CHAPTER 3

Applications of the Derivative

Chapter 2 concentrated on computing derivatives. This chaptecentrates ousing

them. Our computations producéd /dx for functions built fromx” andsin x and

cosx. Knowing the slope, and if necessary also the second derivative, we can answer
the questions aboyt= f(x) that this subject was created for:

1. How doesy change whenr changes?
2. What is the maximum value gf? Or the minimum?
3. How can you tell a maximum from a minimum, using derivatives?

The information indy/dx is entirely local. It tells what is happening close to
the point and nowhere else. In Chapter’2y and Ay went to zero. Now we want
to get them back. The local information explains the larger pictoeeauseAy is
approximatelydy /dx timesAx.

The problem is to connect the finite to the infinitesimal—the average slope to the
instantaneous slope. Those slopes are close, and occasionally they are equal. Points
of equality are assured by the Mean Value Theorem—which is the local-global
connection at the center of differential calculus. But we cannot predietredy /dx
equalsAy/Ax. Therefore we now find other ways to recover a function from its
derivatives—or to estimate distance from velocity and acceleration.

It may seem surprising that we learn abgurom dy /dx. All our work has been
going the other way! We struggled withto squeeze outy /dx. Now we usely /dx
to studyy. That's life. Perhaps it really is life, to understand one generation from later
generations.
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138 3 Applications of the Derivative

I 3.1 Linear Approximation |

The book started with a straight liné = v¢. The distance is linear when the velocity
is constant. As soon asbegins to changef’ = vt falls apart. Which velocity do we
choose, whemw(z) is not constant? The solution is to take very short time intervals,
in which v is nearly constant:
f=vt is completely false

Af =vAt isnearly true

df =vdt isexactly true
For a brief moment the functiofi(¢) is linear—and stays near its tangent line.

In Section 2.3 we found the tangent linec= f(x). At x = a, the slope of the

curve and the slope of the line ay€(a). For points on the line, start at= f(a).
Add the slope times the “increment™—a:

Y = fla)+ f(@)(x —a). (1)

We write a capitall’ for the line and a smaly for the curve. The whole point of
tangents is that they are clogarovided we don’t move too far from):

yrY or  f(x)x fla)+ f(a)(x—a). )

That is the all-purposdinear approximation Figure 3.1 shows the square root
function y = 4/x and its tangent line at = a = 100. At the pointy = /100 = 10,
the slope isl /24/x = 1/20. The table beside the figure compares) with ¥ (x).

y

1 Y=10+"% _2(']00 x Y y=ix
15 y=Vx 100 10 10
—102 10.1 10.0995
197 110 105 10.49
;|7 Y12 =101 200 15 14.1
' 1i‘3 400 25 20

+ + + + X
100 200 300 400
Fig. 3.1  Y(x) is the linear approximation to’x nearx = a = 100.

The accuracy gets worse asdeparts froml00. The tangent line leaves the curve.
The arrow points to a good approximationlé2, and atl 01 it would be even better.
In this exampleY is larger thany—the straight line is above the curve. The slope
of the line stays constant, and the slope of the curve is decreasing. Such a curve will
soon be called “concave downward,” and its tangent lines are above it.

Look again atx = 102, where the approximation is good. In Chapter 2, when we
were approachindy/dx, we started witPAy /A x:

v/ 102 —+/100

| X . 3
SIOPe~ 02— 100 3)



3.1 Linear Approximation

Now that is turned around! The slopelig20. What we don’t know isy/102:
4/102 ~ 4/100 + (slope) 102 — 100). (4)

You work with what you have. Earlier we didn’t kna#w /dx, so we used3). Now
we are experts afy /dx, and we usd4). After computingy’ = 1/20 once and for
all, the tangent line stays negfx for every number neat00. When that nearby
number isl00 + Ax, notice the error as the approximation is squared:

1 2 1
V1004 —A =100+ Ax +—(Ax)?.
( +20 x) + x—|—400( X)

The desired answer K00 + Ax, and we are off by the last term involvirigh x)2.
The whole point of linear approximation is to ignore every term after

There is nothing magic abowt= 100, except that it has a nice square root. Other
points and other functions allow ~ Y. | would like to express this same idea in
different symbolslnstead of starting froma and going tax, we start fromx and go
a distanceAx to x + Ax. The letters are different but the mathematics is identical.

3A At any pointx, and for any smooth functioy = f(x),
f(x+Ax)— f(x)

slope atx ~ ®)

AXx
For the approximation tgf (x + Ax), multiply both sides byA x and addf (x):
f(x+ Ax) =~ f(x)+ (slope atr)(Ax). (6)

EXAMPLE 1  Animportant linear approximation (1 4+ x)" =~ 1+ nx for x near zero.

EXAMPLE 2 A second important approximationl /(1 + x)" ~ 1 —nx for x near zero.

Discussion Those are really the same. By changimgo —n in Example 1, it
becomes Example 2. These are linear approximations using the sioped —n»
atx =0:

(14+x)" ~ 1+ (slope at zerptimes(x —0) = 1 +nx.
Here is the same thing witlf(x) = x". The basepoint in equatid®) is now1 or x:

(1+Ax)"~1+nAx (x+Ax)" ~x"+nx""1Ax.
Better than that, here are numbers. Bot 3 and—1 and100, takeAx = .01:
1 1\ 100
1.01)°~1.03 —=~.99 1+— X2
(1.o1) 1.01 ( + 100)

Actually that last number is no good. ThE)Oth power is too much. Linear

approximation give$ 4+ 100A x = 2, but a calculator give€l.01)1°° =2.7.. .. This

is close tae, the all-important number in Chapter 6. The binomial formula shows why

the approximation failed:

(100)(99)
@)

Linear approximation forgets thgh x)? term. ForAx = 1/100 that error is nearly

%. Itis too big to overlook. The exact error%s(Ax)zf”(c), where the Mean Value
Theorem in Section 3.8 placedbetweenx andx + Ax. You already see the point:

y —Y is of order(Ax)2. Linear approximation, quadratic error.

(14+Ax)1°=14100Ax + (Ax)2+---.
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3 Applications of the Derivative

DIFFERENTIALS

There is one more notation for this linear approximation. It tade presented,
because it is often used. The notation is suggestive and confusing at the same time—it
keeps the same symboléx and dy that appear in the derivative. Earlier we
took great pains to emphasize that/dx is not an ordinary fractiom.Until this
paragraph,dx and dy have had no independent meaning. Now they become
separate variables, likeandy but with their own names. These quantitiesanddy

are calledlifferentials.

The symbols/x anddy measure chang@dong the tangent lineThey do for the
approximationY (x) exactly whatAx and Ay did for y(x). Thusdx and Ax both
measure distance across.

Figure 3.2 hasAx = dx. But the change iry does not equal the change Ih
One isAy (exact for the function). The other i&y (exact for the tangent lineJhe
differential dy is equal toAY, the change along the tangent linéVhereAy is
the true changely is its linear approximatiofdy /dx)dx.

You often seely written asf’(x)dx.

Ay =change iny (along curve)

dy =change int (along tangent)

Fig. 3.2 The linear approximation tay is
F dy = f'(x)dx.

x=a x+dx=x+Ax

EXAMPLE 3y =x? hasdy/dx =2x sody =2xdx. The table has basepoint
x = 2. The predictiondy differs from the trueAy by exactly(Ax)? = .01 and.04
and.09.

dx dy Ax Ay
y =x2 1 04 1 041 Ay=(Q2+Ax)?2-22
dy = 4dx 2 08 2 084 Ay=4Ax+(Ax)?
3 1.2 3 1.29

Thedifferentialdy = f'(x)dx is consistent with the derivativéy /dx = f”'(x).
We finally havedy = (dy/dx)dx, but this is not as obvious as it seems! It looks like
cancellation—it is really a definition. Entirely new symbols could be used{band
dy have two advantages: They suggest small steps and they satisfyf’(x)dx.
Here are three examples and three rules:

d(x™)=nx""ldx d(f+g)=df +dg
d(sinx)=cosxdx d(cf)=cdf
d(tanx) =seéx dx d(fg)=fdg+gdf

Science and engineering and virtually all applications of mathematics depend on
linear approximation. The true function ibrfearized” using its slopev:

1 Fraction or not, it is absolutely forbidden to cancel this
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Increasing the time byAz increases the distance byvAt
Increasing the force b f* increases the deflection by vA f
Increasing the production b p increases its value by vAp.

The goal of dynamics or statics or economics is to predict this multipkethe
derivative that equals the slope of the tangent line. The multiplier givexcal
predictionof the change in the function. The exact law is nonlinear—but Ohm’s law
and Hooke’s law and Newton’s law are linear approximations.

ABSOLUTE CHANGE, RELATIVE CHANGE, PERCENTAGE CHANGE

The change\y or A f can be measured in three ways. So davt

Absolute change Af Ax
A Ax

Relative change —f —
S (x) x
Af Ax

x 100 — x 100

Percentage change —
S (x) x

Relative change is often more realistic than absolute chahge. know the distance
to the moon within three miles, that is more impressive than knowing our own height
within one inch. Absolutely, one inch is closer than three miles. Relatively, three miles
is much closer:

3 miles linch

— < — or .001% < 1.4%.
300,000 miles  70inches

EXAMPLE 4  The radius of the Earth is withi®0 miles ofr = 4,000 miles.
(a) Find the variatio@ V' in the volumel = %nr3, using linear approximation.
(b) Compute the relative variations'/r andd V/V andAV/ V.

Solution  The job of calculus is to produce the derivative. Aftd¥r/dr = 4 r?,
its work is done. The variation in volume sV = 47(4000)2(80) cubic miles. A
2% relative variation inr gives a6% relative variation inV:

dr 80 dV  47(4000)2(80)
r 4000 V. 47(4000)3/3

Without calculus we need the exact volume at 4000 4 80 (also atr = 3920):

AV 47(4080)3/3 — 47(4000)3/3

~6.1%
% 471(4000)3/3 ’

One comment od V = 4xr?dr. This is (area of sphere) times (change in radius).
It is the volume of a thin shell around the sphere. The shell is added when the radius
grows bydr. The exacAV/V is 3917312 /640000%, but calculus just calls 6%.
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3 Applications of the Derivative

3.1 EXERCISES

Read-through questions

On the graph, a linear approximation is given by thea
line. At x =a, the equation for that line i¥ = f(e¢)+ __ b .

Near x=a =10, the linear approximation toy=x3 s
Y =10004+__c . At x =11 the exact value ig11)3=__d
The approximation isY =__e . In this caseAy=__f and
dy= g . If we know sinx, then to estimate siiix + Ax) we
add__h

In terms of x and Ax, linear approximation is
f(x+Ax)~ f(x)+__i_. The error is of order(Ax)? or
(x —a)? with p= | . The differentialdy equals__k times

the differential__1 . Those movements are along them _line,
whereAy is along the__n

Find the linear approximation Y to y = f(x) nearx =a:

1 fx)=x+x*a=0 2 fx)=1/x,a=2

3 f(x)=tanx,a=m/4 4 f(x)=sinx,a=mn/2

6 f(x)=sirx,a=0

5 f(x)=xsinx,a=2n

Compute 7-12 within .01 by deciding on f(x), choosing the
basepointa, and evaluating f(a)+ f/(a)(x —a). A calculator
shows the error.

7 (2.001)° 8 sin(.02)
9 c09.03) 10 (15.99)1/4
11 1/.98 12 sin(3.14)

Calculate the numerical error in these linear approximations
and compare withl (Ax)? £ (x):

13 (1.01)3 &~ 1+3(.01)
15 (sin.01)2 2 040(.01)

1 10
17 (1 + w)

14 c0g.01) =~ 1+0(.01)
16 (1.01)73a1-3(.01)

~2 18 v/8.99~3+ L(-.01)

Confirm the approximations 19-21 by computingf”(0):
19 \/l—le—%x
20 1/A/1—x2~1+ %xz (use f =1/+/1—u, then puty = x2)

1 2

21 Ve 4x zc—{-ix— (use  f(u)=+/c2+u, then put
c

u=x?)

22 Write down the differentialsdf for f(x)=cosx and
(x+1)/(x—1) and(x2+1)2.

In 23-27 find the linear changedV in the volume or dA in the
surface area

23 dV if the sides of a cube change frorf to 10.1.
24 dAif the sides of a cube change framo x + dx.
25 dA if the radius of a sphere changes &y

26 dV if a circular cylinder withr =2 changes height frons
t03.05 (recall V = r2h).

27 dV if a cylinder of height3 changes fromr =2tor =1.9.
Extra credit: What isd V if r andh both changedr anddh)?

28 In relativity the mass isng/+/1—(v/c)? at velocity v. By
Problem 20 this is nearmg + for small v. Show that
the kinetic energy%mv2 and the change in mass satisfy
Einstein’s equatiom = (Am)c2.

29 Enter 1.1 on your calculator. Press the square root key
times (slowly). What happens each time to the number after the dec-
imal point? This is becaus¢1 + x ~

30 In Problem29 the numbers you see are less thaip, 1.025,... .
The second derivative af'1 + x is so the linear approxima-
tion is higher than the curve.

31 Enter 0.9 on your calculator and press the square root
key 4 times. Predict what will appear the fifth time and press
again. You now have the root of 0.9. How many decimals
agree withl — 55 (0.1)?
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I .2 Maximum and Minimum Problems |

Our goal is to learn abouf(x) from df/dx. We begin with two quick questions.
If df/dx is positive, what does that say abgf{i? If the slope is negative, how is that
reflected in the function? Then the third question is the critical one:

How do you identify anaximumor minimum?
Normal answer: The slope is zero

This may be the most important application of calculus, to regGhix = 0.

Take the easy questions first. Suppade/ dx is positivefor every x between
a andb. All tangent lines slope upwar@he functionf (x) is increasingasx goes
froma to b.

3B If df/dx >0 then f(x) is increasing If df/dx <0 then f(x)
is decreasing

To define increasing and decreasing, look at any two pointsX. “Increasing”
requiresf(x) < f(X). “Decreasing” requireg (x) > f(X). A positive slope does
not mean a positive functionThe function itself can be positive or negative.

EXAMPLE 1 f(x) = x2 —2x has slop&x — 2. This slope is positive when > 1
and negative whew < 1. The function increases aftar=1 and decreases before
x=1.

f(x)

[

Fig. 3.3 Slopes are-+. Slope is+ —+ —+ so f is up-down-up-down-up.

We say that without computing'(x) at any point! The parabola in Figure 3.3 goes
down to its minimum ak = 1 and up again.

EXAMPLE 2 x2—2x+5 has the same slope. Its graph is shifted up3bya
number that disappears wf/dx. All functions with slope2x —2 are parabolas
x2 —2x +C, shifted up or down according . Some parabolas cross tlveaxis
(those crossings are solutionsf¢x) = 0). Other parabolas stay above the axis. The
solutions tox? —2x +5 =0 are complex numbers and we don’t see them. The
special parabola? —2x +1 = (x — 1)? grazes the axis at = 1. It has a “double
zero,” wheref(x) =df/dx =0.



144

3 Applications of the Derivative

EXAMPLE 3 Supposedf/dx=(x—1)(x—2)(x —3)(x —4). This slope is
positive beyondx =4 and up tox =1 (df/dx =24 at x=0). And df/dx is
positive again betwee@ and 3. At x =1,2,3,4, this slope is zero and(x)
changes direction.

Here f(x) is a fifth-degree polynomial, becaugé(x) is fourth-degree. The graph
of f goes up-down-up-down-up. It might cross thexis five timeslt must cross
at least oncélike this one). When complex numbers are allowed, every fifth-degree
polynomial has five roots.

You may feel that positive slope implies increasing functiosiobvious—perhaps
it is. But there is still something delicate. Starting fraffi/dx > 0 at everysingle
point, we have to deducé(X)> f(x) atpairs of points. That is a “local to global”
question, to be handled by the Mean Value Theorem. It could also wait for the
Fundamental Theorem of Calculughe difference f(X) — f(x) equals the area
under the graph ofdf/dx. That area is positive, s6(X) exceedsf'(x).

MAXIMA AND MINIMA

Which x makes f(x) as large as possible? Where is the smallgst)? Without
calculus we are reduced to computing valueg ¢f) and comparing. With calculus,
the informationis indf/dx.

Suppose the maximum or minimum is at a particular paintt is possible that
the graph has a corner—and no derivatBat if df /dx exists, it must be zerdhe
tangentline is level. The parabolas in Figure 3.3 change from decreasing to increasing.
The slope changes from negative to positive. At this crucial gbiatslope is zero

3C Local Maximum or Minimum Suppose the maximum or minimu
occurs at a point inside an interval wher¢f (x) anddf/dx are defined. The

F'(x) =0.

The word 1ocal’ allows the possibility that in other intervalg(x) goes higher or
lower.We only look neax, and we use the definition aff /dx.

Start with f(x + Ax) — f(x). If f(x) is the maximum, this difference is negative
or zero. The steph x can be forward or backward:

Ax)— i
if Ax>0: JWFADZS(X) _negatve i thelimit Y <o,
Ax positive dx
Ax)— i d
it Ax <0: JOFFAN—J() _negatve - tinthelimit < >0,

Ax ~ negative dx

Both arguments apply. Both conclusiafg/dx < 0anddf/dx > 0 are correct. Thus
df/dx=0.

Maybe Richard Feynman said it best. He showed his friends a plastic curve that
was made in a special way-rt matter how you turn it, the tangent at the lowest
point is horizontal” They checked it out. It was true.

Surely You're Joking, Mr. Feynmanis a good book (but rough on
mathematicians).

EXAMPLE 3 (continued) Look back at Figure 3.3b. The points that stand out
are not the “ups” or “downs” but the “turns.” Those astationary points where
df/dx =0. We see two maxima and two minima. None of them are absolute
maxima or minima, becausg(x) starts at-co and ends at-co.
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Tfx) = 4x3 - 324

3.2 Maximum and Minimum Problems

EXAMPLE 4  f(x) =4x3—3x* has slopel2x% — 12x3. That derivative is zero
whenx? equalsx3, at the two pointsc = 0 andx = 1. To decide between minimum
and maximum (local or absolute), the first step is to evalydte at thesestationary
points We find f(0) =0and f(1) = 1.

Now look at largex. The function goes down te-co in both directions.You can
mentally substitute = 1000 andx = —1000). For largex, —3x* dominatestx>.

Conclusion f =1 is an absolute maximury. = 0 is not a maximum or minimum
(local or absolute). We have to recognize this exceptional possibility, that a curve (or a
car) can pause for an instafyf’ = 0) and continue in the same direction. The reason

is the “double zero” inl2x2 — 12x3, from its double factox?.

L) W | =

absolute max

end
point

local max

| [ . - s :
minat1+1=2, - f(x) = Ix| il

point

W)=t

rough point 2

N
b e
(¥

T
~

3

[ 3 3

1/3 1

Fig. 3.4 The graphs ofix3 —3x* andx +x 1. Check rough points and endpoints.

EXAMPLE 5 Define f(x) = x + x~! for x > 0. Its derivativel — 1/x? is zero at
x = 1. At that point £ (1) =2 is the minimum value. Every combination Ii@—i— 3
or 2+ 2 islarger thanfmin = 2. Figure 3.4 shows thahe maximum of +x ! is
+o00.F

Important The maximum always occurs aséationary point(wheredf/dx = 0)

or arough point (no derivative) or arendpointof the domain. These are the three
types ofcritical points. All maxima and minima occur at critical points! At every
other pointdf/dx >0 or df /dx < 0. Here is the procedure:

1. Solvedf/dx = 0 to find the stationary pointg(x).

2. Compute f(x) at every critical point—stationary point, rough point,
endpoint

3. Take the maximum and minimum of those critical valuesf@f).

EXAMPLE 6 (Absolute valuef(x) = |x|) The minimum is zero at a rough point.
The maximum is at an endpoint. There are no stationary points.

The derivative ofy = |x| is never zero. Figure 3.4 shows the maximum and
minimum on the interval—3, 2]. This is typical of piecewise linear functions.

Question Could the minimum be zero when the function never reaghieg = 0?
Answer Yes f(x) = 1/(1 4+ x)? approaches but never reaches zerg as .

1A good word isapproachwhen f(x) — co. Infinity is not reached. But | still say “the
maximum isoo.”
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3 Applications of the Derivative

Remarkl x — 400 and f(x) — +oo are avoided wherf is continuous on a
closed intervala < x <b. Then f(x) reaches its maximum and its minimum
(Extreme Value TheoréuBut x — oo and f(x) — oo are too important to rule out.
You testx — oo by considering larger. You recognizef(x) — oo by going above
every finite value.

Remark2 Note the difference between critigabints(specified byx) and critical
values(specified byf(x)). The example: + x~! had the minimunpointx = 1 and
the minimumvalue f (1) = 2.

MAXIMUM AND MINIMUM IN APPLICATIONS

To find a maximum or minimum, solv¢’(x) = 0. The slope is zero at the top and
bottom of the graph. The idea is clear—and then check rough points and endpoints.
But to be honest, that is not where the problem starts.

In a real application, the first step (often the hardest) is to choose the unknown
andfind the functionlt is we ourselves who decide onand f(x). The equation
df/dx =0 comes in the middle of the problem, not at the beginning. | will start on a
new example, with a question instead of a function.

EXAMPLE 7 Where should you get onto an expressway for minimum driving,tim
if the expressway speed4® mph and ordinary driving speed3® mph?

I know this problem well—it comes up every morning. The Mass Pike goes to MIT
and | have to join it somewhere. There is an entrance near R@8tand another
entrance further in. | used to take the second one, now | take the first. Mathematics
should decide which is faster—some mornings | think they are maxima.

Most models are simplified, to focus on the key idea. We will allow the expressway
to be entered a&ny pointx (Figure 3.5). Instead of two entrances (a discrete problem)
we have a continuous choice (a calculus problem). The trip has two parts, at speeds
30 and60:

a distance/a? + x2 up to the expressway, ifa? + x2/30 hours
a distanceé — x on the expressway, itb — x) /60 hours

1 1
Problem Minimize f(x) = total time= 0 /a?+x2+ @(b —X).

We have the functiorf'(x). Now comes calculus. The first term uses the power rule:
The derivative ofi'/2 is 3u=1/2du/dx. Hereu = a® + x2 hasdu/dx = 2x:

11
302
To solve f/(x) = 0, multiply by 60 and square both sides:

F10) = 355 430 0 - = @

(@>+x>)V202x)=1 gives 2x=(a?+x»)V? and 4x2=a>+x%. (2)
Thus 3x2 = a2. This yields two candidates; =a/+/3 and x = —a/+/3. But a

negativex would mean useless driving on the expressway. In féicts not zero
atx = —a/\/g. That false root entered when we squa2ed
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MIT e driving time f(x) driving time f(x)
when b>a;’\q whcnb«caiﬁ
b-x
f** ‘5\.__// f“* )ﬂ““ 'P\'—.'/
}'21&*
enter r's-c
freeway
X

alN'3 b »

Fig. 3.5 Join the freeway at—minimize the driving timef(x).

| notice something surprising. The stationary point a/\/§ does not depend on
b. The total time includes the constdnt60, which disappeared idf /dx. Somehow
b must enter the answer, and this is a warning to go carefully. The minimum might
occur at a rough point or an endpoint. Those are the other critical poinfts ahd
our drawing may not be realistic. Certainly we expect b, or we are entering the
expressway beyond MIT.

Continue with calculus. Compute the driving timg(x) for an entrance at

x*=a/+/3:

)=l s

1 1 a
— — /a2 2 —p_-= —
JS(x) 30 V4 +(a /3)+60 (b <0 +60

V3
The square root ofa2 /3 is2a/+/3. We combine /30 — 1/60 = 3/60and divided
by /3. I's this stationary valuef * a minimum? You must look also andpoints

enter atx = 0: travel time isa/30+b/60 = f**
enter atx = b: travel time isv/a? + b2 /30 = f***,

The comparisory * < f** should be automatic. Entering at= 0 was a candidate
and calculus didn’t choose it. The derivative is not zera &t 0. It is not smart to
go perpendicular to the expressway.

The second comparison has=b. We drive directly to MIT at spee@0. This
option has to be taken seriously. In fact it is optimal wihen small ora is large.

This choicex = b can arise mathematically in two ways. If all entrances are
between) andb, thenb is anendpoint If we can enter beyond MIT, theh is a
rough point The graph in Figure 3.5¢ has a cornewat b, where the derivative
jumps. The reason is that distance on the expressway abbelute valug¢h — x|—
never negative.

Either wayx = b is a critical point.The optimal x is the smaller ofa/+/3
andb.

if a/+/3<b: stationary point wins, enter at=a/+/3, total time f*
if a/+/3 = b no stationary point, drive directly to MIT, timg ***

The heart of this subject is in “word problems.” All the calculus is in a few lines,
computingf’ and solvingf’(x) = 0. The formulation took longer. Step usually
does:

1. Express the quantity to be minimized or maximized as a funcif@gn).
The variablex has to be selected
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3 Applications of the Derivative

2. Computef”’(x), solve f’(x) = 0, check critical points forfmin and fmax-
A picture of the problem (and the graph ¢fx)) makes all the difference.

EXAMPLE 7 (continued) Choosex as anangle instead of a distance. Figure 3.6

shows the triangle with angle and sidez. The driving distance to the expressway

is a secx. The distance on the expresswayis- a tanx. Dividing by the speed30

ando60, the driving time has a nice form:

asex b—atanx
+ .

'(x) =total time= 3
f(x) = total = ®
Thederivatives ofsecx andtanx go intodf/dx:
d
—f:isertanx—ise&x. 4)
dx 30 60
Now setdf/dx = 0, divide bya, and multiply by30co< x:
sinx =1 5)

3
This answer is beautiful. The anghe is 30°! That optimal angle /6 radians)
hassinx = % The triangle with sidez and hypotenuse/\/§ is a30—60-90 right
triangle.

| don’t know whether you prefex/a?+ x2 or trigonometry. The minimum is
exactly as before—either &0° or going directly to MIT.

& 12000
o
o ° 26001  [rcome
b—la tan x 5 | 8500 +
. -~ jo energy
2 L. & . = Cost
o 10 ek xd
enter | 2
a Sec x = o
e | ) Profit
) =] N adeil iz JOW
energy — mx / 10 20 30

Fig. 3.6  (a) Driving at anglex. (b) Energies of spring and mass. (c) Prefiincome— cost.

EXAMPLE 8 In mechanicshature chooses minimum energy spring is pulled
down by a mass, the energy i§(x), anddf/dx =0 gives equilibrium. It is a
philosophical question why so many laws of physics involve minimum energy or
minimum time—which makes the mathematics easy.

The energy has two terms—for the spring and the mass. The spring energy is
%kxz—positive in stretchingX > 0 is downward) and also positive in compression
(x <0). The potential energy of the mass is taken-asx—decreasing as the mass
goes down. The balance is at the minimunygf) = %kx2 —mx.

| apologize for giving you such a small problem, but it makes a crucial point.
Whenf'(x) is quadratic, the equilibrium equatiafif /dx = 0 is linear.

df/dx =kx—m=0.

Graphically,x =m/k is at the bottom of the parabola. Physicallyy =m is a
balance of forces—the spring force against the weiblaoke’s lawfor the spring
force is elastic constaittimes displacement.
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EXAMPLE 9 Derivative of cost= marginal cost (our first management
example).

The paper to printc copies of this book might cost’ = 1000 + 3x dollars. The
derivative isd C /dx = 3. This is themarginal cosbf paper for each additional book.
If x increases by one book, the c@tincreases b¥3. The marginal cost is like the
velocity and the total cost is like the distance.

Marginal cost is in dollars per book. Total cost is in dollar©n the plus
side, the income ig(x) and the marginal income 6/ /dx. To apply calculus, we
overlook the restriction to whole numbers.

Suppose the number of books increases dw.t The cost goes up by
(dC/dx)dx. The income goes up b/ 1 /dx) dx. If we skip all other costs, then
profit P(x) = incomel(x)— costC(x). In most case® increases to a maximum
and falls back.

At the high point on the profit curvéhe marginal profit is zero

dP/dx=0 or dl/dx=dC/dx. (6)

Profit is maximized when marginal incomé’ equals marginal cosC’.

This basic rule of economics comes directly from calculus, amdwe an example:

C(x)=cost of x advertisements: 900 + 400x — x?
setup cost 900, print cogd0x, volume savings:2
I(x)=income due toc advertisements: 600x — 6x?

sales600 per advertisement, subtragt? for diminishing returns

optimal decisioniC/dx =dI/dx or 400—2x=600—12x or x=20
profit = income-cost= 9600 — 8500 = 1100.

The next section shows how to verify that this profit is a maximatanminimum.
The first exercises ask you to solvéf/dx =0. Later exercises also look

for f(x).

3.2 EXERCISES

Read-through questions

If df/dx >0 in an interval thenf(x) is __a . If a maximum The minimum Of%axz—bx is_ | atx=_m

or minimum occurs atx then f/(x)=__b . Points where

f'(x)=0 are called__c__ points. The functionf(x) =3x2—x Find the stationary points and rough points and endpoints.
has a (minimum)(maximum) at=__d . A stationary point that Decide whether each point is a local or absolute minimum or
isnot a maximum or minimum occurs fof(x)=__e . maximum.

Extreme values can also occur wheref is not defined
of the domain. The minima ofx| and 5x for

or at the

9

F(x)=x24+4x+5,—00 <x <0

N

fx)=x3—12x,—0<x <00

—2<x<2 are at x=__h and x=_1i , even though 3 f(x)=x2+3,—-1<x<4

df /dx

is not

zero. x* is an absolute ] when
f(x*) = f(x) for all x. A Kk minimum occurs when

4 f(x)=x24+@2/x),1<x<4

f(x*) < f(x) for all x nearx*. 5 f(x)=(x—x?)% -1<x<1

tMaybedx is a differential calculus book. | apologize for that.



150 3 Applications of the Derivative

fx)=1/(x—x2),0<x<1
f(x)=3x*+8x3—18x%, —c0<x <®©
fx)={x2—dxforo<x<1,x2—4for 1 <x<2}
fO)=vx—T+v/9—x,1<x<9

10 f(x)=x+sinx,0<x <27

© 00 N o

11 f(x)=x3(1—-x)% —0<x <o

12 f(x)=x/(14+x),0<x <100

13 f(x)= distance fromx > 0 to nearest whole number
14 f(x)= distance fromx > 0 to nearest prime number
15 f(x)=|x+1|+|x—1,-3<x<2

16 f(x)=x/1—-x2,0<x<1

17 f(x):xl/z—x3/2,0<x$4

18 f(x)=sinx+cosx,0<x <2n

19 f(x)=x+sinx,0<x <27

20 f(f)=coLlsing,—w <O<m

21 f(#)=4sinf—3co0sH,0<0<2x

22 f(x)={x%+1forx<1,x2—4x+5forx>1}.

In applied problems, choose metric units if you prefer

23 The airlines accept a box if lengthwidth+ height=

I[+w+h<62" or 158 cm. If h is fixed show that the
maximum volume(62—w —h)wh is V =h(31—1h)2. Choose
h to maximizeV. The box with greatest volume is a .

24 If a patient’s pulse measure®), then 80, then 120, what
least squares value  minimizes (x —70)2 + (x —80)2 +

(x —120)27? If the patient got nervous, assiga0 a lower weight
and minimize(x —70) + (x —80)% + X (x — 120)2.

25 At speedv, a truck usesav+ (b/v) gallons of fuel per
mile. How many miles per gallon at spee@ Minimize the fuel
consumption. Maximize the number of miles per gallon.

28 On the longest and shortest days, in June and December, why
does the length of day change the least?

29 Find the shortesty connecting P,Q, and B in the figure.
Originally B was a birdfeeder. The length ofy is
L(x)=(b—x)+2Va? +x2.

(8 Choosex to minimize L(not allowingx > b).

(b) Show that the center of thehas120°angles.

(c) The best becomes & whena/b =

c, C =1 +x2
cost
2

1 income

3
R=3x—x-

30 If the distance function isf(r) = (1+3¢)/(1+3t%), when
does the forward motion end? How far have you traveled?
Extra credit: Graphf' () anddf /dt.

In 31-34 we make and sell x pizzas The income is
R(x) = ax +bx? and the cost isC(x) = ¢ +dx +ex?2.

31 The profit is II(x)= . The average profit per
pizza is = . The marginal profit per additional pizza
is dll/dx = . We should maximize the (profit)(average

profit)(marginal profit).

32 We receive R(x) =ax+bx? when the price per pizza is
p(x)= . In reverse: When the price jswe sellx =
pizzas (a function op). We expecth <0 because .

33 Find x to maximize the profifl(x). At thatx the marginal profit
isdIl/dx =

34 Figure B shows R(x)=3x—x2 and C;(x)=1+x2 and
C(x) =24 x2. With costCy, which salesc makes a profit? Which
x makes the most profit? With higher fixed cosiip, the best plan

is
26 A limousine gets (120—2v)/5 miles per gallon. The

chauffeur costs B/hour, the gas costsl$gallon
(@) Find the cost per mile at speed
(b) Find the cheapest driving speed.

27 You should shoot a basketball at the andle recuiring

minimum speed. Avoid line drives and rainbows. Shooting

from (0,00 with the basket at (a,b), minimize
f(6) =1/(asind cosd —bcogh).

(@ If b=0 you are level with the basket. Show that

0 = 45° is best (Jabbar sky hook).
(b) Reducelf/d6 =0totan26 = —a/b. Solve wher: = b.
(c) Estimate the best angle for a free throw.

The same angle allows the largest margin of err@pdrts
Scienceéby Peter Brancazio). Section 12.2 gives the flight path.

The cookie box and popcorn box were created by Kay Dundas
from a 12" x 12" square A box with no top is a calculus classic

h,%

12-x
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35 Choosex to find the maximum volume of the cookie box.  *50 A wall 8 feet high isl foot from a house. Find the length of
- the shortest ladder over the wall to the house. Draw a triangle with
36 Choosex to maximize the volume of the popcorn box. :
heighty, basel + x, and hypotenusé.
37 A high-class chocolate box adds a strip of widthdown
across the front of the cookie box. Find the new voluiiéx)
and the x that maximizes it. Extra credit: Show thdfnax is
reduced by more thaz0%. 52 Draw a kite that has a triangle with siddsl,2x next to
38 For a box with no top, cut four squares of sigefrom the a trllan.gle \,Nlth sides2x,2,2. ,Fmd, the areaZA agd the x ;hat
corners of thei2” square. Fold up the sides so the height.iMax- MaXimizes itHint: In dA/dx simplify \/1—x2 —x%//1—x* to

2
imize the volume. (1=2x%)//1—x2.

51 Find the closed cylinder of volum& = = r2h = 167 that has
the least surface area.

Geometry provides many problems, more applied than they |n 53-56 x and y are nonnegative numbers withx + y = 10.
seem Maximize and minimize:

39 A wire four feet long is cut in two pieces. One piece form
a drcle of radiusr, the other forms a square of side Choose
r to minimize the sum of their areas. Then chooseto 57 Find the total distancef(x) from A4 to X to C. Show that
maximize. df/dx =0 leads to sim =sinc. Light reflects at an equal angle
to minimize travel time.

53 Xy 54 x24y2 55 y—(1/x) 56 sinxsiny

40 A fixed wall makes one side of a rectangle. We hag®
feet of fence for the other three sides. Maximize the atea 4
steps: q A

1 Draw a picture of the situation. C
2 Select one unknown quantity agbut notA!). . e e ;_ e
3 Find all other quantities in terms af & R

4 SolvedA/dx =0 and check endpoints. ofe ey sox

X X §=X X X ‘,.
41 With no fixed wall, the sides of the rectangle satisf reflection refraction % 9
2x 42y =200. Maximize the area. Compare with the area c 3

a circle using the same fencing. B

42 Add200 meters of fence to an existing straiglib—meter fence,

to make a rectangle of maximum area (invented by Professor Kleg). Fermat's principle says that light travels fromto B on the
43 How large a rectangle fits into the triangle with Sideguickest path. Its velocity above theaxis isv and below ther axis
x=0,y=0,andx/4+y/6 =17 Find the point on this third side'S W

that maximizes the areay. (@) Find the timeT(x) from A to X to B. On AX,
time = distancgvelocity= v/r2 + x2/v.

(b) Find the equation for the minimizing.

(c) Deducesnell’'s law(sina)/v = (sinb)/w.

44 The largest rectangle in Probled3 may not sit straight
up. Put one side along/4 + y/6 = 1 and maximize the area.

45 The distance around the rectangle in ProbletA is
P =2x+2y. Substitute fory to find P(x). Which rectangle has

= ’) . . .
Pmax= 12 “Closest point problems” are models for many applications

46 Find the rlght circular cylinder of largest volume that fits in 89 Where is the parabola= x2 closest tar =0, y = 2?
sphere of radiud.

i ingg =5— ?
47 How large a cylinder fits in a cone that has base radtus 60 Where is the ling = 5 —2x closest td0,0)
andheight H? For the cylinder, chooseand/ on the sloping sur- 61 What point on y =—x? is closest to what point on
facer/R+h/H =1 to maximize the volum@& = nr2h. y =5—2x7? At the nearest points, the graphs have the same slope.

Sketch th hs.
48 The cylinder in Problem47 has side areaAd =2nrh. eichthe graphs

Maximize A instead ofV. 62 Where is y=x? closest to (0,%)? Minimizing

2 _1y2_ _1\2 5
49 Including top and bottom, the cylinder has area X7+ (y—3)"=y+(—3)" gvesy <0. What went wrong?

63 Draw the liney =mx passing nean2,3),(1,1), and(—1,1).
A=2rrh+2nr? =2nrH(1—(r/R)) 42712 For a least squares fit, minimize

Maximize A when H > R. Maximize A whenR > H. B=2m)?+(1—m)?+(1+m)>.
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64 A triangle has corners <1,1),(x,x2), and (3,9) on the Now x is fixed. The maximum o2+ xy — y2 (a function of
parabola y = x2. Find its maximum area forx between—1 y)is M(x)= . Find the minimum of\/ (x).
and 3. Hint: The distance from(X,Y) to the liney =mx+5b is

|Y —mX —b|/vV1+m2.

65 Submarines are located a2,0) and (1,1). Choose the 0 y=x-+2x2sin(1/x) has slopel at x =0. But show thaty

slope m so the liney =mx goes between the submarines but . . . - .
. IS not increasing on ainterval aroundx =0, by finding points
stays as far as possible from the nearest one.

wheredy/dx =1—2 coq1/x)+4x sin(1/x) is negative.

69 For eachm the minimum value of f(x)—mx occurs at
x =m.Whatis f(x)?

71 True or false with a reason: Between two local minima of a
smooth functionf(x) there is a local maximum.

66 To find where the graph of(x) has greatest slope, solve . . . .
_For y = 1/(1+x2) this point is ’ 72 Create a functiory(x) that has its maximum at a rough point

and its minimum at an endpoint.

Problems 66—72 go back to the theory

67 When the difference betweefi(x) and g(x) is smallest, their
slopes are . Show this point on the graphs ¢f =2 +x2 and
g=2x—x2.

73 Draw a circular pool with a lifeguard on one side and
a downer on the opposite side. The lifeguard swims with
velocity v and runs around the rest of the pool with velocity
68 Supposey is fixed. The minimum ofc2 +xy —y? (a function w = 10v. If the swim direction is at angled with the direct
of x)ism(y) = . Find the maximum ofn(y). line, choos& to minimize and maximize the arrival time.
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X
I +5+cos.x tangent above 4 2
"< y=x%-2x*

3.3 Second Derivatives: Bending and Acceleration

When f’(x) is positive, f(x) is increasing. Whenly/dx is negative,y(x) is
decreasing. That is clear, but what about$keeondderivative? From looking at the
curve, can you decide the sign ¢f'(x) or d?y/dx?? The answer igesand the key
is in thebending

Astraight line doesn’t bend. The slopeypf= mx + b ism(a constant). The second

derivative is zero. We have to go to curves, to see a changing slope. Changes in the

derivative show up irf” (x):
f=x?hasf’=2x and f" = 2 (this parabola bendsp)
y =sinx hasdy/dx = cosx andd?y/dx? = —sinx (the sine benddown)

The slopex gets largereven when the parabola is fallinghe sign of f or /' is
not revealed byf”. The second derivative tells abathiange in slope

A function with f”(x) > 0 is concave uplt bends upward as the slope increases.
Itis also callecconvexA function with decreasing slope—this meafié(x) < 0—is
concave downNote howcosx andl + cosx and evenl + %x + cos x change from
concave down to concave up.at= /2. At that point f” = — cosx changes from
negative to positive. The extiat %x tilts the graph but the bending is the same.

f=0 tangent
crosses

Fig. 3.7  Increasing slope= concave up( /' > 0). Concave down ig"” < 0. Inflection pointf” =0

Here is another way to see the sign 6f. Watch the tangent linesVhen the

curve is concave up, the tangent stays below it. A linear approximation is too low.

This section computes quadratic approximation—which includes the term with
f”>0. When the curve bends dowrf” < 0), the opposite happens—the tangent
lines are above the curve. The linear approximation is too high fanidwers it.

In physical motion, ”(t) is the acceleratior—in units of distancg(time)?.
Acceleration is rate of change of velocity. The oscillat&in2¢ hasv = 2c0s2t¢
(maximum spee@) anda = —4sin2¢ (maximum acceleratio#).

An increasing population meang’ > 0. An increasing growth rate means
f" > 0. Those are different. The rate can slow down while the growth continues.

MAXIMUM VS. MINIMUM

Remember thajf’(x) =0 locates a stationary point. That may beménimumor
a maximumThe second derivative decidesistead of computingf(x) at many
points, we computef”(x) at one point—the stationary point. It is @ minimum if

£7(x) > 0.
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3D When f'(x) =0and f”(x) > 0, there is docal minimum at x.
When f/(x) =0and f”(x) < 0, there is docal maximumat x.

To the left of a minimum, the curve is falling. After the minimum, the curve rises. The
slope has changed from negative to positive. The graph bends upwayd'&ngl> 0.

At a maximum the slope drops from positive to negative. In the exceptional case,
when f/(x) = 0 and alsof”(x) = 0, anything can happen. An examplexi$, which
pauses at = 0 and continues up (its slope3s? > 0). Howeverx* pauses and goes
down (with a very flat graph).

We emphasize that the information frofif(x) and f”(x) is only “local.” To be
certain of anabsoluteminimum or maximum, we need information over the whole
domain.

EXAMPLE 1 f(x)=x3>—x2 has f/(x)=3x?>—2x and f"(x)=6x—2.

To find the maximum antbr minimum, solve3x2 —2x = 0. The stationary points
arex =0andx = % . Atthose points we need the second derivative. ft'1§0) = —2
(local maximum) andf” (%) = +2 (local minimum).

Between the maximum and minimum is timflection point That is where
f"(x) =0. The curve changes from concave down to concave up. This example has
/" = 6x —2, so the inflection pointis at = J.
INFLECTION POINTS

In mathematics it is a special event when a function passesghrmero. When the
function is f, its graph crosses the axis. When the functioif isthe tangent line is
horizontal. Whenf"” goes through zero, we have imflection point

The direction of bending changes at an inflection poinfour eye picks that out
in a graph. For an instant the graph is straight (straight lines ifgve 0). It is easy
to see crossing points and stationary points and inflection points. Very few people can
recognize wherg” =0 or f” = 0. | am not sure if those points have names.

There is a genuine maximum or minimum wh¢h(x) changes sign. Similarly,
there is a genuine inflection point wheif (x) changes signThe graph is concave
down on one side of an inflection point and concave up on the other gide
The tangents are above the curve on one side and below it on the other side. At an
inflection pointthe tangent line crosses the curfiégure 3.7b).

Notice that a parabola = ax? + bx + ¢ has no inflection pointsy” is constant.

A cubic curve has one inflection point, becayséis linear. A fourth-degree curve
might or might not have inflection points—the quadrafit(x) might or might not
cross the axis.

EXAMPLE 2 x*—2x?isW-shaped4 x> — 4x has two bumpsl2x? — 4 is U-shaped.
Thetable shows the signs at the important values:of

x —V2 =1 —1/3 0 1/43 1 2

F(x) 0 - 0,0 - 0
f1(x) 0 + 0 -0
f"(x) 0 - 0

+That rules outf(x) = x*, which hasf” = 12x? > 0 on both sides of zero. Its tangent line
is the x axis. The line stays below the graph—so no inflection point
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Between zeros off (x) come zeros off’(x) (stationary points). Between zeros of
f'(x) come zeros off”(x) (inflection points). In this examplg'(x) has a double
zero at the origin, so a single zero 6f is caught there. It is a local maximum, since
f"(0) <0.

Inflection points are important—not just for mathematics. We know the world
population will keep rising. We don’t know if theate of growth will slow down.
RememberThe rate of growth stops growing at the inflection poirtiere is the
1990 report of the UN Population Fund.

The next ten years will decide whether the world population trebles or merely
doubles before it finally stops growing. This may decide the future of the earth as a
habitation for humans. The population, név8 billion, is increasing by a quarter
of a million every day. Betweef0 and 100 million people will be added every
year during thel 990s; a billion people—a whole China—over the decade. The
fastest growth will come in the poorest countries.

A few years ago it seemed as if the rate of population growth was slgwing
everywhere except in Africa and parts of South Asia. The world’s population
seemed set to stabilize arouh@l 2 billion towards the end of the next century.

Today, the situation looks less promising. The world has overshot the marker
points of thel984 “most likely” medium projection. It is now on course for an
eventual total that will be closer tbl billion than to10 billion.

If fertility reductions continue to be slower than projected, the mark could be
missed again. In that case the world could be headed towards a total ofldp to
billion people.

Starting with a census, the UN follows each age group in each country. They
estimate the death rate and fertility rate—the medium estimates are published. This
report is saying that we are not on track with the estimate.

Section 6.5 will come back to population, with an equation that prediictsilion.

It assumes we are now at the inflection point. But China’s second census just started
on July1, 1990. When it's finished we will know if the inflection point is still ahead.

You now understand the meaning 6f (x).Its sign gives the direction of bending—
the change in the slop@he rest of this section computesw muchthe curve
bends—using thesizeof f” and not just its sign. We find quadratic approximations
based onf”(x). In some courses they are optional—the main points are highlighted.

CENTERED DIFFERENCES AND SECOND DIFFERENCES

Calculus begins with average velocities, computed on eitdercix:

fOHA) ) )= flx—AY)
Ax Ax

are closetof’(x) (1)

We never mentioned it, but a better approximatioryt¢x) comes fromaveraging
those two averageShis produces aentered differencgwhich is based om + Ax
andx — Ax. It divides by2Ax:

f10) ~

}[fu+Aﬂ—fu[Fﬂw—fu—Aw}:fu+Aﬂ—fu—Am_

- - )
2 Ax Ax 2AXx

We daim this is better. The test is to try it on powersxof

+The United Nations watches the second derivative!
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For f(x) =x these ratios all givef’ =1 (exactly). For f(x) = x2, only the
centered difference correctly give§’ =2x. The one-sided ratio gavex + Ax
(in Chapter 1 it wagt + h). It is only “first-order accurate.” But centering leaves no
error. We are averagin@x + Ax with 2x — Ax. Thus the centered difference
is “second-order accurate.”

I ask now:What ratio converges to the second derivati@ne answer is to take
differences of the first derivative. Certainly f//Ax approacheg”. But we want
a ratio involving f itself. A natural idea is to takdifferences of differenceshich
brings us to $econd difference’s

Jx+Ax)—f(x)  f(x)—fx—Ax)

AXx

Ax _SGHA)2f ()4 f(x =A%) d>f

Ax (Ax)2 dx?’ )

On the top, the difference of the differenceA A ) = A? 1. It corresponds ta/? f.

On the bottom(Ax)? corresponds tdx? . This explains the way we place tBis in

d? f/dx?.To say it differentlydx is squareddf is not squared—as in distanfaéme)?.
Note that(A x)? becomes much smaller thanx. If we divide A ¥ by (Ax)?, the

ratio blows up. It is the extra cancellation in the second differeht¢ that allows

the limit to exist. That limit isf” (x).

Application The great majority of equations can't be solved exactly. A tgpaase

is f”(x)=—sinf(x) (the pendulum equation). To compute a solution, | would
replace f”(x) by the second difference in equati¢8). Approximations at points
spaced byAx are a very large part of scientific computing.

To test the accuracy of these differences, here is an experimenf(en=
sinx + cosx. The table shows the errorsaat= 0 from formulas(1), (2), (3):

step lengthAx one-sided errors centered errors  second difference errors

1/4 1347 .0104 —.0052
1/8 .0650 .0026 —.0013
1/16 .0319 .0007 —.0003
1/32 .0158 .0002 —.0001

The one-sided errors are cut in half whéyx is cut in half. The other columns
decrease likg Ax)?. Each reduction divides those errors byThe errors from
one-sided differences ar®(Ax) and the errors from centered differences are
O(Ax)2.

The “big O”" notation When the errors are of ordekx, we write E = O(Ax).

This means thatl < CAx for some constant’. We don’t computeC —in fact we
don'twant to deal with it. The statement “one-sided errors are Oh of déttaptures
what is important. The main point of the other columng&is= O(Ax)? .

LINEAR APPROXIMATION VS. QUADRATIC APPROXIMATION

The second derivative gives a tremendous improvement ovearl@pproximation
f(a)+ f'(a)(x —a). A tangent line starts out close to the curve, the line has

no way to bendAfter a while it overshoots or undershoots the true function (see
Figure 3.8). That is especially clear for the mod¢k) = x2, when the tangent is the

x axis and the parabola curves upward.
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You can almost guess the term with benditghould involvef”, and alsd A x)?.
It might be exactly ”(x) times (Ax)? but it is not. The model function? has
f"=2.There must be a factcé’ to cancel tha®:

3E Thequadratic approximationto a smooth functiory'(x) nearx = a is

f) = f@)+ @) (x—a)+3 f"(@)(x —a)*. (4)

At the basepoint this if(a) = f(a). The derivatives also agree at=a. Further-
morethe second derivatives agre@n both sides of4), the second derivative at
x=ais f"(a).

The quadratic approximation bends with the function. It is not the absolutely
final word, because there is a cubic teéryf’”(a)(x —a)? and a fourth-degree term
21—4f”” (a)(x —a)*and so on. The whole infinite sum is a “Taylor series.” Equa#n
carries that series through the quadratic term—which for practical purposes gives a
terrific approximation. You will see that in numerical experiments.

Two things to mention. First, equatidd) shows why f” > 0 brings the curve
above the tangent line. The linear part gives the line, while the quadratic part is
positive and bends upward. Second, equafdncomes from(2) and (3). Where
one-sided differences give'(x + Ax) = f(x)+ f'(x)Ax, centered differences
give the quadratic:

from(2): f(x+Ax)= f(x —Ax)+2f'(x)Ax
from(3): f(x+Ax)=2f(x)— f(x —Ax)+ f"(x)(Ax)>.

Add and divide bg. Theresultisf (x + Ax) = f(x)+ f'(x)Ax + %f”(x)(Ax)z.
This is correct througliAx)? and misses byA x)3, as examples show:

EXAMPLE 3 (x4 Ax)® &~ (x) 4+ (3x%)(Ax) + 1 (6x)(Ax)? +error(Ax)?3.

EXAMPLE 4 (1+x)"~ l4+nx+in(n—1)x2.

The first derivative ak = 0 is n. The second derivative is(n — 1). The cubic term
would be%n(n —1)(n—2)x3. We are just producing the binomial expansion!

EXAMPLE 5

~ 1+ x + x? = start of a geometric series.
—X

1/(1—x) has derivativel /(1 — x)?. Its second derivative i8/(1 —x)3. At x =0
those equal, 1,2. The factor% cancels the2, which leavesl, 1, 1. This explains
1+ x+x2.

The next terms are? andx*. The whole series i$/(1 —x) =14+ x+x24+x3+---.
Numerical experiment 1/4/1+x~1—4x+32x? is tested for accuracy.
Dividing x by 2 almost divides the error b¥. If we only keep the linear pait— %x,
the error is only divided byt. Here are the errors at= 1, 4 and %

3
linear approximatio(errorzgxz): .0194 .0053 .0014

-5
quadratic approximatioéerrom 1—6x3) :—.00401 —.00055 —.00007
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3.3 EXERCISES

Read-through questions

The direction of bending is given by the sign of a . If the 21 If f(x) is an even function, the centered difference

second derivative is b in an interval, the function is concave[ f(Ax) — f(—Ax)]/2Ax exactly equalsf’(0) = 0. Why?

up (or convex). The graph bends ¢ . The tangent lines are
d _the graph. Iff”(x) <0 then the graph is concave e

and the slopeis_f .

At a point wheref’(x) =0 and f”(x) >0, the function has a
g . Ata point where__h _, the function has a maximum. A

22 If f(x) is an odd function, the second difference
[f(Ax) —2f(0)+ f(—Ax)]/(Ax)? exactly equals f”(0)=0.
Why?

Write down the quadratic f(0)+f’(0)x+%f”(O)x2 in

pointwhere f”(x) =0isan__i__point, providedf” changes sign. 2326
The tangent line j the graph. A
The centered approximation t¢’(x) is [__k ]/2Ax. The 23 f(x)=cosx+sinx 24 f(x)=tanx
_nOi H i " i 2
3-point approximation tof”(x) is [__| ]/(Ax)=. The second 25 f(x) = (sinx)/x 26 f(x)=1+x+x2

order approximation tof (x + Ax) is f(x)+ f/(x)Ax+__m .
Without that extra term this is just the n _ approximation. With |, 2 find FO)+ (D) =1)+ %f”(l)(x—l)z arounda = 1.

that term the erroris O(_o ).
. o 27 FinddandBin+/1T—x ~1+ Ax + Bx2.
1 A graph that is concave upward is inaccurately said to

“hold water.” Sketch a graph withf” (x) > 0 that would not hold 28 FindAandB in 1/(1—x)? ~ 14+ Ax+ Bx?.

water. 29 Substitute  the quadratic  approximation into
2 Find a function that is concave down far<0 and concave [f(x+Ax)—f(x)]/Ax, to estimate the error in this one-sided
up for0 < x < 1 and concave down for > 1. approximation tof’(x).

3 Can a function be always concave down and never cross ze#8?What is the quadratic approximationsat=0to f(—Ax)?

Canit be always concave down and positive? Explain. 31 Substitute for f(x+Ax) and f(x—Ax) in the centered
4 Find a function with f”(2)=0 and no other inflection approximation [f(x+Ax)— f(x—Ax)]/2Ax, to  get
point. f'(x)+ error. Find theAx and (Ax)? terms in this error. Test

) ] onf(x)=x3atx=0.
True or false when f(x) is a 9th degree polynomial with

£/(1)=0and f'(3) =0. Give (or draw) a reason. 32 Guess a third-order approximation f(Ax) =~ f(0)+
F1OAx+ 1 £"0)(Ax)2 + .Testiton f(x) = x3
5 f(x)=0somewhere between=1amnd x = 3.
6 f”(x)=0somewhere between= 1 andx = 3. Construct a table as in the text, showing the actual errors
7 There is no absolute maximum.at= 3. at x =0 in one-sided differences centered differences second
. . . differences and quadratic approximations. By hand take two

8 There are seven points of inflection. values of Ax, by calculator take three, by computer take four.
9 If f(x) has nine zeros, it has seven inflection points.

3 .4 - —

10 If f(x) has seven inflection points, it has nine zeros. 38 flx)=x"4x 34 f)=1/(=x)
35 f(x)=x2+sinx

In 11-16 decide which stationary points are maxima or

minima. 36 Example5 was 1/(1—x) ~14+x+x2. What is the error at

x =0.1? What is the error at =2?

11 f(x)=x2—6x 12 f(x)=x3—6x2 ) ) ) )

. 3 . 10 37 Substitute x =.01 and x=—0.1 in the geometric series
13 fx)=x"—6x 14 fx)=x"—6x 1/(1=x)=1+x+x2+--- to find 1/.99 and 1/1.1—first to
15 f(x) = sinx —cosx 16 f(x)=x+sin2x four decimals and then to all decimals.

38 Compute cod° by equation (4) witha =0. OK to check
. . ) . . onacalculator. Also compute cbsWhy so far off?
Locate the inflection points and the regions wheref(x) is
concave up or down 39 Why is sinx ~x not only a linear approximation but also a
] quadratic approximation? =0 is an point.
17 f(x)=x+x2—x3 18 f(x)=sinx+tanx ) ) o . L
) ) . . 40 If f(x) is an even function, find its quadratic approximation
19 f(x)=(x—2)*(x—4) 20 f(x)=sinx +(sinx) at x = 0. What is the equation of the tangent line?
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41 For f(x)=x+x2+x3, what is the centered difference . The plane is landing smoothly.
[f(3) = f(1)]/2, and what is the true slopg’(2)? The economy is picking up speed.

2

3
42 For f(x)=x+x2+x3, what is the second difference 4 Thetaxrateis constant.
[f(3)—2f(2)+ f(1)]/12, and what is the exagf” (2)? 5. A bike accelerates faster but a car goes faster.
6
7

43 Theerrorinf(a)+ f'(a)(x —a)is approximately% f"(a)(x — Stock prices have peaked.

. . e . Th f leration is slowi .
a)?. This error is positive when the function is . Then the tan- _e rate o gcce gratlon 'S S owing down
gent line is the curve. This course is going downhill.

46 (Recommended) Draw a curve that goes up-down-up.
Below it draw its derivative. Then draw its second derivative.
Mark the same points on all curves—the maximum, minimum,
and inflection points of the first curve.

44 Draw a piecewise lineary(x) that is concave up. Define

“concave up” without using the test?y/dx? > 0. If derivatives

don't exist, a new definition is needed.

45 What do th t bpur 1’ " "o . .
atdo these sentences say abfur /7 or /™ or f 47 Repeat Problem46 on a printout showing y(x)=

1. The population is growing more slowly. x3 —4x? +x +2 anddy/dx andd?y/dx? on the same graph.
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I 3.4 Graphs I

Reading a graph is like appreciating a painting. Everything is there, but you have to
know what to look for. One way to learn is by sketching graphs yourself, and in the
past that was almost the only way. Now it is obsolete to spend weeks drawing curves—
a computer or graphing calculator does it faster and better. That doesn’t remove the
need to appreciate a graph (or a painting), since a curve displays a tremendous amount
of information.

This section combines two approaches. One is to study actual machine-produced
graphs (especially electrocardiograms). The other is to understand the mathematics of
graphs—slope, concavity, asymptotes, shifts, and scaling. We introducerttexing
transform andzoom transform These two approaches are like the rest of calculus,
where special derivatives and integrals are done by hand and day-to-day applications
are by computer. Both are essential—the machine can do experiments that we could
never do. But without the mathematics our instructions miss the point. To create good
graphs you have to know a few of them personally.

READING AN ELECTROCARDIOGRAM (ECG or EKG)

The graphs of an ECG show the electrical potential during a heartbeat. There are
REFERENCE twelve graphs—six from leads attached to the chest, and six from leads to the arms

e and left leg. (It doesn't hurt, but everybody is nervous. You have to lie still, because

w—  contraction of other muscles will mask the reading from the heart.) The graphs record
W—  electrical impulses, as the cells depolarize and the heart contracts.
—_ What can | explain in two pages? The graph shows the fundamental pattern of the
_y5— ECG.Note theP wave the QRS complex and the T wave Those patterns, seen
§ 15— differently in the twelve graphs, tell whether the heart is normal or out of rhythm—or
'E };ﬁ: suffering an infarction (a heart attack).
0 120—
= - eI
10— b e easasassssssas Esasanss
3: Seconds """""‘::::s" lr' ? amamsmsanaan: I-' i
85— o iamas z I s 1 2
80— + s HHH
75— 2siiia : : :
70— il mEEESSENISEESIEEEND 1
55_
60— First of all the graphs show theeart rate. The dark vertical lines are by convention
1 second apart. The light lines ar second apart. If the heart beats evérgecond
%— (one dark line) the rate i§ beats per second &00 per minute. That is extreme

tachycardia—not compatible with life. The normal rate is between three dark lines
per beaté second, or100 beats per minute) and five dark lines (one second between
beats60 per minute). A baby has a faster rate, ov@0 per minute. In this figure the
rate is . A rate below60 is bradycardia not in itself dangerous. For a resting
athlete that is normal.

Doctors memorize the six ratd@60, 150, 100, 75, 60, 50. Those correspond th 2,
3,4,5,6 dark lines between heartbeats. The distance is easiest to measure between
spikes (the peaks of the R wave). Many doctors put a printed scale next to the chart.
One textbook emphasizes that “Where the next wave falls determines the rate. No
mathematical computation is necessary.” But you see where those numbers come
from.

2
I

F
L

3
I
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|
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The next thing to look for isheat rhythm. The regular rhythm is set by the
pacemaker, which produces the P wave. A constant distance between waves is good—
and then each beat is examined. When there is a block in the pathway, it shows as a
delay in the graph. Sometimes the pacemaker fires irregularly. Figure 3.10 shows
sinus arrythmigfairly normal). The time between peaks is changing. In disease or
emergency, there are potential pacemakers in all parts of the heart.

| should have pointed out the main parts. We have four chambers, an atrium
ventricle pair on the left and right. The SA node should be the pacemaker. The
stimulus spreads from the atria to the ventricles— from the small chambers that “prime
the pump” to the powerful chambers that drive blood through the body. The P wave
comes with contraction of the atria. There is a pausgl(—)oiaecond at the AV node.

Then the big QRS wave starts contraction of the ventricles, and the T wave is when
the ventricles relax. The cells switch back to negative charge and the heart cycle is
complete.

[Right Atrium] ff [ Left Atrium |

electrodes

ground

Left
Ventricle

8 Right
ericlc

Fig. 3.9 Happy person with a heart and a normal electrocardiogram.

The ECG shows when the pacemaker goes wrong. Other pacemakers take over—
the AV node will pace a60/minute An early firing in the ventricle can give a wide
spike in the QRS complex, followed by a long pause. The impulses travel by a slow
path. Also the pacemaker can suddenly speed up (paroxysmal tachycardia is
150 — 250/ minutg. But the most critical danger fibrillation.

Figure 3.10b shows a dying heart. The ECG indicates irregular contractions—no
normal PQRST sequence at all. What kind of heart would generate such a rhythm?
The muscles are quivering or “fibrillating” independently. The pumping action is
nearly gone, which means emergency care. The patient needs immediate CPR—
someone to do the pumping that the heart can’t do. Cardio-pulmonary resuscitation
is a combination of chest pressure and air pressure (hand and mouth) to restart the
rhythm. CPR can be done on the street. A hospital applies a defibrillator, which shocks
the heart back to life. It depolariza#l the heart cells, so the timing can be reset. Then
the charge spreads normally from SA node to atria to AV node to ventricles.

This discussion has not used all twelve graphs to locate the problem. That needs
vectorsLook ahead at Section 11.1 for the heart vector, and especially at Section 11.2
for its twelve projectionsThose readings distinguish between atrium and ventricle,
left and right, forward and back. This information is of vital importance in the event
of a heart attack. A “heart attack” israyocardial infarction(Ml).

An Ml occurs when part of an artery to the heart is blocked (a coronary occlusion).
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5_..‘ 'F“ ‘ {_-_‘h - - H ; Q Ischemia
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Fig. 3.10  Doubtful rhythm. Serious fibrillation. Signals of a heart akac

An area is without blood supply—therefore without oxygen or glucose. Often the

attack is in the thick left ventricle, which needs the most blood. The cells are first

ischemic, then injured, and finally infarcted (dead). The classical ECG signals involve
those three I's:

IschemiaReduced blood supply, upside-down T wave in the chest leads.
Injury: An elevated segment between S and T means a recent attack.
Infarction The Q wave, normally a tiny dip or absent, is as wide as a small
square % second). It may occupy a third of the entire QRS complex.

The Q wave gives the diagnosis. You can find all three I's in Figure 3.10c.
It is absolutely amazing how much a good graph can do.

THE MECHANICS OF GRAPHS

From the meaning of graphs we descend to the mechanics. A forsmdav given for
f(x). The problem ido create the grapht would be too old-fashioned to evaluate
f(x) by hand and draw a curve through a dozen points. A computer has a much better
idea of a parabola than an artist (who tends to make it asymptotic to a straight line).
There are some things a computer knows, and other things an artist knows, and still
others that you and | know—because we understand derivatives.

Our job is to apply calculus. We extract information frgfiand f” as well asf.
Small movements in the graph may go unnoticed, but the important properties come
through. Here are the main tests:

1. The sign of f(x) (above or below axisf = 0 atcrossing poin

The sign of f/(x) (increasing or decreasing:’ = 0 atstationary poin}
The sign of f”(x) (concave up or downf” = 0 atinjection poin}

The behavior off (x) asx — o0 andx — —o0

The points at whichf (x) — oo or f(x) — —o0

Even or odd? Periodic? Jumpsjhor f/? Endpoints? f(0)?

2 o

’ 2 2+6x2
RANPEE S f(x)=1f7 f/(x):(l—iz)z f”(x)=(1tx)zc)3‘

The sign of f(x) depends orl —x2. Thus f(x) >0 in the inner interval where
x2 < 1. The graph bends upwardg ((x) > 0) in that same interval. There are no
inflection points, sincef” is never zero. The stationary point whefé vanishes is
x = 0. We have docal minimumat x = 0.

The guidelines (oasymptotesmeet the graph at infinity. For largethe important
terms arex? and—x2. Their ratio is4+x2/ — x2 = —1—which is the limit asx —
00, andx — —o0. The horizontal asymptote is the ling = —1.

The other infinities, wher¢ blows up, occur wheh — x? is zero. That happens at
x =1 andx = —1. The vertical asymptotes are the lines=1 andx = —1. The



3.4 Graphs 163

graph in Figure 3.11a approaches those lines.

if f(x)— b asx — o0 or —oo, the liney = b is ahorizontal asymptote
if f(x)— +o0or—o0asx —a,thelinex = a is avertical asymptote
if f(x)—(mx+b)—0asx — +ooor— —o0,theliney =mx + b is asloping asymptote

Finally comes the vital fact that this function &ven: f(x) = f(—x) because
squaringx obliterates the sign. The graph is symmetric acrosgthgis.

To summarize the effect of dividing by- x2: No effect near = 0. Blowup at1
and—1 from zero in the denominator. The function approachésas|x| — o0.

x? _ x2—2x 2

=t T Taoy

This example divides by — 1. Thereforex = 1 is a vertical asymptote, wherg(x)
becomes infinite. Vertical asymptotes come mostly fa@ro denominators.

Look beyondx = 1. Both f(x) and f”(x) are positive forx > 1. The slope is
zero atx = 2. That must be a local minimum.

What happens as — c0? Dividing x? by x — 1, the leading term isc. The
function becomes large. It grows linearly—we expesi@ping asymptoteTo find
it, do the division properly:

EXAMPLE 2 f(x) =

x—1

x2

1
=x+14+—--. (1)
x—1 x—1
The last term goes to zero. The function approaghesx + 1 as the asymptote.
This function is not odd or even. Its graph is in Figure 3.11b. \iitlom outyou
see the asymptotedoom infor f =0or f'=0or f"=0.

Ty=x+1

: sin 3
=1 y=sinx+ =—

Fig. 3.11  The graphs of?/(1 —x2) andx?/(x — 1) and sinx + 1 sin 3x.

3

EXAMPLE 3 f(x) =sinx+$sin3x hastheslope f’(x)=cosx + cos3x.

Above all these functions aggeriodic. If x increases b, nothing changes. The
graphs fron27 to 47 are repetitions of the graphs frdirto 2z. Thus f(x 4+ 27) =
f(x) and the period i€x. Any interval of length2sr will show a complete picture,
and Figure 3.11c picks the interval fromr to 7.

The second outstanding property is thatis odd The sine functions satisfy
f(—x) = — f(x). The graph is symmetric through the origin. By reflecting the right
half through the origin, you get the left half. In contrast, the cosing& {(ix) are even.

To find the zeros off (x) and f/(x) and f"(x), rewrite those functions as

f(x)=2sinx—%si’x f'(x)=—-2cosx+4cosx f”(x)=—10sinx+12sirx.
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We changedin3x to 3 sinx —4sin’x. For the derivatives usgin’x = 1 —cogx.
Now find the zeros—therossing pointsstationary pointsandinflection points
3

/=0 2sinx=%smx=sinx=0or sitx=3=x=04x

f'=0 2cosx =4 cos’x = cosx =0 or COSx =1 = x = /4, +7/2. +37/4

f"=0 5sinx=6 sin’x = sinx=0 or sifx=2=x=0,1+66°+£114° +7
That is more than enough information to sketch the graph. Th@®stay points
7/4,7/2,37/4 are evenly spaced. At those poinftéx) is 4/8/3 (maximum),2/3
(local minimum),\/§/3 (maximum). Figure 3.11c shows the graph.

I would like to mention a beautiful continuation of this same pattern:
f(x)=sinx+4sin3x+3sn5x+---  f'(x)=cosx +COS3x +COS5x + - -

If we stop after ten termsf(x) is extremely close to atep function If we don't
stop,the exact step function contains infinitely many siftggmps from—7 /4 to
+m/4 asx goes past zero. More precisely it is a “square walecause the graph
jumps back down atr and repeats. The slom®sx + cos3x + - -- also has period
2. Infinitely many cosines add up to a delta functidiThe slope at the jump is an
infinite spike.) These sums of sines and cosined-atgier series

GRAPHS BY COMPUTERS AND CALCULATORS

We have come to a topic of prime importance. If you hgvaphing softwarefor

a computer, or if you have graphing calculator, you can bring calculus to life. A
graph presents(x) in a new way—different from the formula. Information that is
buried in the formula is clear on the grafBut don’t throw awayy (x) anddy/dx.
The derivative is far from obsolete.

These pages discuss how calculus and graphs go together. We work on a crucial
problem of applied mathematics—to find wheréx) reaches its minimum. There is
no need to tell you a hundred applications. Begin with the formula. How do you find
the pointx* wherey(x) is smallest ?

First, draw the graph. That shows the main features. We should see (roughly) where
x* lies. There may be several minima, or possibly none. But what we see depends on
a decision that is ours to make—the rangexadind y in the viewing window

If nothing is known abouy (x), the range is hard to choose. We can accept a default
range, and zoom in or out. We can use the autoscaling program in Section 1.7.
Somehowx* can be observed on the screen. Then the problem is to compute it.

I would like to work with a specific example. We solved it by calculus—to find
the best poink* to enter an expressway. The speeds in Section 3.2 $0eaad 60.

The length of the fast road will be = 6. The range of reasonable values for the
entering point is0 < x < 6. The distance to the road in Figure 3.12is= 3. We
drive a distanca/32 + x2 at speed30 and the remaining distange— x at speed0:

1 1
driving time =—4/324+x24+ —(6—x). 2
gtime y(x)=2-v/3 422+ (6-x) )
This is the function to be minimized. Its graph is extremely flat.

It may seem unusual for the graph to be so level. On the contrary, it is common.
A flat graph is the whole point @fy /dx = 0.
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The graph near the minimum looks like= Cx2. It is a parabola sitting on a
horizontal tangent. At a distance afx = .01, we only go up byC(Ax)? = .0001C.
UnlessC is a large number, thiAy can hardly be seen.

driving time y(x)
6-x -0 .20 .187

—— \-—/
\;_/

0 A8 18
0 6 1 3 ?

ZOOM
S ¥ 20

Fig. 3.12 Enter atx. The graph of driving timey(x). Zoom boxes locate *.

The solution is to change scalBoom in onx*. The tangent line stays flat, since
dy/dx is still zero. But the bending from@ is increased. Figure 3.12 shows #t@om
boxblown up into a new graph of (x).

A calculator has one or more ways to find. With a TRACE mode, you direct

a cusor along the graph. From the display pivalues, read/max andx* to the
nearest pixel. A zoom gives better accuracy, because it stretches the axes—each
pixel represents a smallésx andAy. The TI-81 stretches b¥ as default. Even
better, let the whole process be graphical—draw the aci@dM BOX on the

saeen Pick two opposite corners, preBSITER, and the box becomes the new
viewing window (Figure 3.12).

The first zoom narrows the search fdf. It lies betweenx = 1 andx = 3. We build
a newZOOM BOX and zoom in again. Now.5 < x* < 2. Reasonable accuracy
comes quickly. High accuracy does not come quickly. It takes time to create the box
and execute the zoom.

Question1  What happens as we zoom in, if all boxes are square (equalggcalin

Answer The picture gets flatter and flatter. We are zooming in to the tariges.
Changingx to X /4 andy to Y /4, the paraboly = x? flattens toY = X2/4. To see
any bendingwe must use a long thin zoom hox

| want to change to a totally different approach. Suppose we have a formula for
dy/dx. That derivative was produced by an infinite zddrne limit of Ay/Ax
came by brainpower alone:

4y a L canis fx).

dx ~ 30v32+x2 60

This function is zero ak ™. The computing problem is completely changed: Solve
f(x)=0.ltis easier to find a root off (x) than a minimum o§ (x). The graph of
f(x) crosses the axis. The graph of (x) goes flat—this is harder to pinpoint.
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ope dhs Take the model functiony =x? for |x| <.01. The slope f =2x changes
+.02 ' from —.02 to +.02. The value ofx?> moves only by.0001 —its minimum point is
hard to see.

To repeat: Minimization is easier witdy/dx. The screen shows an order of
magnitude improvement, when we trace or zoomfdw) = 0. In calculus, we have
been taking the derivative for granted. It is natural to get blasé ahgutx = 0. We
forget how intelligent it is, to work with the slope instead of the function.

-02

zero slope

at minimum Question2  How do you get another order of magnitude improvement ?
Fig. 3.13 Answer  Use the next derivative! With a formula fatf/dx, which isd?y /dx?,
the convergence is even faster. In two steps the error goes .fibrto .0001 to
.00000001. Another infinite zoom went into the formula fatf /dx, andNewton’s
methodakes account of it. Sections 3.6 and 3.7 styfdy) = 0.

The expressway example allows perfect accuracy. We can giiéx =0 by
algebra. The equation simplifies@0x = 304/3% + x2. Dividing by 30 and squaring
yields4x2 = 32 + x2. Then3x2 = 32. The exact solution is* = v/3 = 1.73205...

A model like this is a benchmark, to test competing methods. It also displays what
we never appreciated—the extreme flatness of the graph. The difference in driving
time between entering at* = \/5 and x =2 isone second

THE CENTERING TRANSFORM AND ZOOM TRANSFORM

For a photograph we do two things—point the right way and stanthe right
distance. Then take the picture. Those steps are the same for a graph. First we pick
the new center point. The graphskifted to move that point fronfa, b) to (0,0).

Then we decide how far the graph should reach. It fits in a rectangle, just like the
photographRescalingo x/c andy/d puts the desired section of the curve into the
rectangle.

A good photographer does more (like an artist). The subjects are placed and
the camera is focused. For good graphs those are necessary too. But an everyday
calculator or computer or camera is built to operate without an artist—just aim
and shoot. | want to explain how to aimat= f(x).

We are doing exactly what a calculator does, with one big differelt@oesn’t
change coordinates. We d&whenx = 1, y = —2 moves to the center of the viewing
window, the calculator still shows that point 4$,—2). When the centering
transform acts on y+2=m(x—1), those numbers disappear. This will be
confusing unlessc and y also changeThe new coordinates ar& = x — 1 and
Y =y +2.Then the new equationi§=mX.

The main point (for humans) is to make the algebra simpler. The computer has no
preference fol¥ =mX overy — yo = m(x — xo). It accept2x? — 4x as easily as
x2. But we do preferY =mX andy = x2, partly because their graphs go through
(0,0). Ever since zero was invented, mathematicians have liked that number best.

3F A centering transformshifts left by a and down byb:
X =x—aandY =y—bchangey = f(x)intoY +b = f(X +a).

EXAMPLE 4 The parabolay =2x?—4x has its minimum whendy/dx =
4x —4=0. Thus x =1 and y =—2. Move this bottom point to the center:
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y=2x%2—4xis
Y4+2=2(X—-1)2>—4(X—-1) or Y=2X2

The new parabold& =2X? has its bottom at0,0). It is the same curve, shifted
across and up. The only simpler parabola is- x2. This final step is the job of the
zoom.

Next comes scalinVe may want more detail (zoom in to see the tangent line).
We may want a big picture (zoom out to check asymptotes). We might stretch one
axis more than the other, if the picture looks like a pancake or a skyscraper.

3G A zoom transformscales theX andY axes byc andd:
x=cX and y=dY change Y =F(X) to y=dF(x/c).
The newx andy are boldface letters, and the graph is rescaled. Qfteni.

EXAMPLE 5 Start with Y =2X2. Apply a square zoom witlc =d. In the

new xy coordinates, the equation ¥§/c =2(x/c)?. The number2 disappears if

¢ =d = 2. With the right centering and the right zoom, every parabola that opens
upward isy = x2.

Question 3  What happens to the derivatives (gand bendingafter a zoom ?
Answer The slope (first derivative) is multiplied by/c. Apply the chain rule to
y=dF(X/c). A square zoom had/c = 1—lines keep their slopeThe second
derivative is multiplied byd /c2, which changes the bending. A zoom out divides
by small numbers = d, so the big picture is more, curved.

Combining the centering and zoom transforms, as we do in practice, giires
terms ofx:

y= f(x) becomes Y = f(X+a)—b andthen y:d[f(§+a)—b:|.

slope | slope 1 slope 2
(3,1) (0,0) (0,0)

xr=A-3 x=4(A-3)

y=B y=B-1 y=8(B-1)

Fig. 3.14 Change of coordinates by centering and zoom. Calculatorsktilv(x, y).

Question 4  Findx andy ranges after two transforms. Start betweeh and1.
Answer The window after centeringisl <x—a<land—1<y—»b<1.The
window after zoomis-1 < c(x —a) <land—1<d(y—b) < 1. The point(1,1)
was originally in the corner. The poitit —! 4+ a,d ~! +b) is now in the corner.

The numbersz,b,c,d are chosen to produce a simpler function (like= x?).
Or else—this is important in applied mathematics—they are chosen to xreakaty
“dimensionless.” An example iy = % cos8t. The frequency8 has dimension
1/time. The amplitude% is a distance. With! =2 cm andc = 8 sec, the units are
removed ang = cost.
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May | mention one transform thaloes change the slope? It is eotation.
The whole plane is turned. A photographer might use it—but normally people are
supposed to be upright. You use rotation when you turn a map or straighten a picture.
In the next section, an unrecognizable hyperbola is turnedtintol / X.

3.4 EXERCISES

Read-through questions

The position, slope, and bending of= f(x) are decided by 13 fx)= 14 f(x):%_zjc
x—

a ,_b and_c .If|f(x)[>o0 asx—a, the line x§+x2 Sin x4+ COSx
x=a is a vertical_d . If f(x)—b for large x, theny= 15 f(x)= x"+1 16 f(x)=——
bisa_e .If f(x)—mx—b for large x, then y =mx +b ' x3—1 Sinx —Cosx
isa_ f . The asymptotes of =x2/(x2—4) are g .This 17 f(x)=x—sinx 18 f(x)=(1/x)—+/x
function is even becausg(—x)=__h . The function sirkx has
period__i

- In 19-24 constructf(x) with exactly these asymptotes

Near a point wherely/dx =0, the graph is extremely j .
For the modely = Cx?, x=.1 givesy=__k . A box around 19
the graph looks longand | . We__m __in to that box for an- 21

other digit ofx*. But solvingdy/dx = 0 is more accurate, because
its graph__n__ the x axis. The slope ofdy/dxis 0 . Each 23 j=x(x >w), y=—x(x > —00)

x=1landy=2 20 x=1,x=2,y=0

y=xandx =4 22 y=2x+3amdx=0

derivative is likean p zoom.

To move (a,b) to (0,0), shift the variables tox= q and
Y=_r .This_ s transformchangeg= f(x)toY =_ t

The original slope ata, b) equals the new slope at u__. Tostretch andQ mustbe .

the axes by andd, setx=cX and__v_.The__w _transform 26 For P(x)/Q(x) to have a sloping asymptote, the degrees of
changesY = F(X)toy=__x . Slopes are multipliedby y . P andQ must be .

Second derivatives are multiplied by z .

24 x=1,x=3,y=x

25 For P(x)/Q(x) tohavey =2 as asymptote, the polynomiafs

27 For P(x)/Q(x) to have the asymptote =0, the degrees of

1 Find the pulse rate when heartbeats éreecond ortwodark P and Q must _____ . The graph ofx*/(1+x?) has what
lines orx seconds apart. asymptotes ?
2 Another way to compute the heart rate uses marks & Both 1/(x—1) and 1/(%—_1)2 have x=1 and y=0 as
6-second intervals. Doctors count the cycles in an interval. asymptotes. The most obvious difference in the graphs is
(@) How many dark lines id seconds ? - ,
(b) With 8 beats per interval, find the rate. 29 If f'(x) has asymptotesc=1 and y =3 then f(x) has
asymptotes .

(c) Rule: Heart rate= cycles per interval times .
30 True (with reason) ofalse (with example).

(@) Every ratio of polynomials has asymptotes

(b) If f(x)isevensoisf”(x)

(c) If f"(x)is even soisf(x)

(d) Between vertical asymptoteg;(x) touches zero.

Which functions in 3-18 are even or odd or periodic? Find
all asymptotes:y =b or x =a or y =mx +b. Draw roughly by
hand or smoothly by computer.

3 f(x)=x—(9/x) 4 f(x)=x" (any integem) 31 Construct anf(x) that is “even around = 3.”
1 %3 32 Constructg(x) to be “odd aroundk = r.”
5 f(x)zm 6 f(x):m
+ oo xz—+3 o foo— X243 geate gr_aphs of 33x3f on a computer or calculator
x24+1 x+1 yx)=00+1/x)*,-3<x<3

34 y(x):xl/x,O.l <x<K2
35 y(x)=sin(x/3)+sin(x/5)

i X
W= 2SO =Gny 36 ¥(¥)=2—x)/(2+x). -3 ¥ <3

9 f(x)=(sinx)(sin2x) 10 f(x)=cosx +cos3x +Ccos5x
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37 y(x)=2x3+3x2—12x+50n[-3,3] and[2.9,3.1]
38 100[sin(x +.1) —2 sinx +sin(x —.1)]

In 39-40 show the asymptotes on large-scale computer graphs.

3 4 3
x°+8x—15 xT—6x7+1
9 @ y= x2-2 ® y= 2x4 +x2
2 2
xc—=2 X“—x+2
40 (a = b =
@y x34+8x—15 () x2—2x+1

41 Rescaley =sinx so X is in degrees, not radians, aficchanges
from meters to centimeters.

Problems 42—46 minimize the driving timey (x) in the text. Some
guestions may not fit your software.

42 Trace along the graph of(x) to estimatex*. Choose an
xy range or use the default.

43 Zoomin byc =d = 4. How many zooms until you reach* =
1.73205 or 1.7320508 ?

44 Ask your program for the minimum of (x) and the solution of
dy/dx =0. Same answer ?

45 What are the scaling factors and d for the two zooms in
Figure 3.12? They give the stretching of theandy axes.

46 Show thatdy/dx = —1/60 and d2y/dx?=1/90 at x =0.
Linear approximation givedy/dx ~ —1/60+ x/90. So the slope
is zero nearc =
derivative.
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Change the function toy(x) = v'15+x2/30+ (10— x)/60.
47 Find x* using only the graph of (x).
48 Findx™* using also the graph efy/dx.

49 What are thexy and XY and xy equations for the line in
Figure 3.14?

50 Define fu(x)=sinx+1sn3x+Lsnsx+--- (n terms).

Graph f5 and fjo from —x to #. Zoom in and describe the
Gibbs phenomenoat x = 0.

On the graphs of 51-56 zoom in to all maxima and minima
(3 significant digits). Estimate inflection points.

51 y =2x> —16x*45x3 —37x2 4 21x + 683
52 y=x2—x*—B3x+1-2
53 y=x(x—1)(x-=2)(x—4)

54 y=7sin2x +5 cos3x

55 y=(x3—2x+1)/(x*—3x2-15),-3<x <5

56 y=xsin(1/x),0.1<x<1

57 A 10-digit computer showsy =0 and dy/dx=.01 at
x* =1. This root should be correct to abo& digits) (10 digits)
(12 digits). Hint: Supposey =.01(x —1+ error). What errors
don’t show in10 digits of y ?

. This is Newton’s method, using the nex68 Which is harder to compute accurately: Maximum point

or inflection point ? First derivative or second derivative ?
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I 35 Parabolas, Ellipses, and Hyperbolas | GGG

Here is a list of the most important curves in mathematics, so you can tell what is
coming. It is not easy to rank the top four:

1. straight lines

2. sines and cosine@scillation)

3. exponentialggrowth and decay)

4. parabolasgllipses and hyperbolagusingl,x, y,x2,xy, y?).

The curves that | wrote last, the Greeks would have written first. It is so natural to
go from linear equations to quadratic equations. Straight linesl usgy. Second
degree curves include?, xy, y2. If we go on tox? and y3, the mathematics gets
complicated. We now study equations of second degree, and the curves they produce.

Itis quite important to see both tleguationsand thecurves This section connects
two great parts of mathematics—analysfshe equation angeometryof the curve.
Together they produceathalytic geometry You already know about functions and
graphs. Even more basic: Numbers correspond to points. We speak #tmpidint
(5,2).” Euclid might not have understood.

Where Euclid drew &5° line through the origin, Descartes wrote down= x.
Analytic geometry has become central to mathematics—we now look at one part of it.

Fig. 3.15 The cutting plane gets steeper: circle to ellipse to parabdigperbola.

CONIC SECTIONS

The parabola and ellipse and hyperbola have absolutely retsiargeoperties. The
Greeks discovered that all these curves come fstining a cone by a planeThe
curves are “conic sections.” A level cut givesiecle, and a moderate angle produces
anellipse A steep cut gives the two pieces ohgperbola(Figure 3.15d). At the
borderline, when the slicing angle matches the cone angle, the plane carves out a
parabola It has one branch like an ellipse, but it opens to infinity like a hyperbola.

Throughout mathematics, parabolas are on the border between ellipses and
hyperbolas

To repeat: We can slice through cones or we can look for equations. For a cone
of light, we see an ellipse on the wall. (The wall cuts into the light cone.) For an
equationdx? 4+ Bxy +Cy?+ Dx + Ey + F = 0, we will work to make it simpler.
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The graph will be centered and rescaled (and rotated if neggssaming for an
equation likey = x2. Eccentricity and polar coordinates are left for Chapter 9.

THE PARABOLA y =ax?+bx +c

You knew this function long before calculus. The graph croskBesctaxis when
y =0. The quadratic formula solves=3x2 —4x + 1 =0, and so does factoring
into (x —1)(3x — 1). The crossing points = 1 andx = % come from algebra.

The other important point is found by calculus. It is thenimumpoint, where
dy/dx = 6x —4 =0.Thex coordinate i% = % halfway between the crossing points.

The height isymin = —%. This is thevertexV in Figure 3.16a—at the bottom of the
parabola.

A parabola has no asymptotes. The slépe-4 doesn’t approach a constant.
To center the vertexShift left by 2 and up by 1. So introduce the new

variablesX =x—2% and Y =y+1. Then x=2 and y =—1 correspond to
X =Y = 0—which is the new vertex:

y=3x>—4x+1 becomes Y =3X2 (1)

Check the algebral =3X? is the same ag + 1 =3 (x — %)2 That simplifies to

the original equatioly = 3x2 — 4x + 1. The second graph shows the centered parabola
Y =3X?2, with the vertex moved to the origin.

To zoom in on the vertex RescaleX andY by the zoom factou:
Y =3X? becomes y/a =3(x/a)>.

The final equation has andy in boldface. Witha = 3 we findy = x>—the graph is
magnified by3. In two steps we have reached the model parabola opening upward.

* | ray )

|
¥
]
I
1
I
1

Y =3x? y=x

y=3x2-4x+1

focusat¥ = -5 focus aty =

&=

V=(0,0) directrixaty= - —

vertex at (2/3,-1/3)

Fig. 3.16  Parabola with minimum a¥. Rays reflect to focus. Centered in (b), rescaled in (c).

A parabola has another important point—theus lts distance from the vertex is
called p. The special parabola= x? has p = 1/4, and other parabolal = a X ?
havep = 1/4a. You magnify by a factou to gety = x2. The beautiful property of a
parabola is thagvery ray coming straight down is reflected to the focus

Problem2.3.25 located the focug'—here we mention two applications. A solar
collector and a TV dish are parabolic. They concentrate sun rays and TV signals
onto a point—a heat cell or a receiver collects them at the focus1982 UMAP
Journalexplains how radar and sonar use the same idea. Car headlights turn the idea
around, and send the light outward.

Here is a classical fact about parabolksom each point on the curve, the
distance to the focus equals the distance to the “directrihe directrix is the
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line y = — p below the vertex (so the vertex is halfway between focus and directrix).
With p = 1, the distance down from arfy, y) is y + 1. Match that with the distance

to the focus a(O, %)— this is the square root below. Out comes the special parabola
2.
y=x~

y+i= xz—i—(y—%)2 —— (square both sides)—— y=x2. (2)

The exercises give practice with all the steps we have taken—center the parabola to
Y =aX?, rescale it toy = x?, locate the vertex and focus and directrix.

Summary for other parabolas y = ax? 4 bx + ¢ has its vertex wherdy /dx is
zero. Thu®ax + b =0andx = —b/2a. Shifting across to that point is “completing
the square™:

b 2
ax*+bx+c equals a (x+2—) +C. 3
a
Here C =c—(b?/4a) is the height of the vertex. The centering transform
X =x+(b/2a),Y =y —C produce¥ = aX?. ltmoves the vertex t¢0, 0), where
it belongs.
For the ellipse and hyperbola, our plan of attack is the same:

1. Center the curve to remove any linear teris andE y.
2. Locate each focus and discover the reflection property.
3. Rotate to remové x y if the equation contains it.

x2 y2
ELLIPSES — + b_2 =1 (CIRCLES HAVE a =b)
a

This equation makes the ellipse symmetric ab@yb)—the center. Changing to
—x or y to —y leaves the same equation. No extra centering or rotation is needed.
The equation also shows that/a? and y2/b? cannot exceed one. (They add
to one and can't be negative.) Therefare< a?, andx stays between-a anda.
Similarly y stays betweeh and—b. The ellipse is inside a rectangle.
By solving fory we get a function (or two functions!) of:

2 2 2 b
Y - gives Z=iy/1—x— o y=1—-va%—x2
b2 a? b a? a

The graphs are the top h&H-) and bottom half—) of the ellipse. To draw the ellipse,
plot them together. They meet when= 0, atx = a on the far right of Figure 3.17
and atx = —a on the far left. The maximum = b and minimumy = —b are at the
top and bottom of the ellipse, where we bump into the enclosing rectangle.

A circle is a special case of an ellipse, wheg= b. The circle equation? +
y2 =r? is the ellipse equation with = b = r. This circle is centered &0, 0); other
circles are centered at=h,y = k. The circle is determined by itadiusr and its

center(h,k):
Equation of circle:  (x —h)>+ (y —k)> =r2. (4)

In words, the distance frorfix, y) on the circle to(h, k) at the center is. The
equation has linear terms2ix and—2k y—they disappear when the cente(is0).
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EXAMPLE 1 Find the circle that has a diameter frain 7) to (5, 7).
Solution  The center is halfway &8, 7). Sor =2 and(x —3)2+ (y —7)% = 22.
EXAMPLE 2  Find the center and radius of the cirald — 6x + y2 — 14y = —54.

Solution ~ Completex? —6x to the square(x —3)? by adding9. Complete
y2 —14y to (y —7)? by adding49. Adding 9 and49 to both sides of the equation
leaves(x —3)% + (y — 7)? = 4—the same circle as in Example 1.

Quicker Solution Match the given equation witt#). Thenh =3,k =7, andr = 2:
x2—6x+y?—14y =—54 must agree with x> —2hx +h%+ y> —2ky +k*> =r2.

The change t& = x —h andY = y —k moves the center of the circle frofh, k)
to (0,0). This is equally true for an ellipse:
(x—h)?  (y—k)? x> r:

2 + b2 =1 becomes a_2+ﬁ:1
When we rescale by = X /a andy = Y /b, we get the unit circle® + y2 = 1.

The unit circle has area. The ellipse has arearab (proved later in the book).
The distance around the circle2is. The distance around an ellipse does not rescale—
it has no simple formula.

The ellipse

(x, y)

(0,-b)

Fig. 3.17 Uncentered circle. Centered ellipsé/32 + y2/2% = 1. The distance from center
to far right is alsoa = 3. All rays from F; reflect toFj.

Now we leave circles and concentrate on ellipses. They tvawdoci (pronounced
fo-sigh. For a parabola, the second focus is at infinity. For a circle, both foci are at
the center. The foci of an ellipse are on its longer axisr{iggor axis), one focus on
each side of the center:

Fiisatx =c=1/a?—b2 and F,isatx = —c.

The right triangle in Figure3.17 has sides:, b, c. From the top of the ellipse, the
distance to each focusds From the endpoint at = a, the distances to the foci are
a+c¢ anda —c. Adding (¢ +¢) + (a — ¢) gives2a. As you go around the ellipse,
the distance tdF; plus the distance t@, is constan{always2a).

3H At all points on the ellipse, the sum of distances from the fo@ids This
is another equation for the ellipse:

from Fy and F> to (x,y) : v/ (x —¢)2 + y2++/(x +¢)2+y2=2a. (5)
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To draw an ellipse, tie a string of leng®a to the foci. Keep the string taut and your
moving pencil will create the ellipse. This description ugeendc—the other form
usesz andb (remembeb? + c2 = a?). Problen24 asks you to simplify equatiof)
until you reachw? /a? + y? /b% = 1.

The “whispering gallery” of the United States Senate is an ellipse. If you stand at
one focus and speak quietly, you can be heard at the other focus (and nowhere else).
Your voice is reflected off the walls to the other focus—following the path of the
string. For a parabola the rays come in to the focus from infinity—where the second
focus is.

A hospital uses this reflection property to split up kidney stones. The patient sits
inside an ellipse with the kidney stone at one focus. At the other fotitlsadripter
sends out hundreds of small shocks. You get a spinal anesthetic (I mean the patient)
and the stones break into tiny pieces.

The most important focus is the Sun. The ellipse is the orbit of the Earth. See
Section 12.4 for a terrible printing mistake by the Royal Mint, on England’s
last pound note. They put the Sun at the center.

Question 1  Why do the whispers (and shock waves) arrive together at ttumdec
focus?
Answer  Whichever way they go, the distanceis. Exception: straight path i&c.

Question 2 Locate the ellipse with equatiahx? + 9y? = 36.
Answer Divide by 36 to change the constant fo Now identifya andb:

2 2

Question 3 Shift the center of that ellipse across and down te 1, y = —5.
Answer Changex to x—1. Changey to y+5. The equation becomes
(x —1)2/9+(y+5)?/4=1. In practice we start with this uncentered ellipse and
go the other way to center it.

y2 x2
HYPERBOLAS — — — =1
a2 b2
Notice the minus sign for a hyperbolaThat makes all the difference. Unlike an
ellipse,x andy can both be large. The curve goes out to infinity. It is still symmetric,
sincex can change te-x andy to —y.
The center is at0,0). Solving for y again yields two functions# and—):

Vb2+x2,  (6)

The hyperbola has two branches that never meet. The upper branch, with a plus sign,
hasy >a. ThevertexV; is atx =0, y = a—the lowest point on the branch. Much
further out, wherx is large, the hyperbola climbs up besidestsping asymptotes

2 2 2
X , X
Yy gives X:J_r l+— o y=+
a

_ a
a? b2 b? b

2 2

if 2 = 1000 then 2= = 1001. S0~ isclose to or — =
b2 az TTa b b’
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F 9(0,V13)

(0, 2)

radio signals

~ reach curve
k: fixed waves
—b, 0)e— =1 e (3,0 e — ® e
( ) T b .0 time apart a reflect
L N to F,

// v 0 r= b-. ‘-"--— "'q‘

- - y = -
B ( ) o" 4 ""‘
F;II(O. —C) o‘ F, -~

Fig.3.18 The hyperbolajy? —&x2=1hasa =2.b=3,c = /4+9. The distances td";
and F, differ by 2a = 4.

The asymptotes are the lingga = x /b andy /a = —x/b. Their slopes ara /b and
—a/b. You can’'t miss them in Figure 3.18.

For a hyperbola, the foci are inside the two branches. Their distance from the
center is still called:. But now ¢ =+/a? + b2, which is larger tharz and b. The
vertex is a distance —a from one focus and + a from the other. Thalifference
(not the sum) igc +a) — (c —a) =2a.

All points on the hyperbola have this properthe difference between distances
to the foci is constantly2a. A ray coming in to one focus is reflected toward the
other. The reflection is on thautsideof the hyperbola, and tHasideof the ellipse.

Here is an application to navigation. Radio signals leave two fixed transmitters at
the same time. A ship receives the signals a millisecond apart. Where is the ship ?
Answer It is on a hyperbola with foci at the transmitters. Radio signals travel
186 miles in a millisecond, s486 = 2a. This determines the curve. In Long Range
Navigation (LORAN) a third transmitter gives another hyperbola. Then the ship is
located exactly.

Question 4  How do hyperbolas differ from parabolas, far from the center?
Answer Hyperbolas have asymptotes. Parabolas don't.

The hyperbola has a natural rescaling. The appearancéhoifs a signal to change
to X. Similarly y/a becomes. ThenY =1 at the vertex, and we have a standard
hyperbola:

y2/a*—x?/b>=1  becomes YZ?2-X2=1.

A 90° turn gives X2 — Y2 = 1—the hyperbola opens to the sides.4&° turn
produces2X Y = 1. We show below how to recognize? +xy+y%2=1 as an
ellipse andx? 4+ 3xy + y2 =1 as a hyperbola. (They are not circles because of the
xy term.) When thexy coefficient increases padt x2 + y? no longer indicates an
ellipse.

Question5  Locate the hyperbola with equati®y? — 4x2 = 36.
Answer  Divide by 36. Theny2/4—x2/9 = 1. Recognize: = v/4 and b = /9.

Question 6  Locate the uncentered hyperb®lg? — 18y —4x? — 4x = 28.
Answer Complete9y? — 18y to 9(y — 1) by adding9. Complete4x? + 4x to
4(x+1)* by adding4(%)2 = 1. The equation is rewritten &y — 1) — 4(x + )% =
28 +9—1. This is the hyperbola in Questidr—except its center i(;—%, 1).
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To summarize: Find the center by completing squares. Then feadandb.

THE GENERAL EQUATION Ax2+ Bxy +Cy2+Dx+Ey+F =0

This equation is of second degree, containing any and all,af y,x2,xy, y2.
A plane is cutting through a conds the curve a parabola or ellipse or
hyperbola? Start with the most important cagec? + Bxy + Cy? = 1.

3l The equatiomx? + Bxy +cy? = 1 produces a hyperbolaB? > 4AC and
an ellipse ifB? < 4AC. A parabola ha$3? = 4AC.

To recognize the curve, we remofBer y by rotating the planeThis also changed
and C—but the combinationB> —4AC is not changed (proof omitted). An
example i2xy = 1, with B2 = 4. It rotates toy? — x? = 1, with —4AC = 4. That
positive numbed signals a hyperbola—sinee= —1 andC = 1 have opposite signs.

Another example isc2 4+ y2 =1. It is a circle (a special ellipse). However we
rotate, the equation stays the same. The combinalién-4AC =0—4-1-1 is
negative, as predicted for ellipses.

To rotate by an angle, changex andy to new variables’ andy’:

x=x'cosa—y’sina

. and
y=x'"sina + y’ cosa

()

x'= xcosa+y sSina
y'=—ysina + x cosa.

Substituting forx andy changesix? 4+ Bxy +Cy%2 =1to A'x"2+ B'x'y’' + C'y"? =
1. The formulas ford’, B, C' are painful so | go to the key point:

B' is zero if the rotation anglex hastan2a = B/(A —C).

With B’ = 0, the curve is easily recognized fra#ix’> + C’y’? = 1. Itis a hyperbola

if A’ andC’ have opposite signs. Thét? —4A4’C’ is positive. The originaB? — 4AC

was also positive, because this special combination stays constant during rotation.
After thexy term is gone, we deal with and y—by centering To find the center,

complete squares as in Questidnand6. For total perfection, rescale to one of the

model equationyg = x> or x> +y2 =1 or y2 —x2=1.

The remaining question is abofit= 0. Whatis the graphaflx?> + Bxy + Cy? =0?
The ellipse-hyperbola-parabola have disappeared. But if the Greeks were right, the
cone is still cut by a plane. The degenerate cBse 0 occurs when the plane cuts
right through the sharp point of the cone

A level cut hits only that one point0,0). The equation shrinks te? + y2 =0,

a circle with radius zero. A steep cut gives two lines. The hyperbola becomes
x2 =0, leaving only its asymptoteg = +x. A cut at the exact angle of the cone
gives only one line, as in? = 0. A single point, two linesandone lineare very
extreme cases of an ellipse, hyperbola, and parabola.

All these “conic sections” come from planes and cones. The beauty of the geometry,
which Archimedes saw, is matched by the importance of the equations. Galileo
discovered that projectiles go along parabolas (Chapter 12). Kepler discovered that
the Earth travels on an ellipse (also Chapter 12). Finally Einstein discovered that
light travels on hyperbolas. That is in four dimensions, and not in Chapter 12.
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equation vertices foci
5 b b? 1 o
P y=ax*+bx+c ——,c—— — above vertex, also infinity
2a 4a 4a
X2 y2
E —2+b—2:1,a>b (a,0) and(—a,0) (c,0) and(—c,0) : c = Va2 —b?
a
y2  x2
H - i 1 (0,a) and(0, —a) (0,¢) and(0, —c¢) : c = Va2 +b?
a
3.5 EXERCISES
Read-through questions
The graph of y=x2+2x+5 is a __a . Its lowest point 9 9x%2+4y%2=9 10 x2/4—(y—1)?%=1
(the vertex) is(x,y)= (__b ). Centering byX =x+1 and
Y= _c_ moves the vertex tq0,0). The equation becomesll y*—4x?=1 12 (y—1)2—4x?=1
Y =__d . Thefocus of this centered parabolaise . Allrays 5 y2x2=0 14 xy=0

coming straight down are_f __to the focus.
The graph ofx2+4y2=16isan g . Dividing by _ h Problems 15-20 are about parabolas21-34 are about ellipses

leaves x2/a? +y2/b2=1 with a=__i _and b= | . The 35-41areabouthyperbolas
graph lies in the rectangle whose sides arek . The area 15 Find the parabolay=ax2+bx+c that goes through
is rab=__1_. The foci are atx =fc=__m__. The sum of (0,0) and(1,1) and(2, 12).
distances from the foci to a point on this ellipse is always 2

n_. If we rescale toX =x/4 and Y =y/2 the equation 6 y=x"—x has vertex at__. To movezthe vertex to
becomes o _and the graph becomes ap . O.0)setx=____and¥=___.ThenY =X~

The graph ofy2—x2=9is a q . Dividing by 9 leaves 17 (a) Inequation (2) changk to p. Square and simplify.

y2/a? —x%/b? =1witha=_r andb=__s . On the upper (b) Locate the focus and directrix of =3X2. Which

branchy>__t . The asymptotes are the lines u . The foci points are a distancefrom the directrix and focus ?
are aty = .ic =_ Vv . The w__of distances from the focito a13 The parabolay=9—x2 opens with vertex at
point on this hyperbolais x . . Centering byY = y —9yieldsY = —x2.

All these curves are conic sections—the intersection of 8 Eing equations for all parabolas which
y anda__z . A steep cutting angle yields a A . At he riaht with
the borderline angle we get a B . The general equation is (@) open tothe rig t_W't vertex 40.0)
Ax24+__ C_+F=0.If D=E =0 the center of the graph is at  (P) open upwards with focus &,0)
D . The equatiomx? + Bxy +Cy? =1 gives an ellipse when  (¢) open downwards and go through 0) and(1,0).

__E . Thegraphofdx®+5xy+6y*=1isa_F . 20 A projectile is atx=r, y=r—t? at time ¢. Find dx/dt

1 The vertex of y =ax2+bx+c is at x =—b/2a. What is anddy/dt at the start, the maximum height, and an equation
special about this ? Show that it gives = ¢ — (b2 /4a). for the path.

21 Find the equation of the ellipse with extreme points at
(£2,0) and(0, =1). Then shift the center t0l, 1) and find the new
equation.

2 The parabola y =3x2—12x has xmin= . At this
minimum, 3x2 is as large ad2x. Introducing X = x —2
andY = y + 12 centers the equation to .

22 On the ellipse, x2/a®?+y2/b%2 =1, solve for y when
Draw the curves 3-14 by hand or calculator or computer x=c =+/a2—b2. This height above the focus will be valuable in
Locate the vertices and foci. proving Kepler’s third law.

23 Find equations for the ellipses with these properties:
() through(5,0) with foci at (+4,0)

5 4y =—x? 6 4x=y? (b) with sum of distances td, 1) and(5, 1) equal to12

7 x=D2+(y—-12=1 8 x24+9y2=9 (c) with both foci at(0,0) and sum of distances 2a = 10.

3 y=x2—2x-3 4 y=(x—1)>2
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24 Move a square root to the right side of equation (5) ark# Rotate the axes ok?+xy+y2=1 by using equation (7)
square both sides. Then isolate the remaining square root and squéte sinae = cosx = 1/4/2. The x’y’ equation should show an
again. Simplify to reach the equation of an ellipse. ellipse.

25 Decide between circle-ellipse-parabola-hyperbola, basd¢ted 34 What ares, b, ¢ for the Earth’s orbit around the sun ?
XY equation withX =x —1 andY =y +3.

35 Find an equation for the hyperbola with
(@ x2—2x+y%2+6y=6 a yp

() x2—2x—y2—6y=6 (a) vertices(0, +1), foci (0, £2)
(€ x2—2x+2y2+12y=6 (b) vertices(0, +3), asymptotey = +2x
(d) x2—2x—y=6. (c) (2,3) on the curve, asymptotgs= +x

26 A tilted cylinder has equation (x—2y—2z)2+ 36 Find the slope of y? —sz =1 at (xo,y0). Show that
(y —2x —2z)% = 1. Show that the water surface at=0 is an el- yyo—xxo =1 goes through this point with the right slope (it has
lipse. What is its equation and whatB% —4AC ? to be the tangent line).

27 (4,9/5) is above the focus on the ellips€/25+y2/9=1. 37 If the distances from(x,y) to (8,0) and (—8,0) differ by
Finddy/dx at that point and the equation of the tangent line. 10, what hyperbola contains, y) ?

28 (a) Check that the linexxo+yyo=r? is tangent to the 38 If a cannon was heard by Napoleon and one second later

circlex2 + y2 = r2 at(xo. yo). by the Duke of Wellington, the cannon was somewhere on a

(b) For the ellipsex2/a? + y2/b% =1 show that the tangent With fociat .

equation isvxg/a? + yyo/b% = 1. (Check the slope.) 39 y2—4y is part of (y—2)2= and 2x2+12x
is part of 2(x 4+ 3)% = . Thereforey? —4y —2x2 —12x =0

gives the hyperbolgy —2)2 —2(x +3)% = . Its center is
and it opens to the .

40 Following Problem 39 turn y2+2y=x2+10x into
Y2 =X24C with X, Y, andC equal to )

41 Draw the hyperbolax?—4y2=1 and find its foci and
asymptotes.

29 The slope of the normal line in FigureA is

s = —1/(slope of tangent= . The slope of the line from Problems 42-46 are about second-degree curves (conics)
F2is§ = Bythereflection property, 42 For whichA4,C, F doesAx? +Cy? + F =0 have no solution
1 1 1 ?
S =cot20 = E(cote —tanf) = 3 (s - —) . (empty graph)
§ 43 Show thatx2+2xy+y2+2x+2y+1=0 is the equation
Test your numbers andS against this equation. (squared) of a single line.
30 Figure B proves the reflecting property of an ellipse44 Given any points in the plane, a second-degree

R is the mirror image of; in the tangent lineQ is any other point curve Ax2+ - -- + F =0 goes through those points.
on the line. Deduce steps3.4 from 1,2, 3:

. ) ) 45 (a) When the plane =ax +by +c meets the cone? =
1. PF1+ PF, < QF1+ QF, (left side=2a, Q is outsidé

x2+y2, eliminatez by squaring the plane equation. Rewrite

2. PR+PF, <QR+QOF in the formAx2 + Bxy + Cy2 + Dx+ Ey + F =0.

3. P ison the straight line fron¥, to R (b) ComputeB2 —4AC in terms ofa andb.

4. a = p: the reflecting property is proved. (c) Show that the plane meets the cone in an ellipse if
31 The ellipse (x —3)2/4+(y—1)2/4=1 is really a a?+b? <1and a hyperbola it + b2 > 1 (steepe).
with center at and radius . ChooseX and Y to

46 The roots of ax24+bx+c=0 aso involve the special
combinationb? — 4ac. This quadratic equation has two real roots if
32 Compute the area of a square that just fits inside the and no real roots if . The roots come together when
ellipsex2/a? 4+ y2/b% =1. b2 = 4ac, which is the borderline case like a parabola.

produceX? +Y2=1.
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I s 6 lterations x4 = F(x,) N

Iteration means repeating the same functioSuppose the function ig'(x) =
cosx. Choose any starting value, say = 1. Take its cosinex; = cosxy = .54.
Then take the cosine of;. That produces:; = c0s.54 = .86. The iteration is
Xn+1 = COSX,. | am in radian mode on a calculator, pressiegS each time. The
early numbers are notimportant, what is important is the output Bter 30 or 100
steps:

EXAMPLE 1 x12=.75, )C]3=.73, X14=.74, ooy X29=.7391, X30:.7391.

The goal is to explain why the’s approachx* =.739085 .... Every starting value
X leads to this same numhe¥. What is special about7391 ?

Note on iterations Do x; = C0Sxg, and x, = COSx;, mean thatr, = coFxg ?
Absolutely not! Iteration creates a new and different functiogcosx). It uses the
cos button, not the squaring button. The third step creBt{ds(F(x))). As soon as
you can, iterate withr, | = 1 cosx,. Whatlimit do thex’s approach ? Is i (.7931) ?

Let me slow down to understand these questidie central idea is expressed
by the equationx, +; = F(x,). Substitutingrq into F givesx;. This outputx; is
the input that leads t®,. In its turn, x; is the input and out comes, = F(x,). This
is iteration, and it produces the sequengg x1, x2, . ...

The x’s may approach a limix*, depending on the functiof. Sometimesx*
also depends on the starting valuyg Sometimes there isolimit. Look at a second
example, which does not need a calculator.

EXAMPLE 2 Xxp4+1=F(xp) = %xn + 4. Starting fromxo = 0 the sequence is
x1=3-0+4=4, x,=3-444=6, x3=2-6+4=7, x4=1-T+4=75, ...

Those number9,4,6,7,7%, ... seem to be approaching’ = 8. A computer would
convince us. So will mathematics, when we see what is special 8bout

When thex’s approachx *, the limit of x,, 41 = %xn +4
isx* = 1x* 4 4. This limiting equation yieldsc* = 8.
8 is the “steady state” wheii@put equals outpu8 = F(8). It is thefixed point

If we start atxy = 8, the sequence i8,8,8,.... When we start aty = 12, the
sequence goes back towad

x1=3-12+4=10, x;=3-10+4=9, x3=3-9+4=85,
Equation for limit: If t he iterationsx,+; = F(x,) converge tax*, thenx* = F(x*).

To repeat8 is gecial because it equab8+4. The number.7391... is special
because it equalsos.7391.... The graphs ofy =x and y = F(x) intersect at
x*. To explainwhythe x’s converge (or why they don't) is the job of calculus.

EXAMPLE 3 x,4+1=x2 has two fixed points: 0=0% and 1=12. Here
F(x)=x2.
11

Starting fromx, = 1 the sequencé, -, 5. ... goes quickly tax* = 0. The only
approaches ta™ =1 are fromxy = 1 (of course) and fromxy = —1. Starting from
Xxo =2 we get4, 16,256, ... andthe sequence diverges+ox.
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Each limitx* has a basin of attraction” The basin contains all starting pointg
that lead tax*. For Exampled and2, everyxq led t0.7391 and8. The basins were
the whole line (that is still to be proved). Example 3 had three basins—the interval
—1 < x¢ < 1, the two pointstg = £1, and all the rest. The outer bagiry| > 1 led
to £oo. | challenge you to find the limits and the basins of attraction (by calculator)
for F(x) = x —tanx.

In Example 3,x* =0 is attracting. Points neax® move towardx*. The fixed
pointx* = 1 isrepelling. Points neat move away. We now find the rule that decides
whetherx* is attracting or repellingThe key is the slope F/dx at x*.

3J Start from anyxo nea a fixed pointx* = F(x™):

x* is attractingif |d F/dx| is belowl atx*
x* isrepelling if |dF/dx|is abovel atx*.

First | will give a calculus proof. Then comes a picture of convergencectigwebs’
Both methods throw light on this crucial test for attractiphF/d x| < 1.

First proof: Subtrack™ = F(x*) from x,41 = F(x,,). The differencec,, +1 — x*
is the same a#'(x,) — F(x*). ThisisA F. The basic idea of calculus is thah F
is close toF’ Ax:

Xpi1—x*=F(x,)— F(x") ~ F'(x*)(x, —x%). (1)

The“error” x,, — x* is multiplied by the slope/ F/dx. The next error,, 41 —x* is
smaller or larger, based ofF’| <1 or |F'|>1 at x*. Every step multiplies
approximately byF’(x*). Its size controls the speed of convergence

In Example 1,F(x) is cosx and F’(x) is —sinx. There is attraction t67391
becausésinx*| < 1.In Example 2,F is 1x +4 and F' is 1. There is attraction to
8. In Example 3,F is x? and F' is 2x. There is superattraction to* = 0 (where
F’ =0). There is repulsion from* = 1 (whereF’ = 2).

I admit one major difficulty. The approximation in equati¢l) only holdsnear
x*. If xq is far away, does the sequence still approatl? When there are several
attracting points, whichc* do we reach? This section starts with good iterations,
which solve the equatian®™ = F(x*) or f(x) = 0. At the end we discovédewton’s
method The next section produces crazy but wonderful iterations, not converging and
not blowing up. They lead toffactals’ and “Cantor setsand “chaos.”

The mathematics of iterations is not finished. It may never be finished, but we are
converging on the answers. Please choose a function and join in.

THE GRAPH OF AN ITERATION: COBWEBS

The iterationx, +1 = F(x,) involves two graphs at the same time. One is the graph

of y = F(x). The other is the graph of = x (the45° line). The iteration jumps back

and forth between these graphs. It is a very convenient way to see the whole process.
Example 1 wasx,; = C0Sx,. Figure 3.19 shows the graph obsx and the

“cobwely Starting at(xg, x¢) on the45° line, the rule is based am = F(xy):

From (xg,Xo) go up or down ta(xg,x1) on the curve

From(xg,x1) go across tqx,x1) on the45° line.



3.6 lterations x,4+1 = F(x,)

These steps are repeated forever. Frgngo wp to the curve af(x;). That height
is x2. Now cross to the5° line at(x;, x»). The iterations are aiming fac ™, x*) =
(.7391,.7391). This is thecrossing poinbf the two graphy = F(x) andy = x.

X0 \F{\} = Cos X
F(x;) 1

!.‘(_\-' )T

F(-"z) T F(x)= :l} x+4
F(x") 4 ) Fexy) /
; L/ y=x
Pt F(x,) >
y=x
\

54 .739 86 1

+—t X + +—t—

- . - . 5 n .
.ll X ,\.2 .t’u ,t’ﬂ ,\.! ,13 .lj X

Fig. 3.19 Cobwebs go from(xg, xo) t0 (x¢,x1) to (x1,x1)—Iline to curve to line.

Example 2 wasy, 1 = %xn + 4. Both graphs are straight lines. The cobweb is
one-sided, from0,0) to (0,4) to (4,4) to (4,6) to (6,6). Notice howy changes
(vertical line) and thenx changes (horizontal line). The slope Bix) is 1, so the
distance td& is multiplied by% at every step.

Example 3 was, 1 = x2. The graph ofy = x? crosses thd5° line at two fixed
points:02 = 0 and 1% = 1. Figure 3.20a starts the iteration closeltdout it quickly
goes away. This fixed point is repelling becausd1) = 2. Distance fromx* =1
is doubled (at the start). One path moves down te= 0—which issuperattractive
becausd’ = 0. The path fromxg > 1 diverges to infinity.

EXAMPLE 4  F(x) has two attracting points* (a repellingx * is always between).

Figure 3.20b shows two crossings with slope zero. The iterations and cobwebs
converge quickly. In between, the graph/ofx) must cross thd5° line from below.
That requires a slope greater than one. Cobwebs diverge from this unstable point,
which separates the basins of attraction. The fixed poiatr is in a basin by itself!

Notel To draw cobwebs on a calculator, grapk= F(x) on top ofy = x. On
a Casio, one way is to pldtxg, xo) and give the command LINE: PLOT
X , Y followed by EXE. Now move the cursor vertically tg = F(x) and press
E X E. Then move horizontally t¢ = x and pres€ X E. Continue. Each step draws
aline.
For the TI-81 (and also the Casio) a short program produces a cobwebFJtore
in the Y = function slotY 1. Set the range (square window or autoscaling). Run the
program and answer the prompt with:

PrgmC:COBWEB :Disp '""INITIAL X@'' :Input X :All-off
:Y1-0n ::'"'X'"'>Y4 :Lbl 1 :X—>S :Yq->T :Line (S,S,S,T)
:Line(S,T,T,T) :T—»X :Pause :Goto 1

Note2 Thex’s approachx™ from one side whefl < dF/dx < 1.

Note3 A basin of attraction can include faraway's (basins can come in infinitely
many pieces). This makes the problem interesting. If no fixed points are attracting,
see Section 3.7 for “cycles” and “chaos.”
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2n 1

F(x)=x—-sinx

slope
l-cosm=2
repels
attracting
x*=0
e 2n

Fig. 3.20 Converging and diverging cobwebg(x) = x2 and F(x) = x —sinx.

THE ITERATION Xp41=Xn—cf (xp)

At this point we offer the reader a choice. One possibility isump ahead to the
next section on “Newton’s Method.” That method is an iteration to s¢iye) = 0.

The function F(x) combinesx, and f(x,) and f’(x,) into an optimal formula

for x,+1. We will see how quickly Newton’s method works (when it works). Ithe
outstanding algorithm to solve equations, and it is totally built on tangent
approximations.

The other possibility is to understand (through calculus) a whole family of
iterations. This family depends on a numlegmwhich is at our disposallhe best
choice ofc produces Newton’s method emphasize that iteration is by no means a
new and peculiar idedt is a fundamental technique in scientific computing

We start by recognizing that there are many ways to reach*) = 0. (I write
x* for the solution.) A good algorithm may switch to Newton as it gets close. The
iterations usef (x,) to decide on the next point, 4 :

Xpt1=F(xp) =xp—cf(xn). (2

Notice howF (x) is constructed frony (x)—they are different! We movg  to the
right side and multiply by a “preconditionet” The choice ot (or ¢,, if it changes
from step to stepis absolutely critical. The starting guesg is also important—but
its accuracy is not always under our control.

Suppose the, converge toc*. Then the limit of equatiof2) is

x*=x*—cf(x*). 3
That gives f(x*) =0. If the x,’s have a limit, it solves the right equation. It is a

fixed point of F' (we can assume, — ¢ # 0 and f(x,) — f(x*)). There are two
key questions, and both of them are answered by the diéfe*):

1. How quickly doesy,, approachc* (or do thex, diverge)?
2. What is a good choice af (or ¢,) ?

EXAMPLES5 f(x)=ax—b is zero at x*=b/a. The iteration x,4+; =
Xn —c(ax, —b) intends to findb/a without actually dividing. (Early computers
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could not divide; they used iteration.) Subtracting from both sides leaves an
equation for the error:

Xp+1—x¥=x, —x*—c(ax, —b).
Replaceb by ax*. The right side iq1 — ca)(x, — x*). This “error equation” is
(error),;1 = (1 —ca)(error),. (4)

At every step the error is multiplied byl — ca), which is F’. The error goes to
zero if| F’| is less tharl. The absolute valugl — ca| decides everything:

xn convergestoc™ ifand only if —1 <1—ca<1. (5)

Theperfect choice (if we knew it) is = 1/a, which turns the multiplied — ca into

zero. Then one iteration gives the exact answer= xo — (1/a)(axo—b) =b/a.

That is the horizontal line in Figure 3.21a, converging in one step. But look at the
other lines.

This example did not need calculus. Linear equations never do. The key idea is that
close tox* the nonlinear equatiorf (x) = 0 is nearly linear We apply the tangent
approximation. You are seeing how calculus is used, in a problem that doesn't start
by asking for a derivative.

THE BEST CHOICE OF ¢

The immediate goal is to study the errorg —x*. They go quickly to zero, if
the multiplier is small. To understand,+; = x, —cf(x,), subtract the equation
x*=x*—cf(x*):

X1 — X5 =X, —x* —c(f(xn) — f(x¥)). (6)

Now calculus enterdVhen you see a difference of 's think of df/dx. Replace
f(xn)— f(x*) by A(x, —x*), whereA stands for the slopéf/dx atx*:

Xnt1— X" = (1 —cA)(xp—x¥). (7)

This is theerror equation The new error at step+ 1 is approximately the old error
multiplied by m =1 —cA. This corresponds te: = 1 —ca in the linear example.
We keep returning to the basic test| = | F'(x*)| < I:

3K Starting near*, the errorsy, — x* go to zero if multiplier hagm| < 1. The
perfect choiceis = 1/A=1/f"(x*). Thenm=1—cA=0.

There is only one difficultyWe don’t knowx*. Therefore we don't know the
perfectc. It depends on the slopé = f’(x*) at the unknown solution. However we
can come close, by using the slopecat

Chooser, = 1/f"(xn). Thenx, 11 = xp, — f(xn)/f'(xn) = F(xn).

This is Newton’s methodThe multiplierm = 1 —cA is as near to zero as we can
make it. By buildingdf/dx into F(x), Newton speeded up the convergence of the
iteration.
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F(x) F(x) F'(x*®)
x=clax=b): good X =V (xg) 0.018

X —l(u_r —b) : best x=fxyf'(x) 0.000
a v=f() -1.435

2 s
X ==(ax—=b) : fail
a

Xo flx)=2x—cos.x

Fig. 3.21  The error multiplier isn = 1 —cf’(x*). Newton has = 1/f/(x,) andm — 0.

EXAMPLE 6 Solve f(x) = 2x —cosx = 0 with different iterations (different’s).

The line y =2x crosses the cosine curve somewhere n:ear% The intersection

point where2x* = cosx* has no simple formula. We start froxg = % and iterate
Xn+1 = Xn —c(2x, — COSx,) with three different choicesf c.
Takec =1o0rc=1/f"(xo) or updater by Newton’s rulec, = 1/f"(x,):

xo=.50 c=1 c=1/f"(xo) cn = 1/f"(xn)

X1 = .38 45063 45062669
Xy = .55 .45019 45018365
X3 = .30 45018 .45018361....

The column withc =1 is diverging (repelled fronx*). The second column shows
convergence (attracted 1d*). The third column (Newton’s method) approaches
so quickly that4501836 and seven more digitsre exact fors.

How does this convergence match the prediction ? Notefh@at) =2+ sinx so
A =2.435. Look to see whether the actual errazs— x*, going down each column,
are multiplied by the predictea below that column:

c=1 c=1/Q2+sind) ¢ =1/@2+sinx,)
xXo—x* = 0.05 4.98-102 4.98-102
xXp—x* = —0.07 4.43.10~* 4.43.10~%
Xy —Xx*= 0.10 7.88-10~° 3.63-108
X3—x*= —0.15 1.41-1077 2.78-10"16
multiplier m=—1.4 m=.018 m — 0 (Newton)

The first column shows a multiplier belowl. The errors grow at every step. Because
m is negative the errors change sign—the cobweb goes outward.

The second column shows convergence with=.018. It takes one genuine
Newton step, thert is fixed. After n steps the error is closely proportional to
m" = (.018)"— that is Yinear convergencéwith a good multiplier.

The third column shows thequiadratic convergenceof Newton's method.
Multiplying the error bym is more attractive than ever, becaugse— 0. In fact m
itself is proportional to the error, sat each step the error is square@®roblem
3.8.31 will show that(erron, +1 < M(erroﬂﬁ. This squaring carries us frof0 2
to 10~*to 10~8 to “machines” in three steps. The number of correct digits is doubled
at every step as Newton converges.
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Note 1  The choicec =1 producesx;,+1 =x,— f(x,). This is “successive
substitution.” The equatiorf(x) = 0 is rewritten asx = x — f(x), and eachx, is
substituted back to produasg 1. Iteration withc = 1 does not always fail!

Note2 Newton’s method is successive substitution fgrf”’, not /. Thenm = 0.

Note3 Edwards and Penney happened to choose the same exampleosx.
But they cleverly wrote it as, 41 = 1 coSx,, which has| F’| = |1 sinx| < 1. This
iteration fits into our family withc = % and it succeeds. We asked earlier if its limit
is 2(.7391). No, itis x* = .450....

Note4 The choice = 1/f"(x) is “modified Newtor After one step of Newton’s
method,c is fixed. The steps are quicker, because they don't require affiéwy,).

But we need more steps. Millions of dollars are spent on Newton’s method, so speed
is important. In all its formsf(x) = 0 is the central problem of computing.

3.6 EXERCISES

Read-through questions 10 Fromxg = —1 compute the sequencg,+ = —x,3,. Draw the

cobweb with its “cycle.” Two steps produog, 4+, = x,9,, which has
Xn+1=x2 describes, an__a . After one stepx;=__Db . the fixed points .

= = c .

AUt — OUtpUt, o™ -8 e o a._e_poim F 1’ 1L Draw the cobwebs fory.1 = 4x, —1 and vt =1~ bx,
has _ f _ fixed points, atx* = g Starting near a fixed §tart|ng from xo =2. Rule: Cobwebs are two-sided wheiF /dx
point, the x, will converge to it if __h < 1. That is because s
Xn41—x*=F(xp)—F(x*)~__i . The pointis called j . 12 Draw the cobweb forx,4+;=x2—1 starting from the
The x, are repelled if _k . For F =x3 the fixed points have periodic pointxo =0. Another periodic point is_ . Start
F'=__1 . The cobweb goes frorfxg,xo) to (,) to (,) and con- nearby at xo=.1 to see if the iterations are attracted to
verges tox*,x*)=__m . Thisis an intersection of =x3and 0,—1,0,—1, ....
y=__n__,anditis superattracting becauseo .

Solve equations 13-16 within 1% by iteration
_ f(x_):O can be solved iteratively t_)ycn+1:x,,—cf(x,,), 13 x:cos%x 14 x = coLx
in which caseF/(x*)= p . Subtractingx* =x* —cf(x*),
the error equation isc,4+1—x*~m (_q ). The multiplier ° X =C0Sy/x 16 x=2x—1(??)
is m=__r__. The errors approach zero if s . The chmpe 17 For which numbers: does x,41 :a(xn—x,%) converge to
cp=__t produces Newton's method. The choiee=1 is = _g»
“successive__u_ " and c= v__ is modified Newton. )
Convergence ta* is__w__certain. 18 For which numbersz does x,41 =a(x, —x2) converge to

x*¥=(a—-1)/a?
We have three ways to study iterationSx,+1=F(xn): 19 |terate x,, =4(x, —x2) to see chaos. Why don't the,
(1) computexy, xa, ... from differentxo (2) find the fixed points approachc* = 3 2
x* and tes{dF/dx| <1 (3) draw cobwebs. 4
20 One fixed point OfF(x):xz—% is attracting, the other is

In Problems 1-8 start from xo=.6 and xo=2. Compute repelling. By experiment or cobwebs, find the basincgh that go

X1, X2, ... to test convergence to the attractor.
1 Xpi1 :x,%—% 2 Xp41=2xn(1—xn) 21 (|mportant) Find the fixed point foF (x) = ax +s. When is it
attracting ?
3 x =./x 4 x =1/yx
il " nt+1 =1/ 22 What happens in the linear casgy; =ax, +4 whena =1
5 Xp+1=3xn(1—xn) 6 Xp+1=2%7+Xn—2 and whery = —17?
7 Xp41= %Xn —1 8 Xn+1=|xn] 23 Starting with 4,000, you spend half your money each year

and a rich but foolish aunt gives you a new,®0. What is
9 CheckdF/dx at all fixed points in Problems 1-6. Are theyyour steady state balance* ? What isx™* if you start with a
attracting or repelling ? million dollars ?
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24 The US national debt was oncel $trillion. Inflation 37 Find the multiplier m at each fixed point of x,4+1 =
reduces its real value 826 each year (so multiply by = .95), but  x, —c(x,% —xp). Predict the convergence for different(to which
overspending adds anothel0® billion. What is the steady state debtx* ?).
x*?

) ) . 38 Make a table of iterations for=1 and ¢ =1/f'(xp) and
25 Xpp1=b/xn has the fixed pointx*=+/b. Show that . _ 1/f"(xn), when f(x) = x> — L and xo = 1.

|dF/dx|=1 at that point—what is the sequence starting frog?

26 Show that both fixed points Ofvy4i=x2+x,—3 are 39 Intheiterationfor®—2=0, finddF/dx atx*:
repelling. What do the iterations do ?
27 A $5 calculator takes square roots but not cube roots. Explain _ - 2
3 Xn+1 Xn + .
why x,4+1 = ~/2/x, converges tov/2. 2 Xn

28 Start the cobwebs for, 4+ =sinx, and x,4+; =tanx,. In
both cases/F/dx =1 at x* =0. (a) Do the iterations converge? (b) Newton's iteration hasF(x)=x— f(x)/f’(x). Show

(b) Propose a theory based 61 for cases wheF’ = 1. that F' =0 when f(x)=0. The multiplier for Newton is
m=0.
Solve f(x) =0in 29-32 by the iterationx, 1 = x5 —cf(xn), to
find a ¢ that succeeds and a that fails. 40 What are the solutions off(x)=x?+2=0 and why is
Newton’s method sure to fail? But carry out the iteration to see
29 f(x)=x2-4 30 f(x)=x%—4x+3 whetherx; — o0.
31 f(x)=(x—2)°—1 32 f(x)=(01-x)7""=3 41 Computer projectF(x)=x—tanx has fixed points where

tanx™* =0. Sox* is any multiple ofz. Fromxy =2.0 and1.8 and
1.9, which multiple do you reach ? Test pointsliry <x¢ <1.9to
find basins of attraction t@, 2x, 37,47

33 Newton's method computes a new=1/f'(x,) at each
step. Write out the iteration formulas fof(x) =x3—2=0 and
fx)y=sinx—1=o.

. . . . 3 Between any two basins there are basinssf@rymultiple of r.
34 Apply Problem33 to find the first six decimals o2 and  Ang more basins between theseftactal). Mark them on the line
/6. from 0 to 7. Magnify the picture arounao = 1.9 (in color ?).

35 By experiment find eachx®* and its basin of attraction, 4

when Newton’s method is applied t(x) = x2 —5x +4. 2 Graph cosr ard cog(cosx) and cogcogcosx)). Also (co93x.

What are these graphs approaching ?
36 Test Newton's method om2—1=0, starting far out at

xo=10°. At first the error is reduced by about = % Near 43 Graph sinx andsin(sinx) and(sin)®x. What are these graphs
x* =1 the multiplier approaches = 0. approaching ? Why so slow ?
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I 3.7 Newton's Method (and Chaos) IS

The equation to be solved i5(x) = 0. Its solutionx* is the point where the graph
crosses the axis. Figure 3.22 shows* and a starting guesgy. Our goal is to come
as close as possible 1d°, based on the informatiofi(xo) and f”(xo).

Section 3.6 reached Newton’s formula for (the next guess). We now do that
directly.

What do we see aty ? The graph has heighff(xo) and slopef’(xq). We know
where we are, and which direction the curve is going. We don’t know if the curve
bends (we don’t havg”). The best plan ito follow the tangent ling which uses
all the information we have.

Newton replacey’(x) by its linear approximation= tangent approximation):

J ()& f(xo)+ f'(xo0) (x — xo). 1)

We want the left side to be zero. The best we can do is to make the right side zero!
The tangent line crosses the axiscat while the curve crosses at'. The new guess

x1 comes fromf(xo) + f”/(x0)(x1 — x0) = 0. Dividing by f’(x¢) and solving for

X1, this is stepl of Newton’s method:

_ f(xo)
* fr(xo)

At this new point, computg(x1) and f'(x;)—the height and slope at;. They
give a new tangent line, which crossesxat At every step we wanf'(x,+1) =0
and we settle forf (x,) + f'(xn)(xn+1 — x»n) = 0. After dividing by f'(x,), the
formula forx, 4 is Newton’s method.

X1 =X

)

3L The tangent line from,, crosses the axis aty,+:
X
Newton’s method  x,4+1 =x, — J(n) . 3)
S (xn)
Usually this iterationv, 1 = F(x,) converges quickly tar*.
2 T 1
f{-\') = T 2

converge 1o x* =5

xXp=.7 x=121

tangent
line

Fig. 3.22  Newton’'s method along tangent lines frarg to x; to x,.
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Linear approximation involves three numbers. TheyAre(across) andA f (up)
and the slopef”’(x). If we know two of those numbers, we can estimate the third. It
is remarkable to realize that calculus has now used all three calculations—they are
the key to this subject:

1. Estimate the slopg’(x) fromA f/Ax (Section 2.1)
2. Estimate the changa f from f/(x)Ax (Section 3.1)
3. Estimate the chang&x fromA f/ f/(x) (Newton’s method)

The desired\ f is — f(x,). Formula(3) is exactlyAx = — f(x,)/ f'(xn).

EXAMPLE 1 (Squareroots) f(x) =x2—biszeroatc* = +/b and also at-/b.
Newton’s method is a quick way to find square roots—probably built into your
calculator. The slope i$’(x,) = 2x,, and formula(3) for the new guess becomes

x2—b 1 b
Xn+1=Xp — ;x =Xn— Exn + E (4)
n n

This simplifies tax, +1 = %(x,, +b/x,). Guess the square ropdivide intob, and
average the two numbers. The ancient Babylonians had this same idea, without
knowing functions or slopes. They iterategly; = F(x,):

1 b 1 b
F(X):E(X%»;) and F/(X):E(l_x_z) (5)

The Babylonians did exactly the right thing. The slop# is zeroat the solution
whenx? = b. That makes Newton’s method converge at high speed. The convergence
testis| F/(x*)| < 1. Newton achieved”’(x*) = 0—which issuperconvergence

To find /4, start the iteration Xn41 = %(x,, +4/x,) at xo=1. Then

1 .
X1 = 5(1 +4):
x1=2.5 x2=2.05 x3=2.0006 x4=2.000000009.

The wrong decimal is twice as far out at each stépe error is squared
Subtractinge* = 2 from both sides ok, +; = F(x,) gives arerror equatiorwhich
displays that square:

1 4 1
Xnt1—2==|xpn+—)—-2= (xn_2)2' (6)
2 2x

n n

Thisis(error),4+1 ~ %(error)?,. It explains the speed of Newton’s method.

Remark1l You can't start this iteration ato = 0. The first step computes/0
and blows up. Figure 3.22a shows why—the tangent line at zero is horizontal. It will
never cross the axis.

Remark2 Starting atvg = —1, Newton converges te\/§ instead OH—\/E. That

is the othen *. Often it is difficult to predict whichc * Newton’s method will choose.
Around every solution is a “basin of attraction,” but other parts of the basin may be
far away. Numerical experiments are needed, with many startBinding basins of
attraction was one of the problems that led to fractals.
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1 1
EXAMPLE 2 Solve— —a =0to findx* = — without dividing bya.
X a

Here f(x)=(1/x)—a. Newton usesf’(x)= —1/x2. Surprisingly, we don’t

divide: (1/x,)
Xp)—a 5
xn+1:xn—T/xrzl:xn+xn—axn. (7)
Do these iterations converge ? | will take= 2 and aim forx* = 1. Subtracting%

2
from both sides of7) changes the iteration into the error equation:

Xn41=2X, —2x> becomes X1 — % = —2(xn — %)2 (®)

At each step the error is squared. This is terrific if (and only if) you are close to
x* = % Otherwise squaring a large error and multiplying-b2 is not good:

xXo=.70 x1=.42 x,=.487 x3=.4997 x4 =.4999998
xo=121 x1=—=5 xp=—15 x3=—75 x4=-127.5

The algebra in Problem8 confirms those experiments. There is fast convergence if
0 < xo < 1. There is divergence ify is negative ory > 1. The tangent line goes to
a negativer;. After that Figure 3.22 shows a long trip backwards.

In the previous section we dreW(x). The iterationx,+; = F(x,) converged to
the45° line, wherex™ = F(x™). In this section we are drawing(x). Now x* is
the point on the axis wherg(x*) = 0.

To repeat: It is f(x*) =0 that we aim for. But it is the slopd’(x*) that
decides whether we get there. Example 2 Rgs) = 2x — 2x2. The fixed points are
x*= % (our solution) andc * = 0 (not attractive). The slopes’(x*) are zero (typical
Newton) and2 (typical repeller).The key to Newton’s method &' =0 at the
solution

S L S
frx)  (f1(x)?

The examples? = b and1/x = a show fast convergence or failure. In Chapter 13,
and in reality, Newton's method solves much harder equations. Here | am going to
choose a third example that came from pure curiosity about what might happen. The
results are absolutely amazing. The equatiorfis= —1.

The slope ofF (x) = x . ThenF’(x) = 0when f(x) = 0.

EXAMPLE 3 What happens to Newton’s method if you ask it to solve
f(x)=x24+1=07?

The only solutions are the imaginary numbefs=i andx* = —i. There is no real
square root of—1. Newton’s method might as well give up. But it has no way to
know that! The tangent line still crosses the axis at a new pgjnt;, even if the
curvey = x2 + 1 never crosses. Equatig¢h) still gives the iteration fob = —1:

1 1
Xnt1= 5| Xn—— | = F(xn). )
2 Xp
Thex's cannot approachor —i (nothing is imaginary). So what do they do ?
The starting guessy = 1 is interesting. It is followed by = 0. Thenx, divides
by zero and blows up. | expected other sequences to go to infinity. But the experiments
showed something different (and mystifying). Whenis large x, +1 is less than half
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as large. Afterx, =10 comesx,+1 = 3(10— 1) = 4.95. After much indecision
and a long wait, a number near zero eventually appears. Then the next guess divides
by that small number and goes far out again. This reminded me of “chaos.”

It is tempting to retreat to ordinary examples, where Newton’s method is a big
success. By trying exercises from the book or equations of your own, you will see that
the fast convergence te/4 is very typical. The function can be much more
complicated than? — 4 (in practice it certainly is). The iteration f@x = cosx was
in the previous section, and the error was squared at every step. If Newton’s method
starts close ta:*, its convergence is overwhelming. That has to be the main point of
this sectionfollow the tangent line

Instead of those good functions, may | stay with this strange exaniplel =0 ?

It is not so predictable, and maybe not so important, but somehow it is more
interesting. There is no real solutiari, and Newton’s methos, +; = %(xn —1/xp)
bounces around. We will now discovey.

A FORMULA FOR x,

The key is an exercise from trigonometry books. Most of thosblpms just give
practice with sines and cosines, but this one exactly%ms, —1/xp):

1 /cosf sinf _00329 . 1 cot 8 1 _ cot 20
2\sin6 cosf ) sin26 2 cotd )

o

In the left equation, the common denominato? &in # cosf (which issin26). The
numerator isco$6 —sir?f (which is cos26). Replace cosingsine by cotangent,
and the identity says this:

If xo=cotd then x;=cot2. Then x,=cot46 Then x,=-cot2"f.

This is the formulaOur points are on the cotangent curvéigure 3.23 starts from
xo =2 =cotf, and every iteration doubles the angle.

Example AThe sequencgy, = 1,x; = 0, x, = co matches the cotangentsmof4, /2,
ands. This sequence blows up becausehas a division byt; = 0.

Xg T
cot ©
xXq 4
X+
Xa F ?_‘—
25 160
1 repeat § — \I_'__

Fig. 3.23  Newton’s method forc2 + 1 = 0. Iteration givest, = cot2"6.

i/

X, X X3 xg=2

Example BThe sequenck/+/3, —1/+/3,1/+/3 matches the cotangentsof 3, 27 /3,
and4r /3. This sequenceycles forevebecauserg = x; = x4 =....
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Example CStat with a largex, (a smallf). Thenx; is about half as large (&f).
Eventually one of the angle®), 80, ... hits on a large cotangent, and this go far
out againThis is typical ExamplesA and B were special, whefi/z was or 1.

What we have here ishaos. Thex’s can’t converge. They are strongly repelled
by all points. They are also extremely sensitive to the valug éffter ten stepd is
multiplied by2'% = 1024. The starting angle§0° and61° look close, but now they
are different byl 024°. If that were a multiple ol 80°, the cotangents would still be
close. In fact ther;¢'s are0.6 and14.

This chaos in mathematics is also seen in nature. The most familiar example is the
weather, which is much more delicate than you might think. The headline “Forecast-
ing Pushed Too Far” appeared3cience1989). The article said that the snowballing
of small errors destroys the forecast after six days. We can’t follow the weather equa-
tions for a month—the flight of a plane can change everything. This is a revolutionary
idea, that a simple rule can lead to answers that are too sensitive to compute.

We are accustomed to complicated formulas (or no formulas). We are not
accustomed to innocent-looking formulas lik@t 2" 6, which are absolutely hopeless
after100 steps.

CHAOS FROM A PARABOLA
Now | get to tell you about new mathematics. First | will chantgiterationx, +; =
%(xn —1/x,) into one that is even simpler. By switching frorto z = 1/(1 + x?2),
each new turns out to involve only the old andz?:

Zng1 =4z, — 422 (10)
This is the most famous quadratic iteration in the worl@there are books about
it, and Problen28 shows where it comes from. Our formula foy leads toz,:

1 1

= = = (sin2")>. 11
722~ T+ (cotzrgy - 20 (11)

Zn

The sine is just as unpredictable as the cotangent, @h@mets large. The new thing
is to locate this quadratic as the last member (when4) of the family

Znt1=azy—azy, 0<a<4. (12)

Example 2 happened to be the middle memébet 2, converging to%. I would like
to give a brief and very optional report on this iteration, for differe’st

The general principle is to start with a numlzgrbetween) and1, and compute
71,722,723, .... Itis fascinating to watch the behavior changezdacreasesYou can
see it on your own computeHere we describe some things to look for. All numbers
stay betweef and1 and they may approach a limit. That happens winénsmall:

for 0 <a < 1thez, approactz™ =0
for 1 <a <3thez, approackt* =(a—1)/a

Those limit points are the solutions of= F(z). They are the fixed points where
z* =az* —a(z*)2. But remember the test for approaching a lirfihe slope at*
cannotbe larger than onélereF = az —az? hasF' = a —2az. Itis easy to check
| F'| <1 at the limits predicted above. The hard problem—sometimes impossible—
is to predict what happens abave= 3. Our case ist = 4.

The z’s cannot approach a limit when F’(z*)| > 1. Something has to happen,
and there are at least three possibilities:

191
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Thez,’'s can cycle or fill the whole intervaD, 1) or approach a Cantor set
| start with a random numbeyp, take 100 steps, and write down step81 to 105:
a=34 a=3.5 a=3.8 a=4.0

Z101 = 842 875 .336 .169
Z102 = 452 .383 .848 562
Z103 = 842 827 491 .985
Z104 = 452 501 .950 .060
Z105 = & ﬂ 182 225

The first column is converging to &“cycle.” It alternates between = .842 and
y = .452. Those satisfy = F(x) andx = F(y) = F(F(x)). If we look at adouble
stepwhena = 3.4, x andy are fixed points of the double iteratiop, , = F(F(z,)).
Whena increases past45, this cycle becomes unstable.

At that point the period doubles fror to 4. With a = 3.5 you see a4-cycle”in
the table—it repeats after four steps. The sequence bouncesfféro .383 t0 .827
to .501 and back to.875. This cycle must be attractive or we would not see it. But
it also becomes unstable asincreases. Next comes &rcycle, which is stable in
a little window (you could compute it) around= 3.55. The cycles are stable for
shorter and shorter intervals of:’s. Those stability windows are reduced by the
Feigenbaum shrinking factar.6692.. .. Cycles of lengtH 6 and32 and64 can be
seen in physical experiments, but they are all unstable beferd8.57. What happens
then?

The new and unexpected behavior is betw8e&s7 and 4. Down each line of
Figure 3.24, the computer has plotted the values@f; to z29po—O0mitting the
first thousand points to let a stable period (or chaos) become established. No points
appeared in the big white wedge. Idon’'t know why. Inthe window for period 3, you
see only three’s. Period3 is followed by6, 12,24, .... There igperiod doubling
at the end of every window (including all the windows that are too small to see). You
can reproduce this figure by iterating = az, —az? from anyz, and plotting the
results.

CANTOR SETS AND FRACTALS

| can'ttell what happens at= 3.8. There may be a stable cycle of some long period.
The z's may come close to every point betwe@rand 1. A third possibility is to
approach a very thin limit set, which looks like the famdlentor set

To construct the Cantor set, dividie, 1] into three pieces and remove the open
interval (4, 2). Then remove($. 2) and (Z.2) from what remains. At each
steptake out the middle thirdsThe points that are left form the Cantor set.

All the endpointst, 2, 5. 2,.. . are in the set. So i§ (Problem42). Nevertheless

the lengths of the removed intervals addltand the Cantor set has “measure zero.”
What is especially striking is itself-similarity: Betweer0 and% you see the same

Cantor set three times smallgfrom0 to é the Cantor set is there again, scaled

down by9. Every section, when blown up, copies the larger picture.

Fractals That self-similarity is typical of dractal. There is an infinite sequence

of scales. A mathematical snowflake starts with a triangle and adds a bump in the
middle of each side. At every step the bumps lengthen the siddg hyThe final
boundary is self-similar, like an infinitely long coastline.
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The period 2,4, ... is the number ofz's in a cycle

7

Fig. 3.24 Period doubling and chaos from iteratin§(z) (stolen by special permission

from Introduction to Applied Mathematidsy Gilbert Strang, Wellesley-Cambridge
Press).

The word “fractal” comes fronfractional dimension The snowflake boundary
has dimension larger thanand smaller tha. The Cantor set has dimension larger
than0 and smaller thari. Covering an ordinary line segment with circles of radius
r would takec / r circles. For fractals it takas/ r? circles—andD is the dimension.

Fig. 3.25 Cantor set (middle thirds removed). Fractal snowflake (infibibeindary).

Our iterationz, 1 =4z, — 425 hasa = 4, at the end of Figure 3.24. The sequence
Z0,21,. .. goes everywhere and nowhere. Its behavior is chaotic, and statistical tests
find no pattern. For all practical purposes the numbers are random.

Think what this means in an experiment (or the stock market). If simple rules
produce chaos, theredbsolutely no wajo predict the results. No measurement can
ever be sufficiently accurate. The newspapers report that Pluto’s orbit is chaotic—
even though it obeys the law of gravity. The motion is totally unpredictable over
long times. | don’t know what that does for astronomy (or astrology).

The most readable book on this subject is Gleick’s best-s€lle@os Making a
New ScienceThe most dazzling books afide Beauty of FractalandThe Science
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of Fractal Images, inwhich Peitgen and Richter and Saupe show photographs that
have been in art museums around the world. The most original books are Mandelbrot’s
FractalsandFractal GeometryOur cover has a fractal from Figure 13.11.

We return to friendlier problems in which calculus is not helpless.

NEWTON'S METHOD VS. SECANT METHOD: CALCULATOR PROGRAMS

The hard part of Newton’s method is to fiagt' /d x. We need it for the slope of the
tangent line. But calculus can approximate Ay / Ax—using the values off'(x)
already computed at,, andx,, 1.

Thesecant methodollows the secant line instead of the tangent line:

£(xn) AFN  fCm) = f ()
T (Af/AY), Where(_)n‘ Xo—Xn 1

Secant Xn+1 = Xp (13)

Ax
The secant line connects the two latest points on the grapfi(©j. Its equation

is y— f(xn)=(Af/Ax)(x —x,). Sety =0 to find equation(13) for the new

X = X, +1, Where the line crosses the axis.

Prediction:Threesecant steps are about as gootlesNewton steps. Both should
give four times as many correct decimalsrror) — (error)*. Probably the secant
method is also chaotic for?> +1 = 0.

These Newton and secant programs are for the TI-81. Place the formufdfor
in slot Y q and the formula forf”’(x) in slot Y 2 on the Y = function edit screen.
Answer the prompt with the initiako =X @. The programs pause to display each
approximationx,,, the valuef(x,), and the differencer, —x,, 1. PressENTER
to continue or pres® N and select iten2 : Qu 1 t to break. If f(x,) = 0, the pro-
grams displayR 00T AT and the roof,,.

PrgmN:NEWTON :Disp'"ENTER FORMORE'" PrgmS:SECANT (YT

:Disp'"X@=""' :Disp''ON2 TOBREAK'' :Disp''Xg="" 1YY
tInput X :Disp'" " tInput X :Disp'""ENTER FOR MORE"!
:X—>S :Disp'"XN FXN XN=XNM1'" :X->S :Disp'"XN FXN XN=XNM1"'
Y1V :Disp X :Y1-T :Disp X
tLblL 1 :DispY :Disp "'Xx1="! :DispY
tX=Y/Yo—oX :DispD tInput X :DispD
1 X=S-D :Pause Y1V :Pause
1 X—S tIf Y£Q :Lbl 1 tIf Y£Q
1YY :Goto 1 :X=S—D :Goto 1
:Disp '""ROOT AT"! 1 X—S :Disp '""ROOT AT"!
:Disp X :X=YD/(Y=-T)—>X :DispX

3.7 EXERCISES

Read-through questions

When f(x)=0 is linearized to f (x,) + f'(xn)(x —x5) =0, the For f(x)=x2—b, Newton’s iteration isx,y1= @

solutionx=__a is Newton'sx,4+;. The __b to the curve The x, converge to__h if x>0 and to__i if xo<0.
crosses the axis at,y1, while the __c  crosses atc*. The For f(x)=x2+1, the iteration becomes;, 1= | . This
errors at x, and x,4+; are normally related bycannot converge to_ _k . Instead it leads to chaos.

(erron,+1~M__d . Thisis__e convergence. The numberChanging to z=1/(x2+1) yields the parabolic iteration

of correct decimals_f __ at every step. Znt1=__1
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For a <3, zy41 :azn—az,zl converges to a single_m . 21 Whatis Newton’s method to find theeth root of 7? Calculate
After =3 the limit is a 2-cycle, which means n . Later the +/7to7 places.
limit is a Cantor set, which is a one-dimensional example of a

3_
o0 . The cantor set is self- p 22 Find all solutions ofx®> = 4x — 1 (5 decimals).

21—
1 To solve f(x)=x3—b=0, what iteration comes from Problems 23-29 are abouk” +1 =0 and chaos.

’ ?
Newton's method 23 For 6 =n/16 when does x, =cot2"6 blow up? For

2 For f(x)=(x—1)/(x+1) Newton’s formula is x,+1 = 6==x/7 when does ca"6=cotf? (The angles2"6 and 6
F(xp) = . Solve x* = F(x*) and find F’(x*). What limit differ by a multiple ofr.)

do thex,’s approach ? .
Xn'S app 24 For6 = r/9 follow the sequence untit, = x¢.

3 | believe that Newton only applied his method in public
to one equationx3—2x—5=0. Raphson carried the idea?> For 6 =1, x, newr retumns toxo=cotl. The angles2"
forward but got partial credit at best. After two steps fragi=2, andl never differ by a multiple ofr because

k __
how many decimals in* = 2.09455148 are correct ? 26 1f zo equals siR6, show thatzy = 4zg — 422 equals sif 26.

4 Show that Newton's method forf(x)=x1/3 gives the
strange formulax,+;=—2x,. Draw a graph to show the
iterations.

2
5 Findx; if (8) /(x0) =0; (b) /" (x0) = 0. Ynt1 :x,2,+1+1:l(x,,_i) 1

6 Graph f(x)=x3—3x—1 and estimate its rootx*. Run
Newton’s method starting from, 1, —%, and 1.1. Experiment to Show that this equals J4(yn —1).
decide whichxg converge to which root. "

27 If y=x%+1, exh newy is

28 Turn Problem27 upside down, 1/y,4+1=4(yn_1)/y2, to

7 2 _ — 7, I =2. . . .
Solve x*—6x+5=0 by Newton's method withxg =2.5 find the quadratic iteratio(l0) for znzl/ynzl/(1+x,%).

and3. Draw a graph to show whicky lead to which root.

8 If f(x) is increasing and concave ugf/(>0 and f” >0) 29 If F(z)=4z—4z% what is F(F(z))? How many solutions to
show by a graph that Newton’s method converges. From whigfr £(F(2))? How many are not solutions to= F(z) ?

side? 30 Apply Newton's method tox3—.64x—.36=0 to find the
basin of attraction forx* =1. Also find a pair of points for
which y = F(z) andz = F(y). In this example Newton does not
always find a root.

Solve 9-17 to four decimal places by Newton’'s method with a
computer or calculator. Choose anyxg exceptx ™.

9 x2-10=0
31 Newton’s method solves/(1—x)=0 by x,4+1=
10 x*—100 =0 (faster or slower than Problef?) From whichxo does it converge ? The distancextt = 0 is exactly
11 x2—x =0 (which xo to which root ?) squared.

3_ i i 2 .
12 x? —x =0 (which.xo to which root ?) Problems 33-41 are about competitors of Newtan

13 x4+ 5cosx =0 (this has three roots)
32 At a double root, Newton only converges linearly. What

14 x+tanx =0 (find two roots) (are there more ?) is the iteration to solva:2 = 02

15 1/(=x)=2 33 To speed up Newton's method, find the stepr from
16 1+x+x24+x34x*=2 FGn) +Axf(xn) + 3(AX)2 f"(xp) =0. Test on f(x)=
17 x34(x+1)3 =103 x2 —1 from x¢ = 0 and explain.

18 (a) Show thatr,i; =2x, —2x2 in Example 2 is the same34 Halley's method useg, + Axf, + $AX(— fu/ fi)) S = 0. For
as(1—2x,41) = (1 —2x,)2. f(x)=x%—1andxg = 1 +¢, show thatc; = 1 +O(e3)— which is
(b) Prove divergence ifl —2xo|> 1. Prove convergence if cubicconvergence.

[1=2xp[<Tor0<xo<lL 35 Apply the secant method tof(x)=x2—4=0, starting

19 With a=3 in Example 2, experiment with the Newtonfrom xo=1 and x; =2.5. Find Af/Ax and the next pointr,
iteration:x, 41 = 2x, — 3x2 to decide whichr, lead tox* = 1. by hand. Newton useg’(x1)=5 to reachx; =2.05. Which

) ’ ’ is closertax* =27
20 Rewrite x,4+1=2xy —ax; as(l—axuy4+1) =(1—axy)~. For

which xo does the sequencel —ax, approach zero (so36 Draw a graph of f(x) =x%—4 to show the secant line in
x—1/a)? Problem35 and the pointv, where it crosses the axis.
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Bisection methodf f(x) changes sign between, and x1, find
its sign at the midpoint x, = %(xo + x1). Decide whether f(x)
changes sign betweenty and x, or x; and x;. Repeat on
that half-length (bisected) interval. Continue.Switch to a faster
method when the interval is small enough

37 f(x)=x2—4 is negative atx = 1, positive atx =2.5, and
negative at the midpoint = 1.75. So x* lies in what interval ?
Take a second step to cut the interval in half again.

3 Applications of the Derivative

43 The solution to f(x)=x—-1.9)/(x—=2.00=0 is
x*=1.9. Try Newton’s method fromxy=1.5,2.1, and 1.95.

Extra credit: Whichxg's give convergence ?
method to solve cos=0 from

44 Apply the secant

xo =.308.

45 Try Newton's method on cas=0 from xo=.308. If
cotxo is exactly 7, show thatx; =x¢o+x (and x, = x1 + 7).

38 Write a code for the bisection method. At each step priRtomxy =.308169071 does Newton’s method ever stop ?

out an interval that contains*. The inputs arery andxp; Ibr the
code callsf'(x). Stop if f(xp) and f(x;) have the same sign.

39 Three bhisection steps reduce the interval by wht
factor ? Starting fromxo =0 and x; =8, take three steps for

f(x)=x2-10.

46 Use the Newton and secant to

3 _10x2+22x+6=0from xo =2 and1.39.

programs

47 Newton's method for sik=0 IS x,41=x,—tanx,.
Graph sinx and three iterations fromxg=2 and xo=1.8.

40 A direct method is tozoam in where the graph crosses théredict the result foxg = 1.9 and test. This leads to thmputer

axis. Solve 10x3—8.3x242.295x—.21141=0 by several

Zooms.

41 If the zoom factor is 10, then the number of correct

decimals for every zoom. Compare with Newton.

42 The number equals%(1+ 3 + & +--). Show that itis in the

Cantor set. It survives when middle thirds are removed.

projectin Problem3.6.41, which finds fractals.

48 Graph Yi(x) =3.4(x —x2) and Yo(x)=Y;(Y1(x)) in the
square window (0,0) < (x,y)<(1,1). Then graph Y3(x)=
Y>(Y1(x)) andYy, ..., Yo. The cycle is from842 to .452.

49 Repeat Problend8 with 3.4 changed t@ or 3.5 or 4.

solve
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I 3.8 The Mean Value Theorem and I'Hépital’s Rule | EEGTEGEGENG

Now comes one of the cornerstones of calculus: Mean Value Theorem. It
connects the local picture (slope at a point) to the global picture (average slope
across an interval). In other words it relai@6/dx to A f/Ax. Calculus depends

on this connection, which we saw first for velocities. If the average velocity,iss

there a moment when the instantaneous veloci# i

150 1 - 150 T 57"
100 + f® % 100 + = -~
T v=75 PR
v=100" > Vwe=T5 o7 Uy =75
50 + = 01 -7 i

1 =2 ¢ 1 =2

Fig. 3.26  (8) v jumps OVelawerage (b) v equUalSvaverage

Without more information, the answer to that questiomd@ The velocity could
be 100 and then50—averaging75 but never equal t&5. If we allow a jump in
velocity, it can jump right over its average. At that moment the velocity does not
exist. (The distance function in Figure 3.26a has no derivatixe=atl .) We will take
away this cheap escape by requiring a derivative at all points inside the interval.

In Figure 3.26b the distance increasesi®y) whent increases by. There is a
derivativedf/dt at all interior points (but an infinite slope at=0). The average
velocity is

A f@=f0) 150

At 2-0 2
The conclusion of the theorem is thatlf/dt =75 at some point inside the
interval. There is at least one point whefé(c) = 75.

This is not a constructive theorem. The valueca$ not known. We don't fina:,
we just claim (with proof) that such a point exists.

=75.

3M Mean Value Theorenuppose f(x) is continuous in the closed interval
a < x < b and has a derivative everywhere in the open intarvalx < b. Then

f)—f@)
a

b = f'(c) at some pointz < ¢ < b. (1)

The left side is the average slopgef/Ax. It equalsdf/dx atc. The notation for a
closed interval [with endpoints] ig, b]. For an open interval (without endpoints) we
write (a,b). Thus f’ is defined in(a,b), and f remains continuous at andb. A
derivative is allowed at those endpoints too—but the theorem doesn’t require it.

The proof is based on a special case—wifén) = 0 and f(b) = 0. Suppose the
function starts at zero and returns to zefhe average slope or velocity is zero.
We have to prove that’(c) = 0 at a point in between. This special case (keeping the
assumptions orf'(x)) is calledRolle’s theorem

Geometrically, if f goes away from zero and comes back, thfér= 0 at the turn
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3 Applications of the Derivative

3N Rolle’s theorem Suppose f(a) = f(b) =0 (zero at the ends). Thgn
f'(c) =0 at some point withz < ¢ < b.

Proof At a point inside the interval wherg(x) reaches its maximum or minimum,
df/dx must be zero. That is an acceptable poirffigure 3.27a shows the difference
betweenf = 0 (assumed at andd) and /' = 0 (proved at).

Small problem: The maximum could be reached at the eradsdd, if f(x) <0in
between. At those endpoint¥’/dx might not be zero. But in that case thenimum
is reached at an interior point which is equally acceptable. The key to our proof is
thata continuous function on[a, b] reaches its maximum and minimunThis is
the Extreme Value Theorein

It is ironic that Rolle himself did not believe the logic behind calculus. He may not
have believed his own theorem! Probably he didn’t know what it meant—the language
of “evanescent quantities” (Newton) and “infinitesimals” (Leibniz) was exciting but
frustrating. Limits were close but never reached. Curves had infinitely many flat sides.
Rolle didn't accept that reasoning, and what was really serious, he didn’t accept the
conclusions. The Académie des Sciences had to stop his battles (he fought against
ordinary mathematicians, not Newton and Leibniz). So he went back to number
theory, but his special case wheita) = f(b) = 0 leads directly to the big one.

slope df/dx -~
equals
slope Af/Ax _ _

-

fla) S
1\/ : }’ ‘; ;' ;)

Fig. 3.27 Ralle’s theorem is whery'(a) = f(b) =0 in the Mean Value Theorem.

Proof of the Mean Value Theorem We are looking for a point wher@f /dx equals

A f/Ax. The idea ido tilt the graph back to Rolle’s special cagehenA f was
zero). In Figure 3.27b, the distané# x) between the curve and the dotted secant line
comes from subtraction:

F = £~ | f@+ i -a| @

At a and b, this distance isF(a) = F(b) =0. Rolle’s theorem applies t&'(x).
There is an interior point wherE’(c) = 0. At that point take the derivative of equa-
tion (2): 0= f'(¢) — (Af/Ax). The desired point is found, proving the theorem.

EXAMPLE 1 The functionf(x) = /x goes from zero at = 0 to ten atx = 100.
Its average slope id f/Ax = 10/100. The derivative f’(x) = 1/24/x exists in
the open interval0, 100), even though it blows up at the end= 0. By the Mean
Value Theorem there must be a point whéfg'100 = f”(c) = 1/2+/c. That point
isc =25.

T1f f(x) doesn't reach its maximum, then1/(M — f(x)) would be continuous but also
approach infinity. Essential fack continuous function on[a, b] cannot approach infinity
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The truth is that nobody cares about the exact value.dfs existence is what
matters. Notice how it affects the linear approximatiftx) =~ f(a)+ f'(a)(x —
a), which was basic to this chapter. Close becomes exatigcomes=) when [’ is
computed at instead ofu:

30 The derivative at gives an exact prediction gf(x):

fx) = fl@)+ f'(c)(x —a). ©)

The Mean Value Theorem is rewritten here/ag = f’(c)Ax. Nowa < c < x.

EXAMPLE 2 The function f(x)=sinx starts from f(0)=0. The linear
prediction (tangent line) uses the slapes0 = 1. The exact prediction uses the slope
cosc at an unknown point betweénandx:

(approximate sinx =~ x (exac) sinx = (cosc)x. (4)
The approximation is useful, because everything is computed=atz =0. The

exact formula is interesting, becausesc <1 proves again thasinx < x. The
slope is belowl, so the sine graph stays below # line.

EXAMPLE 3 If f’(c) =0 atall points in an interval thenf(x) is constant

Proof When f" is everywhere zero, the theorem giveg = 0. Every pair of points
has f(b) = f(a). The graph is a horizontal line. That deceptively simple case is a
key to the Fundamental Theorem of Calculus.

Most applications ofA f = f'(c)Ax do not end up with a number. They end up
with another theorem (like this one). The goal is to connect derivatives (local) to
differences (global). But the next application—I|'HOpital's Rulenanages to
produce a number out 6f/0.

LHOPITAL'S RULE

When f(x) and g(x) both approach zero, what happens to their ratfax) /g (x) ?

2 sin —sin 0
&=X— or al or al o allbecome — a x=0.
gx) x X 1 —cosx 0
Since0/0 is meaningless, we cannot work separately witlx) andg(x). This is a
“race toward zergd in which two functions become small while their ratio might do
anything. The problem is to find the limit of(x)/g(x).
One such limitis already studieldlis the derivativé A f/ A x automatically builds
in a race toward zero, whose limitds/dx:

x — a—0 x—a

= f'(a). (5)

The idea of 'HOpital is to usg’ /g’ to handlef/g. The derivative is the special case
g(x) =x —a,with g’ = 1. The Rule is followed by examples and proofs.

S~ fla)
X—a

3P I'Hépital's Rule Suppose f(x) and g(x) both approach zero as— a.
Then f(x)/g(x) approaches the same limit &3(x)/g’(x), if that second limi
exists:
! !
firm 29 i 2 s T A
x—a g(x)  x—a g'(x) g'(a)

(6)
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3 Applications of the Derivative

fx)=6(x-a)

2(x)=2(x-a)

f'=6 > X — X
/] a
Fig. 3.28 €) & is exactlyfl(a) =3. (b) & approache @ =3.
g(x) g'(a) g(x) g'(a)

This is not the quotient ruleThe derivatives of f(x) and g(x) are taken
separately. Geometrically, 'H6pital is saying thahen functions go to zero their
slopes control their sizé\n easy case i = 6(x —a) andg =2(x —a). The ratio
f/g is exactly6/2, the ratio of their slopes. Figure 3.28 shows these straight lines
dropping to zero, controlled byand2.

The next figure shows the same lirhjt2, when the curves atangentto the lines.
That picture is the key to I'HOpital’s rule.

Generally the limit off /g can be a finite numbdt or +00 or —co. (Also the limit
pointx = a can represent a finite number-¢ro or —oo. We keep it finite.) The one
absolute requirement is thai{(x) andg (x) must separately approach zero—we insist
on0/0. Otherwise there is no reason why equaiiépshould be true. Withf'(x) = x
andg(x) = x —1,don’t use I'Hopital:

& — a but /') !

gx) a—1 g 1

Ordinary ratios approachm f(x) divided bylim g(x). 'Hopital enters only for
0/0.

. . l—cosx . sinx )
EXAMPLE 4 (an old friend) I|m0 —— equals lim R This equals zero.
X— X

x—0

tan x " se@x o1
EXAMPLE 5 iz.— leads to L: . At x =0 the limitis —.
g sinx g’ cosx 1

X —Sinx " 1—cosx . .0

EXAMPLE 6 i =——— leadsto L =——— Atx=0thisis still—-.

g 1—cosx g’ sinx 0

Solution  Apply the Rule tof”’/g’. It has the same limit ag” /g":
f 0 f 0 f"(x) _sinx 0

if —— - and — — — thencompute = ——-=0.
g 0 g 0 g"(x) cosx 1

The reason behind 'H6pital’s Rule is that the following fracbns are the

same
) _ )= fla) [e(x)—gla)

g(x) X—a X—a

()

That is just algebra; the limit hasn’t happened yet. The factorsa cancel, and the
numbersf(a) andg(a) are zero by assumption. Now take the limit on the right side
of (7) asx approaches.
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What normally happens is that one part approacfieat x =a. The other part
approacheg’(a). We hopeg’(a) is not zero. In this case we can divide one limit by
the other limit. That gives the “normal” answer

’

iim £ _ fimitof (7) = L@

x—a g(x) g'(a)
This is also I'Hopital’'s answer. Whefi’(x) — f’(a) and separately’(x) — g'(a),
his overall limit is f'(a)/g’(a). He published this rule in the first textbook ever
written on differential calculus. (That was 1i696—the limit was actually discovered
by his teacher Bernoulli.) Three hundred years later we apply his hame to other cases
permitted in(6), when 1’/ g’ might approach a limit even if the separate parts do not.

To prove this more general form of 'H6pital’s Rule, we need a more general Mean
Value Theoreml regard the discussion below as optional in a calculus course
(but required in a calculus book). The important idea already came in eq&jion

(8)

Remark The basic'indeterminaté is co —oo. If f(x) and g(x) approach
infinity, anything is possible forf (x) — g(x). We could havex? —x or x — x? or
(x +2) —x. Their limits areco and—oo and?.

At the next level ard)/0 andoo/co and0-co. To find the limit in these cases,
try 'Hopital's Rule. See Problem 24 whefi(x)/g(x) approacheso/co. When
f(x) —>0andg(x) — oo, apply theO/0 rule to f(x)/(1/g(x)).

The next level ha®® and 1 and 0. Those come from limits off (x)&™).

If f(x) approache$, 1, or co while g(x) approache$, co, or 0, we need more
information. A really curious example is!/'"*, which shows all three possibilities
0% and1” andoo®. This function is actually a constant! It equals

To go back down a level, take logarithms. Thefx) In f(x) returns to0/0 and

0-00 and I'Hbpital’'s Rule. But logarithms arelhave to wait for Chapter 6.

THE GENERALIZED MEAN VALUE THEOREM

The MVT can be extended tiwvo functions The extension is due to Cauchy, who
cleared up the whole idea of limits. You will recognize the special gasex as the
ordinary Mean Value Theorem.

3Q Generalized MVT If f(x) and g(x) are continuous ora,b] and
differentiable on(a, b), there is a poin& < ¢ < b where

[f () = f(@)]g'(c) = [g(b) — g(a)] /' (c). (9)

The proof comes by constructing a new function that Fés) = F (b):

F(x)=[f()— f(a)lg(x)—[g(b) —g(a)] f(x).

The ordinary Mean Value Theorem leadsi&(c) = 0—which is equatior{9).

Application 1 (Proof of 'Hopital’s Rule) The rule deals withf(a)/g(a) =0/0.

Inserting those zeros into equatit®) leavesf(b)g’(c) = g(b) f'(c). Therefore
f) _ f'()
gb) g'c)

As b approaches, so does. The pointc is squeezed betweenandb. The limit of

equation(10)asbh — a andc — a is I'Hopital’s Rule.

(10)
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Application 2 (Error in linear approximation) Section 3.2 stated that the distance
betveen a curve and its tangent line grows lilke— a)2. Now we can prove this, and
find out more. Linear approximation is

f(x)= f(a)+ f'(a)(x —a) + error e(x). (12)

The pattern suggests an error involvingf (x) and (x —a)?. The key example
f = x? shows the need for a fact@ (to cancel f” =2). The error in linear
approximation is

e(x)=1f"(c)(x—a)*> with a<c<ux. (12)
Keyidea Compare the errar(x) to (x —a)?. Both are zero at = a:
e=f(x)—fl@)—fla)(x—a) e=f'(x)=f'a) " =f"(x)
g=(x—a)? ¢ =2(x—a) ¢ =2

The Generalized Mean Value Theorem finds a pdinbetweena and x where
e(x)/g(x)=¢€'(C)/g'(C). This is equation(10) with different letters. After
checkinge’(a) = g’(a) = 0, apply the same theorem¢&(x) andg’(x). It produces
a pointc betweeru andC —certainly betweea andx—where

e'(C) _e"(0) e(x) _€"(0)

= and therefore —= = .
g'(C)  g"(c) gx)  g"(c)

With g =(x—a)? and g”=2 and ¢’ = f”, the equation on the right is

e(x) = %f”(c)(x —a)?. The error formula is proved. A very good approximation is

2/ (@) (x —a)>.

1 1/ —1
EXAMPLE 7 = =100: +/102~10+(— )2+ — ) 22.
f(x)=+/x neara +(2o) +2(4000)

That last term predicts = —.0005. The actual erroris/102 — 10.1 = —.000496.

3.8 EXERCISES

Read-through questions

The Mean Value Theorem equates the average slag@Ax  f(x)/g(x) equals the limit of_n , provided this limit exists.

over an__a _[a,b] to the slopedf/dx at an unknown b . Normally this limit is f/(a)/g’(a). If this is also0/0, go on to

The statement is_c¢ . It requires f(x) to be __d  on the thelimitof__o

e interval [a,b], with a __f on the open intervala,b). _. . Y
Rolle’s theorem is the special case whg) = f(b) =0, and the Find all points 0 <c <2 where f(2) - f(0) = f"(¢)(2=0).

point ¢ satisfies g . The proof chooses as the point wheref 1 f(x)=x3 2 f(x)=sinmx
reachesits h .

) 3 f(x)=tan2mxx 4 f(x)=14+x+x2
Consequences of the Mean Value Theorem include: 10 0
If f’(x)=0 everywhere in an interval thenf(x)=__i . 5 f(O)=&x-1 6 f(x)=(x-1)

The prediction f(x)= f(a)+ | (x—a) is exact for some

¢ betweena and x. The quadratic predictionf(x)= f(a)+ N 7-10show thatno pointc yields /(1) — f(—1) = f'(c)(2). Ex-
F(a)(x —a)+ k  (x—a)? is exact for anotherc. The plain why the Mean Value Theorem fails to apply.

error in f(a)+ f'(a)(x—a) is less than%M(x—a)2 where M 7 fx)= |x—l|
is the maximum of _| 2

8 f(x)=unit step function

A chief consequence is 'Hopital's Rule, which applies wher? f(x)=|x|!/2 10 fx)=1/x*
f(x) and g(x)» _m__ as x—a. In that case the limit of
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11 Show that seéx andtar?x have the same derivative, and dravd1 The error in Newton’s method is squared at each step:
a conclusion abouf (x) = seéx —tar?x. [Xn+1—x%| < M|xy —x |2 The proof starts fromd = f(x*) =

_ 4 _ 2 i
12 Show that cstx and cofx have the same derivative andf(x")+f (n) (x°* X”)+ f(O)(* ~xp)%. Divide by
find f(x) = cs@x —cotx. f'(xn), recognizex, 41, and estimaté/.

32 (Rolle’s theorem backward) Supposg’(c) =0. Are there

Evaluate the limits in 13—22 by I'Hopital’s Rule. necessarily two points arourdwhere f(a) = f(b)?
2 2
13 lim 2= 14 lim X -9 33 Supposef(0) =0. If f(x)/x has a limit asx — 0, that limit is
x—3 x—3 x=3 x+3 better known to us as . L’'Hopital’'s Rule looks instead at the
2 v/1—cos imi
15 lim +07-1 16 lim Y221 limit of i . . e
x—0 x x—0 X Conclusion from I'Hopital: The limit of /7 (x), if it exists, agrees
X—1 | with f7(0). Thus f/(x) cannot have a “removable
17 lim — 18 lim —
xX—m sinx x—1sinx 34 It is possible that f’(x)/g’(x) has no limit but
n_ . 11— L. This is why I'H6pital included an “if.”
1o fim (D" =1 20 fim 4+ . nx fx)/g(x)— y I'Hop
x—0 x x—0 x (@ Find L as x—0 when f(x)=x%cogl/x) and
. sinx—tanx I+ x—y1—x g(x) =x. Remember that cosines are belbw
2l )![)no 3 22 )![)no X (b) From the formulaf’(x)=sin(1/x)+2xcog1/x) show

that //g’ has no limit asc — 0.
23 For f =x2—4 and g =x+2, the ratio f'/g’' approachest

asx — 2. What is the limit of £(x)/g(x)? What goes wrong in 3° Stein’s calculus book asks for the limiting ratio of

I'Hépital’s Rule ? fx)= triangular_ a}reaABC to g(x)= curved areaABC.
L ) ) (@) Guess the limit of f/g as the anglex goes to zero.
24 I'Hopital's Rule still holds for f(x)/g(x) — o0/c0: L is (b) Explain why f(x) is J(sinx—sinxcosx) and g(x) is
i f(x) Iiml/g(x) i ¢ (x)/g%(x)  2im ¢ (x) 5(x —sinxcosx). (c) Compute the true limit of (x)/g(x).
g(x) 1/7(x) F1x)/f2(x) J(x) c
Then L equals lindf'(x)/g’(x)] if this limit exists. Where did A
we use the rule fo0/0 ? What other limit rule was used ? 1
2
25 Compute lim-—--- 1+ (/0 26 Compute_lim - tx -
—(1/x) x>0 2x2 A B B
27 Compute Ilmﬂ by common sense. Show that
'Hoital ivesxnzén)év—\tgrnx 36 If you drive 3,000 miles from New York to L.A. in 100
pitalg csc hours (sleeping and eating and going backwards are allowed)
28 Compute_lim % by common sense or trickery. then at some moment your speedis
— 0 X

37 Asx — oo I'Hopital’s Rule still applies. The limit off'(x)/g(x)
equals the limit off’(x)/g’(x), if that limit exists. What is the limit
%s the graphs become parallel in Figure B ?

29 The Mean Value Theorem applied fix) = x3 guarantees that
some numbet betweenl and4 has a certain property. Say what the
property is and find.

38 Prove that f(x) is increasing when its slope is positivé:
f'(c) >0 at all pointsc, then f(b) > f(a) at all pairs of points
|f(x)—f(y)|<latallx andy. b>a.

30 If |df/dx| <1 atall points, prove this fact:
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