CHAPTER 4

Derivatives by the Chain Rule

I 4.1 The Chain Rule NN

You remember that the derivative of(x)g(x) is not (df/dx)(dg/dx). The
derivative ofsin x timesx? is notcosx times2x. The product rule gave two terms,
not one term. But there is another way of combining the sine funcficand the
squaring functiorg into a single function. The derivative of that new function does
involve the cosine time3x (but with a certain twist). We will first explain the new
function, and then find thechain rule” for its derivative.

May | say here that the chain rule is important. It is easy to learn, and you will
use it often. | see it as the third basic way to find derivatives of new functions from
derivatives of old functions. (So far the old functions afe sinx, andcosx. Still
ahead are* andlog x.) When f andg are added and multiplied, derivatives come
from thesum ruleandproduct rule This section combineg andg in a third way.

The new function issin(x?)—the sine ofx?2. Itis created out of the two original
functions: ifx = 3 thenx? = 9 andsin(x?) = sin9. There is a “chain” of functions,
combiningsin x andx? into the composite functiogin(x?). You start withx, then
find g(x), then find f(g(x)):

The squaring function gives = x2. Thisisg(x).
The sine function produces= sin y = sin(x2). This is f(g(x)).

The “inside functior’” g(x) givesy. This is the input to théoutside functior
f(»). That is calledcomposition It starts withx and ends withe. The composite
function is sometimes writteif o g (the circle shows the difference from an ordinary
product fg). More often you will seef (g(x)):

z(x) = fog(x) = f(g(x)). @
Other examples areos2x and(2x)3, with g = 2x. On a calculator you input,
then push the " button, then push the ¥ button:

From x computey = g(x) From y computez = f(y).

There is not a button for every function! But the squaring fuorttind sine function
are on most calculators, and they are usedhat order. Figure 4.1a shows how
squaring will stretch and squeeze the sine function.
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4.1 The Chain Rule 205

That graph o6inx? is a crazy FM signal (the Frequency is Modulated). The wave
goes up and down liksin x, but not at the same places. Changingitog (x) moves
the peaks left and right. Compare with a prodgi€t) sinx, which is an AM signal
(the Amplitude is Modulated).

Remark f(g(x)) is usually different fromg( f(x)). The order of f and g is
usually important For f(x) = sinx andg(x) = x2, the chain in the opposite order
g(f(x)) gives something different:

First apply the sine function: = sinx
Then apply the squaring function:= (sinx)?.

That result is often writtesin’x, to save on parentheses. It is never writsémx2,
which is totally different. Compare them in Figure 4.1.

l/\ N M\ wd N

(sinVm )?
Fig. 4.1 f(g(x)) is different fromg(f(x)). Apply g then £, or f theng.

sin(¥w 2)

EXAMPLE 1 The composite functiorf og can be deceptive. I§(x) = x> and
f(»)=y* how doesf(g(x)) differ from the ordinary productf(x)g(x)? The
ordinary product isc’. The chain starts withy = x3, and thenz = y* = x!2. The
composition ofx® andy* gives f(g(x)) = x12.

EXAMPLE 2 In Newton’s method, F(x) is composed with itself. This is
iteration. Every outputy,, is fed back as input, to find, +, = F(x,,) The example
F(x)=3x+4 hasF(F(x)) =1(3x+4)+4. That produceg =1x+6.

The derivative ofF (x) is —. The derivative otz = F(F(x))is 1, whichi iS5 L times
%. We multiply derivativesThis is a special case of the chain rule.

An extremely special case i§(x) = x andg(x) = x. The ordinary product is?.
The chain f(g(x)) produces onlyx! The output from the fdentity functiori is
g(x) = x.f When the second identity function operatesxoit producesx again.
The derivative id times1. | can give more composite functions in a table:

y=gkx) z=/0) z=/f(gk)
x2—1 N3 Vx2—1

COSX y3 (cosx)?
2% 2Y 2%
x+5 y—5 by

1A calculator has no button for the identity function. It wouldn’t do anything.
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The last one adds to get y. Then it subtract$ to reachz. Soz = x. Here output
equals input;f(g(x)) = x. These fnverse functions are in Sectiord.3. The other
examples create new functionéx) and we want their derivatives.

THE DERIVATIVE OF f(g(x))

What is the derivative of = sin x2?Itis the limit of Az / Ax. Therefore we look at a
nearby pointc + Ax. That change inc produces a change = x?>—which moves
toy + Ay = (x + Ax)2. From this change iy, there is a change in= f(y). Itisa
“domino effect,” in which each changed input yields a changed outputproduces
Ay producesAz. We have to connect the finAlz to the originalA x.

The key is to writeAz/Ax as Az/Ay timesAy/Ax. Then letAx approach
zero. In the limit,dz /dx is given by the “chain rule”:

Az Az Ay dz dz dy
= Y becomes the chain rule’— = &= & )]
Ax Ay Ax dx dy dx

As Ax goes to zero, the ratidhy /Ax approachedy/dx. ThereforeAy must be
going to zero, and\z /Ay approachedz/dy. The limit of a product is the product
of the separate limits (end of quick proo¥ye multiply derivatives

14

4A Chain Rule Supposeg(x) has a derivative ak and f(y) has a derivativg

aty = g(x). Then the derivative of = f(g(x)) is
dz % d_y . ,
dxdydr 1(g(x)) &' (x). 3)

The slope ak isdf/dy (aty) timesdg/dx (atx).

Caution The chain rule doesot say that the derivative afinx? is (cosx)(2x).
True, cosy is the derivative o§in y. The point is thatosy must be evaluated at
(not atx). We do not want/f /dx atx, we wantdf/dy aty = x2:

The derivative ofsin x? is(cosx?) times(2x). (4)

EXAMPLE 3 If z = (sinx)? thendz/dx = (2sinx)(cosx). Herey = sinx is inside

In this order,z = y? leads todz/dy =2y. It does not lead t@x. The inside
functionsinx producesdy/dx = cosx. The answer i2y cosx. We have not yet
found the function whose derivative2s cosx.

dz dz dy

EXAMPLE 4 The derivative ot =sin3x is — = — — =3 cos3x.
dx dy dx
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The outside function i = sin y. The inside function isy =3x. Thendz/dy =
cosy—this is cos3x, not cosx. Remember the other factaty /dx = 3.

I can explain that factoB, especially if x is switched tof. The distance is
z =sin3¢. That oscillates likesint exceptthree times as fasfThe speeded-up
function sin3¢ completes a wave at tim@n/3 (instead of2s). Naturally the
velocity contains the extra factdrfrom the chain rule.

EXAMPLE 5 Letz = f(y) = y". Find the derivative off (g(x)) = [g(x)]".

In this caselz/dy is ny"~!. The chain rule multiplies byy /dx:
dz _, dy d _,dg
—— =pyt 1= — "= "l =, 5
ot oo g =nlg(lT oo ©)

This is thepower ruld It was already discovered in Secti@rs. Square roots (when
n = 1/2) are frequent and important. Suppgse: x> — 1:

d 1
L=ty =
V1= (-7

(6)

i
S|
|

_

Question A Buick usesl /20 of a gallon of gas per mile. You drive &6 miles per
hour. How many gallons per hour?

Answer (Gallons/hour) = (gallons/mile)(miles/hour). The chain rule is
(dy/dt) = (dy/dx)(dx/dt). The answer ig1/20)(60) = 3 gallong' hour.

Proof of the chain rule The discussion above was correctly based on
Az Az Ay q dz dz dy

Ax Ay Ax an dx dy dx’ 0
It was here, over the chain rule, that the “battle of notation” was won by Leibniz.
His notation practically tells you what to do: Take the limit of each term. (I have to
mention that wher x is approaching zero, it is theoretically possible that might
hit zero. If that happensiz/Ay becomed)/0. We have to assign it the correct
meaning, which iglz/dy.) As Ax — 0,

Ay ’ Az / = f'
A—x—>g(x) and A_y_)f(y)_f(g(x»

ThenAz/Ax approacheg”(y) timesg’(x), whichis the chainrulédz/dy)(dy/dx).
In the table below, the derivative dfsinx)3 is 3(sinx)?cosx. That extra factor
Ccosx is easy to forget. It is even easier to forget thé in the last example.

z=(x3+1)° dz/dx=5(x3>+1)* times3x?

z=(sinx)® dz/dx =3sirx times cosx

z=(1-x)? dz/dx=2(1—x) times — 1

Important All kinds of letters are used for the chain rule. We named the output
Very often it is calledy, and the inside function is called

L . . dy d
The derivative ofy =sinu(x) is & _ cos ul.
dx dx

Examples withdu /dx are extremely common. | have to ask you to accept whatever

letters may come. What never changes is the key idea—derivative of outside function

times derivative of inside function
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208 4 Derivatives by the Chain Rule

EXAMPLE 6 The chain rule is barely needed fain(x — 1). Strictly speaking the
inside functionist = x — 1. Thendu/dx is justl (not—1). If y =sin(x — 1) then
dy/dx = cog9x — 1). The graph is shifted and the slope shifts too.
Notice especially: The cosine is computedcat 1 and not at the unshifted.
RECOGNIZING f(y) AND g(x)

A big part of the chain rule iecognizing the chainThe table started witfx> + 1)>.
You look at it for a second. Then you see itas The inside function ist = x3 4 1.
With practice this decomposition (the opposite of composition) gets easy:

cog2x+1)iscosu  v/14+sntisy/u  xsnxis... (productrule!)
In calculations, the careful way is to write down all the functions:
z=cosu u=2x+1 dz/dx=(—sinu)(2)=-2sin2x+1).

The quick way is to keep in your mind “the derivative of what's inside.” The
slope ofcog2x + 1) is —sin(2x + 1), times2 from the chain ruleThe derivative
of 2x + 1 is remembered—withoutor u or f or g.

EXAMPLE 7 siny/1 —x isachain ot =siny, y = y/u,u = 1 —x (three functionk

With that triple chain you will have the hang of the chain rule:

The derivative ofsiny/1 —x is (Cosy/1—x) (2\/_) (-1).

Thisis(dz/dy)(dy/du)(du/dx). Evaluate them at the right placesu, x.
Finally there is the question second derivative§he chain rule givedz/dx as
a product, sal?z/dx? needs the product rule:

dz _dz dy d*z dzd?y d (dz\dy
leadsto —=— —4+—| — ) —. 8
dx dy dx dx? dy dx? + dx (dy) dx ®)
U v u v + u’ v

That last term needs the chain rule again. It becosttes dy? times(dy /dx)?.

EXAMPLE 8 The derivative ofsin x2 is 2x cosx2. Then the product rule gives
d?z/dx? =2 cosx? —4x?sinx?. In this casey” =2 and(y’)? =

4.1 EXERCISES

Read-through questions

z= f(g(x)) comes fromz = f(y) andy=__a . At x=2, the m . The power rule fory=[u(x)]" is the chain rule
chain(x?—1)3 equals__b . Itsinside functionisy=__c ,its dy/dx=__n . The slope of5g(x) is __o _ and the slope of
outside functioniz =__d .Thendz/dx equals__e .Thefirst g(5x)is p . When f = cosine andg = sine andx =0, the
factor is evaluated at =__f  (not aty = x). Forz =sin(x*—1) numbersf(g(x)) andg(f(x)) and f(x)g(x)are ¢

the derivative is g The triple chairz = cos(x + 1)? has a shift dz
anda__h anda cosine. Thediz/dx=__i . In 1-10 identify f(y) and g(x). From their derivatives find I

— (x2_13)3 — (x3_13)2
The proof of the chain rule begins withz /Ax =(__j )(_k ) + Z=(&"=3) 2 z=(x"=3)
and ends with__| . Changing lettersy = cosu(x) hasdy/dx = 3 ; =cogqx?) 4 z=tan2x
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5 z=4/sinx 6 z=siny/x
7 z=tan(l/x)+1/tanx 8 z =sin(cosx)
9 z=cogx2+x+1) 10 z=vVx2

In 11-16 write downdz/dx. Don’t write down f and g.
11 z =sin(17x) 12 z=tan(x+1)
14 z=(x2)3/2

16 z=(9x+4)3/2

13 z =cogqcosx)

15 z=x2%sinx

Problems 17-22 involve three functions (y), y(u), and u(x).
Find dz/dx from (dz/dy)(dy/du)(du/dx).

17 z=sinvVx+1 18 z=4/sin(x +1)
19 z=+/1+snx 20 z=sin(y/x+1)

21 z=sin(1/sin x) 22 z=(sinx?)?2

In 23-26 finddz /dx by the chain rule and also by rewriting z.

23 z=((x2)?)2 24 z=(3x)3

26 z=41/1—co2x

27 If f(x)=x2+1 what is f(f(x))? If U(x) is the unit step
function (from 0 to 1 at x =0) draw the graphs of sifi(x)

and U(sinx). If R(x) is the ramp function%(x+|x|), draw the
graphs ofR(x) andR(sinx).

28 (Recommended) Ifg(x)=x3 find f(y) so that f(g(x)) =

x341. Then find h(y) so thath(g(x)) =x. Then findk(y) so

thatk(g(x))=1.

29 If f(y)=y—2find g(x) so thatf(g(x))=x. Then findh(x)
so thatf (h(x)) = x2. Then findk(x) so that f (k(x)) = 1.

30 Find two different pairsf(y), g(x) so thatf (g (x)) = /1 —x2.
31 The derivative of f(f(x)) is . Is it (df/dx)?? Test
your formula onf'(x) =1/x.

32 If f3)=3andg(3)=5andf’(3)=2andg’(3) =4, find the
derivative atx = 3 if possible for

@ f(xglx) (b) flg(x) (©) g(f(x) (d) f(f(x)

33 For F(x) = Lx +8, show how iteration gives(F (x)) = +x +
12. Find F(F(F(x)))—also called F® (x). The derivative of
F®(x)is .

34 In Problem33 the limit of F((x) is a constanC =

From any start (tryc = 0) the iterationsc, 1 = F(x,) converge to
C.

35 Supposg(x)=3x+1land f(y)=3(y—1).Thenf(g(x)) =
andg(f(y)) = . These arénverse functions

25 z=(x+1)2+sin(x+n)

36 Supposeg(x) is continuous atr =4, say g(4) =7. Suppose
f(y) is continuous aty =7, say f(7)=9. Then f(g(x)) is
continuous ak =4 and f(g(4)) =9.

Proof & is given. Because is continuous, there is &
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such that | f(g(x))—9| <& whenever|g(x)—7|<§. Then be-
cause is continuous, there is & such that|g(x)—7| <§
whenever|x —4| < 6. Conclusion:If |x —4| <6 then . This
shows thatf(g(x)) approaches (g (4)).

37 Only six functions can be constructed by compositions (in any

seaqlence) ofg(x) =1—x and f(x) = 1/x. Starting withg and f,
find the other four.

38 If g(x)=1—xtheng(g(x))=1—-(1—x)=x.If g(x)=1/x
theng(g(x))=1/(1/x) = x. Draw graphs of thosg’s and explain

from the graphs why (g(x)) = x. Find two moreg’s with this spe-
cial property.

39 Construct functions so thaf(g(x)) is always zero, bug'(y) is
not always zero.

40 True or false
@ If f(x)=f(=x)thenf’(x)= f'(—x).
(b) The derivative of the identity function is zero.
(c) The derivative off(1/x) is —1/(f(x))2.
(d) The derivative off (1+x) is f/(1+x).
(e) The second derivative of(g(x))is /" (g(x))g" (x).
41 On the same graph draw the parabgle= x2 and the curve

z=siny (keepy upwards, withx andz across). Starting at =3
find your way toz =sin9.

42 On the same graph draw=sin x and z = y2 (y upwards for
both). Starting ak = /4 find z = (sinx)? on the graph.

43 Find the second derivative of

(@) sin(x2+1) (b) Vx2-1 (c) cosy/x

d?*z dy\ . .
<dy—2) (E) in equation (8).

Final practice with the chain rule and other rules (and other
letters!). Find the x or ¢ derivative of z or y.

44 Explain why %(;{—2)
X\ ay

Check this wherr = y2,y = x3.

46 Z:u3,u:x3

48 y =A/u(t)

45 z= f(u(r))

47 y=sinu(x)cosu(x)

49y =x%u(x) 50 y=f(x?)=(f(x))?

51 z=+/T—uu=+1—x 52 z=1/u"(t)

53 z= f(u),u=v2v=+/1 54 y=u,u=x,x=1/t

55 If f=x*andg=x3then f’=4x3 andg’ = 3x2. The chain

rule multiplies derivatives to ge2x>. But f(g(x)) =x!? and its
derivative is notl2x>. Where is the flaw?

56 The derivative ofy = sin(sin x) isdy/dx =
cogcosx) sin(cosx)cosx cogsinx)Ccosx COYCOSx)COSX.

57 (a) A book hast00 words per page. There a9gages per sec-
tion. So there are words per section.
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58

(b) Youread200 words per minute. So you read pages 59 Coke costsl/3 dollar per bottle. The buyer gets bottles
per minute. How many minutes per section? per dollar. If dy/dx = 1/3 thendx/dy= .

(@) You walk in a train aB miles per hour. The train moves ato (Computer) GraphF(x)=sinx and G(x) = sin(sinx)—not
50 miles per hour. Your ground speed.is __ miles per hour. much difference. Do the same fdf/(x) and G’(x). Then plot
(b) You walk in a train aB miles per hour. The train is shownF” (x) andG” (x) to see where the difference shows up.

on TV (1 mile train=20 inches on TV screen). Your speed

across the screen is inches per hour.
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B 2 2 Implicit Differentiation and Related Rates ||

We start with the equationsy = 2 and y° + xy = 3. As x changes, thesg’s will
change—to keepx, y) on the curveWe want to knowdy /dx at a typical point
For xy = 2 that is no trouble, but the slope of + xy = 3 requires a new idea.

In the first case, solve for = 2/x and take its derivatively /dx = —2/x2. The
curve is a hyperbola. At =2 the slope is—2/4=—1/2.

The problem withy> + xy = 3 is that it can’t be solved fop. Galois proved that
there is no solution formula for fifth-degree equatigrighe function y(x) cannot
be given explicitly All we have is theimplicit definition of y, as a solution to
y°+xy = 3. The pointx =2, y = 1 satisfies the equation and lies on the curve,
but how to finddy /dx?

This section answers that question. It is a situation that often occurs. Equations like
siny+sinx =1 or y siny = x (maybe eversin y = x) are difficult or impossible
to solve directly fory. Nevertheless we can fintly /dx at any point.

The way out igmplicit differentiation. Work with the equation as it standsind
the x derivative of every term in> 4+ xy = 3. That includes the constant ten
whose derivative is zero.

EXAMPLE 1 The power rule fory® ard the product rule for y yield

dy  dy
Syt — 4 x— =0. 1
Y dx —|—de ty @)
Now substitute the typical point=2 andy = 1, and solve fody /d x:
dy dy dy 1
5—4+2—+1=0 d ——=—c. 2
Tx + Tx + produces I 5 2

This is implicit differentiation(ID), and you see the idea: Includb /dx from the
chain rule, even ify is not known explicitly as a function of.

. . d
EXAMPLE 2 siny +4sinx =1 leads tOCOSyd—y +cosx =0
X

dy
dx

Knowing the slope makes it easier to draw the curve. We still need poings)
that satisfy the equation. Sometimes we can solve f@ividing y°> +xy =3 by y
givesx = 3/y — y*. Now the derivative (the: derivative!) is

. d .
EXAMPLE 3y siny = x leads toy COSyd—y =siny 1
X

3 dy dy
l=(-=-4°)—=-7T—ay=1. 3
( I ) I priats 3)
Againdy/dx = —1/7. All these examples confirm the main point of the section:

4B (Implicit differentiation) An equationF(x,y) =0 can be differentiatefl
directly by the chain rule, without solving forin terms ofx.

The examplexy =2, done implicitly, givesxdy/dx +y = 0. The slopedy/dx is
—y/x. That agrees with the explicit slope2/x?2.

ID is explained better by examples than theory (maybe everything is). The essential
theory can be boiled down to one ide&d ahead and differentiaté

+That was before he went to the famous duel, and met his end. Fourth-degree equations do
have a solution formula, but it is practically never used.
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EXAMPLE 4  Find the tangent direction to the circté + y2 = 25.
We can solve foly = 4++/25 — x2, or operate directly on? 4 y? = 25:

d d
w2y o o XX 4)
dx dx y
Compare with the radius, which has slopg/x. The radius goes across
and upy. The tangent goes acrossy and upx. The slopes multiply to give
(—=x/y)(y/x) = ~1. -
To emphasize implicit differentiation, go on to teecond derivativeThe top of
the circle is concave down, $t?y /dx? is negative. Use the quotient rule enc/y:

dx y dx2 y2 y2 y3

2 _ 2 2,2
d_y_ X © d y__ydx/dx xdy/dx:_y+(x /y):_y +x. ®)

RELATED RATES

There is a group of problems that has never found a perfect plac&i¢ulus. They
seem to fit here—as applications of the chain rule. The problem is to compute
df/dt, but the odd thing is thawve are given another derivatiwég/dt. To find
df/dt, we need a relation betweghandg.

The chain rule isif/dt = (df /dg)(dg/dt). Here the variable is because that
is typical in applications. From the rate of changeofe findthe rate of change of
f. This is the problem ofelated ratesand examples will make the point.

EXAMPLE 5  The radius of a circle is growing bygr/dt = 7. How fast is the
circumference growing? Remember tiiat= 27 r (this relate<C to r).
. dC dC dr

Solution o dr dr Q2n)(7) = 14m.
That is pretty basic, but its implications are amazing. Suppose you want to put a rope
around the earth that ard¢footer can walk under. If the distancedd,000 miles,
what is the additional length of the rope? Answer: Ohdyr feet.

More realistically, if two lanes on a circular track are separatefifieyet, how much
head start should the outside runner get? Qfly feet. If your speed around a turn
is 55 and the car in the next lane ga®&s who wins? See Problernt.

Examples—-8 are from thel 988 Advanced Placement Exarg®pyright1989
by the College Entrance Examination Board). Their questions are carefully prepared.

B

X b 5 100
Fig. 4.3 Rectangle for Example 6, shadow for Example 7, balloon for Exar@p
EXAMPLE 6  The sides of the rectangle increase in such a waydbdt/r = 1

anddx/dt =3dy/dt. At the instant whent =4 and y = 3, what is the value of
dx/dt?
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Solution ~ The key relation isc? + y2 = z2. Take its derivative ifnplicitly):

2 d—+2 dy_2zd_z roduces 8d —|—6d 10
APTIES PR P T a o ar T

We used all information, including =5, except fordx/dt =3dy/dt. The term
6dy/dt equal2dx/dt, so we havd 0dx/dt = 10. Answer:dx/dt = 1.

EXAMPLE 7 A person2 metrs tall walks directly away from a streetlight that is
8 meters above the ground. If the person’s shadow is lengthening at the rhté of
meters per second, at what rate in meters per second is the person walking?

Solution  Draw a figure! You must relate the shadow lengtto the distancex
from the streetlight. The problem gives/d¢ = 4/9 and asks fot/x /dt:

dx 6ds

By similar triangles~ = > o = =(3)
y glese =3 dr 2di

4
3

Note This problem was hard. | drew three figures before catching onaads.
It is interesting thatve never knew or s or the angle

EXAMPLE 8 An observer at poind is watching balloonB as it rises from poin€.
(The figure is given The balloon is rising at a constant rate3ofeters per second
(this meangly /dt = 3) and the observer iE00 meters from poinC.

(a) Find the rate of change inat the instant whem = 50. (They want/z/dt.)

2241002 = 22— 0, Y
=y dr - ar

dz 2:50-3 34/5
=4/502 + 1002 = 504/5 = ==Y,
di " 2.5005 5

(b) Find the rate of change in the area of right trianB@Awheny = 50.

1 dA dy
A= =(100)(y) =50 — =50—==50-3=150.
2( () y 7 '

(c) Find the rate of change thwheny = 50. (They want/6/dt.)

=50 = cosf = 100 _ 2
a BENRYE
1 2\2
100 dt 100 dt dt \/§ 100 125

In all problems | first wrote down a relation from the figureThen | took its
derivative Then | substituted known information(The substitution igftertaking
the derivative otanf = y/100. If we substitutey = 50 too soon the derivative of
50/100is uselesy

“Candidates are advised to show their work in order to minimize the risk of not
receiving credit for it.”50% solved Example 6 an@1% solved Example 7. From
12,000 candidates, the average on Example 8 (free response).Wasit of 9.
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EXAMPLE 9 Aisalighthouse anBCis the shoreline (same figure as the balloon).
The light atA4 turns once a second6/dt = 2x radians/second. How quickly does
the receiving poinB move up the shoreline?

Solution  The figure showg = 100 tand. The speedly /dt is 100se0 df/d:.
This is200 se@6, so B speeds up asech increases.

Paradox When 6 approaches a right anglegc 6 approaches infinity. So does
dy/dt. B moves faster than lightThis contradicts Einstein’s theory of relativity.
The paradox is resolved (I hope) in Probléf

If you walk around a light at4, your shadow aiB seems to go faster than light.
Same problem. This speed is impossible—something has been forgotten.

Smaller paradox(not destroying the theory of relativity). The figure shows: z sin 6.
Apparentlydy /dt = (dz/dt) sinf. This is totally wrong Not only is it wrong, the
exact opposite is truetz /dt = (dy/dt) sin@. If you can explain that (Probler®),
thenlD and related rates hold no terrors.

4.2 EXERCISES

Read-through questions

For x3+y3=2 the derivative dy/dx comes from __a 13 At 25 metergsecond, does your car turn faster or slower

differentiation. We don't have to solve for b . Term by term the than a car travelings meters further out a6 metergsecond?

derivative is3x2+ __c¢  =0. Solving for dy/dx gives__d . Your radius is (a0 meters (b)100 meters.

At xI:_y :fl this slope__e . The equation of the tangent line is, , Equation (4) i2x +2y dy /dx = 0 (on a circle). Directly byD

yol=—— reachd?y/dx? in equation (5).
A second example isy2=x. The x derivative of this Problems 15-18

equationis g .Thereforedy/dx=__h . Replacingy by v/x, Example 9

thisisdy/dx = __i

resolve the speed of light paradox in

15 (Small paradox first) The right triangle hag = y2 + 1002.
In related rates, we are giverdg/di and we wantdf/di. Take ther derivative to show that’ = y’sin 6.
We need a relation betweeyf and j . If f=g2, then
df/dty= __k__(dg/dt). If f24+g2=1, thendf/dt=__1
If the sides of a cube grow hys/d¢ =2, then its volume grows

16 (Even smaller paradox) AB mowes up the line, why igy/dt
larger thandz /dt? Certainlyz is larger thany, But asf increases

bydV/dt =__m . To find a number (8 is wrong), you also neeéhey become .
toknow__n . 17 (Faster than light) The derivative ofy =100tané in
Example 9 isy’ = 100se@6 0’ = 200rse@0. Thereforey’ passes

¢ (the speed of light) when séé passes . Such a

By implicit differentiation find dy/dx in 1—10. S . 4 -
speed is impossible—we forget that light takes time to reBch

1 yt+x"=1 2 x2y4+yZx=1
0 increases b
3 (x—y)2=4 4 \/x+ =3atx =4 .
(= VEEVY A B in 1 second
5 x=F() 6 S+ F()=xy ) y(&y ¢ is arrival time
7 x?y=y%x 8 x=sny " 0() of light
9 x=tany 10 y"=xatx =1 100 0 is different from2sxt

11 Show that the hyperbolasy =C are perpendicular to the 18 (Explanation bylD) Light travels fromA to B in time z/c,
hyperbolasx? — y% = D. (Perpendicular means that the product dafistance over speed. lts arrival time is=6/27+z/c so
slopes is—1.) 0'/2m =1—2'/c. Then z/ =y’ sind and y’ = 100sed 6’ (all

. th éD) lead t
12 Show that the circlegx —2)24+y2 =2 andx? + (y —2)2 =2 ese ardD) lead to

are tangent at the poiit, 1). y' =2007¢/(ccos6 + 2007 sinf)
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As 6 approacheg /2, this speed approaches (&) Choose so the ball meets the receiver.

Note: y’ still exceedsc for some negative angle. That is for *(b) Atthatinstant the distanc® between them is changing at
Einstein to explain. See th985 College Math Journalpage 186, what rate?

and thel 960 Scientific American‘Things that go faster than light.”

27 A thief is 10 meters away (8 meters ahead of you,
19 If a plane follows the curve = f(x), and its ground speed isacross a streeé6 meters wide). The thief runs on that side at
dx /dt =500 mph, how fast is the plane going up? How fast is the meters/second, you run & meters/second. How fast are you

plane going? approaching if (a) you follow on your side; (b) you run toward the

. . H . . ,)
20 Why can't we differentiater = 7 andreachl = 0? thief; (c) you run away on your side?

28 A spherical raindrop evaporates at a rate equal to twice its

Problems 21-29 are applications of related rates. surface area. Findr/dr.

21 (Calculus classic) The bottom of H-foot ladder is going o Starting fromP = V = 5 andmaintainingP V = T, find d V' /dt
away from the wall at/x/dt =2 feet per second. How fast is the,

top going down the wall? Draw the right triangle to fiald/d¢ ifdp/dt=2anddT/dt =3.
when the heighy is (a) 6 feet (b)5 feet (c) zero. 30 (a) The crankshaft B turns twice a second so

22 The top of thel0-foot ladder can go faster than light. At what dojdt=____
heighty doesdy/dt = —c? (b) Differentiate the cosine la®? = 32 + x2 —2 (3x cosf) to

23 How fast does the level of a Coke go down if you find the piston speedx/dr whent = /2 andf = 7.

drink a cubic inch a second? The cup is a cylinder of radigs A camera turns af to follow a rocket atR.

2 inches—first write down the volume. (a) Relatedz/d tody/dt wheny = 10.

24 A jet flies at8 miles up and560 miles per hour. How fast (b) Relatedf/dt to dy/dt based ory = 10 tan.
is it approaching you when (a) it is6 miles from you; (b) its (c) Related?6/dr? tod?y/dt? anddy/dt.
shadow is8 miles from you (the sun is overhead); (c) the plane

is 8 miles from you (exactly above)?

25 Starting from a3—4—5 right triangle, the short sides in-
crease by2 meters/second but the angle between them decreases
by 1 radian/secondHow fast does the area increase or decrease?

26 A pass receiver is at =4, y =8¢. The ball thrown atr =3
isatx =c(t —3),y =10c(t —3).
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B 2 3 Inverse Functions and Their Derivatives || G

There is a remarkable special case of the chain rule. It occurs Whenandg (x) are
“inverse functions’ That idea is expressed by a very short and powerful equation:
f(g(x)) = x.Here is what that means.

Inverse functions Start with any input, sayx =5. Compute y = g(x), say
y =3. Then computef(y), andthe answer must b&. What one function does,
the inverse function undoes. #(5) =3 then f(3) =5. The inverse function f
takes the outputy back to the inputx.

EXAMPLE 1 g(x)=x—2and f(y) = y+2 are inverse functions. Starting with
x =5, the functiong subtract®. That producey = 3. Then the functionf adds2.
That brings backe = 5. To say it directly:;The inverse ofy = x —2isx =y + 2.

EXAMPLE 2 y=g(x)=32(x—32) and x= f(y)=2y+32 are inverse
functions (for temperature). Hereis degrees Fahrenheit andis degrees Celsius.
From x =32 (freezing in Fahrenheit) you fing =0 (freezing in Celsius). The
inverse function takey =0 back to x =32. Figure 4.4 shows how = 50°F
matchesy = 10°C.

Notice thatg (x —32) subtracts32 first. The inverseg—y + 32 adds32 last In the
same wayg multiplies last byg while f multiplies first by%.

x=2y+32 domain of f=range of g
°C 5 ) y 2 0
¥
o =1 fr=3w-3 _,.=}.:O ool
0 f 2
2 50 «°
/_ 50 x°F ¥

range of f= domain of g

Fig. 4.4 °Fto°Cto°F. Alwaysg l(g(x))=x andg(g '=(y)=y.If f=g ! then
g=f"1

The inverse function is writtenf = g~! and pronounced‘g inverse.’lt is not
1/g(x).

If the demand is afunction of the pricex, then the price is a function of the demand.
Those are inverse functiongheir derivatives obey a fundamental rulely /dx
timesdx/dy equalsl. In Example 2dy/dx is5/9 anddx/dy is 9/5.

There is another important point. Whef and g are applied in theopposite
order, they still come back to the start. FirStadds2, theng subtract®. The chain
g(f(y))=(y+2)—2bringsbacky. If f isthe inverse of theng is the inverse
of f. The relation is completely symmetric, and so is the definition:

Inverse function If y =g(x)thenx =g~ '(y).If x =g 1(y) theny = g(x).

The loop in the figure goes from to y to x. The compositiong ! (g(x)) is the
“identity function.” Instead of a new point it returns to the originak. This will
make the chain rule particularly easy—leadinddy /dx)(dx/dy) = 1.

EXAMPLE 3y =g(x) =+/x andx = f(y) = y? are inverse functions.

Starting fromx = 9 we find y = 3. The inverse give8? = 9. The square ok/x is
f(g(x)) = x. In the opposite direction, the square rootdfis g(f(y)) = y.
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Caution That example does not allow to be negative. The domain gi—the set
of numbers with square roots—is restrictedat@> 0. This matches the range of
g~ !. The outputsy? are nonnegative. Witlomain ofg = range ofg~!, the
equationx = (4/x)? is possible and true. The nonnegativgoes intog and comes
outofg~!.

In this exampley is also nonnegative. You might think we could square anything,
but y must come back as the square rooyéf Soy > 0.

To summarizeThe domain of a function matches the range of its inversehe
inputs tog —! are the outputs frong. The inputs tog are the outputs frong—!.

If g(x) =y then solving that equation for givesx = g !(y):

if y=3x—6 thenx=1(y+6) (thisisg~'(y))
if y=x3+1 thenx=+y—1 (thisisg=1(y))

In practice that is howg ! is computedSolveg (x) = y. This is the reason inverses
are important. Every time we solve an equation we are computing a vagre'of

Not all equations have one solutiohot all functions have inversesFor
eachy, the equatiorg(x) =y is only allowed to produce one. That solution is
x =g~ !(y). If there is a second solution, therm! will not be a function—because
a function cannot produce twds from the samey.

EXAMPLE 4 There is more than one solutionse x = % Many angles have the
same sine. On the interv@l< x < &, the inverse ofy = sinx is not a function.
Figure 4.5 shows how twe’s give the same.

Preventx from passingr/2 and the sine has an inverse. Write=sin~! y.

The functiong has no inverse if two points; and x; give g(x;) = g(x»). Its
inverse would have to bring the sameéback tox; andx,. No function can do that;
g~ !(y) cannot equal botly; andx,. There must be only one for eachy.

To be invertible over an intervalg mug be steadily increasing or steadily decreasing

Fig. 4.5 Inverse exists (one for eachy). No inverse function (twa’s for oney).

THE DERIVATIVE OF gil

It is time for calculus. Forgive me for this very humble example.

EXAMPLE 5 (ordinary multiplication) The inverse of = g(x) =3xisx = f(y) = %y.

This shows with special clarity the rule for derivativ@$e slopesi/y/dx =3 and
dx/dy = % multiply to give 1. This rule holds for all inverse functions, even if their
slopes are not constant. It is a crucial application of the chain rule to the derivative

of f(g(x)) = x.
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o7

4C (Derivative of inverse functiop From f(g(x)) = x the chain rule give
f'(g(x))g’(x) =1.Writing y = g(x) andx = f(y), this rule looks better:

drdy o dx_
dy dx dy dy/dx’

@

The slope ofc = g~!(y) times the slope of = g(x) equals one.

This is the chain rule with a special feature. Sintgz(x)) = x, the derivative of
both sides isl. If we know g’ we now know f’. That rule will be tested on a
familiar example. In the next section it leads to totally new derivatives.

EXAMPLE 6 The inverse ofy = x3 is x = y'/3. We can finddx /dy two ways:

d 1 d 1 1 1
directly: ax _ gy*2/3 indirectly: @ _

dy dy _ dy/dx 3x2  3y2/3

The equation(dx/dy)(dy/dx) =1 is not ordinary algebra, but it is true. Those
derivatives are limits of fractions. The fractions d#&x/Ay)(Ay/Ax)=1 and
we letAx — 0.

Fig. 4.6  Graphs of inverse functions: = %y isthe mirror image ofy = 3x.

Before going to new functions, | want to draw graphs. Figure 4.6 shows,/x
and y = 3x. What s special is thahe same graphs also show the inverse functions
The inverse ofy = 4/x isx = y2. The pairx = 4, y = 2 is the same for both. That is
the whole point of inverse functions—¥= g(4) then4 = g—1(2). Notice that the
graphs go steadily up.

The only problem is, the graph af= g~!(y) is on its side. To change the slope
from 3 to % you would have to turn the figure. After that turn there is another
problem—the axes don'’t point to the right and up. You also have to look in a mirror!
(The typesetter refused to print the letters backward. He thinks it's crazy but it's not.)
To keep the book in position, and the typesetter in position, we need a better idea.

The graph ofx = %y comes fromturning the picture across th&5° line. They
axis becomes horizontal andyoes upward. The poiri2, 6) on the liney = 3x goes
into the point(6,2) on the linex = %y. The eyes see a reflection across4he line
(Figure 4.6¢). The mathematics sees the same pa@rsd y. The special properties
of g andg~! allow us to know two functions—and draw two graphs—at the same
time;f The graph ofx = g~!(y) is the mirror image of the graph ofy = g(x).

+1 have seen graphs with= g(x) and alsoy = g~ !(x). For me that is wrong: it has to be
x=g '(y). If y=sinx thenx =sin !y.
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EXPONENTIALS AND LOGARITHMS

| would like to add two more examples of inverse functions, beeahey are so
important. Both examples involve tlexponentiaknd thelogarithm One is made
up of linear pieces that imitatg*; it appeared in Chapter. The other is the true
function2*, which is not yet defined—and it is not going to be defined here. The
functionsb* andlog, y are so overwhelmingly important that they deserve and will
get a whole chapter of the book (at least). But you have to see the graphs.

The slopes in the linear model are power20fSo are the heights at the start
of each pieceThe slopesl, 2,4, ... equal the heightsl,2,4,... at those special
points

The inverse is a discrete model for the logarithm (to li&s& he logarithm ofl
is 0, becaus@® = 1. The logarithm of2 is 1, becaus@! = 2. The logarithm of2/
is the exponeny. Thus the model gives the correct=10g, y at the breakpoints
y=1,2,4.8,.... The slopes aré, . ;. 5.... becauselx/dy = 1/(dy/dx).

The model is good, but the real thing is better. The figure on the right shows the
true exponentia =2*. At x =0, 1,2, ... the heights are the same as before. But

now the height atc = 1 is the number2!/2, which is /2. The height atr = .10

is the tenth roo2'/1° = 1.07.... The slope ak = 0 is no longerl—it is closer to
Ay/Ax=.07/.10. The exact slope is a number (near 7) that we are not
yet prepared to reveal.

The special property of =2~ is that the slope at all points isy. The slope is
proportional to the function The exponential solvasy /dx = cy.

Now look at the inverse function—the logarithmts graph is the mirror image:

If y=2"thenx =log, y. If 2'/1° ~ 1.07 thenlog, 1.07 ~ 1/10.

What the exponential does, the logarithm undoes—and vice.vEingalogarithm of
2* is the exponenty. Since the exponential starts with slopethe logarithm must
start with slopd /c. Check that numerically. The logarithm bf07 is nearl /10. The
slope is nearl.0/.07. The beautiful property is thatx/dy = 1/cy.

I’ y
O

x=log,y

X

1 2 B

Fig. 4.7 Piecewise linear models and smooth curves: 2* and x =log, y. Baseb = 2.

| have to mention that calculus avoids logarithms to baséhe reason lies
in that mysterious number. It is the “natural logarithm” o2, which is 693147...
—and who wants that? Alsd/.693147... enters the slope ofog,y. Then
(dx/dy)(dy/dx) = 1. The right choice is to use “natural logarithms” throughout.
In place of2, they are based on the special numder

y =e” is the inverse ofx =1In y. (2)
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The derivatives of those functions are sensational—they amedsfmr Chapter 6.
Together withx” andsinx andcosx, they are the backbone of calculus.

Note It is almost possible to go directly to Chaptér The inverse functions
x =sin"!'y andx =tan !y can be done quickly. The reason for including integrals
first (Chapten) is that they solve differential equations with no guesswork:

d 1 d

—=y or X~ leadsto fdx:f—y or x=Iny+C.
dx dy 'y y

Integrals have applications of all kinds, spread through the rest of the book. But do

not lose sight o2* ande*. They solvedy /dx = cy—the key to applied calculus.

THE INVERSE OF A CHAIN k(g (x))

The functiong (x) = x — 2 andh(y) = 3y were easy to invert. Fgr—! we adde,
and forz—! we divided by3. Now the question is: If we create the composite function
z=h(g(x)),orz=3(x —2), whatis its inverse?

Virtually all known functions are created in this way, from chains of simpler
functions.The problem is to invert a chain using the inverse of each pi€bce
answer is one of the fundamental rules of mathematics:

4D The inverse of = h(g(x)) is a chain of inverse the opposite order

x=g (A1 (2)). 3)
h~1is applied first becaudewas applied lastg =1 (A~ (h(g(x)))) = x.

That last equation looks like a mess, but it holds the key. In the middle you see
h=! andh. That part of the chain does nothing! The inverse functions cancel, to
leaveg—!(g(x)). But that isx. The whole chain collapses, when'! ands~! are
in the correct order—which is opposite to the ordefhi 6§ (x)).

EXAMPLE 7 z=h(g(x))=3(x—2) and x =g~ ' (h~!(2)) = 3z +2.

First h~! divides by3. Theng~! adds2. The inverse ofiog is g~ ! oh~!. It can
be found directly by solving = 3(x —2). A chain of inverses is like writing in
prose—we do it without knowing it.

EXAMPLE 8 Invertz = +/x — 2 by writing z2 = x — 2 and thenx = z2 4-2.

The inverse addg and takes the square—but not in that ord&hat would give
(z 4+ 2)?, which is wrong. The correct order i€ + 2.

The domains and ranges are explained by Figure 4.8. We start a2,
Subtracting2 gives y = 0. Taking the square root gives> 0. Taking the square
brings backy > 0. Adding 2 brings backx = 2—which is in the original domain
of g.

== h(g()) x=g ') c=2v-1 r=5E+1D

NS TS

y=g) =z=h( y=h'c) x=g7l(¥ y=2:

; t=y—=1 y=z+1 ==V

Fig. 4.8 The chaing=1(h~!(h(g(x)))) = x is one-to-one at every step.
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Inverse matrice6AB)~! =

221

B~14-! (thislinear algebrais optional).

Suppose a vector is multiplied by a square matriB: y = g(x) = Bx. The inverse

function multiplies by theinverse matrix x =g '(y)=B"!y.

It is like

multiplication by B = 3 and B~! = 1/3, except that andy are vectors.

Now suppose a second function multiplies by another mattrix= h(g(x)) = ABx.
The problem is to recover from z. The first step is to inverl, because that came
last: Bx =A"'z. Then the second step multiplies by ! and brings back
x=B"1A471z. The productB—! A~! inverts the product4 B. The rule for matrix
inverses is like the rule for function inverses—in fact it is a special case.

| had better not wander too far from calculus. The next section introduces the
inverses of the sine and cosine and tangent, and finds their derivatives. Remember
that the ultimate source is the chain rule.

4.3 EXERCISES

Read-through questions

The functions g(x)=x—4 and f(y)=y+4 are a

functions, becaus¢'(g(x))=_Db . Alsog(f(y))=_c¢c . The

notation is f =g~ ! and g=__d . The composition__e

is the identity function. By definitionx = ¢—1(y) if and only

if y=__f . Wheny is in the range ofg, it is in the g

of g—!. Similarly x is in the __h of g when it is in the
i of g7l If g has an inverse them(x;) i g(x2)

a any two points. The functiong must be steadily_ k

or steadily | .

The chain rule applied tgf (g(x)) =x gives (df/dy)(__m_ )
=_ n . The slope ofg—! times the slope of equals__o
More directly dx/dy=1/ p For y=2x+1 and x=

1(y—1), the slopes aredy/dx=__q and dx/dy=__r1__

For y=x2 andx=__s , the slopes arely/dx=__t and
dx/dy =__u . Substitutinge? for y givesdx/dy =__v__.Then
(dx/dy)(dy/dx)=__w__

The graph ofy =g(x) is also the graph ofc=__x_, but

with x across andy up. For an ordinary graph of—!, take
the reflection in the line y . If (3,8) is on the graph of,
then its mirror image (_z ) is on the graph ofg—!. Those
particular points satisf§ =23 and3=__A

The inverse of the chain =/h(g(x)) is the chainx=__B .
If g(x)=3x and h(y)=y3 then z=__C . Its inverse is
x=__D ,whichisthe compositionof E _and_ F

Solve equations 1-10 for x, to find the inverse function
x =g~ 1(y). When more than onex gives the samey, write “no
inverse”

1 y=3x—6 2 y=Ax+B

3 y=x2-1 4 y=x/(x—1)[solvexy —y =x]

5 y=1+x""! 6 y=|x|

7 y=x3-1 8 y=2x+]|x|
9 y=sinx 10 y = x1/5 [draw graph]
. 1 . 1
11 Solving y=—— gives xy—ay=1 or x= +ay. Now
X—a y

solve that equation foy.

1 1
12 Solving y = x—+1 givesxy—y=x+1or x= % Draw
X — y—
the graph to see why' and f~! are the same. Comput& /dx
anddx/dy.

13 Supposef is increasing and'(2) =3 and f(3) = 5. What can
you say aboutf —1(4)?

14 Supposef(2) =3 ard f(3)=5 and f(5) =5. What can you
say aboutf ~1?

15 Supposef(2)=3 ard f(3)=5 and f(5)=0. How do you
know that there is no functiogf —1?

16 Vertical line test If no vertical line touches its graph twice
then f(x) is a function (one y for each x). Horizontal line
test If no horizontal line touches its graph twice thef(x) is
invertible because .

17 If f(x) and g(x) are increasing, which two of these might
not be increasing?

fO+g)  fgx)  flg) ST /)

18 If y=1/x thenx=1/y. If y=1—x thenx=1—y. The
graphs are their own mirror images in th&° line. Construct two
more functions with this property = 1 or f(f(x)) = x.

19 For which numberg: arethese functions invertible?
@ y=mx+b (b)) y=mx+x3 () y=mx+sinx

20 From its graph show thap = |x|+cx is invertible if ¢ >1
and also ifc <—1. The inverse of a piecewise linear function
is piecewise .
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In 21-26 finddy/dx in terms of x and dx/dy in terms of y. (b) If f(x)isinvertible soigi(x) = f(f(x)).
21 y=x5 22 y=1/(x—1) (¢) f~'(») has aderivative at every.
23 y=x3-1 24 y=1/x3 In the ehains 46-51 write downg(x) and f(y) and their
X ax+b inverses. Then findx = g~ 1(f~1(2)).
25 y= 2 =
Y x—1 6y cx+d
46 z=5(x—4) 47 z=(x")"
27 Ifdy/dx=1/ythendx/dy = andx =
. 48 z=(6+x)3 49 z=6+x3
28 If dx/dy=1/y thendy/dx = (these functions are L
y=e¢* andx =In y, soon to be honored properly). 50 z=g(zx+4)+4 51 z=log(10%)
_1.3 _ 2 2
29 The slopes off (x) = 3x~ and g(x) = —1/x arex~ and1/x". 5, goling f(x)=0 is a large part of applied mathematics.

Why isn't f = g~!? What isg~!? Show thag’(g~"!)' = 1. Express the solution* interms of f ~1: x* =
30 At the pointsxy, x2, x3 & plecewise constant function jumpss3 (a) Show by example that?x/dy?2 is not1/(d2y/dx2).

to yi, y2, y3. Draw its graph starting fromy(0)=0. o o ) 5
The mirror image is piecewise constant with jumps at the (B) Ifyis |n2meter25_ar_1dc is in seconds, thed“y/dx= is in
points to the heights . Why isn't this the —andd®x/dy~isin ____.

inverse function? 54 Newton’s method solvesf(x*)=0 by applying a linear
approximation tof ~1:

In 31-38 draw the graph of y =g(x). Separately draw its

mirror image x = g~ 1(y). FHO~ 7T 0 +df 7 dy) 0-y).
31 y=5x—10 32 y=cosx,0<x <7 Fory = f(x) this is Newton’s equation™ ~ x + .
33 y=1/(x+1) 34 y=|x|—2x 55 If the demand isl/(p +1)? when the price isp, then the
demand isy when the price is . If the range of prices
35 y=10*% 36 y=4/1-x2,0<x<1 is p =0, what is the range of demands?
37 y=27% 38 y=1/A/1—-x2,0<x<1 56 If dF/dx = f(x) show that the derivative of
G =y W =FU ) is f71).
In39-42 finddx/dy at the given point 57 For each numbery find the maximum value ofyx —2x*.
39 y=sinx atx=7/6 40 y=tanx atx = /4 This maximum is a functionG(y). Verify that the derivatives
) ) of G(y) and2x* are inverse functions.
41 y=sinx2 atx =3 42 y=x—sinxatx=0 ) )
58 (for professors only) IfG(y) is the maximum value of
43 If y is a decreasing function of, then x is a yx = F(x), prove thatF (x) is the maximum value oty — G(y).
function of y. Prove by graphs and by the chain rule. Assume that f(x)=dF/dx is increasing, like 8x~ in

Problems7.
44 If f(x)> x for all x, show thatf ~1(y) < y.
59 Suppose the richest percent of people in the world have

45 True or false with example: 104/x percent of the wealth. Thery percent of the wealth is
(@) If f(x) isinvertible so ish(x) = (f(x))2. held by percent of the people.
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I - 2 Inverses of Trigonometric Functions ]

Mathematics is built on basic functions like the sine, and on basic ideas like the
inverse. Thereforét is totally natural to invert the sine function The graph of
x=sin"'y is a mirror image ofy =sinx. This is a case where we pay close
attention to the domains, since the sine goes up and down infinitely often. We only
wantone pieceof that curve, in Figure 4.9.

For the bold line the domain is restricte@ihe anglex lies between—rn/2
and +x/2. On that interval the sine is increasing, sach y comes from exactly
one anglex. If the whole sine curve is allowed, infinitely many angles would have
sinx = 0. The sine function could not have an inverse. By restricting to an interval
wheresin x is increasing, we make the function invertible.

y=sinx

4 Y _
E—O
y=11 >
1 &y _ =i Tt
T- 7 =v3/ 3 dx
; ' x :
. X X -1 1
2 6 2 >
~
= -1
sin"ly +cos~ly = %

|
e

Fig. 4.9 Graphs of sinc andsin—!y. Their slopes are cosand1/+/1 — y2.

The inverse function brings back tox. Itis x = sin~!y (theinverse sing:
x =sin~'y wheny = sinx and|x| < /2. Q)

The inverse starts with a number between—1 and 1. It produces an angle =
sin~! y—the angle whose sine is. The anglex is between—7/2 and/2, with
the required sine. Historically was called the “arc sine” of, andarcsinis used in
computing. The mathematical notatiorsis~!. This has nothing to do with/ sin x.

The figure shows th80° anglex = /6. Its sine isy = 1. The inverse sine of
is /6. Again: The symbosin~! (1) stands for the angle whose sineligthis angle

isx = /2). We are seeing ! (g(x)) = x:

sin~!(sinx) = x for —% <x < % sin(sin'y)=y for —1<y<1.
EXAMPLE 1  (important) Ifsinx = y find a formula forcosx.

Solution  We are given the sine, we want the cosine. The key to this proiviest
becogx = 1 —sir?x. When the sine ig, the cosine is the square rootbf- y?:

cosx = cogsin~ly) =+/1—y2. 2)

This formula is crucial for computing derivatives. We use it immediately.
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4 Derivatives by the Chain Rule

THE DERIVATIVE OF THE INVERSE SINE

The calculus problem is to find the slope of the inverse funcifgm) = sin—!y.
The chain rule givess{ope of inverse function= 1/(slope of original functioh
Certainly the slope a$in x is cosx. To switch fromx to y, use equatiof2):

®3)

. ) dy dx 1 1
y =Sinx gives — = CO0Sx SO that— = = .
’ dx dy  cosx 1—y2

This derivativel/4/1 — y2 gives a newv—f pair that is extremely valuable in
calculus:

velocity v(r)=1/4/1—t2  distance f(¢) =sin"!z.

Inverse functions will soon produce two more pairs, from the derivativéarof! y
andsec!y. The table at the end lists all the essential facts

EXAMPLE 2 Theslopeogin~!y aty = lisinfinite: 1/4/1 — y2 = 1/0. Explain.

At y =1 the graph ofy = sinx is horizontal. The slope is zero. So its mirror image
is vertical. The slopé /0 is an extreme case of the chain rule.

Question Whatisd/dx(sin"!x)?  Answer 1/4/1 —x2.1justchanged letters.

THE INVERSE COSINE AND ITS DERIVATIVE

Whatever is done for the sine can be done for the cosine. Butdimaid and range
have to be watched. The graph cannot be allowed to go up and down.yHaaim
—1 to 1 should be the cosine afnly one angler. That putsx between) and .
Then the cosine is steadily decreasing and cosx has an inverse:

cos !(cosx) =x and cogcos 'y) = y. (4)

The cosine of the angle= 0 is the numbey = 1. The inverse cosine of = 1 is the
anglex = 0. Those both express the same fact, teg0 = 1.

For the slope ofos™! y, we could copy the calculation that succeededstar ! y.
The chain rule could be applied as in (3). But there is a faster way, because of a special
relation betweegos !y andsin~!y. Those angles always add to a right angle

cos 'y +sinly =x/2. (5)

Figure 4.9¢ shows the angles and Figure 4.10c shows the graphs. Thessyn(tke
dotted line), and its derivative is zero. So the derivativesasf ! y andsin™!y must
add to zeroThose derivatives have opposite siGhere is aminus for the inverse
cosine, and its graph goes downward:

The derivative ofx =cos™'y is dx/dy =—1/4/1—y2. (6)

Question How can two functionst = sin~!y andx = —cos !y have thesame
derivative?
Answer  sin~!y must be the same ascos !y + C. Equation(5) givesC = /2.
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-Lr) -

i
Y =CO0S X

| = Tl
cos™ly +sin~!y = -

(0, m/2) T

(/2. 0) s 60° 1

(1,0
] i

(=1,-m/2)

Fig. 4.10 The graphs ofy = cosx and x = cos ! y. Notice the domaii) < x < 7.

THE INVERSE TANGENT AND ITS DERIVATIVE

The tangent isinx/ cosx. The inverse tangent isotsin~!y/cos™' y. The inverse
function producethe angle whose tangent is. Figure 4.11 shows that angle, which
is between-mx /2 andzx /2. The tangent can be any number, but the inverse tangent is
intheopen interval-7/2 < x < /2. (The interval is “open” because its endpoints
are not included.) The tangentssof 2 and—7 /2 are not defined.

The slope ofy =tanx is dy/dx = seéx. What is the slope aof = tan!y?

d 1 1 1
By the chain rules = = = . @)
y seéx l4tarx 1+y?
L . df 1
4E The derivative off(y) =tan "y is — = . (8
dy 1+y2

X=T
A SR L S
2
1
slope =
I",I 3': = |
' — : + =5
-3 -2 -1 (0.0 I\‘ 2 3

~

Fig. 411 x=tan 'y has slopd /(1 +y?). x =sec !y has slopd/|y|\/y2 —1.

EXAMPLE 3  The tangent ofc = /4 is y = 1. We check slopes. On the inverse
tangent curvedx /dy =1/(1 + y?) = 1. Onthe tangent curvely /dx = seéx. At
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d
—(cot~ly) =
dy( y)

4 Derivatives by the Chain Rule

7 /4 the secant squared equalsThe slopesgl/x/dy = % anddy/dx =2 multiply to
givel.

Important Soon will come the following questionWhat function has the
derivative1/(1+ x2)? One reason for reading this section is to learn the answer.
The function is in equatio(8)—if we change letterstis f(x) = tam ' x that has
slopel/(1+ x?).

1 secy
A sinx tanx

COS X 1 col x

Fig. 4.12 cos?x+siPx=1 ard 1+tarfx =sedx and 1+cot?x =cséx.

INVERSE COTANGENT, INVERSE SECANT, INVERSE COSECANT

There is no way we can avoid completing this miserable list! Baan be painless.

Theideais to usé/(dy/dx) for y = cotx andy = secx andy = cscx:
dx -1 dx 1 dx -1
—=— ad —=— and —=——.
dy cséx dy secxtanx dy cscxcotx

9)

In the middle equation, replasecx by y andtanx by ++/y2 — 1. Choose the sign
for positive slope (compare Figure 4.11). That gives the middle equatid®in

The derivatives otot™!y and sec’!y andcsc!'y are

1+ y2

d 1 d —1
—(sec ly)=————= —(cscly)=————. (10
2y V) DIyl 2y &) BN (10)
Note about the inverse secanWheny is negative there is a choice for= sec! y.
We selected the angle in the second quadrant (betweg@nand ). Its cosine is
negative, so its secant is negative. This choice makes! y = cos ' (1/y), which
matchesecx = 1/ cosx. It also makesec ! y an increasing function, wheoos ™! y
is a decreasing function. So we needed the absolute Y| the derivative.
Some mathematical tables make a different choice. The angleuld be in the
third quadrant (betweer and—s/2). Then the slope omits the absolute value.

Summary For the six inverse functions it is only necessary to learn three
derivatives. The other three just have minus signs, as we sasirfoty andcos ! y.
Each inverse function and its “cofunction” add #9'2, so their derivatives add to
zero. Here are the six functions for quick reference, with the three new derivatives.

function f(y) inputsy outputsx slopedx/dy
o 1 b4 JT] 1
sin'y, cos <1 [——,— (1003 B ———
y y Iyl 55 |- [0.7] T
1
tam !y, cotly ally (—%,%), 0,7) +

1+ y2
T 1

®
LAY N
22 |y|4/y2—]

sec™ly,cscly  |y[=1 [O,n]*,[
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If y =cosx ory =sinx then|y| < 1. Fory =secx andy = cscx the opposite is
true; we must havéy| > 1. The graph oec !y misses all the points-1 <y < 1.
Also, that graph misses = 7/2—where the cosine is zero. The secantgf2
would be 1/0 (impossible). Similarlycsc 'y missesx =0, becausey = csc0
cannot bel /sin0. The asterisks in the table are to remove those pointss/2
andx = 0.
The column of derivatives is what we need and use in calculus.

4.4 EXERCISES

Read-through questions

The relation x—sin~!y means that a is the sine of 11 Take thex derivative of sin!(sinx)=x by the chain rule.
b . Thusx is the angle whose sine is ¢ . The number Check that/(sin~!y)/dy = —1//1— y2 gives a correct result.

v lies between_d _and _e . The anglex lies between ;, 10 the ) deivative of cogcos!y) =y by the chain rule.

f and g . (If we want the inverse to exist, therech 1 3
—_— eck that/(cos™ dy=—1/A/1— ives a correct result.
cannot be two angles with the same sine.) The cosine of the ( )/dy / y~4g

angle sinly is x/__h . The derivative of x=sn—'y is 13 At y=0andy=1, find the slope/x/dy of x=sin~'y and
dx/dy=__i x=cos !y andx =tanly.

14 At x =0 andx =1, find the slopeix/dy of x=sin"1y and

The relationx =cos~!y means thaty equals j . Again 1 i
the numbery lies between__k and __| . This time the ¥ =C0s""y andx =tarm"y.
angle x lies between_m __and__n __ (so that eachy comes 15 True or false, with reason:
from only one anglex). The sum sim!y+cosly=_o . (@) (sin"'y)2+(cosly)2=1
(The angles are called p , and they add to a g angle.) (b) sim 'y =cos !y has no solution
Therefore the derivative of =cos !y isdx/dy =__r_, the same (c) sin !y is an increasing function

P | .
asfor sin” 'y exceptfor a_s sign. (d) siy is an odd function

The relation x=tan 'y means that y=_t . The (e) sinm !y and—cos !y have the same slope—so they are the
number y lies between__ u  and __ v . The anglex lies same.
between__w _and __x . The derivative isdx/dy= 'y . (f) sin(cosx) = cogsinx)
Since tamly+cot-ly=__z , the derivative of cotly is the

16 Find tar(cos !(sinx)) by drawing a triangle with sides

same exceptfora A sign. sinx, cosx. 1.

The relationx =sec''y means that_B . The numbery

never lies between C and__ D . The anglex lies between
E and__F , but never atx=__ G . The derivative of

Compute the derivatives in 17-28 (using the letters as given)

: 17 u=sin"1x 18 y=tan!2x
x=sec lyisdx/dy=_H _
_ _ ~ 19 z=sin"!(sin3x) 20 z=sin"!(cosx)
In 1-4 find the anglessin~'y and cos !y and tan 'y in . .
radians. 21 z=(sin"1x)2 22 z=(sin"1x)~1
— /1 _2sin-1 _ 2yt an—1
1 y=0 2 y=—1 3 y=1 4 y=+3 23 z=A/1—y?sin'y 24 z=(14+x")tan” "x
25 x=sec l(y+1) 26 u =sec !(secx?)

5 Weknow that sint = 0. Why isn’t = = sin—10?

. L. . —gin—! 1 2
6 Suppose sit = y. Under what restriction is = sin~1 y? 27 u=sin""y/cos /1y

—ain-1 1 1
7 Sketch the graph of = sin—!y and locate the points with slope28 u=sin""y+cos y+tan "y

dx/dy =2. 29 Draw a right triangle to show why tarl y +cot~1y = 7/2.

8 Finddx/dy if x =sin~!1y. Draw the graph. 30 Draw a right triangle to show why tart y = cot=1(1/y).
9 If y=cosx find a formula for sinc. First draw a right 31 If y =tanx find secx in terms ofy.
triangle with anglex and near sidg—what are the other two sides?32 Draw the graphs of = cotx and x = cot ! y.

10 If y=sinx find a formula for tarx. First draw a right 33 Find the slopelx/dy of x =tan™!y at
triangle with anglex and far sidey—what are the other sides? (@ y=-3 (b) x=0 () x=—mn/4
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34 Find a functionu(t) whose slope satisfieg +r2u’ = 1. 48 Solve the differential equatiodhu /dx = 1/(1 +4x2).
; et 2 —ain—1
35 What is the second derivative?x/dy? of x =sin~1y? 49 1 du/dx :2/Mfindu(l)—u(0).

36 What isd?u/dy? foru =tan~1y? ) i
50 (recommended) With u(x)=(x—-1)/(x+1), find the

derivative of tarrlu(x). This is also the derivative of . So

Find the derivatives in 37-44 the difference between the two functionsisa .

37 y=secix 38 x=sec 12y

o . 51 Findu(x) and tan 'u(x) and tan ! x atx =0 andx = o0. Con-
39 u=sec (x") 40 u=sec " (tanx) clusion based on Problefif : tan~!u(x) —tan ! x equals the num-
41 tany =(x—1)/(x+1) 42 z=(sinx)(sn"lx) ber
43 y=sec 1V/x2 44 z=s 1x)—cogsin! ,

3 y=sec vVxi+1 Z=8n(Cos™x)—COSSINTY) o iy u(x) ard tanmlu(x) and tamlx as x— —oo.
45 Differentiate cos'(1/y) to find the slope of set'y i Now tarlu(x)—tan!x equals . Something has
anew way. happened to tan!u(x). At what x dou(x) and tam 'u(x) change
46 The domain and range af=cx~ !y are . instantly?

47 Find a functionu(y) such thatdu/dy = 4/+/1—y2.
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