CHAPTER 6

Exponentials and Logarithms

This chapter is devoted to exponentials like and 10* and above ale*. The goal

is to understand them, differentiate them, integrate them, solve equations with them,
and invert them (to reach the logarithm). The overwhelming importane& ofakes

this a crucial chapter in pure and applied mathematics.

In the traditional order of calculus books? waits until other applications of the
integral are complete. | would like to explain why it is placed earlier here. | believe
that the equatioy /dx = y has to be emphasized above techniques of integration.
The laws of nature are expressediifferential equations and at the center is*. Its
applications are to life sciences and physical sciences and economics and engineering
(and more—wherever change is influenced by the present state). The model produces
a differential equation and | want to show what calculus can do.

The key is alway$™ " = (b™)(b"). Section6.1 applies that rule in three ways:

1. to understand thivgarithm as theexponent
2. to drawgraphson ordinary and semilog and log-log paper;
3. to find derivatives The slope ob* will use 5*+2% = (b¥)(h2¥).
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284 6 Exponentials and Logarithms

I 6.1 An Overview NN

There is a good chance you have met logarithms. They turn multiplication into
addition, which is a lot simpler. They are the basis for slide rules (not so important)
and for graphs on log paper (very important). Logarithms are mirror images of
exponentials—and those | know you have met.

Start with exponentials. The numbdi®and10? and 103 are basic to the decimal
system. For completeness | also includ¥, which is “ten to the zeroth power” or
1. The logarithms of those numbers are the exponerit&e logarithms ofl and
10 and 100 and 1000 are0 and1 and2 and3. These are logarithms “to bad®,”
because the powers are powerd 0f

Question When the base changes frdid to », what is the logarithm of ?
Answer  Sinceb? =1, log, 1 is alwayszera To baseb, the logarithm of b” isn.
Negative powers are also needed. The nunibé&ris positive, but its exponent can
be negative. The first examples dré 0 and1/100, which are the same d9~! and
10~2. The logarithms are the exponentd and —2:

1000=103 and log1000=3
1/1000=103 and  logl/1000= —3.
Multiplying 1000 times1/1000 gives1 = 10°. Adding logarithms gives + (—3) =

0. Always 10™ times 10" equalsl0™*”. In particular103 times 102 produces five
tens:

(10)(10)(10) times (10)(10) equals (10)(10)(10)(10)(10) = 10°.

The law forb™ timesh” extends to all exponents, aslifi*-¢ times10”. Furthermore
the law applies to all bases (we restrict the bask 100 andb # 1). In every case
multiplication of numbers is addition of exponents

6A b™ timesh™ equalsh™ ™, so logarithms (exponents) add
b™ divided byb™ equalsh™ ", so logarithms (exponents) subtract

log,(yz) =log, y +log,z  and  log,(y/z) =log,y—log,z. (1)

Historical note In the days of slide ruled,.2 and 1.3 were multiplied by sliding
one edge across tb.2 and reading the answer unde3. A slide rule made in
Germany would give the third digit ih.56. Its photograph shows the numbers on a
log scale. The distance frointo 2 equals the distance frogito 4 and from4 to 8.

By sliding the edges, you add distances and multiply numbers.

Division goes the other wayNotice how1000/10 = 100 matches3 —1=2. To

divide 1.56 by 1.3, look back along line D for the answér2.

The second figure, though smaller, is the important dben x increases by
1,2* is multiplied by2. Adding tox multipliesy. This rule easily givey = 1,2,4,8,
but look ahead to calculus—which doesn’t stay with whole numbers.

Calculus will addAx. Then y is multiplied by 22*. This number is neat.
If Ax = ﬁ then 2% ~ 1.07—the tenth root o. To find the slope, we have to
consider(24* — 1)/ Ax. The limitis near(1.07 — 1) /-5 = .7, but the exact number
will take time.
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Fig. 6.1  Anancient relic (the slide rule). When exponemtadd powers2* multiply.

Base ChangeBases other thah) and exponents other thdn2, 3, ... are needed
for applications. The population of the wortdyears from now is predicted to grow by
a factor close td .02*. Certainlyx does not need to be a whole number of years. And
certainly the base .02 should not bel 0 (or we are in real trouble). This prediction
will be refined as we study the differential equations for growth. It can be rewritten to
basel 0 if that is preferredlfut look at the exponent

1.02* is the same as 10(°91.02)x

When the base changes frdn®2 to 10, the exponent is multiplied—as we now see.
For practice, start with bageand change to bage The logarithm to base will
be written “log.” Everything comes from the rule that logarithmexponent:

base change for numbers b = a'°9%.
Now raise both sides to the power You see the change in the exponent:
(logb)x

base change for exponentials »* =a

Finally sety = b*. Itslogarithm to basé is x. Its logarithm to base is the exponent
on the right hand siddog, y = (log, b)x. Now replacex by log, y:

base change for logarithms log, y = (log, b)(log, ).
We absolutely need this ability to change the base. An examptheawet 2 is
h=8=2% 8 =(2%%2=2% log,64=3-2=(log,8)(logg 64).

The rule behind base changes {&@™)* = a™*. When themth power is raised
to thexth powerthe exponents multiplifhe square of the cube is the sixth power:

(a)(a)(a) times (a)(a)(a) equals(a)(@)(@)(@)(@)(a): (a*)*=a’.

Another base will soon be more important tH&—here are the rules for base changes:



286

6 Exponentials and Logarithms

6B To changewumberspowers andlogarithmsfrom baseb to basez, use

b=a%%b  p*=ql°uP¥  og,y=(log,b)(log,y)  (2)

The first is the definition. The second is th&h power of the first. The third is the
logarithm of the second (remembgis ). An important case i$ = a:

log, a = (log, b)(log, a) =1 solog, b =1/log,a. 3)

EXAMPLE 8 =23 means8!/3 =2. Then(log, 8)(logg 2) = (3)(1/3) = 1.

This completes the algebra of logarithms. The addition r@lascame from
(b™)(b™) = b™T". The multiplication rule6B came from(a™)* = a™*. e still
need to defing* anda* for all real numbersx. Whenx is a fraction, the defi-
nition is easy. The square root @f is a*(m =8 timesx = 1/2). Whenx is not a
fraction, as i2™, the graph suggests one way to fill in the hole.

We could define2” as the limit of 23,231/10 2314/100 " Ag the fractions
r approachr, the power2” approach2”. This makesy = 2* into a continuous
function, with the desired properti¢2™)(2") = 21" and(2™)* = 2"*—whether
m andn andx are integers or not. But thes and§’s of continuity are not attractive,
and we eventually choose (in Sectiéd) a smoother approach based on integrals.

GRAPHS OF b* AND log, y

It is time to draw graphs. In principle one graph should do tthefgo both functions,
becausey = b* means the same as=log,, y. These are inverse function®Vhat
one function does, its inverse undoes. The logarithm(af) = b* is x:

g ' (g(x) =log, (h*) = x. (4)
In the opposite direction, the exponential of the logarithny f y:
glg ') =pPe =y, (5)

This holds for every bask, and it is valuable to sek =2 andb = 4 on the same
graph. Figure 6.2a shows=2* andy = 4*. Their mirror images in th&5° line
give the logarithms to baskand basd, which are in the right graph.

Whenx is negativey = b* is still positive If the first graph is extended to the
left, it stays above the axis. Sketch it in with your pencil Also extend the second
graph down, to be the mirror image. Don'’t cross the vertical axis.

16 +

1 2 3 4 12 4 8 16
Fig. 6.2 Exponentials and mirror images (logarithms). Different sséte x andy.
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There are interesting relations within the left figure. All erpatials start af,
because? is alwaysl. At the heighty = 16, one graph is above =2 (because
4% = 16). The other graph is above= 4 (becaus@* = 16). Why does4* in one
graph equal22* in the other? This is the base change for powers, sifiee22.

The figure on the right shows the mirror image—the logarithm. All logarithms
start from zero ayy = 1. The graphs go down te-c0 at y = 0. (Roughly speaking
2% is zero.) Againx in one graph corresponds 2a in the other (base change for
logarithms). Both logarithms climb slowly, since the exponentials climb so fast.

The numberog, 10 is betweerd and4, becausd 0 is betweer2® and2*. The
slope of2* is proportional to2*—which never happened for”. But there are two
practical difficulties with those graphs:

1. 2* and4* increase too fast. The curves turn virtually straight up.
2. The most important fact abouth* is the value ofb—and the base
doesn'’t stand out in the graph.

There is also another point. In many problems we don’t know the fungtienf (x).
We are looking for it! All we have are measured valueydfwith errors mixed in).
When the values are plotted on a graph, we want to discf(ey.

Fortunately there is a solutioBcale they axis differently. On ordinary graphs,
each unit upward adds a fixed amounttoOn a log scale each unihultiplies y
by a fixed amounthe step fromy = 1 to y = 2 is the same length as the step from
3to6or10to20.

On alog scaley = 11 is not halfway between0 and12. And y =0 is not there
at all. Each step down divides by a fixed amount—we never reach Zéis is
completely satisfactory fadb*, which also never reaches zero.

Figure 6.3 is orsemilog papen(also known adog-linear), with an ordinaryx
axis.The graph of y = Ab* is a straight line To see why, take logarithms of that
equation:

log y =log A+ x logb. (6)

Therelation betweenx andlog y is linear. Itis reallylog y that is plotted, so the
graph is straight. The markings on thexis allow you to entep without looking up
its logarithm—you get an ordinary graphlofy y againstx.

Figure 6.3 shows two examples. One graph is an exact plpte® - 10*. It goes
upward with slopel, because a unit across has the same length as multiplication by
10 going up.10* has slopel and 101°92)x (which is »*) will have slopelog b.

The crucial numbelog b can be measured directly as the slope.

The second graph in Figure 6.3 is more typical of actual practice, in which we start
with measurements and look fgi(x). Here are the data points:

x=00 02 04 06 08 1.0
y=4.0 32 24 20 16 13

We don't know in advance whether these values fit the modelAb*. The graph

is strong evidence that they do. The points lie close to a line with negative slope—
indicatinglog b < 0 andb < 1. The slope down is half of the earlier slope up, so the
model is consistent with

y=A4-107*2 or logy=IlogA—ix. 7

Whenx reache?, y drops by a factor of0. At x =0 we seed x 4.
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Fig. 6.3 2-10° and4-10=*/2 on semilog paper. Fig. 6.4 Graphs ofAx* onlog-log paper.

Another model—gowery = Ax* instead of an exponential—also stands out with
logarithmic scaling. This time we udeg-log paper, with both axes scaled. The
logarithm of y = Ax* gives a linear relation betweéng y andlog x:

logy =logA+k log x. (8)

The exponentk becomes the slope on log-log paper. The basenakes no
difference. We just measure the slope, and a straight line is a lot more attractive
than a power curve.

The graphs in Figure 6.4 have slophand% and —1. They represendx> and
A+/x and A/x. To find theA’s, look at one point on the line. At = 4 the height is
8, so adjust thet's to make this happen: The functions ar¥/8 and4/x and32/x.
On semilog paper those graphs would not be straight!

You can buy log paper or create it with computer graphics.

THE DERIVATIVES OF y = b* AND x =log, y

This is a calculus book\Ve rave to ask about slopes. The algebra of exponents is
done, the rules are set, and on log paper the graphs are straight. Now come limits.
The central question is the derivatis/hat is dy/dx when y = b*? What is
dx/dy whenx is the logarithmlog, y ? Those questions are closely related, be-
causeb™ andlog, y are inverse functions. If one slope can be found, the other is
known fromdx/dy = 1/(dy/dx). The problem is to find one of them, and the ex-
ponential comes first.
You will now see that those questions have quick (and beautiful) ansexrept
for a mysterious constanthere is a multiplying factoc which needs more time.



6.1 An Overview 289

| think it is worth separating out the part that can be done imatet)i, leavingc
indy/dx and1/c in dx/dy. Then Sectior6.2 discovers: by studying the special
number calle@ (butc # e).

6C The derivative ob* is amultiple ch*. The number depends on the base

The product and power and chain rules do not yield this derivative. We are pushed all
the way back to the original definition, the limit &y /A x:
dy y(x+h)—y(x) px¥t+h _px

dx m n = m ©)

Key idea: Split »**” into b* timesb”. Then the crucial quantityp* factors out.
More than thatp* comesoutside the limitbecause it does not depend bnThe
remaining limit, inside the brackets, is the numbehat we don’t yet know:

dy .. b*b"—p* _bh—1
dx hIHO h |:hL0 h } ‘ (10)

This equation is central to the whole chaptér/ dx equalscb* which equalscy.
The rate of change of is proportional toy. The slope increases in the same way
that b* increases (except for the factoy. A typical example is money in a bank,
where interest is proportional to the principal. The rich get richer, and the poor get
slightly richer. We will come back to compound interest, and idertindc.

The inverse function is = logy, y. Now the unknown factor i$/c:

6D The slope ofogy, y is1/cy with the same: (depending o).

Proof If dy/dx =cb* thendx/dy=1/cb*=1/cy. (1)
That proof was like a Russian toast, powerful but too quick! We go more carefully:
f*)=x (logarithm of exponential)
(¥ (cb*)=1 (x derivative by chain rule

f1(b*)=1/ch* (divide bych™)
f'(y)y=1/cy (identifyb* asy)

The logarithm gives another way to fimd From its slope we can discovéfc. This
is the way that finally work@ext section).

x=log,y

slope l/cy

Fig. 6.5 The slope oR* is aout 7-2*. The slope of log y is aboutl/.7y.

Final remark It is extremely satisfying to meet afi(y) whose derivative id /cy.
At last the “—1 power” has an antiderivative. Remember tﬂiat"dx =x"t1/(n+
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1) is a failure whem = —1. The derivative ofc® (a constant) does not produge!
We had no integral forx~!, and the logarithm fills that gaplf y is replaced by
x ort (all dummy variables) then

d lo _ ! and d log,t = ! (12
dx gbx_cx dt 9 et

Thebaseb can be chosen so that= 1. Then the derivative i$ /x. This final touch
comes from the magic choidge= e—the highlight of Section 6.2.

6.1 EXERCISES

Read-through questions

In 10* = 10,000, the exponen# is the __a  of 10,000. The 6 Solve the following equations for:

base ishb=__b . The logarithm of10™ times 10" is _ c . (@ logyo(10%)=7 (b) log4x —log4=Ilog3
The logarithm of10™ /10" is __d . The logarithm of10,000* (c) log, 10=2 (d) log,(1/x)=2
is__e .If y=b* then x=__f . Here x is any number, (e) logx +logx =log8 () log, (x¥)=5

andy isalways ¢

] h i ] 7 The logarithm ofy = x" islog,, y =

A base change givds=a—— — andb®* =a¢—— . Then8’ is B
215 In other words logyis j timeslog y. Wheny =2itfol- 8 Prove thatlog, a)(log, ) = (log, a)(logj, ¢).
lows that log 8 times log; 2 equals_k . 9 210 js close t0103 (1024 versus1000). If they were equal

On ordinary paper the graph of=__| _is a straight line. Its then log10 would be . Also log,2 would be
dope is__m . On semilog paper the graph of=__n isa __ instead 0f0.301.
straight line. Its slope is_o . On log-log paper the graph of The numbep!090 has approximately how many (decimal) dig-
y= p isastraightline. Itsslopeis q . its ?

The slope ofy =b* isdy/dx=__r__, wherec depends orb.
The numberc is the limit ash —0 of __s . Sincex=1log,y Questions 11-19 are about the graphs of = b* and x =logy, y.
is the inverse(dx/dy)(dy/dx)=__t . Knowing dy/dx = cb*
yieldsdx/dy =__u__. Substitutingh* for y, the slope of log y is

v__. With a change of letters, the slope of jpgis__ w

11 By hand draw the axes for semilog paper and the graphs of
y=1.1* and y = 10(1.1)~.

12 Display a set of axes on which the graphjoflog;,x is a

Problems 1-10 use the rules for logarithms. . - : . . :
9 straight line. What other equations give straight lines on those axes ?

1 Find these logarithms (or exponents): 13 When noise is measured becibels amplifying by a factor

(@ log, 32 (b) logy (1/32) (© 10932(1/32) i creases the decibel level by log A. If a whisper is20db
(d) logs,2 (€) 10gio(10v/10) () 1095(109,16)  3ng a shout i§0db thenl0 log A = 50 and A = .

2 Without a calculator find the values of 14 Draw semilog graphs of = 10! ~* andy = 3 (v10)".
I 21
(a) 3102 (b) 3710933 15 The Richter scale measures earthquakes byydg 7o) = R.
(c) 109io5+109;92 (d) (logzb)(logy 9) What is R for the standard earthquake of intensly? If the 1989
(e) 10°10—4103 (f) log,56—log, 7 San Francisco earthquake measuRed 7, how did its intensity/

. compare tolp ? Thel1906 San Francisco quake hakl=8.3. The
3 Sketchy =27 andy = 5(4*) from—1to 1 on the same graph. record quake was four times as intense Witk
Put their mirror images = —log, y andx =log, 2y on a second

graph. 16 The frequency ofA abore middle C is 440/second The

. . L frequency of the next higher is . Since 27/12 % 1.5,

4 Following Figure 6.2 sketch the graphs of=(3)" and the note with frequencg60; sec is
x =10g;,, y. What are log,, 2 and log /, 4 ? .
17 Draw your own semilog paper and plot the data

5 Compute without a computer:
y=7,11,16,28,44 at x=0,1/2,1,3/2,2.

(8) logy3+log, 3 (b) log, (3)"° | | -
(©) logo 10040 (d) (log;qe)(log, 10) Estimated andb in y = Ab*.
e) 22°/(22)3 (f) log.(1/e) 18 Sketch log-log graphs of = x2 andy = v/x.
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19 On log-log paper, printed or homemade, plot=4, 11,
21,32,45atx=1,2, 3, 4, 5. Estimate4 andk in y = Axk.
Questions 20—29 are about the derivativey /dx = cb™.

20 g(x)=>b* hasslope’ = cg. Apply the chain rule tg (/' (y)) =
y to prove thatdf/dy =1/cy.

21 If the slope of logx is 1/cx, find the slopes of lo@x) and
log(x?) and log2¥).

22 What is the equation (including) for the tangent line toy =
10* atx =07? Find also the equation at=1.

23 What is the equation for the tangent line to=log;,y at
y =17? Find also the equation at= 10.

24 With b = 10, the slope ofi0* is ¢10*. Use a calculator for small
h to estimate: = lim (10* —1)/h.

25 The unknown constant in the slope of =(.1)* is
L=Iim (.lh—l)/h. (@) Estimate L by choosing a smallh.
(b) Changé: to —h to show thatl = —c¢ from Probleni4.

26 Find a baseé for which (bh —1)/h=1.Useh=1/4 by hand
orh=1/10 and1/100 by calculator.

27 Find the second derivative gf= b* andalso ofx = logy y.

28 Show that C =lim (100" —1)/h is twice as large as
c=Ilim (10” —1)/h. (Replace the lagt’s by 24.)

29 In 28, the limit for » =100 is twice as large as fob = 10.
Soc probably involves the of b.
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I 6.2 The Exponential <  [INEEEEEE

The last section discusséd and log,, y. The baseb was arbitrary—it could b

or 6 or 9.3 or any positive number except But in practice, only a few bases are
used. | have never met a logarithm to baser 9.3. Realistically there are two
leading candidates fdr, and10 is one of them. This section is about the other one,
which is an extremely remarkable number. This number is not seen in arithmetic or
algebra or geometry, where it looks totally clumsy and out of place. In calculus it
comes into its own.

The number i2. That symbol was chosen by Euler (initially in a fit of selfishness,
but he was a wonderful mathematician). It is the base ohtiteiral logarithm. It
also controls the exponenti@l, which is much more important tham x. Euler also
choser to stand for perimeter—anyway, our first goal is to find

Remember that the derivativesf andlog, y include a constant that depends
onb. Equationg10)and(11)in the previous section were

d . d 1
P b*=cbh and R log,y = o D
At x = 0, the graph ob* starts fromh® = 1. The slope is:. At y = I, the graph of
log, y starts fromlog, 1 = 0. The logarithm has slop&/c. With the right choice
of the baseb those slopes will equal (because will equal 1).

For y = 2* the slopec is near.7. We already triedAx = .1 and foundAy = .07.
The base has to be larger tharfor a starting slope of = 1.

We begin with a direct computation of the slopdad, y aty = 1:

I_ . _ _ 1/
C_slopeaﬂ_lll|_rt10h[logb(1+h) Iogbl]_}llanOIogb[(l+h) ] (2)

Alwayslogy 1 = 0. The fraction in the middle iogy (1 + &) times the numbet/ .
This number can go up into the exponent, and it did.

The quantity(1 +/4)/* is unusual, to put it mildly. As — 0, the numbed + /
is approachingl. At the same timel/ & is approaching infinityln the limit we
have 1. But that expression is meaningless (lik0). Everything depends on the
balance between “nearly and “nearlyco.” This balance produces the extraordinary
numbere:

DEFINITION The number ¢ is equal to }Ilim(l+h)1/h. Equivalently
—0

l n
e=1Iim (l—l——) .
h—0 n

Before computinge, look again at the slopé/c. At the end of equatiof2) is the
logarithm ofe:

1/c =logye. 3
When the base i$ = ¢, the slope idog, e = 1. That basee hasc = 1 as desired

L . R .1
The derivative ofe* is 1-e¢* and the derivative oflog, y is T 4)
.y

This is why the base is all-important in calculus. It makes=1.

To compute the actual numbefrom (14 4)'/%, chooser = 1,1/10,1/100, ...
Then the exponent$/h aren =1,10,100,.... (All limits and derivatives will
become official in Sectior6.4.) The table shows1+ k)!/* approachinge as
h — 0 andn — o:
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1 B 1 h_ ( l)"
n h=—-— 1+h=1+—- {(A+h)"/"=|14+-
n n n
1 1.0 2.0 2.0
2 05 1.5 2.25

10 0.1 1.1 2.593742
100 0.01 1.01 2.704814
1000 0.001 1.001 2.716924
10000  0.0001 1.0001 2.718146

The last column is converging t@ (not quickly). There is an infinite series that
converges much faster. We knd®5, 000 digits ofe (and a billion digits ofr). There
are no definite patterns, although you might think so from the first sixteen digits:

e=2.7 1828 1828 45 90 45--- (andl/e ~.37).

The powers ot producey = e*. At x = 2.3 and5, we are close tgy = 10 and150.

The logarithm is the inverse functiofihe logarithms ofl 50 and 10, to the base
e, are close tox =5 andx = 2.3. There is a special name for this logarithm—the
natural logarithm. There is also a special notatiolm™ to show that the base is

In y means the same dsg, y. The natural logarithm is the exponentir* = y.

The notatiorin y (orIn x—it is the function that matters, not the variable) is standard

in calculus courses. After calculus, the base is generally assumedtdrbmost of
science and engineering, the natural logarithm is the automatic choice. The symbol
“exp(x)” meanse*, and the truth is that the symbol “log’ generally meanén x.

Basee is understood even without the lettdrs. But in any case of doubt—on a
calculator key for example—the symbdh“x” emphasizes that the baseris

THE DERIVATIVES OF e* AND In x

Come back to derivatives and slopes. The derivativie*ois cb*, and the derivative
of log, y is 1/cy. If b =e thenc = 1. For all bases, equatiq) is 1/c = log, e.
This givesc—the slope ob* atx =0:

6E The numberc is1/log, e =log,b. Thus c equalsin b. (5)

¢ =Inb is the mysterious constant that was not available earlier. The slope of
2* is In 2 times2*. The slope ofe* is In e timese”* (butlne =1). We have the
derivatives on which this chapter depends:

6F The derivatives 0é* andIn y aree* and1/y. For other bases

d d 1
= b*=(Inb)b* d —log,y=—.
(nb)»*  an %Y= T

dx dy ©)

To make clear that those derivatives come from the functions (and not at all from the
dummy variables), we rewrite them usin@ndx:

d d 1
Z(),t:(),t and EInX:; (7)
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Remark on slopes at =0: It would be satisfying to see directly that the slope
of 2% is below1, and the slope o4* is abovel. Quick proof:e is betweer2 and4.
But the idea is to see the slopes graphically. This is a small puzzle, which is fun to
solve but can be skipped.

2* rises froml atx =0to 2 atx = 1. On that interval its average slopelisits
slope at the beginning smallerthan average, so it must be less tHaras desired.
On the other hand” rises from% ax= —% to 1 at x =0. Again the average slope
is 1 /1 =1. Sincex = 0 comes at thendof this new interval, the slope df* at that
point exceed$. Somewhere betwe&@i and4* is e*, which starts out with slopé.

This is the graphical approach to There is also the infinite series, and a fifth
definition through integrals which is written here for the record:

1. e is the number such that' has slopd atx =0
2. e is the base for whichn y =log, y has slopd aty =1

1 n
3. eisthelimitof(1+—) as n— oo
n

PP S S SIS SIS SN
S TR TR TR TR 27 %

5. the areaf{x~'dx equalsl.

The connections betweeh 2, and3 have been made. The slopes arerhene is
the limit of (14 1/nr)". Multiplying this out wlll lead to4, the infinite series in
Section 6.6. The official definition dfi x comes from dx/x, and therb says that
In e = 1. This approach te (Section 6.4) seems less intuitive than the others.

Figure 6.6b shows the graph ef *. It is the mirror image ofe* across the
vertical axis. Their product i2*e~" = 1. Where e* grows exponentiallye =
decays exponentially—or it grows asapproaches-co. Their growth and decay
are faster than any power af. Exponential growth is more rapid than polynomial
growth, so thae* /x" goes to infinity (Problen39). It is the fact that™* has slope
e”* which keeps the function climbing so fast.

y= 2 x=log,y

Fig. 6.6 e* grows betwee* and 4*. Decay ofe —*, faster decay 08 —*>/2,

The other curve isy = e~*°/2_ This is the famous Bell-shaped curveof
probability theory. After dividing by/27, it gives thenormal distribution, which
applies to so many averages and so many experiments. The Gallup Poll will be an
example in Section 8.4. The curve is symmetric around its mean waz@, since
changingx to —x has no effect on:?.

About two thirds of the area under this curve is betwaers —1 andx = 1. If
you pick points at random below the gragh,3 of all samples are expected in that
interval. The points = —2 andx = 2 are “two standard deviations” from the center,
enclosing95% of the area. There is only%6 chance of landing beyond. The decay
is even faster than an ordinary exponential, bec%uéehas replaced.
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THE DERIVATIVES OF ¢¢* AND %)

The slope ofe* is e*. This opens up a whole world of functions that calculus can
deal with. The chain rule gives the slopeedf andes"* and everye*™):

6G  The derivative ofe*™ is ¥ timesdu/dx. (8)

Special case: = cx: The derivative ofe®* is ce”. 9)

EXAMPLE 1 The derivative ofe3* is 3¢3* (herec = 3). The derivative ofS"*
is e3"* cosx (hereu = sinx). The derivative off (u(x)) is df/du timesdu/dx.
Here f = e" sodf/du = ¢*. The chain rule demands that second factdr: /d x.

EXAMPLE 2 e(n2X js the same af*. Its derivative isln2 times 2*. The
chain rule rediscovers our constant=1In2. In the slope ofb* it rediscovers
the factorc =1In b.

Generallye“” is preferred to the originad*. The derivative just brings down the
constantc. It is better to agree ore as the basgand put all complications (like
¢ =In b) up in the exponent. The second derivative©f is c2e¢~.

EXAMPLE 3 The derivative ob~*"/2 is —xe=*"/2 (hereu = —x2/2 sodu/dx = —x).

EXAMPLE 4 The second derivative of = e*xz/z, by the chain rule and product
rule, is

= (1) 4 (—x)2e 2 = (2= 1)e /2, (10)
Notice howthe exponential survivedwith every derivative it is multiplied by more
factors, but it is still there to dominate growth or decay. Huwnts of inflection
where the bell-shaped curve hA8 = 0 in equation(10), arex = 1 andx = —1.

EXAMPLE 5 (u=nlInx).Sincee™"* is x" in disguise, its slope must ex” 1
d n

slope=¢""* — (nlnx) = x" (—) =nx""1 (11)
dx X

This slope is correct for allz, integer or not Chapter 2 producedlx? and4x3
from the binomial theorem. Nowx”~! comes fromin andexpand the chain rule.

EXAMPLE 6 Anextreme case is* = (e *)*. Hereu = x In x and we needu /dx:

d 1
— (xF) =exIn¥ (Inx+x-—) =x*(Inx+1).
dx X

INTEGRALS OF e¢* AND e* du/dx

The integral ofe* is ¢*. The integral ofe¢* is note*. The derivative multiplies by
¢ so the integral divides by. The integral ofe“* is e“* /¢ (plus a constant).

P

EXAMPLES fezxdx = %e“ +C bedx = Iﬁ—b +C

fes(xﬂ)dx — %63(x+1) +C Jexz/zdx — failure

The first one has = 2. The second has= In b—remember again that = ¢(n)x
The integral divides byn b. In the third oneg3**1 is ¢3* times the numbee?
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and that number is carried along. Or more likely we s8&+1) ase*. The missing
du/dx =3 is fixed by dividing by3. The last example fails becauga /dx is not
there.We cannot integrate without/u /dx:

. L d
6H The indefinite mtegralfe“ ﬁ dx equalse*® + C.

Here are three examples withx /dx and one without it:

Jesmx cosx dx =eS"* 4 C fxexz/2 dx =e* 24 C

VX —
e de:2e‘/z+C f e*dx _ 1 LC
Vx (1+e%)2  14e
The first is a puree*du. So is the second. The third has= /x and du/dx =

1/2¢/x,
so only the factor2 had to be fixed. The fourth example does not belong with the
others. It is the integral ofu /u2, not the integral ok¥du. | don’t know any way
to tell you which substitution is best—except ttia¢ complicated part i$ + ¢* and
it is natural to substitute. If it works, good.

Without an extrae® for du/dx, the integral [ dx/(1+ e*)* looks bad. But
u =1+ e~ is still worth trying. It hasdu = e*dx = (u — 1)dx:

dx du 1 1 1
J(1+eX)2:Lu—l)uz:f‘l“(u—l_ﬁ_ﬁ)‘ 12

That last step ispartial fractions” The integral splits into simpler pieces (explained
in Section7.4) and we integrate each piece. Here are three other integrals:

Jel/xdx Jex(4+ex)dx fe_x(4+ex)dx

The first can change te- [ ¢¥du/u?, which is not much better. (It is just as
impossible.) The second is actualfy: du, but | prefer a split:[ 4e* and [ ¢** are
safer to do separately. The third §§(4e™" +1)dx, which also separates. The
exercises offer practice in reachiajdu /dx—ready to be integrated.

Warning about definite integral8vhen the lower limit isx = 0, there is a natural
tendency to expecf(0) = 0—in which case the lower limit contributes nothing. For
a power f = x3 that is true. For an exponentigl = ¢3* it is definitely not true
becausef (0) = 1:

! 1 b ! 1 b
edx==-e3*| ==(3—1) xeXdx =~ e ==(e—1).
3 3 2 2

0 0 0 0
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6.2 EXERCISES

Read-through questions

The numbere is approximately__a . It is the limit of (1+#h)
to the power__b . This gives1.011%0 whenh=__c . An

equivalent formise=Iim(__d )".

When the base i$ = e, the constant in Section 6.1is e .
Therefore the derivative ofy =e* is dy/dx=_f . The
derivative of x =log, y is dx/dy= g . The slopes ak =0
and y=1 are both__h . The notation for logy is __i

whichisthe j logarithm ofy.
The constant in the slope ofs* is ¢ =__k . The function
b* can be rewritten as__ | . Its derivative is_ m . The

derivative of e*™) is __ n . The derivative ofeS"* is o
The derivative of“* brings down a factor p .

The integral ofe* is q . The integral ofe‘* is _ r
The integral ofe*®du/dx is __s

e*™) pyitselfis__t to find.

Find the derivatives of the functions in 1-18.

1 7e7* 2 —Te 7T

3 (e%)8 4 (x—%)~8

5 3* 6 exIn3

7 (2/3)* 8 44%

9 1/(1+e%) 10 el/(1+x)

11 en* 4 xlne 12 xel/*

13 xe* —e* 14 xZeX —2xe* 42¢*
15 % 16 ") 4 inex”)
17 €SIN¥ 4 gin e* 18 x~1/* (which ise—)

19 The difference betweem and (1+1/n)" is approximately
Ce/n. Subtract the calculated values far= 10, 100,1000 from
2.7183 to discover the numbet.

20 By algebra or a calculator find the limits ¢f +1/1)%" and
(1+1/n)V7.

21 The limit of (11/10)19,(101/100)100 .
limit of (10/11)'°,(100/101)190, .. is
of (10/11)1 (100/101)101 s
is(1—1/n)".

is e. So the
. So the limit

22 Compare the number of correct decimals ef for
(1.001)1990 and (1.0001)10000 and if possible(1.00001)100000
Which powern would give all the decimals id.71828 ?

. In general the integral of

. The last sequence

23 The function y =e¢* sdves dy/dx =y. Approximate this
equation by AY/Ax=Y, which is Y(x+h)—Y(x)=hY(x).
With h:% find Y(h) after one step starting fron¥'(0) =1.
What isY (1) after ten steps ?

24 The function that solvedy/dx = —y starting fromy =1 at
x=01is . Approximate byY(x +h)—Y(x) =—hY(x). If
h= % what isY (h) after one step and what1§1) after four steps ?

25 Invent three functions f, g,k such that for x> 10
(141/x)* < f(x) <e® < g(x) <e?* <h(x) <x*.

26 Graphe* and veX a x=-2,—1,0, 1, 2. Another form of
eXis

Find antiderivatives for the functions in 27-36.

27 3% 4 o7x 28 (3%)(e7)

29 1X 42X 3% 30 27%

31 (2e)* +2¢F 32 (1/e%)+(1/x€)

33 xe*’ fxe~* 34 (sin x)e®S¥ 4 (cosx)eSin*
35 VeX 4 (e*)? 36 xe* (trial and error)

. 2 .
37 Comparee * with e=*". Which one decreases faster near

x =07? Where do the graphs meet again ? When is the ratio 5t
toe—* less thanl /100 ?

38 Comparee* with x*: Where do the graphs meet? What are
their slopes at that point ? Divide®* by e* and show that the ratio
approaches infinity.

39 Find the tangent line tg = ¢* atx =a. From which point on
the graph does the tangent line pass through the origin ?

40 By comparing slopes, prove thatif> 0 then

@ e*>1+x (b) e *>1—x.

41 Find the minimum value ofy =x* for x >0. Show from
d?y/dx? that the curve is concave upward.

42 Find the slope ofy =x!/* and the point wherely /dx = 0.
Checkd?y/dx? to show that the maximum of!/* is

43 If dy/dx =y find the derivative ok —*y by the product rule.
Deduce thap (x) = Ce* for some constant.

44 Prove thatv® = ¢* hasonly one positive solution.
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Evaluate the integrals in 45-54 Wit h infinite limits, 49-50 are 56 Find a function that solveg’(x) = 5y (x) with y(0) = 2.

“improper.”
1 T

45 J 2% dx 46 J sinx e®S* dx
0 0
1 1

47 J 2% dx 48 J 27 %dx
1 -1
o0 o0 5

49 J e Xdx 50 J xe X dx
0 0
1 1 )

51 J el X dx 52 J el xdx
o )

53 J 25IN* cosx dx 54 (1—e¥)10e% gy
0 0

55 Integrate the integrals that can be integrated:

et du/dx
d d
Jdu/dx o f eu o

Je‘” (Z—Z)zdx f(e”)z Z—z dx

57 Find a function that solveg’(x) = 1/y(x) with y(0) =2.

58 With electronic help graph the functigh + 1/x)*. What are its
asymptotes ? Why ?
59 This exercise shows th#t(x) = x" /e* — 0 asx — 0.
(@) FinddF/dx. Notice that F(x) decreases fox >n >0.
The maximum ofc” /e*, atx =n, isn” /e™.
(b) F(2x)=(2x)"/e2X =21 x" [eX . X < 2"n" e - &¥.
Deduce that"(2x) — 0 asx — o0. Thus F(x) — 0.

60 With n =6, graph F(x) = x®/e* on a calculator or computer.
Estimate its maximum. Estimate when you reachF(x)=1.
Estimatex when you reach (x) = 1.

61 Stirling’s formula says thatn!=x+/27xnn"/e". Use it to
estimate6® /e® to the nearest whole number. Is it correct? How
many decimal digits i0! ?
62 x%/e* — 0 is also proved by I'Hépital’s rule (at = ):

lim x6/e* =lim 6x° /e* = fill this in = 0.
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B .3 Growth and Decay in Science and Economics ]

The derivative ofy = ¢“* has taken time and efforthe result wag)’ = ce*, which
means thaty’ = cy. That computation brought others with it, virtually for free—the
derivatives ofv* andx* ande*™. But | want to stay withy’ = cy—which is the
most important differential equation in applied mathematics.

Comparey’ = x with y’ = y. The first only asks for an antiderivative of We
quicklyfindy = %xz + C. The second hasy /d x equal toy itself—which we rewrite
asdy/y =dx. The integral is iny = x + C. Theny itself is e*e¢. Notice that the
first solution is%x2 plusa constant, and the second solutiop’isimes a constant.

There is a way to graph slopeversus slopeg. Figure 6.7 showstangent arrows
which give the slope at each and y. For parabolas, the arrows grow steeper as
x grows—becausg’ = slope= x. For exponentials, the arrows grow steeperyas
grows—the equation is’ = slope= y. Now the arrows are connected py= Ae*.

A differential equation gives a field of arrow&lopes)lts solution is a curve that
stays tangent to the arrowsthen the curve has the right slope.

A

R |
y=gx

y=Ae*

Fig. 6.7 The slopes arg’ = x andy’ = y. The solution curves fit those slopes.

A field of arrows can show many solutions at once (this comes in a differential
equations course). Usually a singlg is not sacred. To understand the equation we
start from manyyo—on the left the parabolas stay parallel, on the right the heights
stay proportional. Fop’ = —y all solution curves go to zero.

Fromy’ =y itis a short step tg/’ = cy. To makec appear in the derivativgut
¢ into the exponenThe derivative ofy = e* is ce*, which isc timesy. We have
reached the key equation, which comes withimitial condition—a starting value
Yo:

dy/dt =cy withy = yg atr =0. (1)
A small changex has switched to. In most applicationtimeis the natural variable,

rather than space. The faciobecomes the “growth rate” or “decay rate”"—aefd
converts tae“’ .
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The last step is to match the initial condition. The problem nexguy = yq at
t =0. Oure® starts frome“® = 1. The constant of integration is needed now—the
solutions arey = 4e°’. By choosing4 = yo, we match the initial condition and
solve equatiorfl). The formula to remember igge®’.

61 Theexponential lawy = yge®’ solvesy’ = cy starting fromyy.

The rate of growth or decay is. May | call your attention to a basic factPhe
formula yge’ contains three quantitiegy, c, ¢. If two of them are given, plus one
additional piece of information, the third is determined. Many applications have one
of these three formdind ¢, find ¢, find y,.

1. Find the doubling tim& if ¢ = 1/10. At that time yoeT equals2yo:

‘T =2 yields ¢T =In2 sothatT:Insz%. 2
The question asks for an exponéfit The answer involves logarithms. If a cell
grows at a continuous rate of=10% per day, it takes abouf/.1 =7 days to
double in size. (Note that7 is close toln 2.) If a savings account earnd)%
continuous interest, it doubles fyears.
In this problem we knew. In the next problem we know.

2. Find the decay constantfor carbon-14 ify = %yo inT = 5568 years.
eT =1 yieldscT =1In ] sothate ~ (In 1)/5568. (3)

After the half-life T = 5568, the factore‘” equalss. Now c is negative(in 1 =
—In2).

Questionl was about growth. Questichiwas about decay. Both answers found
e‘T as the ratioy(7)/y(0). ThencT is its logarithm. Note how: sticks to7.
T has the units of time; has the units of ' /time.”

Malin point The doubling time igln 2)/c, because T = In 2. The time to multi-
ply by e is 1/c. The time to multiply byl0 is (In 10)/c. The time to divide by is
—1/c, when a negative brings decay.

3. Find the initial valuey, if c =2 andy (1) =5:

y(t) = yoe! yields yo = y(t)e <" =5¢ 2.

2y%7 y = yoe (1.0513)20
$et compound (1.05)20
continuously
$21 y =05t 2
Yo ® V=Y,
I $146 y=1+.05¢
Yo y=yge simple interest
' 1 . } ' i
¢T=In2 5 10 15 20 years

Fig. 6.8 Growth (c > 0) and decay (&« 0). Doubling timeT = (In 2) /c. Future value a§%.
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All we do is run the process backwaglart from5 and go back tgyg. With time
reversede‘’ becomes—¢*. The product ofe? ande 2 is 1—growth forward and
decay backward.

Equally important isI” +¢. Go forward to timeT and go on toT +t:

V(T +1) is yoecT+) whichis (yoecT)ec. (4)

Ever steg, at the start or later, multiplies by the saefé. This uses the fundamental
property of exponentials, thal ** =e7 ¢’.

EXAMPLE 1 Population growth from birth rateb and death rated (both
constant):
dy/dt =by—dy=cy (thenetrateisz =b—d).

The population in this model igge? = ygeb?e~4!. It grows whenb > d (which
makesc > 0). One estimate of the growth rateds= 0.02/year:
In2 .7

The earth’s population doubles in abollt = — =~ i 35years
C .

First comment: We predict the future basedcoWe count the past population to
find c. Changes irr are a serious problem for this model.

Second commentye®’ is not a whole number. You may prefer to think of bacteria
instead of people.This section begins a major application of mathematics to
economics and the life sciencgdMalthus based his theory of human population
on this equationy’ = cy—and with large numbers a fraction of a person doesn't
matter so much. To use calculus we go from discrete to continuous. The theory
must fail whenr is very large, since populations cannot grow exponentially forever.
Section 6.5 introduces tHegistic equationy’ = ¢y — by?, with a competition term
—by? to slow the growth.

Third comment: The dimensions bfc,d are “1/time.” The dictionary gives birth
rate = number of births per person in a unit of time. It igelative rate—people
divided by people and time. The produat is dimensionless anef’ makes sense
(also dimensionless). Some texts repladey A (lambda). Therl /A is the growth
time or decay time or drug elimination time or diffusion time.

EXAMPLE 2 Radioactive dating A gram of charcoal from the cave paintings in
France gived).97 disintegrations per minute. A gram of living wood give$8
disintegrations per minute. Find the age of those Lascaux paintings.

The charcoal stopped adding radiocarbon when it was burned=(di). The
amount has decayed §ge“’. In living wood this amount is still, because cosmic
rays maintain the balancgheir ratio ise’ = 0.97/6.68. Knowing the decay rate
from Questior2 above, we know the present time

0.97 5568 0.97
ct=In{ — yields t = ——In| —— | = 14,400 years
6.68 -7 6.68

Here is a related problem—the age of uranidRight now there id 40 times as much
U-238 as U-235. Nearly equal amounts were created, with half-livé$.6§10° and
(0.7)10° yearsQuestion How long since uranium was createdPswer Find¢ by
substitutinge = (In 3)/(4.5)10° andC = (In 3)/(0.7)10°:

In 140
e /€t =140 = ct —Ct=In140 = ¢ = = 6(10°) years
c_




302

6 Exponentials and Logarithms

EXAMPLE 3 Calculus in Economicsprice inflation and the value of money

We begin with two inflation rates—aorninuous rateand anannual rate For the
price change\y over a year, use the annual rate:

Ay = (annual ratg times (y) times(At). (5)
Calculus applies the continuous rate to each instafit. The price change igly:
dy = (continuous ratg times (y) times (dt). (6)
Dividing by dt, this is a differential equation for the price:
dy/dt = (continuous ratg times (y) =.05y.

The solution isyge %>*. Sett = 1. Thene%> ~ 1.0513 and the annual rate f&13%.

When you ask a bank what interest they pay, they give both raesnd8.33%.
The higher one they call the “effective rate.” It comes from compounding (and
depends how often they do it). If the compounding is continuous, evedyrings
an increase of y—ande %8 is nearl .0833.

Section 6.6 returns to compound interest. The interval drops from a month to a day
to a second. That leads td + 1/x)", and in the limit toe. Here we compute the
effect of 5% continuous interest:

Future value A dollar now has the same value @8>7 dollars inT years.
Present value A dollarin T years has the same valueeaas®?” dollars now.
Doubling time Prices doublée:®T =2)in T =1In2/.05 ~ 14 years.

With no compounding, the doubling time %) years. Simple interest adds @t
times5% = 100%. With continuous compounding the time is reduced by the factor
In 2 = .7, regardless of the interest rate.

EXAMPLE 4 In 1626 the Indians sold Manhattan f@24. Our calculations in-
dicate that they knew what they were doing. AssumBfi§ compound interest, the
original $24 is multiplied bye-8’. After t = 365 years the multiplier i#°-? and the
$24 has grown tal 15 trillion dollars. With that much money they could buy back the
land and pay off the national debt.

This seems farfetched. Possibly there is a big flaw in the model. It is absolutely
true that Ben Franklin left money to Boston and Philadelphia, to be invest@dfor
years. In1990 it yielded millions (not trillions, that takes longer). Our next step is a
new model.

Question How can you estimate?®-2 with a$24 calculator (og but notin) ?
Answer  Multiply 29.2 by log;,e = .434 to get12.7. This is the exponent to base
10. After that base change, we hal@!2-7 or more than a trillion.

GROWTH OR DECAY WITH A SOURCE TERM

The equationy’ = y will be given a new term. Up to now, all growth or decay has
started fromyq. No deposit or withdrawal was made later. The investment grew by
itself—a pure exponential.he new terms allows you to add or subtract from the
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account It is a “source”—or a “sink” ifs is negative. The source= 5 adds5dr,
proportional tad¢ but not toy:

Constant source: dy/dt =y + 5 starting fromy = yy.

Notice y on both sides! My first guess = e’ ™ failed completely. Its derivative is
e! ™5 again, which is noty + 5. The class suggested= e’ + 5¢. But its derivative
e’ +5 is still not y +5. We tried other ways to producein dy/dt. This idea is
doomed to failureFinally we thought ofy = Ae’ —5. That hasy’ = Ae’ =y +5
as required.

Important:4 is not yo. Sett = 0 to find yg = A — 5. The source contribute’ —
5:

The solution is(yg + 5)e’ — 5. That is the same agge’ +5(e’ — 1).
s = 5 multiplies the growth terma’ — 1 that starts at zerg:ge’ grows as before.

EXAMPLE S dy/dt = —y+5hasy = (yo—5)e " +5. Thisisype " +5(1 —e ™).

That final term from the source is still positive. The other tega—" decays to zero.
The limit ast — c0is y,, = 5. A negativec leads to a steady staje. .

Based on these examples witl= 1 andc = —1, we can findy for anyc ands.
dvy
EQUATION WITH SOURCE d_)z =cy+s startsfromy =y at t =0(7)

Thesource could be a deposit of= $1000/year, after an initial investment of) =
$8000. Or we can withdraw funds at= —$200/year. The units are “dollars per
year”to matchly /dt. The equation feeds 1000 or remove$200 continuously—
not all at once.

Note again thay = ¢ is not a solution. Its derivative i& +s)y. The com-
binationy = ¢! + s is also not a solution (but closeifhe analysis ofy’ =cy +s
will be our main achievement for differential equationén this section). The
equation is not restricted to finance—far from it—but that produces excellent exam-

ples.
| propose to findy in four ways. You may feel that one way is enoughhe first

way is the fastest—only three lines—but please give the others a chance. There is no
pointin preparing for real problems if we don't solve them.

Solution by Method 1 (fast way) Substitute the combinatign= Ae“’ + B. The
solution has this form—exponential plus constantrom two facts we findi and
B:

Fig. 6.9

the equationy’ =cy +s givescAe =c(Ae" + B) +s
the initial value att =0 gives A+ B = yy.

The first line hag: Ae¢’ on both sides. Subtraction leaveB +s =0, or B = —s/c.
Then the second line becoméds= yg — B = yo + (s/¢):

KEY FORMULA yz(yo+£)e”—£ o y=yoes + (e —1). (8)
C C C

With s = 0 this is the old solutionyge’ (no source). The example with=1 and
s =5 produced yo + 5)e’ — 5. Separating the source term givage’ +5(e’ —1).

My class says one way eore than enough. They just want the answer. Sometimes | cave
in and write down the formulay is yge¢? pluss(e¢? —1)/c from the source term.
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Solution by Method 2 (slow way) The inputyy produces the outputee’. After ¢
years any deposit is multiplied f*. That also applies to deposits made after the
account is openedf the deposit enters at timg, the growing time is only — 7.
Therefore the multiplying factor is only®~7). This growth factor applies to the
small deposit (amountd T) made between tim& and7 +d T.

Now add up all outputs at time The output fromy is yge?. The small deposit
sd T near timeT grows toe¢*~T)sd T. The total is an integral:

t
y(t) = yge’ +J eCCDgdT. 9)
T=0
This principle of Duhamel would still apply when the sourcearies with time.
Heres is constant, and the integral divides &y

‘ 17’
[ etnar- Se_} LI (10)
T=0 ¢ € ¢
0

That agrees with the source term from MetHodt the end of equatiof8). There we
looked for “exponential plus constant,” here we added up outputs.

Method 1 was easier. It succeeded because we knew the fbefh + B—with
“undetermined coefficients.” Methddis more complete. The form fgris part of the
output, not the input. The soursés a continuous supply of new deposits, all growing
separately. Sectiof.5 starts from scratch, by directly integratizng=cy +s.

Remark Method?2 is often described in terms of antegrating factor First write
the equation ag’ — cy = 5. Then multiply by a magic factor that makes integration
possible:

(' —cy)e !t =se ¢! multiply by the factore ="
t Ky t . .
yefct:l == efct] integrate both sides
0 Cc 0
N .
ye=¢t — yo = - (e=¢t —1) substitute0 and ¢

S
y=e“"yo+— (e’ — 1) isolatey to reach formuld8)
-

The integrating factor produced a perfect derivative in linkeprefer Duhamel’s idea,
that all inputsyo ands grow the same way. Either method gives form{@afor y.

THE MATHEMATICS OF FINANCE (AT A CONTINUOUS RATE)

The question from finance is thigVhat inputs give what outpuf The inputs can
come at the start byy, or continuously by. The output can be paid at the end or
continuously. There are six basic questions, two of which are already answered.

The future value isyge’ from a deposit ofyy. To producey in the future,
deposit the present valuee —¢*. Questions3—6 involve the source term Ve fix
the continuous rate &% per year(c = .05), and start the account fropy = 0. The
answers come fast from equati(8).

Question 3 With deposits off = $1000/year how large isy after20 years ?

s 1000
= — —1)= —
y=g @ =D=-5

One big deposit yield20,000e = $54,000. The same0, 000 via s yields$34,400.

(e(99C0) _ 1) =20,000(e — 1) ~ $34, 400.
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Notice a small by-product (for mathematicians). When the @dterate isc =0,
our formulas(e‘’ —1)/c turns into0/0. We are absolutely sure that depositing
$1000/yearwith no interest produce®20, 000 after20 years. But this is not obvious
from 0/0. By I'Hépital’s rule we takec-derivatives in the fraction:

. 1 . ste‘! .
lim 3¢ )=||msf — st. This is(1000)(20) = 20,000.  (11)

c—0 C c—0

Question4  What continuous deposit ofperyear yields$20, 000 after20 years ?

1000
20,000 = — (49920 _ 1) requiress = —— ~ 582.
.05 —1
Deposits of$582 over20 years totafb1 1, 640. A single deposit ofyg = 20,000/e =
$7,360 produces the san®20, 000 at the end. Better to be rich at= 0.

Questionsl and 2 had s = 0 (no source). Questiorand4 had yo = 0 (no initial
deposit). Now we come tg = 0. In 5, everything is paid out by aannuity. In 6,
everything is paid up onlman.

Question5  What deposi, provides$1000/yearfor 20 years ? End witly = 0.
y = yoe + : (e’ —1) =0 requiresyy = - (1—e ).
C C

Substitutings = —1000, ¢ = .05, t =20 givesyy =~ 12, 640. If you win $20,000 in
a lottery, and it is paid ove20 years, the lottery only has to put $12,640. Even
less if the interest rate is abogbo.

Question 6  What payments will clear a loan ofyy = $20,000 in 20 years ?

Unfortunately,s exceeds $1000 per year. The bank gives up more than the $20,000
to buy your car (and pay tuition)t also gives up the interest on that mon¥gu
pay that back too, but you don’t have to stay even at every moment. Instead you repay
at aconstant ratdor 20 years. Your payments mostly cover interest at the start and
principal at the end. After = 20 years you are even and your debyis= 0.

This is like Questiord (alsoy = 0), but now we knowy, and we wank:

y=yoe' + Z (" —1) =0 requiress = —cype’ /(e —1).
c

The loan isyo = $20,000, the rate isc =.05/yeat the time ist =20 years.
Substituting in the formula far, your payments ar$1582 per year.

Puzzle How is s = $1582 for loan payments related to= $582 for deposits ?
0 — $582 peryear— $20,000 and $20,000 — —$1582 peryear— 0.

That difference of exactly000 cannot be an acciderit582 and582 came from

1 —1
¢ and 1000 with differencelOOOe
e—1 e—1 e—

1000 =1000.

Why? Here is the real reason. Instead of repayid§2 we can pay onlyl 000 (to
keep even with the interest @@, 000). The other582 goes into a separate account.
After 20 years the continuou$82 has built up t620,000 (including interest as in
Questiord). From that account we pay back the loan.
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Section 6.6 deals with daily compounding—which differs fromntimuous
compounding by only a few cents. Yearly compounding differs by a few dollars.

34400
20000

s=-1000 20
Fig. 6.10 Questions3—4 deposits. Questions—6 repay loan or annuity. Steady state/c.

TRANSIENTS VS. STEADY STATE

Suppose there is decay instead of growth. The consta@egative andyge®’ dies
out. That is the transient term, which disappears as— c0. What is left is the
“steady stat®We denote that limit byy ..

Without a sourcey ., is zero (total decay). Whenis presenty , = —s/c:

. N N N
6J The solutiony = (yo + —) e’ —— approachesy,, = —— when ¢ — 0.
Cc C Cc

At this steady state, the sourseexactly balances the decay. In other words
cy +s=0. From the left side of the differential equation, this meaygdr = 0.
There is no changd&hat is whyy, is steady.

Notice thaty . depends on the source and@r-but not onyy.

EXAMPLE 6 Suppose Bermuda has a birth réte= .02 and death ratel = .03.
The netdecay rate is= —.01. There is also immigration from outside,0f= 1200/yeat
The initial population might bey = 5 thousand otyg = 5 million, but that number
has no effect ory.,. The steady state is independent gf.

Inthis casey, = —s/c = 1200/.01 = 120,000. The population grows t620, 000
if yo is smaller. It decays t620,000 if y, is larger.

EXAMPLE 7 Newton’s Law of Cooling dy/dt =c(y —y). (12)

This is back to physics. The temperature of a body.iThe temperature around it
is y... Theny starts atyy and approacheg,, following Newton’s rule:The rate is
proportional toy — y... The bigger the difference, the faster heat flows.

The equation has-cy., where before we had That fits withy.,, = —s/c. For the
solution, replace by —cy., in formula(8). Or use this new method:

Solution by Method 3 The new idea is to look at the difference— y .. Its deriva-
tive isdy/dt, sincey., is constant. Butly /dt is c(y — y,,)—this is our equation.
The difference starts fromy — y., and grows or decays as a pure exponential:

d
77 0 =yx)=c(y—ys) hasthesolution (y —y.) = (yo— y)e. (13)

This solves the law of cooling. We repeat Methbdsing the letters andc:

% (y + %) =c (y + %) has the solution (y + %) = (yo + :—) et (14)
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Moving s/c to the right side recovers formul). There is aconstant termand
an exponential termin a differential equations course, those are tparticular
solution” and the “homogeneous solutichin a calculus course, it’s time to stop.

EXAMPLE 8 In a70° room, Newton'’s corpse is found with a temperatur®of.
A day later the body registeB$)°. When did he stop integrating (88.6°) ?

Solution  Here y,, =70 and yo = 90. Newton’s equation(13) is y = 20e“’ +
70. Theny =80 atz = 1 gives20e¢ = 10. The rate of cooling i =1In % Death
occurred wher20e’ +70 = 98.6 or e’ = 1.43. The time wag =1In 1.43/In % =
half a day earlier.

6.3 EXERCISES

Read-through exercises

If y'=cy theny(t)=__a . If dy/dt=7y and yo=4 then Problems 11-27 involveyge’. They ask for ¢ or ¢ or yj.
y(t)=__b . This solution reachess a r=__c . If the
doubling time isT thenc=_d . If y'=3y and y(1)=9

thenyo was__e . Whenc is negative, the solution approache

_f asr—o0. 12 If bacteria increase by factor of ten in ten hours, how many hours
to increase by 00 ? What isc ?

11 If a culture of bacteria doubles in two hours, how many hours to
gmltiply by 10? Firstfindc.

The constant solution taly/dt=y+6 is y= g . The

general solution isy = Ae’ —6.If yp=4thend=__h . Theso- 13 pow old is a skull that containg as much radiocarbon as a
lution of dy /dt = cy + s starting fromyg isy = Ae’ + B=__1 . modern skull ?
The output from the sourceis ] . Aninput at timeT grows by
the factor __k attimer. 14 If a relic contains90% as much radiocarbon as new material,
. L . . could it come from the time of Christ ?
At ¢=10%, the interest in timedt is dy=__1 . This
equation yields y(r)=__m . With a source term instead ofi5 The population of Cairo grew froimillion to 10 million in 20

Yo, @ continuous deposit ofs =4000/year yields y=__n years. Fromy’ = cy find ¢. When wasy = 8 million ?

after 10 years. The deposit required to produte, 000 in 10 _ _
years iss=__ o _ (exactly or approximately). An income ofl16 The populations of New York and Los Angeles are growing at
4000/year forever () comes fromyo= p . The deposit to 1% ard 1.4% a year. Starting fron8 million (NY) and 6 million
give 4000/year for 20 years isyo= g . The payment rate (LA), when will they be equal ?

toclear aloan ofl0,000 in 10 yearsis _r .
s ’ y — 17 Suppose the value ofl$in Japanese yen decrease2%i per

The solution toy’ = —3y +s approacheg,, =__ s . year. Starting from $= Y240, when will 1 dollar equall yen ?

18 The effect of advertising decays exponentially. 40%
remember a new product after three days, findHow long
will 20% remember it ?

Solve 1-4 starting from yo =1 and from yo = —1. Draw both
solutions on the same graph.

dy
l _—
dt

dy _
dt

dy _
dt

dy
T -y 19 If y =1000 atz =3 and y = 3000 atr = 4 (exponential growth),

what wasyg att =07

2t —t 2y

Solve 5-8 starting fromyo = 10. At what time does y increase to

100 or drop to 1? 20 If y=100atr =4andy = 10 atr = 8 (exponential decay) when
will y =1? What wasyg ?

dy _ 4

=4t
dt

dy dy _ 4 dy : : : :

5 Py E:e 8 Eze 21 Atmospheric pressure decreases with height according to
dp/dh =cp. The pressures at =0 (sea level) andh =20 km

9 Draw a field of “tangent arrows” fop’ = —y, with the solution are 1013 and 50 millibars. Findc. Explain why p =+/1013-50

curvesy =e ¥ andy = —e~*. halfway up ath = 10.

4y

10 Draw a direction field of arrows fop’ = y — 1, with solution 22 For exponential decay show that) is the square root of (0)
curvesy =e*+ 1 andy =1. timesy (2¢). How could you findy (3¢) from y(¢) andy(2¢) ?
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23 Most drugs in the bloodstream decay fy= cy (first-order ki- 38 Solve y’=y+e’ from yo=0 by Method 2, where the
neticg. (a) The half-life of morphine i8 hours. Find its decay con-deposite? at time T is multiplied by ¢'=7. The total output
stantc (with units). (b) The half-life of nicotine i hours. After a at time ¢ is y(t) = _[(; elTe=TgT = . Substitute back to
six-hour flight what fraction remains ? checky’ =y +e’.

24 How often should a drug be taken if its dose3iang, it is 39 Rewritey’ =y +¢! asy’ —y =e’. Multiplying by e 7, the left
cleared aic =.01/hour, and 1 mg is required in the bloodstreamside is the derivative of . Integrate both sides frony =0 to
at all times ? (The doctor decides this level based on body size.)find y(z).

25 The antiseizure drug dilantin has constant clearance réfe Solvey’ = —y+1 from yo = 0by rewritingasy’ +y =1, mul-
y'=—a until y=yy. Theny’ = —ay/y;. Solve for y(t) in two tiplying by e’, and integrating both sides.

pieces fromyo. When doey reachy, ? 41 Solvey’ =y +t from yg =0 by assumingy = Ae’ + Bt +C.

26 The actual elimination of nicotine is multiexponential:

y=Ae" + BeC!. The first-order equation(d/dt—c)y =0 Problems 42-57 are about the mathematics of finance.
changes to the second-order equaiidpds —c)(d/dt —C)y =0.
Write out this equation starting wity’, and show that it is satisfied
by the giveny.

42 Dollar bills decrease in value at= —.04 per year because of
inflation. If you hold #000, what is the decrease i years? At
what rates should you print money to keep even ?

27 True or false If false, say what's true. . . .
Y 43 If a bank offers annual interest @%% or continuous interest of

(@) The time fory = ¢’ to double is(In2)/(In ¢). 719, which is better ?
(b) If y'=cy andz’ =cz then(y +z) =2c(y +z).
(c) If y’=cyandz’ =cz then(y/z)' =0.

(d) If y’=cyandz’=Czthen(yz) =(c+C)yz. calculation.
28 A rocket has velocityv. Burnt fuel of massAm leaves at 45 At 100% interest(c = 1) how much is a continuous depositsof
velocity v — 7. Total momentum is constant: per year worth after one year? What initial depogjtwould have
mv = (m—Am)(v+Av)+Am@v —7). produced the same output ?

What differential equation connects to v ? Solve forv(m) not 46 To have $0,000 for college tuition in20 years, what gift

v(t), starting fromvg =20 andmgy = 4. yo should a grandparent make now? Assume 10%. What
_ continuous deposit should a parent make dudfgyears? If the

Problems 29-36 are about solutions of’ = cy +s. parent saves = $1000 per year, when does he or she reash, $00

29 Solvey’ =3y +1 with yo = 0 by assumingy = A¢3 + B and arid retire?

determiningA and B. 47 Income per person growd%, the population grow$%, the
total income grows . Answer if these are (a) annual
rates (b) continuous rates.

30 Solvey’ =8—y starting fromyg andy = Ae~* + B.

48 Whendy/dt = cy + 4, how much is the deposit @id T at time

Solve 31-34 withyy = 0 and graph the solution. . ) !
T worth at the later time ? What is the value at=2 of deposits

31 d_y:erl 30 d_y:y_l 4dT fromT =0to T =17
! ! 49 Depositings = $1000 per year leads to3,400 after20 years
33 d_y =yl 34 d_y ——y—1 (Question3). To reach the same result, when should you deposit
dt dt $20,000 all at once ?
35 (a) What valuey = corstantsolvesly/dr = —2y +127? 50 For how long can you withdraw= $500/year after depositing
(b) Find the solution with an arbitrary constaft Yo =$5000 at8%, before you run dry ?
(c) What solutions start fromg =0 andyy =107 51 What continuous paymentclears a $000 loan in60 days, if a
(d) What is the steady staie,, ? loan shark chargeE% per day continuously ?
36 Choose+ signs indy/dt = +3y +6 to achieve the following 52 _You are the Ioan_ shark. What is $1 worth after a year of
results starting fronyg = 1. Draw graphs. continuous compounding &®% per day ?
(@) y increases too (b) y increases t@ 53 You can afford payments af=$100 per month for48 months.
(©) v decreases te-2 (d) y decreases te-o0 If the dealer charges= 6%, how much can you borrow ?

54 Your income islpe2¢? per year. Your expenses afgec’ per
37 What value y = corstant solvesdy/dt =4—y? Show that year. (a) At what future time are they equal ? (b) If you borrow the
y(t) = Ae~ ! +4 is also a solution. Fingt(1) andy, if yo = 3. difference until then, how much money have you borrowed ?

44 What continuous interest rate is equivalent to an annual rate of
9%? Extra credit: Telephone a bank for both rates and check their
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55 If a student loan in your freshman year is repaid @& four 62 True or falsg wheny; andy, both satisfyy’ =cy +s.

o - o _ _
years later, what was the effective interest rate ~ (a) The sumy = y; + v, also satisfies this equation.

56 Is avariable rate mortgage with= .09+ .001z for 20 years bet- (b) The average = %(yl + y2) satisfies the same equation.

ter or worse than a fixed rate ©6% ? (c) The derivativey = y/ satisfies the same equation.
57 At 10% instead 0f38%, the 4 paid for Manhattan is worth

after365 years. 63 If Newton's coffee cools fron80° to 60° in 12 minutes (room

temperature0°), find c. When was the coffee ad0° ?
Problems 58-65 approach a steady statge,, ast — . )

. . o 64 If yo=100ard y(1) =90 andy(2) = 84, what isy., ?
58 If dy/dt=—y+7 what is y,,? What is the derivative of

¥y —Yo ? Theny — y,, equalsyg — y. times . 65 If yo =100 and y(1) =90 andy(2) =81, whatisy, ?

59 Graphy(t) wheny’ =3y —12 andyy is 66 To cool down coffee, should you add milk now or later?
() below4 (b) equal tot (c) aboves Thecoffee is at70°C, the milk is atl0°, the room is aR0°.

60 The solutions taly/dt = c¢(y —12) converge to (@) Adding1 pat milk to 5 parts coffee makes #0°. With

Voo = providedc is . Vo = 20°, the white coffee cools tp(¢) =

61 Suppose the time unit igly/d¢ = cy changes from minutesto () The black coffee cools toyc(r)=_____. The

hours. How does the equation change ? How dbe&ir = —y +5 milk warms to y,(1)=____. Mixing at time 7 gives

change ? How doeg,, change ? (Syc+ym)/6=___.
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I 6.4 Logarithms |

We have given first place te* and a lower place tdn x. In applications that is
absolutely correct. But logarithms have one important theoretical advantage (plus
many applications of their own). The advantage is that the derivatilre.ofs 1/ x,
whereas the derivative &f* is e*. We can’t definee” as its own integral, without
circular reasoning. But we can and do deflner (the natural logarithm) as the
integral of the -1 power” which is1/x:

*1 71
Inx:J —dx or In y:J —du. (1)
1 X 1

u

Note the dummy variables, firatthenu. Note also the live variables, firsttheny.
Especially note the lower limit of integration, whichli@nd not). The logarithm is
the area measured front. Therefordn 1 = 0 at that starting point—as required.

Earlier chapters integrated all powers except thisl “power.” The logarithm is
that missing integral. The curve in Figure 6.11 has hejgat1/x—it is a hyperbola.
At x =0 the height goes to infinity and the area becomes infildg:0 = —oo.
The minus sign is because the integral goes backward fram®. The integral does
not extend past zero to negativeWe are definindn x only for x > 0.}

In 24—

1 X 1 a ab

Fig. 6.11 Logarithm as areaNeighbors Ina +1In b =In ab.
Equal areas-Ini =In2=1In4.

With this new approachn x has a direct definitiort is an integral(or an area).
Its two key properties must follow from this definition. That step is a beautiful
application of the theory behind integrals.

Propertyl: Inab=Ina+Inb. The areas from to a and froma to ab combine
into a single areal(to ab in the middle figure):

a 1 ab 1 ab 1
Neighboring areasf —dx+ f —dx= f —dx. (2)
1 X a X 1 X
The right side idn ab, from definition (1). The first term on the left i a. The
problem is to show that the second integeatd ab) is In b:

ab b
1 1
f —dx @ f ~du = Inb. ©)
X 1 u

a

We needu = 1 whenx =a (the lower limit) andu = b when x = ab (the upper
limit). The choices = x /a satisfies these requirements. Substituting au anddx =
a duyieldsdx /x = du/u. Equation(3) givesln b, and equatio?)isina+In b =
Inab.

1+ The logarithm of-1is =i (an imaginary number). That is becau§é = —1. The logarithm
of i is also imaginary—it i%m’. In general, logarithms are complex numbers.
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Property2: Inb™ =n In b. These are the left and right sides of

b’ b
1 1
J —dx @ nf —du. 4)

1 X 1 u

This comes from the substitution = u". The lower limit x =1 corresponds to

u =1, andx = b" corresponds ta = b. The differentialdx is nu"'du. Divid-

ing by x = u" leavesdx/x =n du/u. Then equatiorf4) becomesn b =n In b.
Everything comes logically from the definition as an area. Also definite integrals:

3% , 3x
EXAMPLE 1 Compute ;dt. Solution:In3x —Inx =In — =1In3.
X
X
1

EXAMPLE 2 Computef

1
—dx. Solution:In1—In.1=1In10. (Why?)
a1 X

2

1
EXAMPLE 3 Computef —du. Solution:In e? =2. The area froml to e? is
1 U
2.

Remark While working on the theory this is a chance to straighten out old debts.
The book has discussed and computed (and even differentiated) the furctiand

b* andx™, without defining them properly. When the exponent is an irrational num-
ber like 7, how do we multiplye by itself z times? One approach (not taken) is
to come closer and closer to by rational exponents lik@2/7. Another approach
(taken now) is to determine the numlkedr=23.1 ... by its logarithmi Start withe

itself:
e is (by definition) the number whose logarithmlis

e” is (by definition) the number whose logarithnvis

When the area in Figures.12 reachesl, the basepointig. When the area reaches
7, the basepoint ig”. We are constructing the inverse function (whictety. But
how do we know that the area reactkesr 1000 or —1000 at exactly one point? (The
area isl000 far out ate!°%°, The area is- 1000 very near zero at~'°%°.) To define
e we have to know that somewhere the area equials

For a proof in two steps, go back to Figure 6.11c. The area frdm2 is more
than% (becausel / x is more than% on that interval of length one). The combined
area froml to 4 is more thanl. We come tarea= 1 before reachingd. (Actually
ate =2.718....) Sincel/x is positive, the area is increasing and never comes back
tol.

To double the area we have to square the distafite logarithm creeps up-

wards: |
n;
Inx — o0 but —YHO. (5)
X
The logarithm grows slowly because® grows so fas{and vice versa—they are
inverses). Remember that goes past every powar". Thereforeln x is passed by
every rootx!/”. Problems60 and61 give two proofs tha(ln x)/x'/* approaches
zero.
We might compardn x with 4/x. At x = 10 they are close2(.3 versus3.2). But

out atx = ¢!9 the comparison i$0 againsk®, andIn x loses toy/x.

+Chapter9 goes on tdmaginary exponents, and proves the remarkable forefia= —1.
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1 e 1 er 1 e

Fig. 6.12 Area is logarithm of basepoint. Fig. 6.13  Inx grows more slowly
thanx.

APPROXIMATION OF LOGARITHMS

The limiting casedn 0 = —oo andIn oo = + o are important. More important are
logarithms near the starting poilmt 1 = 0. Our question isWhat isIn(1 + x) for x

near zerd? The exact answer is an area. The approximate answer is much simpler.
If x (positive or negative) is small, then

o —

area X
minus
area x2/2

IN(14+x)~x and e¢*=x1+x. (6)

L1+x  The calculator givedn 1.01 =.0099503. This is close tax = .01. Betweenl and
_ 1+x the area under the graph of x is nearly a rectangle. Its baseisand its
area x°/2 nejght is 1. So the curved aredn(1+x) is close to the rectangular area
area x Figure 6.14 shows how a small triangle is chopped off at the top.
The difference between .0099508actual) and Q1 (linear approximation) is
—.0000497. Thatis predicted almost exactly by the second derivavg\le"nes(Ax)2

Fig. 614 times(In x)" is 1(.01)*(— 1) = —.00005. This is the area of the small triangle

0x

In(1+ x) = rectangular area minus triangular area= x — %xz.

The remaining mistake af000003 is close to%x3 (Problemé65).
May | switch toe™ ? Its slope starts @ = 1, so its linear approximation ib+ x.
Thenln(e*) ~ In(1+ x) = x. Two wrongs do make a righih(e*) = x exactly.
The calculator gives°! as1.0100502 (actual) instead of.01 (approximation).
The second-order correction is again a small triangbez. =.00005. The complete
series foln(1 + x) ande* are in Sectiond0.1 and6.6:

IN(1+x)=x—x2/24x3/3—... e =1+x+x2/2+x3/6+....

DERIVATIVES BASED ON LOGARITHMS

Logarithms turn up as antiderivatives very often. To build wpléection of integrals,
we now differentiatén u(x) by the chain rule.

1 L . 1d
6K The derivative ofn x is —.  The derivative ofIn u(x) is —d—u.
X uax
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The slope ofn x was hard work in Section.2. With its new definition (the integral
of 1/x) the work is gone. By the Fundamental Theorem, the slope mukt.be

For In u(x) the derivative comes from the chain rule. The inside functian ihe
outside function idn. (Keepu > 0 to defineln u.) The chain rule gives

1 1 d 3
—Inecx=—c=-() —Inx3=3x%/x3==
dx cx X dx X
d d —sinx
—In(x?>+1)=2 241 —Incosx = = —tanx
dx "+ X"+ 1) dx Y CcOoSx
d d 11
—Ilne*=¢e*/e* =1 —In(lnx) = —-—.
dx ¢ e’/e dx (Inx) Inx x

Those are worth another look, especially the first. Any reasonable person would

expect the slope dfi 3x to be3/x. Not sa The3 cancels, andh 3x has the same
slope adn x. (The real reason is that 3x =In 3 +In x.) The antiderivative o8/ x
is notIn 3x but3 In x, which isIn x3.
Before moving to integrals, here is a new method for derivatiyegarithmic
differentiation or LD. It applies toproductsand powers The product and power
rules are always available, but sometimes there is an easier way.

Main idea: The logarithm of a produgt(x) is asum of logarithmsSwitching to

In p, the sum rule just adds up the derivatives. But there is a catch at the end, as you

see in the example.

EXAMPLE 4 Finddp/dx if p(x) =x*+/x — 1. Hereln p(x) =xInx + 3 In(x —1).

o 1 dp 1
Take the d tiveoh p: ——=x-—+Inx+_——
ake the derivative ol p > dx X x—i— x+2(x_1)
. dp 1
Now multiply b : —=p(1+In .
w multiply by p(x) I p( + x+2(x_1))

The catch is that last step. Multiplying lyy complicates the answer. This can't be
helped—logarithmic differentiation contains no magic. The derivative of fg is
the same as from the product rule:p =1In f +In g gives

P_J g /g

—=—+= ad p'=p|F=+=|=Sfg+[fg" )

p /g VA 4

For p = xe* sinx, with three factors, the sum has three terms:

. 1 cos
Inp:Inx+x+Insmxandp’:p[;+1+ x].

sinx

We multiply p timesp’/ p (the derivative ofn p). Do the same for powers:

1 1 dp 1 In x
EXAMPLES p=xY/*=Inp=—Inx=—=p|———|.
X dx x2 x2
d 21n
EXAMPLE 6 p=x|nx:>|np=(|nx)2:>d—p=p|: x]_
X X

1 d
EXAMPLE7 p=x!/I"* = Inp=FIHx=1=>d—p=O "
X X

313
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INTEGRALS BASED ON LOGARITHMS

Now comes an important step. Many integrals produce logaritfithe foremost
example isl/x, whose integral idn x. In a certain way that is the only example,
but its range is enormously extended by the chain rule. The derivativeuqfx) is
u’/u, so the integral goes fromy' /u back toln u:

Jdu/dx dx =Inu(x) or equivalently fd_u =Inu.
u(x) u

Try to chooseu(x) so that the integral containg/u/dx divided byu.

dx dx 1
EXAMPLES —— =In|x+7| =—Injcx+7|
x+7 cx+7 ¢

Final remark Whenu is negativeln u cannot be the integral df/u. The logarithm
is not defined when < 0. But the integral can go forward by switching tau:

Jde:Jdezln(—u). 8)
u —Uu

Thus In(—u) succeeds whern u failsi The forbidden case isu=0. The
integralsin ¥ andIn(—u), on the plus and minus sides of zero, can be combined
asIn|u|. Every integral that gives a logarithm allows< 0 by changing to the
absolute valugu|:

“dx -1 4 dx 4
—=[In|x|] =Inl—Ine =[In |x—5|] =In1-In3.
e X —e s X—5 2

e

The areas are-1 and—In 3. The graphs ol /x and1/(x — 5) are below ther axis.
We donot have logarithms of negative numbers, and we will not integrate —5)
from 2 to 6. That crosses the forbidden point= 5, with infinite area on both sides.

The ratiodu /u leads to important integrals. Whan= cosx oru = Sinx, we are
integrating thedangentandcotangent When there is a possibility that< 0, write
the integral adn |u|.

sin X d> 1
ftanxdxzf | de=—|n|c03x| f e :Eln(x2+7)

COSx x24+7
COSx ) dx

cotxdx = | —— dx =In|sinx| =In|Inx|
sinx xInx

Now we report on theecantandcosecantThe integrals ofl / cosx and1/sinx
also surrender to an attack by logarithms—based on a crazy trick:

secx +tan

Jser dx = Jser (ﬁ) dx =In|secx +tanx|. 9)
Secx +tanx
cscx — cot

Jcsc;c dx = Jcsc;c (#) dx =In|cscx +cotx|.  (10)
cscx —cotx

Hereu = secx + tanx is in the denominator{u /dx = secx tanx + sec x is above
it. The integral idn |u|. Similarly (10) containsdu /d x overu = cscx — cotx.

+The integral ofl /x (odd function) is Inx| (even function). Stay clear of = 0.
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In closing we integratén x itself. The derivative ok In x isIn x + 1. To remove
the extral, subtractx from the integral:f Inxdx=xInx—x.

In contrast, the area undé&y (In x) has no elementary formula. Nevertheless it is
the key to the greatest approximation in mathematics—ptirae number theorem
The areafZ dx/In x is approximately the number of primes betweeand b.
Neare!%90 aboutl /1000 of the integers are prime.

6.4 EXERCISES

Read-through questions

; i X ; - coSx dx /4
The natural logarithm ofx is [T __a . This Fjeflnltlon leads 1q J : 20 J tanx dx
to Inxy=_Db and Inx"=__c . Then e is the number sinx 0
whose logarithm (area under/x curve) is __d . Similarly
e* is now defined as the number whose natural logarithm 38 tan3x dx 22 Jcot3x dx
e .Asx— o, Inx approaches f . Butthe ratio(lnx)//x
approaches g . The domain and range of nare__h . 3 J(In x)2dx J dx
The derivative of Inv is __i . The derivative of Il +x) is * x(Inx)(inin x)
i . The tangent approximation to (h+x) at x=0 is 25 Graphy =In(1+x) 26 Graphy = In(sin x)
k . The quadratic approximation is | . The quadratic
approximation toe* is_m__. Computedy/dx by differentiating In y. This is LD:
The derivative of Inu(x) by the chain rule is__n .
Thus (Incosx)’ = o . An antiderivative of tax is p . 27 y=vx?+1 28 y=vx2+1v/x2-1
The productp =xe>* has Inp=__q . The derivative of this 59 y =eSinx 30 y=x"1/x
equation is__r . Multiplying by p gives p’=__s , which is .
LD or logarithmic differentiation. 31 y=ele?) 32 y=x¢
The integral ofe/(x)/u(x)is__t . Theintegral ox/(x2+4) 33 y=x(") 34y = (VX)(IX)(Yx)
is__u_.Theintegralofl/cxis__v_.Theintegral ofl /(ct +s) 35 y=x-l/inx 36 yme-nx
is__w__.Theintegral ofi /cosx, afteratrick,is__x . We should
write In |x| for the antiderivative ofl /x, since this allows y .
Similarly | du/u should be written _z . Evaluate 37—-42 by any method.
10 10 7 -
Find the derivative dy/dx in 1-10. 37 J ﬂ_f tar 38 Je d_x_'_J ld_x
1 y=In2x) 2 y=In@2x+1) s 1 s 1 U -2 X
1 2
3 y=(nx)"! 4 y=(nx)/x 39 i ﬂ 40 ifx ﬂ
dx Jx t dx )y t
5 y=xlnx—x 6 y=Iloggx
. d ” Jse@x +secxtanx
= _ £ 22T T T dx
7 y=In(sinx) 8 y=In(lnx) 41 dxln(se(:x+tanx) secx +tanx
9 y=7Iln4x 10 y=In((4x)7)
Verify the derivatives 43-46, which give useful antiderivatives
Find the indefinite (or definite) integral in 11-24. d 1
43 —In(x+vx2+1)=
dt J dx dx V1+x2
11 — 12
3t 1+x d xX—a 2a
44 —In =—
Uy 1 gy dx x+a (x? —a?)
13 J 14 J
o 3+x o 3+2f d 14+4/1—x2 -1
45 —In =
2 xdx 2 x3dx X x x\/1—x?2
5 J o 16 J o
o X241 o x2+1

d 1
46 —In(x +v/x2—a?2)= ——
. Je dx 18 J‘e dx dx 4/x2_a2
x(Inx) x(Inx)?2

2 2
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Estimate 47-50 to linear accuracy, then quadratic accuracy, by 67 An ant crawls atl foot/second along a rubber band whose
ele-f—x-l—%xz.Then use a calculator original length is2 feet. The band is being stretched &t
foot/second by pulling the other end. At what tinfé if ever,

.1 2
47 In(L.1) 48 e 49 In(.99) S0 e does the ant reach the other end ?

In(1+x) X 1 One approach: The band’s length at timis 7 +2. Let y(¢) be
52 Computexina thefraction of that length which the ant has covered, and explain

@y’ =1/¢+2) BYy=Int+2)—In2 (€)T =2¢—2.

51 Compute lim
x—0 X

logy (1 . b*¥—1
M 54 Compute lim
X x—0

X

53 Compute lim

x—0

68 If the rubber band is stretched &tfeet/second, when if ever

does the same ant reach the other end ?
55 Find the area of the “hyperbolic quarter-circle” enclosed by
x=2andy =2 abovey = 1/x. 69 A weaker ant slows down ta/(r+2) feet/second, so

) ¥’ =2/(t +2)2. Show that the other end is never reached.
56 Estimate the area under=1/x from 4 to 8 by four upper

rectangles and four lower rectangles. Then average the answérs!he slope ofp = x* comes two ways from Irp = x In x:
(trapezoidal rule). What is the exact area? 1 Logarithmic differentiationl( D): Compute(In p)’ and mul-
tiply by p.

2 Exponential differentiation (E]p Write x* ase*'" ¥, take its
derivative, and put back*.

R | 1 .
57 Why|s§+§+~-~+—nearlnn? Is it above or below ?
n

58 Prove that Inc < 2(y/x —1) for x > 1. Compare the integrals of
1/t and1/v/1, from 1 to x. 71 If p=2% then Inp= . LD gives p’ = (p)(In p)’ =
59 Dividing by x in Problem 58 gives (In x)/x < 2(y/x—1)/x. — .EDgvesp=eandthemp’=___

Deduce that(ln x)/x — 0 as x — c0. Where is the maximum of

72 Compute In2 by the trapezoidal rule andr Simpson’s
(Inx)/x?

rule, to get five correct decimals.

60 Prove that (Inx)/x'/" also approaches zero. (Start Withs compute Inl0 by either rule withAx = 1, and compare with
(Inx1/7)/x1/" —0.) Where is its maximum ? the value on your calculator ’

61 For any powern, Problem 6.2.59 provede® > x™ for large
x. Then by logarithms,x >nlIn x. Since (Inx)/x goes below
1/n and stays below, it converges to .

74 Estimatel /In 90,000, the fraction of numbers ne&f, 000 that
are prime. (87%f the next10,000 numbers are actually prime.)

62 Prove thatyIny approaches zero ag — 0, by changing 75 Find a pair OT positivg integers for which” = y*. Shav

y o 1/x. Find the limit of y¥ (take its logarithm asy —0), OV [0 change this equation tnx)/x = (In y)/y. So look for

What is 1:1 on your calculator ? " two points at the same height in Figure 6.13. Prove that you have
’ discovered all the integer solutions.

63 Find the limit of Inx /log; o x asx — co.

64 We know the integral[ " —'dr =[t"/h]} = (x" — 1)/ h. Its

limitash — 0 is : (z+1)’ (z+1)f+1
x=—) ady=|——
65 Find linear approximations near=0 for ¢ —* and2*. ! 1

*76 Show that(In x)/x = (In y)/y is satisfied by

66 The x3 correction to Irfl +x) yieIde—%x2+%x3. Check with ¢ #0. Graph those points to show the curwg = y*. It
that In1.01 ~.0099503 and find In1.02. crosses the ling = x atx = , wheret — 0.
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I 6.5 Separable Equations Including the Logistic Equation ]

This section begins with the integrals that solve two basic differential equations:

dy dy

— — v . — g
J cy and o cy+s. (1)

We dready know the solutions. What we don’t know is how to discover those
solutions, when a suggestiortry ¢°’” has not been made. Many important
equations, including these, separate intp-mtegral and &-integral. The answer
comes directly from the two separate integrations. When a differential equation is
reduced that far—to integrals that we know or can look up—it is solved.

One particular equation will be emphasized. Togistic equationdescribes the
speedup and slowdown of growth. Its solution issaourve, which starts slowly, rises
quickly, and levels off. (Thd 990’s are near the middle of th, if the prediction is
correct for the world populationS-curves are solutions twonlinear equations, and
we will be solving our first nonlinear model. It is highly important in biology and all
life sciences.

SEPARABLE EQUATIONS

The equationsly/dt =cy anddy/dt =cy +s (with constant source) can be
solved by a direct metho@he idea is to separate from ¢:

N d/.
— =cdt and )

y y+(.$‘/c) —cdi. ©

All y’s are on the left side. A’'s are on the right side (andcan be on either side).
This separation would not be possible tbr/dt = y +¢.

Equation(2) contains differentials. They suggest integrals. THetegrals givect
and they-integrals give logarithms:

In y=ct+constant and In (y + 5) = ct + constant 3)
c

The constant is determined by the initial conditioat 1 = 0 we requirey = yy,
and the right constant will make that happen:

ny=ct+iny and In(y+2)=cr+in(y+>). @
C C

Then the final step isolates The goal is a formula foy itself, not its logarithm, so
take the exponential of both sides'(’ is y):

. s s ’
y= ,VOC’CZ ard v+ (_ — (,VO + Z) eCt (5)

It is wise to substitutg back into the differential equation, as a check.
This is our fourth method fop’ = cy +s. Method 1 assumed from the start that
y = Ae? + B. Method2 multiplied all inputs by their growth factors~7) and
added up outputs. Methddsolved fory — y.,. Method4 is separation of variables
(and all methods give the same answer). This separation method is so useful that we
repeat its main idea, and then explain it by using it.
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Fig. 6.15 The solutions to separable equatlog?té =y2and d—f = n% or @ _ nT'
y

To solvedy/dt =u(y)v(t), separatedy /u(y) from v(¢)dt and inte-
grate both sides:

de/u(y):fv(t)dt—l—c. (6)
Then substitute the initial condition to determin€, and solve fory(¢).

EXAMPLE 1 dy/dt =y? semrates into dy/y?>=dt. Integrate to reach
—1/y=1t+ C. Substitute =0andy = y, to findC = —1/y,. Now solve fory:

1 1
——=f—-— and y Yo

y Yo 1=ty

This solution blows up (Figure 6.15a) wheneached / yy. If the bank pays interest
on your deposisquared(y’ = y2), you soon have all the money in the world.

EXAMPLE 2 dy/dt =ty separates intody/y =t dt. Then by integration
Iny= %ﬂ + C. Substituter =0 andy = yg to find C =In yo. The exponential of
112 +1Inyo givesy = yoe' /2. When the interest rate is= 7, the exponent is> /2.
EXAMPLE 3 dy/dt = y+t is not separable Method 1 survives by assuming
y = Ae' + B + Dt—with an extra coefficientD in Problem23. Method 2 also
succeeds—but not the separation method.

EXAMPLE 4 Separately/dt =ny/tintody/y =n dt/t. By integrationn y =
nin ¢+ C. Substitutingt = 0 producedn 0 and disaster. This equation cannot start
from time zero (it divides by). Howevery can start fromy; at¢ = 1, which gives
C =In y;. The solution is a power functiory = y;z".
This was the first differential equation in the book (Secfld). The ratio ofdy/y
to dt/t is the “elasticity’ in economics. These relative changes have units like
dollars/dollars—they are dimensionless, apd=t" has constant elasticity.
Onlog-log paper the graph dh y =n In ¢ + C is astraight line with slope:.

THE LOGISTIC EQUATION

The simplest model of population growthds /dt = cy. The growth rate is the
birth rate minus the death rateclfs constant the growth goes on forever—beyond the
point where the model is reasonable. A population can’t grow all the way to infinity!
Eventually there is competition for food and space, and ¢¢’ must slow down.
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The true ratec depends on the population size. It is a functionc(y) not a
constant. The choice of the model is at least half the problem:

Problem in biology or ecology  Discoverc(y).

Problem in mathematics Solve dy/dt =c(y)y.

Every model looks linear over a small range)d$—but not forever. When the rate
drops off, two models are of the greatest importance Miahaelis-Menterquation
hasc(y) =c/(y+ K). Thelogisticequation has(y) = ¢ —by. It comes first.

The nonlinear effect is from “interaction.” For two populations of sjizandz,
the number of interactions is proportional gatimesz. The Law of Mass Action
produces a quadratic termbyz. It is the basic model for interactions and
competition. Here we have one population competing within itself; sothe same
asy. This competition slows down the growth, becausey? goes into the equation.

The basic model ojrowth versus competitiols known as théogistic equation
dy/dt =cy —by>. (7)

Normally 4 is very small compared to. The growth begins as usual (closeed).
The competition ternby? is much smaller thany, until y itself gets largeThen
by? (with its minus sign) slows the growth down. The solution followsSaurve
that we can compute exactly.

What are the numbers and ¢ for human population? Ecologists estimate the
natural growth rate as =.029/year. That is not the actual rate, becausebof
About 1930, the world population was billion. The cy term predicts a yearly
increase of (.029)(3 billion) = 87 million. The actual growth was more like
dy /dt = 60 million /year That difference oR7 million /year washy?:

27 million /year= b (3 billion)? leads toh = 3- 1072 /year

Certainlyb is a small number (three trillionths) but its effect is not small. It reduces
87 to 60. What is fascinating is to calculate tBteady statewhen the new terrhy?
equals the old termy. When these terms cancel each otlabr/dt = cy —by? is
zero. The loss from competition balances the gain from new grawth: hy2 and

y =c¢/b. The growth stops at this equilibrium point—the top of Seurve:

V= £ %1012 ~ 10 billion people
b 3
According to Verhulst’s logistic equatiotheworld population is converging tb0
billion. That is from the model. From present indications we are growing much faster.
We will very probably go beyond0 billion. The United Nations reportin Sectign3
predictsl 1 billion to 14 billion.

Notice a special point halfway to,, =¢/b. (In the model this point is af
billion.) It is theinflection pointwhere theS-curve begins to bend down. The second
derivatived?y /dt? is zero. The slopdy/dt is a maximum. It is easier to find this
point from the differential equation (which gives /dt) than fromy. Take one more
derivative:

y'=(cy —by?)' =cy'—=2byy" = (c —2by)y". (8)
The factorc — 2by is zero at the inflection point = ¢ /2b, halfway up theS-curve.

319
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THE S-CURVE

The logistic equation is solved by separating variabjeandz:

dy/dt =cy —by? becomesjdy/(cy—by2)=Jdt. 9)

The first question is whether we recognize thigitegral.No. The second question is
whether itis listed in the cover of the bodo. The nearestig d.x/(a? — x?), which
can be reached with considerable manipulation (Prol@&mThe third question is
whether a general method is availabYes “Partial fractions” is perfectly suited to
1/(cy —by?), and Sectiory.4 gives the following integral of equatid):

Y __ct+C  andthen In—22__—c. (10)

In — =
c—by c—byg

That constantC makes the solution correct at=0. The logistic equation is
integrated, but the solution can be improved. Take exponentials of both sides to
remove the logarithms:
S (11)
c—by c—byy

This contains the same growth factefi’ as in linear equations. But the logistic
equation is not linear—it is noy that increases so fast. According (bl), it is
y/(c —by) that grows to infinity. This happens whenr- by approaches zero.

The growth stops ay = ¢/b. That is the final population of the world (10 bil-

lion?).
We still need a formula foy. The perfectS-curve is the graph of =1/(1 +
e™"). It equalsl whent = o, it equals% whent =0, it equalsO whent = —oo. It

satisfiesy’ = y — y2, with ¢ = b = 1. The general formula cannot be so beautiful,

because it allows any, b, and yo. To find the S-curve, multiply equatior{11) by

¢ —by and solve fory: . .
’ b+e=<t(c—byo)/yo o b+de—ct’

When ¢ approaches infinitye =’ approaches zero. The complicated part of the

formula disappears. Them approaches its steady stat¢b, the asymptote in

Figure 6.16. Thé&-shape comes from the inflection point halfway up.

(12)

i c
10 billion ]

————— ——t—t—t— =

1234 1988
Fig. 6.16 The standar&-curve y = 1/(1+e~"). The populatiorS-curve (with prediction).
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Surprising observationz = 1/y satisfies a linear equatiomy calculusz’ = —y’/y?2.

So e
—cy + c

z'=#=——+b=—cz+b. (13)

Year us Model »? y
Populati . . . .
opuration This equatiorr’ = —cz + b is solved by an exponential ¢’ plus a constant:
1790 39 = 3.9 LB b
1800 53 53 4 —ct 9 _ —ct
1810 7.2 7.2 z=Ae +g—(%—c)e to (14)
1820 9.6 9.8
1228 i;? igé Turned upside downy = 1/z is the S-curve (12). As z approaches/c, the S-curve
1850 232 — 239 approaches/b. Notice thatz starts atl / yo.
1860 31.4 30.4 EXAMPLE 1 (United States population) The table shows the actual population and
1870 38.6 394 )
1880 50 2 50 2 the model. Pearl and R_egd used census flgure§17@0, 1850, anq 1910 to compu?ec
1890 62.9 62.8 andb. In between, the fit is good but not fantastic. One reason is war—another is depres-
1900 76.0 76.9 sion. Probably more important is immigratidin fact the Pearl-Reed steady staj@® is
1910 920 = 920 below 200 million, which the US has already passed. Certainly their model can be and
1920 105.7 107.6 has been improvedhe 1990 census predicted a stop befoB@0 million. For constant
1930 122.8 123.1 immigrations we could still solvey’ = cy —by? + s by partial fractions—but in practice
iggg igé; 7 iigz the computer has taken over. The table comes from Braun’s Biftérential Equations
- - (Springer1975).

Remark For good science the? term should be explained and justified. It gave

a nonlinear model that could be completely solved, but simplicity is not necessar-
ily truth. The basic justification is this: In a population of sizethe number of
encounters is proportional te?. If those encounters are fights, the term-isy?. If

those encounteigcreasethe population, as some like to think, the sign is changed.
There is a cooperation termby?, and the population increases very fast.

EXAMPLE5 y’=cy+hby?: y goes to infinity in a finite time
EXAMPLE 6 y'= —dy+by?: y diesto zeroifyg <d/b.

In Example 6 death wins. A small population dies out before ttapeaationby?
can save it. A population belowi/b is an endangered species.
The logistic equation can'’t predict oscillations—those go beydndir = f(y).

The y line Here is a way to understand every nonlinear equagios f(y). Draw
a“y line.” Add arrows to show the sign of (y). Wheny’ = f(y) is positive,y is
increasingit follows the arrow to the righ}. When 1" is negativey goes to the left.
When f is zero, the equation ig’ = 0 andy is stationary:

0 0 0 0 0 0
:.f{ -~ e - s y > ‘-\ O B -/;'{> y
/‘ =0 Yy = t‘fb—\ Yo = 'DVy =dfb
y' = cy— by? (this is f(y)) y' = — dy + by? (this is f(y))
The arrows take you left or right, to the steady state or to infinity. Arrowsga@rd

stable steady states. The arrowsayeay, when the stationary point is unstable. The
y line shows which way moves and where it stops.

+Immigration does not enter for the world population model (at least not yet).
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The terminal velocity of a falling body i, =,/g in Problem6.7.54. For
f(y) =siny there are several steady states:

v y
g U= Ve 0 n 2n 3n

falling body: dv/dt = g — v* dy/dt = sin y

EXAMPLE 7  Kinetics of a chemical reactionA+nB — pC.

The reaction combines: molecules of4 with n molecules ofB to producep
molecules ofC. The numbers:,n, p arel, 1,2 for hydrogen chlorideH, + Cl, =
2 HCI. The Law of Mass Actionsays that the reaction rate is proportional to the
product of the concentratiofid] and[B]. Then[A] decays a$C] grows:

d[A]/dt = —r[A][B] and  d[C]/dt = +k[A][B]. (15)

Chemistry measures andk. Mathematics solves fdid] and[C]. Write y for the
concentrationC], the number of molecules in a unit volume. Forming thgse
molecules drops the concentratipf] from ag to ag — (m/ p)y. Similarly [ B] drops
from bg to by — (n/ p)y. The mass action la{d5) containsy?:

d
d—);:k(ao—%)’) (bo—%)’)- (16)

This fits our nonlinear model (ProbleB3 — 34). We now find this same mass action
in biology. You recognize it whenever there is a product of two concentrations.

THE MM EQUATION dy /dt = —cy /(y + K)

Biochemical reactions are the keys to life. They take placeicoally in every living
organism. Their mathematical description is not easy! Engineering and physics go far
with linear models, while biology is quickly nonlinear. It is true thét= cy is ex-
tremely effective in first-order kinetics (SectiérB), but nature builds in a nonlinear
regulator.

It is enzymesghat speed up a reaction. Without them, your life would be in slow
motion. Blood would take years to clot. Steaks would take decades to digest. Calculus
would take centuries to learn. The whole system is awesomely beautiful—DNA tells
amino acids how to combine into useful proteins, and we get enzymes and elephants
and Isaac Newton.

Briefly, the enzyme enters the reaction and comes out again. It tatiadyst Its
combination with the substrate is an unstable intermediate, which breaks up into a
new product and the enzyme (which is ready to start over).

Here are examples of catalysts, some good and some bad.

1. The platinum in a catalytic converter reacts with pollutants from the car engine.
(But platinum also reacts with lead—ten gallons of leaded gasoline and you can
forget the platinum.)

2. Spray propellants (CFC's) catalyze the change from ozong ifo ordinary
oxygen (Q). This wipes out the ozone layer—our shield in the atmosphere.

3. Milk becomes yoghurt and grape juice becomes wine.
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4. Blood clotting needs a whole cascade of enzymes, amplifying the reaction at
every step. In hemophilia—the “Czar’s disease”—the enzyme called Factor VIII
is missing. A small accident is disaster; the bleeding won't stop.

5. Adolph’s Meat Tenderizer is a protein from papayas. It predigests the steak.
The same enzyme (chymopapain) is injected to soften herniated disks.

6. Yeast makes bread rise. Enzymes put the sour in sourdough.

Of course, it takes enzymes to make enzymes. The maternal egg contains the material
for a cell, and also half of the DNA. The fertilized egg contains the full instructions.

We now look at the Michaelis—Menten (MM) equation, to describe these reactions.
It is based on thé.aw of Mass Action An enzyme in concentration converts a
substrate in concentrationby dy/dt = —byz. The rate constant i, and you see
the product of “enzyme times substrate.” A similar law governs the other reactions
(some go backwards). The equations are nonlinear, with no exact solution. Itis typical
of applied mathematics (and nature) that a pattern can still be found.

What happens is that the enzyme concentratign quickly drops tozo K /(y +
K). TheMichaelis constank depends on the rates (likg in the mass action laws.
Later the enzyme reappeats (= zg). But by then the first reaction is over. Its law
of mass action is effectively

dy
dt

cy

—byz=—
y+K

(17)

with ¢ = bzo K. This is theMichaelis—Menten equation-basic to biochemistry.
The ratedy /dt is all-important in biology. Look at the functiary /(y + K):

wheny islarge dy/dt ~ —c wheny is small dy/dt ~ —cy /K.

The start and the finish operate at different rates, depending whetheminatesk
or K dominatesy. The fastest rate is.
A biochemist solves the MM equation by separating variables:

K
JLdy=—fcdt gives y+KIny=—ct+C. (18)
y

Sett =0 as usual. The = yg+ K In yo. The exponentials of the two sides are
e’ yK =e=cter0yK (19)

We don'’t have a simple formula for. We are lucky to get this close. A computer
can quickly graphy ()—and we see the dynamics of enzymes.

Problems27 — 32 follow up the Michaelis—Menten theory. In science, concentra-
tions and rate constants come with units. In mathematics, variables can be made
dimensionless and constants becoméVe solvedY /dT =Y /(Y + 1) and then
switch back toy, t, ¢, K. This idea applies to other equations too.

Essential point:Most applications of calculus come through differential
equations.That is the language of mathematics—with populations and aasi
and epidemics obeying the same equation. Running parallél fd: = cy are the
difference equations that come next.
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6.5 EXERCISES

Read-through questions

The equationsdy/dt =cy and dy/dt=cy+s and dy/dt = (b) Findc andb in the equation solved by = 1/(1+4e—3%).
u(y)v(t) are called__a _ because we can separatefrom ¢.

Integration of [dy/y=[cdt gives __b . Integration of
[dy/(y+s/c)y=[cdt gives _c . The equationdy/dx =
—x/yleadsto_d .Theny?+x2=__e andthesolutionstays 16 By algebra find th&-curve (12) fromy = 1/z in (14).
on a circle.

15 Solvez’ = —z + 1 with zg = 2. Turned upside down as in (13),
whatisy=1/z7?

17 How many years to grow fromo = 3¢/b to y = 3¢/b? Use
The logistic equation isly/dt =__f . The new term—by? equation (10) for the timesince the inflection point in988. When

represents g when cy represents growth. Separation givegoesy reach9billion =.9¢c/b?

J dy/(cy—by?*)=[dt, and the y-integral is 1/c times In 13 Show by differentiatingu = y/(c —by) that if y' =cy—

__h . Substitutingyo at =0 and taking exponentials produces, 2 then u’ = cu. This explains the logistic solution (11)—it is

y/(c—=by)=e(__i_ ). Ast— o0,y approaches j . Thatis , — et

the steady state wherey —by? =__k . The graph ofy looks like

an__| , because it has an inflection poinjat=__m__.

19 Suppose Pittsburgh grows fromo=1 million people in

1900 to y =3 million in the year2000. If the growth rate is
In biology and chemistry, concentrations and z react at a y’=12,000/year in1900 andy’ = 30,000/year in2000, substitute

rate proportional toy times__n . Thisisthe Law of _o . In in the logistic equation to find and ». What is the steady

a model equationdy/dt = c(y)y, the ratec depends on p . state? Extra credit: When does= y.,/2=c¢/2b?

The MM equation isdy/dt = q . Separating variables yields

[ _r dy=_s =-—ct+C.

20 Supposec =1 but b = —1, giving cooperationy’ = y + y2.
Solve fory(¢) if yo = 1. When does become infinite ?

Separate, integrate, and solve equations-18. 21 Draw anS-curve through(0,0) with horizontal asymptotes =
—1landy = 1. Showthaty = (e’ —e~?)/(e’ +e~?) has those three

thenN — y don't know. The producy (N — y) measures the number
of meetings (to pass on the rumor).

(a8) Solvedy/dt = y(N — y) starting fromyo = 1.
10 The equationly/dx = ny/x for constant elasticity is the same  (b) Atwhat timeT haveN/2 people heard the rumor ?
asd(Iny)/d(nx)=____.Thesolutionisly =____. (c) This model is terrible becaus® goes to as
11 When ¢=0 in the logistic equation, the only term is N —o00. Abetter model isy’ =by(N —y).

e : :
y'=—by -IWhSt is the steady state,, ? How long untily drops 55 syppose) andc are both multiplied byl0. Does the middle of
from yo 0 5o * the S-curve get steeper or flatter ?

12 Reversing signs in Problem 1, suppose y’=+by2. At

what time does the population explode fo= oo, starting from proplems 27-34 deal with mass action and the MM equation
yo =2 (Adam+-Eve) ? y'=—cy/(y +K).

27 Most drugs are eliminated acording te’=-—cy but
aspirin follows the MM equation. Withc = K = y9 =1, does
13 Show thaty =1/(1+e¢~") solves the equationy’ =y —y2. aspirin decay faster ?

Draw the graph of from starting values; and 3.

1 dy/dt=y+5 yo=2 properties. The graph of? is shaped like .
2 dyfdi=1/y, yo=1 22 To solvey’ =cy —by3 change ta: = 1/y2. Substitute fory’
3 dy/dx=x/y% yo=1 inu’ = —2y’/y3 to find a linear equation faz. Solve it as in (14)
; —7/v2 _

4 dyldx=y2+1, yo=0 but withug =1/y¢. Theny =1/4/u.

_ _ 23 With y=rY and r=sT7, the equationdy/dt =cy—by?
5 dy/dx=(+1)/(x+1), =0 )

v/ YHD/ED. o changest@Y/dT =Y —Y?2. Findr ands.
6 dy/dx=tanycosx, yp=1 .
_ 24 Inachange ty =rY ad ¢ =sT, how are the initial valuesg

7 dy/dt=ysint, yo=1 andy related toYy andY ?
8 dy/dt=e""7, yo=e 25 A rumor spreads according 16 = y(N — y). If y people know,
9

Suppose the rate of growth is proportional, ¢y instead ofy.
Solvedy/dt = c,/y starting fromyy.

Problems 13-26 deal with logistic equationsy’ = ¢y —by2.

28 If you take aspirin at a constant rafe(the maintenance dose),
14 (a) What logistic equation is solved by=2/(1+¢~%)? find the steady state level whefe=cy/(y + K). Theny’ =0.
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29 Show that the rateR=cy/(y +K) in the MM equation 36 Rewrite cy —by? as a? —x2, with x=+vby —c/2vb and
increases ag increases, and find the maximumyas» co. a= . Substitute fora and x in the integral taken from

) tables, to obtain the-integral in the text:
30 Graph the rat® asafunction ofy for K = 1 andK = 10. (Take

¢ = 1.) As the Michaelis constant increases, the rate . At what dx 1 in +x dy 1 Y
value ofy isR:%c? a?—x2 2a a—x

==In
cy—by2 ¢ c—by

31 With y=KY and c¢t=KT, find the “nondimensional” 37 (Important) Draw they-lines (with arrows as in the text)
MM equation fordY/dT. From the solutioneY Y =e~Te¥0Yy for y'=y/(1—y) and y' =y—y3. Which steady states are

recover they, ¢ solution (19). approached from which initial valugg) ?
32 Graphy(¢) in (19) for differentc and K (by computer). 38 Explain in your own words how the-line works.
39 (a) Solve y’=tany starting from yo=n/6 to find

33 The Law of Mass Action for A+B—C is y' =
k(ap—y)(bo—y). Supposeyg =0, ap =bo =3, k =1. Solve for
y and find the time whep = 2. (b) Explain whys =1 is never reached.

. ) ) (c) Draw arrows on they-line to show thaty approaches
34 In addition to the equation fo#l[C]/dr, the mass action law 7 /5 \when does it get there ?

givesd[A]/dt =

siny = %et.

40 Write the logistic equation asy’=cy(1—y/K). As y’
35 Solve y’ =y +t from yo =0 by assumingy = Ae’ + B+ Dt. approaches zeroy approaches . Find y,y’,y"” at the
FindA, B, D. inflection point.
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I .6 Powers Instead of Exponentials |G

You may remember our first look at It is the special base for whiait has slope
1 atx =0. That led to the great equation of exponential growithe derivative of
e* equalse®. But our look at the actual number=2.71828... was very short.
It appeared as the limit dfl + 1/n)". This seems an unnatural way to write down
such an important number.

I want to show how(1 +1/n)" and (1 + x/n)" arise naturally. They givelis-
crete growth in finite steps-with applications to compound interest. Loans and life
insurance and money market funds use the discrete form’efcy +s. (We
include extra information about bank rates, hoping this may be useful some day.) The
applications in science and engineering are equally important. Scientific computing,
like accounting, hadifference equationis parallel with differential equations.

Knowing that this section will be full of formulas, | would like to jump ahead and
tell you the best one. Itis an infinite series &dr. What makes the series beautiful is
thatits derivative is itself.

Start withy = 1 4+ x. This hasy =1 andy’ = 1 atx = 0. But y” is zero, not one.
Such a simple function doesn’t stand a chance! No polynomial can be its own deriva-
tive, because the highest powet drops down tazx” 1. The only way ig0 have no
highest powerwe are forced to consider infinitely many terms—a power series
achieve “derivative equals function.”

To produce the derivative +x, we needl+x+3x% Then Ix? is the
derivative of %x3, which is the derivative of21—4x4. The best way is to write
the whole series at once:

A ; " 1.2 1.3 1 .4
Infinite series e™ =1+x+5x"+ gx° 4+ 57 x" +---. (@8]
This must be the greatest power series ever discovered. Its derivative is itself:
de*[dx =0+1+x+ x>+ x>+ =", (2)

Thederivative of each term is the term before it. The integral of each term is the one
after it (sof e*dx =e* + C). The approximatioe” =~ 1+ x appears in the first two
terms. Other properties like*)(e*) = e2* are not so obvious. (Multiplying series
is hard but interestingl} is not even clear why the sum2s718 ... whenx = 1.
Somehowl + 1+ % + % +--- equalse. Thatis wherg1+ 1/nr)" will come in.

Notice thatx” is divided by the product-2-3---- -n. This is “n factorial.” Thus
x*is divided byl -2-3-4 = 4! =24, andx” is divided by5! = 120. The derivative
of x/120 is x*/24, becausé from the derivative cancels from the factorial. In
generab” /n! has derivativer” ~! /(n — 1)! Surprisingly0! is 1.

Chapter 10 emphasizes thdt/n! becomes extremely small asncreases. The
infinite series adds up to a finite number—whichefs. We turn now to discrete
growth, which produces the same series in the limit.

This headline was on page one of the New York Times for [2ayl 990.

213 Years After Loan, Uncle Sam is Dunned

San Antonio, May26—More than 200 years ago, a wealthy Pennsylvania
merchant named Jacob DeHaven I&450,000 to the Continental Congress to
rescue the troops at Valley Forge. That loan was apparently never repaid.
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So Mr. DeHaven’s descendants are taking the United States @Buoeet to
court to collect what they believe they are owed. The tofdK1 billion if the
interest is compounded daily &tpercent, the going rate at the time. If compounded
yearly, the bill is only$98 billion.

The thousands of family members scattered around the country say they are
not being greedy. “It's not the money—it's the principle of the thing,” said
Carolyn Cokerham, a DeHaven on her father’s side who lives in San Antonio.

“You have to wonder whether there would even be a United States if this man had
not made the sacrifice that he did. He gave everything he had.”

The descendants say that they are willing to be flexible about the amount of
settlement. But they also note that interest is accumulatifd 2 a second.

“None of these people have any intention of bankrupting the Government,”
said Jo Beth Kloecker, a lawyer from Stafford, Texas. Fresh out of law school,
Ms. Kloecker accepted the case for less than the custobgpgrcent contingency.

It is unclear how many descendants there are. Ms. Kloecker estimates that based
on 10 generations with four children in each generation, there could be as many as
half a million.

The initial suit was dismissed on the ground that the statute of limitations is
six years for a suit against the Federal Government. The family’s appeal asserts
that this violates Article6 of the Constitution, which declares as valid all debts
owed by the Government before the Constitution was adopted.

Mr. DeHaven died penniless if812. He had no children.

COMPOUND INTEREST

The idea of compound interest can be applied right away. Seppos invest
$1000 at a rate ofl 00% (hard to do). If this is th@nnual rate the interest after a
year is anothe$1000. You receive$2000 in all. But if the interest icompounded
you receive more:
after six months: Interest &500 is reinvested to givé1500
end of year: New interest &750 (50% of 1500) gives$2250 total.
The bank multiplied twice byt.5 (1000 to 1500 to 2250). Compoundingjuarterly
multipliesfour timesby 1.25 (1 for principal,.25 for interest):
after one quarter the total 1900 + (.25)(1000)= 1250
after two quarters the total i250 4 (.25)(1250)=1562.50
after nine months the total i562.50 4 (.25)(1562.50)=1953.12
after a full year the total i$953.12 + (.25)(1953.12)=2441.41

Each step multiplies by + (1/n), to add one:th of a year's interest—still alt00%:

quarterly conversion(l + 1/4)* x 1000 =2441.41
monthly conversiont1 4 1/12)!2 x 1000 =2613.04
daily conversion(1 4 1/365)363 x 1000 =2714.57.

Many banks us&60 days in a year, although computers have made that obsolete.
Very few banks use minute$Z5, 600 per year). Nobody compounds every second
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(n =31,536,000). But some banks offecontinuous compoundingThis is the
limiting case(n — o0) that produces:

1 n
(l + —) x 1000 approachese x 1000 =2718.28.
n
Quick method fo(1 4 1/n)": Take its logarithm. Usdn(1 4+ x) ~ x with x =

In(1+%)n:nln(l+%)zn(%):l. 3

As 1/n gets smaller, this approximation gets better. The limifl isSConclusion:
(1+1/n)" approaches the number whose logarithml isSections6.2 and 6.4
define the same number (whiches

1.
1 .
e

2. Slow method fof1 + 1/n)": Multiply out all the terms. Then letz — 0.

This is a brutal use of the binomial theorem. It involves nothing smart like logarithms,
but the result is a fantastic new formula tar

Practice fom =3: 1—|—1 3—1-|—3 ! _|_3'2 ! 2+3-2-1 1\°
T 3]~ 3) T 12\3) T3]
Binomial theorem for any positive integer
1\" 1 nn—1) (1 2 nn—1)n—2) (1 3 N
1 n =1 o - - < - - _ e — .
(1) oo (£) 50 (1) 2D 1) ()
(4)

Each term in equatio¥) approaches a limit as — co. Typical terms are

nn—1) (1\* 1 nin—1)(n-2)(1\° 1
- -— and —_— ) > —.
1.2 \n 1-2 1-2:3 n 1-2-3

Next comed /1-2-3-4. The sum of all those limits i4) is our new formula foe:

im(1+L) cipr L (5)
n) = 127123 1234 7 °¢

In summation notation this i&,;”_, 1/k! = e. The factorials give fast convergence:
I+1+4+.5+.16667+.04167+.00833 +.00139+.00020 +.00002 = 2.71828.

Those nine terms give an accuracy that was not reachedb$65 compoundings.
A limit is still involved (to add up the whole seriesyou never see without a

limit! It can be defined by derivatives or integrals or powérs- 1/#)" or by an

infinite series. Something goes to zero or infinity, and care is required.

All terms in equation(4) are below (or equal to) the corresponding term¢5h
The power(1 4 1/n)" approacheg from below There is a steady increase with
Faster compounding yields more interest. Continuous compoundiri)&st yields
e, as each term if4) moves up to its limit in(5).



6.6 Powers Instead of Exponentials 329

Remark Change(1+1/n)" to (1+x/n)". Now the binomial theorem produces

e~

2

(1+%)n=1+n(%)+”(7__21) (;—C)ZJF approache$+x+%+--~. (6)

Please recognize® on the right side! It is the infinite power series in equatfah
The next term isc3 /6 (x can be positive or negative). This is a final formuladdr

6L The limitof (1 +x/n)" ise®. At x =1 we finde.

The logarithm of that poweris In(1 4+ x/n) =~ n(x/n) = x. The power approaches.

To summarize: The quick method provdst 1/n)" — e by logarithms. The slow
method (multiplying out every term) led to the infinite series. Together they show the
agreement of all our definitions ef

DIFFERENCE EQUATIONS VS. DIFFERENTIAL EQUATIONS

We have the chance to see an important part of applied mathematiés is not

a course on differential equations, and it cannot become a course on difference
equations. But it is a course with a purpose—we aim to use what we. Kbaw
main application ofe was to solvey’ =cy and y' =cy +s. Now we solve the
corresponding difference equations.

Above all, the goal is to see the connectiohke purpose of mathematics is to
understand and explain patterriBhe path from “discrete to continuous” is beauti-
fully illustrated by these equations. Not every class will pursue them to the end, but |
cannot fail to show the pattern inchfference equation

y(+1)=ay(). ("

Ead step multiplies by the same numlaerThe starting valug is followed by
ayo, a*yo, anda?yq. The solution at discrete times=0,1,2, ...is y(t) = a’yy.

This formula a’y, replaces the continuous solution“’ y, of the differential
equation

decaying

oscillation -
growihg /‘\ _, decay /Tnglh
osci]]a‘\'o‘ -1 T~ 0 a—o0 I a'— oo

Fig. 6.17  Growth for |a| > 1, decay for|a| < 1. Growth factora compares te“.
A source or sink (birth or death, deposit or withdrawal) is liKe= cy + s:
y(t+1)=ay(t)+s. (8)
Ead step multiplies by and addss. The first outputs are
y(1)=ayo+s, yQ2)=a’*yo+as+s, y(3)=a’yo+a’s+as+s.

We saw this pattern for differential equations—every inpliecomes a new start-
ing point. It is multiplied by powers of:. Sinces enters later tharyg, the powers
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stop atr — 1. Algebra turns the sum into a clean formula by adding the geometric
series:

y(t)=a'yo+s[a" " +a' P+ +a+1]=d"yo+s@ —1)/(a—1). (9)

EXAMPLE 1 Interest aB% from annual IRA deposits of = $2000 (hereyo = 0).

The first deposit is at year= 1. In a year it is multiplied by: = 1.08, becaus&%
is added. At the same time a new= 2000 goes in. At = 3 the first deposit has
been multiplied by(1.08)2, the second by.08, and there is another= 2000. After
yeart,

y(t) =2000(1.08" —1)/(1.08 —1). (20)

With ¢ = 1 this is2000. With ¢ = 2 it is 2000 (1.08 + 1)—two deposits. Notice how
a — 1 (the interest rate)8) appears in the denominator.

EXAMPLE 2 Approach to steady state whén < 1. Compare withe < 0.

With a > 1, everything has been increasing. That corresponds 100 in the
differential equation (which is growth). But things die, and money is spent; so
can be smaller than one. In that cage, approaches zero—the starting balance
disappears. What happens if there is also a soukeeety year half of the balance

y (1) is spent and a ned2000 is depositedNow a = 3:

Ye+1)=1y()+2000 yields y(r)= (%) yo +2ooo[((%)’ —1)/(3- 1)].
The limit ast — oo is an equilibrium point. Ai{%)t goes to zeroy (t) stabilizes to

¥ =2000(0—1)/(3 — 1) = 4000 = steady state (11)

Why is 4000 steady ? Because half is lost and the 900 makes it up againrhe
iteration is y,+1 = 1y, +2000. Its fixed point is wherey.. = 1y +2000.

In general the steady equationyis, = ay., + s. Solving for y, givess/(1 —a).
Compare with the steady differential equatigh=cy +s =0:

Vo = —i(diﬁerential equation) vs. y, = 1; (difference equation) (12)
c —da

EXAMPLE 3 Demand equals supply when the price is right.

Difference equations are basic to economics. Decisions are made every year (by a
farmer) or every day (by a bank) or every minute (by the stock market). There are
three assumptions:

1. Supply next time depends on price this tin&r + 1) = c P (¢).
2. Demand next time depends on price next tibdr +1) = —dP(t + 1) +b.
3. Demand next time equals supply next tind&(t + 1) = S(¢ + 1).

Comment on3: the price sets itself to makdemand= supply. The demand slope
—d is negative. The supply slopss positive. Those lines intersect at the competitive
price, where supply equals demand. To find the difference equation, sub%tante

2into 3:
Difference equation —dP(t+1)+b=cP(t)
Steady state price —dP,+b=cP,.ThusP,=b/(c+d).

If the price starts abové., the difference equation brings it down. If below, the
price goes up. When the price B, it stays there. This is not news—economic
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theory depends on approach to a steady state. But convergdpaeours ifc < d.
If supply is less sensitive than demand, the economy is stable
Blow-up examplec =2, b = d = 1. The difference equationis P(t + 1) + 1 =
2P(t). From P(0) = 1 the price oscillates as it grow#® = —1,3,-5,11, ....
Stable examplec=1/2, b=d =1. The price moves fromP(0)=1 to
P(o0) =2/3:
1 ) 135 .2
Pit+1)+1= 2P(t) yields P =1, RrRRREE approachmg}—.

[\

Increasingd gives greater stability. That is the effect of price supports. et 0
(fixed demand regardless of price) the economy is out of control.

THE MATHEMATICS OF FINANCE

Itwould be a pleasure to make this supply-demand model molistiea-with curves,
not straight lines. Stability depends on the slope—calculus enters. But we
also have to be realistic about class time. | believe the most practical application is
to solvethe fundamental problems of finance. Section 6.3 answered six questions
about continuous interest. We now answer the same six questions when the annual
rate isx = .05 = 5% andinterest is compounded times a year

First we computeffective rateshigher than05 because of compounding:

05\* :
compoundemuarterly(l + T) =1.0509 [eﬁectlve rate0509 = 5.09%]

compoundedontinuously  e%°=1.0513 [eﬁective rat6.13%]

Now come the six questions. Next to the new answer (discrete) we write the old
answer (continuous). One is algebra, the other is calculus. The time pertd is
years, so simple interest o would produc€.05)(20) (o). That equalyp—money
doubles in20 years att% simple interest.

Questiond and2 ask for thefuture value y andpresent valuey, with compound
interestn times a year

5 20n
1. y growing fromyy: y= (1 + 7) Yo y :e(.os)(zo)y0

05 —20n
2. deposityg to reachy:  yg= (1 + 7) Yy yg=e 0920y,
Each step multiplies by = (1 4.05/n). There ar€0n steps ir20 years. Time goes
backward in Questio. We divide by the growth factor instead of multiplying. The
future value is greater than the present value (unless the interest rate is negative!). As
n — oo the discretey on the left approaches the continuguen the right.
Questions3 and4 connecty to s (with yo =0 at the start). As soon as eaglis

deposited, it starts growing. Then=s +as +a%s+---.

(14.05/n)%0" —1 _[etoneo 4
.05/n y=9s 05

3. y growing from deposits: y= s[

4.4 s t hy: o .05/n _ .05
. aepositss to reachy: §=Y (1+.05/11)20n—l s=Yy m
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Questionsd and6 connectyy to s. This timey is zero—there is nothing left at the
end Everything is paid. The deposi is just enough to allow payments of This
is anannuity, where the bank earns interest on yggrwhile it pays yous (n times
a year for20 years). So your deposit in Questibris less thar20ns.

Questionb is the opposite—#&oan. At the start you borrow, (instead of giving
the bankyg). You can earn interest on it as you pay it back. Therefore your payments
have to total more tham,. This is the calculation for car loans and mortgages.

5. Annuity: Deposity to receive20n payments of:

1—(14.05/n)=20" 1 — ¢—(:05)(20)
)’0 =S - yO =9 _—

.05/n .05

6. Loan: Repayygo with 20n payments of:

.05/n .05
S=Yy s = _—
YOl T=(1+.05/n)-20n Yo T=e=(09)c0)

Questions2,4,6 are the inverses ol,3,5. Notice the pattern: There are three
numbersy, yo, ands. One of them is zero each timk all three are present, go
back to equatioif9).

The algebra for these lines is in the exerciseis not calculus becausAr is not
dt. All factors in brackets[ ] are listed in tables, and the banks keep copies. It
might also be helpful to know their symbols. If a bank has interestirater period
over N periods, then in our notatian=1+4i =1 +.05/n andt = N =20n:

future value ofyg = $1 (line 1) : y(N) = (1 +i)V

present value of = $1 (line2): yo=(1+i)~"
future value ofy = $1 (line 3) : y(N) =Sy = [(1 +i)V — 1]/1'
present value of = $1 (line 5) : yo = an)i = [1 —(1 —|—i)—N]/i

To tell the truth, | never knew the last two formulas until writing this book.
The mortgage on my home haé = (12)(25) monthly payments with interest rate
i =.07/12. In 1972 the present value w&®2,000 = amount borrowed. | am now
going to see if the bank is hongst.

Remark In many loans, the bank computes interest on the amount paid back
instead of the amount received. This is calthgcounting A loan of $1000 at 5%

for one year cost$50 interest. Normally you receiv1000 and pay backs1050.

With discounting you receiv950 (called the proceedsind you pay back1000.

The true interest rate is higher thaf—because th&50 interest is paid on the
smaller amoun$950. In this case the “discount rate” &) /950 = 5.26%.

SCIENTIFIC COMPUTING: DIFFERENTIAL EQUATIONS BY
DIFFERENCE EQUATIONS

In biology and business, most events are discrete. In engngeand physics, time
and space are continuous. Maybe at some quantum level it's all the same, but the

T1t's not. s is too big. | knew it.
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equations of physics (starting with Newton'’s ldw= ma) are differential equations.

The great contribution of calculus is to model the rates of change we see in nature.

But to solve that model with a computérneeds to be made digital and discrete.
These paragraphs work witly /dt = cy. It is the test equation that all analysts

use, as soon as a new computing method is proposed. Its solufica &7, starting

from yo = 1. Here we test Euler’s method (nearly ancient, and not well thought of).

He replacedly/dt by Ay/At:

y(t+A)—y(1)
At

Euler’'s Method =cy(1). (13)
Theleft side isdy/dt, in the limit Az — 0. We stop earlier, wherhz > 0.
The problem is to solvél3). Multiplying by A¢, the equation is

yE+At)=(14+cAt)y() (with y(0) =1).
Each step multiplies by = 1 + cAt, son steps multiply bya™:
y=a" =(1+cAr)" attimenAt. 14)

This is growth or decaydepending ornz. The correcte’ is growth or decay,
depending or. The question is whethes” and ¢! stay closeCan one of them
grow while the other decays? We expect the difference equation to xopyy,
but we might be wrong.

Agood example iy’ = —y. Thenc = —1 andy = e~'—the true solution decays.
The calculator gives the following answex$ for n =2,10,20:

t

At a=14cAt a? al® a?0
3 -2 4 1024 1048576
1 0 0 0 0
1/10 .90 .81 .35 12
1/20 .95 .90 .60 .36

The big stepAr = 3 shows total instability (top row). The numbers blow up when
they should decay. The row with? = 1 is equally useless (all zeros). In practice the
magnitude ot At must come down tol0 or .05. For accurate calculations it would
have to be even smaller, unless we change to a better difference equation. That is the
right thing to do.

Notice the two reasonable numbers. They.afeand.36, approaching ' = .37.
They come frommn = 10 (with Ar =1/10) andn =20 (with Az =1/20). Those
have the same clock timeAr = 1:

l 10 l 20 1 n
l——) =.35 l-—) =.36 l——) e =37
10 20 n

The main diagonal of the table is executifigt- x/n)" — ¢* in the casex = —1.

Final questionHow quickly are.35 and .36 converging toe—! =.37? With
At = .10 the error is.02. With Az = .05 the error is.01. Cutting the time step
in half cuts the error in half. We are not keeping enough digits to be surghbut
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error seems close t@At. To test that, apply the “quick method” and estimate
a™ = (1 — Ar)" fromits logarithm:

IN(1— A1)" =n In(1 — Az) zn[—At — %(At)z] =—1-1ar.  (15)
The clock time isn At = 1. Now take exponentials of the far left and right:
a"=(1-At)"~e e 2z e (1-1A1). (16)

The difference betweer* ande ! is the last tern% Ate~!. Everything comes down

to one question: Is that error the sameéaSt ? The answer is yedbecause ! /2
is 1/5. If we keep only one digit, the prediction is perfect!

That took an hour to work out, and | hope it takes longer tharto read. | wanted
you to sedn usethe properties ofn x ande*. The exact propertin a” =nln a
1

came first. In the middle of15) was the key approximatiom(1 + x) ~ x —Exz,

with x = —At. Thatx? term uses the second derivative (Section 6.4). At the very
end came* =~ 1+ x.
A linear approximation shows convergen€e: x /n)" — e*. A quadratic shows
the error: proportional td\# = 1/n. It is like using rectangles for areas, with error
proportional toAx. This minimal accuracy was enough to define the integral, and
here it is enough to define It is completely unacceptable for scientific computing.
The trapezoidal rule, for integrals or fof = cy, has errors of ordefAx)? and
(At)2. All good software goes further than that. Euler’s first-order method could not
predict the weather before it happens.

dy

(t+At)—y(t
Euler's Method for - = F(y,1): Ya+AD—y(@) _

Ay F(y(),1).

6.6 EXERCISES

Read-through questions

The infinite series fore* is __a . Its derivative is_ b . The When ¢ =1.08 and yo =0, annual deposits off =1 produce
denominatom!iscalled” ¢ "anditequals d .Atx=1the y= q afterr years. Ifa =% and yo =0, annual deposits of
seriesforeis__e . s=6 leave__r__ aftert years, approaching,,=_ s . The

steady equatiory,, =ay., +s givesy,, =__t

To match the original definition of e, multiply out ] i
(1+1/n)" =__f__ (first three terms). Asi — o those terms When i = interest rate per period, the value o = $1 after
approach g in agreement withe. The first three terms IV periods isy(N)=__u . The deposit to produce(N)=1
of (1+x/n)" are _h . As n—o they approach__i is yo=__Vv . The value ofs =$I deposited after each pe.riod
in agreement withe*. Thus (1+x/n)" approaches j . A 9rows to y(N)=__w . The deposit to reachy(N)=1 is
quicker method computes (h+x/n)" ~__k__ (first term only) §=—X__
and takes the exponential. Euler's method replaces/’ =cy by Ay =cyAr. Each step
multiplies y by 'y . Thereforey at ¢t =1 is (1+cAt)1/’y0,
which converges to_z _ as At — 0. The error is proportional
to__ A ,whichistoo_ B for scientific computing.

Compound interests( times in one year at annual rate)
multiplies by (_ I )*. As n—oo, continuous compounding
multiplies by__m . At x = 10% with continuous compounding,

$lgrowsto_n__inayear. 1 Write down a power seriey =1 —x+--- whose derivative
is —y.

The difference equatiory(t +1) =ay(¢) yields y(r)=__o0
times yo. The equationy(t+1)=ay(t)+s is solved byy= 2 Write down a power seriegs=1+2x + --- whose derivative is
a'yo+s[l+a+---4+a’~1]. The sum in brackets is p . 2y.
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3 Findtwo series that are equal to their second derivatives.

4 By comparinge=1+1+41+L4+L+...
series (whose sum is easier) show that3.

5 At 5% interest compute the output from@0 in a year with

6-month and3-month and weekly compounding.

6 With the quick method Ifl 4 x) =~ x, estimate il —1/»)" and
In(14+2/n)". Then take exponentials to find the two limits.

7 With the slow method multiply out the three terms(of— %)2

and the five terms of(1 — %)4. What are the first three terms of

(1—1/n)", and what are their limits as— o0 ?

8 The slow method leads té—1+1/2!—1/3!4--- for the

limitof (1—1/n)". What is the sum of this infinite series—the exacftate 5

sum and the sum after five terms ?

9 Knowing that(1+1/n)" —e, explain (1+1/n)?" —¢2 and
(1+2/N)N 62,

10 Whatare the limits of 1 + 1/12)" and(1+1/n)"> ? OK to use

a calculator to guess these limits.

11 (a) The power(1+1/n)" (decreases) (increases) with
as we compound more often. (b) The derivative ffx)=
x In(1+1/x), which is , should be(<0)(>0). This is
confirmed by Probleni2.

12 Show that il +1/x) > 1/(x + 1) by drawing the graph off/z.
Theareafrom=1tol1+1/xis
area

13 Take three steps of(r + 1) =2y(¢) from yo = 1.
14 Take three steps of(t +1) =2y(¢) + 1 from yo = 0.

Solve the difference equations 15-22

15 ye+1)=3y(n.yo=4 16 y(+1)=3y().y0=1
17 yt+1)=y@®)+1,y0=0 18 yt+1)=y@)—1,y0=0
19 y(+1)=3y(t)+1,y0=0 20 y(t+1)=3y()+s,y0=1
21 y@+ 1) =ay(t)+s,y0=0 22 y(t+1)=ay(t)+s,y0=5

In 23-26, which initial value producesy; = yq (steady state)?
23 y(t+1)=2y()—6 24 y(t+1)=1y(t)—6

25 y(+1)=—y()+6 26 y(+1)=—3y(1)+6

27 In Problem=23 ard 24, start fromyy = 2 and take three steps to

reachys. Is this approaching a steady state ?

with a larger
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28 For which numbers does (1 —a’)/(1—a) approach a limit as
t — oo and what is the limit ?

29 The price P is determined by supplydemand or
—dP(t+1)+b =cP(t). Which price P is not changed from one
year to the next?

30 Find P(¢) from the supply-demand equation with=1, d =2,
b =38, P(0)=0. What s the steady state as» o0 ?

Assumel0% interest (soa = 14i =1.1) in Problems 31 —38.

31 At 10% interest compounded quarterly, what is the effective
rate ?

32 At 10% interest compounded daily, what is the effective

33 Find the future value iR0 years of $00 deposited now.
34 Find the present value ofi00 promised in twenty years.

35 For a mortgage of 0,000 over 20 years, what is the
monthly payment ?

36 For a car loan of $0,000 over6 years, what is the monthly pay-
ment ?

37 With annual compounding of deposits= $1000, what is the
balance ir20 years ?

38 If you repays = $1000 annually on a loan of 00, when are

. The rectangle inside it hasyou paid up ? (Remember interest.)

39 Every year two thirds of the available houses are sold, and
1000 new houses are built. What is the steady state of the
housing market—how many are available ?

40 If a loan shark charges% interest a month on the $1000
you need for blackmail, and you pay $60 a month, how much
do you still owe after one month (and after a year) ?

41 Euler charges: = 100% interest on his $1 fee for discover-
ing e. What do you owe (including the $1) after a year with
(a) no compounding; (b) compounding every week; (¢) continuous
compounding ?

42 Approximate(1+1/n)" as in (15) and (16) to show that you
owe Euler aboué —e/2n. Compare Problerf.2.5.

43 My Visa statement says monthly ratel.42% and yearly
rate=17%. What is the true yearly rate, since Visa compounds
the interest ? Give a formula or a number.

44 You borrowyo = $80,000 at 9% to buy a house.

(@) What are your monthly paymentsover 30 years ?
(b) How much do you pay altogether ?
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I 6.7 Hyperbolic Functions [N

This section combines® with e*. Up to now those functions have gone separate
ways—one increasing, the other decreasing. But two particular combinations have
earned names of their ownd@shx andsinhx):

ex + efx ex . efx

hyperbolic sinesinhx =

hyperbolic cosinecosh x = 5 5

The first name rhymes with “gosh”. The second is usually pronedricinch”.

The graphs in Figure 6.18 show thaishx > sinhx. For largex both hyperbolic
functions come extremely close ga’x. Whenx is large anchegativeit is e that
dominates. Coslr still goes up to+ oo while sinhx goes down to—oo (because
sinhx has a minus sign in front &f*).

Fig. 6.18 Cosh x and sinhx. The hyperbolic Fig. 6.19 Gateway Arch courtesy of the St.
functions combine} e* and  e~*. Louis Visitors Commission.

The following facts come directly from (e 4+ e =) and1 (¢* —e~):

cosh—x) = coshx andcosh0 =1  (coshis evenlike the cosine)
sinh(—x) = —sinhx andsinh0=0  (sinhis oddlike the sing

The graph ofcoshx corresponds to &anging cable(hanging under its weight).
Turned upside down, it has the shape of the Gateway Arch in St. Louis. That must
be the largest upside-dowsoshfunction ever built. A cable is easier to construct
than an arch, because gravity does the work. With the right axes in ProlSletie
height of the cable is a stretched-@ashfunction called acatenary

y =a cosh(x/a) (cable tensiopicable density= a).

Busch Stadium in St. Louis h&$ catenary curves, to match the Arch.

The properties of the hyperbolic functions come directly from the definitions.
There are too many properties to memorize—and no reason to do it! One rule is the
most importantEvery fact about sines and cosines is reflected in a correspond-
ing fact aboutsinhx and coshx. Often the only difference is a minus sign. Here
are four properties:
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1. (coshx)? — (sinhx)? =1 [instead of(cosx)? + (sinx)? = 1]

x —x2
Check:|:e +2€ j| — = =1

4

‘ex_exj|2_62x+2+62x_62x+2_e2x
2

d ) B d )
2. E(coshx) =sinhx |instead Ofa(cosx) = —smx}

d . [ d .
3. E(smhx):coshx _|ikeES|nx:COSx:|

4, Jsinhx dx =coshx +C and Jcoshx dx =sinhx+C

(cos 1, sin 1)
,-"' area /2
-xl
\_}

Fig. 6.20  The unit circle codz + sin?r = 1 and the unit hyperbola codh—sint?s = 1.

_#” (cosh 1, sinh 1)

Property1 is the connection to hyperbolas. It is responsible for the “h’tash

and sinh. Remember tha(cosx)? + (sinx)? =1 puts the point(cosx, sinx)

onto aunit circle. As x varies, the point goes around the circle. The ordinary sine

and cosine are “circular functions.” Now look é&toshx,sinhx). Propertyl is

(coshx)? — (sinhx)? = 1, so this point travels on thenit hyperbolan Figure 6.20.
You will guess the definitions of the other four hyperbolic functions:

sinhx e*—e™* coshx e*¥+e*
tanhx = = cothx = — =
coshx eX+e~* sinhx e*—e—*
1 2 1 2
sechx = = cschx = — =
coshx eX+e* sinhx e*—e*

| think “tanh is pronounceable, and “setls easy. The others are harder. Their
properties come directly fromosH x — sint?x = 1. Divide by costfx andsint?x:

1 —taniFx =sechx  and cothl?x — 1 =cscHx
(tanhx)’ =sechx  and (sechx)’ = —sechx tanhx

inh
ftanhx dx = f SIMX ¢ = In(coshx) + C.
coshx

INVERSE HYPERBOLIC FUNCTIONS

You remember the anglesin~!x and tan !x and sec 'x. In Section 4.4 we
differentiated those inverse functions by the chain rule. The main application was
tointegrals If we happen to meef dx /(1 +x?), itis tan~'x + C. The situation for
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sinh~!x andtanh!x and sechx is the same except for sign changes—which are
expected for hyperbolic functions. We write down theee new derivatives

. . dy 1
y = sinh™'x (meaningx =sinhy) has > =

—— 1
iV (1)
1 . d.\f 1
y = tanh " x (meaningx =tanhy) has — = 2)
dx 1—x2
y = sechT'x (meaningx = sechy) has dy 1 A3)
] ', Y dx  xy/1—x2

Prablems 44 — 46 computedy/dx from 1/(dx/dy). The alternative is to use
logarithms. Sincen x is the inverse of*, we can expressinh~!x andtanh'x
andsech ! x as logarithms. Here is = tanh ! x:

—lln 1tx hassloed—y—1 ! P _ 1
y=3"7 Py T 21+x 21—-x 1-x2

(4)

The last step is an ordinary derivative%)ﬂn(l + x) —% In(1 — x). Nothing is new
except the answer. But where did the logarithms come from? In the middle of the
following identity, multiply above and below byoshy:

l+x l+tanhy coshy +sinhy  e”

= — — _2y.
1—x 1—tanhy coshy —sinhy e=” ¢

Then2y is the logarithm of the left side. This is the first equatiorf4), and it is the
third formula in the following list:

sinh‘llen[x+\/x2+1] COSh_lx:In[x+\/x2—1]

1 1 14+4/1—x2

tanh‘x:zln[ +x:| sechllen[g}
X

1—x

Remark1l Those are listednly for referencelf possible do not memorize them.
The derivatives in equationd), (2), (3) offer a choice of antiderivatives—either
inverse functions or logarithms (most tables prefer logarithms). The inside cover of
the book has

d 1 1
f x2=—|n[ +X]+C (in place oftanh™!x + C).
1—x 2 1—x

Remark2 Logarithms were not seen fain 'x andtan 'x andsec !x. You

might wonder why. How does it happen thtanh'x is expressed by logarithms,
when the parallel formula fotan!x was missing? AnswerThere must be a
parallel formula To display it | have to reveal a secret that has been hidden
throughout this section.

The secret is one of the great equations of mathemafifsat formulas for
cosx and sinx correspond tol(e* +e~) and 1 (e* —e~*) ? With so many
analogies (circular vs. hyperbolic) you would expect to find something. The
formulas do exist, buthey involve imaginary numbers. Fortunately they are very
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simple and there is no reason to withhold the truth any longer:

COSx = %(eix +efix)

and

sinx = L(eix —e*ix).

2i ®)

It is the imaginary exponents that kept those identities hidden. Multipkiimg by
i and adding tawosx gives Euler’s unbelievably beautiful equation

cosx +i sinx = e'*.

(6)

Tha is parallel to the non-beautiful hyperbolic equat@myshx + sinhx = e*.

| have to say thaf6) is infinitely more important than anything hyperbolic will
ever be. The sine and cosine are far more useful thasitifeandcosh So we end
our record of the main properties, with exercises to bring out their applications.

6.7 EXERCISES

Read-through questions

and  cosfx—
and e and

Cosh x=__a
sinfPx=__ ¢

and sinlbk=_b
. Their derivatives are d

f . The point(x, y) = (cosht, sinhz) travels on the hyperbola

g .Acable hangs inthe shape of a catenary_ h .

The inverse functions sinh'x and tanh!x are equal to 19

In[x +vx2+1] and %In i . Their derivatives are j
and __k . So we have two ways to write the anti | .
The parallel to coshr +sinhx =e* is Euler's formula__m
The formula cosc = 1 (e’* +¢~¥) involves __n__ exponents.
The parallel formula for sicis __ o

1 Find coshx + sinh x, coshx —sinhx, and coshx sinhx.

2 From the definitions of cosh and sinhx, find their

derivatives.
3 Show that both functions satisfy’ = y.
4 By the quotient rule, verifytarh x)’ = secHx.
5 Derive cosRx + sinh2x = cosh2x, from the definitions.
6 From the derivative of Problefind sinh2x.

7 The parallel to (cosx+i sinx)” =cosnx+i sinnx is a
hyperbolic formula(coshx + sinhx)” = coshnx+ .

8 Prove sinf{x + y) = sinh x coshy +coshx sinhy by
changing to exponentials. Then thev-derivative gives
coshix+y) = .

Find the derivatives of the functions 9-18

9 cosh3x+1) 10 sinhx?

11 1/coshx 12 sinh(In x)

13 costx +sintPx 14 costtx —sintkPx
15 tanhv/x2+1 16 (14tanhx)/(1—tanhx)
17 sinh®x 18 In(sechx +tanh x)

Find the minimum value of cogh x) for x > 0.
20 From tanhx = % find sechx, coshx, sinhx, cothx, cschx.
21 Do the same if tanlkh = —12/13.
22 Find the other five values if sinh=2.
23 Find the other five values if cosh=1.

24 Compute sinkiin 5) and tanh2 In 4).

Find antiderivatives for the functions in 25-32

25 cosi2x+1) 26 x cosh(x?)

28 tantxsecHx

eX e %
eX _efx

27 costtx sinhx
sinh x
_ 30 cothx =
1+ coshx

31 sinhx +coshx 32 (sinhx + coshx)”

33 The triangle in Figure 6.20 has aréa:osht sinht.

(@) Integrate to find the shaded area below the hyperbola
(b) Forthe ared in red verify thatd A /dt = %

(©) Conclude thatt = 3¢ + C and showC = 0.

Sketch graphs of the functions in 34—40
34 y =tanhx (with inflection point)
35 y =cothx (in the limit asx — o0)

36 y=sechx
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37 y=sinh 1x 54 A falling body with friction equal to velocity squared obeys
_ 1 dv/dt =g —v2.
38 y=cosh ‘xforx>1
39 y=sechlxfor0<x<1 (@) Show thaw(r) = /g tanh,/gt satisfies the equation.
. 1 1+x (b) Derive thisv yourself, by integrating/v/(g —v?) = dt.
40 y=tanh™x =2 In(:) for [x| <1 (c) Integratev(r) to find the distancef (r).

41 (a) Multiplying x =sinhy = %(ey _e—y) by 2¢” gives 55 A cable hanging under its own weight has sldpe dy/dx that
(e¥)2 —2x(e¥) —1=0. Solve as a quadratic equation fof. ~ SatisfiesdS/dx =cv1+ $2. The constant is the ratio of cable

(b) Take logarithms to fingt = sinh~!x and compare with the density to tension.

text. (@) Show thatS = sinhcx satisfies the equation.
42 (@) Multiplying x =coshy = %(ey +e7Y) by 2¢” gives (b) Integratedy/dx = sinhcx to find the cable height(x), if
(e?)2 —2x(e?)+1=0. Solve fore” . y(0) =1/c.

(c) Sketch the cable hanging between=—L and x=L

b) Take logarithms to fing = cost L x and compare with the
(b) g o o P and find how far it sags down at=0.

text.
43 Turn (4) upside down to provey’=—1/(1—x2), if 56 The simplest nonlinear wave equation (Burgers’ equation)
y =coth™1x. yields a waveformW(x) that satisfiesW” =W W’ —W’. One

integration gives¥’ = 1 w2 —w.
44 Computedy /dx = 1/+/x2 +1 by differentiatingx = sinhy and g g 2

using cosRy —sint?y = 1. (@) Separate variables and integrate:
1
45 Computedy/dx =1/(1—x2) if y =tanhlx by differentiat- dx = dW/(EWZ —W)=—dW/Q-W)—dW/W.
ing x = tanhy and using sedy +tant?y = 1. (b) CheckW’=iw2—Ww.
46 Compute dy/dx =—1/x\/1—x2 for y=sechlx, by 57 A solitary water wave has a shape satisfying tKeV
differentiatingx = sechy. equationy” =y’ —6yy’.
From formulas (1), (2), (3) or otherwise, find antiderivatives in (@) Integrate once to find”. Multiply the answer byy’.
47-52 (b) Integrate again to fing’ (all constants of integration are
N s zero).
ar de/(4_x ) 48 de/(a —x%) (c) Show thaty = %sechz(x/z) gives the shape of the

49 de/«/xz_H 50 dex/ x2 41 “soliton.”

58 Derive cosx = coshx from equation (5). What is the cosine of
51 fdx/m/l—xz 52 deﬁ /1—x2 the imaginary anglé =+/—17?

59 Derive sinix =i sinhx from (5). What is sin ?

1/2 1 gy
53 ComPUteJO T—2 an Jo T2 60 The derivative ob!* =cosx +i sinx is
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