1 is Newton’s method.

3L The tangent line fromxn crosses the axis atxnC1:

Newton’s method xnC1 D xn� f .xn/

f 1.xn/
: (3)

Usually this iterationxnC1 DF.xn/ converges quickly tox�:

Fig. 3.22 Newton’s method along tangent lines fromx0 to x1 to x2:



188 3 Applications of the Derivative

Linear approximation involves three numbers. They are�x (across) and�f (up)
and the slopef 1.x/: If we know two of those numbers, we can estimate the third. It
is remarkable to realize that calculus has now used all three calculations—they are
the key to this subject:

1. Estimate the slopef 1.x/ from�f=�x (Section 2.1)

2. Estimate the change�f fromf 1.x/�x (Section 3.1)

3. Estimate the change�x from�f=f 1.x/ (Newton’s method)

The desired�f is�f .xn/: Formula.3/ is exactly�xD�f .xn/=f
1.xn/:

EXAMPLE 1 (Square roots) f .x/D x2�b is zero atx� D
?
b and also at�?b:

Newton’s method is a quick way to find square roots—probably built into your
calculator. The slope isf 1.xn/D 2xn, and formula.3/ for the new guess becomes

xnC1 D xn� x2
n�b
2xn

D xn� 1
2
xn C

b

2xn

: (4)

This simplifies toxnC1 D 1
2
.xn Cb=xn/:Guess the square root, divide intob; and

average the two numbers. The ancient Babylonians had this same idea, without
knowing functions or slopes. They iteratedxnC1 DF.xn/:

F.x/D
1

2

�

xC
b

x

�

and F 1.x/D
1

2

�

1� b

x2

�

: (5)

The Babylonians did exactly the right thing. The slopeF 1 is zeroat the solution,
whenx2 D b: That makes Newton’s method converge at high speed. The convergence
test is|F 1.x�/|   1: Newton achievesF 1.x�/D 0—which issuperconvergence.

To find
?
4, start the iteration xnC1 D 1

2
.xn C4=xn/ at x0 D 1: Then

x1 D 1
2
.1C4/:

x1 D 2:5 x2 D 2:05 x3 D 2:0006 x4 D 2:000000009:

The wrong decimal is twice as far out at each step.The error is squared.
Subtractingx� D 2 from both sides ofxnC1 DF.xn/ gives anerror equationwhich
displays that square:

xnC1�2D
1

2

�

xn C
4

xn

��2D
1

2xn

.xn�2/2: (6)

This is.error/nC1� 1
4
.error/2n: It explains the speed of Newton’s method.

Remark1 You can’t start this iteration atx0 D 0: The first step computes4=0
and blows up. Figure 3.22a shows why—the tangent line at zero is horizontal. It will
never cross the axis.

Remark2 Starting atx0 D�1, Newton converges to�?2 instead ofC
?
2: That

is the otherx�:Often it is difficult to predict whichx� Newton’s method will choose.
Around every solution is a “basin of attraction,” but other parts of the basin may be
far away. Numerical experiments are needed, with many startsx0: Finding basins of
attraction was one of the problems that led to fractals.
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EXAMPLE 2 Solve
1

x
�aD 0 to findx� D

1

a
without dividing bya.

Here f .x/D .1=x/�a: Newton usesf 1.x/D�1=x2: Surprisingly, we don’t
divide:

xnC1 D xn� .1=xn/�a�1=x2
n

D xn Cxn�ax2
n: (7)

Do these iterations converge? I will takeaD 2 and aim forx� D 1
2
: Subtracting 1

2
from both sides of.7/ changes the iteration into the error equation:

xnC1 D 2xn�2x2
n becomes xnC1� 1

2
D�2�xn� 1

2

�2
: (8)

At each step the error is squared. This is terrific if (and only if) you are close to
x� D 1

2
: Otherwise squaring a large error and multiplying by�2 is not good:

x0 D :70 x1 D :42 x2 D :487 x3 D :4997 x4 D :4999998

x0 D 1:21 x1 D�:5 x2 D�1:5 x3 D�7:5 x4 D�127:5
The algebra in Problem18 confirms those experiments. There is fast convergence if
0  x0  1: There is divergence ifx0 is negative orx0¡ 1: The tangent line goes to
a negativex1: After that Figure 3.22 shows a long trip backwards.

In the previous section we drewF.x/: The iterationxnC1 DF.xn/ converged to
the45� line, wherex� DF.x�/: In this section we are drawingf .x/: Now x� is
the point on the axis wheref .x�/D 0:

To repeat: It isf .x�/D 0 that we aim for. But it is the slopeF 1.x�/ that
decides whether we get there. Example 2 hasF.x/D 2x�2x2: The fixed points are
x� D 1

2
(our solution) andx� D 0 (not attractive). The slopesF 1.x�/ are zero (typical

Newton) and2 (typical repeller).The key to Newton’s method isF 1 D 0 at the
solution:

The slope ofF.x/D x� f .x/

f 1.x/ is
f .x/f 2.x/
.f 1.x//2 : ThenF 1.x/D 0 whenf .x/D 0:

The examplesx2 D b and1=xD a show fast convergence or failure. In Chapter 13,
and in reality, Newton’s method solves much harder equations. Here I am going to
choose a third example that came from pure curiosity about what might happen. The
results are absolutely amazing. The equation isx2 D�1:
EXAMPLE 3 What happens to Newton’s method if you ask it to solve
f .x/D x2 C1D 0 ?

The only solutions are the imaginary numbersx� D i andx� D�i: There is no real
square root of�1: Newton’s method might as well give up. But it has no way to
know that! The tangent line still crosses the axis at a new pointxnC1, even if the
curveyD x2 C1 never crosses. Equation(5) still gives the iteration forbD�1:

xnC1 D
1

2

�

xn� 1

xn

�

DF.xn/: (9)

Thex’s cannot approachi or�i (nothing is imaginary). So what do they do ?
The starting guessx0 D 1 is interesting. It is followed byx1 D 0: Thenx2 divides

by zero and blows up. I expected other sequences to go to infinity. But the experiments
showed something different (and mystifying). Whenxn is large,xnC1 is less than half
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as large. Afterxn D 10 comesxnC1 D 1
2
.10� 1

10
/D 4:95: After much indecision

and a long wait, a number near zero eventually appears. Then the next guess divides
by that small number and goes far out again. This reminded me of “chaos.”

It is tempting to retreat to ordinary examples, where Newton’s method is a big
success. By trying exercises from the book or equations of your own, you will see that
the fast convergence to

?
4 is very typical. The function can be much more

complicated thanx2�4 (in practice it certainly is). The iteration for2xD cosx was
in the previous section, and the error was squared at every step. If Newton’s method
starts close tox�, its convergence is overwhelming. That has to be the main point of
this section:Follow the tangent line.

Instead of those good functions, may I stay with this strange examplex2 C1D 0 ?
It is not so predictable, and maybe not so important, but somehow it is more
interesting. There is no real solutionx�, and Newton’s methodxnC1 D 1

2
.xn�1=xn/

bounces around. We will now discoverxn:

A FORMULA FOR xn

The key is an exercise from trigonometry books. Most of those problems just give
practice with sines and cosines, but this one exactly fits1

2
.xn�1=xn/:

1

2

�

cos�

sin�
� sin�

cos�

�

D
cos2�

sin2�
or

1

2

�

cot �� 1

cot�

�

D cot 2�

In the left equation, the common denominator is2 sin� cos� (which issin2� ). The
numerator iscos2��sin2� (which is cos2� ). Replace cosine=sine by cotangent,
and the identity says this:

If x0 D cot� then x1 D cot2�: Then x2 D cot4� Then xn D cot2n�:

This is the formula.Our points are on the cotangent curve. Figure 3.23 starts from
x0 D 2D cot� , and every iteration doubles the angle.

Example AThe sequencex0 D 1;x1 D 0;x2 D8matches the cotangents of�=4;�=2,
and�: This sequence blows up becausex2 has a division byx1 D 0:

Fig. 3.23 Newton’s method forx2 C1D 0: Iteration givesxn D cot2n�:

Example BThe sequence1=
?
3;�1=?3;1=?3matches the cotangents of�=3;2�=3,

and4�=3: This sequencecycles foreverbecausex0 D x2 D x4 D : : : :
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Example CStart with a largex0 (a small� ). Thenx1 is about half as large (at2� ).
Eventually one of the angles4�;8�; : : : hits on a large cotangent, and thex’s go far
out again.This is typical. ExamplesA andB were special, when�=� was 1

4
or 1

3
:

What we have here ischaos. Thex’s can’t converge. They are strongly repelled
by all points. They are also extremely sensitive to the value of�: After ten steps� is
multiplied by210 D 1024: The starting angles60� and61� look close, but now they
are different by1024�. If that were a multiple of180�, the cotangents would still be
close. In fact thex10’s are0:6 and14:

This chaos in mathematics is also seen in nature. The most familiar example is the
weather, which is much more delicate than you might think. The headline “Forecast-
ing Pushed Too Far” appeared inScience.1989/. The article said that the snowballing
of small errors destroys the forecast after six days. We can’t follow the weather equa-
tions for a month—the flight of a plane can change everything. This is a revolutionary
idea, that a simple rule can lead to answers that are too sensitive to compute.

We are accustomed to complicated formulas (or no formulas). We are not
accustomed to innocent-looking formulas likecot2n� , which are absolutely hopeless
after100 steps.

CHAOS FROM A PARABOLA

Now I get to tell you about new mathematics. First I will change the iterationxnC1 D
1
2
.xn�1=xn/ into one that is even simpler. By switching fromx to zD 1=.1Cx2/,

each newz turns out to involve only the oldz andz2:

znC1 D 4zn�4z2
n: (10)

This is the most famous quadratic iteration in the world. There are books about
it, and Problem28 shows where it comes from. Our formula forxn leads tozn:

zn D
1

1Cx2
n

D
1

1C .cot2n�/2
D .sin2n�/2: (11)

The sine is just as unpredictable as the cotangent, when2n� gets large. The new thing
is to locate this quadratic as the last member (whenaD 4) of the family

znC1 D azn�az2
n; 0¤ a¤ 4: (12)

Example 2 happened to be the middle memberaD 2, converging to1
2
: I would like

to give a brief and very optional report on this iteration, for differenta’s.
The general principle is to start with a numberz0 between0 and1, and compute

z1;z2;z3; : : : : It is fascinating to watch the behavior change asa increases.You can
see it on your own computer. Here we describe some things to look for. All numbers
stay between0 and1 and they may approach a limit. That happens whena is small:

for 0¤ a¤ 1 thezn approachz� D 0
for 1¤ a¤ 3 thezn approachz� D .a�1/=a

Those limit points are the solutions ofzDF.z/: They are the fixed points where
z� D az��a.z�/2: But remember the test for approaching a limit:The slope atz�
cannot be larger than one. HereF D az�az2 hasF 1 D a�2az: It is easy to check|F 1| ¤ 1 at the limits predicted above. The hard problem—sometimes impossible—
is to predict what happens aboveaD 3:Our case isaD 4:

The z’s cannot approach a limit when|F 1.z�/|¡1. Something has to happen,
and there are at least three possibilities:
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Thezn’s can cycle or fill the whole interval.0;1/ or approach a Cantor set.

I start with a random numberz0, take100 steps, and write down steps101 to 105:

aD 3:4 aD 3:5 aD 3:8 aD 4:0

z101 D :842 :875 :336 :169

z102 D :452 :383 :848 :562

z103 D :842 :827 :491 :985

z104 D :452 :501 :950 :060

z105 D :842 :875 :182 :225

The first column is converging to a “2-cycle.” It alternates betweenxD :842 and
yD :452:Those satisfyyDF.x/ andxDF.y/DF.F.x//: If we look at adouble
stepwhenaD 3:4;x andy are fixed points of the double iterationznC2 DF.F.zn//:
Whena increases past3:45, this cycle becomes unstable.

At that point the period doubles from2 to 4. With aD 3:5 you see a “4-cycle” in
the table—it repeats after four steps. The sequence bounces from:875 to :383 to :827
to :501 and back to:875. This cycle must be attractive or we would not see it. But
it also becomes unstable asa increases. Next comes an8-cycle, which is stable in
a little window (you could compute it) aroundaD 3:55: The cycles are stable for
shorter and shorter intervals ofa’s. Those stability windows are reduced by the
Feigenbaum shrinking factor4:6692. . . . Cycles of length16 and32 and64 can be
seen in physical experiments, but they are all unstable beforeaD 3:57:What happens
then ?

The new and unexpected behavior is between3:57 and 4: Down each line of
Figure 3.24, the computer has plotted the values ofz1001 to z2000—omitting the
first thousand points to let a stable period (or chaos) become established. No points
appeared in the big white wedge. I don’t know why. In the window for period 3, you
see only threez’s. Period3 is followed by6;12;24; . . . . There isperiod doubling
at the end of every window (including all the windows that are too small to see). You
can reproduce this figure by iteratingznC1 D azn�az2

n from anyz0 and plotting the
results.

CANTOR SETS AND FRACTALS

I can’t tell what happens ataD 3:8: There may be a stable cycle of some long period.
The z’s may come close to every point between0 and1: A third possibility is to
approach a very thin limit set, which looks like the famousCantor set:

To construct the Cantor set, divideŒ0;1� into three pieces and remove the open
interval

�

1
3
; 2

3

�

: Then remove
�

1
9
; 2

9

�

and
�

7
9
; 8

9

�

from what remains. At each
steptake out the middle thirds. The points that are left form the Cantor set.

All the endpoints1
3
; 2

3
; 1

9
; 2

9
, . . . are in the set. So is4

3
(Problem42). Nevertheless

the lengths of the removed intervals add to1 and the Cantor set has “measure zero.”
What is especially striking is itsself-similarity: Between0 and 1

3
you see the same

Cantor set three times smaller. From0 to 1
9

the Cantor set is there again, scaled
down by9: Every section, when blown up, copies the larger picture.

Fractals That self-similarity is typical of afractal. There is an infinite sequence
of scales. A mathematical snowflake starts with a triangle and adds a bump in the
middle of each side. At every step the bumps lengthen the sides by4=3: The final
boundary is self-similar, like an infinitely long coastline.
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The period 2;4; : : : is the number ofz’s in a cycle.

Fig. 3.24 Period doubling and chaos from iteratingF.z/ (stolen by special permission
from Introduction to Applied Mathematicsby Gilbert Strang, Wellesley-Cambridge
Press).

The word “fractal” comes fromfractional dimension. The snowflake boundary
has dimension larger than1 and smaller than2: The Cantor set has dimension larger
than0 and smaller than1: Covering an ordinary line segment with circles of radius
r would takec=r circles. For fractals it takesc=rD circles—andD is the dimension.

Fig. 3.25 Cantor set (middle thirds removed). Fractal snowflake (infiniteboundary).

Our iterationznC1 D 4zn�4z2
n hasaD 4, at the end of Figure 3.24. The sequence

z0;z1;. . . goes everywhere and nowhere. Its behavior is chaotic, and statistical tests
find no pattern. For all practical purposes the numbers are random.

Think what this means in an experiment (or the stock market). If simple rules
produce chaos, there isabsolutely no wayto predict the results. No measurement can
ever be sufficiently accurate. The newspapers report that Pluto’s orbit is chaotic—
even though it obeys the law of gravity. The motion is totally unpredictable over
long times. I don’t know what that does for astronomy (or astrology).

The most readable book on this subject is Gleick’s best-sellerChaos: Making a
New Science. The most dazzling books areThe Beauty of FractalsandThe Science
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of Fractal Images, inwhich Peitgen and Richter and Saupe show photographs that
have been in art museums around the world. The most original books are Mandelbrot’s
FractalsandFractal Geometry. Our cover has a fractal from Figure 13.11.

We return to friendlier problems in which calculus is not helpless.

NEWTON’S METHOD VS. SECANT METHOD: CALCULATOR PROGRAMS

The hard part of Newton’s method is to finddf=dx: We need it for the slope of the
tangent line. But calculus can approximate by�f=�x—using the values off .x/
already computed atxn andxn�1:

Thesecant methodfollows the secant line instead of the tangent line:

SecantW xnC1 D xn� f .xn/

.�f=�x/n
where

�

�f

�x

�

n

D
f .xn/�f .xn�1/

xn�xn�1

: (13)

The secant line connects the two latest points on the graph off .x/: Its equation
is y�f .xn/D .�f=�x/.x�xn/: Set yD 0 to find equation(13) for the new
xD xnC1, where the line crosses the axis.

Prediction:Threesecant steps are about as good astwoNewton steps. Both should
give four times as many correct decimals:.error/Ñ .error/4: Probably the secant
method is also chaotic forx2 C1D 0:

These Newton and secant programs are for the TI-81. Place the formula forf .x/
in slotY1 and the formula forf 1.x/ in slotY2 on theYD function edit screen.
Answer the prompt with the initialx0 DX�. The programs pause to display each
approximationxn, the valuef .xn/, and the differencexn�xn�1: PressENTER
to continue or pressON and select item2:Quit to break. Iff .xn/D 0, the pro-
grams displayROOT AT and the rootxn:PrgmN:NEWTON :Disp''ENTER FOR MORE'' PrgmS:SECANT :YÑT:Disp''X�='' :Disp''ON 2 TO BREAK'' :Disp''X�='' :Y1ÑY:Input X :Disp'' '' :Input X :Disp''ENTER FOR MORE'':XÑS :Disp''XN FXN XN-XNM1'' :XÑS :Disp''XN FXN XN-XNM1'':Y1ÑY :Disp X :Y1ÑT :Disp X:Lbl 1 :Disp Y :Disp ''X1='' :Disp Y:X-Y/Y2ÑX :Disp D :Input X :Disp D:X-SÑD :Pause :Y1ÑY :Pause:XÑS :If Y¤� :Lbl 1 :If Y¤�:Y1ÑY :Goto 1 :X-SÑD :Goto 1:Disp ''ROOT AT'' :XÑS :Disp ''ROOT AT'':Disp X :X-YD/(Y-T)ÑX :Disp X

3.7 EXERCISES

Read-through questions

When f .x/D 0 is linearized tof .xn/Cf
1.xn/.x�xn/D 0, the

solution xD a is Newton’s xnC1: The b to the curve
crosses the axis atxnC1, while the c crosses atx�: The
errors at xn and xnC1 are normally related by
.error/nC1�M d . This is e convergence. The number
of correct decimals f at every step.

For f .x/D x2�b, Newton’s iteration is xnC1 D g .
The xn converge to h if x0¡ 0 and to i if x0  0:
For f .x/D x2 C1, the iteration becomesxnC1 D j . This
cannot converge to k . Instead it leads to chaos.
Changing to zD 1=.x2 C1/ yields the parabolic iteration
znC1 D l .
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For a¤ 3; znC1 Dazn�az2
n converges to a single m .

After aD 3 the limit is a 2-cycle, which means n . Later the
limit is a Cantor set, which is a one-dimensional example of a

o . The cantor set is self- p :

1 To solve f .x/D x3�bD 0, what iteration comes from
Newton’s method ?

2 For f .x/D .x�1/=.xC1/ Newton’s formula is xnC1 D

F.xn/D : Solve x� DF.x�/ and findF 1.x�/: What limit
do thexn’s approach ?

3 I believe that Newton only applied his method in public
to one equation x3�2x�5D 0: Raphson carried the idea
forward but got partial credit at best. After two steps fromx0 D 2,
how many decimals inx� D 2:09455148 are correct ?

4 Show that Newton’s method forf .x/D x1=3 gives the
strange formulaxnC1 D�2xn: Draw a graph to show the
iterations.

5 Findx1 if (a) f .x0/D 0; (b) f 1.x0/D 0:

6 Graph f .x/D x3�3x�1 and estimate its rootsx�: Run
Newton’s method starting from0, 1, �1

2 , and 1:1: Experiment to
decide whichx0 converge to which root.

7 Solve x2�6xC5D 0 by Newton’s method withx0 D 2:5

and3: Draw a graph to show whichx0 lead to which root.

8 If f .x/ is increasing and concave up (f 1¡ 0 and f 2¡ 0)
show by a graph that Newton’s method converges. From which
side ?

Solve 9–17 to four decimal places by Newton’s method with a
computer or calculator: Choose anyx0 exceptx�.

9 x2�10D 0

10 x4�100D 0 (faster or slower than Problem9? )

11 x2�xD 0 (whichx0 to which root ? )

12 x3�xD 0 (whichx0 to which root ? )

13 xC5cosxD 0 (this has three roots)

14 xC tanxD 0 (find two roots) (are there more ? )

15 1=.1�x/D 2

16 1CxCx2 Cx3 Cx4 D 2

17 x3 C.xC1/3 D 103

18 (a) Show thatxnC1 D 2xn�2x2
n in Example 2 is the same

as.1�2xnC1/D .1�2xn/
2:

(b) Prove divergence if|1�2x0|¡ 1: Prove convergence if|1�2x0|  1 or 0 x0  1:
19 With aD 3 in Example 2, experiment with the Newton
iterationxnC1 D 2xn�3x2

n to decide whichx0 lead tox� D 1
3 :

20 Rewrite xnC1 D 2xn�ax2
n as .1�axnC1/D .1�axn/

2: For
which x0 does the sequence1�axn approach zero (so
xÑ 1=a) ?

21 What is Newton’s method to find thekth root of 7? Calculate
7
?
7 to 7 places.

22 Find all solutions ofx3 D 4x�1 (5 decimals).

Problems 23–29 are aboutx2 C1D 0 and chaos.

23 For � D�=16 when does xn D cot2n� blow up ? For
� D�=7 when does cot2n� D cot� ? (The angles2n� and �
differ by a multiple of�:)

24 For� D�=9 follow the sequence untilxn D x0:

25 For � D 1, xn never returns tox0 D cot1: The angles2n

and1 never differ by a multiple of� because :

26 If z0 equals sin2� , show thatz1 D 4z0�4z2
0 equals sin2 2�:

27 If yDx2 C1, each newy is

ynC1 D x2
nC1 C1D

1

4

�

xn� 1

xn

�2

C1:

Show that this equalsy2
n=4.yn�1/:

28 Turn Problem 27 upside down, 1=ynC1 D 4.yn�1/=y
2
n, to

find the quadratic iteration.10/ for zn D 1=yn D 1=.1Cx2
n/:

29 If F.z/D 4z�4z2 what isF.F.z//? How many solutions to
zDF.F.z//? How many are not solutions tozDF.z/?

30 Apply Newton’s method tox3� :64x� :36D 0 to find the
basin of attraction forx� D 1: Also find a pair of points for
which yDF.z/ and zDF.y/: In this example Newton does not
always find a root.

31 Newton’s method solvesx=.1�x/D 0 by xnC1 D :

From whichx0 does it converge ? The distance tox� D 0 is exactly
squared.

Problems 33–41 are about competitors of Newton.

32 At a double root, Newton only converges linearly. What
is the iteration to solvex2 D 0?

33 To speed up Newton’s method, find the step�x from
f .xn/C�xf

1.xn/C
1
2 .�x/

2f 2.xn/D 0: Test on f .x/D

x2�1 from x0 D 0 and explain.

34 Halley’s method usesfn C�xf 1n C 1
2�x.�fn=f

1
n/f

2
n D 0: For

f .x/D x2�1 andx0 D 1C", show thatx1 D 1CO."3/— which is
cubicconvergence.

35 Apply the secant method tof .x/D x2�4D 0, starting
from x0 D 1 and x1 D 2:5: Find �f=�x and the next pointx2

by hand. Newton usesf 1.x1/D 5 to reach x2 D 2:05: Which
is closer tox� D 2 ?

36 Draw a graph off .x/D x2�4 to show the secant line in
Problem35 and the pointx2 where it crosses the axis.
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Bisection methodIf f .x/ changes sign betweenx0 and x1; find
its sign at the midpoint x2 D 1

2 .x0 Cx1/: Decide whetherf .x/
changes sign betweenx0 and x2 or x2 and x1: Repeat on
that half-length (bisected) interval. Continue.Switch to a faster
method when the interval is small enough.

37 f .x/D x2�4 is negative atxD 1, positive atxD 2:5, and
negative at the midpointxD 1:75: So x� lies in what interval ?
Take a second step to cut the interval in half again.

38 Write a code for the bisection method. At each step print
out an interval that containsx�: The inputs arex0 andx1; lbr the
code callsf .x/: Stop iff .x0/ andf .x1/ have the same sign.

39 Three bisection steps reduce the interval by what
factor ? Starting fromx0 D 0 and x1 D 8, take three steps for
f .x/D x2�10:
40 A direct method is tozoom in where the graph crosses the
axis. Solve 10x3�8:3x2 C2:295x� :21141D 0 by several
zooms.

41 If the zoom factor is 10, then the number of correct
decimals for every zoom. Compare with Newton.

42 The number34 equals 2
3 .1C 1

9 C 1
81 C � � � /: Show that it is in the

Cantor set. It survives when middle thirds are removed.

43 The solution to f .x/D .x�1:9/=.x�2:0/D 0 is
x� D 1:9: Try Newton’s method fromx0 D 1:5;2:1; and 1:95:
Extra credit: Whichx0’s give convergence ?

44 Apply the secant method to solve cosxD 0 from
x0 D :308:

45 Try Newton’s method on cosxD 0 from x0 D :308: If
cotx0 is exactly �, show thatx1 Dx0 C� (and x2 D x1 C�).
Fromx0 D :308169071 does Newton’s method ever stop ?

46 Use the Newton and secant programs to solve
x3�10x2 C22xC6D 0 from x0 D 2 and1:39:

47 Newton’s method for sinxD 0 is xnC1 D xn� tanxn:

Graph sinx and three iterations fromx0 D 2 and x0 D 1:8:

Predict the result forx0 D 1:9 and test. This leads to thecomputer
project in Problem3:6:41, which finds fractals.

48 Graph Y1.x/D 3:4.x�x2/ and Y2.x/DY1.Y1.x// in the
square window .0;0/¤ .x;y/¤ .1;1/: Then graph Y3.x/D

Y2.Y1.x// andY4; : : : ;Y9: The cycle is from:842 to :452:

49 Repeat Problem48 with 3:4 changed to2 or 3:5 or 4:
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3.8 The Mean Value Theorem and l’Hôpital’s Rule

Now comes one of the cornerstones of calculus: theMean Value Theorem. It
connects the local picture (slope at a point) to the global picture (average slope
across an interval). In other words it relatesdf=dx to �f=�x: Calculus depends
on this connection, which we saw first for velocities. If the average velocity is75, is
there a moment when the instantaneous velocity is75 ?

Fig. 3.26 (a) v jumps overvaverage: (b) v equalsvaverage:

Without more information, the answer to that question isno. The velocity could
be 100 and then50—averaging75 but never equal to75: If we allow a jump in
velocity, it can jump right over its average. At that moment the velocity does not
exist. (The distance function in Figure 3.26a has no derivative atxD 1:) We will take
away this cheap escape by requiring a derivative at all points inside the interval.

In Figure 3.26b the distance increases by150 when t increases by2: There is a
derivativedf=dt at all interior points (but an infinite slope att D 0). The average
velocity is

�f

�t
D
f .2/�f .0/

2�0 D
150

2
D 75:

The conclusion of the theorem is thatdf=dt D 75 at some point inside the
interval. There is at least one point wheref 1.c/D 75:

This is not a constructive theorem. The value ofc is not known. We don’t findc,
we just claim (with proof) that such a point exists.

3M Mean Value TheoremSupposef .x/ is continuous in the closed interval
a¤ x¤ b and has a derivative everywhere in the open intervala  x  b: Then

f .b/�f .a/
b�a D f 1.c/ at some pointa  c  b: (1)

The left side is the average slope�f=�x: It equalsdf=dx at c: The notation for a
closed interval [with endpoints] isŒa;b�: For an open interval (without endpoints) we
write .a;b/: Thusf 1 is defined in.a;b/, andf remains continuous ata andb: A
derivative is allowed at those endpoints too—but the theorem doesn’t require it.

The proof is based on a special case—whenf .a/D 0 andf .b/D 0: Suppose the
function starts at zero and returns to zero. The average slope or velocity is zero.
We have to prove thatf 1.c/D 0 at a point in between. This special case (keeping the
assumptions onf .x/) is calledRolle’s theorem.

Geometrically, iff goes away from zero and comes back, thenf 1 D 0 at the turn.
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3N Rolle’s theorem Suppose f .a/D f .b/D 0 (zero at the ends). Then
f 1.c/D 0 at some point witha  c  b:

Proof At a point inside the interval wheref .x/ reaches its maximum or minimum,
df=dx must be zero. That is an acceptable pointc: Figure 3.27a shows the difference
betweenf D 0 (assumed ata andb) andf 1 D 0 (proved atc).

Small problem: The maximum could be reached at the endsa andb, if f .x/  0 in
between. At those endpointsdf=dx might not be zero. But in that case theminimum
is reached at an interior pointc, which is equally acceptable. The key to our proof is
thata continuous function onŒa;b� reaches its maximum and minimum. This is
theExtreme Value Theorem.�

It is ironic that Rolle himself did not believe the logic behind calculus. He may not
have believed his own theorem! Probably he didn’t know what it meant—the language
of “evanescent quantities” (Newton) and “infinitesimals” (Leibniz) was exciting but
frustrating. Limits were close but never reached. Curves had infinitely many flat sides.
Rolle didn’t accept that reasoning, and what was really serious, he didn’t accept the
conclusions. The Académie des Sciences had to stop his battles (he fought against
ordinary mathematicians, not Newton and Leibniz). So he went back to number
theory, but his special case whenf .a/D f .b/D 0 leads directly to the big one.

Fig. 3.27 Rolle’s theorem is whenf .a/D f .b/D 0 in the Mean Value Theorem.

Proof of the Mean Value Theorem We are looking for a point wheredf=dx equals
�f=�x: The idea isto tilt the graph back to Rolle’s special case(when�f was
zero). In Figure 3.27b, the distanceF.x/ between the curve and the dotted secant line
comes from subtraction:

F.x/D f .x/��f .a/C�f

�x
.x�a/� : (2)

At a andb, this distance isF.a/DF.b/D 0: Rolle’s theorem applies toF.x/:
There is an interior point whereF 1.c/D 0: At that point take the derivative of equa-
tion (2): 0D f 1.c/� .�f=�x/: The desired pointc is found, proving the theorem.

EXAMPLE 1 The functionf .x/D
?
x goes from zero atxD 0 to ten atxD 100:

Its average slope is�f=�xD 10=100: The derivativef 1.x/D 1=2
?
x exists in

the open interval.0;100/, even though it blows up at the endxD 0: By the Mean
Value Theorem there must be a point where10=100D f 1.c/D 1=2

?
c: That point

iscD 25:

� If f .x/ doesn’t reach its maximumM; then1=.M �f .x// would be continuous but also
approach infinity. Essential fact:A continuous function onŒa;b� cannot approach infinity.
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The truth is that nobody cares about the exact value ofc: Its existence is what
matters. Notice how it affects the linear approximationf .x/� f .a/Cf 1.a/.x�
a/, which was basic to this chapter. Close becomes exact (� becomesD) whenf 1 is
computed atc instead ofa:

3O The derivative atc gives an exact prediction off .x/:

f .x/D f .a/Cf 1.c/.x�a/: (3)

The Mean Value Theorem is rewritten here as�f D f 1.c/�x: Now a  c  x:
EXAMPLE 2 The function f .x/D sinx starts from f .0/D 0: The linear
prediction (tangent line) uses the slopecos0D 1: The exact prediction uses the slope
cosc at an unknown point between0 andx:

(approximate) sinx� x (exact) sinxD .cosc/x: (4)

The approximation is useful, because everything is computed atxD aD 0: The
exact formula is interesting, becausecosc¤ 1 proves again thatsinx¤ x: The
slope is below1, so the sine graph stays below the45� line.

EXAMPLE 3 If f 1.c/D 0 at all points in an interval thenf .x/ is constant.

Proof Whenf 1 is everywhere zero, the theorem gives�f D 0: Every pair of points
hasf .b/D f .a/: The graph is a horizontal line. That deceptively simple case is a
key to the Fundamental Theorem of Calculus.

Most applications of�f D f 1.c/�x do not end up with a number. They end up
with another theorem (like this one). The goal is to connect derivatives (local) to
differences (global). But the next application—l’Hôpital’s Rule—manages to
produce a number out of0=0:

L’HÔPITAL’S RULE

Whenf .x/ andg.x/ both approach zero, what happens to their ratiof .x/=g.x/ ?

f .x/

g.x/
D
x2

x
or

sin x

x
or

x�sinx

1�cosx
all become

0

0
at xD 0:

Since0=0 is meaningless, we cannot work separately withf .x/ andg.x/: This is a
“ race toward zero,” in which two functions become small while their ratio might do
anything. The problem is to find the limit off .x/=g.x/:

One such limit is already studied.It is the derivative!�f=�x automatically builds
in a race toward zero, whose limit isdf=dx:

f .x/�f .a/Ñ 0
x � a Ñ 0

but lim
xÑa

f .x/�f .a/
x�a D f 1.a/: (5)

The idea of l’Hôpital is to usef 1=g1 to handlef=g: The derivative is the special case
g.x/D x�a, with g1 D 1: The Rule is followed by examples and proofs.

3P l’Hôpital’s Rule Supposef .x/ andg.x/ both approach zero asxÑ a:
Thenf .x/=g.x/ approaches the same limit asf 1.x/=g1.x/, if that second limit
exists:

lim
xÑa

f .x/

g.x/
D lim

xÑa

f 1.x/
g1.x/ : Normally this limit is

f 1.a/
g1.a/ : (6)
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Fig. 3.28 (a)
f .x/

g.x/
is exactly

f 1.a/
g1.a/ D 3: (b)

f .x/

g.x/
approaches

f 1.a/
g1.a/ D 3:

This is not the quotient rule! The derivatives off .x/ and g.x/ are taken
separately. Geometrically, l’Hôpital is saying thatwhen functions go to zero their
slopes control their size. An easy case isf D 6.x�a/ andgD 2.x�a/: The ratio
f=g is exactly6=2, the ratio of their slopes. Figure 3.28 shows these straight lines
dropping to zero, controlled by6 and2:

The next figure shows the same limit6=2, when the curves aretangentto the lines.
That picture is the key to l’Hôpital’s rule.

Generally the limit off=g can be a finite numberL or C8 or�8: (Also the limit
pointxD a can represent a finite number orC8 or�8:We keep it finite.) The one
absolute requirement is thatf .x/ andg.x/must separately approach zero—we insist
on0=0:Otherwise there is no reason why equation(6) should be true. Withf .x/D x
andg.x/D x�1, don’t use l’Hôpital:

f .x/

g.x/
Ñ a

a�1 but
f 1.x/
g1.x/ D

1

1
:

Ordinary ratios approachlim f .x/ divided by lim g.x/: l’Hôpital enters only for
0=0:

EXAMPLE 4 (an old friend) lim
xÑ0

1�cosx

x
equals lim

xÑ0

sinx

1
: This equals zero.

EXAMPLE 5
f

g
D

tan x

sinx
leads to

f 1
g1 D

sec2x

cosx
: At xD 0 the limit is

1

1
:

EXAMPLE 6
f

g
D
x�sinx

1�cosx
leads to

f 1
g1 D

1�cosx

sinx
: At xD 0 this is still

0

0
:

Solution Apply the Rule tof 1=g1: It has the same limit asf 2=g2:
if
f

g
Ñ 0

0
and

f 1
g1 Ñ 0

0
then compute

f 2.x/
g2.x/ D

sinx

cosx
Ñ 0

1
D 0:

The reason behind l’Hôpital’s Rule is that the following fractions are the
same:

f .x/

g.x/
D
f .x/�f .a/

x�a �

g.x/�g.a/
x�a : (7)

That is just algebra; the limit hasn’t happened yet. The factorsx�a cancel, and the
numbersf .a/ andg.a/ are zero by assumption. Now take the limit on the right side
of (7) asx approachesa:
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What normally happens is that one part approachesf 1 at xD a: The other part
approachesg1.a/:We hopeg1.a/ is not zero. In this case we can divide one limit by
the other limit. That gives the “normal” answer

lim
xÑa

f .x/

g.x/
D limit of (7) D

f 1.a/
g1.a/ : (8)

This is also l’Hôpital’s answer. Whenf 1.x/Ñ f 1.a/ and separatelyg1.x/Ñ g1.a/,
his overall limit isf 1.a/=g1.a/: He published this rule in the first textbook ever
written on differential calculus. (That was in1696—the limit was actually discovered
by his teacher Bernoulli.) Three hundred years later we apply his name to other cases
permitted in.6/;whenf 1=g1 might approach a limit even if the separate parts do not.

To prove this more general form of l’Hôpital’s Rule, we need a more general Mean
Value Theorem.I regard the discussion below as optional in a calculus course
(but required in a calculus book). The important idea already came in equation(8).

Remark The basic“ indeterminate” is 8�8. If f .x/ and g.x/ approach
infinity, anything is possible forf .x/�g.x/: We could havex2�x or x�x2 or
.xC2/�x: Their limits are8 and�8 and2:

At the next level are0=0 and8=8 and0 �8: To find the limit in these cases,
try l’Hôpital’s Rule. See Problem 24 whenf .x/=g.x/ approaches8=8: When
f .x/Ñ 0 andg.x/Ñ8, apply the0=0 rule tof .x/=.1=g.x//:

The next level has00 and 18 and80: Those come from limits off .x/g.x/:
If f .x/ approaches0;1; or 8 while g.x/ approaches0;8; or 0, we need more
information. A really curious example isx1= lnx , which shows all three possibilities
00 and18 and80: This function is actually a constant! It equalse:

To go back down a level, take logarithms. Theng.x/ lnf .x/ returns to0=0 and
0 �8 and l’Hôpital’s Rule. But logarithms ande have to wait for Chapter 6.

THE GENERALIZED MEAN VALUE THEOREM

The MVT can be extended totwo functions. The extension is due to Cauchy, who
cleared up the whole idea of limits. You will recognize the special casegD x as the
ordinary Mean Value Theorem.

3Q Generalized MVT If f .x/ and g.x/ are continuous onŒa;b� and
differentiable on.a;b/, there is a pointa  c  b where

Œf .b/�f .a/�g1.c/D Œg.b/�g.a/�f 1.c/: (9)

The proof comes by constructing a new function that hasF.a/DF.b/:

F.x/D Œf .b/�f .a/�g.x/� Œg.b/�g.a/�f .x/:
The ordinary Mean Value Theorem leads toF 1.c/D 0—which is equation(9).

Application 1 (Proof of l’Hôpital’s Rule) The rule deals withf .a/=g.a/D 0=0:
Inserting those zeros into equation(9) leavesf .b/g1.c/D g.b/f 1.c/: Therefore

f .b/

g.b/
D
f 1.c/
g1.c/ : (10)

As b approachesa, so doesc: The pointc is squeezed betweena andb: The limit of
equation(10)asbÑ a andcÑ a is l’Hôpital’s Rule.
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Application 2 (Error in linear approximation) Section 3.2 stated that the distance
between a curve and its tangent line grows like.x�a/2: Now we can prove this, and
find out more. Linear approximation is

f .x/D f .a/Cf 1.a/.x�a/C error e.x/: (11)

The pattern suggests an error involvingf 2.x/ and .x�a/2: The key example
f D x2 shows the need for a factor1

2
(to cancelf 2 D 2). The error in linear

approximation is

e.x/D 1
2
f 2.c/.x�a/2 with a  c  x: (12)

Keyidea Compare the errore.x/ to .x�a/2: Both are zero atxD a:

eD f .x/�f .a/�f 1.a/.x�a/ e1D f 1.x/�f 1.a/ e2D f 2.x/
gD .x�a/2 g1D 2.x�a/ g2D 2

The Generalized Mean Value Theorem finds a pointC betweena and x where
e.x/=g.x/D e1.C /=g1.C /: This is equation(10) with different letters. After
checkinge1.a/D g1.a/D 0, apply the same theorem toe1.x/ andg1.x/: It produces
a pointc betweena andC—certainly betweena andx—where

e1.C /
g1.C / D

e2.c/
g2.c/ and therefore

e.x/

g.x/
D
e2.c/
g2.c/ :

With gD .x�a/2 and g2 D 2 and e2 D f 2, the equation on the right is
e.x/D 1

2
f 2.c/.x�a/2: The error formula is proved. A very good approximation is

1
2
f 2.c/.x�a/2:

EXAMPLE 7 f .x/D
?
x nearaD 100:

?
102� 10C

�

1

20

�

2C
1

2

� �1
4000

�

22:

That last term predictseD�:0005: The actual error is
?
102�10:1D�:000496:

3.8 EXERCISES

Read-through questions

The Mean Value Theorem equates the average slope�f=�x

over an a Œa;b� to the slopedf=dx at an unknown b .
The statement is c . It requiresf .x/ to be d on the

e interval Œa;b�, with a f on the open interval.a;b/:
Rolle’s theorem is the special case whenf .a/Df .b/D 0, and the
point c satisfies g . The proof choosesc as the point wheref
reaches its h .

Consequences of the Mean Value Theorem include:
If f 1.x/D 0 everywhere in an interval thenf .x/D i .
The predictionf .x/D f .a/C j .x�a/ is exact for some
c between a and x: The quadratic predictionf .x/D f .a/C

f 1.a/.x�a/C k .x�a/2 is exact for anotherc: The
error in f .a/Cf 1.a/.x�a/ is less than1

2M.x�a/2 whereM
is the maximum of l .

A chief consequence is l’Hôpital’s Rule, which applies when
f .x/ and g.x/Ñ m as xÑa: In that case the limit of

f .x/=g.x/ equals the limit of n , provided this limit exists.
Normally this limit is f 1.a/=g1.a/: If this is also0=0, go on to
the limit of o .

Find all points 0  c  2 wheref .2/�f .0/D f 1.c/.2�0/.
1 f .x/D x3

3 f .x/D tan2�x

5 f .x/D .x�1/10

2 f .x/D sin�x

4 f .x/D 1CxCx2

6 f .x/D .x�1/9
In 7–10 show that no pointc yieldsf .1/�f .�1/D f 1.c/.2/: Ex-
plain why the Mean Value Theorem fails to apply.

7 f .x/D |x� 1
2 | 8 f .x/D unit step function

9 f .x/D |x|1=2 10 f .x/D 1=x2
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11 Show that sec2x andtan2x have the same derivative, and draw
a conclusion aboutf .x/D sec2x� tan2x:

12 Show that csc2x and cot2x have the same derivative and
find f .x/D csc2x�cot2x:

Evaluate the limits in 13–22 by l’Hôpital’s Rule.

13 lim
xÑ3

x2�9
x�3 14 lim

xÑ3

x2�9
xC3

15 lim
xÑ0

.1Cx/�2�1
x

17 lim
xÑ�

x��
sinx

19 lim
xÑ0

.1Cx/n�1
x

21 lim
xÑ0

sinx� tanx

x3

16 lim
xÑ0

?
1�cosx

x

18 lim
xÑ1

x�1
sinx

20 lim
xÑ0

.1Cx/n�1�nx
x2

22 lim
xÑ0

?
1Cx�?1�x

x

23 For f D x2�4 and gD xC2, the ratiof 1=g1 approaches4
asxÑ 2: What is the limit off .x/=g.x/? What goes wrong in
l’Hôpital’s Rule ?

24 l’Hôpital’s Rule still holds for f .x/=g.x/Ñ8=8: L is

lim
f .x/

g.x/
D lim

1=g.x/

1=f .x/
D lim

g1.x/=g2.x/

f 1.x/=f 2.x/
DL2 lim

g1.x/
f 1.x/ :

Then L equals limŒf 1.x/=g1.x/� if this limit exists. Where did
we use the rule for0=0 ? What other limit rule was used ?

25 Compute lim
xÑ0

1C.1=x/

1�.1=x/ : 26 Compute lim
xÑ8 x2 Cx

2x2
:

27 Compute lim
xÑ8 xCcosx

xCsin x
by common sense. Show that

l’Hôpital gives no answer.

28 Compute lim
xÑ8 cscx

cotx
by common sense or trickery.

29 The Mean Value Theorem applied tof .x/D x3 guarantees that
some numberc between1 and4 has a certain property. Say what the
property is and findc:

30 If |df=dx|¤ 1 at all points, prove this fact:|f .x/�f .y/|¤ 1 at allx andy:

31 The error in Newton’s method is squared at each step:|xnC1�x�|¤M |xn�x�|2: The proof starts from0D f .x�/D

f .xn/Cf
1.xn/.x

��xn/C
1
2f

2.c/.x��xn/
2: Divide by

f 1.xn/, recognizexnC1, and estimateM:

32 (Rolle’s theorem backward) Supposef 1.c/D 0: Are there
necessarily two points aroundc wheref .a/D f .b/?

33 Supposef .0/D 0: If f .x/=x has a limit asxÑ 0, that limit is
better known to us as : L’Hôpital’s Rule looks instead at the
limit of :

Conclusion from l’Hôpital: The limit off 1.x/, if it exists, agrees
with f 1.0/: Thusf 1.x/ cannot have a “removable :”

34 It is possible that f 1.x/=g1.x/ has no limit but
f .x/=g.x/ÑL: This is why l’Hôpital included an “if.”

(a) Find L as xÑ 0 when f .x/D x2 cos.1=x/ and
g.x/D x: Remember that cosines are below1:

(b) From the formulaf 1.x/D sin.1=x/C2x cos.1=x/ show
thatf 1=g1 has no limit asxÑ 0:

35 Stein’s calculus book asks for the limiting ratio of
f .x/D triangular areaABC to g.x/D curved areaABC:
(a) Guess the limit off=g as the anglex goes to zero.
(b) Explain why f .x/ is 1

2 .sinx�sinx cosx/ and g.x/ is
1
2 .x�sinx cosx/: (c) Compute the true limit off .x/=g.x/:

36 If you drive 3;000 miles from New York to L.A. in 100
hours (sleeping and eating and going backwards are allowed)
then at some moment your speed is :

37 AsxÑ8 l’Hôpital’s Rule still applies. The limit off .x/=g.x/
equals the limit off 1.x/=g1.x/, if that limit exists. What is the limit
as the graphs become parallel in Figure B ?

38 Prove thatf .x/ is increasing when its slope is positive:If
f 1.c/¡ 0 at all points c, thenf .b/¡f .a/ at all pairs of points
b¡a.
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