CHAPTER 5

Integrals

I 5.1 The Idea of the Integral |

This chapter is about thidea of integration, and also about thtechnique of
integration. We explain how it is doni@ principle, and then how it is donén
practice Integration is a problem of adding up infinitely many things, each of which
is infinitesimally small. Doing the addition is not recommended. The whole point of
calculus is to offer a better way.

The problem of integration is to find a limit of sums. The key is to work backward
from a limit of differences (which is the derivativéjVe can integratev(x) if it
turns up as the derivative of another functiorf(x). The integral ofv = cosx is
f =sinx. Theintegralob = xis f = %xz. Basically, f(x) is an “antiderivative.

The list of /s will grow much longer (Sectiof.4 is crucial). A selection is inside
the cover of this book. If we don't find a suitabf&x), numerical integration can still
give an excellent answer.

I could go directly to the formulas for integrals, which allow you to compute areas
under the most amazing curves. (Area is the clearest example of adding up infinitely
many infinitely thin rectangles, so it always comes first. It is certainly not the only
problem that integral calculus can solve.) But | am really unwilling just to write down
formulas, and skip over all the ideas. Newton and Leibniz had an absolutely brilliant
intuition, and there is no reason why we can't share it.

They started with something simple. We will do the same.

SUMS AND DIFFERENCES

Integrals and derivatives can be mostly explained by workiregy( briefly) with
sums and differences. Instead of functions, we haw@dinary numbers. The key
idea is nothing more than a basic fact of algebra. In the limit as oo, it becomes
the basic fact of calculus. The step of “going to the limit” is the essential difference
between algebra and calculus! It has to be taken, in order to add up infinitely many
infinitesimals—but we start out this side of it.

To see what happens before the limiting step, we meedsets of: numbers. The
first set will bevy,v,, ..., v,, wherev suggests velocity. The second set of numbers
willbe f1, f2, ..., fn, where f recalls the idea of distance. You might thidkvould
be a better symbol for distance, but that is needed fordthanddy of calculus.
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5 Integrals

A first example hag = 4:
V1,VU2,03,04=1,2,3,4 f1, f2. f3, fa=1,3,6,10.

The relation between the's and f’'s is seen in that example. When you are given
1,3,6,10, how do you producd,2,3,4? By taking differences The difference
betweenl0 and 6 is 4. Subtracting6 —3 is 3. The differencef, — f1 =3—1is
v, = 2. Eachv is the difference between twp’s:

v, Is the differencef; — f;_1.

This is the discrete form of the derivative. | admit to a smalficlifity at j =1,
from the fact that there is ngy. The firstv should bef; — fp, and the natural idea
is to agree thalfy is zero. This need for a starting point will come back to haunt us
(or help us) in calculus.

Now look again at those same numbers—but start withromv = 1,2, 3,4 how
do you producef = 1, 3,6, 10? By taking sums The first twov’s add to3, which is
f>. The first threev’s add to f3 = 6. The sum of all foun’s is 1 +2+3+4 = 10.
Taking sums is the opposite of taking differences.

That idea from algebra is the key to calculus. The stjnnvolves all the numbers
v1 +v2+---+v;. The difference ; involves only thdwonumbersf; — f;_;. The
fact that one reverses the other is the “Fundamental Theorem.” Calculus will change
sums to integrals and differences to derivatives—but why not let the key idea come
through now?

5A Fundamental Theorem of Calculugbefore limits):

Ifeachvj =fj—fj,l,thenv1+v2+---+vn = fn— fo.

The differences of thg¢’sadd up tof,, — fo. All f’sin between are canceled, leaving
only the lastf, and the startingfy. The sum “telescopés

vitvatvstetv=(fi—fo)+ (2= )+ (fs=f)+ -+ (= fab)

The numberf; is canceled by— f1. Similarly — f> cancelsf, and— f; cancelsfs.
Eventually f,, and— fy are left. Whenf, is zero, the sum is the findf,.
That completes the algebM/e add thev’s by finding the f's.

Question How do you add the odd numbekst-3 +5+4---499 (thev’s)?
Answer They are the differences betwe@n ,4,9, .... Thesef’s are squares. By
the Fundamental Theorem, the sunt6fodd numbers i50)2.

The tricky part is to discover the righft’s! Their differences must produce thés.
In calculus, the tricky part is to find the rightt(x). Its derivative must produce(x).
It is remarkable how ofterf can be found—more often for integrals than for sums.
Our next step is to understand htie integral is a limit of sums

SUMS APPROACH INTEGRALS

Suppose you start a successful company. The rate of incomeréasging. Afterx

years, the income per year {gx million dollars. In the first four years you reach
v/1,4/2,4/3, and 4/4 million dollars. Those numbers are displayed in a bar graph
(Figure 5.1a, for investors). | realize that most start-up companies make losses, but
your company is an exception. If the example is too good to be true, please keep
reading.
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Fig. 5.1  Total income= total area of rectangles 6.15.

The graph shows four rectangles, of heigky@, \/5 \/§ \/Z Since the base of
each rectangle is one year, those numbers are alsargsof the rectangles. One
investor, possibly weak in arithmetic, asks a simple questitvhat is the total
income for all four year® There are two ways to answer, and | will give both.

The first answer iS\/T—l—\/E—I— \/§+ \/Z Addition gives6.15 million dollars.
Figure 5.1b shows this total—which is reached at year 4. This is exactly like
velocities and distances, but navis theincome per yeaand f is thetotal income
Algebraically, f; is still vi 4+ +v;.

The second answer comes from geomdthetotal incomeis thetotal areaof the
rectanglesWe are emphasizing the correspondence betadditionandarea That
point may seem obvious, but it becomes important when a second investor (smarter
than the first) asks a harder question.

Here is the probleniThe incomes as stated are falsehe company did not make
amillion dollars the first year. After three months, whewas1 /4, the rate ofincome
was only,/x = 1/2. The bar graph showeg1 = 1 for the whole year, but that was
an overstatement. The income in three months was not moreltfiatimes1/4, the
rate multiplied by the time.

All other quarters and years were also overstated. Figure 5.2a is closer to reality,
with 4 years divided intd 6 quarters. It gives a new estimate for total income.

Again there are two ways to find the total. We agd /4 +1/2/4+---+4/16/4,
remembering to multiply them all byt /4 (because each rate applieslt®d year).
This is also the area of thie rectangles. The area approach is better becaude' the
is automatic. Each rectangle has bagd, so that factor enters each area. The total
area is nows.56 million dollars, closer to the truth.

You see what is coming. The next step divides time into weeks. After one week
the ratey/x only 4/1/52. That is the height of the first rectangle—its baséis =
1/52. There is a rectangle for every week. Then a hard-working investor divides time
into days, and the base of each rectanglé\is= 1/365. At that point there are
4 x 365 = 1460 rectangles, ot461 because of leap year, with a total area beﬁé/v
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million dollars. The calculation is elementary but depressing—adding up thousands
of square roots, each multiplied lyx from the base. There has to be a better way.

The better way, in fact the best way, is calculus. The whole idea is to allow for
continuous changeThe geometry problem is to find the area under the square
root curve That question cannot be answered by arithmetic, because it involves a
limit. The rectangles have bagex and heightsy Ax,v/A2x, ....A/4. There are
4/Ax rectangles—more and more terms from thinner and thinner rectardies.
area is the limit of the sum ag\x — 0.

This limiting area is the “integral.” We are looking for a number be[b%v

Algebra(area ofn rectangle$: Computev; + - - - + v, by finding f's.

Key idealf v; = f; — f;_1, then the sumigf;, — fo.

Calculus(area under curve Compute the limit oA x[v(Ax) + v(2Ax) +---].
Key idealf v(x) =df/dx then area= integral to be explained next

5.1 EXERCISES

Read-through questions

The problem of summation is to add +---+v,. It is solved For functions, finding the integral is the reverse ofh . If
if we find f’s such thatv;=__a . Thenwv;+---+wv, equals the derivative of f(x) is v(x), then the__i__ of v(x) is f(x). If

b . The cancellation in(fi— fo)+(f2—f1)+--+(fn— v(x)=10xthenf(x)= | .Thisisthe k _of atriangle with
fn—1) leaves only _ ¢ . Taking sums is the__d of basex and heightlOx.

taking differences. ) ) )
Integrals begin with sums. The triangle under=10x out

to x=4 has area__| . It is approximated by four rectangles
The differences betweef, 1,4,9 are vy,vp,v3=__€e . For of heights10,20,30,40 and area__m__. It is better approximated
fi = j2 the difference betweerfio, and fo isvio=__f . From by eight rectangles of heights n _and area_o . Forn rectan-

this patternl +3+5+---+19equals g . gles covering the triangle the area is the sum op . Asn— o0
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this sum should approach the numberg . Thatis the integral of 14 The optimist and pessimist arrive at the same limit as years
v=10x fromO0 to 4. are divided into weeks, days, hours, seconds. Draw+he curve
between the rectangles to show why the pessimist is always too low

Problems 1-6 are about sumg/; and differencesv ;. and the optimist is t0o high

1 With v=1,2,4,8, the formula for v; is (not 2/).
Find f1. f>. f3. f4, Starting fromfy = 0. What is f7? 15 (Important) Letf (x) be the area under thgx curve, above the
interval from0 to x. The area tor + Ax is f(x + Ax). The extra

2 The samev=12,4,8,... are the dljferences betweenarea iISAf = . This is almost a rectangle with base
;i;fg;’usélf’ (b) VI\\/lk?z\:: iﬁ’f21+ini Sf—jH:6%> - (2) Check that height,/x. SOA f/Ax is close to . As Ax — 0 we sus-
5 ’ pect thatdf /dx =
3 The differences between f=1,1/2,1/4,1/8 are
v=-—1/2,—1/4,—1/8. These negative’s do not add up to these
positive f’s. Verify thatvy + vy +v3 +v4 = fg — fo is still true.

16 Draw the,/x curve fromx =0 to 4 and put triangles below to
prove that the area under it is more tifan.ook left and right from

o the point wherey/1 = 1.
4 Any constantC can be added to the antiderivative(x)

because the of a constant is zero. An¢' can be added to

fo. f1....because the __ between thef’sis not changed. Problems 17-22 are about a company whose expense rate) =

5 Show that f;=r//(r—1) has f;—fj_1=r/"1. 6—xisdecreasing.

Therefore the geometric serieg-r +---+r/~! adds up to
(remember to subtragf) 17 The expenses drop to zerawat . The total expense dur-
B . ing those years equals . This is the area of .
6 The sumsf; = (r/ —1)/(r —1) also havef; — f;_; =r/~L.
Now fo = . Thereforel + 7 +---+r/=1 adds up tof;. The 18 The rectangles of heights5,4,3,2,1 give a total estimated ex-
SUML+7 4 -l equals ) pense of . Draw them enclosing the triangle to show why this

. total is too high.
7 Supposev(x) =3 for x <1 andv(x) =7 for x > 1. Find the

areaf(x) from 0 to x, under the graph af (x). (Two pieces.) 19 How many rectangles (enclosing the triangle) would you need
before their areas are withihof the correct triangular area?

8 If v=1,-2,3,—4,..., write down the f’'s starting from

Jo=0.Find formulas for ; and f; when, is odd andj is even. 79 The accountant usé@syear intervals and computes= 5,3, 1 at
the midpoints (the odd-numbered years). What is her estimate, how
Problems 9-16 are about the company earning/x per year. accurate is it, and why?
9 When time is divided into weeks there arex 52 =208
rectangles. Write down the first area, th68th area, and the
jth area.

21 What is the areg (x) under the linev(x) = 6 —x above the in-
terval from2 to x? What is the derivative of thig(x)?

22 What is the areg'(x) under the linev(x) = 6 — x above the in-

10 How do you know that the sum ove08 weeks is smaller . - .
terval fromx to 6? What is the derivative of thig(x)?

than the sum over6 quarters?

11 A pessimist would usey/x at the beginning of each time 23 With Ax=1/3, find the area of the three rectangles that
period as the income rate for that period. Redraw Figure Zaclose the graph af(x) = x2.
(both parts) using heights/0,4/1,4/2,4/3. How much lower

is the estimate of total income? 24 Draw graphs ofy = /x and v = x2 from 0 to 1. Which areas

add tol? The same is true far=x3 andv =
12 The same pessimist would redraw Figure 5.2 with heights _ o
0,/1/4,.... What is the height of the last rectangle? How5 Fromux tox+Ax,the area undes =x*is A /. This is almost

much does this change reduce the total rectangularsa6a arectangle with basax and height . SoA f/Ax s close to
. In the limit we finddf/dx = x% and f(x) =

13 At every step from years to weeks to days to hours, the
pesimist's area goes and the optimist's area goes . 26 Compute the area 0208 rectangles undep(x)=/x from
The difference between them is the area of the last . x=0tox=4.
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I 5.2 Antiderivatives I

The symbolf was invented by Leibniz to represent the integral. It is a stretched-out
S, from the Latin word for sum. This symbol is a powerful remindéthe whole
construction:Sum approaches integrals approaches|, and rectangular area
approaches curved area

curved area= [ v(x) dx= [ +/xdx. (1)

Therectangles of basA x lead to this limit—the integral of/x. The “dx” indicates
that Ax approaches zero. The heights of the rectangles are the heightéx) of
the curve. The sum af; timesAx approaches “the integral ef of x dx.” You can
imagine an infinitely thin rectangle above every point, instead of ordinary rectangles
above special points.

We now find the area under the square root curve. Tingts of integration” are
0 and4. The lower limit isx = 0, where the area beginsTlfe start could be any
point x = a.) The upper limit isx = 4, since we stop after four yeardl{e finish
could be any pointk = b.) The area of the rectangles is a sum of bAsetimes
heightsy/x. The curved area is the limit of this suffihat limit is the integral of

4/x fromO to 4:
x=4
Alimo[(\/Ax)(Ax)+(\/2Ax)(Ax)+---+(\/Z)(Ax)]: Vadx. (2
xX= x=0

Theoutstanding problem of integral calculus is still to be solW&fthat is this limiting
area? We have a symbol for the answer, invoIviﬁgand\/E and dx—nbut we don’t
have a number.

THE ANTIDERIVATIVE

I wish | knew who discovered the area under the grapR/af It may have been
Newton. The answer was available earlier, but the key idea was shared by Newton
and Leibniz. They understood the parallels between sums and integrals, and between
differences and derivatives. | can give the answer, by following that analogy. | can’t
give the proof (yet)—it is the Fundamental Theorem of Calculus.

In algebra the differencg; — f;_; is v;. When we add, the sum of thés is
fn — fo. In calculus the derivative off(x) is v(x). When we integratedhe area
under thev(x) curve is f(x) minus £(0). Our problem asks for the area outte=
4:

5B (Discrete vs. continuous, rectangles vs. curved areas, aaddgi integration
The integral ofv(x) is the difference inf (x):

If df/dx=+/x then area= [*Zo\/x dx = f(4) — f(0). 3)

What is f(x)? Instead of the derivative of/x, we need its antiderivative” We
have to find a functiory'(x) whose derivative is/x. It is the opposite of Chapters
2 —4, and requires us twork backwards The derivative ofx” is nx"!—now
we need the antiderivative. The quick formulafigx) = x"*1/(n + 1)—we aim to
understand it.

Solution  Since the derivative lowers the exponent, the antiderivasisesit. We
go fromx!/2 to x3/2. But then the derivative i63/2)x'/2. It contains an unwanted
factor3/2. To cancel that factor, put/3 into the antiderivative
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f(x) = 2x3/2 has the required derivative(x) = x'/? = 1/x.

i 1
3
] Total income = 2 4= 16 ,
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Fig. 5.3 The integral ofv(x) = /x is the exact ared,/3 under the curve.

There you see the key to integrals: Work backward from derivatives (and adjust).
Now comes a humber—the exact areaxAt 4 we findx>/% = 8. Multiply by 2/3
to get16/3. Then subtracy (0) = 0:

xX=

4
22y 2y 10
V=SS 0P = 56) = 5 ()

The total income over four years id6/3 = 5% million dollars. This is f(4) —

f(0). The sum from thousands of rectangles was slowly approaching this exact area
1

53-

Other areas The income in the first year, at=1, is 2(1)3/2 = 2 million dollars.

(The false income was million dollars.) The total income after years is% (x)3/2,

which is the antiderivativef(x). The square root curve cove?g3 of the overall

rectangle it sits in The rectangle goes out toand up toy/x, with areax3/2, and
2/3 of that rectangle is below the curve. (1j83above.)

Other antiderivativesThe derivative ofx® is 5x*. Therefore the antiderivative of
x*is x5 /5. Divide by5 (orn + 1) to cancel thé (or n + 1) from the derivative. And
don'tallown +1=0:

The derivativev(x) = x" has the antiderivativef (x) = x" ™1 /(n +1).

EXAMPLE 1 The antiderivative ofc? is %x3. This is the area under the parabola
v(x) =x2 The areaoutta = 1 is 3(1)*— £(0)*, or 1/3.

Remark on,/x andx? The2/3 from /x and thel /3 from x2 add tol. Those are
the areas below and above tRér curve, in the corner of Figure 5.3. If you turn
the curve by90°, it becomes the parabola. The functions- /x and x = y? are
inverses! The areas for these inverse functions add to a square df area
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(3]

Total area
10

5 Integrals

AREA UNDER A STRAIGHT LINE

You already know the area of a triangle. The region is below thgatal linev = x
in Figure 5.4. The base & the height ist, and the area ié (4)(4) = 8. Integration
is

Exactarea=8 1 .
1 Area under v(x)=x |
]
vlx)=x - v(x)=x fx) =I xdx= —;— x2 :
1
[
91 © !
2 ]
1
1
]
4 1
7 . !
1
1 1
1] *
X 2 .5 : ;
| 2 % 4

Fig. 5.4  Triangular area& as the limit of rectangular areal), 9, 8%, .

not required! But if you allow calculus to repeat that answer, and build up the integral
f(x)= %xz asthe limiting area of many rectangles, you will have the beginning of
something important.

The four rectangles have aréa-2 43 +4 = 10. That is greater thaB, because
the triangle is insidelO is a first approximation to the triangular ar8aand to
improve it we need more rectangles.

The next rectangles will be thinner, of widthx = 1/2 instead of the original
Ax = 1. There will be eight rectangles instead of four. They extend above the line, so
the answer is still too high. The new heights &y&, 1, 3/2,2,5/2,3,7/2, 4. The
total area in Figure 5.4b is the sum of the base= 1/2 times those heights:

area= 3 (3 +1+43+2+---+4) =9 (which is closer ta).

Question What is the area of6 rectangles? Their heights aj % o4

Answer  With baseAx = 1 the areaiis} (2 +1 +---+4) =81

The effort of doing the addition is increasing. A formula for the sums is needed, and
will be established soon. (The next answer wouchlie) But more important than

the formula is the idedle are carrying out a limiting process, one step at a time
The area of the rectangles is approaching the area of the triangley aecreases.
The same limiting process will apply to other areas, in which the region is much more
complicated. Therefore we pause to comment on what is important.

Area Under a Curve

What requirements are imposed on those thinner and thinneamigdes? It is not
essential that they all have the same width. And it is not required that they cover the
triangle completely. The rectangles could lielowthe curve. The limiting answer
will still be 8, even if the widthsAx are unequal and the rectangles fit inside the
triangle or across it. We only impose two rules:

1. The largest widthA x,ox must approach zero.
2. The top of each rectangle must touch or cross the curve.
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The area under the graph is defined to be the limit of these radtmayeas, if that

limit exists. For the straight line, the limit does exist and equal3hat limit is

independent of the particular widths and heights—as we absolutely insist it should be.
Section 5.5 allows any continuougx). The question will be the same—Does the

limit exist? The answer will be the same—Yes. That limit will be thtegral of

v(x), and it will be the area under the curve. It will if&x).

EXAMPLE 2 The triangular area fror to x is 3 (base) (heigh) = 3 (x)(x). That
is f(x) = 3x?. Its derivative isv(x) = x. But notice that}x?+ 1 has thesame

derivative So doesf = %x2+C, for any constanC. There is a tonstant of
integration” in f(x), which is wiped out in its derivative(x).

EXAMPLE 3 Suppose the velocity is decreasingx) = 4 — x. If we samplev at

x =1,2,3,4, the rectangles lienderthe graph. Because is decreasing, the right
end of each interval givesy,. Then the rectangular aréat+-2+1+0=6is less
than the exact arel The rectangles aiiasidethe triangle, and eight rectangles with
base} come closer:

rectangular area= (33 +3+---+1+0)=7.

Sixteen rectangles would have aﬂ%). We repeat that the rectangles need not have
the same widtha x, but it makes these calculations easier.

What is the area out to an arbitrary point (like=3 or x = 1)? We could insert
rectangles, but the Fundamental Theorem offers a faster way. Any antiderivative
of 4 — x will give the areaWe look for a function whose derivative — x. The
derivative of4x is 4, the derivative of%x2 is x, so work backward:

,’62.

to achievelf/dx = 4 — x choosef (x) = 4x — 3

Calculus skips past the rectangles and compft€y = 7%. The area between =

1 and x =3 is the difference74 —31 =4. In Figure 5.5, this is the area of the
trapezoid.

The fcurve flattens out when the-curve touches zero. No new area is being
added

751 . t
i zero slope
- 6+ E
4 |" \ H .lf= 4
" H
3+ 7
\\ vix)=4-x 354
3 3 1
= N ,r'nl:J.[-i—-\}:!.tz-l.\— —1—1:
D  zero velocity }
1+ area 4 T l
l . b \ - . : X
1 2 3 4 1 2 3 4+

Fig. 5.5 Theareaishf =75 —31 =4. Sincev(x) decreasesf (x) bends down.
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INDEFINITE INTEGRALS AND DEFINITE INTEGRALS

We have to distinguish two different kinds of integrals. Theyhbase the antideriva-
tive f(x). The definite one involves the limitsand4, the indefinite one doesn't:

Theindefinite integralisafunction f(x) = 4x —3x2.
The definite integralfrom x = 0 to x = 4 is thenumber f(4) — f(0).

The definite integral is definitely. But the indefinite integral is not necessarily
4x — %xz. We can change f(x) by a constant without changing its derivative
(since the derivative of a constant is zero). The following functions are also antideriva-
tives:

1 1,2 1.2
f(x):4x_5x2+17 f(x)=4x—5x —9, f(x)=4x—5x _|_C

The first two are particular examples. The last is the general case. The cafistant

can be anything (including zero), to give all functions with the required derivative.
The theory of calculus will show that there are no others. The indefinite integral is
the most general antiderivative (with no limits):

indefinite integral f(x) = [v(x) dx =4x —1x2+C. (5)

By contrast, the definite integral is a number. It contains no arbitrary conStant
More that that, it contains no variable The definite integral is determined by the
functionv(x) and the limits of integration (also known as teedpoints). It is the
area under the graph between those endpoints.

To see the relation of indefinite to definite, answer this questidinat is the defi-
nite integral between = 1 andx = 3? The indefinite integral gives(3) = 7% +C
and f(1)= 3%+C. To find the area between the limisybtract f at one limit
from f at the other limit

[ v() dx=f(3)— f(1)=(T4+C)— (3L +C) =4. (6)

Theconstant cancels itself! The definite integral is dierencebetween the values
of the indefinite integralC disappears in the subtraction.

The differencef (3) — f(1) is like f, — fo. The sum ofv; from 1 ton has become
“the integral ofv(x) from 1 to 3.” Section 5.3 computes other areas from sums, and
5.4 computes many more from antiderivatives. Then we come back to the definite
integral and the Fundamental Theorem:

b b df
f v(x) dx = f Y dx = 1)~ fta). @)

a

5.2 EXERCISES

Read-through questions

Integration yields the _a _under a curvey = v(x). It starts from h  minus __i . The limits of integration are j . This

rectangles with base b and height/(x) and areas ¢ . As isa__k _integral, whichisa | and not a functionf'(x).

Ax — 0 the areav1 Ax +--- +v, Ax becomes the_d _ of v(x).

The symbol for the indefinite integral ofx)is_e . The example v(x)=x has f(x)=__m . It also has
f(x)=__n__. The area unden(x) from2to 6is__ o . The

The problem of integration is solved if we fing'(x) such constant is canceled in computing the differencep  minus
that _f . Then f isthe g of v, and fgv(x)dx equals q .lfv(x)=x8thenf(x)=_r
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The sumvy+---4+v, = f — fo leads to the Fundamental25 For v; and v, in the figure estimate the areg&2) and f(4).
Theorem_[la’v(x) dx=_s .The__t integralisf(x) and the Startwithf(0)=0.
u__integral is f(b)— f(a). Finding the __v__ under the

v-graph is the opposite of finding the w__ of the f-graph. 2

I'.I X)
Find an antiderivative f(x) for v(x) in 1-14. Then compute the 1
definite integral J"(l)v(x) dx = f(1)— £(0).

1 5x4+44x° 2 x+12x2 l U

3 1/v/x (orx=1/?) 4 (V3)? (orx*?)

5 x1/3 4 (2x)1/3 6 x1/3/x2/3

7 2sinx 4sin2x 8 seCx+1

9 x cosx (by experiment) 10 x sinx (by experiment) vy(x)
11 sinx cosx 12 sin?x cosx D) I

13 0 (find all f) 14 —1 (find all f) ——
. 10 l \_/

15 If df/dx=v(x) then the definite integral ofv(x) from
atobis M fi—fi—1=v; then the definite sum of
vzt tuzis . 26 Draw y =v(x) so that the aregf(x) increases untilk =1,

16 The areas include a factaokx, the base of each rectanglefs‘tays constant to = 2, and decreases $6(3) = 1.

So the sum ofv's is multiplied by _ to approach the 27 Describe the indefinite integrals of; and v,. Do the areas
integral. The difference off’s is divided by to approach increase? Increase then decrease? ...

the derivative. )

28 Forvg4(x) find the areaf (4) — f(1). Draw f4(x).

29 The graph ofB(¢) shows the birth rate: births per unit time
at time¢. D(¢) is the death rate. In what way do these numbers
appear on the graph?

17 The areas of4, 8, and 16 rectangles werd0, 9, and gl
containing the triangle out tar =4. Find a formula for the
aread y of N rectangles and testitfa¥ =3 andN =6.

18 Draw four rectangles with bask below the y = x line, and

find the total area. What is the area withrectangles? 1. The change in population from=0to 7 = 10.

2. The timeT when the population was largest.

19 Draw y =sinx from 0 to z. Three rectangles (base/3) 3. The timer* when the population increased fastest.
and six rectangles (basg/6) contain an arch of the sine function.
Find the areas and guess the limit. 30 Draw the graph of a functiony4(x) whose area function

20 Draw an example where three lower rectangles under'sa})“(x)'
curve (heightsny, my, m3) have less area than two rectangles. 31 If va(x) is an antiderivative o, (x), draw y, (x).

21 Draw y=1/x2 for 0<x <1 with two rectangles under it 32 Supposev(x) increases fromv(0) =0 to v(3) =4. The area
(base 1/2). What is their area, and what is the area for fownder y =v(x) plus the area on the left side of=v~1(y)
rectangles? Guess the limit. equals .

22 Repeat Problerdl for y = 1/x. 33 True or false when f(x) is an antiderivative ob(x).

23 (with calculator) Forv(x)=1//x take enough rectangles (&) 2/(x)isan antiderivative o2v(x) (try example}
over 0 <x <1 to convince any reasonable professor that the area (b) f(2x) is an antiderivative ob(2x)
is 2. Find f(x) and verify thatf (1) — f(0) =2. (¢) f(x)+1is an antiderivative ob(x) + 1

24 Find the area under the parabota=x2 from x=0 to @ flx+ 1).i5 an anltide.riva.tive 0b(x +1).
x =4. Relate it to the are#6/3 below /x. (e) (f(x))?is an antiderivative ofv(x))?.



240 5 Integrals

I 5.3 Summation versus Integration |G

This section does integration the hard way. We find explicit formulas for
fa=v1+---4+v,. From areas of rectangles, the limits produce the aféa)
under a curve. According to the Fundamental Theorelfi/dx should return

us tov(x)—and we verify in each case that it does.

May | recall that there is sometimes an easier way? If we can finf(an whose
derivative isv(x), then the integral o is f. Sums and limits are not required, when
f is spotted directly. The next section, which explains how to look far), will
displace this one. (If we can't find an antiderivative we fall back on summation.)
Given a successfuf, adding any constant produces anotliersince the derivative
of the constant is zero. The right constant achiefé¥ = 0, with no extra effort.

This section constructs(x) from sums. The next section searches for antiderivatives.

THE SIGMA NOTATION

In a section about sums, there has to be a decent way to expeess@onsider
12 +2% + 32+ 42, The individual terms are; = j2. Their sum can be written in
summation notation using the capital Greek letté&l (pronounced sigma):

4
17 +2% 4 3%+ 4% is written Y _ j°.
J=1

Spoken aloud, that becomethé sum of j2 from j =1 to 4. It equals30. The
limits on j (written below and abov&) indicate where to start and stop:

n 9
vl+"'+vn:Zv/ and U3+-..—|—Ug:ZUk. (1)
j=1 k=3

Thek at the end of(1) makes an additional point. There is nothing special about the
letter j. That is a ‘lummy variablé no better and no worse tha@n(or ;). Dummy
variables are only on one side (the side wath and they have no effect on the sum.
The upper limitz is on both sidesHere are six sums:

n 4 )
Y k=142+43++n Y (=) =—14+1-14+1=0
k=1 =1

5 0

> 2j—1)=14+3+5+7+9=52 Zvi:vo[onlyonetern]

j=1 i=0

4 . © 1 1 1 o .
Y 2= [meamngless]? Yo o =1+-+—4+-=2 [lnfmlte sene%
i=1 k=0 2" 2 4

The numberd andrn or 1 and4 (or 0 and o) are thelower limit and upper
limit. The dummy variablé or j or k is theindexof summation. | hope it seems
reasonable that the infinite serikg- % + % + -+ adds to2. We will come back to it
in Chapter 1G:

A sum like £ _, 6 looks meaningless, but it is actualy+6+---+6 = 6n. It

follows the rules. In facE?_, j? is not meaningless either. Every termjié and by

+Zeno the Greek believed it was impossible to get anywhere, since he would only go halfway
and then half again and half again. Infinite series would have changed his whole life.
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the same rules, that sum4g 2. However thei was probably intended to bg Then
the sumisl +4+9+ 16 = 30.

Question What happens to these sums when the upper limits are chang@d to
Answer The sum depends on the stopping peinA formula is required (when

possible). Integrals stop at sums stop at, and we now look for special cases when
f(x) or f, can be found.
A SPECIAL SUMMATION FORMULA

How do you add the first00 whole numbers? The problem is to compute

100

D J=1+4243+---4+98+99+100 ="
Jj=1

If you were Gauss, you would see the answer at once. (He solvegrbiblem at a

ridiculous age, which gave his friends the idea of getting him into another class.)

His solution was to combink+ 100, and2 + 99, and3 + 98, always adding td 01.
There are fifty of those combinations. Thus the surfd® (101) = 5050.

The sum froml to n uses the same idea. The first and last terms addftd. The
next terms: — 1 and2 also add to: + 1. If n is even (ad 00 was) then there arén

parts. Therefore the sum %n timesn 4 1:

n

1
Zj:l+2+---+(n—l)+n:En(n—H). (2)
J=1

Theimportant term isin2, but the exact sum ign® + in.

What happens ifi is an odd number (like = 99)? Formula(2) remains true. The
combinationsl + 99 and2+ 98 still add ton + 1 = 100. There are}(99) =494
such pairs, because the middle term (which® has nothing to combine with. Thus
1424499 equalst91 times100, or 4950.

Remark That sum had to b&950, because it i$050 minus100. The sum up t®9
equals the sum up tb00 with the last term removed. Our key formufa — f,_1 =
v, has turned up again!

EXAMPLE Find the suml01 + 102 4+ - -- 4200 of theseconchundred numbers.
First solution This is the sum fronl to 200 minus the sum from to 100 :

200 200 100

NEDIEDIY 3)

101 1

The middle sum is}(200)(201) and the last is} (100)(101). Their difference is
15050.
Note | left out“ j =" in the limits. It is there, but not written.

Second solution The answei 5050 is exactly the sum of the first hundred numbers

(which was5050) plus an additional 0000. Believing that a number liké0000 can
never turn up by accident, we look for a reason. It is found thrazlgnging the
limits of summation

241
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200 100
Z j is the same sum aE (k+100). (4)
j=101 k=1

This is important, to be able to shift limits around. Often the lower limit is moved
to zero or one, for convenience. Both sums h&0@ terms (that doesn’t change).
The dummy variablg is replaced by another dummy variakleThey are related by

j =k 4100 or equivalently byt = j — 100.

The variable must change everywherén the lower limit and the upper limit
as well as inside the sum. Jf starts atlO1, thenk = j — 100 starts atl. If j ends
at200, k ends atl00. If j appears in the sum, it is replaced by- 100 (and if j2
appeared it would beconi& + 100)?).

From equatiorf4) you see why the answer 1$050. The suml +2+---4+ 100 is
5050 as beforel00 is added to each of thosB)0 terms That givesl 0000.

EXAMPLES OF CHANGING THE VARIABLE (and the limits)
3. 4
2! equals " 27! (herei = j —1). Both sums aré +2 +4+8
=0 j=1
n n-3
vi equals) vji3 (herei =j+3andj =i —3). Bothsums ares +- -+ v,.
= j=0

1

=3

Why changen to n —3? Because the upper limitis=n. Soj+3=n andj =
n—3.

A final step is possible, and you will often seeThe new variable;j can be
changed back ta. Dummy variables have no meaning of their own, but at first the
result looks surprising:

5

6 6
ZZi equals Z 271 equals Zzi—l.
j=1

i=0 i=1

With practice you might do that in one step, skipping the temporary I¢tteveryi

on the left becomes— 1 on the right. Therd =0, ...,5 changesté =1, ...,6. (At

first two steps are safer.) This may seem a minor point, but soon we will be changing
the limits onintegralsinstead of sums. Integration is parallel to summation, and it is
better to see a “change of variable” here first.

Note aboutl + 2+ ---+n. The good thing is that Gauss found the sén{n +1).
The bad thing is that his method looked too much like a trick. | would like to show
how this fits the fundamental rule connecting sums and differences:

if vi+va+---+v,= fu then v, = fr, — fu_1. %)

Gauss says thaf,, is 27(n + 1). Reducing: by 1, his formulaforf,,_y is 1 (n — 1)n.
The differencef, — f,_1 should be the last term in the sum

In—fn_1= %n(n +1) —%(n —)n= %(nz—kn —n’4+n)=n. (6)

This is the one terma,, = n that is included inf,, but notin f,, ;.

There is a deeper point here. For any siim there are two things to check. The
f’'s mustbegincorrectly and they musthangecorrectly. The underlying idea is
mathematical induction Assume the statement is true belawProve it forn.
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Goal Toprovethatl +24---+n= %n(n +1). This is the guessf,,.
Proof by induction Check f; (it equalsl). Check f,, — f,_1(it equalsn).

Forn =1 the answein(n +1) = 1-1-2 s correct. Fom =2 this formulal -2-3
agrees withl + 2. But that separate test is not necesséry! f1 is right, and if the
change f, — f,_1 is right for everyn, then f, must be right Equation(6) was
the key test, to show that the changefifs agrees withy.

That is the logic behind mathematical induction, but | am not happy with most of
the exercises that use it. There is absolutely no excitement. The answer is given by
some higher power (like Gauss), and it is proved correct by some lower power (like
us). Itis much better when we lower powers find the answer for oursgelvberefore
I will try to do that for the second problem, which is taem of squares.

THE SUM OF j2 AND THE INTEGRAL OF x2

An important calculation comes next. It is the area in Figuée Gne region is made
up of rectangles, so its area is a sumnopieces. The other region lies under the
parabolav = x2. It cannot be divided into rectangles, and calculus is needed.

The first problemis to find;, = 12 + 22+ 32 +--- 4+ n2. This is a sum of squares,
with /1 = 1 and f = 5 and f3 = 14. The goal is to find the pattern in that sequence.
By trying to guessf,, we are copying what will soon be done for integrals.

Calculus looks for ary'(x) whose derivative is(x). There f is anantiderivative

(nAx)? 1

Area
(124 ... + n?) (Ax)®

(Ax)?

[ 5
d

1 2 3=n Ax 1 2 3=nAx l

Fig. 5.6 Rectangles enclosing= x2 have area(%n3 +3n?+ %n) (Ax)3~ 1(nax)? =153,
(or an integral). Algebra looks fof;,’'s whose differences produeg. Here f,, could
be called arantidifferencebetter to call it a sum).

The best start is a good guess. Copying directly from integrals, we might try
fu = 1n3. Totestifitis right, check whethef, — f,_; produces o, =n?:

I —tn—-1Y>=n -1’ -3n*+3n-1)=n*-n+1.

We seen?, but also—n + 5. The guessin® needscorrection terms To cancell
in the difference, | subtrac%n from the sum. To put back in the difference, | add
1424--+n= %n(n + 1) to the sum. The new guess (which should be right) is

Jon= %113 + %n(n +1)— %n = %113 + %”2 + én. @)

To check this answer, verify first thaf; = 1. Also f, =5 and f; = 14. To be
certain, verify thatf,, — f,_; = n?. For calculus the important term bﬁ:

1 The goal of real teaching is for tludentto find the answer. And also the problem.
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7 . 1 . 1 1
The sum Y j2 of the firstn squares |S§n3 plus correctlonsin2 and o
j=1 :

In practice %n3 is an excellent estimate. The sum of the fil€i0 squares is

approximately%(100)3, or a third of a million. If we need the exact answer,
equation(7) is available: the sum i838,350. Many applications (example: the
number of steps to solviD0 linear equations) can settle f§n3.

What is fascinating is the contrast with calcul@alculus has no correction terms
They get washed away in the limit of thin rectangles. When the sum is replaced by
the integral (the area), we get an absolutely clean answer:

The integral ofv = x? from x = 0 to x = n is exactlyzn>.

The area under the parabola, out to the pwsint 100, is precisely a third of a million.
We have to explain why, with many rectangles.

The idea is to approach an infinite number of infinitely thin rectangles. A hundred
rectangles gave an area3i8,350. Now take a thousand rectangles. Their heights

are (11—0)2,(12—0)2, ... because the curve is= x2. The base of every rectangle is
Ax = 11—0, and we add heights times base:

area of rectangles: ( — (1 (2 (1 v (1000 201
J 10 10 10 10 10 10/°
Factor out(%)3 . What you have leftig2 422 + - - - + 10002, which fits the sum of

squares formula. The exact area of the thousand rectan83,i833.5. | could try
to guess ten thousand rectangles but | won't.

Main point: Theareaisapproachiig3,333.333.... Butthe calculations are getting
worse. It is time for algebra—which means that we kedp" and avoid numbers.

Theinterval of lengtH 00 is divided intor pieces of lengtiA x. (Thusn = 100/ Ax.)
The jth rectangle meets the curve= x2, so its height i jAx)2. Its base isAx,
and we add areas:

area= (Ax)%(Ax) + 2AX)*(Ax)+---+ (nAx)*(Ax) = Z(ij)Z(Ax).
j=1

®) 100
Fador out(Ax)3, leaving a sum of squares. The area(a x)> times f,,, andn = A—:
X

1(100\> 1(100\> 1 (100 | U [ 1 )
|:3 (Ax) +2 (Ax) +6 (Ax):| = 3100 +2100 (Ax)+6100(Ax) .

This equation shows what is happening. The leading term is a third of eggr%illion,
as predicted. The other terms are approaching zero! They coatajrand as the
rectangles get thinner they disappear. They only account for the small corners of
rectangles that lie above the curve. The vanishing of those corners will eventually be
proved for any continuous functions—the area from the correction terms goes to
zerc—but here in equatio(®) you see it explicitly.

The area under the curve came from the central idea of integraliy:Ax
rectangles of widti\ x approach the limiting area%(100)3. The rectangular area
is Zv;Ax. The exact area is| v(x)dx. In the limit = becomes| and v; be-
comesv(x) and Ax becomesix.
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That completes the calculation for a parabola. It used the flarion a sum of
squares, which was special. But the underlying idea is much more general. The
limit of the sums agrees with the antiderivatiiéne antiderivative ofv(x) = x2 is
f(x)= %x3. According to the Fundamental Theorem, the area un@eris f(x):

o u(x) dx = £(100) — £(0) = 1(100)>.

That Fundamental Theorem is not yet proved! | mean it is not proved by us. Whether

Leibniz or Newton managed to prove it, | am not quite sure. But it can be done. Start-

ing from sums of differences, the difficulty is that we have too many limits at once.

The sums ob ; Ax are approaching the integral. The differencéef/ Ax approach

the derivative. A real proof has to separate those steps, and Section 5.7 will do it.
Proved or not, you are seeing the main point. What was true for the nunfbers

andv; is true in the limit forv(x) and f(x). Now v(x) can vary continuously, but it

is still the slope off'(x). The reverse of slope is area

VAV i O T A S

LS
}
5 y

r 4
4 VA SV 4 A A
(14+2+3+42=134+284+33 4+ 4
Proof without words by Roger NelseM@thematics Magazin&9g90).

Finally we review the area under=x. The sum ofl +2+---+n is $n®+ 3n.
This gives the area ai =4/Ax rectangles, going out te = 4. The heights are
jAx, the bases arAx, and we add areas:

4/Ax

2
> (jAX)(Ax) = (Ax)? B (Aix) +% (Aix)} =84 2Ax. (10)
j=1

With Ax = 1the areaid + 2+ 3 4+ 4 = 10. With eight rectangles and x = % the
area was8 +2Ax = 9. Sixteen rectangles of widtl}g brought the correctio? A x
down to%. The exact area i8. The error is proportional toA x.

Important note There you see a question in applied mathematics. If there is an
error, what size is it? How does it behave/as — 0? The Ax term disappears in
the limit, and(Ax)? disappears faster. But to get an errorléf® we needeight
million rectangles

2Ax =2-4/8,000,000 =105,

That is horrifying! The number$0,9,8%,8i, ... seem to approach the ar8an

a satisfactory way, but the convergencarisich too slow It takes twice as much
work to get one more binary digit in the answer—which is absolutely unacceptable.
Somehow theA x term must be removed. If the correction(is x)? instead ofAx,

then a thousand rectangles will reach an accuradyof.

The problem is that the rectangles are unbalancetkir right sides touch the
graph ofv, but their left sides are much too high. The best is to cross the graph in
themiddleof the interval—this is thenidpoint rule. Then the rectangle sits halfway
across the line = x, and the error is zero. Section 5.8 comes back to this rule—and
to Simpson’s rule that fits parabolas and removes(the)? term and is built into
many calculators.



246

5 Integrals

Finally we try the quick way. The area undee x is f = %x2, becauself/dx
is v. The area outtar =4 is 1(4)? = 8. Done.

| 1

centered
rectangles

unbalanced

Error rectangles Error

1/4
19
1/¢ Work

— = Work
| 4 9 1 2 3

Fig. 5.7 Endpoint rules: error 1/(work) ~ 1/xn. Midpoint rule is better: error 1/(work)?.

Optional: pth powers Our sums are following a pattern. Firdt+---+n is %nz

plus 2n. The sum of squares in plus correction termsThe sum ofpth powers

is 1

17427 4. 4nP = ?n"“ plus correction terms (11)
p

192The correction involves lower powersof and you know what is cominghose
corrections disappear in calculusThe area under = x? fromO ton is

n/Ax

n
1
xPdx = lim iAX)P(Ax) =
L_o‘ 0= im 3 (AN (80 = —

nPti, (12

Calculus doesn'’t care if the upper limit is an integer, and it doesn’t care if the
power p is an integer. We only need + 1 > 0 to be suren?*! is genuinely the
leading termThe antiderivative ofv = x? is f =x?t1/(p+1).

We are close to interesting experiments. The correction terms disappear and the sum
approachesthe integral. Here are actual numbers ferl, when the sum and integral
are easyS, = 1+---+nandl, = [ x dx = 1n?. The differenceisD, = n. The
thing to watch is theelative errorE,, = D,/ I,:

n Sy I, D,=S,—1, E,=D,/I,
100 5050 5000 50 .010
200 20100 20000 100 .005
The number0, 100 is %(200)(201). Please write down the next line= 400, and
please find a formula forE,. You can guess, from the table, or you can derive
it from knowing S, and I,,. The formula should show that, goes to zero. More
important, it should show how quick (or slow) that convergence will be.

One more number—a third of a million—was mentioned earlier. It came from
integratingx? from 0 to 100, which compares to the suffoo of 100 squares:

nop S, Iy=1in* D=S—-1 E=D/I
100 2 338350 3333337 50165  .01505
200 2 2686700 26666665 200333 0075125

These numbers suggest a new ide&eepn fixed and changep. The computer can
find sums without a formula! With its help we go to fourth powers and square roots:

n p S=1P+-4n? I=n?*'/(p+1) D=S—-1 E,,=D/I
100 4 2050333330 %(100)5 50333330 0.0252
100 3 671.4629 %(100)3/2 4.7963 0.0072
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In this and future tables we don’t expect exact values. The lasies are rounded
off, and the goal is to see the pattern. The erigs, are sure to obey a systematic
rule—they are proportional tb/ n and to an unknown numbéi( p) that depends on
p- | hope you can push the experiments far enough to disa@yg). This is not an
exercise with an answer in the back of the book—it is mathematics.

5.3 EXERCISES

Read-through questions

100 1000

The Greek letter a indicates summation. InX{v; the 9 With electronic help computd_ 1/; and Y 1/].
1 1

dummy variable is__b . The limits are__c , so the first
teemis __d and the last term is_e . Whenv; = this

10 ) 10
sum equals__f . For n =100 the leading term is g . 10 Onacomputer fingd_ (—1)//;j! times ) 1/;!
The correctiontermis_h . The leading term equals the integral 0 0
of v = x from0 to 100, which is written__i . The sum is the total

n n
)2 . b2
j of 100 rectangles. The correction term is the area between the Simplify Z (ai +bi)" + .Z (ai —bi)" 10 .Z I

N i=1 i=1 i=1

k andthe |

Thesums{_;i*isthesamea&?_,__m andequals n . 15 Showthat(Z ) ) Za andZa,b ) Z a Z b.
The sumE sViisthesameas o v;14andequals p .For i=1 i=1 i=1

fn= ”_lv, the differencef, — f,—1 equals q . 1 |
- . 13 “Telescopethe sumsz (2k —2k—=1) and Z (———,)
The formula for 1#4+2°+4---4+n“ is fu=_1r . To prove k=1 J+1L
it by mathematical induction, checkfi=__s and check Allbuttwo terms cancel.
fu—fa_1=__t . The area under the parabola=x? from 12
x=0tox=9is__u_.Thisis close to the area of v__rectan- 14 Simplify the sumsZ (fi=fi-vand 3 (fj+1—S))-
gles of base\ x. The correction terms approach zero veryw . J= J=3
4 5
1 Compute the numbers. 1/n and Y (2i —3). 15 True or false (a) Z vj = Z Vi 2 (b)Z v = Z Vi
n=1 i=2 j=4 i=1 i=3
n n—1 6 8
2 ComputeZ(] —j)and21/21 16 Y vi=Y and Y i2=Y" .
j=0 ji=1 i=1 j=0 i=0 i=2
17 The antiderivative ofd2 f/dx? is df/dx. What is the sum
3 Evaluate the su 2l and Y 27, :
T?O EO (=2 + o) +(f3=2f2+ )+ +(fo—2fs + f7)?
6 . n 4 18 Induction: Verify that 12+422+..-+n? is fy=
4 Evaluate ) (—1)'iand ) (—1)/}. n(n+1)(2n+1)/6 by checking that f; is correct and
i=1 j=1 fn— fa—1=n2
5 Write these sums in sigma notation and compute them: 19 Prove by inductioni +3+ -+ +(2n — 1) = n2.
1 1 1
24446+4---+100 1434544199 1_§+§_Z 20 Verify that 13+234--+n3 is fy=1in2(+1)? by
checking f1 and f, — f,—1. The text has aroof without words
6 Express these sums in sigma notation: 21 Suppose f,, has the form an+bn?+cn3. If you know

V1 —VU2+v3—v4 VIW1+V2W2+--+VpWr  V1+VU3+V5 fi=1, f»=5, fz=14, turn those into three equations for

. . i —1,_1 . ._14 ?
7 Convert these sums to sigma notation: a, b, c. The solutions: = ¢, b = 3, ¢ = 3 give what formula’

22 Findg in the formulal® + --- +n8 = gn®+ correction.

2 %
apF+arx+--+anx™  SiN—=+SN—= -4 sin2zx 23 Add n =400 to the table forS, =1+---+n and find the
relative errorE,. Guess and prove a formula fé,.

8 The binomial formula uses coefficierfs | = nit 24 Add n =50 to the table forS, =1?+---+n* and compute
J Jlin—j)! Esg. Find an approximate formula fdt,,.

n n\ .. n n i 25 Add p=1 and p=3 to the table for S =
by = n n—lp . ... b = bl P=3 p ) 100,p
(@+b) <O)a + <l)a ot (n) EO 17 4 ... 41007 . Guess an approximate formula Bl oo, .
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26 GuessC(p) in the formulakE,, , ~ C(p)/n. 32 Write out all terms to see why the following are true:

27 Show that|1—5| < [1]+]|—5|. Always |v1 +v2| < |v1]+|va] 3 3 2 (3 2 3
unless . Dodvi=4Yy v Do Dwivi | = Dowi | (Do
1 1 i=1\j=1 1 1
28 Let S be the sum l4+x+x%2+-.- of the (infinite)
geometric series. ThenS =x+x2+x3+... is the same a§ 33 The average of 6,11,4 is =3(6+11+4). Then

minus . ThereforeS = . None of this makes sense if(6—v) + (11 —v)+ (4—v) = . The average ofvy, ...,vp
x =2 because . isv= . Prove thatX (v; —7) =0.
2 [ 3 3 : po (& 2 (E O\ (&
29 The double sum [Z (i+j)} is vi= Y. (1+j) plus 34 TheSchwarz inequalitys (;aibi) S (;ai) (?bi)’
i=1]j=1 i=1 Compute both sides itz =2, a» =3, by =1, by =4. Then

compute both sides for anyuy,as,b1,b>. The proof in

3
= 2+ j). Computev; andv, and the double sum.
2 Z @+)) P ! 2 Section 11.1 uses vectors.

Jj=1
35 Supposen rectangles with baseAx touch the graph of

2 (3 i
30 The double sumY [ > wi ;| is (w1 +wi2+wis)+ v(x) at the pointsx = Ax, 2Ax, ..., nAx. Express the total
i=1\/=1 ’J ’ ’ ’ rectangular area in sigma notation.

3 (2 :
S 36 If 1/Ax rectangles with bas@x touch the graph of(x) at
- The double sum 3. (Z w”*’) Is (i1 +w2,1) + theleft end of each interval (thus at=0, Ax,2Ax, ...) express the

j=1\i=1
(w12 +w22)+ . Compare. total area in sigma notation.
1/Ax ; _ .
31 Find the flaw in the proof that2” =1 for every 37 The sumAx Y. JGAY) — F((G=DAY) equals .
n=0,1,2,.... For n=0 we have2’=1. If 2" =1 for every j=1 Ax

n<N, then2V =2N-1oN-1 N2 _1.1/] =1, Inthe limit this becomeg dx =
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B 5 2 Indefinite Integrals and Substitutions ]

This section integrates the easy way, by looking for antiderivatives. We leave aside
sums of rectangular areas, and their limits/as — 0. Instead we search for af\(x)
with the required derivativev(x). In practice, this approach is more or less
independent of the approach through sums—but it gives the same answer. And also,
the search for an antiderivative may not succe#d may not findf. In that case
we go back to rectangles, or on to something better in Section 5.8.
A computer is ready to integrate, but not by discoveringf. It integrates
between specified limits, to obtainraimber (the definite integral). Here we hope
to find afunction (the indefinite integral). That requires a symbolic integration code
like MACSYMA or Mathematicaor MAPLE, or a reasonably nice(x), or both.
An expression forf (x) can have tremendous advantages over a list of numbers.
Thus our goal is to find antiderivatives and use them. The techniques will be further
developed in Chapter 7—this section is short but good. First we write down what
we know.On each line,f(x) is an antiderivative ofv(x) becauself/dx = v(x).

Known pairs Function v(x) Antiderivative f(x)
Powers ofx x" X"/ (n+1)+C
n=—1is not included, because +1 would be zero.v=x"! will lead us
to f =Inx.
Trigonometric functions COSx sinx+C
sin x —cosx+C
seéx tanx + C
cs@x —cotx+C
secx tanx secx +C
CsCx cotx —cscx+C
Inverse functions 1/4/1—x2 sin"lx+C
1/(14x2?) tamr!x+C

1/]x]vx2 =1 seclx+C

You recognize that each integration formula came directly from a differentiation
formula. The integral of the cosine is the sine, because the derivative of the sine is
the cosine. For emphasis we list three derivatives above three integrals:

d d d (x"t1
= (constanti=0  —(x)=1 = =x"
 (onstanty= 2 dx (n+1) *
xn+1
J()dx:C Jldx:x+C Jx”dx: +C
n—+1

There are two ways to make this list longer. One is to find the dévie of a new
f(x). Then f goes in one column and= df/dx goes in the other columinThe
other possibility is to use rules for derivatives to find rules for integrals. That is the
way to extend the list, enormously and easily.

T We will soon meet~, which goes irboth columnsitis f(x) and alsow(x).
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RULES FOR INTEGRALS

Among the rules for derivatives, three were of supreme impoeaithey were
linearity, theproduct rule, and thechain rule. Everything flowed from those three.
In the reverse direction (from to f') this is still true. The three basic methods of
differential calculus also dominate integral calculus:

linearity of derivatives— linearity of integrals
product rule for derivatives— integration by parts
chain rule for derivatives— integrals by substitution

The easiest is linearity, which comes first. Integration by avill be left for
Section 7.1. This section starts on substitutions, reversing the chain rule to make an
integral simpler.

LINEARITY OF INTEGRALS

What is the integral of(x) + w(x)? Add the two separate integrals. The graph of
v+ w has two regions below it, the area undeand the area fromv to v+ w.
Adding areas gives the sum rule. Suppgsandg are antiderivatives of andw:

sum rule f+g isanantiderivative of v4w
constant rule cf is an antiderivative of  cv
linearity: af +bg s an antiderivative of av+bw

This is a case of overkill. The first two rules are special cases of the third, so logically
the last rule is enough. However it is so important to deal quickly with constants— just
“factor them out—that the rulecv <> ¢ f is stated separately. The proofs come from
the linearity of derivatives(a f +bg)’ equalsaf’+ bg’ which equalsav + bw.

The rules can be restated with integral signs:

sum rule J[vx) +w(x)]dx = [v(x)dx+ [w(x)dx
constant rule [ ev(x)dx=c [v(x)dx
linearity: I\ [av(x) + bw(x)]dx =a[v(x)dx+b [w(x)dx

Note about the constant inf(x) + C. All antiderivatives allow the addition of a
constant. For a combination likeav(x)+bw(x), the antiderivative is
af(x)+bg(x)+ C. The constants for each part combine into a single constant
To give all possible antiderivatives of a function, just remember to wet€” after

one of them. The real problem is to find that one antiderivative.

EXAMPLE 1 The antiderivative ob = x2+x"2 is f=x3/3+(x"1)/(-1)+C.
EXAMPLE 2 The antiderivative ob cost +7 sint is 6 sint —7 cost + C.
1—sinx 1 —sinx
- as =
1—sinx 1 —sirtx cosx

The antiderivative i$anx — secx + C. That rewriting is done by a symbolic algebra
code (or by you). Differentiation is often simple, so most people check that
df/dx =v(x).

EXAMPLE 3 Rewrite = sac?x — secx tanx.

Question How to integratdar? x?
Method Write it asse@x — 1. Answer tanx—x+C.
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INTEGRALS BY SUBSTITUTION

We now present the most valuable technique in this section-stfubon. To see the
idea, you have to remember the chain rule:

f(g(x)) hasderivative f'(g(x))(dg/dx)
sinx? has derivative (c0sx?)(2x)

(x3+1)°> hasderivative 5(x3+1)*(3x?)

If the function on the right is given, the function on the left is its antiderivative!
There are two points to emphasize right away:

1. Constants are no problemthey can always be fixedivide by 2 or 15:
1 1
fx cogx)2%dx = 3 sn(x?)+C sz(xs +D*dx = EOCS +1)°+C

Notice the2 from x2, the5 from the fifth power, and tha from x3.

2. Choosing the inside functiorg (or #) commits us to its derivative

the integral oRx cosx? is sinx>2+C (g=x2,dg/dx =2x)
the integral ofcosx? is (failure) (nodg/dx)
the integral ofv? cosx? is (failure) (wrongdg/dx)

To substituteg for x2, we need its derivative. The trick is to spot an inside function
whose derivative is present. We can fix constants2ike 15, but otherwisedg/dx

has to be therevery often the inside functiog is writtenu. We use that letter to
state thesubstitution rule when 1 is the integral of:

Jv(u(x))% dx= f(u(x))+C. (1)

EXAMPLE 4 [ sinxcosx dx = £(sinx)?>+C u = sinx (compare Example 6)
EXAMPLE 5 [ sin*x cosxdx =1(sinx)*+C  u=sinx
EXAMPLE 6 | cosx sinxdx =—21(cosx)?+C  u=cosx (compare Example 4)

EXAMPLE 7 [ tarfxse@xdx = t(tanx)°+C  u=tanx
The next example has= x2 — 1 anddu/dx = 2x. The key step is choosing

EXAMPLE 8 [xdx/vx2—1=v/x2—1+C [xvx2—1dx=3(x2-1)%2+C
A shift of x (to x 4+2) or amultiple of x (rescaling t®x) is particularly easy:

EXAMPLES 9-10 [ (x+2)%dx=1(x+2)*+C [ cos2xdx=3sin2x+C

You will soon be able to do those in your sleep. Officially the derivativexof 2)*
uses the chain rule. But the inside functiea= x + 2 hasdu/dx =1. The “1"is
there automatically, and the graph shifts over—as in Figure 5.8b.

For Example 10 the inside functionis= 2x. Its derivative isdu/dx = 2. This
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vix+1)

0 2 0 1

Fig. 5.8  Substitutingu = x + 1 andu = 2x andu = x2. The last graph has half afu/dx = 2x.

required factor is missing inj Cco0s2x dx, but we put it there by multiplying and
dividing by 2. Check the derivative o% sin 2x: the2 from the chain rule cancels the
%. The rule for any nonzero constant is similar:

Jv(x—%c)dx:f(x—l—c) and Jv(cx)a’x=%f(cx). (2)

Squeezing the graph kydivides the area by. Now 3x + 7 rescalesandshifts:

EXAMPLE 11 [coS3x+7)dx=4snBx+7)+C [(Bx+7)%dx=3-13x+7)3+C

Remark on writing down the step&Vhen the substitution is complicated, it is a
good idea to gef/u /dx where you need it. Hergx? + 1 needsx:

7 7 d
J 7x(3x2+1)4dx=—f (3x%+1)*6x dx=—J u4—udx
6 6 dx
5 2. 1)5
Tu +CZZ(3x +1)

Now int te: -— C. 3
ow integrate e 3 g z + 3

Check the derivative at the entdlhe exponent cancels5 in the denominator,
6x from the chain rule cancets and7x is what we started with.

Remark on differentials In place of(du/dx)dx, many people just writ@/u:
JBx*+1D)*6xdx = [udu=tu’+C. 4

This really shows how substitution workg/e switch fromx to u, and we also
switch fromdx to du. The most common mistake is to confuge with du. The

factordu/dx from the chain rule is absolutely needed, to redeh The change of
variables (dummy variables anyway!) leaves an easy integral, and:thens back
into 3x2 + 1. Here are the four steps to substitutéor x:

1. Chooset(x) and compute/u/dx
2. Locatev(u) timesdu/dx timesdx, or v(u) timesdu

3. Integrate v(u) du to find f(u)+ C
4. Substitutes(x) back into this antiderivative’.

EXAMPLE 12 [ (cosy/x) dx/24/x = | cosu du =sinu+C =siny/x+C
(putinu)  (integrate (put backx)

The choice ofu mug be right, to change everything from to u. With ingenuity,
some remarkable integrals are possible. But most will remain impossible forever.

The functionzosx? and1/4/4 — sirfx have no “elementary” antiderivative. Those
integrals are well defined and they come up in applications—the latter gives the
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distance around an ellipse. That can be computed to tremendougay, but not

to perfect accuracy.

The exercises concentrate on substitutions, which need and deserve practice. We
give anonexample—[ (x2 + 1)%dx does not equa} (x* + 1)>—to emphasize the
need fordu/dx. Since2x is missingu = x2 + 1 does not work. But we can fix up

I

J. f du
sintxdx= | sinu—
T

1 1
——cosu+C =——cosnx+C.
T T

5.4 EXERCISES

Read-through questions

Finding integrals by substitution is the reverse of thea rule. 25 dy/dx=1/y 26 dy/dx=x]y
The derivative of (sinx)3 is __b . Therefore the antideriva- 2 2 5 5 _
tive of _ ¢ is _d . To compute [(I+sinx)?cosx dx, 7 diyldxT=1 28 d>y[dx” =1
substitute u=__e Then du/dx=__f  so substitute 29 d2y/dx>=—y 30 dy/dx = /Xy
du=_ g . In terms of u the integral is [_h = i 31 d2y/dx® =+/x 32 (dy/dx)? = /X

Returning tox gives the final answer.

The best substitutions for _[tan(x+3)se8(x+3)dx 33
and [(x2+1)!%xdx are u=_ j and u=__k . Then
du=_1 and _m . The answers are_ n__and _ o

The antiderivative of vdv/dx is _p . [2xdx/(1+x?)
leads to [ g , which we don't yet know. The integral

Jdx/(14x2) is known immediately as_r .

34
Find the indefinite integrals in 1-20.

True or false when ' is an antiderivative ob:
@ [o@x)dx= f(u(x)+C

() [v2(x)dx=31f3(x)+C

(€) [v(x)du/dx)dx= f(u(x))+C

(d) [v(x)(dv/dx)dx=4%f2(x)+C

True or false when £ is an antiderivative ob:
@ [f(x)(dv/dx)ydx=1%f2(x)+C

1 [ +v2+xdx (add+C) 2 [ /3—xdx (aways+C) (b) [o(x)(dv/dx)dx= f(v(x))+C
3 D d ny (c) Integral is inverse to derivative sf(v(x)) = x
S+ dx 4 JG+D * (d) Integral is inverse to derivative §a(df/dx) dx = f(x)
21 1)5
5 JF+ 1) xdx 6 JVI-3xdx 35 If  dfjdx=v(x) then [v(x—1)dx= and
7 [ cos®x sinxdx 8 [ cosxdx/simx Jo(x/2)dx=
9 [ cos 2x sin2x dx 10 [ cos’xsin2xdx 36 If df/dx=v(x) then [v(2x—1)dx= and
2 dx =
11 [ dt/1—12 12 [1/1—12dt Joxdx ’
x2 1 x2dx
3 3 3 2 =1— =

13 [ 3di/vV1+1 14 [13/1—12dt 37 T2 1 12 SOJHXZ
15 [ (1+v/x)dx/y/x 16 [ (1+x32)y/xdx 38 [ (x2+1)2dxis notd(x2+1)3 but .
17 [ secx tanx dx 18 [ secxtarxdx 39 [2xdx/(x?+1)is [ du which will soon be In:.
19 [ cosx tanx dx 20 [ simxdx 40 Show thatf 2x3dx/(1+x2)3 = [ (u — 1)du/u® =

41 The accelerationd? f/dt?> =9.8 gives f(t)= (two
In 21-32 find a function y(x) that solves the differential jntegration constants).
equation. ) )

42 The solution tad*y/dx* =0is (four constants).
21 dy/dx=x%+/x 22 dy/dx=y? (tryy=cx™) 43 If f(¢)is an antiderivative ob(¢), find antiderivatives of
23 dy/dx=+/1-2x 24 dy/dx=1/+/1-2x (@ v(t+3) (b) v@®)+3 (c) 3v() (d) v(3r).
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I 5.5 The Definite Integral |

The integral ofv(x) is an antiderivativef (x) plus a constan€. This section takes
two steps. First, we chooge. Second, we construcgf(x). The object id0 define
the integral—in the most frequent case when a suitafjler) is not directly known.

The indefinite integral contains4“C.” The constant is not settled because
f(x) + C has the same slope for evefy When we care only about the derivative,
C makes no difference. When the goal is a numbedefinite integral—C can be
assigned a definite value at the starting point.

For mileage traveledye subtract the reading at the starThis section does
the same for area. Distance f§¢) and area isf (x)—while the definite integral
is f(b)— f(a). Don't pay attention tg or x, pay attention to the great formula of
integral calculus:

b b
f v(z)dzzf v(x) dx = £(b) - f(a). 1)

a a

Viewpoint1: When f is known, the equation gives the area frarto b.
Viewpoint2 : When f is notknown, the equation defings from the area.

For a typicalv(x), we can't find f (x) by guessing or substitution. But stil(x) has
an “area” under its graph—and this yields the desired intefj¢a)).

Most of this section is theoretical, leading to the definition of the integral. You may
think we should have defined integrals before computing them—uwhich is logically
true. But the idea of area (and the use of rectangles) was already pretty clear in our
first examples. Now we go much furth&very continuous functionv(x) has an
integral (also some discontinuous functions). Then the Fundamental Theorem com-
pletes the circle: The integral leads backdt/dx = v(x). The area up ta is the
antiderivative that we couldn’t otherwise discover.

THE CONSTANT OF INTEGRATION

Our goal is to turnf'(x) + C into a definite integral— the area betweeandb. The
first requirementis to hav@rea= zeroat the start:

f(a)+ C = startingarea=0 so C =—f(a). (2)

For the area up toc (moving endpoint, indefinite integral), ugeas the dummy
variable:

the area froma tox is |7 v(r) dt= f(x)— f(a) (indefinite integral)
the area froma to b is ]Z v(x)dx= f(b)— f(a) (definite integra)

EXAMPLE 1 The area under the graph dof(x+1)* from a to b has
f(x)=(x+1)>
b 4 5 b 5 5
[25(x+ D*dx = (x+1) ] —(h+1)°—(@+1)5.
a

The calculation has two separate steps—first ffital), then substituté anda. After
the first step, check thatf/dx is v. The upper limit in the second step givekis
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f(b), the lower limit givesminus f(a). Notice the brackets (or the vertical bar):
@)= f)—fl@) Pp=8—1 [cosx]2' =cos2t—1.

Changing the example t6(x) = (x + 1)° — 1 gives an equally good antiderivative—
and nowf(0) = 0. But f(b) — f(a) stays the same, because thé disappears:

b
[(x+1)5—1] — (1) =) —((@a+ 15— D)=+ 15— (@+1)°
a
EXAMPLE 2 When v =2x sin x> we recognizef = —cosx?2. The area from
0to3is

3
[22xsinx?dx = - COSx2]0 = —€0s9 + c0s0.

The upper limit copies the minus sign. The lower limit giveé— cos0), which is
+ cos0. That example shows the right form for solving exercises on definite
integrals.

Example 2 jumped directly t¢f(x) = — cosx?2. But most problems involving the
chain rule go more slowly—bgubstitution Setu = x2, with du /dx = 2x:
3 3 du ?
f 2x Sinxzdxzf Sinu—dx:J sinu du. 3)
0 0 dx ?

We reed new limits whem replacesx?. Those limits oru area? andb?. (In this
casea? = 0% andh? =32 =9.) If x goes froma to b, thenu goes fromu(a) to
u(b).

b du u(b)
| vwenGrax = [ ot du=ron - e @
a dx u(a)
1 6 47° 4 4
EXAMPLE 3 J (x2—|—5)3xdx=J u3d—u=u—} _&_ s
x=0 u=5 2 8 8 8

In this caseu = x2 + 5. Thereforedu /dx = 2x (or du = 2x dx for differentials).
We have to account for the missi@gThe integral is%u“. The limits onu = x2 +5
areu(0) = 0%+ 5 andu(1) = 12+ 5. That is why theu-integral goes fron® to 6.
The alternative is to fing(x) = (x> +5)* in one jump énd check it

EXAMPLE 4 j(l) sinx? dx =?7? fio elementary function gives this integral

If we try cosx?, the chain rule produces an exfr:a—no adjustment will work. Does
sin x? still have an antiderivative?es Every continuous(x) has anf (x). Whether

f(x) has an algebraic formula or not, we can write itjas(x)dx. To define that
integral, we now take the limit of rectangular areas.

INTEGRALS AS LIMITS OF “RIEMANN SUMS”

We have come to theefinition of the integral The chapter started with the
integrals ofx andx?, from formulas forl +---+#n and12 + - - - +n2. We will not
go back to those formulas. But for other functions, too irregular to find exact sums,
the rectangular areas also approach a limit.

That limit is the integral. This definition is a major step in the theory of calculus.
It can be studied in detail, or understood in principle. The truth is that the definition
is not so painful—you virtually know it already.

255
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Problem Integrate the continuous functiom(x) over the intervalla, b].
Step 1 Split[a, ] into n subintervalda, x1], [x1,x2], ..., [Xn_1,b].

The “meshpoints’q, x5, ... divide up the interval frona to 5. The endpoints are
xo = a andx, = b. The length of subinterval is Ax; = xx — x;_1. In that smaller
interval, the minimum ob(x) is my. The maximum is\.

Now construct rectangles. The “lower rectanpwer intervalk has heightny.
The “upper rectanglereaches toM;. Sincev is continuous, there are pointgn
and xmax Wwherev = my andv = M, (extreme value theorem}he graph ofv(x)
is in between

Important: The area under(x) contains the areas” of the lower rectangles:

fz v(x)dx =Zmy Axy +myAxy+ - + my Ax, =s. (5)
Thearea unden(x) is contained in the areas" of the upper rectangles:
[P v(x)dx < MyAxy + MyAxs + -+ My Ax, = S. (6)

Thelower sums and theupper sumS were computed earlier in special cases—
whenv wasx or x? and the spacingAx were equal. Figure 5.9a shows why<
area<§.

Ax;

-

b

% Xk+1 a

Fig. 5.9 Area of lower rectangles: s. Upper sumS includes top pieces. Riemann s
is in between.

Notice an important fact. When a new dividing poirftis addedthe lower sum
increases The minimum in one piece can be greater (see second figure) than the
original my . Similarly the upper sum decreas@&he maximum in one piece can be
below the overall maximumAs new points are added, goes up andS comes
down So the sums come closer together:

s<s < <S8 <S. (7)

| have left space in between for the curved area—the integra{.oj.

Now add more and more meshpoints in such a way that,.x— 0. The lower
sums increase and the upper sums decrease. They never pass eadh otheris
continuous, those sums close in on a single numb&rThat number is the definite
integral—the area under the graph.

DEFINITION The aread is the common limit of the lower and upper sums:
s — AandS — A4 asAxmax— 0. (8)

This limit A exists for all continuous(x), and also for some discontinuous functions.
When it exists A is the ‘Riemann integraf of v(x) froma to b.
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REMARKS ON THE INTEGRAL

As for derivatives, so for integrals: The definition involvesrait. Calculus is built

on limits, and we always add “if the limit exists.” That is the delicate point. | hope the
next five remarks (increasingly technical) will help to distinguish functions that are
Riemann integrablé&om functions that are not.

Remark1l The sumss and S may fail to approach the same limit. A standard
example had/(x) =1 at all fractionsx = p/¢q, and V' (x) =0 at all other points.
Every interval contains rational points (fractions) and irrational points (nonrepeating
decimals)Thereforen;, = 0 andM; = 1. The lower sum is always= 0. The upper

sum s alwaysS = b —a (the sum ofl’s timesA x’s). The gap in equation(7) stays
open This functionV (x) is not Riemann integrable. The area under its graph is not
defined (at least by Riemann—see Remgrk

Remark 2 Thestep functionU(x) is discontinuous but still integrable. On every
interval the minimummn;, equals the maximumM/y—except on the interval contain-
ing the jump. That jump interval has; = 0 and My = 1. But when we multiply by
AXxy, and requireA xmax — 0, the difference betweenandS goes to zero. The area
under a step function is clear—the rectangles fit exactly.

Remark 3 With patience another key step could be proyéd: — 4 and S — 4
for one sequence of meshpoints, then this liritis approached by every choice
of meshpoints withA xmax— 0. The integral is the lower bound of all upper sums
S, and it is the upper bound of all possible-provided those bounds are equal. The
gap must close, to define the integral.

The same limit4 is approached by “in-between rectangles.” The height’) can
be computed at any point’ in subinterval. See Figures 5.9c and 5.10. Then the
total rectangular area is &femann suni betweens andS:

S*=v(x)Ax1+v(x3)Axzs+ -+ v(x)) Axp. 9)

We annot tell whether the true area is above or befgiwVery oftenA is closer taS*
than tos or S. Themidpoint ruletakesx* in the middle of its interval (Figure 5.10),
and Section 5.8 will establish its extra accuracy. The extreme swmd.S are used
in the definition whileS* is used in computation.

left right mid min max

Fig. 5.10  Various positions fODc;: in the base. The rectangles have hei@ut;{").

Remark4 Every continuous function is Riemann integrabl€he proof is op-
tional (in my class), but it belongs here for reference. It starts with continuity at
“For anye there is aé ...."” When the rectangles sit betweearf —§ andx* +§,

the boundsVf;, andm, differ by less thar2e. Multiplying by the baseA x, the ar-
eas differ by less thabe(Axj ). Combining all rectangles, the upper and lower sums
differ by less thae(Ax; + Axy +-- -+ Ax,) =2¢e(b —a).
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As ¢ — 0 we conclude tha comes arbitrarily close to. They squeeze in on a
single number. The Riemann sums approach the Riemann intetjralis continu-
ous

Two problems are hidden by that reasoning. One is at the end, \Whemds come
together. We have to know that the line of real numbers has no “holes,” so there is a
numberA to which these sequences converge. That is true.

Any increasing sequence, if it is bounded above, approachdsmt.

The decreasing sequengebounded below, converges to the same limit.A&exists.

The other problem is about continuity. We assumed without saying so that the width
2§ is the same around every poirit. We did not allow for the possibility th@tmight
approach zero wheng(x) is rapidly changing—in which case an infinite number of
rectangles could be needed. Our reasoning requires that

v(x) is uniformly continuous § depends o but not on the position ofx*.

For eacte there is & that works at all points in the intervah continuous function
on a closed interval isiniformly continuous. This fact (proof omitted) makes the
reasoning correct, andx) is integrable.

On an infinite interval, even = x? is not uniformly continuous. It changes across a
subinterval by(x* +§)% — (x* —§)? = 4x*§. Asx* gets larger§ must get smaller—
to keep4x*§ belowe. No single$ succeeds at alt*. But on a finite interval0, o],
the choicel = ¢/4b works everywhere—so = x?2 is uniformly continuous.

Remark 5 If those four remarks were fairly optional, this one is totally at your
discretion. Modern mathematics needs to integrate the zero-one fulitionn the
first remark. Somehow has mord)’s thanl1’s. The fractions (wher& (x) = 1) can

be put in a list, but the irrational numbers (whéféx) = 0) are “uncountable.” The
integral ought to be zero, but Riemann’s upper sums all invéfge= 1.

Lebesgue discovered a major improvement. He allowéditely many subinter-
vals (smaller and smaller). Then all fractions can be covered with intervals of total
width . (Amazing, when the fractions are packed so densely.) The idea is to cover
1/9,2/q,...,q/q by narrow intervals of total widthe/29. Combining all
q=1,2,3,..., the total width to cover all fractions is no more than
e(3+3+4+---)=e SinceV(x) =0 everywhere else, the upper suiris only
€. And sinces was arbitrary, the “Lebesgue integr& zero as desired.

That completes a fair amount of theory, possibly more than you want or need—
but it is satisfying to get things straight. The definition of the integral is still being
studied by experts (and so is the derivative, again to allow more functions). By
contrast, thepropertiesof the integral are used by everybody. Therefore the next
section turns from definition to properties, collecting the rules that are needed in
applications. They are very straightforward.
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5.5 EXERCISES

Read-through questions

In va(t)dt:f(x)+C, the constant C equals __ a

Then at x=a the integral is_ b . At x=b5 the integral
becomes__c . The notation f(x)]la’ means __d . Thus
cosx]j equals__e . Also [cosx+3]§ equals__f , which

shows why the antiderivative includes an arbitrary g .
Substituting u =2x —1 changes ﬁ\/Zx— 1dx into h
(with limits onu).

The integralij(x)dx can be defined for any i  function
v(x), even if we can't find a simple |
X1,X2, ... divide [a,b] into subintervals of lengthAx;, =_ k.
The upper rectangle with bagex; has heightf;, =_ | .The up-
per sum S is equal to__m . The lower sums is __n . The

0 isbetween and S. As more meshpoints are added, p
ands g . If S ands approach the same r , that defines
the integral. The intermediate sunss®, named after s , use
rectangles of height (x;’). Herex;’ is any point between t
and S*=__u _approaches the area.

If v(x) =df/dx, what constantsC make 1-10 true?

1 [Puydx=fy+c

2 [to(x)dx=f#+C

3 ji v()dt=—f(x)+C

4 fz/z v(sinx)cosx dx = f(sinb)+C

5 [Tv()dt= f(t)+C (careful)

6 df/dx=v(x)+C

7 [l =1)32xdx = € u du.

8 (¥ v()di = f(x3)+C

9 fZ v(—x)dx = C (change—x to¢; alsodx and limits)
10 [2o(x)dx=C [gv(2t)dt.

Chooseu(x) in 11-18 andchange limits Compute the integral in
11-16.

11 5 (x2+1)"0xdx 12 jg/z sin8x cosx dx

13 fg/4 tanxse@x dx 14 J%xzn"'ldx (takeu = x2)
15 Ig/4seczxtanxdx 16 [gxdx/\1-x2

17 f%dx/x (takeu =1/x) 18 f(l)x3(1—x)3dx(u=1—x)

. First the meshpoints

With Ax = % in 19-22, find the maximum/;, and minimum m,
and upper and lower sumsS and s.

19 f(l) x24+1)*dx 20 f(l) sin 2w x dx

21 f§x3 dx 22 filxdx.
23 Repeatl9 and20 with Ax = % and compare with the correct
answer.

24 The differenceS —s in 21 is the are@3 Ax of the far right rect-
angle. FindAx so thatS < 4.001.

25 If v(x) is increasingfor a < x <b, the differenceS —s is
the area of the rectangle minus the area of the
rectangle. Those areas approach z&moevery increasing function
on [a,b] is Riemann integrable

26 Find the Riemann sun§* for V(x) in Remark 1, when
Ax =1/n and eachy is the midpoint. ThisS* is well-behaved
but still V(x) is not Riemann integrable.

27 W(x)equalsl atx = 3,1, %, ..., and elsewher# (x) = 0. For

Ax = .01 find the upper sun§. Is W(x) integrable?

28 Suppose M(x) is a multistep function with jumps of
1.4 % ... atthe pointsc= 3,1, 1. ... Draw a rough graph with
M(0) =0andM(1) = 1. With Ax = 1 find S ands.

29 For M(x) in Problem28 find the differenceS —s (which
approaches zero a&sx — 0). What is the area under the graph?

30 If df/dx =—v(x) and f(1) =0, explain f(x) = j}c v(t)dt.
31 (@) Ifdf/dx=+v(x)andf(0)=3,find f(x).
(b) Ifdf/dx=4v(x)andf(3)=0,find f(x).

32 Inyour own words define the integral ofx) froma to b.

33 True or false with reason or example.

(a) Every continuous(x) has an antiderivative (x).

(b) If v(x) is not continuous,S and s approach different
limits.

(c) If S ands approachd asAx — 0, then all Riemann sums
S* in equation (9) also approach

(d) If vi(x)+va(x)=v3(x), their
S1+82=325s.

() If vi(x)+va2(x)=v3(x), their Riemann sums at the
midpointsx® satisfyS* + S5 = S5

(f) The midpoint sum is the average 8fands.

(9) Onex;: in Figure 5.10 gives the exact area.

upper sums satisfy
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B - 6 Properties of the Integral and Average Value

5 Integrals

The previous section reached the definitiorj"léf) (x) dx. Butthe subject cannot stop
there. The integral was defined in order to be used. Its properties are important, and
its applications are even more important. The definition was chosen so that the
integral has properties that make the applications possible.

One direct application is to theverage valuef v(x). The average of numbers
is clear, and the integral extends that idea—it produces the average of a whole
continuum of numbers(x). This develops from the last rule in the following list
(Property7). We now collect togetheseven basic properties of definite integrals

The addition rule forf [v(x) +w(x)]dx will not be repeated—even though this
property of linearity is the most fundamental. We start instead with a different kind of
addition. There is only one functian(x), but now there are two intervals.

The integral froma to b is added to its neighbor fromd to c¢. Their sum is the
integral from a to c. That is the first (not surprising) property in the list.

Propertyl Areas over neighboring intervals add to the area over the amdbi
interval:

[z v(x)dx+ JZ v(x)dx = [; v(x)dx. (1)

This sum of areas is graphically obvious (Figure 5.11a). It also comes from the formal
definition of the integral. Rectangular areas ofEy—with a meshpoint at = b to
make sure. Wherh xmax approaches zero, their limits also oldy. All the normal
rules for rectangular areas are obeyed in the limit by integrals

Propertyl is worth pursuing. It indicates how to define the integral when b.
The integral “fromb to b” is the area over a point, which we expect to be zero. Itis.

Property?2 [Z v(x)dx =0.

That comes from Propertlywhen ¢ = b. Equation(1) has two identical integrals, so
the one fromb to b must be zero. Next we see what happers# a—which makes
the second integral go fromto a.

What happens whean integral goes backwargl The “lower limit” is now the
larger numbeb. The “upper limit”a is smaller. Going backward reverses the sign:

Property3 [y v(x)dx= —Jz v(x)dx = f(a)— f(b).

Proof Whenc = a theright side of(1) is zero. Then the integrals on the left side
must cancel, which is Proper8 In going fromb to a the stepsAx are negative

That justifies a minus sign on the rectangular areas, and a minus sign on the integral
(Figure 5.11b)ConclusionPropertyl holds for any ordering of, b, c.

0 3 0 zdl
EXAMPLES Jﬂdz:—x— Jdr:—l — =0
x 3 1 2 I

Property4 Foroddfunctiongfa v(x) dx =0.“Odd means that (—x) = —v(x).
Foreven function§®  v(x) dx =2 [ v(x) dx.“Everf meansthat (—x) = +v(x).

The functionsx, x3, x>, ... are odd. Ifx changes sign, these powers change sign.
The functionssinx andtanx are also odd, together with their inverses. This is an
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important family of functions, anthe integral of an odd function from—a to a
equals zeroAreas cancel:
a 614 6 6
fﬁa 6x°dx =x ]7‘1 =a®—(—a)®=0.
If v(x) is odd thenf(x) is even! All powersl, x2,x*, ... are even function<uri-
ous fact Odd function times even functiondgld, but odd number times even number
iseven
For even functions, areas adff: | cosx dx = sina —sin(—a) = 2sina.

t=x) = = wx)

Fig. 5.11  Propertiesl—4: Add areas, change sign to go backward, odd cancels, even adds.

The next properties involve inequalitiesifx) is positive, the area under its graph
is positive (not surprising). Now we have a proof: The lower surage positive and
they increase toward the area integral. So the integral is positive:

Property5 If v(x)>0fora<x <b thean v(x)dx > 0.

A positive velocity means a positive distance. A positivies above a positive area.
A more general statement is true. Suppoée) stays between a lower functidfx)
and an upper function(x). Then the rectangles farstay between the rectangles for
[ andu. In the limit, the area under (Figure 5.12) is between the areas undandu:

Property6 If I(x) < v(x) <u(x) for a <x < b then
(le(x) dx < [2 v(x)dx < [z u(x)dx. (2)
EXAMPLE1 cost<1 = [jcostdi<[yldt = sinx<x

EXAMPLE 2 1<seét = [jldt<[,seétdt = x<tanx

EXAMPLE 3 Integrating

1
< 1leadstaanx < x.
1+ x2

All those examples are fox > 0. You may remember that Section 2.4 used
geometry to proveini < h <tanh. Examplesl-2 seem to give new and shorter
proofs. But | think the reasoning is doubtful. The inequalities were needed to
compute the derivatives (therefore the integrals) in the first place.

Fig. 5.12  Properties5—7: v above zero,v between andu, average value{ balances-).
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Property7 (Mean Value Theorem for Integrals) If v(x) is continuous, there
is a pointc betweer: andb wherev(c) equals the average valuewfx):

1t
v(c) = - v(x) dx ="average value ob(x).” (3)
—da

a

This is the same as the ordinary Mean Value Theorem (for the derivatiféxg:

f()_f(b) f()

= "average slope of.” (4)
With " =wv, (3) and(4) are the same equation. But honesty makes me admit to a
flaw in the logic. We need the Fundamental Theorem of Calculus to guarantee that
f(x)=[>v(r)dt really givesf' = v.

A direct proof of(3) places one rectangle across the interval frotm b. Now raise
the top of that rectangle, starting @, (the bottom of the curve) and moving up to
Umax (the top of the curve). At some height the area will be just right—equal to the
area under the curve. Then the rectangular area, whi@h-sa) timesv(c), equals
the curved areﬁ v(x) dx. This is equatior{3).

0=

—

—]/\' 3 I;“\'

v(r) =x?2 vix) = sin? x

vix)=x

Fig. 5.13 Mean Value Theorem for integrals: aygd —a) = average height v(c) at somec.

That direct proof uses thimtermediate value theoremA continuous function
v(x) takes on every height betweep;n andvmax. At some point (at two points in
Figure 5.12c) the function(x) equals its own average value.

Figure 5.13 shows equal areas above and below the average height=

Vave-

EXAMPLE 4 The average value of an odd functiorz&so (between—1 and1):

1
1 (! x2 1 1 1 1
= xdx =— =-——-=0 note ==
2) 4 4 4 b—a 2

-1

For once we knowe. It is the center poink = 0, wherev(c) = vae=0.

EXAMPLE 5 The average value of? is % (betweenl and—1):

1 (! 3111 1\ 1 1

—f RCdx="| =——(-=)== note =

2 ) 6, 6 6 3 b—a
Where does this function? equal its average valui;? That happens whet? = %

s0 ¢ can be either of the points/+/3 and —1/4/3 in Figure 5.13b. Those are the
Gauss points, which are terrific for numerical integration as Section 5.8 will show.

N[ =
N——"
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EXAMPLE 6 The average value &fin’x over a period (zero tar) is

(., x—sinx cosx]" 1 1 1
— | sinx*dx=——"—""—¥—| == note =—

7 Jo 2w 0o 2 b—a =w

The pointc is /4 or 3 /4, wheresin’c = 1. The graph ofsir’x oscillates around
its average valuel. See the figure or the formula:

COS2Xx. (5)

The steady term ig;, the oscillation is—1 cos2x. The integral isf(x) = 1x —
% sin2x, which is the same abx — 1 sinx cosx. This integral ofsinx will be
seen againPlease verify thaff/dx = sirtx.

THE AVERAGE VALUE AND EXPECTED VALUE

The “average value” from to b is the integral divided by the length—a. This
was computed fox andx2 andsin?x, but not explained. It is a major application of
the integral, and it is guided by the ordinary average atimbers:

b

Vave= 7
b—a,

1
v(x)dx comes from  vge= —(vi+v2+---+vy).
n

Integration is parallel to summatiohSums approach integrals. Discrete averages
approach continuous averages. The average $f2 is2. The average of, 2,2, 2,2

is % The average of numbers froml /nton/n is

1/1 2 n n+1
Vae=—|—+—4+--+— )= . (7)
n\n n n 2n

The middle term gives the average, whetis odd. Or we can do the addition. As
n — o0 the sum approaches an integral (do you see the rectangles?). The ordinary
average of numbers becomes the continuous averagecpt= x:

1 1 ! 1 1
nt —— and dex:— note =1
2n 2 0 2 b—a

In ordinary language: “The average value of the numbers betweed1 is 5.” Since
a whole continuum of numbers lies betwdgand 1, that statement is meaningless
until we have integration.

The average value of tegjuarefthose numbersise?)ave= [x2 dx/(b—a) = 1.
If you pick a number randomly betweehand 1, its expected value i% and its

expected square i§.

To me that sentence is a puzzle. First, we don’t expect the nutodse exactly
%—so we need to define “expected value.” Second, if the expected va&xe/\ilay is
the expected square equal%tdnstead ofi?The ideas come from probability theory,
and calculus is leading us tmntinuous probability We introduce it briefly here,
and come back to it in Chapter 8.

263
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PREDICTABLE AVERAGES FROM RANDOM EVENTS

Suppose you throw a pair of dice. The outcome is not predict@iteerwise why
throw them?But the average over more and more throws is totally predictable
We don’t know what will happen, but we know its probability.

For dice, we are adding two numbers betwéeand6. The outcome is betweeh
and12. The probability of2 is the chance of two oneél/6)(1/6) = 1/36. Beside
each outcome we can write its probability:

o) (o) (56)* () () 7)o () () o) m ()

To repeat, one roll is unpredictable. Only the probabilities are known, and they add
to 1. (Those fractions add t86/36; all possibilities are covered.) The total from a
million rolls is even more unpredictable—it can be anywhere bet@e@p0, 000 and
12,000,000. Nevertheless thaverageof those million outcomes is almost com-
pletely predictable. Thisxpected value found by adding the products in that line
above:

Expected value multiply (outcométimes(probability of outcomeand add

2_’_6_’_12_'_20_’_30_’_42_'_40_'_36_’_30_'_22_’_12_7
36 36 36 36 36 36 36 36 36 36 36

If you throw the dicel 000 times, and the average is not betwé&ehand7.1, you get
an A. Use the random number generator on a computer and round off to integers.

Now comescontinuous probability Suppose all numbers betwe2rand 12 are
equally probable. This means all numbers—not just integers. What is the probability
of hitting the particular number = 7? It is zerd By any reasonable measure has
no chanceo occur. In the continuous case, everyhas probability zero. But an
interval ofx’s has a nonzero probability:

the probability of an outcome betwe2mand3 is 1/10
the probability of an outcome betwegrandx + Ax is Ax /10

To find the average, add up each outcome times the probability of that outcome.
First divide 2 to 12 into intervals of lengthAx =1 and probabilityp = 1/10. If
we round offx, the average i61:

1 1 1
21 — 31 — o411 — ) =6.5.
(10)+ (10)+ * (10)

Here all outcomes are integers (as with dice). It is more accurate t@Ouisgervals

of length1/2 and probabilityl /20. The average ié%, and you see what is coming.
These are rectangular areas (Riemann sumsAAs- 0 they approach an integral.
The probability of an outcome betweerandx + dx is p(x) dx, and this problem
hasp(x) = 1/10. The average outcome in the continuous case is not a sum but
an integral:

12

12 2912
xp(x)dxzj ‘dx_x}

expected valueZ (x) = J X—=—
, 10 20

2 2

Thatis a big jump. From the point of view of integration, it israili of sums. From the
point of view of probability, the chance of each outcome is zero buptibability

)
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densityat.x is p(x) = 1/10. The integral ofp(x) is 1, because some outcome must
happen. The integral ofp(x) is xave= 7, the expected value. Each choicexofs
random, but the average is predictable.

This completes a first step in probability theory. The second step comes after more
calculus. Decaying probabilities use* ande—*"—then the chance of a largeis
very small. Here we end with the expected values®®fand1/4/x and 1/x, for a
random choice betwedhand1 (so p(x) = 1):

1 1 1
1 1 d 1 d
E(x"):fx"dx:— E —): Py E(2)=| E=wq
0 n+1 Ax 0 VX x 0o X
A CONFUSION ABOUT “EXPECTED” CLASS SIZE

A college can advertise an average class sizZ&9ofvhile most students are in large
classes most of the time. | will show quickly how that happens.

Suppose there af classes 020 students and classes 0200 students. The total
enroliment in100 classes id 900 4+ 1000 = 2900. A random professor has expected
class siz€9. But a random student sees it differently. The probability960/2900
of being in a small class and)00/2900 of being in a large class. Adding class size
times probability gives the expected class daethe student

1900 1000
(20) | —— ) +(200) | —— ] = 82 students in the class.
2900 2900

Similarly, the average waiting time at a restaurant seemsdikeninutes (to the
customer). To the hostess, who averages over the whole dayOitnsnutes. If you
came at a random time\wwouldbe 10, but if you are a random customer it46.

Traffic problems could be eliminated by raising the average number of people per
car t02.5, or even2. But that is virtually impossible. Part of the problem is the
difference between (a) the percentage of cars with one person and (b) the percentage
of people alone in a car. Percentage (b) is smaller. In practice, most people would be
in crowded cars. See Proble®is— 38.

5.6 EXERCISES

Read-through questions

The integrals jg v(x)dx and jg v(x)dx add to__a . The chance of hitting an integeris | . The chance of falling between

integral [ v(x)dx equals_b . The reason is_c . If Xadx+dxisp(x)dx=__m _.The expected valug(x)isthe
integral__n . ltequals_ o

v(x)<x then j(l) v(x)dx<__d . The average value of(x)
on the intervall <x <9 is defined by__e . It is equal to
v(c) at a point x=c¢ which is _ f . The rectangle across
this interval with heightv(c) has the same area as g

The average value of(x)=x-+1 on the intervall<x<9is 1 v=x*a=-1,b=1 2 v=x’,a=—-1,b=1

In 1-6 find the average value o (x) betweena and b, and find
all points ¢ where vaye=v(c).

h .
E— 3 v=co¥x,a=0,b=m 4 v=4/x,a=0,b=4
If x is chosen froml,3,5,7 with equal probabilities, its ex- 5 v= 1/x2,a=1b=2 6 v=(snx)’,a=—-mb=m.
L 5
pe(?ted valug (average) is i . The e).<pected va]gg o{c is 7 Atx=s, F(x):f’; v(t)dz—i—ji () dt is _
j . If x is chosen froml,2, ..., 8 with probabilities g, its
expected value is _k . If x is chosen froml<x<9, the 8 f?xdx—l—fgxdx—féxdx:
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Are 9-16 true or false? Give a reason or an example.
9 The minimum of [ v(¢) dt is atx = 4.
10 The value of_[f3 v(t) dt does not depend on
11 The average value from=0to x = 3 equals
%(vave on0<x<1)+ %(Uave onl<x<3).
12 Theratio( f(b) — f(a))/(b —a) is the average value gf(x) on
a<x<b.

13 On the symmetric interval-1<x <1, v(x)—vavwe iS an
odd function.

14 If I(x) <v(x) <u(x)thendl/dx <dv/dx <du/dx.

15 The average ofv(x) from 0 to 2 plus the average from2
to 4 equals the average froénto 4.

16 (a) Antiderivatives of even functions are odd functions.
(b) Squares of odd functions are odd functions.

17 What numbets givesjz (v(x)—v)dx =07

18 If f(2)=6 and f(6)=2 then the average oflf/dx from
x=2tox=6Is

19 (a) The averages of cosand|cosx| from 0 to x are

(b) The average of the numbers, .. than
the average ofvi|, ..., |vn|.

L, Up IS

20 (a) Which property of integrals proves

f(l) v(x)dx < f(l) [v(x)]| dx?

(b) Which property provesj(l) v(x)dx < j(l) [v(x)|dx?
Together these aferoperty8: |f(1, v(x)dx|< f(l) [v(x)|dx.
21 What function hasvgye (from 0 to x) equal to%v(x) at all
x? What functions haveae=v(x) at allx?

22 (@) If v(x) is increasing, explain from Propert$ why
Jo v(1)dt < xv(x)for x >0.
(b) Take derivatives of both sides for a second proof.

23 The average ofv(x)=1/(14+x2) on the interval [0, b]
approaches ash — o. The average o/ (x) = x2/(1 + x2)
approaches .

24 If the positive numbers, appoach zero as: — oo prove
that their averagév; +-- -+ v, )/n also approaches zero.

25 Find the average distance from=a to points in the
interval0 < x < 2. Is the formula different it < 2?

26 (Computer experiment) Choose random numbens
betveen0 and 1 until the average value af? is between 333
and 334. How many values ofx2 are above and below? If
possible repeat ten times.

27 A point P is chosen randomly along a semicircle (se&

figure: equal probability for equal arcs). What is the avera
distancey from thex axis? The radius i$.

28 A point Q is chosen randomly betweenl and1.
(&) What is the average distanEeup to the semicircle?
(b) Why is this different from Problera7?

5 Integrals

Buffon needle

¥y <cos® y>cost

|
/a
‘ .
2 2=

29 (A classic way to computer) A 2" needle is tossed
onto a floor with boards2” wide. Find the probability of
falling across a crack. (This happens when &osy = distance
from midpoint of needle to nearest crack. In the rectangle
0<6<n/2,0<y<1,shade the part where c6s> y and find the
fraction of area that is shaded.)

30 If Buffon's needle has lengti2x instead of2, find the
probability P (x) of falling across the same cracks.

31 If you roll threedice at once, what are the probabilities of each
outcome betweef and18? What is the expected value?

32 If you choose a random point in the squafe<x <1,
0 < y <1, whatis the chance that its coordinates h;a%es x?

33 The voltage V(t) =220 cos2nt/60 has frequency60 hertz

and amplitude20 volts. FindVaefrom0tor.

34 (a) Show thaveye(x) = %(v(x) +v(—x)) is always even.
(b) Show thatigdq(x) = 1 (v(x) —v(—x)) is always odd.

35 By Problem34 or otherwise, writg(x +1)3 and1/(x +1) as an
even function plus an odd function.

36 Prove from the definition offf/dx that it is an odd function if
f(x)is even.

37 Suppose four classes ha¢g8, 10, and 40 students, averaging
. The chance of being in the first class is . The
expected class size (for the student) is

) ow()-

64 64

38 With groups of sizesxy, ...,x, adding to G, the average
size is . The chance of an individual belonging to
group 1 is . The expected size of his or her group is
E(x)=x1(x1/G) 4+ +xn(xn/G). * Provex? x?/G = G/n.
39 True or false, 15 seconds each:

@ If f(x)<g(x)thendf/dx<dg/dx.

(b) Ifdf/dx <dg/dx then f(x) < g(x).

(c) xv(x)isoddifv(x) is even.

40

64

o)

E(x)=6(64

(d) If vave<wave oOn all intervals thenv(x) <w(x) at all
points.
2x for x <3 2 for x<3
0 Fo)={ 0 T Tthenfy=4 O 7
ge —2x for x>3 —x2 for x>3

Thusfg v(x)dx = f(4)— f(0) = —16. Correct the mistake.
41 If v(x) = |x —2[find f(x). Computefg v(x)dx.
42 Why are there equal areas above and balgw?
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B 5.7 The Fundamental Theorem and Its Applications s

When the endpoints are fixedagnd b, we have alefiniteintegral. When the upper
limit is a variable pointc, we have anndefiniteintegral. More generally: When the
endpoints depend in any way an the integral is a function of x. Therefore we
can find its derivative. This requires the Fundamental Theorem of Calculus.

The essence of the Theorem Berivative of integral ofv equalsv. We also
compute the derivative when the integral goes fiofw) to b (x)—both limits vari-
able.

Part2 of the Fundamental Theorem reverses the oldaéegral of derivative of f
equals f + C. That will follow quickly from Partl, with help from the Mean Value
Theorem. It is Par2 that we use most, since integrals are harder than derivatives.

After the proofs we go to new applications, beyond the standard problem of area
under a curve. Integrals can add up rings and triangles and shells—not just rectangles.
The answer can be a volume or a probability—not just an area.

THE FUNDAMENTAL THEOREM, PART 1

Start with a continuous function. Integrate it from a fixed poin& to a variable
point x. For eachx, this integral f(x) is a number. We do not require or expect a
formula for f(x)—it is the area out to the point. It is a function of x! The
Fundamental Theorem says that this area function has a derivative (another limiting
process)The derivativedf /dx equals the originalv(x).

5C (Fundamental Theorem, Parl) Supposev(x) is a continuous function:

If f(x)=[>v(t)dt then df/dx=v(x).

The dummy variable is written &sso we can concentrate on the limits. The value of
the integral depends on the limitsandx, not ont.
To finddf/dx, start withA f = f(x + Ax) — f(x) = difference of areas

Af =0y de— (o) de = [T o) dr. (1)

Officially, this is Propertyl. The area out tac + Ax minus the area out te equals
the small part fronx to x + Ax. Now divide by A x:

Af 1 x+Ax
A—‘ = v(t) dt = average value=v(c). (2)
X X Jy

This is Property/, the Mean Value Theorem for integrals. The average value on this
short interval equals(c). This pointc is somewhere betweenandx + Ax (exact
position not known), and we leAx approach zero. That squeezesoward x, so
v(c) approaches (x)—remember that is continuous. The limit of equatiof®) is
the Fundamental Theorem:

A d d

A—];_)d_]; and v(c¢) > v(x) so d‘—izv(x). 3)
If Ax is negative the reasoning still holds. Why assume tiad is continuous?
Because ib is a step function, therf (x) has a corner wheréf /dx is notv(x).
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We could skip the Mean Value Theorem and simply bouradbove and below:

for ¢ betweenx andx 4+ Ax: Umin< v() < Umax
integrate over thatinterval:  vminAx < Af  <vmaxAx (4)
divide by Ax: Umin < A f/ Ax < Umax

As Ax — 0, vmin andvmay approachy(x). In the limitdf/dx again equal®(x).

area under v(x) flx + Ax)
= increase in f(.x) g . Af = v(x)Ax
Jix)
vlx) area =
v(x)Ax
X X+ Ax X X+ Ax

Fig. 5.14 Fundamental Theorem, Pdrt(thin areaA f)/(base lengthh x)— heightv(x).

Graphical meaning The f-graph gives the area under thggraph. The thin strip in
Figure 5.14 has area f. That area is approximately(x) times A x. Dividing by
its base A f/Ax is close to the height(x). WhenAx — 0 and the strip becomes
infinitely thin, the expression “close to” converges to “equals.” THgiidx is the
height atv(x).

DERIVATIVES WITH VARIABLE ENDPOINTS

When the upper limit isc, the derivative isv(x). Suppose théower limit is x. The
integral goes fronx to b, instead ofz to x. Whenx moves, the lower limit moves.
The change in area is on the left side of Figure 5A8x goes forwardarea is
removed So there is a minus sign in the derivative of area:

b
d

The derivative of g(x) = J v(t)dr is d_g = —v(x). (5)

X

x [ )

Thequickest proof is to reverdeandx, which reverses the sign (PropeBy

* d
g(x):_f U(t) dt so by Partl —g=—v(x)_
b dx

4 3
v(b(x)) 1
vlx) 1 v(a(x)) N gain
lose lose ; i v(b(x))Ab
v(x)Ax v(a(x))Aaf i
5 X
X x+Ax b a(x) a(x+ Ax) b(x) b(x+ Ax)

Fig. 5.15 Areafromx tob hasdg/dx = —v(x). Areav(b)db is added, area(a)da is lost

The general case is messier but not much harder (it is quite useful). Supptbse
limits are changing. The upper limit(x) is not necessarily, but it depends orx.



5.7 The Fundamental Theorem and Its Applications 269

The lower limita (x) can also depend an(Figure 5.15b). The ared between those
limits changes as changes, and we wadtd/dx:

b@) dA db d
f A= J vty dr then 22 =v(b()E2 vl (6)
a(x) dx dx dx
Thefigure shows two thin strips, one added to the area and one subtracted.

First check the two cases we know. Wher= 0 andb = x, we haveda/dx =0
anddb/dx = 1. The derivative according t6) is v(x) times l—the Fundamental
Theorem. The other case has= x andb = constant Then the lower limit in(6)
produces—v(x). When the integral goes from=2x to b = x3, its derivative is
new:

x3 . 3 .
EXAMPLE 1 A= [, costdr=sinx®—sin2x
dA/dx = (cosx?)(3x2) — (c0s2x)(2).

That fits with (6), becauseb/dx is 3x? andda/dx is 2 (with minus sign). It also
looks like the chain rule—which it is! To proy®) we use the letters and f:

b(x)
A= J v(t)dt = f(b(x))— f(a(x)) (by Part2 below)
a(x)

a4 f'(b(X))ﬁ — f'(a (X))d—a (by the chain rule)
dx dx

dx
Since f’ = v, equation(6) is proved. In the next example the area turns out to be
constant, although it seems to dependroilote thatv(z) = 1/¢ sov(3x) =1/3x.

3x

1 dA 1 1

EXAMPLE2 A= —-dthas—=[—])3)—|—](2)=0.
Lx t asdx (3x)( ) (2x)( )

X

Question A= f v(t)dt hasz—A =v(x)+v(—x). Why does (—x) have a plus sigh
X

—X

THE FUNDAMENTAL THEOREM, PART 2

We have used a hundred times the Theorem that is now to be pidigthe key to
integration. “The integral oflf /dx is f(x)+ C.” The application starts with(x).
We search for arf’(x) with this derivative. Ifdf /dx = v(x), the Theorem says that

fv(x)dx:f%dx:f(x)-i—c.

We can'trely on knowing formulas far and f—only the definitions o!f andd/dx.
The proof rests on one extremely special cagg/dx is the zero function
We easily find f(x) = constant The problem is to prove that there are no other
possibilities: f mustbe constant. When the slope is zero, the graprstbe flat.
Everybody knows this is true, but intuition is not the same as proof.
Assume thatdf/dx = 0 in an interval. If f(x) is not constant, there are points
where f(a) # f(b). By the Mean Value Theorem, there is a painwhere
o= LO=1@
—da

But f'(c) # 0 directly contradictglf /dx = 0. Thereforef(x) must be constant.

(this is not zero becaugéa) # f(b)).
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Note the crucial role of the Mean Value Theoremlogal hypothesis{f/dx =0
at each point) yields global conclusion (f = constant in the whole interval). The
derivative narrows the field of view, the integral widens it. The Mean Value Theorem
connects instantaneous to average, local to global, points to intervals. This special
case (the zero function) applies whefix) and f(x) have the same derivative:

If dA/dx=df/dx onaninterval then A(x)= f(x)+C. @)

Reaon: The derivative ofi(x) — f(x) is zero. SA(x) — f(x) must be constant.
Now comes the big theorem. It assumes th@t) is continuous, and integrates
using f(x):

b
5D (Fundamental Theorem, Pa@) If v(x) = %thenf v(x)dx=f(b)— f(a).

Proof The antiderivative isf(x). But Partl gave another antiderivative for the same
v(x). It was the integral—constructed from rectangles and now caled:

A(x) = r v(t)dr also has d—A =v(x).
p dx

Sinced’ = v and f’ = v, the special case in equati¢p) states thatd(x) = f(x) +
C. That is the essential pointhe integral from rectangles equalg(x) + C.

At the lower limit the area integral id = 0. So f(a) + C = 0. At the upper limit
f(b)+ C = A(b). Subtract to find4 (b), the definite integral:

b . X
A(b) = [, v(x)dx = f(b) — f(a).
Calculus is beautiful—its Fundamental Theorem is also its msesful theorem.

Another proof of Par® starts with f = v and looks at subintervals:

f(x1)— fla)=v(x{)(x1—a) (by the Mean Value Theorem)
F(x2) = f(x1) = v(x5)(x2 —x1) (by the Mean Value Theorem)

Sb)— fxn_1)=v(x)(b—x,_1) (by the Mean Value Theorem).

The left sides add t¢(b) — f(a). The sum on the right, a&x — 0, is fz v(x)dx.

APPLICATIONS OF INTEGRATION

Up to now the integral has been the area under a curve. There arg other
applications, quite different from area&’henever addition becomésontinuous,”
we have integrals instead of sum€hapter 8 has space to develop more applica-
tions, but four examples can be given immediately—which will make the point.

We stay with geometric problems, rather than launching into physics or
engineering or biology or economics. All those will come. The goal here is to take
a first step away from rectangles.
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EXAMPLE 3 (for circles) The area A and circumferenceC are related by
dA/dr=C.

The question is why. The areasr?. Its derivative2rr is the circumference. By
the Fundamental Theorem, the integralbfs A. What is missing is the geometrical
reason. Certainlyrr? is the integral of2zr, but what is thereal explanation for
A= fC(r)dr?

My point is thatthe pieces are not rectanglés/e could squeeze rectangles under
a circular curve, but their heights would have nothing to do WitiOur intuition has
to take a completely different direction, and add upttria ringsin Figure 5.16.

ring area = 2nrAr shell volume = 4xr2Ar

Fig. 5.16  Area of circle= integral over rings. Volume of sphete integral over shells.

Suppose the ring thicknessAsr. Then the ring area is close © times Ar. This
is precisely the kind of approximation we need, because its error is of higher order
(Ar)2. The integral adds ring aregsst as it added rectangular areas:

r r
A=J Cdr=f 21 dr = nr?.
0 0

That is our first step toward freedom, away from rectangles to rings.
The ring area\ A can be checked exactly—it is the difference of circles:

AA=n(r+Ar)? —nr?=2xr Ar +n(Ar)%

This isCAr plus a correction. Dividing both sides ldyr — 0 leavesdA/dr = C.

Finally there is a geometrical reason. The ring unwinds into a thin strip. Its width
is Ar and its length is close t€'. The inside and outside circles have different
perimeters, so this is not a true rectangle—but the area ist\aar

EXAMPLE 4 For a sphere, surface area and volume satisty d V/dr.

What worked for circles will work for spheres. The thin rings becdhia shells A
shell goes from radiusto radius + Ar, so its thickness ia r. We want the volume
of the shell, but we don’t need it exactly. The surface arekris?, so the volume is
about4rrr? Ar. Thatis close enough!

Again we are correct except foAr)?. Infinitesimally speaking/V = A dr:

r r 4
V:J Adrzf Agr? dr=—7r3.
0 0 3

This is the volume of a sphere. The derivativelofs 4, and the shells explain why.
Main point: Integration is not restricted to rectangles
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EXAMPLE 5 The distance around a square 45. Why does the area have
dA/ds =2s?

The side iss and the area is?. Its derivative2s goes onlyhalf way around the
square | tried to understand that by drawing a figure. Normally this works, but in the
figured A/ds looks like4s. Something is wrong. The bell is ringing so | leave this as
an exercise.

EXAMPLE 6 Find the area under(x) =cos !x fromx =0tox = 1.

That is a conventional problem, but we have no antiderivativedsr ' x. We could

look harder, and find one. However there is another solution—unconventional but cor-
rect. The region can be filled with horizontal rectanglgsot vertical rectangles).
Figure 5.17b shows a typical strip of length= cosv (the curve has = cos 'x). As

the thickness\v approaches zero, the total area beco!fmsdv. We are integrating
upward, sadhe limits are orv not onx:

5 . /2
area= jg/ cosv dv = sin v] =1.
0

The exercises ask you to set up other integrals—not always with rectangles.
Archimedes used triangles instead of rings to find the area of a circle.

€ o T e aT) /2

Uv=C08"
X=cosv

X

dv

ab
- - -

AA = 45As? dx 1
Fig. 5.17  Trouble with a square. Success with horizontal strips andglisn

5.7 EXERCISES

Read-through questions

The areaf(x) :fax v(t)dt is a function of__a . By Part1 of The square0<x <s, 0<y<s has aread= p . If s is
the Fundamental Theorem, its derivative_isb . In the proof, increased by\s, the extra area has the shape ofq . That area
a small changeAx produces the area of a thin ¢ . This area AAisapproximately r .SodA/ds=__s

Af is approximately _d times__ e . So the derivative of

Find the derivatives of the following functions F (x).

[Fi2dris__f )
1 [{ cogtdi 2 [, cos3tdt
The integralij t?dt has derivative g . The minus sign is 2 2 .,
because__h . When both limitsa(x) and b(x) depend ony, 3 Jo 1" d! 4 Jo x"dt
thiformulaford].‘/d.x b.ecomes i__minus | .Inthe example 5 f1xz 43 du 6 ff)/cz o(u) du
5 tdt, the derivative is_k .
7 j;‘“ v(t) dt (@ “running averagéof v)

By Part2 of the Fundamental Theorem, the integraldyf/dx

is __ | . In the special case whetdf/dx =0, this says that 1 i (th o q |
m__. From this special case we concludedWl /dx =dB/dx 8 ;fo v(¢) dt (the average of; use product rule)

thenA(x) =__n__.If an antiderivative ofl /x is Inx (whatever that 1 (* . 1 (x+2

. . b 9 — | sirtrde 10 - 3dt

is), then automatically,’ dx/x=__o x Jo 2 ),



5.7 The Fundamental Theorem and Its Applications 273

11 [ [fo v(u) du) dt 12 [o (df/dr)?dt 33 The hypervolume of a four-dimensional spherdfis= 17214,
Therefore the area (volume?) of its three-dimensional surface
13 fo v(t)a’H—_[x1 v(t)dt 14 f5 v(=1)dt x24y24+22412=r2is

34 The area above the parabgla= x2 fromx=0tox =1 is %
Draw a figure with horizontal strips and integrate.

15 [ sint?di 16 [, sintdt
35 The wedge in Figure (a) has are}aﬂd@. One reason: It
17 fg u()v(r)dt 18 fb(x) 5dt is a fractiondd/2m of the total arearr2. Another reason: It
sinx ey is close to a triangle with small base/6 and height
19 J sin~17 dt 20 J a . Integrating r2d6 from6 =0to 6 = gives the area
0 o dt of a quarter-circle.
21 True or false 36 A= jor \/r?2 —x2dx is also the area of a quarter-circle. Show
@) If df /dx = dg/dx then f(x) = g(x). why, with a graph and thin rectangles. Calculate this integral by sub-

(b) 1fd2 f/dx? =d2g/dx? then f(x) = g(x)+C. stitutingx = r sind anddx =r cosf d6.

(c) If 3> x then the derivative of; v(r) dt is —v(x). (@ b)
(d) The derivative ofjl3 v(x)dx is zero.
22 For F(x)= szx sint dt, locate F(w + Ax)— F () on a sine ﬁ

graph. Where iF'(Ax) — F(0)?

23 Find the functiorv(x) whose average value betwe@andx is
cosx. Start fromj(f v(t) dt = xcosx. 37 The distancer in FHgure (b) is related t&@ by r =
Therefore the area of the thin triangle i§r2d9:

— 2 —
24 Supposeif/dx =2x. We know thatd(x“)/dx = 2x. How do Integration tof = gives the total areé.

we prove thatf (x) =x2+C?

0 . . 38 The x and y coordinates in Figure (c) add to
25 If [Z v(r)dt = [y v(r)dt (equal areas left and right of zero)

3 . A ) rc0sf +rsinf = . Without integrating explain why
thenv(x)isan___ function. Take derivatives to prove it.
/2
26 Example 2 said thaf dt/t does not really depend on (or L =
o (cosd+sin §)2
t"). Substitutexu for ¢ and watch the limits om.
27 True or false, with reason: 39 The horizontal strip at height in Figure (d) has width/y and

lengthx = .Sothe areauptey =2 is . What length

(a) All continuous functions have derivatives. are the vertical strips that give the same area?

(b) All continuous functions have antiderivatives. o ] )
40 Use thin rings to find the area between the circles2 and

() Allantiderivatives have derivatives. 3. Draw a picture to show why thin rectangles would be extra
r=3.
(d) A(x)= 57 dt/1? hasdA/dx =0. difficult P g ’

Find [{* v(r) dt from the facts in 28-29.

d(xn) X X :
28 = 29 t)dt=——. :

o N v &
30 What is wrong with Figure 5.17? It seems to show that

dA = 4s ds, which would mea = [ 4s ds =2s2. ada

31 The cube0<x.y z<s has volumeV’'=____. The three 41 The length of the strip in Figure (e) is approximately

square faces withx=s or y=s or z=s have total aréa tpg yidthis . Therefore the triangle has arég da

A= . If s is increased byAs, the extra volume has the(do you get1’>)

shape of . That volumeAV is approximately

dV/ds = . 42 The area of the ellipse in Figure (f)2s r2. Its derivative istr r.

32 The four-dimensional cube<x, y, z. t <s has hypervolume But this is not the correct perimeter. Where does the usual reasoning
H= . The face withx = s is really a Its volume is 9° wrong?

V= . The total volume of the four faces with=s, y =s, 43 The derivative of the integral ob(x) is v(x). What is the
z=s,0rt=sis . Whens is increased bys, the extra hy- corresponding statement for sums and differences of the numbers

pervolume isAH ~ .SodH/ds = . v;? Prove that statement.
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44 The integral of the derivative of (x) is f(x)+C. What is the 46 The mountainy = —x2 +¢ has an areal(r) above thex axis.
corresponding statement for sums of differenceg’ @ Prove that Ast increases so does the area. Drawargraph of the mountain at
statement. t = 1. What line givesd A/dt? Show with words or derivatives that

45 Does de/dXZZa(x) lead to J‘OI(J‘(;C a(t)di)dx = a’ZA/a't2 > 0.
S —f(0)?
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I 5.8 Numerical Integration |

This section concentrates on definite integrals. The inputg@reand two endpoints
a and b. The output is the integrall. Our goal is to find that number

ny(x) dx = I, accurately and in a short time. Normally this goal is achievable—as
soon as we have a good method for computing integrals.

Our two approaches so far have weaknesses. The search for an antiderivative
succeeds in important cases, and Chapter 7 extends that range—but gefierally
is not available. The other approach (by rectangles) is in the right direction but too
crude. The height is set by(x) at the right and left end of each small interval. The
right and left rectangle rulesadd the areasX x timesy):

Ry =(Ax)(y1+y2+ - +ys) and L,=(Ax)(yo+y1+ - +yn_1).

The value ofy (x) at the end of intervaj is y;. The extreme left valugo = y(a)
entersL,. With n equal intervals of lengthh x = (b —a)/n, the extreme right value

is y, = y(b). It entersR,. Otherwise the sums are the same—simple to compute,
easy to visualize, but very inaccurate.

This section goes from slow methodegtangle¥to better methoddi@apezoidal
and midpoinfto good methodsimpson and Gaus£ach improvement cuts down
the error. You could discover the formulas without the book, by integratiagd.x?
andx*. The rule R,, would come out on one side of the answer, dndwould be
on the other side. You would figure out what to do next, to come closer to the exact
integral. The book can emphasize one key point:

The quality of a formula depends on how many integrals
[ldx, [xdx, [ x*dx, ... itcomputes exactly. Iff x? dx
is the first to be wrong, the order of accuragy p.

By testing the integrals of, x, x2, ..., we decide how accurate the formulas are.

Figure 5.18 shows the rectangle ruRs andL,,. They are already wrong when
y = x. These methods af@st-order. p = 1. The errors involve the first power of
Ax—where we would much prefer a higher power. A largem (Ax)? means a
smaller error.

MR
WE_~%
Yo

Ax Ax Ax

Fig. 5.18 Errors E ande in R, and L, are the areas of triangles.

When the graph ofy(x) is a straight line, the integral is known. The error
trianglesE ande have base\x. Their heights are the differences —y;. The
areas ar%(base)(height), and the only difference is a minus signigtoo low, so
the errorL — I is negative.) The total error iR, is the sum of theE'’s:

Ry—I=1Ax(y1—y0)+ -+ 3AX(Vn—Yn-1) = 5Ax(yu— o). (1)
All y’s betweeryo andy, cancel. Similarly for the sum of thes:
Ly—1=—=3Ax(yn—yo) = —5Ax[y(h) = y(a)]. 2
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The greater the slope of(x), the greater the error—since rectangles have zero slope.

Formulas(1) and (2) are nice—but those errors are larg€o integratey = x
froma =0tob =1, the error is%Ax(l —0). It takes500, 000 rectangles to reduce
this error tol/1,000,000. This accuracy is reasonable, but that many rectangles is
unacceptable.

The beauty of the error formulas is that they aasymptotically correétfor all
functions. When the graph is curved, the errors don't fit exactly into triangles. But
the ratio of predicted error to actual error approache8s Ax — 0, the graph is
almost straight in each interval—this is linear approximation.

The error predictior%Ax[y (b) — y(a)]is so simple that we test it op(x) = 1/x:

I=[yy/xdx=2 n= 1 10 100 1000
ermorR, —1 = 33 044 0048  .00049
errorL, —1 = —.67 —.056 —0052 —.00051

The error decreases along each row. So dbes=.1,.01,.001,.0001. Multiplying
n by 10 divides Ax by 10. The error is also divided by0 (almost).The error is
nearly proportional toA x—typical of first-order methods.

The predicted error i%Ax, since herey(1) =1 andy(0) = 0. The computed er-
rors in the table come closer and cIoseémx =.5,.05,.005,.0005. The prediction
is the “leading term” in the actual error.

The table also shows a curious fact. Subtracting the last row from the row
above gives exact numbers.1,.01, and 001. Thisis(R, — 1) — (L, —I), which
is R, — L,. It comes from an extra rectangle at the right, include®jnbut notL,,.
Its height isl and its area ig,.1,.01,.001.

The errors in R, and L, almost cancel The averagdl;, = 3(R, + L,) has
less error—it is the “trapezoidal rule.” First we give the rectangle prediction two final
tests:

n=1 n=10 n=100 n=1000
[(x?—=x)dx: errors  1.7-10°! 1.7-10°3 1.7-10~> 1.7-10~7
["dx/(10+cos2rx): errors —1-1073  2-10714 “0” “0”

Those errors are fallinfasterthanA x. For y = x2 — x the prediction explains why:
v(0) equalsy(1). The leading term, witly (b) minusy(a), is zera The exact errors
are £ (Ax)?, dropping froml0~! to 1072 to 10~° to 10~7. In these examplek,, is
identical toR, (and also tdl},), because the end rectangles are the same. We will see
these%(Ax)2 errors in the trapezoidal rule.

The last row in the table is more unusual. It shows practically no error. Why do the
rectangle rules suddenly achieve such an outstanding success?

The reason is that(x) = 1/(10 4+ cos2x x) is periodic The leading term in the
error is zero, becausg(0) = y(1). Also the next term will be zero, because
¥'(0) = y’(1). Every power ofAx is multiplied by zero, when we integrate over
a complete period. So the errors go to zero exponentially fast.

Personal notel tried to integratel /(10 + co2z x) by hand and failed. Then | was
embarrassed to discover the answer in my book on applied mathematics. The method
was a special trick using complex numbers, which applies over an exact period.
Finally | found the antiderivative (quite complicated) in a handbook of integrals, and
verified the ared /4/99.
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THE TRAPEZOIDAL AND MIDPOINT RULES

We move to integration formulas that are exact whge=x. They have
second-order accuracyThe Ax error term disappears. The formulas give the
correct area under straight lines. The predicted error is a multiplé\af)?. That
multiple is found by testing = x?>—for which the answers are not exact.

The first formula combine®,, andL,. To cancel as much error as possible, take
the average%(Rn+Ln). This yields thetrapezoidal rule which approximates

J y(x)dx by Ty:
Th= %Rn + %Ln = Ax(%)’o+}‘1 AR {7 B %)’ﬁ)' ©)

Another way to findrl, is from the area of the “trapezoid” below= x in Figure 5.19a.

T =Ax’:% o+ + ._.;_ O +y)+.. ]

j+1 JI—

Fig. 5.19  Second-order accuracy: The error prediction is based enx?.

Thebase isAx and the sides have heights_; andy;. Adding those areas gives
%(Ln + R,) in formula (3)—the coefficients of; combine into% + % = 1. Only the
first and last intervals are missing a neighbor, so the rulei—lyasand %yn. Because
trapezoids (unlike rectangles) fit under a sloping lifigis exact whery = x.

What is the difference from rectangles? The trapezoidal rule gives wéigbttto
yo andyy,. The rectangle rul&,, gives full weightAx to y, (and no weight tgyo).
R, —T, is exactly the leading errof y, — 1 yo. The change tdl}, knocks out that
error.

Another important formula is exact far(x) = x. A rectangle has the same area
as a trapezoid, if the height of the rectangle is halfway betwgen andy;. On a
straight line graph that is achieved at thidpointof the interval. By evaluating (x)
at the halfway pointéAx, %Ax, %Ax, ..., we get much better rectangles. This leads
to themidpoint rule M,;:

My =Ax(y12+y32+ -+ yn_1/2) 4)

Forf;‘ x dx, trapezoids givé (0) + 1 + 2+ 3+ (4) = 8. The midpoint rule gives
% + % + % + % = 8, again correct. The rules become different whes: x2, because
¥1/2 is no longer the average 9f andy;. Try both second-order rules ort:

I=[yx>dx n= 1 10 100
errorT, —1 = 1/6  1/600  1/60000
errorM, —1 = —1/12 —1/1200 —1/120000

The errors fall byl00 whenn is multiplied by 10. The midpoint rule is twice as
good (—1/12 vs. 1/6). Since all smooth functions are close to parabolas (quadratic
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approximation in each interval), the leading errors come fragufé 5.19. The
trapezoidal error is exactlﬁf(Ax)2 wheny(x) is x? (the 12 in the formula divides
the2in y’):

1 1
Tw—1I~ E(AX)2 [OG1=y)+ -+ On—yp_D]= E(AX)2 [y —yo] (B)

1 1
My =1~ =280 [y, = o] = =57 (80 [y (0) = y'(@)] (6)

For exact error formulas, changé(b) — y’(a) to (b —a)y"(c). The location of

¢ is unknown (as in the Mean Value Theorem). In practice these formulas are not
much used—they involve thpth derivative at an unknown location The main
point about the error is the factoA x)?.

One crucial fact is easy to overlook in our tedEsach value ofy(x) can be ex-
tremely hard to comput&very time a formula asks for;, a computer calls a sub-
routine. The goal of numerical integration is to get below the error tolerance, while
calling fora minimum number of values of Second-order rules need about a thou-
sand values for a typical toleranceldf©. The next methods are better.

FOURTH-ORDER RULE: SIMPSON

The trapezoidal error is nearly twice the midpoint error (¥56—1/12). So a good
combination will have twice as much &f,, asT,,. ThatisSimpson'’s rule

1 2 1
Sn=zTh+ My = EAX [Vo+4y12+2y14+4y324+2y2+ - +4yu_1/2+ ya]-

"3 3
(7)

Multiply the midpoint values by /3 = 4/6. The endpoint values are multiplied by
2/6, except at the far ends andb (with heightsyo andy,). Thisl —4—-2 —4 —
2 — 4 —1 pattern has become famous.

Simpson’s rule goes deeper than a combinatiof oénd M. It comes from a
parabolicapproximation toy (x) in each interval. When a parabola goes through
Y1/2.y1, the area under it iséAX(yo+4y1/2+y1). This is S over the first
interval. All our rules are constructed this waylntegrate correctly as many
powersl, x,x2, ... as possibleParabolas are better than straight lines, which are
better than flat piecesi beatsM , which beatsk. Check Simpson’s rule on powers
of x, with Ax = 1/n:

n=1 n=10 n =100
error if y = x?2 0 0 0
errorif y = x3 0 0 0
errorif y =x* 8.33-10~% 8.33-10~7 8.33-10"!!
Exact answers fax? are no surpriseS, was selected to get parabolas right. But the
zero errors fon® were not expected. The accuracy has jumpddueoth order, with
errors proportional t§ Ax)*. That explains the popularity of Simpson’s rule.

To understand why? is integrated exactly, look at the intenjat1,1]. The odd
functionx? has zero integral, and Simpson agrees by symmetry:

1 1
3 _l 4 _ z _1)\3 3 3|
Jlx dx= }l_o and 6[( 1)34+4(0)3+1 ]_o. 8)
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Fig. 5.20 Simpson versus GausE::c(Ax)“(y;.’q_l—y}”) with ¢s=1/2880 and
cc = —1/4320.

THE GAUSS RULE (OPTIONAL)

We need a competitor for Simpson, and Gauss can compete withodyyHe
calculated integrals in astronomy, and discovered tivat points are enough for
a fourth-order methodFrom—1 to 1 (a single interval) his rule is

(1) dx = y(—1/v/3)+ y(1/4/3). 9

Those ‘Gauss points x = —1/4/3 and x = 1/4/3 can be found directly. By placing
them symmetrically, all odd powerns x3, ... are correctly integrated. The key is in
y = x2, whose integral i£/3. The Gauss points-xg and +xg get this integral
right:

3 = (—xG)2 + (XG)Z, SO xé = % and xg= i%

Figure 5.20c shifts to the interval fro to Ax. The Gauss points are
(14+1/4/3)Ax/2. They are not as convenient as Simpson's (which hand calcula-
tors prefer). Gauss is good for thousands of integrations over one interval. Simpson is
good when intervals go back to back—then Simpson also useg‘syger interval.

Fory = x*, you see both errors drop by~ in comparing: = 1 ton = 10:

I=[,x*dx  Simpsonerror  8.33-1073 8.33-1077
Gauss error —5.56-107%*  —556-10"7

DEFINITE INTEGRALS ON A CALCULATOR

It is fascinating to know how numerical integration is actuatne. The points are
not equally spaced! For an integral fronto 1, Hewlett-Packard machines might
internally replacer by 3u? —2u? (the limits onu are also0 and1). The machine
remembers to changgr. For example,

f dx Jl 6(u—u?du (1 6(1—u)du
—— becomes —_— = i
0 VX o V3u2—2u3 0o V3—2u

Algebraically that looks worse—but the infinite valuelgfy/x at x = 0 disappears
atu = 0. The differentialo(u — u?)du was chosen to vanish at= 0 andu = 1. We
don’t needy (x) at the endpoints—where infinity is most common. In theariable
the integration points are equally spaced—thereforetiney are not.

When a difficult point isinside[a, b], break the interval in two pieces. And chop

off integrals that go out to infinity. The integral of** should be stopped by = 10,
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since the tail is so thin. (It is bad to go too far.) Rapid osdiias are among the
toughest—the answer depends on cancellation of highs and lows, and the
calculator requires many integration points.

The change fronx to u affects periodic functions. | thought equal spacing was
good, sincd /(10 + cos2x x) was integrated above to enormous accuracy. But there
is a danger calledliasing. If sin8xx is sampled withAx = 1/8, it is always zero.

A high frequency8 is confused with a low frequendy (its “alias” which agrees at
the sample points). With unequal spacing the problem disappdatie how any
integration method can be deceived

Ask for the integral ofy =0 and specify the accuracy. The calculator
samplesy atxy, ..., xg. (With a PAUSE key, the’s may be displayed.)
Then integrateY (x) = (x —x;)?---(x —xx)2. That also returns the
answer zero (now wrong), because the calculator follows the same steps.

On the calculator you enter the function, the endpoints, and the accuracy. The
variablex can be named or not (see the margin). The outpd3077 and 4.7E-5

are the requested integrélf e* dx and the estimated error bound. Your input
accuracy00001 guarantees

_ _ true y —computedy
relative error iny = <.00001.
computedy

The machine estimates accuracy based on its experience in samplinglf you
guarantee* within .00000000001, it thinks you want high accuracy and takes longer.

In consulting for HP, William Kahan chose formulas using, 7,15, ... sample
points. Each new formula uses the samples in the previous formula. The calculator
stops when answers are close.
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5.8 EXERCISES

Read-through questions

Tointegratey (x), divide[a,b] into n pieces of lengttAx =__a . 11 In principle j"f% sin?x dx/x% = z. With a symbolic algebra

R, and L, place a_ b over each piece, using thecode or an HP- 288 how many decimal places do you get? Cut off
height at the right or__c _ endpoint: R, = Ax(y1+---+yx) the integral tof 4 4 and test large and smal.

and L,=_d . These are__e order methods, because

they are incorrect fory=_f . The total error onf0,1] 12 These fourintegrals all equat

is approximately g . For y=coszx this leading term is i
Slnx SJ” 4 f’“‘xil/zdx
— | sin“xdx —_—

(] (]

h . Fory=cos2zx the error is very small becauge, 1] is a

complete__i . J \/x(T J 3

1+x

A much better method is Ty=jRp+_ | = (@ Apply the midpoint rule to two of them until
Ax[3yo+_k_ yi+--+_1 y,]. This m rule is 7 x3.1416.

n__-order because the error for=x is_o . The error for (b) Optional: Pick the other two and find~: 3.
y=x2fromatobis p .The q ruleistwice as accurate,
using M, = Ax[__r _]. 13 To compute |nz:ﬁ dx/x =.69315 with error less than

] ’ ) 2 ) .001, how many intervals should, need? lIts leading error is
Simpson's method isSp=3Mp+_s . It is _t - (Ax)2[)/(b)—)'(a)]/12. Test the actual error with = 1/x.

order, because the powers u  are |ntegrated correctly Th
coefficients of yo,y1/2.y1 are _v__ times Ax. Over three 14 CompareT, with M, for jo\/—dx and n=1,10,100. The
intervals the weights aré\x/6 times 1 —4—__w . Gauss uses error prediction breaks down becausg0) =

points in each interval, separated b;{x/\/§. For a _x .
method of orderp the error is nearly proportionalto y . 15A Take /(x)=[o y(x)dx in error formula3R to prove that

Jo~ y(x)dx —y(0)Ax is exactlyL (Ax)2y’(c) some point.
1 What is the differencelL, —T,? Compare with the leading

error term in (2). 16 For the periodic functioy(x) = 1/(2+cosé6xx) from—1to 1,

comparel’ andS andG forn =2.
2 If you cut Ax in half, by what factor is the trapezoidal _ _ _
error reduced (approximately)? By what factor is the error i/ For = [§ \/1—x2 dx, the leading error in the trapezoidal rule
Simpson’s rule reduced? is___ .Tryn=2,4,8to defy the prediction.

3 ComputeR, and L, for fo x3dx and n=1,2,10. Either 18 Change to x =sinf,\/1 —x2=cosf,dx =cosfdf, and
verify (with computer) or use (without computer) the formulaepeat7y on j”/ 2cof0dh . What is the predicted error after
B+23 4 +nd=in2(n+1)2 the change t@?

4 One way to computeT, is by averaging (L,+Ryn). 19 Write down the three equationsy(0)+ By(3)+Cy(1) =1
Another way is to addlyo+yi+---+Ly,. Which is more for the three integrald = g 1dx, [ x dx, [§ x> dx. Solve for
efficient? Compare the number of operations. A, B,C and name the rule.

5 Test three different rules oh= j(l, x*dx forn=2,4,8. 20 Can you invent a rule usingyo + By 4 +Cy1/2+Dys3 4+

] . ) Ey1 toreach higher accuracy than Simpson’s?
6 Compute 7 to sx places as4j"0dx/(1+x2), using any
rule. 21 Show that7;, is the only combination of_, and R, that has

) 1 . . ) second-order accuracy.
7 Change Simpson’s rule tax(zyo+3y1/2+ 1) in each

interval and find the order of accuragy 22 Calculateje—x2 dx with ten intervals from0 to 5 and 0
to 20 and0 to 400. The integral from0 to oo is %ﬁ What is the

8 Demonstrate superdecay of the error whef(3+sinx) is . o
P y et ) best point to chop off the infinite integral?

integrated fron® to 2.
23 The graph ofy(x)=1/(x?>+10719) has a sharp spike and
a long tail. Estimatej(l)ydx from T109 and T19p (don’t expect
much). Then substituter =10~ tané,dx = 10 >se@f df and
integratel 0° from 0 to /4.

9 Check that(Ax)Z(y}H—y})/lZ is the correct error for
y=1 and y=x and y =x? from the first trapezoid(;j =0).
Then itis correct for every parabola over every interval.

10 Repeat Problem 9 for the midpoint  error 4 )
—(Ax)2(y", e y.)/24. Draw a figure to show why the 24 Compute [ |x—n|dx from T4 and compare with the

rectangled has t(1e same area as any trapezoid through the nﬁ'dﬂde and conquer method of separatiff§ |x —x|dx from
point (including the trapezoid tangent $@x)). j |x —m|dx.
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25 Find a,b,c so that y =ax?2+bx+c equals 1,3,7 at 28 What condition ony(x) makesL, = R, = T, for the integral
x =0, %,1 (three equations). Check tha%~1+ % 34 % -7 Lbl y(x)dx?

1
equalsf y dx. 29 Suppose y(x) is concave up Show from a picture that
26 Findcin S—1 :c(Ax)4[y'”(l)—y”’(O)] by takingy:x4 the trapezoidal answer is too high and the midpoint answer is
andAx =1. too low. How doesy” >0 make equation (5) positive and (6)

negative?

27 Find ¢ in G—1I=c(Ax)*[y"(1)—y"(—1)] by taking
y=x* Ax=2,andG = (—1/v/3)* + (1/v/3)*.
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