
CHAPTER 6

Exponentials and Logarithms

This chapter is devoted to exponentials like2x and 10x and above allex : The goal
is to understand them, differentiate them, integrate them, solve equations with them,
and invert them (to reach the logarithm). The overwhelming importance ofex makes
this a crucial chapter in pure and applied mathematics.

In the traditional order of calculus books,ex waits until other applications of the
integral are complete. I would like to explain why it is placed earlier here. I believe
that the equationdy=dxD y has to be emphasized above techniques of integration.
The laws of nature are expressed bydifferential equations, and at the center isex : Its
applications are to life sciences and physical sciences and economics and engineering
(and more—wherever change is influenced by the present state). The model produces
a differential equation and I want to show what calculus can do.

The key is alwaysbmCn D .bm/.bn/: Section6:1 applies that rule in three ways:

1. to understand thelogarithm as theexponent;
2. to drawgraphson ordinary and semilog and log-log paper;
3. to findderivatives. The slope ofbx will usebxC�x D .bx/.b�x/:
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284 6 Exponentials and Logarithms

6.1 An Overview

There is a good chance you have met logarithms. They turn multiplication into
addition, which is a lot simpler. They are the basis for slide rules (not so important)
and for graphs on log paper (very important). Logarithms are mirror images of
exponentials—and those I know you have met.

Start with exponentials. The numbers10 and102 and103 are basic to the decimal
system. For completeness I also include100; which is “ten to the zeroth power” or
1: The logarithms of those numbers are the exponents. The logarithms of1 and
10 and100 and1000 are0 and1 and2 and3: These are logarithms “to base10,”
because the powers are powers of10:

Question When the base changes from10 to b, what is the logarithm of1 ?
Answer Sinceb0 D 1, logb 1 is alwayszero. To baseb, the logarithm of bn isn:
Negative powers are also needed. The number10x is positive, but its exponentx can
be negative. The first examples are1=10 and1=100, which are the same as10�1 and
10�2: The logarithms are the exponents�1 and�2:

1000D103 and log1000D3

1=1000D10�3 and log1=1000D�3:
Multiplying 1000 times1=1000 gives1D 100: Adding logarithms gives3C .�3/D
0: Always 10m times10n equals10mCn: In particular103 times102 produces five
tens:

.10/.10/.10/ times .10/.10/ equals .10/.10/.10/.10/.10/D 105:

The law forbm timesbn extends to all exponents, as in104:6 times10� : Furthermore
the law applies to all bases (we restrict the base tob¡ 0 andb¤ 1). In every case
multiplication of numbers is addition of exponents.

6A bm timesbn equalsbmCn, so logarithms (exponents) add
bm divided bybn equalsbm�n, so logarithms (exponents) subtract

logb.yz/D logb yC logb z and logb.y=z/D logb y� logb z: (1)

Historical note In the days of slide rules,1:2 and1:3 were multiplied by sliding
one edge across to1:2 and reading the answer under1:3: A slide rule made in
Germany would give the third digit in1:56: Its photograph shows the numbers on a
log scale. The distance from1 to 2 equals the distance from2 to 4 and from4 to 8:
By sliding the edges, you add distances and multiply numbers.

Division goes the other way.Notice how1000=10D 100matches3�1D 2: To
divide1:56 by 1:3, look back along line D for the answer1:2:

The second figure, though smaller, is the important one.When x increases by
1;2x is multiplied by2. Adding toxmultipliesy: This rule easily givesyD 1;2;4;8;
but look ahead to calculus—which doesn’t stay with whole numbers.

Calculus will add�x: Then y is multiplied by 2�x : This number is near1:
If �xD 1

10
then 2�x � 1:07—the tenth root of2: To find the slope, we have to

consider.2�x�1/=�x. The limit is near.1:07�1/= 1
10

D :7, but the exact number
will take time.
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Fig. 6.1 An ancient relic (the slide rule). When exponentsx add, powers2x multiply.

Base ChangeBases other than10 and exponents other than1;2;3; : : : are needed
for applications. The population of the worldx years from now is predicted to grow by
a factor close to1:02x: Certainlyx does not need to be a whole number of years. And
certainly the base1:02 should not be10 (or we are in real trouble). This prediction
will be refined as we study the differential equations for growth. It can be rewritten to
base10 if that is preferred (but look at the exponent):

1:02x is the same as 10.log 1:02/x:

When the base changes from1:02 to 10, the exponent is multiplied—as we now see.
For practice, start with baseb and change to basea: The logarithm to basea will

be written “log:” Everything comes from the rule that logarithmD exponent:

base change for numbersW bD alog b :

Now raise both sides to the powerx: You see the change in the exponent:

base change for exponentialsW bx D a.logb/x :

Finally setyD bx: Its logarithm to baseb isx: Its logarithm to basea is the exponent
on the right hand side:loga yD .loga b/x: Now replacex by logb y:

base change for logarithmsW loga yD .loga b/.logb y/:

We absolutely need this ability to change the base. An example with aD 2 is

bD 8D 23 82 D .23/2 D 26 log2 64D 3 �2D .log2 8/.log8 64/:

The rule behind base changes is.am/x D amx: When themth power is raised
to thexth power,the exponents multiply. The square of the cube is the sixth power:

.a/.a/.a/ times .a/.a/.a/ equals .a/.a/.a/.a/.a/.a/ W .a3/2 D a6:

Another base will soon be more important than10—here are the rules for base changes:
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6B To changenumbers,powers, andlogarithmsfrom baseb to basea, use

bD aloga b bx D a.loga b/x loga yD .loga b/.logb y/ (2)

The first is the definition. The second is thexth power of the first. The third is the
logarithm of the second (remembery is bx). An important case isyD a:

loga aD .loga b/.logb a/D 1 so loga bD 1= logb a: (3)

EXAMPLE 8D 23 means81=3 D 2: Then.log2 8/.log8 2/D .3/.1=3/D 1:

This completes the algebra of logarithms. The addition rules6A came from
.bm/.bn/D bmCn: The multiplication rule6B came from.am/x D amx: We still
need to definebx andax for all real numbersx. Whenx is a fraction, the defi-
nition is easy. The square root ofa8 is a4.mD 8 timesxD 1=2/: Whenx is not a
fraction, as in2� ; the graph suggests one way to fill in the hole.

We could define2� as the limit of 23;231=10;2314=100; : : : : As the fractions
r approach� , the powers2r approach2� : This makesyD 2x into a continuous
function, with the desired properties.2m/.2n/D 2mCn and.2m/x D 2mx—whether
m andn andx are integers or not. But the"’s andı’s of continuity are not attractive,
and we eventually choose (in Section6:4) a smoother approach based on integrals.

GRAPHS OF bx AND logb y

It is time to draw graphs. In principle one graph should do the job for both functions,
becauseyD bx means the same asxD logb y: These are inverse functions. What
one function does, its inverse undoes. The logarithm ofg.x/D bx is x:

g�1.g.x//D logb.b
x/D x: (4)

In the opposite direction, the exponential of the logarithm ofy is y:

g.g�1.y//D b.logb y/ D y: (5)

This holds for every baseb, and it is valuable to seebD 2 andbD 4 on the same
graph. Figure 6.2a showsyD 2x andyD 4x: Their mirror images in the45� line
give the logarithms to base2 and base4, which are in the right graph.

Whenx is negative,yD bx is still positive. If the first graph is extended to the
left, it stays above thex axis.Sketch it in with your pencil. Also extend the second
graph down, to be the mirror image. Don’t cross the vertical axis.

Fig. 6.2 Exponentials and mirror images (logarithms). Different scales forx andy:
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There are interesting relations within the left figure. All exponentials start at1,
becauseb0 is always1: At the heightyD 16, one graph is abovexD 2 (because
42 D 16). The other graph is abovexD 4 (because24 D 16). Why does4x in one
graph equal22x in the other? This is the base change for powers, since4D 22:

The figure on the right shows the mirror image—the logarithm. All logarithms
start from zero atyD 1: The graphs go down to�8 at yD 0: (Roughly speaking
2�8 is zero.) Againx in one graph corresponds to2x in the other (base change for
logarithms). Both logarithms climb slowly, since the exponentials climb so fast.

The numberlog2 10 is between3 and4, because10 is between23 and24: The
slope of2x is proportional to2x—which never happened forxn: But there are two
practical difficulties with those graphs:

1. 2x and4x increase too fast. The curves turn virtually straight up.
2. The most important fact aboutAbx is the value ofb—and the base

doesn’t stand out in the graph.

There is also another point. In many problems we don’t know the functionyD f .x/:
We are looking for it! All we have are measured values ofy (with errors mixed in).
When the values are plotted on a graph, we want to discoverf .x/:

Fortunately there is a solution.Scale they axis differently. On ordinary graphs,
each unit upward adds a fixed amount toy: On a log scale each unitmultiplies y
by a fixed amount. The step fromyD 1 to yD 2 is the same length as the step from
3 to 6 or 10 to 20:

On a log scale,yD 11 is not halfway between10 and12: And yD 0 is not there
at all. Each step down divides by a fixed amount—we never reach zero. This is
completely satisfactory forAbx, which also never reaches zero.

Figure 6.3 is onsemilog paper(also known aslog-linear), with an ordinaryx
axis.The graph ofyDAbx is a straight line. To see why, take logarithms of that
equation:

log yD logACx log b: (6)

The relation betweenx and logy is linear. It is really logy that is plotted, so the
graph is straight. The markings on they axis allow you to entery without looking up
its logarithm—you get an ordinary graph oflogy againstx:

Figure 6.3 shows two examples. One graph is an exact plot ofyD 2 �10x: It goes
upward with slope1; because a unit across has the same length as multiplication by
10 going up.10x has slope1 and 10.logb/x (which is bx) will have slopelog b.
The crucial numberlog b can be measured directly as the slope.

The second graph in Figure 6.3 is more typical of actual practice, in which we start
with measurements and look forf .x/: Here are the data points:

xD0:0 0:2 0:4 0:6 0:8 1:0

yD4:0 3:2 2:4 2:0 1:6 1:3

We don’t know in advance whether these values fit the modelyDAbx: The graph
is strong evidence that they do. The points lie close to a line with negative slope—
indicatinglog b  0 andb  1: The slope down is half of the earlier slope up, so the
model is consistent with

yDA �10�x=2 or logyD logA� 1
2
x: (7)

Whenx reaches2, y drops by a factor of10: At xD 0 we seeA� 4:
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Fig. 6.3 2 �10x and4 �10�x=2 on semilog paper. Fig. 6.4 Graphs ofAxk on log-log paper.

Another model—apoweryDAxk instead of an exponential—also stands out with
logarithmic scaling. This time we uselog-log paper, with both axes scaled. The
logarithm ofyDAxk gives a linear relation betweenlogy andlog x:

logyD logACk log x: (8)

The exponentk becomes the slope on log-log paper. The baseb makes no
difference. We just measure the slope, and a straight line is a lot more attractive
than a power curve.

The graphs in Figure 6.4 have slopes3 and 1
2

and �1: They representAx3 and
A
?
x andA=x: To find theA’s, look at one point on the line. AtxD 4 the height is

8; so adjust theA’s to make this happen: The functions arex3=8 and4
?
x and32=x:

On semilog paper those graphs would not be straight!
You can buy log paper or create it with computer graphics.

THE DERIVATIVES OF y D bx AND x D logb y

This is a calculus book.We have to ask about slopes. The algebra of exponents is
done, the rules are set, and on log paper the graphs are straight. Now come limits.

The central question is the derivative.What is dy=dx when yD bx ? What is
dx=dy whenx is the logarithm logb y ? Those questions are closely related, be-
causebx and logb y are inverse functions. If one slope can be found, the other is
known fromdx=dyD 1=.dy=dx/: The problem is to find one of them, and the ex-
ponential comes first.

You will now see that those questions have quick (and beautiful) answers,except
for a mysterious constant. There is a multiplying factorc which needs more time.
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I think it is worth separating out the part that can be done immediately, leavingc
in dy=dx and1=c in dx=dy: Then Section6:2 discoversc by studying the special
number callede (butc¤ e).

6C The derivative ofbx is amultiplecbx : The numberc depends on the baseb:

The product and power and chain rules do not yield this derivative. We are pushed all
the way back to the original definition, the limit of�y=�x:

dy

dx
D lim

hÑ0

y.xCh/�y.x/
h

D lim
hÑ0

bxCh�bx

h
: (9)

Key idea: Split bxCh into bx timesbh: Then the crucial quantitybx factors out.
More than that,bx comesoutside the limitbecause it does not depend onh: The
remaining limit, inside the brackets, is the numberc that we don’t yet know:

dy

dx
D lim

hÑ0

bxbh�bx

h
D bx

"

lim
hÑ0

bh�1
h

#

D cbx: (10)

This equation is central to the whole chapter:dy=dx equalscbx which equalscy:
The rate of change ofy is proportional toy. The slope increases in the same way
that bx increases (except for the factorc). A typical example is money in a bank,
where interest is proportional to the principal. The rich get richer, and the poor get
slightly richer. We will come back to compound interest, and identifyb andc:

The inverse function isxD logb y: Now the unknown factor is1=c:

6D The slope oflogb y is1=cy with the samec (depending onb).

Proof If dy=dxD cbx thendx=dyD 1=cbx D 1=cy: (11)

That proof was like a Russian toast, powerful but too quick! We go more carefully:

f .bx/D x (logarithm of exponential)

f 1.bx/.cbx/D 1 .x derivative by chain rule/

f 1.bx/D 1=cbx .divide bycbx/

f 1.y/D 1=cy .identifybx asy/

The logarithm gives another way to findc: From its slope we can discover1=c: This
is the way that finally works(next section).

Fig. 6.5 The slope of2x is about .7 �2x : The slope of log2 y is about1=:7y:

Final remark It is extremely satisfying to meet anf .y/ whose derivative is1=cy:
At last the “�1 power” has an antiderivative. Remember that

r
xndxD xnC1=.nC
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1/ is a failure whennD�1: The derivative ofx0 (a constant) does not producex�1

We had no integral forx�1, and the logarithm fills that gap. If y is replaced by
x or t (all dummy variables) then

d

dx
logb xD

1

cx
and

d

dt
logb t D

1

ct
: (12)

Thebaseb can be chosen so thatcD 1: Then the derivative is1=x: This final touch
comes from the magic choicebD e—the highlight of Section 6.2.

6.1 EXERCISES

Read-through questions

In 104 D 10;000, the exponent4 is the a of 10;000: The
base isbD b . The logarithm of10m times 10n is c .
The logarithm of10m=10n is d . The logarithm of10;000x

is e . If yD bx then xD f . Here x is any number,
andy is always g .

A base change givesbD a
h

andbx Da
i
: Then85 is

215: In other words log2 y is j times log8y:WhenyD 2 it fol-
lows that log2 8 times log8 2 equals k .

On ordinary paper the graph ofyD l is a straight line. Its
slope is m . On semilog paper the graph ofyD n is a
straight line. Its slope is o . On log-log paper the graph of
yD p is a straight line. Its slope is q .

The slope ofyD bx is dy=dxD r , wherec depends onb:
The numberc is the limit ashÑ 0 of s . SincexD logb y

is the inverse,.dx=dy/.dy=dx/D t . Knowing dy=dxD cbx

yieldsdx=dyD u . Substitutingbx for y, the slope of logb y is
v . With a change of letters, the slope of logb x is w .

Problems 1–10 use the rules for logarithms.

1 Find these logarithms (or exponents):
(a) log2 32

(d) log32 2

(b) log2.1=32/

(e) log10.10
?
10/

(c) log32.1=32/

(f) log2.log2 16/

2 Without a calculator find the values of
(a) 3log3 5

(c) log10 5C log10 2

(e) 10510�4103

(b) 32 log3 5

(d) .log3 b/.logb 9/

(f) log2 56� log2 7

3 SketchyD 2�x andyD 1
2 .4

x/ from�1 to1 on the same graph.
Put their mirror imagesxD� log2 y andxD log4 2y on a second
graph.

4 Following Figure 6.2 sketch the graphs ofyD
�

1
2

�x
and

xD log1=2 y:What are log1=2 2 and log1=2 4 ?

5 Compute without a computer:
(a) log2 3C log2

2
3

(c) log10 100
40

(e) 223
=.22/3

(b) log2

�

1
2

�10

(d) .log10 e/.loge 10/

(f) loge.1=e/

6 Solve the following equations forx:
(a) log10.10

x/D 7

(c) logx 10D 2

(e) logxC log xD log 8

(b) log4x� log 4D log 3
(d) log2.1=x/D 2

(f) logx.x
x/D 5

7 The logarithm ofyD xn is logb yD .�8 Prove that.logb a/.logd c/D .logd a/.logb c/:

9 210 is close to103 (1024 versus1000). If they were equal
then log2 10 would be . Also log10 2 would be

instead of0:301:

10 The number21000 has approximately how many (decimal) dig-
its ?

Questions 11–19 are about the graphs ofyD bx and xD logb y:

11 By hand draw the axes for semilog paper and the graphs of
yD 1:1x andyD 10.1:1/x :

12 Display a set of axes on which the graph ofyD log10 x is a
straight line. What other equations give straight lines on those axes ?

13 When noise is measured indecibels, amplifying by a factor
A increases the decibel level by10 logA: If a whisper is20db
and a shout is70db then10 logAD 50 andAD :

14 Draw semilog graphs ofyD 101�x andyD 1
2

�?
10
�x
:

15 The Richter scale measures earthquakes by log10.I=I0/DR:

What isR for the standard earthquake of intensityI0 ? If the1989
San Francisco earthquake measuredRD 7, how did its intensityI
compare toI0 ? The1906 San Francisco quake hadRD 8:3: The
record quake was four times as intense withRD :

16 The frequency ofA above middle C is 440=second: The
frequency of the next higherA is . Since 27=12� 1:5,
the note with frequency660=sec is .

17 Draw your own semilog paper and plot the data

yD 7; 11; 16; 28; 44 at xD 0; 1=2; 1; 3=2; 2:

EstimateA andb in yDAbx :

18 Sketch log-log graphs ofyD x2 andyD
?
x:
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19 On log-log paper, printed or homemade, plotyD 4; 11;

21; 32; 45 atxD 1; 2; 3; 4; 5: EstimateA andk in yDAxk :

Questions 20–29 are about the derivativedy=dxD cbx :

20 g.x/D bx has slopeg1 D cg:Apply the chain rule tog.f .y//D
y to prove thatdf=dyD 1=cy:

21 If the slope of logx is 1=cx, find the slopes of log.2x/ and
log.x2/ and log.2x/:

22 What is the equation (includingc) for the tangent line toyD

10x atxD 0 ? Find also the equation atxD 1:

23 What is the equation for the tangent line toxD log10y at
yD 1 ? Find also the equation atyD 10:

24 With bD 10, the slope of10x is c10x :Use a calculator for small
h to estimatecD lim .10h�1/=h:
25 The unknown constant in the slope ofyD .:1/x is
LD lim .:1h�1/=h: (a) EstimateL by choosing a smallh:
(b) Changeh to�h to show thatLD�c from Problem24:

26 Find a baseb for which .bh�1/=h� 1: UsehD 1=4 by hand
or hD 1=10 and1=100 by calculator.

27 Find the second derivative ofyD bx andalso ofxD logb y:

28 Show that C D lim .100h�1/=h is twice as large as
cD lim .10h�1/=h: (Replace the lasth’s by 2h:)

29 In 28, the limit for bD 100 is twice as large as forbD 10:

Soc probably involves the of b:
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6.2 The Exponential ex

The last section discussedbx and logb y: The baseb was arbitrary—it could be2
or 6 or 9:3 or any positive number except1: But in practice, only a few bases are
used. I have never met a logarithm to base6 or 9:3: Realistically there are two
leading candidates forb, and10 is one of them. This section is about the other one,
which is an extremely remarkable number. This number is not seen in arithmetic or
algebra or geometry, where it looks totally clumsy and out of place. In calculus it
comes into its own.

The number ise: That symbol was chosen by Euler (initially in a fit of selfishness,
but he was a wonderful mathematician). It is the base of thenatural logarithm. It
also controls the exponentialex , which is much more important thanln x: Euler also
chose� to stand for perimeter—anyway, our first goal is to finde:

Remember that the derivatives ofbx andlogb y include a constantc that depends
onb: Equations(10)and(11) in the previous section were

d

dx
bx D cbx and

d

dy
logb yD

1

cy
: (1)

At xD 0, the graph ofbx starts fromb0 D 1: The slope isc: At yD 1, the graph of
logb y starts fromlogb 1D 0: The logarithm has slope1=c: With the right choice
of the baseb those slopes will equal1 (becausec will equal1).

ForyD 2x the slopec is near:7: We already tried�xD :1 and found�y� :07:
The base has to be larger than2; for a starting slope ofcD 1:

We begin with a direct computation of the slope oflogb y atyD 1:

1

c
D slope at1D lim

hÑ0

1

h

h

logb.1Ch/� logb 1
i

D lim
hÑ0

logb

h

.1Ch/1=h
i

: (2)

Alwayslogb 1D 0: The fraction in the middle islogb.1Ch/ times the number1=h:
This number can go up into the exponent, and it did.

The quantity.1Ch/1=h is unusual, to put it mildly. AshÑ 0, the number1Ch
is approaching1: At the same time,1=h is approaching infinity.In the limit we
have18: But that expression is meaningless (like0=0). Everything depends on the
balance between “nearly1” and “nearly8:” This balance produces the extraordinary
numbere:

DEFINITION The number e is equal to lim
hÑ0

.1Ch/1=h: Equivalently

eD lim
hÑ0

�

1C
1

n

�n

:

Before computinge, look again at the slope1=c: At the end of equation(2) is the
logarithm ofe:

1=cD logb e: (3)

When the base isbD e; the slope isloge eD 1: That basee hascD 1 as desired:

The derivative ofex is1 �ex and the derivative ofloge y is
1

1 �y : (4)

This is why the basee is all-important in calculus. It makescD 1:
To compute the actual numbere from .1Ch/1=h, choosehD 1;1=10;1=100; : : : :

Then the exponents1=h are nD 1;10;100; : : : : (All limits and derivatives will
become official in Section6:4:) The table shows.1Ch/1=h approachinge as
hÑ 0 andnÑ8:
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n hD
1

n
1ChD 1C

1

n
.1Ch/1=h D

�

1C
1

n

�n

1 1:0 2:0 2:0
2 0:5 1:5 2:25
10 0:1 1:1 2:593742
100 0:01 1:01 2:704814
1000 0:001 1:001 2:716924
10000 0:0001 1:0001 2:718146

The last column is converging toe (not quickly). There is an infinite series that
converges much faster. We know125;000 digits ofe (and a billion digits of�). There
are no definite patterns, although you might think so from the first sixteen digits:

eD2:7 1828 1828 45 90 45 � � � .and1=e� :37/:
The powers ofe produceyD ex : At xD 2:3 and5; we are close toyD 10 and150:

The logarithm is the inverse function. The logarithms of150 and10; to the base
e, are close toxD 5 andxD 2:3: There is a special name for this logarithm—the
natural logarithm. There is also a special notation “ln” to show that the base ise:

ln ymeans the same asloge y:The natural logarithm is the exponent inex D y:

The notationln y (or ln x—it is the function that matters, not the variable) is standard
in calculus courses. After calculus, the base is generally assumed to bee: In most of
science and engineering, the natural logarithm is the automatic choice. The symbol
“exp.x/” meansex , and the truth is that the symbol “logx” generally meansln x:
Basee is understood even without the lettersln : But in any case of doubt—on a
calculator key for example—the symbol “ln x” emphasizes that the base ise:

THE DERIVATIVES OF ex AND ln x

Come back to derivatives and slopes. The derivative ofbx is cbx; and the derivative
of logb y is 1=cy: If bD e then cD 1. For all bases, equation(3) is 1=cD logb e:
This givesc—the slope ofbx atxD 0:

6E The numberc is1= logb eD loge b: Thus c equalsln b. (5)

cD ln b is the mysterious constant that was not available earlier. The slope of
2x is ln 2 times2x : The slope ofex is ln e timesex (but ln eD 1). We have the
derivatives on which this chapter depends:

6F The derivatives ofex and lny areex and1=y: For other bases

d

dx
bx D .ln b/bx and

d

dy
logb yD

1

.ln b/y
: (6)

To make clear that those derivatives come from the functions (and not at all from the
dummy variables), we rewrite them usingt andx:

d

dt
et D et and

d

dx
ln xD

1

x
: (7)
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Remark on slopes atxD 0: It would be satisfying to see directly that the slope
of 2x is below1; and the slope of4x is above1: Quick proof:e is between2 and4.
But the idea is to see the slopes graphically. This is a small puzzle, which is fun to
solve but can be skipped.
2x rises from1 at xD 0 to 2 at xD 1: On that interval its average slope is1: Its

slope at the beginning issmallerthan average, so it must be less than1—as desired.
On the other hand4x rises from1

2
at xD�1

2
to 1 at xD 0: Again the average slope

is 1
2

ı

1
2

D 1: SincexD 0 comes at theendof this new interval, the slope of4x at that
point exceeds1: Somewhere between2x and4x is ex , which starts out with slope1:

This is the graphical approach toe: There is also the infinite series, and a fifth
definition through integrals which is written here for the record:

1. e is the number such thatex has slope1 atxD 0

2. e is the base for whichln yD loge y has slope1 atyD 1

3. e is the limit of

�

1C
1

n

�n

as nÑ8
4. eD

1

0Š
C
1

1Š
C
1

2Š
C
1

3Š
C � � �D 1C1C

1

2
C
1

6
C � � �

5. the area
r e

1
x�1dx equals1:

The connections between1, 2, and3 have been made. The slopes are1 whene is
the limit of .1C1=n/n: Multiplying this out wlll lead to4, the infinite series in
Section 6.6. The official definition ofln x comes from

r
dx=x, and then5 says that

ln eD 1: This approach toe (Section 6.4) seems less intuitive than the others.
Figure 6.6b shows the graph ofe�x : It is the mirror image ofex across the

vertical axis. Their product isexe�x D 1: Where ex grows exponentially,e�x

decays exponentially—or it grows asx approaches�8: Their growth and decay
are faster than any power ofx. Exponential growth is more rapid than polynomial
growth, so thatex=xn goes to infinity (Problem59). It is the fact thatex has slope
ex which keeps the function climbing so fast.

Fig. 6.6 ex grows between2x and 4x : Decay ofe�x ; faster decay ofe�x2=2:

The other curve isyD e�x2=2: This is the famous “bell-shaped curve” of
probability theory. After dividing by

?
2� , it gives thenormal distribution, which

applies to so many averages and so many experiments. The Gallup Poll will be an
example in Section 8.4. The curve is symmetric around its mean valuexD 0, since
changingx to�x has no effect onx2:

About two thirds of the area under this curve is betweenxD�1 andxD 1: If
you pick points at random below the graph,2=3 of all samples are expected in that
interval. The pointsxD�2 andxD 2 are “two standard deviations” from the center,
enclosing95% of the area. There is only a5% chance of landing beyond. The decay
is even faster than an ordinary exponential, because1

2
x2 has replacedx:
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THE DERIVATIVES OF ecx AND eu.x/

The slope ofex is ex : This opens up a whole world of functions that calculus can
deal with. The chain rule gives the slope ofe3x andesinx and everyeu.x/:

6G The derivative ofeu.x/ is eu.x/ timesdu=dx: (8)

Special caseuD cx W The derivative ofecx is cecx : (9)

EXAMPLE 1 The derivative ofe3x is 3e3x (herecD 3). The derivative ofesinx

is esinx cosx (hereuD sinx). The derivative off .u.x// is df=du timesdu=dx:
Heref D eu sodf=duD eu: The chain rule demands that second factordu=dx.

EXAMPLE 2 e.ln 2/x is the same as2x : Its derivative is ln 2 times 2x: The
chain rule rediscovers our constantcD ln 2: In the slope ofbx it rediscovers
the factor cD ln b:

Generallyecx is preferred to the originalbx : The derivative just brings down the
constantc: It is better to agree one as the base, and put all complications (like
cD ln b) up in the exponent. The second derivative ofecx is c2ecx :

EXAMPLE 3 The derivative ofe�x2=2 is�xe�x2=2 (hereuD�x2=2 sodu=dxD�x).

EXAMPLE 4 The second derivative off D e�x2=2, by the chain rule and product
rule, is

f 2 D .�1/ �e�x2=2 C .�x/2e�x2=2 D .x2�1/e�x2=2: (10)

Notice howthe exponential survives. With every derivative it is multiplied by more
factors, but it is still there to dominate growth or decay. Thepoints of inflection,
where the bell-shaped curve hasf 2 D 0 in equation(10), arexD 1 andxD�1.
EXAMPLE 5 .uD n ln x/: Sinceen ln x isxn in disguise, its slope must benxn�1:

slopeD en ln x d

dx
.n lnx/D xn

�n

x

�

D nxn�1: (11)

This slope is correct for alln; integer or not. Chapter 2 produced3x2 and4x3

from the binomial theorem. Nownxn�1 comes fromln andexpand the chain rule.

EXAMPLE 6 An extreme case isxx D .eln x/x:HereuD x ln x and we needdu=dx:

d

dx
.xx/D ex ln x

�

ln xCx � 1
x

�

D xx.ln xC1/:

INTEGRALS OF ecx AND eu du=dx

The integral ofex is ex : The integral ofecx is notecx . The derivative multiplies by
c so the integral divides byc: The integral ofecx is ecx=c (plus a constant).

EXAMPLES

»
e2xdxD

1

2
e2x CC

»
bxdxD

bx

ln b
CC»

e3.xC1/dxD
1

3
e3.xC1/ CC

»
e�x2=2dxÑ failure

The first one hascD 2: The second hascD ln b—remember again thatbx D e.ln b/x :
The integral divides byln b: In the third one,e3.xC1/ is e3x times the numbere3
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and that number is carried along. Or more likely we seee3.xC1/ aseu: The missing
du=dxD 3 is fixed by dividing by3: The last example fails becausedu=dx is not
there.We cannot integrate withoutdu=dx:

6H The indefinite integral
»
eu du

dx
dx equalseu.x/ CC:

Here are three examples withdu=dx and one without it:»
esinx cosx dxD esinx CC

»
xex2=2 dxD ex2=2 CC»

e
?

xdx?
x

D 2e
?

x CC

»
exdx

.1Cex/2
D

�1
1Cex

CC

The first is a pureeudu: So is the second. The third hasuD
?
x and du=dxD

1=2
?
x,

so only the factor2 had to be fixed. The fourth example does not belong with the
others. It is the integral ofdu=u2, not the integral ofeudu: I don’t know any way
to tell you which substitution is best—except thatthe complicated part is1Cex and
it is natural to substituteu. If it works, good.

Without an extraex for du=dx; the integral
r
dx=.1Cex/2 looks bad. But

uD 1Cex is still worth trying. It hasduD exdxD .u�1/dx:»
dx

.1Cex/2
D

»
du

.u�1/u2
D

»
du

�

1

u�1� 1

u
� 1

u2

�

: (12)

That last step is “partial fractions.” The integral splits into simpler pieces (explained
in Section7:4) and we integrate each piece. Here are three other integrals:»

e1=xdx

»
ex.4Cex/dx

»
e�x.4Cex/dx

The first can change to�r
eudu=u2, which is not much better. (It is just as

impossible.) The second is actually
r
udu, but I prefer a split:

r
4ex and

r
e2x are

safer to do separately. The third is
r
.4e�x C1/dx, which also separates. The

exercises offer practice in reachingeudu=dx—ready to be integrated.

Warning about definite integralsWhen the lower limit isxD 0, there is a natural
tendency to expectf .0/D 0—in which case the lower limit contributes nothing. For
a powerf D x3 that is true. For an exponentialf D e3x it is definitely not true,
becausef .0/D 1:» 1

0

e3xdxD
1

3
e3x

#1

0

D
1

3
.e3�1/ » 1

0

xex2

dxD
1

2
ex2

#1

0

D
1

2
.e�1/:
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6.2 EXERCISES

Read-through questions

The numbere is approximately a . It is the limit of .1Ch/

to the power b . This gives 1:01100 when hD c . An
equivalent form is eD lim. d /n:

When the base isbD e, the constantc in Section 6.1 is e .
Therefore the derivative ofyD ex is dy=dxD f . The
derivative of xD loge y is dx=dyD g : The slopes atxD 0

and yD 1 are both h . The notation for loge y is i ,
which is the j logarithm ofy:

The constantc in the slope ofbx is cD k . The function
bx can be rewritten as l . Its derivative is m . The
derivative of eu.x/ is n . The derivative ofesin x is o .
The derivative ofecx brings down a factor p .

The integral of ex is q . The integral ofecx is r .

The integral ofeu.x/du=dx is s . In general the integral of
eu.x/ by itself is t to find.

Find the derivatives of the functions in 1–18.

1 7e7x 2 �7e�7x

3 .ex/8 4 .x�x/�8

5 3x 6 ex ln 3

7 .2=3/x 8 44x

9 1=.1Cex / 10 e1=.1Cx/

11 eln x Cx ln e 12 xe1=x

13 xex�ex 14 x2ex�2xex C2ex

15
ex�e�x

ex Ce�x
16 eln.x2/ C ln.ex2

/

17 esinx Csin ex 18 x�1=x (which ise—)

19 The difference betweene and .1C1=n/n is approximately
Ce=n: Subtract the calculated values fornD 10;100;1000 from
2:7183 to discover the numberC:

20 By algebra or a calculator find the limits of.1C1=n/2n and
.1C1=n/

?
n.

21 The limit of .11=10/10; .101=100/100 ; : : : is e: So the
limit of .10=11/10 ; .100=101/100 ; : : : is . So the limit
of .10=11/11; .100=101/101 ; : : : is . The last sequence
is .1�1=n/n:
22 Compare the number of correct decimals ofe for
.1:001/1000 and .1:0001/10000 and if possible.1:00001/100000 :

Which powern would give all the decimals in2:71828?

23 The function yD ex solves dy=dxD y: Approximate this
equation by �Y=�xDY; which is Y.xCh/�Y.x/D hY.x/:

With hD 1
10 find Y.h/ after one step starting fromY.0/D 1:

What isY.1/ after ten steps ?

24 The function that solvesdy=dxD�y starting fromyD 1 at
xD 0 is . Approximate byY.xCh/�Y.x/D�hY.x/: If
hD 1

4 what isY.h/ after one step and what isY.1/ after four steps ?

25 Invent three functions f; g; h such that for x¡ 10
.1C1=x/x  f .x/  ex  g.x/  e2x  h.x/  xx:

26 Graph ex and
?
ex at xD�2;�1; 0; 1; 2: Another form of?

ex is .

Find antiderivatives for the functions in 27–36.

27 e3x Ce7x

29 1x C2x C3x

31 .2e/x C2ex

33 xex2
Cxe�x2

35
?
ex C.ex/2

28 .e3x/.e7x/

30 2�x

32 .1=ex/C.1=xe/

34 .sin x/ecosx C.cosx/esinx

36 xex (trial and error)

37 Comparee�x with e�x2
: Which one decreases faster near

xD 0 ? Where do the graphs meet again ? When is the ratio ofe�x2

to e�x less than1=100 ?

38 Compareex with xx: Where do the graphs meet ? What are
their slopes at that point ? Dividexx by ex and show that the ratio
approaches infinity.

39 Find the tangent line toyD ex at xD a: From which point on
the graph does the tangent line pass through the origin ?

40 By comparing slopes, prove that ifx¡ 0 then

(a) ex ¡ 1Cx (b) e�x ¡ 1�x:
41 Find the minimum value ofyD xx for x¡ 0: Show from
d2y=dx2 that the curve is concave upward.

42 Find the slope ofyD x1=x and the point wheredy=dxD 0:

Checkd2y=dx2 to show that the maximum ofx1=x is .

43 If dy=dxD y find the derivative ofe�xy by the product rule.
Deduce thaty.x/DCex for some constantC:

44 Prove thatxe D ex hasonly one positive solution.
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Evaluate the integrals in 45–54: Wit h infinite limits, 49–50 are
“ improper :”

45
» 1

0
e2x dx

47
» 1�1

2x dx

49
» 8

0
e�x dx

51
» 1

0
e1Cx dx

46
» �

0
sinx ecosx dx

48
» 1�1

2�x dx

50
» 8

0
xe�x2

dx

52
» 1

0
e1Cx2

xdx

53
» �

0
2sinx cosx dx 54

» 1

0
.1�ex/10 ex dx

55 Integrate the integrals that can be integrated:»
eu

du=dx
dx

»
du=dx

eu
dx»

eu
�du

dx

�2
dx

»
.eu/2

du

dx
dx

56 Find a function that solvesy1.x/D 5y.x/ with y.0/D 2:

57 Find a function that solvesy1.x/D 1=y.x/ with y.0/D 2:

58 With electronic help graph the function.1C1=x/x :What are its
asymptotes ? Why ?

59 This exercise shows thatF.x/D xn=ex Ñ 0 asxÑ8:
(a) Find dF=dx: Notice thatF.x/ decreases forx¡ n¡ 0:
The maximum ofxn=ex , atxDn, is nn=en:

(b) F.2x/D .2x/n=e2x D 2nxn=ex � ex ¤ 2nnn=en � ex :

Deduce thatF.2x/Ñ 0 asxÑ8: ThusF.x/Ñ 0:

60 With nD 6, graphF.x/D x6=ex on a calculator or computer.
Estimate its maximum. Estimatex when you reachF.x/D 1:

Estimatex when you reachF.x/D 1
2 :

61 Stirling’s formula says thatnŠ�?2�n nn=en: Use it to
estimate66=e6 to the nearest whole number. Is it correct ? How
many decimal digits in10Š?

62 x6=ex Ñ 0 is also proved by I’Hôpital’s rule (atxD8):

lim x6=ex D lim 6x5=ex D fill this in D 0:
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6.3 Growth and Decay in Science and Economics

The derivative ofyD ecx has taken time and effort.The result wasy 1 D cecx;which
means thaty 1 D cy. That computation brought others with it, virtually for free—the
derivatives ofbx andxx andeu.x/: But I want to stay withy 1 D cy—which is the
most important differential equation in applied mathematics.

Comparey 1 D x with y 1 D y. The first only asks for an antiderivative ofx: We
quickly findyD 1

2
x2 CC: The second hasdy=dx equal toy itself—which we rewrite

asdy=yD dx: The integral is inyD xCC: Theny itself is exec : Notice that the
first solution is1

2
x2 plusa constant, and the second solution isex times a constant.

There is a way to graph slopex versus slopey: Figure 6.7 shows “tangent arrows,”
which give the slope at eachx andy: For parabolas, the arrows grow steeper as
x grows—becausey 1 D slopeD x: For exponentials, the arrows grow steeper asy
grows—the equation isy 1 D slopeD y: Now the arrows are connected byyDAex :
A differential equation gives a field of arrows(slopes).Its solution is a curve that
stays tangent to the arrows—then the curve has the right slope.

Fig. 6.7 The slopes arey1 D x andy1 D y: The solution curves fit those slopes.

A field of arrows can show many solutions at once (this comes in a differential
equations course). Usually a singley0 is not sacred. To understand the equation we
start from manyy0—on the left the parabolas stay parallel, on the right the heights
stay proportional. Fory 1 D�y all solution curves go to zero.

Fromy 1 D y it is a short step toy 1 D cy: To makec appear in the derivative,put
c into the exponent. The derivative ofyD ecx is cecx ; which isc timesy: We have
reached the key equation, which comes with aninitial condition—a starting value
y0:

dy=dt D cy with yD y0 at t D 0: (1)

A small change:x has switched tot: In most applicationstimeis the natural variable,
rather than space. The factorc becomes the “growth rate” or “decay rate”—andecx

converts toect :
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The last step is to match the initial condition. The problem requires yD y0 at
t D 0:Ourect starts fromec0 D 1: The constant of integration is needed now—the
solutions areyDAect : By choosingAD y0, we match the initial condition and
solve equation(1). The formula to remember isy0e

ct :

6I Theexponential lawyD y0e
ct solvesy 1 D cy starting fromy0:

The rate of growth or decay isc: May I call your attention to a basic fact ?The
formulay0e

ct contains three quantitiesy0; c; t: If two of them are given, plus one
additional piece of information, the third is determined. Many applications have one
of these three forms:find t , find c, find y0:

1. Find the doubling timeT if cD 1=10: At that timey0e
cT equals2y0:

ecT D 2 yields cT D ln 2 so thatT D
ln 2

c
� :7

:1
: (2)

The question asks for an exponentT: The answer involves logarithms. If a cell
grows at a continuous rate ofcD 10% per day, it takes about:7=:1D 7 days to
double in size. (Note that:7 is close to ln 2:) If a savings account earns10%
continuous interest, it doubles in7 years.

In this problem we knewc: In the next problem we knowT:

2. Find the decay constantc for carbon-14 ifyD 1
2
y0 in T D 5568 years.

ecT D 1
2

yields cT D ln 1
2

so that c� � ln 1
2

�

=5568: (3)

After the half-lifeT D 5568, the factorecT equals1
2
: Now c is negative.ln 1

2
D� ln 2/:

Question1 was about growth. Question2 was about decay. Both answers found
ecT as the ratioy.T /=y.0/: Then cT is its logarithm. Note howc sticks toT:
T has the units of time,c has the units of “1=time:”

Main point: The doubling time is.ln 2/=c, becausecT D ln 2: The time to multi-
ply by e is 1=c: The time to multiply by10 is .ln 10/=c: The time to divide bye is�1=c, when a negativec brings decay.

3. Find the initial valuey0 if cD 2 andy.1/D 5:

y.t/D y0e
ct yields y0 D y.t/e�ct D 5e�2:

Fig. 6.8 Growth (c¡ 0) and decay (c  0). Doubling timeT D .ln 2/=c: Future value at5%:
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All we do is run the process backward. Start from5 and go back toy0: With time
reversed,ect becomese�ct : The product ofe2 ande�2 is 1—growth forward and
decay backward.

Equally important isT C t: Go forward to timeT and go on toT C t :

y.T C t/ is y0e
c.T Ct/ which is .y0e

cT /ect : (4)

Ever stept; at the start or later, multiplies by the sameect : This uses the fundamental
property of exponentials, thateT Ct D eT et :

EXAMPLE 1 Population growth from birth rateb and death rated (both
constant):

dy=dt D by�dyD cy .the net rate iscD b�d/:
The population in this model isy0e

ct D y0e
bte�dt : It grows whenb¡ d (which

makesc¡ 0). One estimate of the growth rate iscD 0:02=year:

The earth’s population doubles in aboutT D
ln 2

c
� :7

:02
D 35 years:

First comment: We predict the future based onc: We count the past population to
find c: Changes inc are a serious problem for this model.

Second comment:y0e
ct is not a whole number. You may prefer to think of bacteria

instead of people. (This section begins a major application of mathematics to
economics and the life sciences.) Malthus based his theory of human population
on this equationy 1 D cy—and with large numbers a fraction of a person doesn’t
matter so much. To use calculus we go from discrete to continuous. The theory
must fail whent is very large, since populations cannot grow exponentially forever.
Section 6.5 introduces thelogistic equationy 1 D cy�by2, with a competition term�by2 to slow the growth.

Third comment: The dimensions ofb;c;d are “1=time.” The dictionary gives birth
rateD number of births per person in a unit of time. It is arelative rate—people
divided by people and time. The productct is dimensionless andect makes sense
(also dimensionless). Some texts replacec by � (lambda). Then1=� is the growth
time or decay time or drug elimination time or diffusion time.

EXAMPLE 2 Radioactive dating A gram of charcoal from the cave paintings in
France gives0:97 disintegrations per minute. A gram of living wood gives6:68
disintegrations per minute. Find the age of those Lascaux paintings.

The charcoal stopped adding radiocarbon when it was burned (att D 0). The
amount has decayed toy0e

ct : In living wood this amount is stilly0; because cosmic
rays maintain the balance.Their ratio isect D 0:97=6:68. Knowing the decay ratec
from Question2 above, we know the present timet :

ct D ln

�

0:97

6:68

�

yields t D
5568�:7 ln

�

0:97

6:68

�

D 14;400 years:

Here is a related problem—the age of uranium. Right now there is140 times as much
U-238 as U-235. Nearly equal amounts were created, with half-lives of.4:5/109 and
.0:7/109 years.Question: How long since uranium was created ?Answer: Find t by
substitutingcD .ln 1

2
/=.4:5/109 andC D .ln 1

2
/=.0:7/109:

ect=eC t D 140 ñ ct�Ct D ln 140 ñ t D
ln 140

c�C D 6.109/ years:
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EXAMPLE 3 Calculus in Economics: price inflation and the value of money

We begin with two inflation rates—acontinuous rateand anannual rate. For the
price change�y over a year, use the annual rate:

�yD .annual rate/ times .y/ times.�t/: (5)

Calculus applies the continuous rate to each instantdt: The price change isdy:

dyD .continuous rate/ times .y/ times .dt/: (6)

Dividing by dt , this is a differential equation for the price:

dy=dt D .continuous rate/ times .y/D :05y:

The solution isy0e
:05t : Sett D 1: Thene:05� 1:0513 and the annual rate is5:13%:

When you ask a bank what interest they pay, they give both rates:8% and8:33%:
The higher one they call the “effective rate.” It comes from compounding (and
depends how often they do it). If the compounding is continuous, everydt brings
an increase ofdy—ande:08 is near1:0833:

Section 6.6 returns to compound interest. The interval drops from a month to a day
to a second. That leads to.1C1=n/n, and in the limit toe: Here we compute the
effect of5% continuous interest:

Future value A dollar now has the same value ase:05T dollars inT years.

Present value A dollar in T years has the same value ase�:05T dollars now.

Doubling time Prices double.e:05T D 2/ in T D ln 2=:05� 14 years.

With no compounding, the doubling time is20 years. Simple interest adds on20
times5%D 100%:With continuous compounding the time is reduced by the factor
ln 2� :7, regardless of the interest rate.

EXAMPLE 4 In 1626 the Indians sold Manhattan for$24: Our calculations in-
dicate that they knew what they were doing. Assuming8% compound interest, the
original$24 is multiplied bye:08t : After t D 365 years the multiplier ise29:2 and the
$24 has grown to115 trillion dollars. With that much money they could buy back the
land and pay off the national debt.

This seems farfetched. Possibly there is a big flaw in the model. It is absolutely
true that Ben Franklin left money to Boston and Philadelphia, to be invested for200
years. In1990 it yielded millions (not trillions, that takes longer). Our next step is a
new model.

Question How can you estimatee29:2 with a$24 calculator (log but notln) ?
Answer Multiply 29:2 by log10 eD :434 to get12:7: This is the exponent to base
10. After that base change, we have1012:7 or more than a trillion.

GROWTH OR DECAY WITH A SOURCE TERM

The equationy 1 D y will be given a new term. Up to now, all growth or decay has
started fromy0: No deposit or withdrawal was made later. The investment grew by
itself—a pure exponential.The new terms allows you to add or subtract from the
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account. It is a “source”—or a “sink” ifs is negative. The sourcesD 5 adds5dt ,
proportional todt but not toy:

Constant source: dy=dt D yC5 starting fromyD y0:

Noticey on both sides! My first guessyD etC5 failed completely. Its derivative is
etC5 again, which is notyC5: The class suggestedyD et C5t: But its derivative
et C5 is still not yC5: We tried other ways to produce5 in dy=dt: This idea is
doomed to failure.Finally we thought ofyDAet�5. That hasy 1 DAet D yC5
as required.

Important:A is noty0. Sett D 0 to findy0 DA�5: The source contributes5et�
5:

The solution is.y0 C5/et�5: That is the same asy0e
t C5.et�1/:

sD 5multiplies the growth termet�1 that starts at zero.y0e
t grows as before.

EXAMPLE 5 dy=dt D�yC5 hasyD .y0�5/e�t C5: This isy0e
�t C5.1�e�t/:

That final term from the source is still positive. The other termy0e
�t decays to zero.

The limit astÑ8 is y8 D 5. A negativec leads to a steady statey8:
Based on these examples withcD 1 andcD�1, we can findy for anyc ands.

EQUATION WITH SOURCE
dy

dt
D cyCs starts fromyD y0 at t D 0:(7)

Thesource could be a deposit ofsD $1000=year, after an initial investment ofy0 D
$8000: Or we can withdraw funds atsD�$200=year. The units are “dollars per
year” to matchdy=dt: The equation feeds in$1000 or removes$200 continuously—
not all at once.

Note again thatyD e.cCs/t is not a solution. Its derivative is.cCs/y: The com-
binationyD ect Cs is also not a solution (but closer).The analysis ofy 1 D cyCs
will be our main achievement for differential equations(in this section). The
equation is not restricted to finance—far from it—but that produces excellent exam-
ples.

Fig. 6.9

I propose to findy in four ways. You may feel that one way is enough.� The first
way is the fastest—only three lines—but please give the others a chance. There is no
point in preparing for real problems if we don’t solve them.

Solution by Method 1 (fast way) Substitute the combinationyDAect CB: The
solution has this form—exponential plus constant. From two facts we findA and
B:

the equationy 1 D cyCs gives cAect D c.Aect CB/Cs

the initial value at t D 0 givesACBD y0:

The first line hascAect on both sides. Subtraction leavescBCsD 0, orBD�s=c:
Then the second line becomesAD y0�BD y0 C .s=c/:

KEY FORMULA yD
�

y0 C
s

c

�

ect � s
c

or yD y0e
ct C

s

c

�

ect�1�: (8)

With sD 0 this is the old solutiony0e
ct (no source). The example withcD 1 and

sD 5 produced.y0 C5/et�5: Separating the source term givesy0e
t C5.et�1/:

�My class says one way ismore than enough. They just want the answer. Sometimes I cave
in and write down the formula:y is y0e

ct pluss.ect�1/=c from the source term.
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Solution by Method 2 (slow way) The inputy0 produces the outputy0e
ct : After t

years any deposit is multiplied byect : That also applies to deposits made after the
account is opened. If the deposit enters at timeT , the growing time is onlyt�T:
Therefore the multiplying factor is onlyec.t�T /: This growth factor applies to the
small deposit (amountsdT ) made between timeT andT CdT:

Now add up all outputs at timet: The output fromy0 is y0e
ct : The small deposit

sdT near timeT grows toec.t�T /sdT: The total is an integral:

y.t/D y0e
ct C

» t

T D0

ec.t�T /sdT: (9)

This principle of Duhamel would still apply when the sources varies with time.
Heres is constant, and the integral divides byc:

s

» t

T D0

ec.t�T /dT D
sec.t�T /�c #t

0

D� s
c

C
s

c
ect : (10)

That agrees with the source term from Method1; at the end of equation(8). There we
looked for “exponential plus constant,” here we added up outputs.

Method1 was easier. It succeeded because we knew the formAect CB—with
“undetermined coefficients.” Method2 is more complete. The form fory is part of the
output, not the input. The sources is a continuous supply of new deposits, all growing
separately. Section6:5 starts from scratch, by directly integratingy 1 D cyCs:

Remark Method2 is often described in terms of anintegrating factor. First write
the equation asy 1�cyD s: Then multiply by a magic factor that makes integration
possible:

.y 1�cy/e�ct Dse�ct multiply by the factore�ct

ye�ct
it

0
D� s

c
e�ct

it

0
integrate both sides

ye�ct �y0 D� s
c
.e�ct �1/ substitute0 and t

yDecty0 C
s

c
.ect�1/ isolatey to reach formula(8)

The integrating factor produced a perfect derivative in line1: I prefer Duhamel’s idea,
that all inputsy0 ands grow the same way. Either method gives formula(8) for y:

THE MATHEMATICS OF FINANCE (AT A CONTINUOUS RATE)

The question from finance is this:What inputs give what outputs? The inputs can
come at the start byy0, or continuously bys: The output can be paid at the end or
continuously. There are six basic questions, two of which are already answered.

The future value isy0e
ct from a deposit ofy0: To producey in the future,

deposit the present valueye�ct : Questions3–6 involve the source term s.We fix
the continuous rate at5% per year.cD :05/, and start the account fromy0 D 0: The
answers come fast from equation(8).

Question 3 With deposits ofsD $1000=year; how large isy after20 years ?

yD
s

c
.ect�1/D

1000

:05
.e.:05/.20/�1/D 20;000.e�1/� $34;400:

One big deposit yields20;000e� $54;000: The same20;000 via s yields$34;400:
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Notice a small by-product (for mathematicians). When the interest rate iscD 0,
our formula s.ect�1/=c turns into 0=0: We are absolutely sure that depositing
$1000=yearwith no interest produces$20;000 after20 years. But this is not obvious
from 0=0: By l’Hôpital’s rule we takec-derivatives in the fraction:

lim
cÑ0

s.ect�1/
c

D lim
cÑ0

stect

1
D st: This is.1000/.20/D 20;000: (11)

Question 4 What continuous deposit ofs peryear yields$20;000 after20 years ?

20;000D
s

:05
.e.:05/.20/�1/ requiressD

1000

e�1 � 582:
Deposits of$582 over20 years total$11;640:A single deposit ofy0 D 20;000=eD
$7;360 produces the same$20;000 at the end. Better to be rich att D 0:

Questions1 and 2 hadsD 0 (no source). Questions3 and4 hady0 D 0 (no initial
deposit). Now we come toyD 0: In 5, everything is paid out by anannuity. In 6,
everything is paid up on aloan.

Question 5 What deposity0 provides$1000=yearfor 20 years ? End withyD 0:

yD y0e
ct C

s

c
.ect�1/D 0 requiresy0 D

�s
c
.1�e�ct/:

SubstitutingsD�1000; cD :05; t D 20 givesy0� 12;640: If you win $20;000 in
a lottery, and it is paid over20 years, the lottery only has to put in$12;640: Even
less if the interest rate is above5%:

Question 6 What paymentss will clear a loan ofy0 D $20;000 in 20 years ?

Unfortunately,s exceeds $1000 per year. The bank gives up more than the $20,000
to buy your car (and pay tuition).It also gives up the interest on that money. You
pay that back too, but you don’t have to stay even at every moment. Instead you repay
at aconstant ratefor 20 years. Your payments mostly cover interest at the start and
principal at the end. Aftert D 20 years you are even and your debt isyD 0:

This is like Question5 (alsoyD 0), but now we knowy0 and we wants:

yD y0e
ct C

s

c
.ect �1/D 0 requiressD�cy0e

ct=.ect �1/:
The loan isy0 D $20;000, the rate iscD :05=year; the time is t D 20 years.
Substituting in the formula fors, your payments are$1582 per year.

Puzzle How is sD $1582 for loan payments related tosD $582 for deposits ?

0Ñ $582 per yearÑ $20;000 and $20;000Ñ�$1582 per yearÑ 0:

That difference of exactly1000 cannot be an accident.1582 and582 came from

1000
e

e�1 and 1000
1

e�1 with difference1000
e�1
e�1 D 1000:

Why? Here is the real reason. Instead of repaying1582 we can pay only1000 (to
keep even with the interest on20;000). The other582 goes into a separate account.
After 20 years the continuous582 has built up to20;000 (including interest as in
Question4). From that account we pay back the loan.
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Section 6.6 deals with daily compounding—which differs from continuous
compounding by only a few cents. Yearly compounding differs by a few dollars.

Fig. 6.10 Questions3�4 deposits: Questions5�6 repay loan or annuity. Steady state�s=c:
TRANSIENTS VS. STEADY STATE

Suppose there is decay instead of growth. The constantc is negative andy0e
ct dies

out. That is the “transient” term, which disappears astÑ8: What is left is the
“steady state.” We denote that limit byy8:

Without a source,y8 is zero (total decay). Whens is present,y8 D�s=c:
6J The solutionyD

�

y0 C
s

c

�

ect � s
c

approachesy8 D� s
c

when ect Ñ 0:

At this steady state, the sources exactly balances the decaycy: In other words
cyCsD 0: From the left side of the differential equation, this meansdy=dt D 0:
There is no change. That is whyy8 is steady.

Notice thaty8 depends on the source and onc—but not ony0:

EXAMPLE 6 Suppose Bermuda has a birth ratebD :02 and death rated D :03:
The net decay rate iscD�:01:There is also immigration from outside, ofsD 1200=year:
The initial population might bey0 D 5 thousand ory0 D 5 million, but that number
has no effect ony8: The steady state is independent ofy0:

In this casey8 D�s=cD 1200=:01D 120;000:The population grows to120;000
if y0 is smaller. It decays to120;000 if y0 is larger.

EXAMPLE 7 Newton’s Law of Cooling: dy=dt D c.y�y8/: (12)

This is back to physics. The temperature of a body isy: The temperature around it
is y8: Theny starts aty0 and approachesy8, following Newton’s rule:The rate is
proportional toy�y8. The bigger the difference, the faster heat flows.

The equation has�cy8 where before we hads: That fits withy8 D�s=c: For the
solution, replaces by�cy8 in formula(8). Or use this new method:

Solution by Method 3 The new idea is to look at the differencey�y8. Its deriva-
tive is dy=dt , sincey8 is constant. Butdy=dt is c.y�y8/—this is our equation.
The difference starts fromy0�y8, and grows or decays as a pure exponential:

d

dt
.y�y8/D c.y�y8/ has the solution .y�y8/D .y0�y8/ect : (13)

This solves the law of cooling. We repeat Method3 using the letterss andc:

d

dt

�

yC
s

c

�

D c
�

yC
s

c

�

has the solution
�

yC
s

c

�

D
�

y0 C
s

c

�

ect : (14)
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Moving s=c to the right side recovers formula(8). There is aconstant termand
an exponential term. In a differential equations course, those are the “particular
solution” and the “homogeneous solution.” In a calculus course, it’s time to stop.

EXAMPLE 8 In a 70� room, Newton’s corpse is found with a temperature of90�:
A day later the body registers80�: When did he stop integrating (at98:6�) ?

Solution Herey8 D 70 andy0 D 90: Newton’s equation(13) is yD 20ect C
70: ThenyD 80 at t D 1 gives20ec D 10: The rate of cooling iscD ln 1

2
: Death

occurred when20ect C70D 98:6 or ect D 1:43: The time wast D ln 1:43= ln 1
2

D
half a day earlier.

6.3 EXERCISES

Read-through exercises

If y1 D cy then y.t/D a . If dy=dt D 7y and y0 D 4 then
y.t/D b . This solution reaches8 at t D c . If the
doubling time is T then cD d : If y1 D 3y and y.1/D 9

theny0 was e . Whenc is negative, the solution approaches
f astÑ8:
The constant solution tody=dt D yC6 is yD g . The

general solution isyDAet �6: If y0 D 4 thenAD h . The so-
lution ofdy=dt D cyCs starting fromy0 isyDAect CB D i .
The output from the sources is j . An input at timeT grows by
the factor k at timet:

At cD 10%, the interest in timedt is dyD l . This
equation yields y.t/D m . With a source term instead of
y0, a continuous deposit ofsD 4000=year yields yD n
after 10 years. The deposit required to produce10;000 in 10

years is sD o (exactly or approximately). An income of
4000=year forever (!) comes fromy0 D p . The deposit to
give 4000=year for 20 years isy0 D q . The payment rate
s to clear a loan of10;000 in 10 years is r .

The solution toy1 D�3yCs approachesy8 D s .

Solve 1–4 starting from y0 D 1 and from y0 D�1: Draw both
solutions on the same graph.

1
dy

dt
D 2t 2

dy

dt
D�t 3

dy

dt
D 2y 4

dy

dt
D�y

Solve 5–8 starting fromy0 D 10: At what time doesy increase to
100 or drop to 1‹

5
dy

dt
D 4y 6

dy

dt
D 4t 7

dy

dt
D e4t 8

dy

dt
D e�4t

9 Draw a field of “tangent arrows” fory1 D�y, with the solution
curvesyD e�x andyD�e�x :

10 Draw a direction field of arrows fory1 D y�1, with solution
curvesyD ex C1 andyD 1:

Problems 11–27 involvey0e
ct : They ask for c or t or y0:

11 If a culture of bacteria doubles in two hours, how many hours to
multiply by 10‹ First findc:

12 If bacteria increase by factor of ten in ten hours, how many hours
to increase by100 ? What isc ?

13 How old is a skull that contains15 as much radiocarbon as a
modern skull ?

14 If a relic contains90% as much radiocarbon as new material,
could it come from the time of Christ ?

15 The population of Cairo grew from5million to 10million in 20
years. Fromy1 D cy find c: When wasyD 8 million ?

16 The populations of New York and Los Angeles are growing at
1% and 1:4% a year. Starting from8 million (NY) and 6 million
(LA), when will they be equal ?

17 Suppose the value of $1 in Japanese yen decreases at2% per
year. Starting from $1D Y240; when will 1 dollar equal1 yen ?

18 The effect of advertising decays exponentially. If40%
remember a new product after three days, findc: How long
will 20% remember it ?

19 If yD 1000 at t D 3 andyD 3000 at t D 4 (exponential growth),
what wasy0 at t D 0 ?

20 If yD 100 att D 4 andyD 10 att D 8 (exponential decay) when
will yD 1? What wasy0 ?

21 Atmospheric pressure decreases with height according to
dp=dhD cp: The pressures athD 0 (sea level) andhD 20 km
are 1013 and 50 millibars. Find c: Explain why pD

?
1013 �50

halfway up athD 10:

22 For exponential decay show thaty.t/ is the square root ofy.0/
timesy.2t/: How could you findy.3t/ from y.t/ andy.2t/ ?
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23 Most drugs in the bloodstream decay byy1 D cy (first-order ki-
netics). (a) The half-life of morphine is3 hours. Find its decay con-
stantc (with units). (b) The half-life of nicotine is2 hours. After a
six-hour flight what fraction remains ?

24 How often should a drug be taken if its dose is3 mg, it is
cleared atcD :01=hour; and 1 mg is required in the bloodstream
at all times ? (The doctor decides this level based on body size.)

25 The antiseizure drug dilantin has constant clearance rate
y1 D�a until yD y1: Theny1 D�ay=y1: Solve fory.t/ in two
pieces fromy0: When doesy reachy1 ?

26 The actual elimination of nicotine is multiexponential:
yDAect CBeC t : The first-order equation .d=dt�c/yD 0

changes to the second-order equation.d=dt�c/.d=dt�C/yD 0:

Write out this equation starting withy2; and show that it is satisfied
by the giveny:

27 True or false. If false, say what’s true.

(a) The time foryD ect to double is.ln 2/=.ln c/:

(b) If y1 D cy andz1 D cz then.yCz/1 D 2c.yCz/:

(c) If y1 D cy andz1 D cz then.y=z/1 D 0:

(d) If y1 D cy andz1 DCz then.yz/1 D .cCC/yz:

28 A rocket has velocityv: Burnt fuel of mass�m leaves at
velocityv�7: Total momentum is constant:

mvD .m��m/.vC�v/C�m.v�7/:
What differential equation connectsm to v ? Solve forv.m/ not
v.t/, starting fromv0 D 20 andm0 D 4:

Problems 29–36 are about solutions ofy1 D cyCs:

29 Solvey1 D 3yC1 with y0 D 0 by assumingyDAe3t CB and
determiningA andB:

30 Solvey1 D 8�y starting fromy0 andyDAe�t CB:

Solve 31–34 withy0 D 0 and graph the solution.

31
dy

dt
D yC1

33
dy

dt
D�yC1

32
dy

dt
D y�1

34
dy

dt
D�y�1

35 (a) What valueyD constant solvesdy=dt D�2yC12 ?

(b) Find the solution with an arbitrary constantA.
(c) What solutions start fromy0 D 0 andy0 D 10 ?

(d) What is the steady statey8 ?

36 Choose� signs indy=dt D�3y�6 to achieve the following
results starting fromy0 D 1: Draw graphs.

(a) y increases to8
(c) y decreases to�2 (b) y increases to2

(d) y decreases to�8
37 What valueyD constant solvesdy=dt D 4�y ? Show that
y.t/DAe�t C4 is also a solution. Findy.1/ andy8 if y0 D 3:

38 Solve y1 D yCet from y0 D 0 by Method 2; where the
deposit eT at time T is multiplied by et�T : The total output
at time t is y.t/D

r t
0 e

T et�T dT D : Substitute back to
checky1 D yCet :

39 Rewritey1 D yCet asy1�yD et :Multiplying by e�t , the left
side is the derivative of . Integrate both sides fromy0 D 0 to
findy.t/:

40 Solvey1 D�yC1 fromy0 D 0 by rewriting asy1Cy D 1, mul-
tiplying by et ; and integrating both sides.

41 Solvey1 D yC t from y0 D 0 by assumingyDAet CBtCC:

Problems 42–57 are about the mathematics of finance.

42 Dollar bills decrease in value atcD�:04 per year because of
inflation. If you hold $1000; what is the decrease indt years ? At
what rates should you print money to keep even ?

43 If a bank offers annual interest of71
2 % or continuous interest of

71
4 %, which is better ?

44 What continuous interest rate is equivalent to an annual rate of
9%? Extra credit: Telephone a bank for both rates and check their
calculation.

45 At 100% interest.cD 1/ how much is a continuous deposit ofs
per year worth after one year ? What initial deposity0 would have
produced the same output ?

46 To have $50;000 for college tuition in 20 years, what gift
y0 should a grandparent make now ? AssumecD 10%: What
continuous deposit should a parent make during20 years ? If the
parent savessD $1000 per year, when does he or she reach $50;000

arid retire ?

47 Income per person grows3%, the population grows2%, the
total income grows . Answer if these are (a) annual
rates (b) continuous rates.

48 Whendy=dt D cyC4, how much is the deposit of4dT at time
T worth at the later timet ? What is the value att D 2 of deposits
4dT from T D 0 to T D 1 ?

49 DepositingsD $1000 per year leads to $34;400 after20 years
(Question3). To reach the same result, when should you deposit
$20,000 all at once ?

50 For how long can you withdrawsD $500=year after depositing
y0 D $5000 at8%, before you run dry ?

51 What continuous payments clears a $1000 loan in60 days, if a
loan shark charges1% per day continuously ?

52 You are the loan shark. What is $1 worth after a year of
continuous compounding at1% per day ?

53 You can afford payments ofsD $100 per month for48 months.
If the dealer chargescD 6%, how much can you borrow ?

54 Your income isI0e
2ct per year. Your expenses areE0e

ct per
year. (a) At what future time are they equal ? (b) If you borrow the
difference until then, how much money have you borrowed ?
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55 If a student loan in your freshman year is repaid plus20% four
years later, what was the effective interest rate ?

56 Is a variable rate mortgage withcD :09C :001t for 20 years bet-
ter or worse than a fixed rate of10% ?

57 At 10% instead of8%, the $24 paid for Manhattan is worth
after365 years.

Problems 58–65 approach a steady statey8 astÑ8:
58 If dy=dt D�yC7 what is y8 ? What is the derivative of
y�y8 ? Theny�y8 equalsy0�y8 times .

59 Graphy.t/ wheny1 D 3y�12 andy0 is
(a) below4 (b) equal to4 (c) above4

60 The solutions tody=dt D c.y�12/ converge to
y8 D providedc is .

61 Suppose the time unit indy=dt D cy changes from minutes to
hours. How does the equation change ? How doesdy=dt D�yC5

change ? How doesy8 change ?

62 True or false, wheny1 andy2 both satisfyy1 D cyCs:

(a) The sumyD y1 Cy2 also satisfies this equation.

(b) The averageyD 1
2

�

y1 Cy2

�

satisfies the same equation.

(c) The derivativeyD y11 satisfies the same equation.

63 If Newton’s coffee cools from80� to 60� in 12 minutes (room
temperature20�), find c: When was the coffee at100� ?

64 If y0 D 100 and y.1/D 90 andy.2/D 84, what isy8 ?

65 If y0 D 100 and y.1/D 90 andy.2/D 81, what isy8 ?

66 To cool down coffee, should you add milk now or later ?
Thecoffee is at70�C, the milk is at10�, the room is at20�.

(a) Adding 1 part milk to 5 parts coffee makes it60�. With
y8 D 20�, the white coffee cools toy.t/D :

(b) The black coffee cools to yc.t/D : The
milk warms to ym.t/D : Mixing at time t gives
.5yc Cym/=6D :
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6.4 Logarithms

We have given first place toex and a lower place toln x: In applications that is
absolutely correct. But logarithms have one important theoretical advantage (plus
many applications of their own). The advantage is that the derivative ofln x is 1=x;
whereas the derivative ofex is ex : We can’t defineex as its own integral, without
circular reasoning. But we can and do defineln x (the natural logarithm) as the
integral of the “�1 power” which is1=x:

ln xD

» x

1

1

x
dx or ln yD

» y

1

1

u
du: (1)

Note the dummy variables, firstx thenu: Note also the live variables, firstx theny:
Especially note the lower limit of integration, which is1 and not0: The logarithm is
the area measured from1. Thereforeln 1D 0 at that starting point—as required.

Earlier chapters integrated all powers except this “�1 power.” The logarithm is
that missing integral. The curve in Figure 6.11 has heightyD 1=x—it is a hyperbola.
At xD 0 the height goes to infinity and the area becomes infinite:log 0D�8:
The minus sign is because the integral goes backward from1 to 0: The integral does
not extend past zero to negativex:We are definingln x only for x¡ 0:�
Fig. 6.11 Logarithm as area. Neighbors lnaC ln bD ln ab:

Equal areas:� ln 1
2 D ln 2D 1

2 ln 4:

With this new approach,ln x has a direct definition.It is an integral(or an area).
Its two key properties must follow from this definition. That step is a beautiful
application of the theory behind integrals.

Property1: ln abD ln aC ln b: The areas from1 to a and froma to ab combine
into a single area (1 to ab in the middle figure):

Neighboring areasW

» a

1

1

x
dxC

» ab

a

1

x
dxD

» ab

1

1

x
dx: (2)

The right side isln ab; from definition (1). The first term on the left isln a: The
problem is to show that the second integral (a to ab) is ln b:» ab

a

1

x
dx

.‹/
D

» b

1

1

u
du D ln b: (3)

We needuD 1 whenxD a (the lower limit) anduD b whenxD ab (the upper
limit). The choiceuD x=a satisfies these requirements. SubstitutingxD au anddxD
a du yieldsdx=xD du=u:Equation(3) givesln b; and equation(2) is ln aC ln bD
ln ab:

�The logarithm of�1 is�i (an imaginary number). That is becausee�i D�1: The logarithm
of i is also imaginary—it is1

2
�i: In general, logarithms are complex numbers.
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Property2: ln bn D n ln b: These are the left and right sides of» bn

1

1

x
dx

.‹/
D n

» b

1

1

u
du: (4)

This comes from the substitutionxDun: The lower limit xD 1 corresponds to
uD 1; andxD bn corresponds touD b: The differentialdx is nun�1du: Divid-
ing byxDun leavesdx=xD n du=u: Then equation(4) becomesln bn D n ln b:

Everything comes logically from the definition as an area. Also definite integrals:

EXAMPLE 1 Compute

» 3x

x

1

t
dt: Solution:ln 3x� ln xD ln

3x

x
D ln 3:

EXAMPLE 2 Compute

» 1

:1

1

x
dx: Solution:ln 1� ln :1D ln 10: (Why ? )

EXAMPLE 3 Compute

» e2

1

1

u
du: Solution:ln e2 D 2: The area from1 to e2 is

2:

Remark While working on the theory this is a chance to straighten out old debts.
The book has discussed and computed (and even differentiated) the functionsex and
bx andxn; without defining them properly. When the exponent is an irrational num-
ber like�; how do we multiplye by itself� times? One approach (not taken) is
to come closer and closer to� by rational exponents like22=7: Another approach
(taken now) is to determine the numbere� D 23:1 : : : by its logarithm.� Start withe
itself:

e is (by definition) the number whose logarithm is1

e� is (by definition) the number whose logarithm is�:

When the area in Figure6.12 reaches1; the basepoint ise. When the area reaches
�; the basepoint ise� : We are constructing the inverse function (which isex). But
how do we know that the area reaches� or1000 or�1000 at exactly one point ? (The
area is1000 far out ate1000: The area is�1000 very near zero ate�1000:) To define
e we have to know that somewhere the area equals1!

For a proof in two steps, go back to Figure 6.11c. The area from1 to 2 is more
than 1

2
(because1=x is more than1

2
on that interval of length one). The combined

area from1 to 4 is more than1:We come toareaD 1 before reaching4: (Actually
at eD 2:718 : : ::) Since1=x is positive, the area is increasing and never comes back
to 1:

To double the area we have to square the distance. The logarithm creeps up-
wards:

ln xÑ8 but
ln x

x
Ñ 0: (5)

The logarithm grows slowly becauseex grows so fast(and vice versa—they are
inverses). Remember thatex goes past every powerxn: Thereforeln x is passed by
every rootx1=n: Problems60 and61 give two proofs that.ln x/=x1=n approaches
zero.

We might compareln x with
?
x: At xD 10 they are close (2:3 versus3:2). But

out atxD e10 the comparison is10 againste5; andln x loses to
?
x:

�Chapter9 goes on toimaginary exponents, and proves the remarkable formulae�i D�1:
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Fig. 6.12 Area is logarithm of basepoint. Fig. 6.13 ln x grows more slowly
thanx:

APPROXIMATION OF LOGARITHMS

Fig. 6.14

The limiting casesln 0D�8 and ln8D C8 are important. More important are
logarithms near the starting pointln 1D 0:Our question is:What is ln.1Cx/ for x
near zero? The exact answer is an area. The approximate answer is much simpler.
If x (positive or negative) is small, then

ln.1Cx/� x and ex � 1Cx: (6)

The calculator givesln 1:01D :0099503: This is close toxD :01: Between1 and
1Cx the area under the graph of1=x is nearly a rectangle. Its base isx and its
height is 1: So the curved arealn.1Cx/ is close to the rectangular areax:
Figure 6.14 shows how a small triangle is chopped off at the top.

The difference between .0099503(actual) and .01 (linear approximation) is�:0000497:That is predicted almost exactly by the second derivative:1
2

times.�x/2

times.ln x/2 is 1
2

�

:01
�2��1�D�:00005: This is the area of the small triangle!

ln.1Cx/� rectangular area minus triangular areaD x� 1
2
x2:

The remaining mistake of:0000003 is close to1
3
x3 (Problem65).

May I switch toex ? Its slope starts ate0 D 1; so its linear approximation is1Cx:
Thenln.ex/� ln.1Cx/� x: Two wrongs do make a right: ln.ex/D x exactly.

The calculator givese:01 as1:0100502 (actual) instead of1:01 (approximation).
The second-order correction is again a small triangle:1

2
x2 D :00005: The complete

series forln.1Cx/ andex are in Sections10:1 and6:6 W

ln.1Cx/D x�x2=2Cx3=3� : : : ex D 1CxCx2=2Cx3=6C : : : :

DERIVATIVES BASED ON LOGARITHMS

Logarithms turn up as antiderivatives very often. To build up acollection of integrals,
we now differentiateln u.x/ by the chain rule.

6K The derivative ofln x is
1

x
: The derivative of ln u.x/ is

1

u

du

dx
.
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The slope ofln x was hard work in Section6:2: With its new definition (the integral
of 1=x) the work is gone. By the Fundamental Theorem, the slope must be1=x:

For ln u.x/ the derivative comes from the chain rule. The inside function isu; the
outside function isln : (Keepu¡ 0 to defineln u:) The chain rule gives

d

dx
ln cxD

1

cx
cD

1

x
.Š/

d

dx
ln x3 D 3x2=x3 D

3

x

d

dx
ln.x2 C1/D 2x=.x2C1/

d

dx
ln cosxD

�sinx

cosx
D� tanx

d

dx
ln ex D ex=ex D 1

d

dx
ln.ln x/D

1

ln x

1

x
:

Those are worth another look, especially the first. Any reasonable person would
expect the slope ofln 3x to be3=x: Not so. The3 cancels, andln 3x has the same
slope asln x: (The real reason is thatln 3xD ln 3C ln x:) The antiderivative of3=x
is not ln 3x but3 ln x; which is ln x3:
Before moving to integrals, here is a new method for derivatives:logarithmic
differentiation or LD . It applies toproductsandpowers. The product and power
rules are always available, but sometimes there is an easier way.

Main idea: The logarithm of a productp.x/ is asum of logarithms. Switching to
ln p; the sum rule just adds up the derivatives. But there is a catch at the end, as you
see in the example.

EXAMPLE 4 Finddp=dx if p.x/D xx
?
x�1: Hereln p.x/D x ln xC 1

2
ln.x�1/:

Take the derivative ofln p:
1

p

dp

dx
Dx � 1

x
C ln xC

1

2.x�1/:
Now multiply byp.x/:

dp

dx
Dp

�

1C lnxC
1

2.x�1/� :
The catch is that last step. Multiplying byp complicates the answer. This can’t be
helped—logarithmic differentiation contains no magic. The derivative ofpD fg is
the same as from the product rule:ln pD ln f C ln g gives

p1
p

D
f 1
f

C
g1
g

and p1 Dp

�

f 1
f

C
g1
g

�

D f 1gCfg1: (7)

ForpD xex sinx; with three factors, the sum has three terms:

ln pD ln xCxC ln sinx andp1 Dp

�

1

x
C1C

cosx

sinx

�

:

We multiply p timesp1=p (the derivative ofln p). Do the same for powers:

EXAMPLE 5 pD x1=x ñ ln pD
1

x
ln xñ dp

dx
Dp

�

1

x2
� ln x

x2

�

:

EXAMPLE 6 pD x ln x ñ ln pD .ln x/2ñ dp

dx
Dp

�

2 ln x

x

�

:

EXAMPLE 7 pD x1= ln x ñ ln pD
1

ln x
ln xD 1ñ dp

dx
D 0 .Š/
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INTEGRALS BASED ON LOGARITHMS

Now comes an important step. Many integrals produce logarithms. The foremost
example is1=x; whose integral isln x: In a certain way that is the only example,
but its range is enormously extended by the chain rule. The derivative ofln u.x/ is
u1=u; so the integral goes fromu1=u back toln u:»

du=dx

u.x/
dxD lnu.x/ or equivalently

»
du

u
D lnu:

Try to chooseu.x/ so that the integral containsdu=dx divided byu:

EXAMPLES

»
dx

xC7
D ln|xC7| »

dx

cxC7
D
1

c
ln|cxC7|

Final remark Whenu is negative,ln u cannot be the integral of1=u: The logarithm
is not defined whenu  0: But the integral can go forward by switching to�u:»

du=dx

u
dxD

» �du=dx�u dxD ln.�u/: (8)

Thus ln.�u/ succeeds whenln u fails.� The forbidden case isuD 0. The
integralsln u and ln.�u/; on the plus and minus sides of zero, can be combined
as ln |u|: Every integral that gives a logarithm allowsu  0 by changing to the
absolute value|u|:» �1�e

dx

x
D
h

ln |x|i�1�e
D ln 1� ln e

» 4

2

dx

x�5 D
h

ln |x�5|i4

2
D ln 1� ln 3:

The areas are�1 and� ln 3: The graphs of1=x and1=.x�5/ are below thex axis.
We donot have logarithms of negative numbers, and we will not integrate1=.x�5/
from 2 to 6: That crosses the forbidden pointxD 5; with infinite area on both sides.

The ratiodu=u leads to important integrals. WhenuD cosx oruD sinx; we are
integrating thetangentandcotangent. When there is a possibility thatu  0; write
the integral asln |u|:»

tanx dxD

»
sinx

cosx
dxD� ln |cosx| »

xdx

x2 C7
D
1

2
ln.x2 C7/»

cotx dxD

»
cosx

sinx
dxD ln |sinx| »

dx

x ln x
D ln | ln x|

Now we report on thesecantandcosecant. The integrals of1=cosx and1=sinx
also surrender to an attack by logarithms—based on a crazy trick:»

secx dxD

»
secx

�

secxC tanx

secxC tanx

�

dxD ln |secxC tanx|: (9)»
cscx dxD

»
cscx

�

cscx�cotx

cscx�cotx

�

dx D ln |cscxCcotx|: (10)

HereuD secxC tanx is in the denominator;du=dxD secx tanxCsec2x is above
it. The integral isln |u|: Similarly (10)containsdu=dx overuD cscx�cotx:

�The integral of1=x (odd function) is ln|x| (even function). Stay clear ofxD 0:
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In closing we integrateln x itself. The derivative ofx ln x is ln xC1: To remove
the extra1; subtractx from the integral:

r
ln xdxD x ln x�x:

In contrast, the area under1=.ln x/ has no elementary formula. Nevertheless it is
the key to the greatest approximation in mathematics—theprime number theorem.
The area

r b

a
dx= ln x is approximately the number of primes betweena and b.

Neare1000; about1=1000 of the integers are prime.

6.4 EXERCISES

Read-through questions

The natural logarithm ofx is
r x

1
a . This definition leads

to ln xyD b and lnxn D c . Then e is the number
whose logarithm (area under1=x curve) is d . Similarly
ex is now defined as the number whose natural logarithm is

e . AsxÑ8; ln x approaches f . But the ratio.ln x/=
?
x

approaches g . The domain and range of lnx are h .

The derivative of lnx is i . The derivative of ln.1Cx/ is
j . The tangent approximation to ln.1Cx/ at xD 0 is
k . The quadratic approximation is l . The quadratic

approximation toex is m .

The derivative of lnu.x/ by the chain rule is n .
Thus .ln cosx/1 D o . An antiderivative of tanx is p .
The productpD x e5x has lnpD q . The derivative of this
equation is r . Multiplying by p givesp1 D s , which is
LD or logarithmic differentiation.

The integral ofu1.x/=u.x/ is t . The integral of2x=.x2 C4/

is u . The integral of1=cx is v . The integral of1=.ctCs/
is w . The integral of1=cosx; after a trick, is x . We should
write ln |x| for the antiderivative of1=x; since this allows y .
Similarly

r
du=u should be written z .

Find the derivative dy=dx in 1–10.

1 yD ln.2x/

3 yD .ln x/�1

5 yD x ln x�x
7 yD ln.sinx/

9 yD 7 ln 4x

2 yD ln.2xC1/

4 yD .ln x/=x

6 yD log10 x

8 yD ln.ln x/

10 yD ln..4x/7/

Find the indefinite (or definite) integral in 11–24.

11
»
dt

3t

13
» 1

0

dx

3Cx

15
» 2

0

x dx

x2 C1

17
» e

2

dx

x.lnx/

12
»

dx

1Cx

14
» 1

0

dt

3C2t

16
» 2

0

x3 dx

x2 C1

18
» e

2

dx

x.ln x/2

19
»

cosx dx

sinx

21
»

tan3x dx

23
»
.ln x/2dx

x

25 GraphyD ln.1Cx/

20
» �=4

0
tanx dx

22
»

cot3x dx

24
»

dx

x.lnx/.ln ln x/

26 GraphyD ln.sin x/

Computedy=dx by differentiating ln y: This is LD:

27 yD
?
x2 C1

29 yD esin x

28 yD
?
x2 C1

a
x2�1

30 yD x�1=x

31 yD e.ex/

33 yD x.ex/

35 yD x�1= ln x

32 yD xe

34 yD .
?
x/. 3
?
x/. 6
?
x/

36 yD e� ln x

Evaluate 37–42 by any method.

37
» 10

5

dt

t
�» 10x

5x

dt

t

39
d

dx

» 1

x

dt

t

41
d

dx
ln.secxC tanx/

38
» e�

1

dx

x
C

» �1�2

dx

x

40
d

dx

» x2

x

dt

t

42
»

sec2xCsecx tanx

secxC tanx
dx

Verify the derivatives 43–46, which give useful antiderivatives:

43
d

dx
ln.xC

?
x2 C1/D

1?
1Cx2

44
d

dx
ln
�

x�a
xCa

�

D
2a

.x2�a2/

45
d

dx
ln

 

1C
a
1�x2

x

!

D
�1

x
a
1�x2

46
d

dx
ln.xC

a
x2�a2/D

1a
x2�a2
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Estimate 47–50 to linear accuracy, then quadratic accuracy, by
ex � 1CxC 1

2x
2: Then use a calculator.

47 ln.1:1/ 48 e:1 49 ln.:99/ 50 e2

51 Compute lim
xÑ0

ln.1Cx/

x

53 Compute lim
xÑ0

logb.1Cx/

x

52 Compute lim
xÑ0

ex�1
x

54 Compute lim
xÑ0

bx�1
x

55 Find the area of the “hyperbolic quarter-circle” enclosed by
xD 2 andyD 2 aboveyD 1=x:

56 Estimate the area underyD 1=x from 4 to 8 by four upper
rectangles and four lower rectangles. Then average the answers
(trapezoidal rule). What is the exact area ?

57 Why is
1

2
C
1

3
C � � �C 1

n
near lnn? Is it above or below ?

58 Prove that lnx¤ 2.?x�1/ for x¡ 1: Compare the integrals of
1=t and1=

?
t ; from1 to x:

59 Dividing by x in Problem 58 gives .ln x/=x¤ 2.?x�1/=x:
Deduce that.ln x/=xÑ 0 as xÑ8: Where is the maximum of
.ln x/=x ?

60 Prove that .ln x/=x1=n also approaches zero. (Start with
.ln x1=n/=x1=nÑ 0:/ Where is its maximum ?

61 For any powern; Problem 6:2:59 proved ex ¡xn for large
x: Then by logarithms,x¡n ln x: Since .ln x/=x goes below
1=n and stays below, it converges to .

62 Prove that y ln y approaches zero asyÑ 0; by changing
y to 1=x: Find the limit of yy (take its logarithm asyÑ 0).
What is .1:1 on your calculator ?

63 Find the limit of lnx= log10 x asxÑ8:
64 We know the integral

r x
1 t

h�1dt D Œth=h�x1 D .xh�1/=h: Its
limit ashÑ 0 is .

65 Find linear approximations nearxD 0 for e�x and2x :

66 The x3 correction to ln.1Cx/ yields x� 1
2x

2 C 1
3x

3: Check
that ln1:01� :0099503 and find ln1:02:

67 An ant crawls at1 foot=second along a rubber band whose
original length is 2 feet. The band is being stretched at1
foot=second by pulling the other end. At what timeT; if ever,
does the ant reach the other end ?

One approach: The band’s length at timet is tC2: Let y.t/ be
the fractionof that length which the ant has covered, and explain

(a)y1 D 1=.tC2/ (b) yD ln.tC2/� ln 2 (c) T D 2e�2:
68 If the rubber band is stretched at8 feet=second, when if ever
does the same ant reach the other end ?

69 A weaker ant slows down to2=.tC2/ feet=second, so
y1 D 2=.tC2/2: Show that the other end is never reached.

70 The slope ofpD xx comes two ways from lnpD x ln x:

1 Logarithmic differentiation (LD): Compute.ln p/1 and mul-
tiply by p:

2 Exponential differentiation (ED): Writexx asex ln x ; take its
derivative, and put backxx :

71 If pD 2x then lnpD : LD gives p1 D .p/.ln p/1 D
: ED givespD e and thenp1 D :

72 Compute ln2 by the trapezoidal rule and=or Simpson’s
rule, to get five correct decimals.

73 Compute ln10 by either rule with�xD 1; and compare with
the value on your calculator.

74 Estimate1= ln 90;000; the fraction of numbers near90;000 that
are prime. (879of the next10;000 numbers are actually prime.)

75 Find a pair of positive integers for whichxy D yx : Show
how to change this equation to.ln x/=xD .ln y/=y: So look for
two points at the same height in Figure 6.13. Prove that you have
discovered all the integer solutions.�76 Show that.ln x/=xD .ln y/=y is satisfied by

xD

�

tC1

t

�t

and yD

�

tC1

1

�tC1

with t ¤ 0: Graph those points to show the curvexy D yx : It
crosses the lineyD x atxD ; wheretÑ8:
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6.5 Separable Equations Including the Logistic Equation

This section begins with the integrals that solve two basic differential equations:

dy

dt
D cy and

dy

dt
D cyCs: (1)

We already know the solutions. What we don’t know is how to discover those
solutions, when a suggestion “try ect ” has not been made. Many important
equations, including these, separate into ay-integral and at -integral. The answer
comes directly from the two separate integrations. When a differential equation is
reduced that far—to integrals that we know or can look up—it is solved.

One particular equation will be emphasized. Thelogistic equationdescribes the
speedup and slowdown of growth. Its solution is anS-curve, which starts slowly, rises
quickly, and levels off. (The1990’s are near the middle of theS, if the prediction is
correct for the world population.)S-curves are solutions tononlinear equations, and
we will be solving our first nonlinear model. It is highly important in biology and all
life sciences.

SEPARABLE EQUATIONS

The equationsdy=dt D cy anddy=dt D cyCs (with constant sources) can be
solved by a direct method.The idea is to separatey from t :

dy

y
D c dt and

dy

yC .s=c/
D c dt: (2)

All y’s are on the left side. Allt ’s are on the right side (andc can be on either side).
This separation would not be possible fordy=dt D yC t:

Equation(2) contains differentials. They suggest integrals. Thet -integrals givect
and they-integrals give logarithms:

ln yD ctCconstant and ln
�

yC
s

c

�

D ctCconstant: (3)

The constant is determined by the initial condition. At t D 0 we requireyD y0;
and the right constant will make that happen:

ln yD ctC ln y0 and ln
�

yC
s

c

�

D ctC ln
�

y0 C
s

c

�

: (4)

Then the final step isolatesy: The goal is a formula fory itself, not its logarithm, so
take the exponential of both sides (eln y is y):

yD y0e
ct and yC

s

c
D
�

y0 C
s

c

�

ect : (5)

It is wise to substitutey back into the differential equation, as a check.
This is our fourth method fory 1 D cyCs: Method1 assumed from the start that

yDAect CB: Method2 multiplied all inputs by their growth factorsec.t�T / and
added up outputs. Method3 solved fory�y8:Method4 is separation of variables
(and all methods give the same answer). This separation method is so useful that we
repeat its main idea, and then explain it by using it.
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Fig. 6.15 The solutions to separable equations
dy

dt
D y2 and

dy

dt
Dn

y

t
or
dy

y
Dn

dt

t
:

To solvedy=dt Du.y/v.t/; separatedy=u.y/ from v.t/dt and inte-
grate both sides: »

dy=u.y/D

»
v.t/dtCC: (6)

Then substitute the initial condition to determineC; and solve fory.t/:

EXAMPLE 1 dy=dt D y2 separates into dy=y2 D dt: Integrate to reach�1=yD tCC: Substitutet D 0 andyD y0 to findC D�1=y0: Now solve fory:� 1
y

D t� 1

y0

and yD
y0

1� ty0

:

This solution blows up (Figure 6.15a) whent reaches1=y0: If the bank pays interest
on your depositsquared(y 1 D y2), you soon have all the money in the world.

EXAMPLE 2 dy=dt D ty separates intody=yD t dt: Then by integration
ln yD 1

2
t2 CC: Substitutet D 0 andyD y0 to findC D ln y0: The exponential of

1
2
t2 C lny0 givesyD y0e

t2=2:When the interest rate iscD t; the exponent ist2=2:

EXAMPLE 3 dy=dt D yC t is not separable. Method 1 survives by assuming
yDAet CBCDt—with an extra coefficientD in Problem23: Method 2 also
succeeds—but not the separation method.

EXAMPLE 4 Separatedy=dt D ny=t intody=yD n dt=t: By integrationln yD
n ln tCC: Substitutingt D 0 producesln 0 and disaster. This equation cannot start
from time zero (it divides byt ). Howevery can start fromy1 at t D 1; which gives
C D ln y1: The solution is a power functionyD y1t

n.
This was the first differential equation in the book (Section2:2). The ratio ofdy=y

to dt=t is the “elasticity” in economics. These relative changes have units like
dollars=dollars—they are dimensionless, andyD tn has constant elasticityn:

On log–log paper the graph ofln yD n ln tCC is astraight line with slopen:

THE LOGISTIC EQUATION

The simplest model of population growth isdy=dt D cy: The growth ratec is the
birth rate minus the death rate. Ifc is constant the growth goes on forever—beyond the
point where the model is reasonable. A population can’t grow all the way to infinity!
Eventually there is competition for food and space, andyD ect must slow down.
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The true ratec depends on the population sizey: It is a functionc.y/ not a
constant. The choice of the model is at least half the problem:

Problem in biology or ecology: Discoverc.y/:

Problem in mathematics: Solve dy=dt D c.y/y:

Every model looks linear over a small range ofy’s—but not forever. When the rate
drops off, two models are of the greatest importance. TheMichaelis-Mentenequation
hasc.y/D c=.yCK/: The logisticequation hasc.y/D c�by: It comes first.

The nonlinear effect is from “interaction.” For two populations of sizey andz;
the number of interactions is proportional toy timesz: The Law of Mass Action
produces a quadratic termbyz: It is the basic model for interactions and
competition. Here we have one population competing within itself, soz is the same
asy: This competition slows down the growth, because�by2 goes into the equation.

The basic model ofgrowth versus competitionis known as thelogistic equation:

dy=dt D cy�by2: (7)

Normally b is very small compared toc: The growth begins as usual (close toect ).
The competition termby2 is much smaller thancy; until y itself gets large. Then
by2 (with its minus sign) slows the growth down. The solution follows anS-curve
that we can compute exactly.

What are the numbersb and c for human population? Ecologists estimate the
natural growth rate ascD :029=year. That is not the actual rate, because ofb:
About 1930; the world population was3 billion. The cy term predicts a yearly
increase of .:029/.3 billion/D 87million: The actual growth was more like
dy=dt D 60million=year: That difference of27million=year wasby2:

27million=yearD b.3 billion/2 leads tobD 3 �10�12=year:

Certainlyb is a small number (three trillionths) but its effect is not small. It reduces
87 to 60:What is fascinating is to calculate thesteady state, when the new termby2

equals the old termcy: When these terms cancel each other,dy=dt D cy�by2 is
zero. The loss from competition balances the gain from new growth:cyD by2 and
yD c=b: The growth stops at this equilibrium point—the top of theS-curve:

y8 D
c

b
D
:029

3
1012� 10 billion people:

According to Verhulst’s logistic equation,theworld population is converging to10
billion. That is from the model. From present indications we are growing much faster.
We will very probably go beyond10 billion. The United Nations report in Section3:3
predicts11 billion to 14 billion.

Notice a special point halfway toy8 D c=b. (In the model this point is at5
billion.) It is the inflection pointwhere theS-curve begins to bend down. The second
derivatived2y=dt2 is zero. The slopedy=dt is a maximum. It is easier to find this
point from the differential equation (which givesdy=dt ) than fromy: Take one more
derivative:

y2 D .cy�by2/1 D cy 1�2byy 1 D .c�2by/y 1: (8)

The factorc�2by is zero at the inflection pointyD c=2b; halfway up theS-curve.
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THE S-CURVE

The logistic equation is solved by separating variablesy and t :

dy=dt D cy�by2 becomes

»
dy=.cy�by2/D

»
dt: (9)

The first question is whether we recognize thisy-integral.No. The second question is
whether it is listed in the cover of the book.No. The nearest is

r
dx=.a2�x2/;which

can be reached with considerable manipulation (Problem21). The third question is
whether a general method is available.Yes. “Partial fractions” is perfectly suited to
1=.cy�by2/; and Section7:4 gives the following integral of equation(9):

ln
y

c�by D ctCC and then ln
y0

c�by0

DC: (10)

That constantC makes the solution correct att D 0: The logistic equation is
integrated, but the solution can be improved. Take exponentials of both sides to
remove the logarithms:

y

c�by D ect y0

c�by0

: (11)

This contains the same growth factorect as in linear equations. But the logistic
equation is not linear—it is noty that increases so fast. According to(11), it is
y=.c�by/ that grows to infinity. This happens whenc�by approaches zero.

The growth stops atyD c=b: That is the final population of the world (10 bil-
lion ? ).

We still need a formula fory: The perfectS-curve is the graph ofyD 1=.1C
e�t /: It equals1 whent D8; it equals1

2
when t D 0; it equals0 whent D�8: It

satisfiesy 1 D y�y2; with cD bD 1: The general formula cannot be so beautiful,
because it allows anyc;b; andy0: To find theS-curve, multiply equation(11) by
c�by and solve fory:

yD
c

bCe�ct
�

c�by0

�

=y0

or yD
c

bCde�ct
: (12)

When t approaches infinity,e�ct approaches zero. The complicated part of the
formula disappears. Theny approaches its steady statec=b; the asymptote in
Figure 6.16. TheS-shape comes from the inflection point halfway up.

Fig. 6.16 The standardS-curveyD 1=.1Ce�t /: The populationS-curve (with prediction).
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Year US Model
Population

1790 3.9 D 3.9
1800 5.3 5.3
1810 7.2 7.2
1820 9.6 9.8
1830 12.9 13.1
1840 17.1 17.5
1850 23.2 D 23.2
1860 31.4 30.4
1870 38.6 39.4
1880 50.2 50.2
1890 62.9 62.8
1900 76.0 76.9
1910 92.0 D 92.0
1920 105.7 107.6
1930 122.8 123.1
1940 131.7 ¤ 136.7
1950 150.7 149.1

Surprising observation: zD 1=y satisfies a linear equation. By calculusz1 D�y 1=y2:
So

z1 D �cyCby2

y2
D� c

y
CbD�czCb: (13)

This equationz1 D�czCb is solved by an exponentiale�ct plus a constant:

zDAe�ct C
a

b
D

�

1

y0

� b
c

�

e�ct C
b

c
: (14)

Turned upside down,yD 1=z is the S-curve (12). As z approachesb=c; the S-curve
approachesc=b: Notice thatz starts at1=y0:

EXAMPLE 1 (United States population) The table shows the actual population and
the model. Pearl and Reed used census figures for1790;1850; and1910 to computec
andb: In between, the fit is good but not fantastic. One reason is war—another is depres-
sion. Probably more important is immigration.� In fact the Pearl-Reed steady statec=b is
below 200 million, which the US has already passed. Certainly their model can be and
has been improved.The 1990 census predicted a stop before300 million . For constant
immigrations we could still solvey 1 D cy�by2 Cs by partial fractions—but in practice
the computer has taken over. The table comes from Braun’s bookDifferential Equations
(Springer1975).

Remark For good science they2 term should be explained and justified. It gave
a nonlinear model that could be completely solved, but simplicity is not necessar-
ily truth. The basic justification is this: In a population of sizey; the number of
encounters is proportional toy2: If those encounters are fights, the term is�by2: If
those encountersincreasethe population, as some like to think, the sign is changed.
There is a cooperation termCby2; and the population increases very fast.

EXAMPLE 5 y 1 D cyCby2: y goes to infinity in a finite time.

EXAMPLE 6 y 1 D�dyCby2: y dies to zero ify0  d=b:
In Example 6 death wins. A small population dies out before the cooperationby2

can save it. A population belowd=b is an endangered species.
The logistic equation can’t predict oscillations—those go beyonddy=dt D f .y/:

The y line Here is a way to understand every nonlinear equationy 1 D f .y/: Draw
a “y line.” Add arrows to show the sign off .y/: Wheny 1 D f .y/ is positive,y is
increasing (it follows the arrow to the right). Whenf is negative,y goes to the left.
Whenf is zero, the equation isy 1 D 0 andy is stationary:

The arrows take you left or right, to the steady state or to infinity. Arrows gotoward
stable steady states. The arrows goaway, when the stationary point is unstable. The
y line shows which wayy moves and where it stops.

� Immigration does not enter for the world population model (at least not yet).
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The terminal velocity of a falling body isv8 D
?
g in Problem6:7:54: For

f .y/D siny there are several steady states:

EXAMPLE 7 Kinetics of a chemical reactionmACnBÑpC:

The reaction combinesm molecules ofA with n molecules ofB to producep
molecules ofC: The numbersm;n;p are1;1;2 for hydrogen chloride:H2 CCl2 D
2 HCl: The Law of Mass Actionsays that the reaction rate is proportional to the
product of the concentrationsŒA� andŒB�: ThenŒA� decays asŒC � grows:

dŒA�=dt D�rŒA�ŒB� and dŒC �=dt D CkŒA�ŒB�: (15)

Chemistry measuresr andk: Mathematics solves forŒA� and ŒC �: Write y for the
concentrationŒC �; the number of molecules in a unit volume. Forming thosey
molecules drops the concentrationŒA� from a0 to a0� .m=p/y: Similarly ŒB� drops
from b0 to b0� .n=p/y: The mass action law(15)containsy2:

dy

dt
D k

�

a0�m
p
y

��

b0� n

p
y

�

: (16)

This fits our nonlinear model (Problem33�34). We now find this same mass action
in biology. You recognize it whenever there is a product of two concentrations.

THE MM EQUATION dy=dt D�cy=.y CK/

Biochemical reactions are the keys to life. They take place continually in every living
organism. Their mathematical description is not easy! Engineering and physics go far
with linear models, while biology is quickly nonlinear. It is true thaty 1 D cy is ex-
tremely effective in first-order kinetics (Section6:3), but nature builds in a nonlinear
regulator.

It is enzymesthat speed up a reaction. Without them, your life would be in slow
motion. Blood would take years to clot. Steaks would take decades to digest. Calculus
would take centuries to learn. The whole system is awesomely beautiful—DNA tells
amino acids how to combine into useful proteins, and we get enzymes and elephants
and Isaac Newton.

Briefly, the enzyme enters the reaction and comes out again. It is thecatalyst. Its
combination with the substrate is an unstable intermediate, which breaks up into a
new product and the enzyme (which is ready to start over).

Here are examples of catalysts, some good and some bad.

1. The platinum in a catalytic converter reacts with pollutants from the car engine.
(But platinum also reacts with lead—ten gallons of leaded gasoline and you can
forget the platinum.)

2. Spray propellants (CFC’s) catalyze the change from ozone (O3) into ordinary
oxygen (O2). This wipes out the ozone layer—our shield in the atmosphere.

3. Milk becomes yoghurt and grape juice becomes wine.
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4. Blood clotting needs a whole cascade of enzymes, amplifying the reaction at
every step. In hemophilia—the “Czar’s disease”—the enzyme called Factor VIII
is missing. A small accident is disaster; the bleeding won’t stop.

5. Adolph’s Meat Tenderizer is a protein from papayas. It predigests the steak.
The same enzyme (chymopapain) is injected to soften herniated disks.

6. Yeast makes bread rise. Enzymes put the sour in sourdough.

Of course, it takes enzymes to make enzymes. The maternal egg contains the material
for a cell, and also half of the DNA. The fertilized egg contains the full instructions.

We now look at the Michaelis–Menten (MM) equation, to describe these reactions.
It is based on theLaw of Mass Action. An enzyme in concentrationz converts a
substrate in concentrationy by dy=dt D�byz: The rate constant isb; and you see
the product of “enzyme times substrate.” A similar law governs the other reactions
(some go backwards). The equations are nonlinear, with no exact solution. It is typical
of applied mathematics (and nature) that a pattern can still be found.

What happens is that the enzyme concentrationz.t/ quickly drops toz0K=.yC
K/: TheMichaelis constantK depends on the rates (likeb) in the mass action laws.
Later the enzyme reappears (z8 D z0). But by then the first reaction is over. Its law
of mass action is effectively

dy

dt
D�byzD� cy

yCK
(17)

with cD bz0K: This is theMichaelis–Menten equation—basic to biochemistry.
The ratedy=dt is all-important in biology. Look at the functioncy=.yCK/:

wheny is large; dy=dt ��c wheny is small; dy=dt ��cy=K:
The start and the finish operate at different rates, depending whethery dominatesK
orK dominatesy: The fastest rate isc:

A biochemist solves the MM equation by separating variables:»
yCK

y
dyD�» c dt gives yCK ln yD�ctCC: (18)

Sett D 0 as usual. ThenC D y0 CK ln y0: The exponentials of the two sides are

eyyK D e�ctey0yK
0 : (19)

We don’t have a simple formula fory: We are lucky to get this close. A computer
can quickly graphy.t/—and we see the dynamics of enzymes.

Problems27�32 follow up the Michaelis–Menten theory. In science, concentra-
tions and rate constants come with units. In mathematics, variables can be made
dimensionless and constants become1: We solvedY=dT D Y=.Y C1/ and then
switch back toy; t;c;K: This idea applies to other equations too.

Essential point:Most applications of calculus come through differential
equations.That is the language of mathematics—with populations and chemicals
and epidemics obeying the same equation. Running parallel tody=dt D cy are the
difference equations that come next.
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6.5 EXERCISES

Read-through questions

The equationsdy=dt D cy and dy=dt D cyCs and dy=dt D

u.y/v.t/ are called a because we can separatey from t:

Integration of
r
dy=yD

r
c dt gives b . Integration ofr

dy=.yCs=c/D
r
c dt gives c . The equationdy=dxD�x=y leads to d . Theny2 Cx2 D e and the solution stays

on a circle.

The logistic equation isdy=dt D f . The new term�by2

represents g when cy represents growth. Separation gives
r
dy=.cy�by2/D

r
dt; and the y-integral is 1=c times ln

h . Substitutingy0 at t D 0 and taking exponentials produces
y=.c�by/D ect ( i ). As tÑ8;y approaches j . That is
the steady state wherecy�by2 D k . The graph ofy looks like
an l , because it has an inflection point atyD m .

In biology and chemistry, concentrationsy and z react at a
rate proportional toy times n . This is the Law of o . In
a model equationdy=dt D c.y/y; the ratec depends on p .
The MM equation isdy=dt D q . Separating variables yieldsr

r dyD s D�ctCC:
Separate, integrate, and solve equations 1�8.

1 dy=dt D yC5; y0 D 2

2 dy=dt D 1=y; y0 D 1

3 dy=dxD x=y2; y0 D 1

4 dy=dxD y2 C1; y0 D 0

5 dy=dxD .yC1/=.xC1/; y0 D 0

6 dy=dxD tany cosx; y0 D 1

7 dy=dt D y sin t; y0 D 1

8 dy=dt D et�y ; y0 D e

9 Suppose the rate of growth is proportional to
?
y instead ofy:

Solvedy=dt D c
?
y starting fromy0:

10 The equationdy=dxDny=x for constant elasticity is the same
asd.ln y/=d.ln x/D : The solution is lnyD :

11 When cD 0 in the logistic equation, the only term is
y1 D�by2: What is the steady statey8 ? How long untily drops
from y0 to 1

2y0 ?

12 Reversing signs in Problem11; suppose y1 D Cby2: At
what time does the population explode toyD8; starting from
y0 D 2 (AdamCEve) ?

Problems 13�26 deal with logistic equationsy1 D cy�by2:

13 Show thatyD 1=.1Ce�t / solves the equationy1 D y�y2:

Draw the graph ofy from starting values12 and 1
3 :

14 (a) What logistic equation is solved byyD 2=.1Ce�t /?

(b) Findc andb in the equation solved byyD 1=.1Ce�3t /:

15 Solvez1 D�zC1 with z0 D 2: Turned upside down as in (13),
what isyD 1=z ?

16 By algebra find theS-curve (12) fromyD 1=z in (14).

17 How many years to grow fromy0 D 1
2c=b to yD 3

4c=b ? Use
equation (10) for the timet since the inflection point in1988: When
doesy reach9billion D :9c=b ?

18 Show by differentiatinguD y=.c�by/ that if y1 D cy�
by2 then u1 D cu: This explains the logistic solution (11)—it is
uDu0e

ct :

19 Suppose Pittsburgh grows fromy0 D 1 million people in
1900 to yD 3 million in the year 2000: If the growth rate is
y1 D 12;000=year in1900 andy1 D 30;000=year in2000; substitute
in the logistic equation to findc and b: What is the steady
state ? Extra credit: When doesyD y8=2D c=2b ?

20 SupposecD 1 but bD�1; giving cooperationy1 D yCy2:

Solve fory.t/ if y0 D 1: When doesy become infinite ?

21 Draw anS-curve through.0;0/ with horizontal asymptotesyD�1 andyD 1: Show thatyD .et �e�t /=.et Ce�t / has those three
properties. The graph ofy2 is shaped like .

22 To solvey1 D cy�by3 change touD 1=y2: Substitute fory1
in u1 D�2y1=y3 to find a linear equation foru: Solve it as in (14)
but withu0 D 1=y2

0 : ThenyD 1=
?
u:

23 With yD rY and t D sT; the equationdy=dt D cy�by2

changes todY=dT DY �Y 2: Find r ands:

24 In a change toyD rY and t D sT; how are the initial valuesy0

andy10 related toY0 andY 10 ?

25 A rumor spreads according toy1 D y.N �y/: If y people know,
thenN �y don’t know. The producty.N �y/measures the number
of meetings (to pass on the rumor).

(a) Solvedy=dt D y.N �y/ starting fromy0 D 1:

(b) At what timeT haveN=2 people heard the rumor ?

(c) This model is terrible becauseT goes to as
N Ñ8: A better model isy1 D by.N �y/:

26 Supposeb andc are both multiplied by10: Does the middle of
theS-curve get steeper or flatter ?

Problems 27�34 deal with mass action and the MM equation
y1 D�cy=.yCK/.

27 Most drugs are eliminated acording toy1 D�cy but
aspirin follows the MM equation. WithcDKD y0 D 1; does
aspirin decay faster ?

28 If you take aspirin at a constant rated (the maintenance dose),
find the steady state level whered D cy=.yCK/: Theny1 D 0:
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29 Show that the rateRD cy=.yCK/ in the MM equation
increases asy increases, and find the maximum asyÑ8:
30 Graph the rateR asafunction ofy forKD 1 andKD 10: (Take
cD 1:) As the Michaelis constant increases, the rate . At what
value ofy isRD 1

2 c ?

31 With yDKY and ct DKT; find the “nondimensional”
MM equation fordY=dT: From the solutioneY Y D e�T eY0Y0

recover they; t solution (19).

32 Graphy.t/ in (19) for differentc andK (by computer).

33 The Law of Mass Action for ACBÑC is y1 D
k.a0�y/.b0�y/: Supposey0 D 0, a0 D b0 D 3, kD 1. Solve for
y and find the time whenyD 2:

34 In addition to the equation fordŒC �=dt; the mass action law
givesdŒA�=dt D :

35 Solve y1 D yC t from y0 D 0 by assumingyDAet CBCDt:

FindA;B;D:

36 Rewrite cy�by2 as a2�x2; with xD
?
by�c=2?b and

aD . Substitute fora and x in the integral taken from
tables, to obtain they-integral in the text:»

dx

a2�x2
D

1

2a
ln
aCx

a�x »
dy

cy�by2
D
1

c
ln

y

c�by
37 (Important) Draw they-lines (with arrows as in the text)
for y1 D y=.1�y/ and y1 D y�y3: Which steady states are
approached from which initial valuesy0 ?

38 Explain in your own words how they-line works.

39 (a) Solve y1 D tany starting from y0 D�=6 to find
sinyD 1

2e
t :

(b) Explain whyt D 1 is never reached.

(c) Draw arrows on they-line to show thaty approaches
�=2—when does it get there ?

40 Write the logistic equation asy1 D cy.1�y=K/: As y1
approaches zero,y approaches . Find y;y1;y2 at the
inflection point.
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6.6 Powers Instead of Exponentials

You may remember our first look ate. It is the special base for whichex has slope
1 at xD 0. That led to the great equation of exponential growth:The derivative of
ex equalsex . But our look at the actual numbereD 2:71828 : : : was very short.
It appeared as the limit of.1C1=n/n. This seems an unnatural way to write down
such an important number.

I want to show how.1C1=n/n and .1Cx=n/n arise naturally. They givedis-
crete growth in finite steps—with applications to compound interest. Loans and life
insurance and money market funds use the discrete form ofy 1 D cyCs. (We
include extra information about bank rates, hoping this may be useful some day.) The
applications in science and engineering are equally important. Scientific computing,
like accounting, hasdifference equationsin parallel with differential equations.

Knowing that this section will be full of formulas, I would like to jump ahead and
tell you the best one. It is an infinite series forex . What makes the series beautiful is
that its derivative is itself.

Start withyD 1Cx. This hasyD 1 andy 1 D 1 atxD 0. Buty2 is zero, not one.
Such a simple function doesn’t stand a chance! No polynomial can be its own deriva-
tive, because the highest powerxn drops down tonxn�1. The only way isto have no
highest power. We are forced to consider infinitely many terms—a power series—to
achieve “derivative equals function.”

To produce the derivative1Cx; we need 1CxC 1
2
x2: Then 1

2
x2 is the

derivative of 1
6
x3; which is the derivative of 1

24
x4: The best way is to write

the whole series at once:

Infinite series ex D 1CxC 1
2
x2 C 1

6
x3 C 1

24
x4 C � � � : (1)

This must be the greatest power series ever discovered. Its derivative is itself:

dex=dxD 0C1CxC 1
2
x2 C 1

6
x3 C � � �D ex : (2)

Thederivative of each term is the term before it. The integral of each term is the one
after it (so

r
exdxD ex CC ). The approximationex � 1Cx appears in the first two

terms. Other properties like.ex/.ex/D e2x are not so obvious. (Multiplying series
is hard but interesting.)It is not even clear why the sum is2:718 : : : whenxD 1.
Somehow1C1C 1

2
C 1

6
C � � � equalse: That is where.1C1=n/n will come in.

Notice thatxn is divided by the product1 �2 �3 � � � � �n: This is “n factorial.” Thus
x4 is divided by1 �2 �3 �4D 4ŠD 24; andx5 is divided by5ŠD 120: The derivative
of x5=120 is x4=24; because5 from the derivative cancels5 from the factorial. In
generalxn=nŠ has derivativexn�1=.n�1/Š Surprisingly0Š is 1:

Chapter 10 emphasizes thatxn=nŠ becomes extremely small asn increases. The
infinite series adds up to a finite number—which isex : We turn now to discrete
growth, which produces the same series in the limit.

This headline was on page one of the New York Times for May27; 1990:

213 Years After Loan, Uncle Sam is Dunned

San Antonio, May 26—More than 200 years ago, a wealthy Pennsylvania
merchant named Jacob DeHaven lent$450;000 to the Continental Congress to
rescue the troops at Valley Forge. That loan was apparently never repaid.
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So Mr. DeHaven’s descendants are taking the United States Government to
court to collect what they believe they are owed. The total:$141 billion if the
interest is compounded daily at6 percent, the going rate at the time. If compounded
yearly, the bill is only$98 billion.

The thousands of family members scattered around the country say they are
not being greedy. “It’s not the money—it’s the principle of the thing,” said
Carolyn Cokerham, a DeHaven on her father’s side who lives in San Antonio.
“You have to wonder whether there would even be a United States if this man had
not made the sacrifice that he did. He gave everything he had.”

The descendants say that they are willing to be flexible about the amount of
settlement. But they also note that interest is accumulating at$190 a second.

“None of these people have any intention of bankrupting the Government,”
said Jo Beth Kloecker, a lawyer from Stafford, Texas. Fresh out of law school,
Ms. Kloecker accepted the case for less than the customary30 percent contingency.

It is unclear how many descendants there are. Ms. Kloecker estimates that based
on 10 generations with four children in each generation, there could be as many as
half a million.

The initial suit was dismissed on the ground that the statute of limitations is
six years for a suit against the Federal Government. The family’s appeal asserts
that this violates Article6 of the Constitution, which declares as valid all debts
owed by the Government before the Constitution was adopted.

Mr. DeHaven died penniless in1812: He had no children.

COMPOUND INTEREST

The idea of compound interest can be applied right away. Suppose you invest
$1000 at a rate of100% (hard to do). If this is theannual rate, the interest after a
year is another$1000: You receive$2000 in all. But if the interest iscompounded
you receive more:

after six months: Interest of$500 is reinvested to give$1500

end of year: New interest of$750 (50% of 1500) gives$2250 total.

The bank multiplied twice by1:5 (1000 to 1500 to 2250). Compoundingquarterly
multipliesfour timesby 1:25 (1 for principal,:25 for interest):

after one quarter the total is1000C .:25/.1000/D1250

after two quarters the total is1250C .:25/.1250/D1562:50

after nine months the total is1562:50C .:25/.1562:50/D1953:12

after a full year the total is1953:12C .:25/.1953:12/D2441:41

Each step multiplies by1C .1=n/; to add onenth of a year’s interest—still at100%:

quarterly conversion:.1C1=4/4�1000 D2441:41

monthly conversion:.1C1=12/12�1000D2613:04

daily conversion:.1C1=365/365�1000 D2714:57:

Many banks use360 days in a year, although computers have made that obsolete.
Very few banks use minutes (525;600 per year). Nobody compounds every second
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.nD 31;536;000/: But some banks offercontinuous compounding. This is the
limiting case.nÑ8/ that producese:

�

1C
1

n

�n�1000 approachese�1000D 2718:28:

1. Quick method for.1C1=n/n: Take its logarithm. Useln.1Cx/� x with xD
1

n
:

ln

�

1C
1

n

�n

D n ln

�

1C
1

n

�� n�1
n

�

D 1: (3)

As 1=n gets smaller, this approximation gets better. The limit is1: Conclusion:
.1C1=n/n approaches the number whose logarithm is1: Sections6:2 and 6:4
define the same number (which ise).

2. Slow method for.1C1=n/n: Multiply out all the terms. Then letnÑ8.

This is a brutal use of the binomial theorem. It involves nothing smart like logarithms,
but the result is a fantastic new formula fore:

Practice fornD 3 W

�

1C
1

3

�3

D 1C3

�

1

3

�

C
3 �2
1 �2 �13�2

C
3 �2 �1
1 �2 �3�13�3

:

Binomial theorem for any positive integern:

�

1C
1

n

�n

D 1Cn

�

1

n

�

C
n.n�1/
1 �2 �

1

n

�2

C
n.n�1/.n�2/

1 �2 �3 �

1

n

�3

C � � �C�

1

n

�n

:

(4)

Each term in equation(4) approaches a limit asnÑ8: Typical terms are

n.n�1/
1 �2 �

1

n

�2Ñ 1

1 �2 and
n.n�1/.n�2/

1 �2 �3 �

1

n

�3Ñ 1

1 �2 �3:
Next comes1=1 �2 �3 �4: The sum of all those limits in(4) is our new formula fore:

lim

�

1C
1

n

�n

D 1C1C
1

1 �2C
1

1 �2 �3C
1

1 �2 �3 �4C � � �D e: (5)

In summation notation this is†8
kD0

1=kŠD e: The factorials give fast convergence:

1C1C :5C :16667C :04167C :00833C :00139C :00020C :00002D 2:71828:

Those nine terms give an accuracy that was not reached bynD 365 compoundings.
A limit is still involved (to add up the whole series).You never seee without a
limit ! It can be defined by derivatives or integrals or powers.1C1=n/n or by an
infinite series. Something goes to zero or infinity, and care is required.

All terms in equation(4) are below (or equal to) the corresponding terms in(5).
The power.1C1=n/n approachese from below. There is a steady increase withn:
Faster compounding yields more interest. Continuous compounding at100% yields
e; as each term in(4) moves up to its limit in(5).
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Remark Change.1C1=n/n to .1Cx=n/n: Now the binomial theorem produces
ex :

�

1C
x

n

�n

D 1Cn
�x

n

�

C
n.n�1/
1 �2 �x

n

�2

C � � � approaches1CxC
x2

1 �2C � � � : (6)

Please recognizeex on the right side! It is the infinite power series in equation(1).
The next term isx3=6 (x can be positive or negative). This is a final formula forex :

6L The limit of .1Cx=n/n is ex : At xD 1 we finde:

The logarithmof that power isn ln.1Cx=n/� n.x=n/D x:Thepower approachesex :

To summarize: The quick method proves.1C1=n/nÑ e by logarithms. The slow
method (multiplying out every term) led to the infinite series. Together they show the
agreement of all our definitions ofe:

DIFFERENCE EQUATIONS VS. DIFFERENTIAL EQUATIONS

We have the chance to see an important part of applied mathematics. This is not
a course on differential equations, and it cannot become a course on difference
equations. But it is a course with a purpose—we aim to use what we know. Our
main application ofe was to solvey 1 D cy and y 1 D cyCs: Now we solve the
corresponding difference equations.

Above all, the goal is to see the connections.The purpose of mathematics is to
understand and explain patterns. The path from “discrete to continuous” is beauti-
fully illustrated by these equations. Not every class will pursue them to the end, but I
cannot fail to show the pattern in adifference equation:

y.tC1/D ay.t/: (7)

Each step multiplies by the same numbera: The starting valuey0 is followed by
ay0, a2y0, anda3y0: The solution at discrete timest D 0;1;2; : : : is y.t/D aty0:

This formula aty0 replaces the continuous solutionecty0 of the differential
equation.

Fig. 6.17 Growth for |a|¡ 1; decay for|a|  1: Growth factora compares toec :

A source or sink (birth or death, deposit or withdrawal) is likey 1 D cyCs:

y.tC1/D ay.t/Cs: (8)

Each step multiplies bya and addss: The first outputs are

y.1/D ay0Cs; y.2/D a2y0 CasCs; y.3/D a3y0 Ca2sCasCs:

We saw this pattern for differential equations—every inputs becomes a new start-
ing point. It is multiplied by powers ofa: Sinces enters later thany0; the powers
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stop att�1: Algebra turns the sum into a clean formula by adding the geometric
series:

y.t/D aty0 Cs
�

at�1 Cat�2 C � � �CaC1
�

D aty0 Cs.at�1/=.a�1/: (9)

EXAMPLE 1 Interest at8% from annual IRA deposits ofsD $2000 (herey0 D 0).

The first deposit is at yeart D 1: In a year it is multiplied byaD 1:08; because8%
is added. At the same time a newsD 2000 goes in. Att D 3 the first deposit has
been multiplied by.1:08/2; the second by1:08; and there is anothersD 2000: After
yeart;

y.t/D 2000.1:08t�1/=.1:08�1/: (10)

With t D 1 this is2000:With t D 2 it is 2000 .1:08C1/—two deposits. Notice how
a�1 (the interest rate:08) appears in the denominator.

EXAMPLE 2 Approach to steady state when|a|   1:Compare withc  0:
With a¡ 1; everything has been increasing. That corresponds toc¡ 0 in the
differential equation (which is growth). But things die, and money is spent, soa
can be smaller than one. In that caseaty0 approaches zero—the starting balance
disappears. What happens if there is also a source ?Every year half of the balance
y.t/ is spent and a new$2000 is deposited. NowaD 1

2
:

y.tC1/D 1
2
y.t/C2000 yields y.t/D

�

1
2

�t
y0 C2000

h

��

1
2

�t�1�=�1
2
�1�i:

The limit astÑ8 is an equilibrium point. As
�

1
2

�t
goes to zero,y.t/ stabilizes to

y8 D 2000
�

0�1�=�1
2
�1�D 4000D steady state: (11)

Why is 4000 steady ? Because half is lost and the new2000 makes it up again.The
iteration isynC1 D 1

2
yn C2000: Its fixed point is wherey8 D 1

2
y8C2000.

In general the steady equation isy8 D ay8Cs: Solving fory8 givess=.1�a/:
Compare with the steady differential equationy 1 D cyCsD 0:

y8 D� s
c

(differential equation) vs. y8 D
s

1�a (difference equation): (12)

EXAMPLE 3 Demand equals supply when the price is right.

Difference equations are basic to economics. Decisions are made every year (by a
farmer) or every day (by a bank) or every minute (by the stock market). There are
three assumptions:

1. Supply next time depends on price this time:S.tC1/D cP.t/:

2. Demand next time depends on price next time:D.tC1/D�dP.tC1/Cb:

3. Demand next time equals supply next time:D.tC1/DS.tC1/:

Comment on3: the price sets itself to makedemandD supply. The demand slope�d is negative. The supply slopec is positive. Those lines intersect at the competitive
price, where supply equals demand. To find the difference equation, substitute1 and
2 into 3:

Difference equationW �dP.tC1/CbDcP.t/

Steady state priceW �dP8CbDcP8: ThusP8 D b=.cCd/:

If the price starts aboveP8; the difference equation brings it down. If below, the
price goes up. When the price isP8; it stays there. This is not news—economic
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theory depends on approach to a steady state. But convergence only occurs ifc  d:
If supply is less sensitive than demand, the economy is stable.

Blow-up example:cD 2, bD d D 1: The difference equation is�P.tC1/C1D
2P.t/: FromP.0/D 1 the price oscillates as it grows:P D�1;3;�5;11; : : : :

Stable example:cD 1=2, bD d D 1: The price moves fromP.0/D 1 to
P.8/D 2=3:�P.tC1/C1D

1

2
P.t/ yields P D 1;

1

2
;
3

4
;
5

8
; : : : ; approaching

2

3
:

Increasingd gives greater stability. That is the effect of price supports. Ford D 0
(fixed demand regardless of price) the economy is out of control.

THE MATHEMATICS OF FINANCE

It would be a pleasure to make this supply-demandmodel more realistic—with curves,
not straight lines. Stability depends on the slope—calculus enters. But we
also have to be realistic about class time. I believe the most practical application is
to solvethe fundamental problems of finance. Section 6.3 answered six questions
about continuous interest. We now answer the same six questions when the annual
rate isxD :05D 5% andinterest is compoundedn times a year.

First we computeeffective rates, higher than:05 because of compounding:

compoundedquarterly

�

1C
:05

4

�4

D1:0509
h

effective rate:0509D 5:09%
i

compoundedcontinuously e:05 D1:0513
h

effective rate5:13%
i

Now come the six questions. Next to the new answer (discrete) we write the old
answer (continuous). One is algebra, the other is calculus. The time period is20
years, so simple interest ony0 would produce.:05/.20/.y0/: That equalsy0—money
doubles in20 years at5% simple interest.

Questions1and2ask for thefuture valuey andpresent valuey0 with compound
interestn times a year:

1: y growing fromy0W yD

�

1C
:05

n

�20n

y0 yDe.:05/.20/y0

2: deposity0 to reachyW y0 D

�

1C
:05

n

��20n

y y0 De�.:05/.20/y

Each step multiplies byaD .1C :05=n/:There are20n steps in20 years. Time goes
backward in Question2. We divide by the growth factor instead of multiplying. The
future value is greater than the present value (unless the interest rate is negative!). As
nÑ8 the discretey on the left approaches the continuousy on the right.

Questions3 and4 connecty to s (with y0 D 0 at the start). As soon as eachs is
deposited, it starts growing. ThenyD sCasCa2sC � � � :
3: y growing from depositssW yD s

"

.1C :05=n/20n�1
:05=n

#

yDs

"

e.:05/.20/�1
:05

#

4: depositss to reachyW sDy

"

:05=n

.1C :05=n/20n�1# sDy

"

:05

e.:05/.20/�1#
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Questions5 and6 connecty0 to s: This timey is zero—there is nothing left at the
end. Everything is paid. The deposity0 is just enough to allow payments ofs: This
is anannuity, where the bank earns interest on youry0 while it pays yous (n times
a year for20 years). So your deposit in Question5 is less than20ns:

Question6 is the opposite—aloan. At the start you borrowy0 (instead of giving
the banky0). You can earn interest on it as you pay it back. Therefore your payments
have to total more thany0: This is the calculation for car loans and mortgages.

5: Annuity: Deposity0 to receive20n payments ofs:

y0 D s

"

1� .1C :05=n/�20n

:05=n

#

y0 D s

"

1�e�.:05/.20/

:05

#

6: Loan: Repayy0 with 20n payments ofs:

sD y0

�

:05=n

1� .1C :05=n/�20n

�

sD y0

�

:05

1�e�.:05/.20/

�

Questions2;4;6 are the inverses of1;3;5: Notice the pattern: There are three
numbersy;y0; and s: One of them is zero each time. If all three are present, go
back to equation(9).

The algebra for these lines is in the exercises.It is not calculus because�t is not
dt . All factors in brackets

� �

are listed in tables, and the banks keep copies. It
might also be helpful to know their symbols. If a bank has interest ratei per period
overN periods, then in our notationaD 1C i D 1C :05=n andt DN D 20n:

future value ofy0 D $1 .line 1/ W y.N /D .1C i/N

present value ofyD $1 .line 2/ W y0 D .1C i /�N

future value ofsD $1 .line 3/ W y.N /D s
Nsi D

h

.1C i /N �1i=i
present value ofsD $1 .line 5/ W y0 D a

Nsi D
h

1� .1C i /�N
i

=i

To tell the truth, I never knew the last two formulas until writing this book.
The mortgage on my home hasN D .12/.25/ monthly payments with interest rate
i D :07=12: In 1972 the present value was$42;000D amount borrowed. I am now
going to see if the bank is honest.�

Remark In many loans, the bank computes interest on the amount paid back
instead of the amount received. This is calleddiscounting. A loan of $1000 at 5%
for one year costs$50 interest. Normally you receive$1000 and pay back$1050:
With discounting you receive$950 (called the proceeds)and you pay back$1000:
The true interest rate is higher than5%—because the$50 interest is paid on the
smaller amount$950: In this case the “discount rate” is50=950D 5:26%:

SCIENTIFIC COMPUTING: DIFFERENTIAL EQUATIONS BY
DIFFERENCE EQUATIONS

In biology and business, most events are discrete. In engineering and physics, time
and space are continuous. Maybe at some quantum level it’s all the same, but the

� It’s not.s is too big. I knew it.
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equations of physics (starting with Newton’s lawF Dma) are differential equations.
The great contribution of calculus is to model the rates of change we see in nature.
But to solve that model with a computer, it needs to be made digital and discrete.

These paragraphs work withdy=dt D cy: It is the test equation that all analysts
use, as soon as a new computing method is proposed. Its solution isyD ect ; starting
from y0 D 1: Here we test Euler’s method (nearly ancient, and not well thought of).
He replaceddy=dt by�y=�t :

Euler’s Method
y.tC�t/�y.t/

�t
D cy.t/: (13)

Theleft side isdy=dt; in the limit�tÑ 0:We stop earlier, when�t ¡ 0:
The problem is to solve(13). Multiplying by�t; the equation is

y.tC�t/D .1Cc�t/y.t/ .with y.0/D 1/:

Each step multiplies byaD 1Cc�t; son steps multiply byan:

yD an D .1Cc�t/n at timen�t: (14)

This is growth or decay,depending ona: The correctect is growth or decay,
depending onc: The question is whetheran and ect stay close. Can one of them
grow while the other decays ? We expect the difference equation to copyy 1 D cy;
but we might be wrong.

A good example isy 1 D�y: ThencD�1 andyD e�t —the true solution decays.
The calculator gives the following answersan for nD 2;10;20:

�t aD 1Cc�t a2 a10 a20

3 �2 4 1024 1048576

1 0 0 0 0

1=10 :90 :81 :35 :12

1=20 :95 :90 :60 :36

The big step�t D 3 shows total instability (top row). The numbers blow up when
they should decay. The row with�t D 1 is equally useless (all zeros). In practice the
magnitude ofc�t must come down to .10 or .05: For accurate calculations it would
have to be even smaller, unless we change to a better difference equation. That is the
right thing to do.

Notice the two reasonable numbers. They are:35 and:36; approachinge�1 D :37:
They come fromnD 10 (with �t D 1=10) andnD 20 (with �t D 1=20). Those
have the same clock timen�t D 1:

�

1� 1

10

�10

D :35

�

1� 1

20

�20

D :36

�

1� 1
n

�nÑ e�1 D :37:

The main diagonal of the table is executing.1Cx=n/nÑ ex in the casexD�1:
Final question:How quickly are :35 and :36 converging toe�1 D :37 ? With

�t D :10 the error is:02: With �t D :05 the error is:01: Cutting the time step
in half cuts the error in half. We are not keeping enough digits to be sure, butthe
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error seems close to1
5
�t: To test that, apply the “quick method” and estimate

an D .1��t/n from its logarithm:

ln.1��t/n D n ln.1��t/� nh��t� 1
2

�

�t
�2
i

D�1� 1
2
�t: (15)

The clock time isn�t D 1: Now take exponentials of the far left and right:

an D .1��t/n� e�1e��t=2� e�1
�

1� 1
2
�t
�

: (16)

The difference betweenan ande�1 is the last term1
2
�te�1: Everything comes down

to one question: Is that error the same as1
5
�t ? The answer is yes, becausee�1=2

is 1=5: If we keep only one digit, the prediction is perfect!

That took an hour to work out, and I hope it takes longer than�t to read. I wanted
you to seein usethe properties ofln x andex : The exact propertyln an D n ln a
came first. In the middle of(15) was the key approximationln.1Cx/� x� 1

2
x2;

with xD��t: Thatx2 term uses the second derivative (Section 6.4). At the very
end cameex � 1Cx:

A linear approximation shows convergence:.1Cx=n/nÑ ex : A quadratic shows
the error: proportional to�t D 1=n: It is like using rectangles for areas, with error
proportional to�x: This minimal accuracy was enough to define the integral, and
here it is enough to definee: It is completely unacceptable for scientific computing.

The trapezoidal rule, for integrals or fory 1 D cy; has errors of order.�x/2 and
.�t/2: All good software goes further than that. Euler’s first-order method could not
predict the weather before it happens.

Euler’s Method for
dy

dt
DF.y; t/ W

y.tC�t/�y.t/
�t

DF.y.t/; t/:

6.6 EXERCISES

Read-through questions

The infinite series forex is a . Its derivative is b . The
denominatorn! is called “ c ” and it equals d . At xD 1 the
series fore is e .

To match the original definition of e; multiply out
.1C1=n/n D f (first three terms). AsnÑ8 those terms
approach g in agreement withe: The first three terms
of .1Cx=n/n are h . As nÑ8 they approach i
in agreement withex : Thus .1Cx=n/n approaches j . A
quicker method computes ln.1Cx=n/n � k (first term only)
and takes the exponential.

Compound interest (n times in one year at annual ratex)
multiplies by ( l )n: As nÑ8; continuous compounding
multiplies by m . At xD 10% with continuous compounding,
$1 grows to n in a year.

The difference equationy.tC1/D ay.t/ yields y.t/D o
times y0: The equationy.tC1/D ay.t/Cs is solved by yD

aty0 CsŒ1CaC � � �Cat�1�: The sum in brackets is p .

When aD 1:08 and y0 D 0; annual deposits ofsD 1 produce
yD q after t years. IfaD 1

2 and y0 D 0; annual deposits of
sD 6 leave r after t years, approachingy8 D s . The
steady equationy8 D ay8Cs givesy8 D t .

When i D interest rate per period, the value ofy0 D $1 after
N periods isy.N/D u . The deposit to producey.N/D 1

is y0 D v . The value ofsD $1 deposited after each period
grows to y.N/D w . The deposit to reachy.N/D 1 is
sD x .

Euler’s method replacesy1 D cy by �yD cy�t: Each step
multiplies y by y . Thereforey at t D 1 is .1Cc�t/1=t y0;

which converges to z as�tÑ 0: The error is proportional
to A , which is too B for scientific computing.

1 Write down a power seriesyD 1�xC � � � whose derivative
is�y:
2 Write down a power seriesyD 1C2xC � � � whose derivative is
2y:
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3 Find two series that are equal to their second derivatives.

4 By comparing eD 1C1C 1
2 C 1

6 C 1
24 C � � � with a larger

series (whose sum is easier) show thate  3:
5 At 5% interest compute the output from $1000 in a year with
6-month and3-month and weekly compounding.

6 With the quick method ln.1Cx/� x; estimate ln.1�1=n/n and
ln.1C2=n/n : Then take exponentials to find the two limits.

7 With the slow method multiply out the three terms of.1� 1
2 /

2

and the five terms of.1� 1
4 /

4: What are the first three terms of
.1�1=n/n; and what are their limits asnÑ8 ?

8 The slow method leads to1�1C1=2Š�1=3ŠC � � � for the
limit of .1�1=n/n:What is the sum of this infinite series—the exact
sum and the sum after five terms ?

9 Knowing that .1C1=n/nÑ e; explain .1C1=n/2nÑ e2 and
.1C2=N/N Ñ e2:

10 What are the limits of.1C1=n2/n and.1C1=n/n
2

? OK to use
a calculator to guess these limits.

11 (a) The power .1C1=n/n (decreases) (increases) withn;
as we compound more often. (b) The derivative off .x/D

x ln.1C1=x/; which is , should be.  0/.¡ 0/: This is
confirmed by Problem12:

12 Show that ln.1C1=x/¡ 1=.xC1/ by drawing the graph of1=t:
The area fromt D 1 to 1C1=x is . The rectangle inside it has
area .

13 Take three steps ofy.tC1/D 2y.t/ from y0 D 1:

14 Take three steps ofy.tC1/D 2y.t/C1 from y0 D 0:

Solve the difference equations 15–22.

15 y.tC1/D 3y.t/;y0 D 4

17 y.tC1/D y.t/C1;y0 D 0

19 y.tC1/D 3y.t/C1;y0 D 0

21 y.tC1/D ay.t/Cs;y0 D 0

16 y.tC1/D 1
2y.t/;y0 D 1

18 y.tC1/D y.t/�1;y0 D 0

20 y.tC1/D 3y.t/Cs;y0 D 1

22 y.tC1/D ay.t/Cs;y0 D 5

In 23–26, which initial value producesy1 D y0 (steady state)?

23 y.tC1/D 2y.t/�6
25 y.tC1/D�y.t/C6 24 y.tC1/D 1

2y.t/�6
26 y.tC1/D�1

2y.t/C6

27 In Problems23 and 24; start fromy0 D 2 and take three steps to
reachy3: Is this approaching a steady state ?

28 For which numbersa does .1�at /=.1�a/ approach a limit as
tÑ8 and what is the limit ?

29 The price P is determined by supplyD demand or�dP.tC1/CbD cP.t/: Which priceP is not changed from one
year to the next ?

30 FindP.t/ from the supply-demand equation withcD 1, d D 2,
bD 8, P.0/D 0: What is the steady state astÑ8 ?

Assume10% interest (soaD 1C i D 1:1) in Problems31�38.
31 At 10% interest compounded quarterly, what is the effective
rate ?

32 At 10% interest compounded daily, what is the effective
rate ?

33 Find the future value in20 years of $100 deposited now.

34 Find the present value of $1000 promised in twenty years.

35 For a mortgage of $100;000 over 20 years, what is the
monthly payment ?

36 For a car loan of $10;000 over6 years, what is the monthly pay-
ment ?

37 With annual compounding of depositssD $1000; what is the
balance in20 years ?

38 If you repaysD $1000 annually on a loan of $8000; when are
you paid up ? (Remember interest.)

39 Every year two thirds of the available houses are sold, and
1000 new houses are built. What is the steady state of the
housing market—how many are available ?

40 If a loan shark charges5% interest a month on the $1000
you need for blackmail, and you pay $60 a month, how much
do you still owe after one month (and after a year) ?

41 Euler chargescD 100% interest on his $1 fee for discover-
ing e: What do you owe (including the $1) after a year with
(a) no compounding; (b) compounding every week; (c) continuous
compounding ?

42 Approximate.1C1=n/n as in (15) and (16) to show that you
owe Euler aboute�e=2n: Compare Problem6:2:5.

43 My Visa statement says monthly rateD 1:42% and yearly
rateD 17%: What is the true yearly rate, since Visa compounds
the interest ? Give a formula or a number.

44 You borrowy0 D $80;000 at9% to buy a house.

(a) What are your monthly paymentss over30 years ?

(b) How much do you pay altogether ?
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6.7 Hyperbolic Functions

This section combinesex with e�x . Up to now those functions have gone separate
ways—one increasing, the other decreasing. But two particular combinations have
earned names of their own (coshx andsinhx):

hyperbolic cosinecoshxD
ex Ce�x

2
hyperbolic sinesinhxD

ex�e�x

2

The first name rhymes with “gosh”. The second is usually pronounced “cinch”.
The graphs in Figure 6.18 show thatcoshx¡ sinhx. For largex both hyperbolic

functions come extremely close to1
2
ex . Whenx is large andnegative, it is e�x that

dominates. Coshx still goes up toC8 while sinhx goes down to�8 (because
sinhx has a minus sign in front ofe�x).

Fig. 6.18 Cosh x and sinhx. The hyperbolic
functions combine12 e

x and 1
2 e

�x .
Fig. 6.19 Gateway Arch courtesy of the St.

Louis Visitors Commission.

The following facts come directly from1
2

�

ex Ce�x
�

and 1
2

�

ex�e�x
�

:

cosh.�x/D coshx andcosh0D 1 .coshis evenlike the cosine/

sinh.�x/D�sinhx andsinh0D 0 .sinh is odd like the sine/

The graph ofcoshx corresponds to ahanging cable(hanging under its weight).
Turned upside down, it has the shape of the Gateway Arch in St. Louis. That must
be the largest upside-downcoshfunction ever built. A cable is easier to construct
than an arch, because gravity does the work. With the right axes in Problem55; the
height of the cable is a stretched-outcoshfunction called acatenary:

yD a cosh.x=a/ .cable tension=cable densityD a/:

Busch Stadium in St. Louis has96 catenary curves, to match the Arch.

The properties of the hyperbolic functions come directly from the definitions.
There are too many properties to memorize—and no reason to do it! One rule is the
most important.Every fact about sines and cosines is reflected in a correspond-
ing fact aboutsinhx and coshx: Often the only difference is a minus sign. Here
are four properties:
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1. .coshx/2� .sinhx/2 D 1
h

instead of.cosx/2 C .sinx/2 D 1
i

Check:

�

ex Ce�x

2

�2��ex�e�x

2

�2

D
e2x C2Ce�2x�e2x C2�e�2x

4
D 1

2.
d

dx

�

coshx
�

D sinhx

�

instead of
d

dx

�

cosx
�

D�sinx

�

3.
d

dx

�

sinhx
�

D coshx

�

like
d

dx
sin xD cosx

�

4.
»

sinhxdxD coshxCC and

»
coshxdxD sinhxCC

Fig. 6.20 The unit circle cos2tCsin2t D 1 and the unit hyperbola cosh2t�sinh2t D 1:

Property1 is the connection to hyperbolas. It is responsible for the “h” incosh
and sinh: Remember that.cosx/2 C .sinx/2 D 1 puts the point.cosx; sinx/
onto aunit circle. As x varies, the point goes around the circle. The ordinary sine
and cosine are “circular functions.” Now look at.coshx;sinhx/: Property1 is
.coshx/2� .sinhx/2 D 1, so this point travels on theunit hyperbolain Figure 6.20.

You will guess the definitions of the other four hyperbolic functions:

tanhxD
sinhx

coshx
D
ex�e�x

ex Ce�x
cothxD

coshx

sinhx
D
ex Ce�x

ex�e�x

sechxD
1

coshx
D

2

ex Ce�x
cschxD

1

sinhx
D

2

ex�e�x

I think “ tanh” is pronounceable, and “sech” is easy. The others are harder. Their
properties come directly fromcosh2x�sinh2xD 1: Divide bycosh2x andsinh2x:

1� tanh2xD sech2x and coth2x�1D csch2x

.tanhx/1 D sech2x and .sechx/1 D�sechx tanhx»
tanhx dxD

»
sinhx

coshx
dxD ln.coshx/CC:

INVERSE HYPERBOLIC FUNCTIONS

You remember the anglessin�1x and tan�1x and sec�1x: In Section 4.4 we
differentiated those inverse functions by the chain rule. The main application was
to integrals. If we happen to meet

r
dx=.1Cx2/; it is tan�1xCC: The situation for
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sinh�1x andtanh�1x and sech�1x is the same except for sign changes—which are
expected for hyperbolic functions. We write down thethree new derivatives:

y D sinh�1x .meaningxD sinhy/ has
dy

dx
D

1?
x2 C1

(1)

y D tanh�1x .meaningxD tanhy/ has
dy

dx
D

1

1�x2
(2)

y D sech�1x .meaningxD sechy/ has
dy

dx
D

�1
x
?
1�x2

(3)

Problems 44�46 computedy=dx from 1=.dx=dy/: The alternative is to use
logarithms. Sinceln x is the inverse ofex ; we can expresssinh�1x and tanh�1x
andsech�1x as logarithms. Here isyD tanh�1x:

yD
1

2
ln

�

1Cx

1�x � has slope
dy

dx
D
1

2

1

1Cx
� 1
2

1

1�x D
1

1�x2
: (4)

The last step is an ordinary derivative of1
2

ln.1Cx/� 1
2

ln.1�x/: Nothing is new
except the answer. But where did the logarithms come from ? In the middle of the
following identity, multiply above and below bycoshy:

1Cx

1�x D
1C tanhy

1� tanhy
D

coshyCsinhy

coshy�sinhy
D

ey

e�y
D e2y :

Then2y is the logarithm of the left side. This is the first equation in(4), and it is the
third formula in the following list:

sinh�1xD ln
h

xC
?
x2 C1

i

cosh�1xD ln
h

xC
?
x2�1i

tanh�1xD
1

2
ln

"

1Cx

1�x# sech�1xD ln

"

1C
?
1�x2

x

#

Remark 1 Those are listedonly for reference. If possible do not memorize them.
The derivatives in equations(1), (2), (3) offer a choice of antiderivatives—either
inverse functions or logarithms (most tables prefer logarithms). The inside cover of
the book has»

dx

1�x2
D
1

2
ln

�

1Cx

1�x �CC (in place oftanh�1xCC/:

Remark2 Logarithms were not seen forsin�1x and tan�1x andsec�1x: You
might wonder why. How does it happen thattanh�1x is expressed by logarithms,
when the parallel formula fortan�1x was missing ? Answer:There must be a
parallel formula. To display it I have to reveal a secret that has been hidden
throughout this section.

The secret is one of the great equations of mathematics.What formulas for
cosx and sinx correspond to1

2

�

ex Ce�x
�

and 1
2

�

ex�e�x
�

? With so many
analogies (circular vs. hyperbolic) you would expect to find something. The
formulas do exist, butthey involve imaginary numbers. Fortunately they are very



6.7 Hyperbolic Functions 339

simple and there is no reason to withhold the truth any longer:

cosxD
1

2

�

eix Ce�ix
�

and sinxD
1

2i

�

eix�e�ix
�

: (5)

It is the imaginary exponents that kept those identities hidden. Multiplyingsinx by
i and adding tocosx gives Euler’s unbelievably beautiful equation

cosxC i sinxD eix: (6)

That is parallel to the non-beautiful hyperbolic equationcoshxCsinhxD ex :
I have to say that(6) is infinitely more important than anything hyperbolic will

ever be. The sine and cosine are far more useful than thesinhandcosh: So we end
our record of the main properties, with exercises to bring out their applications.

6.7 EXERCISES

Read-through questions

Cosh xD a and sinhxD b and cosh2x�
sinh2xD c . Their derivatives are d and e and

f . The point.x;y/D .cosht; sinht/ travels on the hyperbola
g . A cable hangs in the shape of a catenaryyD h .

The inverse functions sinh�1x and tanh�1x are equal to
lnŒxC

?
x2 C1� and 1

2 ln i . Their derivatives are j
and k . So we have two ways to write the anti l .
The parallel to coshxCsinhxD ex is Euler’s formula m .
The formula cosxD 1

2

�

eix Ce�ix
�

involves n exponents.
The parallel formula for sinx is o .

1 Find coshxCsinh x;coshx�sinhx; and coshx sinhx:

2 From the definitions of coshx and sinhx; find their
derivatives.

3 Show that both functions satisfyy2 D y:

4 By the quotient rule, verify.tanh x/1 D sech2x:

5 Derive cosh2xCsinh2xD cosh2x; from the definitions.

6 From the derivative of Problem5 find sinh2x:

7 The parallel to .cosxC i sin x/n D cosnxC i sinnx is a
hyperbolic formula.coshxCsinhx/n D coshnxC .

8 Prove sinh.xCy/D sinh x coshyCcoshx sinhy by
changing to exponentials. Then thex-derivative gives
cosh.xCy/D .

Find the derivatives of the functions 9–18:

9 cosh.3xC1/

11 1=coshx

10 sinh x2

12 sinh.ln x/

13 cosh2xCsinh2x

15 tanh
?
x2 C1

17 sinh6x

14 cosh2x�sinh2x

16 .1C tanhx/=.1� tanhx/

18 ln.sechxC tanhx/

19 Find the minimum value of cosh.ln x/ for x¡ 0:
20 From tanhxD 3

5 find sechx; coshx; sinhx; cothx; cschx:

21 Do the same if tanhxD�12=13:
22 Find the other five values if sinhxD 2:

23 Find the other five values if coshxD 1:

24 Compute sinh.ln 5/ and tanh.2 ln 4/:

Find antiderivatives for the functions in 25–32:

25 cosh.2xC1/

27 cosh2x sinhx

29
sinh x

1Ccoshx

31 sinhxCcoshx

26 x cosh.x2/

28 tanh2x sech2x

30 cothxD
ex Ce�x

ex�e�x

32 .sinhxCcoshx/n

33 The triangle in Figure 6.20 has area1
2 cosht sinht:

(a) Integrate to find the shaded area below the hyperbola

(b) For the areaA in red verify thatdA=dt D 1
2

(c) Conclude thatAD 1
2 tCC and showC D 0:

Sketch graphs of the functions in 34–40.

34 yD tanhx (with inflection point)

35 yD cothx (in the limit asxÑ8)

36 yD sechx
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37 yD sinh�1x

38 yD cosh�1x for x¥ 1
39 yD sech�1x for 0  x¤ 1
40 yD tanh�1xD

1

2
ln

�

1Cx

1�x � for |x|  1
41 (a) Multiplying xD sinhyD 1

2

�

ey�e�y
�

by 2ey gives
.ey/2�2x.ey /�1D 0: Solve as a quadratic equation forey :

(b) Take logarithms to findyD sinh�1x and compare with the
text.

42 (a) Multiplying xD cosh yD 1
2

�

ey Ce�y
�

by 2ey gives
.ey/2�2x.ey /C1D 0: Solve forey :

(b) Take logarithms to findyD cosh�1x and compare with the
text.

43 Turn (4) upside down to provey1 D�1=.1�x2/; if
yD coth�1x:

44 Computedy=dxD 1=
?
x2 C1 by differentiatingxD sinhy and

using cosh2y�sinh2yD 1:

45 Computedy=dxD 1=.1�x2/ if yD tanh�1x by differentiat-
ing xD tanhy and using sech2yC tanh2yD 1:

46 Compute dy=dxD�1=xa1�x2 for yD sech�1x; by
differentiatingxD sechy:

From formulas (1); (2); (3) or otherwise; find antiderivatives in
47–52:

47
»
dx=.4�x2/ 48

»
dx=.a2�x2/

49
»
dx=

a
x2 C1

51
»
dx=x

a
1�x2

50
»
xdx=

a
x2 C1

52
»
dx=

a
1�x2

53 Compute
» 1=2

0

dx

1�x2
and

» 1

0

dx

1�x2
:

54 A falling body with friction equal to velocity squared obeys
dv=dt Dg�v2:

(a) Show thatv.t/D
?
g tanh

?
gt satisfies the equation.

(b) Derive thisv yourself, by integratingdv=.g�v2/Ddt:

(c) Integratev.t/ to find the distancef .t/:

55 A cable hanging under its own weight has slopeS D dy=dx that
satisfiesdS=dxD c

?
1CS2: The constantc is the ratio of cable

density to tension.

(a) Show thatS D sinhcx satisfies the equation.

(b) Integratedy=dxD sinhcx to find the cable heighty.x/; if
y.0/D 1=c:

(c) Sketch the cable hanging betweenxD�L and xDL

and find how far it sags down atxD 0:

56 The simplest nonlinear wave equation (Burgers’ equation)
yields a waveformW.x/ that satisfiesW 2 DWW 1�W 1: One
integration givesW 1 D 1

2W
2�W:

(a) Separate variables and integrate:
dxD dW=

�

1
2W

2�W �

D�dW=.2�W /�dW=W:
(b) CheckW 1 D 1

2W
2�W:

57 A solitary water wave has a shape satisfying theKdV
equationy2 D y1�6yy1:

(a) Integrate once to findy2: Multiply the answer byy1:
(b) Integrate again to findy1 (all constants of integration are
zero).

(c) Show that yD 1
2 sech2.x=2/ gives the shape of the

“soliton.”

58 Derive cosixD coshx from equation (5). What is the cosine of
the imaginary anglei D

?�1 ?

59 Derive sinixD i sinhx from (5). What is sini ?

60 The derivative ofeix D cosxC i sinx is .
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