
CHAPTER 4

Derivatives by the Chain Rule

4.1 The Chain Rule

You remember that the derivative off .x/g.x/ is not .df=dx/.dg=dx/: The
derivative ofsinx timesx2 is notcosx times2x: The product rule gave two terms,
not one term. But there is another way of combining the sine functionf and the
squaring functiong into a single function. The derivative of that new function does
involve the cosine times2x (but with a certain twist). We will first explain the new
function, and then find the “chain rule” for its derivative.

May I say here that the chain rule is important. It is easy to learn, and you will
use it often. I see it as the third basic way to find derivatives of new functions from
derivatives of old functions. (So far the old functions arexn, sinx, andcosx: Still
ahead areex andlog x:) Whenf andg are added and multiplied, derivatives come
from thesum ruleandproduct rule. This section combinesf andg in a third way.

The new function issin.x2/—the sine ofx2. It is created out of the two original
functions: ifxD 3 thenx2 D 9 andsin.x2/D sin9: There is a “chain” of functions,
combiningsinx andx2 into the composite functionsin.x2/: You start withx, then
findg.x/, then findf .g.x//:

The squaring function givesyD x2: This isg.x/:
The sine function produceszD sinyD sin.x2/: This isf .g.x//:

The “inside function” g.x/ givesy: This is the input to the“outside function”
f .y/: That is calledcomposition. It starts withx and ends withz: The composite
function is sometimes writtenf �g (the circle shows the difference from an ordinary
productfg). More often you will seef .g.x//:

z.x/D f �g .x/D f .g.x//: (1)

Other examples arecos2x and.2x/3, with gD 2x: On a calculator you inputx,
then push the “g” button, then push the “f ” button:

From x computeyD g.x/ From y computezD f .y/.

There is not a button for every function! But the squaring function and sine function
are on most calculators, and they are usedin that order. Figure 4.1a shows how
squaring will stretch and squeeze the sine function.
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That graph ofsinx2 is a crazy FM signal (the Frequency is Modulated). The wave
goes up and down likesinx, but not at the same places. Changing tosing.x/moves
the peaks left and right. Compare with a productg.x/sinx, which is an AM signal
(the Amplitude is Modulated).

Remark f .g.x// is usually different fromg.f .x//: The order off and g is
usually important. Forf .x/D sinx andg.x/D x2, the chain in the opposite order
g.f .x// gives something different:

First apply the sine function:yD sinx
Then apply the squaring function:zD .sinx/2:

That result is often writtensin2x, to save on parentheses. It is never writtensinx2,
which is totally different. Compare them in Figure 4.1.

Fig. 4.1 f .g.x// is different fromg.f .x//: Apply g thenf , or f theng:

EXAMPLE 1 The composite functionf �g can be deceptive. Ifg.x/D x3 and
f .y/D y4, how doesf .g.x// differ from the ordinary productf .x/g.x/? The
ordinary product isx7: The chain starts withyD x3, and thenzD y4 D x12: The
composition ofx3 andy4 givesf .g.x//D x12:

EXAMPLE 2 In Newton’s method,F.x/ is composed with itself. This is
iteration. Every outputxn is fed back as input, to findxnC1 DF.xn/: The example
F.x/D 1

2
xC4 hasF.F.x//D 1

2

�

1
2
xC4

�

C4: That produceszD 1
4
xC6:

The derivative ofF.x/ is 1
2
: The derivative ofzDF.F.x// is 1

4
, which is 1

2
times

1
2
:We multiply derivatives. This is a special case of the chain rule.

An extremely special case isf .x/D x andg.x/D x: The ordinary product isx2:
The chainf .g.x// produces onlyx! The output from the “identity function” is
g.x/D x:� When the second identity function operates onx it producesx again.
The derivative is1 times1: I can give more composite functions in a table:

yD g.x/ zD f .y/ zD f .g.x//

x2�1 ?
y

?
x2�1

cosx y3 .cosx/3

2x 2y 22x

xC5 y�5 x

�A calculator has no button for the identity function. It wouldn’t do anything.
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The last one adds5 to get y: Then it subtracts5 to reachz: So zD x: Here output
equals input:f .g.x//D x: These “inverse functions” are in Section4:3: The other
examples create new functionsz.x/ and we want their derivatives.

THE DERIVATIVE OF f .g.x//

What is the derivative ofzD sin x2?It is the limit of�z=�x: Therefore we look at a
nearby pointxC�x: That change inx produces a change inyD x2—which moves
toyC�yD .xC�x/2: From this change iny, there is a change inzD f .y/: It is a
“domino effect,” in which each changed input yields a changed output:�x produces
�y produces�z: We have to connect the final�z to the original�x:

The key is to write�z=�x as�z=�y times�y=�x. Then let�x approach
zero. In the limit,dz=dx is given by the “chain rule”:

�z

�x
D
�z

�y

�y

�x
becomes the chain rule

dz

dx
D
dz

dy

dy

dx
: (2)

As�x goes to zero, the ratio�y=�x approachesdy=dx: Therefore�y must be
going to zero, and�z=�y approachesdz=dy: The limit of a product is the product
of the separate limits (end of quick proof).We multiply derivatives:

4A Chain Rule Supposeg.x/ has a derivative atx andf .y/ has a derivative
atyD g.x/: Then the derivative ofzD f .g.x// is

dz

dx
D
dz

dy

dy

dx
D f 1.g.x//g1.x/: (3)

The slope atx is df=dy (aty) timesdg=dx (atx).

Caution The chain rule doesnot say that the derivative ofsinx2 is .cosx/.2x/:
True, cosy is the derivative ofsiny: The point is thatcosy must be evaluated aty
(not atx). We do not wantdf=dx atx, we wantdf=dy atyD x2:

The derivative ofsinx2 is.cosx2/ times.2x/: (4)

EXAMPLE 3 If zD .sinx/2 thendz=dxD .2sinx/.cosx/: HereyD sinx is inside.

In this order,zD y2 leads todz=dyD 2y: It does not lead to2x: The inside
functionsinx producesdy=dxD cosx: The answer is2y cosx: We have not yet
found the function whose derivative is2x cosx:

EXAMPLE 4 The derivative ofzD sin3x is
dz

dx
D
dz

dy

dy

dx
D 3 cos3x:

Fig. 4.2 The chain rule:
�z

�x
D
�z

�y

�y

�x
approaches

dz

dx
D
dz

dy

dy

dx
:
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The outside function iszD siny: The inside function isyD 3x: Then dz=dyD
cosy—this is cos3x, not cosx: Remember the other factordy=dxD 3:

I can explain that factor3; especially if x is switched tot: The distance is
zD sin3t: That oscillates likesin t exceptthree times as fast. The speeded-up
function sin3t completes a wave at time2�=3 (instead of2�). Naturally the
velocity contains the extra factor3 from the chain rule.

EXAMPLE 5 Let zD f .y/D yn: Find the derivative off .g.x//D Œg.x/�n:

In this casedz=dy is nyn�1: The chain rule multiplies bydy=dx:

dz

dx
D nyn�1 dy

dx
or

d

dx
Œg.x/�n D nŒg.x/�n�1dg

dx
: (5)

This is thepower rule! It was already discovered in Section2:5: Square roots (when
nD 1=2) are frequent and important. SupposeyD x2�1:

d

dx

a
x2�1D

1

2
.x2�1/�1=2.2x/D

x?
x2�1: (6)

Question A Buick uses1=20 of a gallon of gas per mile. You drive at60 miles per
hour. How many gallons per hour?
Answer .Gallons=hour/D .gallons=mile/.miles=hour/: The chain rule is
.dy=dt/D .dy=dx/.dx=dt/: The answer is.1=20/.60/D 3 gallons=hour:

Proof of the chain rule The discussion above was correctly based on

�z

�x
D
�z

�y

�y

�x
and

dz

dx
D
dz

dy

dy

dx
: (7)

It was here, over the chain rule, that the “battle of notation” was won by Leibniz.
His notation practically tells you what to do: Take the limit of each term. (I have to
mention that when�x is approaching zero, it is theoretically possible that�y might
hit zero. If that happens,�z=�y becomes0=0: We have to assign it the correct
meaning, which isdz=dy:) As�xÑ 0,

�y

�x
Ñ g1.x/ and

�z

�y
Ñ f 1.y/D f 1.g.x//:

Then�z=�x approachesf 1.y/ timesg1.x/, which is the chain rule.dz=dy/.dy=dx/:
In the table below, the derivative of.sinx/3 is 3.sinx/2 cosx: That extra factor
cosx is easy to forget. It is even easier to forget the�1 in the last example.

zD .x3 C1/5 dz=dxD 5.x3 C1/4 times3x2

zD .sinx/3 dz=dxD 3sin2x times cosx

zD .1�x/2 dz=dxD 2.1�x/ times�1
Important All kinds of letters are used for the chain rule. We named the outputz:
Very often it is calledy, and the inside function is calledu:

The derivative ofyD sinu.x/ is
dy

dx
D cosu

du

dx
:

Examples withdu=dx are extremely common. I have to ask you to accept whatever
letters may come. What never changes is the key idea—derivative of outside function
times derivative of inside function.
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EXAMPLE 6 The chain rule is barely needed forsin.x�1/: Strictly speaking the
inside function isuD x�1: Thendu=dx is just1 (not�1). If yD sin.x�1/ then
dy=dxD cos.x�1/: The graph is shifted and the slope shifts too.

Notice especially: The cosine is computed atx�1 and not at the unshiftedx:

RECOGNIZING f .y/ AND g.x/

A big part of the chain rule isrecognizing the chain. The table started with.x3 C1/5:
You look at it for a second. Then you see it asu5: The inside function isuD x3 C1:
With practice this decomposition (the opposite of composition) gets easy:

cos.2xC1/ is cosu
?
1Csin t is

?
u x sin x is : : : (product rule!)

In calculations, the careful way is to write down all the functions:

zD cosu uD 2xC1 dz=dxD .�sinu/.2/D�2sin.2xC1/:

The quick way is to keep in your mind “the derivative of what’s inside.” The
slope ofcos.2xC1/ is�sin.2xC1/, times2 from the chain rule. The derivative
of 2xC1 is remembered—withoutz or u or f or g:

EXAMPLE 7 sin
?
1�x is a chain ofzD siny; yD

?
u;uD 1�x (three functions).

With that triple chain you will have the hang of the chain rule:

The derivative ofsin
?
1�x is .cos

?
1�x/� 1

2
?
1�x�.�1/:

This is.dz=dy/.dy=du/.du=dx/: Evaluate them at the right placesy;u;x:
Finally there is the question ofsecond derivatives. The chain rule givesdz=dx as

a product, sod2z=dx2 needs the product rule:

dz

dx
D
dz

dy

dy

dx
leads to

d2z

dx2
D
dz

dy

d2y

dx2
C
d

dx

�

dz

dy

�

dy

dx
: (8)

u v u v1 C u1 v

That last term needs the chain rule again. It becomesd2z=dy2 times.dy=dx/2:

EXAMPLE 8 The derivative ofsin x2 is 2x cosx2: Then the product rule gives
d2z=dx2 D 2 cosx2�4x2 sinx2: In this casey2 D 2 and.y 1/2 D 4x2:

4.1 EXERCISES

Read-through questions

zD f .g.x// comes fromzD f .y/ andyD a . At xD 2, the
chain .x2�1/3 equals b . Its inside function isyD c , its
outside function iszD d . Thendz=dx equals e . The first
factor is evaluated atyD f (not atyD x). For zD sin.x4�1/
the derivative is g . The triple chainzD cos.xC1/2 has a shift
and a h and a cosine. Thendz=dxD i .

The proof of the chain rule begins with�z=�xD( j )( k )
and ends with l . Changing letters,yD cosu.x/ hasdy=dxD

m : The power rule for yD Œu.x/�n is the chain rule
dy=dxD n . The slope of5g.x/ is o and the slope of
g.5x/ is p . Whenf D cosine andgD sine andxD 0, the
numbersf .g.x// andg.f .x// andf .x/g.x/ are q .

In 1–10 identifyf .y/ and g.x/: From their derivatives find
dz

dx
:

1 zD .x2�3/3 2 zD .x3�3/2
3 zD cos.x3/ 4 zD tan2x
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5 zD
?

sinx

7 zD tan.1=x/C1= tanx

9 zD cos.x2 CxC1/

6 zD sin
?
x

8 zD sin.cosx/

10 zD
?
x2

In 11–16 write downdz=dx: Don’t write down f and g:

11 zD sin.17x/

13 zD cos.cosx/

15 zD x2 sinx

12 zD tan.xC1/

14 zD .x2/3=2

16 zD .9xC4/3=2

Problems 17–22 involve three functionsz.y/; y.u/; and u.x/:
Find dz=dx from .dz=dy/.dy=du/.du=dx/.

17 zD sin
?
xC1

19 zD
?
1Csin x

21 zD sin.1=sin x/

18 zD
a

sin.xC1/

20 zD sin.
?
xC1/

22 zD .sinx2/2

In 23–26 finddz=dx by the chain rule and also by rewriting z:

23 zD ..x2/2/2

25 zD .xC1/2 Csin.xC�/

24 zD .3x/3

26 zD
a
1�cos2x

27 If f .x/D x2 C1 what is f .f .x//? If U.x/ is the unit step
function (from 0 to 1 at xD 0) draw the graphs of sinU.x/
andU.sinx/: If R.x/ is the ramp function 1

2 .xC |x|/, draw the
graphs ofR.x/ andR.sinx/:

28 (Recommended) Ifg.x/D x3 find f .y/ so thatf .g.x//D
x3 C1: Then find h.y/ so thath.g.x//D x: Then find k.y/ so
thatk.g.x//D 1:

29 If f .y/D y�2 find g.x/ so thatf .g.x//D x: Then findh.x/
so thatf .h.x//D x2: Then findk.x/ so thatf .k.x//D 1:

30 Find two different pairsf .y/; g.x/ so thatf .g.x//D
a
1�x2:

31 The derivative off .f .x// is . Is it .df =dx/2? Test
your formula onf .x/D l=x:

32 If f .3/D 3 and g.3/D 5 andf 1.3/D 2 andg1.3/D 4, find the
derivative atxD 3 if possible for

(a) f .x/g.x/ (b) f .g.x// (c) g.f .x// (d) f .f .x//

33 ForF.x/D 1
2xC8, show how iteration givesF.F.x//D 1

4xC

12: Find F.F.F.x///—also calledF .3/.x/: The derivative of
F .4/.x/ is .

34 In Problem33 the limit of F .n/.x/ is a constantC D :

From any start (tryxD 0) the iterationsxnC1 DF.xn/ converge to
C:

35 Supposeg.x/D 3xC1 andf .y/D 1
3 .y�1/:Thenf .g.x//D

andg.f .y//D : These areinverse functions.

36 Supposeg.x/ is continuous atxD 4, say g.4/D 7: Suppose
f .y/ is continuous atyD 7, say f .7/D 9: Then f .g.x// is
continuous atxD 4 andf .g.4//D 9:

Proof " is given. Because is continuous, there is aı

such that |f .g.x//�9|  " whenever |g.x/�7|  ı: Then be-
cause is continuous, there is a� such that |g.x/�7|  ı
whenever|x�4|  �: Conclusion:If |x�4|  � then . This
shows thatf .g.x// approachesf .g.4//:

37 Only six functions can be constructed by compositions (in any
sequence) ofg.x/D 1�x andf .x/D 1=x: Starting withg andf ,
find the other four.

38 If g.x/D 1�x theng.g.x//D 1�.1�x/D x: If g.x/D 1=x

theng.g.x//D 1=.1=x/D x: Draw graphs of thoseg’s and explain
from the graphs whyg.g.x//D x: Find two moreg’s with this spe-
cial property.

39 Construct functions so thatf .g.x// is always zero, butf .y/ is
not always zero.

40 True or false

(a) If f .x/D f .�x/ thenf 1.x/D f 1.�x/:
(b) The derivative of the identity function is zero.

(c) The derivative off .1=x/ is�1=.f .x//2:
(d) The derivative off .1Cx/ is f 1.1Cx/:

(e) The second derivative off .g.x// is f 2.g.x//g2.x/:
41 On the same graph draw the parabolayD x2 and the curve
zD siny (keepy upwards, withx andz across). Starting atxD 3

find your way tozD sin9:

42 On the same graph drawyD sin x and zD y2 (y upwards for
both). Starting atxD�=4 find zD .sinx/2 on the graph.

43 Find the second derivative of

(a) sin.x2 C1/ (b)
a
x2�1 (c) cos

?
x

44 Explain why
d

dx

 

dz

dy

!

D

 

d2z

dy2

! 

dy

dx

!

in equation (8).

Check this whenzD y2;yD x3:

Final practice with the chain rule and other rules (and other
letters!): Find the x or t derivative of z or y:

45 zD f .u.t// 46 zDu3;uD x3

47 yD sin u.x/cosu.x/ 48 yD
a
u.t/

49 yD x2u.x/ 50 yD f .x2/D .f .x//2

51 zD
?
1�u;uD

?
1�x 52 zD 1=un.t/

53 zD f .u/;uD v2;vD
?
t 54 yDu;uD x;xD 1=t

55 If f D x4 andgD x3 thenf 1 D 4x3 andg1 D 3x2: The chain
rule multiplies derivatives to get12x5: But f .g.x//D x12 and its
derivative is not12x5: Where is the flaw?

56 The derivative ofyD sin.sin x/ is dy=dxD

cos.cosx/ sin.cosx/cosx cos.sinx/cosx cos.cosx/cosx:

57 (a) A book has400 words per page. There are9 pages per sec-
tion. So there are words per section.



210 4 Derivatives by the Chain Rule

(b) You read200 words per minute. So you read pages
per minute. How many minutes per section?

58 (a) You walk in a train at3 miles per hour. The train moves at
50 miles per hour. Your ground speed is miles per hour.

(b) You walk in a train at3 miles per hour. The train is shown
on TV (1 mile trainD 20 inches on TV screen). Your speed
across the screen is inches per hour.

59 Coke costs1=3 dollar per bottle. The buyer gets bottles
per dollar. If dy=dxD 1=3 thendx=dy= .

60 (Computer) GraphF.x/D sinx and G.x/D sin.sinx/—not
much difference. Do the same forF 1.x/ and G1.x/: Then plot
F 2.x/ andG2.x/ to see where the difference shows up.
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4.2 Implicit Differentiation and Related Rates

We start with the equationsxyD 2 and y5 CxyD 3: As x changes, thesey’s will
change—to keep.x;y/ on the curve.We want to knowdy=dx at a typical point.
ForxyD 2 that is no trouble, but the slope ofy5 CxyD 3 requires a new idea.

In the first case, solve foryD 2=x and take its derivative:dy=dxD�2=x2: The
curve is a hyperbola. AtxD 2 the slope is�2=4D�1=2:

The problem withy5 CxyD 3 is that it can’t be solved fory: Galois proved that
there is no solution formula for fifth-degree equations.� The function y.x/ cannot
be given explicitly. All we have is theimplicit definition of y, as a solution to
y5 CxyD 3: The pointxD 2, yD 1 satisfies the equation and lies on the curve,
but how to finddy=dx?

This section answers that question. It is a situation that often occurs. Equations like
sinyCsinxD 1 or y sinyD x (maybe evensinyD x) are difficult or impossible
to solve directly fory: Nevertheless we can finddy=dx at any point.

The way out isimplicit differentiation. Work with the equation as it stands.Find
the x derivative of every term iny5 CxyD 3. That includes the constant term3;
whose derivative is zero.

EXAMPLE 1 The power rule fory5 and the product rule forxy yield

5y4 dy

dx
Cx

dy

dx
CyD 0: (1)

Now substitute the typical pointxD 2 andyD 1, and solve fordy=dx:

5
dy

dx
C2

dy

dx
C1D 0 produces

dy

dx
D�1

7
: (2)

This is implicit differentiation(ID), and you see the idea: Includedy=dx from the
chain rule, even ify is not known explicitly as a function ofx:

EXAMPLE 2 sinyCsinxD 1 leads tocosy
dy

dx
CcosxD 0

EXAMPLE 3 y sinyD x leads toy cosy
dy

dx
D siny

dy

dx
D 1

Knowing the slope makes it easier to draw the curve. We still need points.x;y/
that satisfy the equation. Sometimes we can solve forx: Dividing y5 CxyD 3 by y
givesxD 3=y�y4: Now the derivative (thex derivative!) is

1D

�� 3

y2
�4y3

�

dy

dx
D�7dy

dx
at yD 1: (3)

Againdy=dxD�1=7: All these examples confirm the main point of the section:

4B (Implicit differentiation) An equationF.x;y/D 0 can be differentiated
directly by the chain rule, without solving fory in terms ofx:

The examplexyD 2, done implicitly, givesxdy=dxCyD 0: The slopedy=dx is�y=x: That agrees with the explicit slope�2=x2:
ID is explained better by examples than theory (maybe everything is). The essential

theory can be boiled down to one idea: “Go ahead and differentiate.”

�That was before he went to the famous duel, and met his end. Fourth-degree equations do
have a solution formula, but it is practically never used.
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EXAMPLE 4 Find the tangent direction to the circlex2 Cy2 D 25:

We can solve foryD�?25�x2, or operate directly onx2 Cy2 D 25:

2xC2y
dy

dx
D 0 or

dy

dx
D�x

y
: (4)

Compare with the radius, which has slopey=x: The radius goes acrossx
and upy: The tangent goes across�y and upx: The slopes multiply to give
.�x=y/.y=x/D�1:

To emphasize implicit differentiation, go on to thesecond derivative. The top of
the circle is concave down, sod2y=dx2 is negative. Use the quotient rule on�x=y:

dy

dx
D�x

y
so

d2y

dx2
D�ydx=dx�xdy=dx

y2
D�yC.x2=y/

y2
D�y2 Cx2

y3
: (5)

RELATED RATES

There is a group of problems that has never found a perfect place in calculus. They
seem to fit here—as applications of the chain rule. The problem is to compute
df=dt , but the odd thing is thatwe are given another derivativedg=dt: To find
df=dt , we need a relation betweenf andg:

The chain rule isdf=dt D .df=dg/.dg=dt/: Here the variable ist because that
is typical in applications. From the rate of change ofg we find the rate of change of
f: This is the problem ofrelated rates, and examples will make the point.

EXAMPLE 5 The radius of a circle is growing bydr=dt D 7: How fast is the
circumference growing? Remember thatC D 2�r (this relatesC to r).

Solution
dC

dt
D
dC

dr

dr

dt
D .2�/.7/D 14�:

That is pretty basic, but its implications are amazing. Suppose you want to put a rope
around the earth that any7-footer can walk under. If the distance is24;000 miles,
what is the additional length of the rope? Answer: Only14� feet.

More realistically, if two lanes on a circular track are separated by5 feet, how much
head start should the outside runner get? Only10� feet. If your speed around a turn
is 55 and the car in the next lane goes56; who wins? See Problem14:

Examples6–8 are from the1988 Advanced Placement Exams(copyright1989
by the College Entrance Examination Board). Their questions are carefully prepared.

Fig. 4.3 Rectangle for Example 6, shadow for Example 7, balloon for Example 8.

EXAMPLE 6 The sides of the rectangle increase in such a way thatdz=dt D 1
anddx=dt D 3dy=dt: At the instant whenxD 4 andyD 3, what is the value of
dx=dt?
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Solution The key relation isx2 Cy2 D z2: Take its derivative (implicitly):

2x
dx

dt
C2y

dy

dt
D 2z

dz

dt
produces 8

dx

dt
C6

dy

dt
D 10:

We used all information, includingzD 5, except fordx=dt D 3dy=dt: The term
6dy=dt equals2dx=dt , so we have10dx=dt D 10: Answer:dx=dt D 1:

EXAMPLE 7 A person2 meters tall walks directly away from a streetlight that is
8 meters above the ground. If the person’s shadow is lengthening at the rate of4=9
meters per second, at what rate in meters per second is the person walking?

Solution Draw a figure! You must relate the shadow lengths to the distancex
from the streetlight. The problem givesds=dt D 4=9 and asks fordx=dt :

By similar triangles
x

6
D
s

2
so

dx

dt
D
6

2

ds

dt
D .3/

�

4

9

�

D
4

3
:

Note This problem was hard. I drew three figures before catching on tox ands:
It is interesting thatwe never knewx or s or the angle.

EXAMPLE 8 An observer at pointA is watching balloonB as it rises from pointC:
(The figure is given.) The balloon is rising at a constant rate of3 meters per second
(this meansdy=dt D 3) and the observer is100meters from pointC:

(a) Find the rate of change inz at the instant whenyD 50: (They wantdz=dt .)

z2 D y2 C1002 ñ 2z
dz

dt
D 2y

dy

dt

zD
a
502 C1002 D 50

?
5ñ dz

dt
D
2 �50 �3
2 �50?5 D

3
?
5

5
:

(b) Find the rate of change in the area of right triangleBCAwhenyD 50:

AD
1

2
.100/.y/D 50y

dA

dt
D 50

dy

dt
D 50 �3D 150:

(c) Find the rate of change in� whenyD 50: (They wantd�=dt:)

yD 50ñ cos� D
100

50
?
5

D
2?
5

tan � D
y

100
ñ sec2�

d�

dt
D

1

100

dy

dt
ñ d�

dt
D

�

2?
5

�2
3

100
D

3

125

In all problems I first wrote down a relation from the figure: Then I took its
derivative:Then I substituted known information: (The substitution isafter taking
the derivative oftan� D y=100: If we substituteyD 50 too soon; the derivative of
50=100 is useless:)

“Candidates are advised to show their work in order to minimize the risk of not
receiving credit for it.”50% solved Example 6 and21% solved Example 7. From
12;000 candidates, the average on Example 8 (free response) was6:1 out of9:
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EXAMPLE 9 A is a lighthouse andBC is the shoreline (same figure as the balloon).
The light atA turns once a second.d�=dt D 2� radians=second/:How quickly does
the receiving pointB move up the shoreline?

Solution The figure showsyD 100 tan�: The speeddy=dt is 100sec2� d�=dt:
This is200� sec2� , soB speeds up assec� increases.

Paradox When � approaches a right angle,sec � approaches infinity. So does
dy=dt: B moves faster than light! This contradicts Einstein’s theory of relativity.
The paradox is resolved (I hope) in Problem18:

If you walk around a light atA, your shadow atB seems to go faster than light.
Same problem. This speed is impossible—something has been forgotten.

Smaller paradox(not destroying the theory of relativity). The figure showsyD z sin�:
Apparentlydy=dt D .dz=dt/sin�: This is totally wrong. Not only is it wrong, the
exact opposite is true:dz=dt D .dy=dt/sin�: If you can explain that (Problem15),
thenID and related rates hold no terrors.

4.2 EXERCISES

Read-through questions

For x3 Cy3 D 2 the derivative dy=dx comes from a
differentiation. We don’t have to solve for b . Term by term the
derivative is 3x2C c D 0: Solving for dy=dx gives d .
At xD yD 1 this slope e . The equation of the tangent line is
y�1D f .

A second example isy2 D x: The x derivative of this
equation is g . Thereforedy=dxD h :Replacingy by

?
x,

this isdy=dxD i :

In related rates, we are givendg=dt and we wantdf=dt:
We need a relation betweenf and j . If f Dg2, then
.df =dt/D k .dg=dt/: If f 2 Cg2 D 1, thendf=dt D l :

If the sides of a cube grow byds=dt D 2, then its volume grows
by dV=dt D m : To find a number (8 is wrong), you also need
to know n .

By implicit differentiation find dy=dx in 1�10.
1 yn Cxn D 1

3 .x�y/2 D 4

5 xDF.y/

7 x2yD y2x

9 xD tany

2 x2yCy2xD 1

4
?
xC

?
yD 3atxD 4

6 f .x/CF.y/D xy

8 xD sin y

10 yn D xatxD 1

11 Show that the hyperbolasxyDC are perpendicular to the
hyperbolasx2�y2 DD: (Perpendicular means that the product of
slopes is�1:)
12 Show that the circles.x�2/2 Cy2 D 2 andx2 C.y�2/2 D 2

are tangent at the point.1;1/:

13 At 25 meters=second, does your car turn faster or slower
than a car traveling5 meters further out at26 meters=second?
Your radius is (a)50 meters (b)100 meters.

14 Equation (4) is2xC2y dy=dxD 0 (on a circle). Directly byID
reachd2y=dx2 in equation (5).

Problems 15–18 resolve the speed of light paradox in
Example 9.

15 (Small paradox first) The right triangle hasz2 D y2 C1002:

Take thet derivative to show thatz1 D y1 sin�:

16 (Even smaller paradox) AsB moves up the line, why isdy=dt
larger thandz=dt? Certainlyz is larger thany, But as� increases
they become :

17 (Faster than light) The derivative ofyD 100 tan� in
Example 9 isy1 D 100sec2� � 1 D 200�sec2�: Thereforey1 passes
c (the speed of light) when sec2� passes . Such a
speed is impossible—we forget that light takes time to reachB:

� increases by2�
in 1 second

t is arrival time
of light

� is different from2�t

18 (Explanation byID ) Light travels fromA to B in time z=c,
distance over speed. Its arrival time ist D �=2�Cz=c so
� 1=2� D 1�z1=c: Then z1 D y1 sin� and y1 D 100sec2� � 1 (all
these areID ) lead to

y1 D 200�c=.ccos2�C200� sin�/



4.2 Implicit Differentiation and Related Rates 215

As � approaches�=2, this speed approaches .

Note: y1 still exceedsc for some negative angle. That is for
Einstein to explain. See the1985 College Math Journal, page 186,
and the1960 Scientific American, “Things that go faster than light.”

19 If a plane follows the curveyD f .x/, and its ground speed is
dx=dt D 500 mph, how fast is the plane going up? How fast is the
plane going?

20 Why can’t we differentiatexD 7 andreach1D 0?

Problems 21–29 are applications of related rates.

21 (Calculus classic) The bottom of a10-foot ladder is going
away from the wall atdx=dt D 2 feet per second. How fast is the
top going down the wall? Draw the right triangle to finddy=dt
when the heighty is (a)6 feet (b)5 feet (c) zero.

22 The top of the10-foot ladder can go faster than light. At what
heighty doesdy=dt D�c?
23 How fast does the level of a Coke go down if you
drink a cubic inch a second? The cup is a cylinder of radius
2 inches—first write down the volume.

24 A jet flies at 8 miles up and560 miles per hour. How fast
is it approaching you when (a) it is16 miles from you; (b) its
shadow is8 miles from you (the sun is overhead); (c) the plane
is 8 miles from you (exactly above)?

25 Starting from a3�4�5 right triangle, the short sides in-
crease by2 meters=second but the angle between them decreases
by 1 radian=second: How fast does the area increase or decrease?

26 A pass receiver is atxD 4, yD 8t: The ball thrown att D 3

is atxD c.t�3/;yD 10c.t�3/:

(a) Choosec so the ball meets the receiver.�(b) At that instant the distanceD between them is changing at
what rate?

27 A thief is 10 meters away (8 meters ahead of you,
across a street6 meters wide). The thief runs on that side at
7 meters=second, you run at9 meters=second. How fast are you
approaching if (a) you follow on your side; (b) you run toward the
thief; (c) you run away on your side?

28 A spherical raindrop evaporates at a rate equal to twice its
surface area. Finddr=dt:

29 Starting fromP DV D 5 andmaintainingPV DT , finddV=dt
if dP=dt D 2 anddT=dt D 3:

30 (a) The crankshaftAB turns twice a second so
d�=dt D :

(b) Differentiate the cosine law62 D 32 Cx2�2.3x cos�) to
find the piston speeddx=dt when� D�=2 and� D�:

31 A camera turns atC to follow a rocket atR:

(a) Relatedz=dt to dy=dt whenyD 10:

(b) Related�=dt to dy=dt based onyD 10 tan�:

(c) Related2�=dt2 to d2y=dt2 anddy=dt:
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4.3 Inverse Functions and Their Derivatives

There is a remarkable special case of the chain rule. It occurs whenf .y/ andg.x/ are
“ inverse functions.” That idea is expressed by a very short and powerful equation:
f .g.x//D x:Here is what that means.

Inverse functions: Start with any input, sayxD 5: Compute yD g.x/, say
yD 3: Then computef .y/, and the answer must be5. What one function does,
the inverse function undoes. Ifg.5/D 3 thenf .3/D 5: The inverse functionf
takes the outputy back to the inputx.

EXAMPLE 1 g.x/D x�2 andf .y/D yC2 are inverse functions. Starting with
xD 5, the functiong subtracts2: That producesyD 3: Then the functionf adds2:
That brings backxD 5. To say it directly:The inverse ofyD x�2 is xD yC2.

EXAMPLE 2 yD g.x/D 5
9
.x�32/ and xD f .y/D 9

5
yC32 are inverse

functions (for temperature). Herex is degrees Fahrenheit andy is degrees Celsius.
From xD 32 (freezing in Fahrenheit) you findyD 0 (freezing in Celsius). The
inverse function takesyD 0 back to xD 32: Figure 4.4 shows howxD 50�F
matchesyD 10�C.

Notice that5
9
.x�32/ subtracts32 first. The inverse9

5
yC32 adds32 last. In the

same wayg multiplies last by5
9

while f multiplies first by9
5
:

Fig. 4.4 �F to �C to �F. Alwaysg�1.g.x//Dx andg.g�1 D .y//D y: If f Dg�1 then
gD f �1:

The inverse function is writtenf D g�1 and pronounced“g inverse.”It is not
1=g.x/:

If the demandy is afunction of the pricex, then the price is a function of the demand.
Those are inverse functions.Their derivatives obey a fundamental rule: dy=dx
timesdx=dy equals1. In Example 2,dy=dx is 5=9 anddx=dy is 9=5:

There is another important point. Whenf and g are applied in theopposite
order, they still come back to the start. Firstf adds2, theng subtracts2: The chain
g.f .y//D .yC2/�2 brings backy: If f is the inverse ofg theng is the inverse
of f . The relation is completely symmetric, and so is the definition:

Inverse function: If yD g.x/ thenxD g�1.y/: If xD g�1.y/ thenyD g.x/:

The loop in the figure goes fromx to y to x: The compositiong�1.g.x// is the
“identity function.” Instead of a new pointz it returns to the originalx: This will
make the chain rule particularly easy—leading to.dy=dx/.dx=dy/D 1:

EXAMPLE 3 yD g.x/D
?
x andxD f .y/D y2 are inverse functions.

Starting fromxD 9 we findyD 3: The inverse gives32 D 9: The square of
?
x is

f .g.x//D x: In the opposite direction, the square root ofy2 is g.f .y//D y:
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Caution That example does not allowx to be negative. The domain ofg—the set
of numbers with square roots—is restricted tox¥ 0: This matches the range of
g�1: The outputsy2 are nonnegative. Withdomain ofgD range ofg�1, the
equationxD .

?
x/2 is possible and true. The nonnegativex goes intog and comes

out ofg�1:

In this exampley is also nonnegative. You might think we could square anything,
buty must come back as the square root ofy2: Soy¥ 0:

To summarize:The domain of a function matches the range of its inverse. The
inputs tog�1 are the outputs fromg: The inputs tog are the outputs fromg�1:

If g.x/D y then solving that equation forx givesxD g�1.y/:

if yD 3x�6 thenxD 1
3
.yC6/ .this isg�1.y//

if yD x3 C1 thenxD 3
?
y�1 .this isg�1.y//

In practice that is howg�1 is computed:Solveg.x/D y: This is the reason inverses
are important. Every time we solve an equation we are computing a value ofg�1:

Not all equations have one solution.Not all functions have inverses. For
eachy, the equationg.x/D y is only allowed to produce onex: That solution is
xD g�1.y/: If there is a second solution, theng�1 will not be a function—because
a function cannot produce twox’s from the samey:

EXAMPLE 4 There is more than one solution tosinxD 1
2
: Many angles have the

same sine. On the interval0¤ x¤� , the inverse ofyD sinx is not a function.
Figure 4.5 shows how twox’s give the samey:

Preventx from passing�=2 and the sine has an inverse. WritexD sin�1y:

The functiong has no inverse if two pointsx1 andx2 giveg.x1/D g.x2/. Its
inverse would have to bring the samey back tox1 andx2: No function can do that;
g�1.y/ cannot equal bothxl andx2: There must be only onex for eachy:

To be invertible over an interval,g must be steadily increasing or steadily decreasing.

Fig. 4.5 Inverse exists (onex for eachy). No inverse function (twox’s for oney).

THE DERIVATIVE OF g�1

It is time for calculus. Forgive me for this very humble example.

EXAMPLE 5 (ordinary multiplication) The inverse ofyD g.x/D 3x is xD f .y/D 1
3
y:

This shows with special clarity the rule for derivatives:The slopesdy=dxD 3 and
dx=dyD 1

3
multiply to give1: This rule holds for all inverse functions, even if their

slopes are not constant. It is a crucial application of the chain rule to the derivative
of f .g.x//D x:
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4C (Derivative of inverse function) From f .g.x//D x the chain rule gives
f 1.g.x//g1.x/D 1:Writing yD g.x/ andxD f .y/, this rule looks better:

dx

dy

dy

dx
D 1 or

dx

dy
D

1

dy=dx
: (1)

The slope ofxD g�1.y/ times the slope ofyD g.x/ equals one.

This is the chain rule with a special feature. Sincef .g.x//D x, the derivative of
both sides is1: If we know g1 we now knowf 1: That rule will be tested on a
familiar example. In the next section it leads to totally new derivatives.

EXAMPLE 6 The inverse ofyD x3 is xD y1=3: We can finddx=dy two ways:

directlyW
dx

dy
D
1

3
y�2=3 indirectlyW

dx

dy
D

1

dy=dx
D

1

3x2
D

1

3y2=3
:

The equation.dx=dy/.dy=dx/D 1 is not ordinary algebra, but it is true. Those
derivatives are limits of fractions. The fractions are.�x=�y/.�y=�x/D 1 and
we let�xÑ 0:

Fig. 4.6 Graphs of inverse functions:xD 1
3y is the mirror image ofyD 3x:

Before going to new functions, I want to draw graphs. Figure 4.6 showsyD
?
x

andyD 3x:What is special is thatthe same graphs also show the inverse functions.
The inverse ofyD

?
x isxD y2: The pairxD 4;yD 2 is the same for both. That is

the whole point of inverse functions—if2D g.4/ then4D g�1(2). Notice that the
graphs go steadily up.

The only problem is, the graph ofxD g�1.y/ is on its side. To change the slope
from 3 to 1

3
, you would have to turn the figure. After that turn there is another

problem—the axes don’t point to the right and up. You also have to look in a mirror!
(The typesetter refused to print the letters backward. He thinks it’s crazy but it’s not.)
To keep the book in position, and the typesetter in position, we need a better idea.

The graph ofxD 1
3
y comes fromturning the picture across the45� line. They

axis becomes horizontal andx goes upward. The point.2;6/ on the lineyD 3x goes
into the point.6;2/ on the linexD 1

3
y: The eyes see a reflection across the45� line

(Figure 4.6c). The mathematics sees the same pairsx andy: The special properties
of g andg�1 allow us to know two functions—and draw two graphs—at the same
time.� The graph ofxD g�1.y/ is the mirror image of the graph ofyD g.x/.

� I have seen graphs withyD g.x/ and alsoyD g�1.x/: For me that is wrong: it has to be
xD g�1.y/: If yD sinx thenxD sin�1y:
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EXPONENTIALS AND LOGARITHMS

I would like to add two more examples of inverse functions, because they are so
important. Both examples involve theexponentialand thelogarithm. One is made
up of linear pieces that imitate2x; it appeared in Chapter1: The other is the true
function 2x , which is not yet defined—and it is not going to be defined here. The
functionsbx andlogb y are so overwhelmingly important that they deserve and will
get a whole chapter of the book (at least). But you have to see the graphs.

The slopes in the linear model are powers of2: So are the heightsy at the start
of each piece.The slopes1;2;4; : : : equal the heights1;2;4; : : : at those special
points.

The inverse is a discrete model for the logarithm (to base2). The logarithm of1
is 0, because20 D 1: The logarithm of2 is 1, because21 D 2: The logarithm of2j

is the exponentj: Thus the model gives the correctxD log2y at the breakpoints
yD 1;2;4;8; : : : : The slopes are1; 1

2
; 1

4
; 1

8
; : : : becausedx=dyD 1=.dy=dx/:

The model is good, but the real thing is better. The figure on the right shows the
true exponentialyD 2x: At xD 0;1;2; : : : the heightsy are the same as before. But
now the height atxD 1

2
is the number21=2, which is

?
2: The height atxD :10

is the tenth root21=10 D 1:07 : : :: The slope atxD 0 is no longer1—it is closer to
�y=�xD :07=:10: The exact slope is a numberc (near .7) that we are not
yet prepared to reveal.

The special property ofyD 2x is that the slope at all points iscy: The slope is
proportional to the function. The exponential solvesdy=dxD cy:

Now look at the inverse function—the logarithm. Its graph is the mirror image:

If yD 2x thenxD log2y: If 2
1=10� 1:07 then log2 1:07� 1=10:

What the exponential does, the logarithm undoes—and vice versa. The logarithm of
2x is the exponentx. Since the exponential starts with slopec, the logarithm must
start with slope1=c:Check that numerically. The logarithm of1:07 is near1=10: The
slope is near .10=:07: The beautiful property is thatdx=dyD 1=cy:

Fig. 4.7 Piecewise linear models and smooth curves:yD 2x andxD log2 y: BasebD 2:

I have to mention that calculus avoids logarithms to base2: The reason lies
in that mysterious numberc: It is the “natural logarithm” of2, which is .693147 : : :
—and who wants that? Also1=:693147 : : : enters the slope oflog2y: Then
.dx=dy/.dy=dx/D 1: The right choice is to use “natural logarithms” throughout.
In place of2, they are based on the special numbere:

yD ex is the inverse ofxD lny: (2)
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The derivatives of those functions are sensational—they are saved for Chapter 6.
Together withxn andsinx andcosx, they are the backbone of calculus.

Note It is almost possible to go directly to Chapter6: The inverse functions
xD sin�1y andxD tan�1y can be done quickly. The reason for including integrals
first (Chapter5) is that they solve differential equations with no guesswork:

dy

dx
D y or

dx

dy
D
1

y
leads to

»
dxD

»
dy

y
or xD lnyCC:

Integrals have applications of all kinds, spread through the rest of the book. But do
not lose sight of2x andex : They solvedy=dxD cy—the key to applied calculus.

THE INVERSE OF A CHAIN h.g.x//

The functionsg.x/D x�2 andh.y/D 3y were easy to invert. Forg�1 we added2,
and forh�1 we divided by3:Now the question is: If we create the composite function
zD h.g.x//, or zD 3.x�2/, what is its inverse?

Virtually all known functions are created in this way, from chains of simpler
functions.The problem is to invert a chain using the inverse of each piece. The
answer is one of the fundamental rules of mathematics:

4D The inverse ofzD h.g.x// is a chain of inversesin the opposite order:

xD g�1.h�1.z//: (3)

h�1 is applied first becauseh was applied last:g�1.h�1.h.g.x////D x:

That last equation looks like a mess, but it holds the key. In the middle you see
h�1 andh: That part of the chain does nothing! The inverse functions cancel, to
leaveg�1.g.x//: But that isx. The whole chain collapses, wheng�1 andh�1 are
in the correct order—which is opposite to the order ofh.g.x//:

EXAMPLE 7 zD h.g.x//D 3.x�2/ and xD g�1.h�1.z//D 1
3
zC2:

First h�1 divides by3: Theng�1 adds2: The inverse ofh�g is g�1�h�1: It can
be found directly by solvingzD 3.x�2/. A chain of inverses is like writing in
prose—we do it without knowing it.

EXAMPLE 8 InvertzD
?
x�2 by writing z2 D x�2 and thenxD z2 C2:

The inverse adds2 and takes the square—but not in that order. That would give
.zC2/2, which is wrong. The correct order isz2 C2:

The domains and ranges are explained by Figure 4.8. We start withx¥ 2:
Subtracting2 givesy¥ 0: Taking the square root givesz¥ 0: Taking the square
brings backy¥ 0: Adding 2 brings backx¥ 2—which is in the original domain
of g:

Fig. 4.8 The chaing�1.h�1.h.g.x////D x is one-to-one at every step.



4.3 Inverse Functions and Their Derivatives 221

EXAMPLE 9 Inverse matrices.AB/�1 DB�1A�1 (this linear algebra is optional).

Suppose a vectorx is multiplied by a square matrixB: yD g.x/DBx: The inverse
function multiplies by the inverse matrix: xD g�1.y/DB�1y: It is like
multiplication byB D 3 andB�1 D 1=3, except thatx andy are vectors.

Now suppose a second function multiplies by anothermatrixA: zD h.g.x//DABx:
The problem is to recoverx from z: The first step is to invertA, because that came
last: BxDA�1z: Then the second step multiplies byB�1 and brings back
xDB�1A�1z: The productB�1A�1 inverts the productAB. The rule for matrix
inverses is like the rule for function inverses—in fact it is a special case.

I had better not wander too far from calculus. The next section introduces the
inverses of the sine and cosine and tangent, and finds their derivatives. Remember
that the ultimate source is the chain rule.

4.3 EXERCISES

Read-through questions

The functions g.x/D x�4 and f .y/D yC4 are a
functions, becausef .g.x//D b . Also g.f .y//D c . The
notation is f Dg�1 and gD d . The composition e
is the identity function. By definitionxDg�1.y/ if and only
if yD f . When y is in the range ofg, it is in the g

of g�1: Similarly x is in the h of g when it is in the
i of g�1: If g has an inverse theng.x1/ j g.x2/

at any two points. The functiong must be steadily k
or steadily l .

The chain rule applied tof .g.x//D x gives .df =dy/( m )
D n . The slope ofg�1 times the slope ofg equals o .
More directly dx=dyD 1= p . For yD 2xC1 and xD
1
2 .y�1/, the slopes aredy=dxD q and dx=dyD r .
For yD x2 and xD s , the slopes aredy=dxD t and
dx=dyD u . Substitutingx2 for y givesdx=dyD v . Then
.dx=dy/.dy=dx/D w .

The graph ofyDg.x/ is also the graph ofxD x , but
with x across andy up. For an ordinary graph ofg�1, take
the reflection in the line y . If .3;8/ is on the graph ofg,
then its mirror image ( z ) is on the graph ofg�1: Those
particular points satisfy8D 23 and3D A .

The inverse of the chainzD h.g.x// is the chainxD B .
If g.x/D 3x and h.y/D y3 then zD C . Its inverse is
xD D , which is the composition of E and F .

Solve equations 1–10 for x; to find the inverse function
xDg�1.y/: When more than onex gives the samey; write “no
inverse.”

1 yD 3x�6
3 yD x2�1
5 yD 1Cx�1

2 yDAxCB

4 yD x=.x�1/ [solvexy�yD x]

6 yD |x|

7 yD x3�1
9 yD sinx

8 yD 2xC |x|
10 yD x1=5 [draw graph]

11 Solving yD
1

x�a gives xy�ayD 1 or xD
1Cay

y
: Now

solve that equation fory:

12 Solving yD
xC1

x�1 gives xy�yD xC1 or xD
yC1

y�1 : Draw

the graph to see whyf andf �1 are the same. Computedy=dx
anddx=dy:

13 Supposef is increasing andf .2/D 3 andf .3/D 5: What can
you say aboutf �1.4/?

14 Supposef .2/D 3 and f .3/D 5 andf .5/D 5: What can you
say aboutf �1?

15 Supposef .2/D 3 and f .3/D 5 and f .5/D 0: How do you
know that there is no functionf �1?

16 Vertical line test: If no vertical line touches its graph twice
then f .x/ is a function (one y for each x). Horizontal line
test: If no horizontal line touches its graph twice thenf .x/ is
invertiblebecause .

17 If f .x/ and g.x/ are increasing, which two of these might
not be increasing?

f .x/Cg.x/ f .x/g.x/ f .g.x// f �1.x/ 1=f .x/

18 If yD 1=x then xD 1=y: If yD 1�x then xD 1�y: The
graphs are their own mirror images in the45� line. Construct two
more functions with this propertyf D f �1 or f .f .x//D x:

19 For which numbersm arethese functions invertible?

(a) yDmxCb (b) yDmxCx3 (c) yDmxCsinx

20 From its graph show thatyD |x|Ccx is invertible if c¡ 1
and also if c �1: The inverse of a piecewise linear function
is piecewise .
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In 21–26 finddy=dx in terms of x and dx=dy in terms of y:

21 yD x5

23 yD x3�1
25 yD

x

x�1 22 yD 1=.x�1/
24 yD 1=x3

26 yD
axCb

cxCd

27 If dy=dxD 1=y thendx=dyD andxD :

28 If dx=dyD 1=y then dy=dxD (these functions are
yD ex and xD ln y, soon to be honored properly).

29 The slopes off .x/D 1
3x

3 and g.x/D�1=x arex2 and1=x2:

Why isn’t f Dg�1? What isg�1? Show thatg1.g�1/1 D 1:

30 At the pointsx1, x2, x3 a piecewise constant function jumps
to y1, y2, y3: Draw its graph starting fromy.0/D 0:

The mirror image is piecewise constant with jumps at the
points to the heights . Why isn’t this the
inverse function?

In 31–38 draw the graph of yDg.x/: Separately draw its
mirror image xDg�1.y/:

31 yD 5x�10
33 yD 1=.xC1/

35 yD 10x

37 yD 2�x

32 yD cosx, 0¤x¤�
34 yD |x|�2x
36 yD

a
1�x2, 0¤ x¤ 1

38 yD 1=
a
1�x2, 0¤x  1

In 39–42 finddx=dy at the given point.

39 yD sinx atxD�=6

41 yD sinx2 atxD 3

40 yD tanx atxD�=4

42 yD x�sinx atxD 0

43 If y is a decreasing function ofx, then x is a
function ofy: Prove by graphs and by the chain rule.

44 If f .x/¡x for all x, show thatf �1.y/ y:
45 True or false, with example:

(a) If f .x/ is invertible so ish.x/D .f .x//2:

(b) If f .x/ is invertible so ish.x/D f .f .x//:

(c) f �1.y/ has a derivative at everyy:

In the ehains 46–51 write down g.x/ and f .y/ and their
inverses. Then findxDg�1.f �1.z//.

46 zD 5.x�4/
48 zD .6Cx/3

50 zD 1
2

�

1
2xC4

�

C4

47 zD .xm/n

49 zD 6Cx3

51 zD log.10x/

52 Solving f .x/D 0 is a large part of applied mathematics.
Express the solutionx� in terms off �1: x� D :

53 (a) Show by example thatd2x=dy2 is not1=.d2y=dx2/:

(b) If y is in meters andx is in seconds, thend2y=dx2 is in
andd2x=dy2 is in .

54 Newton’s method solvesf .x�/D 0 by applying a linear
approximation tof �1:

f �1.0/�f �1.y/C.df �1=dy/.0�y/:
ForyD f .x/ this is Newton’s equationx�� xC :

55 If the demand is1=.pC1/2 when the price isp, then the
demand isy when the price is . If the range of prices
isp¥ 0, what is the range of demands?

56 If dF=dxDf .x/ show that the derivative of
G.y/D yf �1.y/�F.f �1.y// is f �1.y/:

57 For each numbery find the maximum value ofyx�2x4:

This maximum is a functionG.y/: Verify that the derivatives
of G.y/ and2x4 are inverse functions.

58 (for professors only) IfG.y/ is the maximum value of
yx�F.x/, prove thatF.x/ is the maximum value ofxy�G.y/:
Assume that f .x/D dF=dx is increasing, like 8x3 in
Problem57:

59 Suppose the richestx percent of people in the world have
10
?
x percent of the wealth. Theny percent of the wealth is

held by percent of the people.
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4.4 Inverses of Trigonometric Functions

Mathematics is built on basic functions like the sine, and on basic ideas like the
inverse. Thereforeit is totally natural to invert the sine function. The graph of
xD sin�1y is a mirror image ofyD sinx: This is a case where we pay close
attention to the domains, since the sine goes up and down infinitely often. We only
wantone pieceof that curve, in Figure 4.9.

For the bold line the domain is restricted.The anglex lies between��=2
andC�=2. On that interval the sine is increasing, soeachy comes from exactly
one anglex. If the whole sine curve is allowed, infinitely many angles would have
sinxD 0: The sine function could not have an inverse. By restricting to an interval
wheresinx is increasing, we make the function invertible.

Fig. 4.9 Graphs of sinx andsin�1y: Their slopes are cosx and1=
a
1�y2:

The inverse function bringsy back tox: It is xD sin�1y (the inverse sine):

xD sin�1y whenyD sinx and|x| ¤�=2: (1)

The inverse starts with a numbery between�1 and1: It produces an anglexD
sin�1y—the angle whose sine isy. The anglex is between��=2 and�=2, with
the required sine. Historicallyx was called the “arc sine” ofy, andarcsin is used in
computing. The mathematical notation issin�1:This has nothing to do with1=sinx.

The figure shows the30� anglexD�=6: Its sine isyD 1
2
: The inverse sine of1

2

is�=6. Again: The symbolsin�1.1/ stands for the angle whose sine is1 (this angle
is xD�=2). We are seeingg�1.g.x//D x:

sin�1.sinx/D x for � �
2
¤ x¤ �

2
sin.sin�1y/D y for �1¤ y¤ 1:

EXAMPLE 1 (important) IfsinxD y find a formula forcosx:

Solution We are given the sine, we want the cosine. The key to this problemmust
becos2xD 1�sin2x: When the sine isy, the cosine is the square root of1�y2:

cosxD cos.sin�1y/D
a
1�y2: (2)

This formula is crucial for computing derivatives. We use it immediately.
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THE DERIVATIVE OF THE INVERSE SINE

The calculus problem is to find the slope of the inverse functionf .y/D sin�1y:
The chain rule gives (slope of inverse function) D 1=(slope of original function).
Certainly the slope ofsinx is cosx: To switch fromx to y, use equation(2):

yD sinx gives
dy

dx
D cosx so that

dx

dy
D

1

cosx
D

1a
1�y2

: (3)

This derivative1=
a
1�y2 gives a newv–f pair that is extremely valuable in

calculus:

velocity v.t/D 1=
a
1� t2 distance f .t/D sin�1t:

Inverse functions will soon produce two more pairs, from the derivatives oftan�1y
andsec�1y: The table at the end lists all the essential facts.

EXAMPLE 2 The slope ofsin�1y atyD 1 is infinite: 1=
a
1�y2 D 1=0:Explain.

At yD 1 the graph ofyD sinx is horizontal. The slope is zero. So its mirror image
is vertical. The slope1=0 is an extreme case of the chain rule.

Question What isd=dx.sin�1x/? Answer 1=
?
1�x2: I just changed letters.

THE INVERSE COSINE AND ITS DERIVATIVE

Whatever is done for the sine can be done for the cosine. But the domain and range
have to be watched. The graph cannot be allowed to go up and down. Eachy from�1 to 1 should be the cosine ofonly one anglex: That putsx between0 and�:
Then the cosine is steadily decreasing andyD cosx has an inverse:

cos�1.cosx/D x and cos.cos�1y/D y: (4)

The cosine of the anglexD 0 is the numberyD 1: The inverse cosine ofyD 1 is the
anglexD 0: Those both express the same fact, thatcos0D 1:

For the slope ofcos�1y, we could copy the calculation that succeeded forsin�1y:
The chain rule could be applied as in (3). But there is a faster way, because of a special
relation betweencos�1y andsin�1y: Those angles always add to a right angle:

cos�1yCsin�1yD�=2: (5)

Figure 4.9c shows the angles and Figure 4.10c shows the graphs. The sum is�=2 (the
dotted line), and its derivative is zero. So the derivatives ofcos�1y andsin�1y must
add to zero.Those derivatives have opposite sign. There is aminus for the inverse
cosine, and its graph goes downward:

The derivative ofxD cos�1y is dx=dyD�1=a1�y2: (6)

Question How can two functionsxD sin�1y andxD�cos�1y have thesame
derivative?
Answer sin�1y must be the same as�cos�1yCC: Equation(5) givesC D�=2:
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Fig. 4.10 The graphs ofyD cosx andxD cos�1y: Notice the domain0¤x¤�:
THE INVERSE TANGENT AND ITS DERIVATIVE

The tangent issinx=cosx: The inverse tangent isnot sin�1y=cos�1y: The inverse
function producesthe angle whose tangent isy: Figure 4.11 shows that angle, which
is between��=2 and�=2: The tangent can be any number, but the inverse tangent is
in theopen interval��=2  x �=2: (The interval is “open” because its endpoints
are not included.) The tangents of�=2 and��=2 are not defined.

The slope ofyD tanx is dy=dxD sec2x: What is the slope ofxD tan�1y?

By the chain rule
dx

dy
D

1

sec2x
D

1

1C tan2x
D

1

1Cy2
: (7)

4E The derivative off .y/D tan�1y is
df

dy
D

1

1Cy2
: (8)

Fig. 4.11 xD tan�1y has slope1=.1Cy2/: xD sec�1y has slope1=|y|ay2�1:
EXAMPLE 3 The tangent ofxD�=4 is yD 1: We check slopes. On the inverse
tangent curve,dx=dyD 1=.1Cy2/D 1

2
:On the tangent curve,dy=dxD sec2x: At
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�=4 the secant squared equals2: The slopesdx=dyD 1
2

anddy=dxD 2multiply to
give1:

Important Soon will come the following question.What function has the
derivative1=.1Cx2/? One reason for reading this section is to learn the answer.
The function is in equation(8)—if we change letters. It is f .x/D tan�1x that has
slope1=.1Cx2/.

Fig. 4.12 cos2xCsin2xD 1 and 1C tan2xD sec2x and 1Ccot2xD csc2x:

INVERSE COTANGENT, INVERSE SECANT, INVERSE COSECANT

There is no way we can avoid completing this miserable list! But it can be painless.
The idea is to use1=.dy=dx/ for yD cotx andyD secx andyD cscx:

dx

dy
D

�1
csc2x

and
dx

dy
D

1

secx tanx
and

dx

dy
D

�1
cscx cotx

: (9)

In the middle equation, replacesecx byy andtanx by�ay2�1: Choose the sign
for positive slope (compare Figure 4.11). That gives the middle equation in(10):

The derivatives ofcot�1y and sec�1y and csc�1y are

d

dy
.cot�1y/D

�1
1Cy2

d

dy
.sec�1y/D

1|y|ay2�1 d

dy
.csc�1y/D

�1|y|ay2�1: (10)

Note about the inverse secantWheny is negative there is a choice forxD sec�1y:
We selected the angle in the second quadrant (between�=2 and�). Its cosine is
negative, so its secant is negative. This choice makessec�1yD cos�1.1=y/, which
matchessecxD 1=cosx: It also makessec�1y an increasing function, wherecos�1y
is a decreasing function. So we needed the absolute value|y| in the derivative.

Some mathematical tables make a different choice. The anglex could be in the
third quadrant (between�� and��=2). Then the slope omits the absolute value.

Summary For the six inverse functions it is only necessary to learn three
derivatives. The other three just have minus signs, as we saw forsin�1y andcos�1y:
Each inverse function and its “cofunction” add to�=2, so their derivatives add to
zero. Here are the six functions for quick reference, with the three new derivatives.

functionf .y/ inputsy outputsx slopedx=dy

sin�1y; cos�1y |y| ¤ 1 h��
2
;
�

2

i

; Œ0;�� � 1a
1�y2

tan�1y; cot�1y ally
���

2
;
�

2

�

; .0;�/ � 1

1Cy2

sec�1y; csc�1y |y| ¥ 1 Œ0;���;h��
2
;
�

2

i� � 1|y|ay2�1
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If yD cosx or yD sin x then|y| ¤ 1: ForyD secx andyD cscx the opposite is
true; we must have|y| ¥ 1: The graph ofsec�1y misses all the points�1  y  1:

Also, that graph missesxD�=2—where the cosine is zero. The secant of�=2
would be 1=0 (impossible). Similarlycsc�1y missesxD 0, becauseyD csc0
cannot be1=sin0: The asterisks in the table are to remove those pointsxD�=2
andxD 0:

The column of derivatives is what we need and use in calculus.

4.4 EXERCISES

Read-through questions

The relation x�sin�1y means that a is the sine of
b . Thus x is the angle whose sine is c . The number

y lies between d and e . The anglex lies between
f and g . (If we want the inverse to exist, there

cannot be two angles with the same sine.) The cosine of the
angle sin�1y is

a
h : The derivative of xD sin�1y is

dx=dy= i

The relationxD cos�1y means thaty equals j . Again
the numbery lies between k and l . This time the
angle x lies between m and n (so that eachy comes
from only one anglex). The sum sin�1yCcos�1yD o .
(The angles are called p , and they add to a q angle.)
Therefore the derivative ofxD cos�1y isdx=dyD r , the same
as for sin�1y except for a s sign.

The relation xD tan�1y means that yD t . The
number y lies between u and v . The anglex lies
between w and x . The derivative isdx=dyD y .
Since tan�1yCcot�1yD z , the derivative of cot�1y is the
same except for a A sign.

The relation xD sec�1y means that B . The numbery
never lies between C and D . The anglex lies between

E and F , but never atxD G . The derivative of
xD sec�1y is dx=dyD H .

In 1–4; find the angles sin�1y and cos�1y and tan�1y in
radians.

1 yD 0 2 yD�1 3 yD 1 4 yD
?
3

5 Weknow that sin� D 0: Why isn’t � D sin�10?

6 Suppose sinxD y: Under what restriction isxD sin�1y?

7 Sketch the graph ofxD sin�1y and locate the points with slope
dx=dyD 2:

8 Finddx=dy if xD sin�1 1
2y: Draw the graph.

9 If yD cosx find a formula for sinx: First draw a right
triangle with anglex and near sidey—what are the other two sides?

10 If yD sinx find a formula for tanx: First draw a right
triangle with anglex and far sidey—what are the other sides?

11 Take thex derivative of sin�1.sinx/D x by the chain rule.
Check thatd.sin�1y/=dyD�1=a1�y2 gives a correct result.

12 Take they derivative of cos.cos�1y/D y by the chain rule.
Check thatd.cos�1y/=dyD�1=a1�y2 gives a correct result.

13 At yD 0 andyD 1, find the slopedx=dy of xD sin�1y and
xD cos�1y andxD tan�1y:

14 At xD 0 andxD 1, find the slopedx=dy of xD sin�1y and
xD cos�1y andxD tan�1y:

15 True or false, with reason:

(a) .sin�1y/2 C.cos�1y/2 D 1

(b) sin�1yD cos�1y has no solution

(c) sin�1y is an increasing function

(d) sin�1y is an odd function

(e) sin�1y and�cos�1y have the same slope—so they are the
same.

(f) sin.cosx/D cos.sinx/

16 Find tan.cos�1.sinx// by drawing a triangle with sides
sinx, cosx;1:

Compute the derivatives in 17–28 (using the letters as given).

17 uD sin�1x

19 zD sin�1.sin3x/

21 zD .sin�1x/2

23 zD
a
1�y2sin�1y

25 xD sec�1.yC1/

18 uD tan�1 2x

20 zD sin�1.cosx/

22 zD .sin�1x/�1

24 zD .1Cx2/tan�1x

26 uD sec�1.secx2/

27 uD sin�1y=cos�1
a
1�y2

28 uD sin�1yCcos�1yC tan�1y

29 Draw a right triangle to show why tan�1yCcot�1yD�=2:

30 Draw a right triangle to show why tan�1yD cot�1.1=y/:

31 If yD tanx find secx in terms ofy:

32 Draw the graphs ofyD cotx andxD cot�1y:

33 Find the slopedx=dy of xD tan�1y at

(a) yD�3 (b) xD 0 (c) xD��=4
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34 Find a functionu.t/ whose slope satisfiesu1C t2u1 D 1:

35 What is the second derivatived2x=dy2 of xD sin�1y?

36 What isd2u=dy2 for uD tan�1y?

Find the derivatives in 37–44.

37 yD sec1
2x

39 uD sec�1.xn/

41 tanyD .x�1/=.xC1/

38 xD sec�12y

40 uD sec�1.tanx/

42 zD .sinx/.sin�1x/

43 yD sec�1
?
x2 C1 44 zD sin.cos�1x/�cos.sin�1x/

45 Differentiate cos�1.1=y/ to find the slope of sec�1y in
a new way.

46 The domain and range ofxD csc�1y are .

47 Find a functionu.y/ such thatdu=dyD 4=
a
1�y2:

48 Solve the differential equationdu=dxD 1=.1C4x2/:

49 If du=dxD 2=
a
1�x2 find u.1/�u.0/:

50 (recommended) With u.x/D .x�1/=.xC1/, find the
derivative of tan�1u.x/: This is also the derivative of . So
the difference between the two functions is a .

51 Findu.x/ and tan�1u.x/ and tan�1x atxD 0 andxD8:Con-
clusion based on Problem50 W tan�1u.x/� tan�1x equals the num-
ber

52 Find u.x/ and tan�1u.x/ and tan�1x as xÑ�8:
Now tan�1u.x/� tan�1x equals . Something has
happened to tan�1u.x/: At what x do u.x/ and tan�1u.x/ change
instantly?
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