CHAPTER 8

Applications of the Integral

We are experts in one application of the integral—to find theaaneder a curve.
The curve is the graph of = v(x), extending fromx = a at the left tox = b at the
right. The area between the curve and:thaxis is the definite integral.

I think of that integral in the following way. The region is made ughih strips.
Their width isdx and their height is»(x). The area of a strip i®(x) timesdx.

The area of all the strips i§ab v(x) dx. Strictly speaking, the area of one strip is
meaningless—genuine rectangles have wilith My point is that the picture of thin
strips gives the correct approach.

We know what function to integrate (from the picture). We also know how (from
this course or a calculator). The new applications to volume and length and surface
area cut up the region in new ways. Again the small pieces tell the story. In this
chapterwhatto integrate is more important théwow.
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8.1 Areas and Volumes by Slices 373

I 5.1 Areas and Volumes by Slices [N

This section starts with areas between curves. Then it movedumes where the
strips becomsslices We are weighing a loaf of bread by adding the weights of the
slices. The discussion is dominated by examples and figures—the theory is minimal.
The real problem is to set up the right integral. At the end we look at a different way
of cutting up volumes, into thin shellll formulas are collected into final table

Figure 8.1 showshe area between two curve$he upper curve is the graph of
y =wv(x). The lower curve is the graph of = w(x). The strip height isv(x) —
w(x), from one curve down to the other. The widthiis (speaking informally again).
The total area is the integral of “top minus bottom”;

b
area between two curves J [v(x) — w(x)]dx. (1)

EXAMPLE 1  The upper curve is = 6x (straight line). The lower curve ig = 3x?2
(parabola). The area lies between the points where those curves intersect.

To find the intersection points, solve(x) = w(x) or 6x = 3x2.

1271
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Fig. 8.1  Area between curves integral ofv —w. Area in Example 2 starts with > 0.

One crossing is at = 0, the other is akt = 2. The area is an integral frothto 2:

2
area= fab (v—w)dx = foz (6x —3x?)dx = 3x? —x3]0 =4,
EXAMPLE 2 Find the area between the cirale= v/1 — x2 and the45° line w =

X.

First question: Which area and what limits? Start with the pie-shaped wedge in
Figure 8.1b. The area begins at thexis and ends where the circle meets the line.
At the intersection point we haugx) = w(x):

from4/1 — x2 = x squaring gived — x? = x? and therzx? = 1.
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Thusx? = % The endpoint is ak = 1/\/5. Now integrate the strip height— w:

1/v2

J (V1—x2—x)dx= Esin_1x+5xvl—x2—5x2]

0 0

_1Sirrl 1 +1 1 1w
2 V2) 4 4 2\4)

The area ist/8 (one eighth of the circle). To integrasg1 —x2 dx we apply the
techniques of Chapter 7: Set= sin 6, converttof cos'6 df = %(9 +sin 6 cos6),

convert back using = sin~!x. It is harder than expected, for a familiar shape.

Remark Suppose the problem is to find theéhole areabetween the circle and
the line. The figure shows = w at two points, which are = 1/\/5 (already used)
and alsox = —1/\/5. Instead of starting at = 0, which gave% of a circle, we now
include the area to the left.

Main point: Integrating fromx = —1/4/2 to x = 1/4/2 will give the wrong an-
swer. It misses the part of the circle that bulges out over itself, at the far left. In that
part, the strips have heigBb instead ofv —w. The figure is essential, to get the
correct area of this half-circle.

HORIZONTAL STRIPS INSTEAD OF VERTICAL STRIPS

There is more than one way to slice a regiMertical slices givex integrals
Horizontal slices givey integrals We have a free choice, and sometimes the
integral is better.

AY ¥ v

dx

dx‘

Y
=
Y

Fig. 8.2 Vertical slices (xintegrals) vs. horizontal slicey (ntegrals).

Figure 8.2 shows a unit parallelogram, with bdsand heightl. To find its area
from vertical slices, three separate integrals are necessary. You should see why! With

horizontal slices of length and thicknesdy, the area is jusf(; dy =1.

EXAMPLE 3 Find the area under =In x (or beyondx = ¢”) outtox =e.

Thex integral from vertical slices is in Figure 8.2c. Thentegral is in Figure 8.2d.
The area is a choice between two equal integrals (I personally would clpdose

Ji_ Inxdx= [x In x—x]j =1 or fylzo (e—e”)dy = [ey—ey](1)= 1.
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VOLUMES BY SLICES

For the first time in this book, we now look atolumes The regions are
three-dimensional solidsThere are three coordinatesy,z—and many ways to
cut up a solid.

Figure 8.3 shows one basic way—usglices The slices have thicknegh, like
strips in the plane. Instead of the heighof a strip, we now havéhe area4 of a
cross-sectionThis area is different for different sliced: depends or. The volume
of the slice is its area times its thicknegd? = A(x)dx. The volume of the whole
solid is the integral

volume= integral of area times thickness: [ A(x) dx. (2)

Note An actual slice does not have the same area on both sides! Its thickness is
Ax (notdx). Its volume is approximately (x) Ax (but not exactly). In the limit, the
thickness approaches zero and the sum of volumes approaches the integral.

For a cylinder all slices are the same. Figure 8.3b shows a cylinder—not circular
The area is a fixed numbet, so integration is trivialThe volume isA timesh. The

dV = A(x) dx

4

Fig. 8.3 Cross-sections have areidx). Volumes aref A(x) dx.

letter i, which stands foheight reminds us that the cylinder often stands on its end.
Then the slices are horizontal and théntegral orz integral goes fron® to 4.
When the cross-section is a circle, the cylinder has volumh.

EXAMPLE 4 Thetriangular wedgen Figure 8.3b has constant cross-sections with
aread = 1(3)(4) = 6. The volume isbh.

EXAMPLE 5  For thetriangular pyramidin Figure 8.3c, the ared(x) drops from
6 t0 0. It is a general rule for pyramids or cones that their volume has an extra factor
% (compared to cylinders). The volume is n@W instead of6/. For a cone with base
arearr?, the volume istxr2h. Tapering the area to zero leaves orfjyof the
volume

Why the% ? Triangles sliced from the pyramid have shorter sides. Starting from
3 and4, the side length3(1 — x/ k) and4(1 — x/ h) drop to zero ak = h. The area
is A=6(1—x/h)? Notice: The side lengths go down linearly, the area drops
quadratically. The facto§ really comes from integrating? to get%x3:

h h £\ 2 )3 h
J()A(x)dx=f0 6(1—5) dx =-2h (I_Z) :| =2h.

0
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EXAMPLE 6 A half-sphere of radiusk has known volume 1(37R3). Its
cross-sections argemicircles The key relation isx?+r2 = R2, for the right
triangle in Figure 8.4a. The area of the semicircledis= 17 r? = 1 (R? — x?).
So we integrated (x):

R
volume= ffR A(x)dx = im(R?x — %xg’)] o 2nR3.

EXAMPLE 7 Find the volume of the same half-sphere using horizontal slices
(Figure 8.4b). The sphere still has radiRs The new right triangle gives? + r? =
R?. Since we have full circles the arearis? = 7 (R? — y2). Notice that this is4(y)
not A(x). But they integral starts at zero:
R
volume= foR A(y)dy =m(R?y — %y3)]0 = %JTR3 (as before)

Fig. 8.4 A half-sphere sliced vertically or horizontally. Washer ang# — rg2.

SOLIDS OF REVOLUTION

Cones and spheres and circular cylinders are “solids of ragaliitRotating a
horizontal line around the axis gives a cylinder. Rotating a sloping line gives a
cone. Rotating a semicircle gives a sphere. If a circle is moved away from the axis,
rotation produces a torus (a doughnut). The rotation of any cureef (x) produces
asolid of revolution

The volume of that solid is made easier becagrgery cross-section is a circle
All slices are pancakes (or pizzas). Rotating the curve f(x) around thex axis
gives disks of radiug, so the area ist = ry? = 7 [ f(x)]?. We add the slices:

b b
volume of solid of revolution= J ny?dx = J 7 [f(x)]? dx.
a

a

EXAMPLE 8 Rotating y =+/x with 4 =m(v/x2)? produces a “headlight”
(Figure 8.5a):

2
volume of headlight= foz Adx = J~02 wxdx = %mﬁ]o =2m.

If the same curve is rotated around thaxis, it makes a champagne glake slices
are horizontal The area of a slice isx? notzy2. Wheny = 4/x this area isty*.

Integrating fromy = 0 to v/2 gives the champagne volurag1/2)° /5.

revolution around they axis: volume= Jnxz dy.



8.1 Areas and Volumes by Slices 377

EXAMPLE 9 The headlight has a hole down the center (Figure 8.5b). VolsifRe

The hole has radiud. All of the 4/x solid is removed, up to the point whekgx
reachesl. After that, fromx = 1 to x = 2, each cross-section is a disk with a hole.
The disk has radiug’ = 1/x and the hole has radiys= 1. The slice is a flat ring
or a“washer’ Its area is the full disk minus the area of the hole:

area of washee= 72 —ng? =n(+v/x)> —n(1)?> = nx — 7.

This is the areal(x) in themethod of washers. Its integral is the volume:
fz Adx = fz (mx—m)dx = [lnx2 —er]z =1z
1 1 2 2
Please noticeThe washer area is not( f —g)2. ltis A=nf? —ng?.

b+ Va?-x?

outer radius

Fig. 8.5 y =+/x revolved;y = 1 revolved inside it; circle revolved to give torus.

EXAMPLE 10 (Doughnut sliced into washers) Rotate a circle of raditsround
thex axis. The center of the circle stays out at a distancea. Show that the volume
of the doughnut (or torus) &z 2a?b.
The outside half of the circle rotates to give the outside of the doughnut. The inside
half gives the hole. The biggest slice (through the center plane) has outerbagdius
and inner radiud —a.
Shifting over byx, the outer radius i = b ++/a? —x? and the inner radius is
g = b —+/a? — x2. Figure 8.5c shows a slice (a washer) with arg&® — w g2.

aread = (b ++/a2 —x2)®> — (b — a2 —x2)? = 4wbr/a? — x2.

Now integrate over the washers to find the volume of the doughnut:
[¢ A(x)dx=4nb [¢ a2 —x2dx = (4nb)(ima?) =272a>b.

That integral%ywt2 is the area of a semicircle. When we set a sinf the area is
J a? cog6 df. Not for the last time do we meebs'6.

The hardest part is visualizing the washers, because a doughnut usually breaks the
other way. A better description istege] sliced the long way to be buttered.
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VOLUMES BY CYLINDRICAL SHELLS

Finally we look at a different way of cutting up a solid of revadut. So far it was
cut into slices. The slices were perpendicular to the axis of revolution. Now the cuts
areparallel to the axis, and each piece ishan cylindrical shell. The new formula
gives the same volume, but the integral to be computed might be easier.

Figure 8.6a shows a solid cone. A shell is inside it. The inner radinsaisd the
outer radius isc + dx. The shell is an outer cylinder minus an inner cylinder

shell volumer (x 4+ dx)*h — nx*h = wx?h + 2w x (dx)h + w(dx)*h — wx>h.
(3)
The term that matters &7 x (dx)h. The shell volume is essentiall3r x (the dis-
tance aroundlimesdx (the thickness)imes/h (the height). The volume of the solid
comes from putting together the thin shells:

solid volume= integral of shell volumes= fznxh dx. 4)

This is the central formula of the shell method. The rest is examples.

Remark on this volume formulalt is completely typical of integration that/x)?

and (Ax)? disappear. The reason is this. The number of shells growsl Jikex.
Terms of order(Ax)? add up to a volume of ordeAx (approaching zero)The
linear term involving Ax or dx is the one to get rightlts limit gives the integral
f27rxh dx. The key is to build the solid out of shells—and to find the area or volume
of each piece.

EXAMPLE 11  Find the volume of a cone (base aves?, height b) cut into shells.

A tall shell at the center hals nearb. A short shell at the outside h@snear zero.
In between the shell heighit decreases linearly, reaching zeraxat r. The height

in Figure 8.6a ish = b — bx/r. Integrating over all shells gives the volume of the
cone (with the expected):

r 27x367 1
Jznx(b—bf) dx=|:nx2b— X b] — —7r2b,
0 r 0

3r 3

hole radius a

\ shell radius x

b? - x2 (up)
sphere radius b

b? - x* (down)

= e o

Fig. 8.6  Shells of volume2r x/ dx inside cone, sphere with hole, and paraboloid.
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EXAMPLE 12 Bore a hole of radius through a sphere of radids> a.

The hole removes all points out 0= a, where the shells begin. The height of the
shell ish =24/b% — x2. (The key is the right triangle in Figure 8.6b. The height
upward isv/b2 — x2—this is half the height of the shell.) Therefore the sphere-with-
hole has

volume= fab 2nxhdx = fab A x\/ b2 —x2dx.

With u = b% — x? we almost seelu. Multiplying du = —2x dx is an extra factor
=2
volume= —27 [ v/u du = 27 (3u3/?).

We can find limits ont, or we can put back = b% — x2:

b4n

4
volume= —Tn(b2 —x2)3/2] = ?(b2 —a?)32,

a

If a = b (the hole is as big as the sphere) this volume is zer@ 20 (no hole) we
havedrh3 /3 for the complete sphere.

Question What if the sphere-with-hole is cut into slices instead of sl
Answer Horizontal slices are washers (Problé6). \ertical slices are not good.

EXAMPLE 13 Rotate the parabola= x? araund they axis to form a bowl.

We go out tox = V2 (and up toy =2). The shells in Figure 8.6c have height
h =2—x2. The bowl (or paraboloid) is the same as the headlight in Example 8,
but we have shells not slices:

V2 .
2

f 2nx(2—x?)dx =2mwx*— jT4x:| =27,

0

TABLE area between curvest = [(v(x) — w(x)) dx
OE . . . _
SRR solid volume cut into slicesV’ = [A(x)dx or [A(y)d4y
AND solid of revolution cross-sectiod = 7y? or mx?
VOLUMES solid with hole washer areal = 712 — ng?

solid of revolution cut into shellsV = [ 2w xh dx.

Which to use, slices or shell® Start with a vertical line going up toy = cosx.
Rotating the line around the axis produces alice (a circular disk). The radius is
cosx. Rotating the line around the axis produces ahell(the outside of a cylinder).
The height iscosx. See Figure 8.7 for the slice and the shell. For volumes we just
integrater cog x dx (the slice volume) o27x cosx dx (the shell volume).

This is the normal choice—slices through the axis and shells around the
axis. Theny = f(x) gives the disk radius and the shell height. The slice is a washer
instead of a disk if there is also an inner radigisc). No problem—ijust integrate
small volumes.

What if you use slices for rotation around thexis ? The disks are in Figure 8.7b,
andtheir radius isx. This isx = cos 'y in the example. Itisc = £ ~!(y) in gen-
eral. You have to solve = f(x) to find x in terms ofy. Similarly for shells around
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the x axis: The length of the shell is = £ ~!(y). Integrating may be difficult or
impossible.
Wheny = cosx is rotated around the axis, here are the choices for volume:

(good by slicep [ cos’x dx  (bad by shelly [ 27y cos 'y dy.

x=f(y)=cosly

y=f(x)=cos x rx’dy

\""-——._.——-" H
2maydx Y ny2dx \ ! 2nyxdy s /

Fig. 8.7  Slices throughx axis and shells aroungd axis (ood. The opposite way needé ! ().

8.1 EXERCISES

Read-through questions

The area betweery =x3 and y =x* equals the integral of 10 y=sinzx andy =2x andx =0
a . If the region ends where the curves intersect, we firlq y

the limits on x by solving__b . Then the area equals ¢ .

When the area betweery =./x and the y axis is sliced 12 y=eandy=e*andy=e~

horizontally, the integral to computeis d . 13 Find the area inside the three lings=4—x,y =3x, and
In three dimensions the volume of a slice is its thickness= x.

dx times its__e . If the cross-sections are squares of sidg; Fing the area bounded by=12—x,y =+/x, and y = 1.
1—x, the volume comes fron’_f f . Fromx=0to x=1,

this gives the volume g of a square__h . If the cross-
sections are circles of radiud —x, the volume comes from

=e¢* andy =e2*landx =0

X

15 Does the parabolay=1—x2 out to x=1 sit inside or
outside the unit circla? + y2 =1? Find the area of the “skin” be-

[ __i_.Thisgivesthe volume j ofacircular__k tween them.

For a solid of revolution, the cross-sections are| . 16 Find the area of the largest triangle with base on thaxis
Rotating the graph ofy = f(x) around thex axis gives a solid thatfits (a) inside the unit circle (b) inside that parabola.
volume [ __m . Rotating around the axis leads tof __n_. 17 Rotate the ellipsex2/a?+y2/b% =1 around thex axis to

Rotating the area betweep= f(x) and y = g(x) around thex find the volume of a football. What is the volume around the
axis, the slices look like_o . Their areas are_p  so the axis? Ifa=2 andb =1, locate a point(x, y,z) that is in one
volumeis| q . football but not the other.

Another method is to cut the solid into thin cylindricalg \what is the volume of the loaf of bread which comes from
r_. Revolving the area undep = f(x) around they axis, rotatingy = sinx(0<x <) around ther axis ?
a shell has height s and thicknessix and volume_ t

The total volume is[ __u

19 What is the volume of the flying saucer that comes from
rotating y = sinx (0 < x < ) around they axis ?
Find where the curves in 1-12 intersect, draw rough graphs, and

20 What is the volume of the galaxy that comes from rotatin
compute the area between them. 9 y 9

y =sinx (0 <x < ) around thex axis and then rotating the whole
thing around the axis ?

1 y=x2-3andy=1 2 y=x?—-2andy =0

3 y2=xandx=9 4 y2=xandx=y+2 Draw the region bounded by the curves in 21-28. Find the
volume when the region is rotated (a) around thex axis (b)

5 y=x*-2x?andy=2x> 6 x=y>andy=x* around the y axis.

7 y=x%2andy = —x2+18x 21 x4+y=8,x=0,y=0

8 y=1/xandy=1/x2 andx =3 22 y—e*=1,x=1,y=0,x=0

9 y=cosx andy = cox 23 y=x*y=1x=0
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24 y=sinx,y=cosx,x =0 (@) The curveC is part of a (circle) (ellipse) (parabola).
(b) The height of poin?? interms ofxis .

(c) The aread(x) of the triangular slice is
(d) The volume of the wedgeis .

25 xy=1,x=2,y=3

26 x2—y% =9, x+y =9 (rotate the region wherg > 0)
27 x2=y3, x3 =y2

28 (x—=224+(—12=1

In 29-34 find the volume and draw a typical slice.

29 A cap of height: is cut off the top of a sphere of radiug. Slice
the sphere horizontally starting at= R — .

30 A pyramid P has height 6 and square base of side Its
volume isi (6)(2)2 =8.

(@) Find the volume up to height by horizontal slices.

What is the length of a side at heighP 40 The same wedge is sliced perpendicular tojthais.
(b) Recompute by removing a smaller pyramid frém (@) The slices are now (triangles) (rectangles) (curved).
31 The base is a disk of radius. Slices perpendicular to the () Thesliceareais __ (slice heighty tan 6).
base are squares. (c) The volume of the wedge is the integral .
32 The base is the region under the parabala=1—x2. (d Change the radius froml to r. The volume is
multiplied by .

Slices perpendicular to theaxis are squares.
41 A cylinder of radiusr and height / is half full of water.

33 The base is the region under the parabgla=1—x2. 7 ' i
Tilt it so the water just covers the base.

Slices perpendicular to theaxis are squares.

34 The base is the triangle with corner®,0),(1,0),(0,1).
Slices perpendicular to theaxis are semicircles.

(@) Find the volume of water by common sense.

(b) Slices perpendicular to ther axis are (rectangles)

(trapezoids) (curved). | had to tilt an actual glass.
35 Cavalieri's principle for areas: If two regions have strips

of equal length, then the regions have the same area. Drawf?a Find the area of a slice in Problesi. (The tilt angle has
parallelogram and a curved region, both with the same strfg§t =2h/r.) Integrate to find the volume of water.

as the unit square. Why are the areas equal ? The slices in 43—46 are washers. Find the slice area and vol-

36 Cavalieri's principle for volumes: If two solids have slicesime.

of equal area, the solids have the same volume. Find the The rectangle with sides =1, x =3, y =2, y =5 is rotated
volume of the tilted cylinder in the figure. around ther axis.

3f7 Drawl another region with the same slice areas as the The same rectangle is rotated around theis.
tilted cylinder. When all aread(x) are the same, the volumes
1) are the same. 45 The same rectangle is rotated around the jire1.

38 Find the volume common to two circular cylinders of radius 46 Draw the triangle with cornergl,0), (1,1),(0,1). After ro--
Ore eighth of the region is shown (axes are perpendicular and héion around thex axis, describe the solid and find its
zontal slices are squares). volume.

47 Bore a hole of radiusa down the axis of a cone and
through the base of radiub. If it is a 45° cone (height also
b), what volume is left ? Check= 0 anda = b.

48 Find the volume common to two spheres of radiusif
their centers are(r —h) apart. Use Problen29 on spherical
caps.

49 (Shells vs. disks) Rotate =3 —x around thex axis from
x=0 to x=2. Write down the volume integral by disks and
then by shells.

39 A wedge is cut out of a cylindrical tree (see figure). Ored (Shells vs. disks) Rotatey =x3 arcund the y axis from
cut is along the ground to ther axis. The second cut is aty =0 to y =8. Write down the volume integral by shells and
anglef), also stopping at the axis. disks and compute both ways.
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51 Yogurt comes in a solid of revolution. Rotate the lin€3 y=Inx, 1 <x <e (around thex axis)
y=mx amound they axis to find the volume betweem =a

. 2 o
andy = b. 64 The region betweem = x~ andy = x is revolved around the

axis. (a) Find the volume by cutting into shells. (b) Find the volume
52 Supposey = f(x) decreases fronf(0) =5 to f(1)=0. The by slicing into washers.

curve is rotated around theaxis.Compare shells to disks: 65 The region betweeny = £(x) and y =1+ £(x) is rotated

around they axis. The shells have height . The volume out to

xX=ais . It equals the volume of a because the shells

Substitutey = f(x) in the second. Also substitutéy = f/(x)dx. &€ the same.

Integrate by parts to reach the first. 66 A horizontal slice of the sphere-with-hole in Figure 8.6b is a
o . . ) 2_ 2 2 2

53 If a roll of paper with inner radiu® cm and outer radius Waher. Its areaisx® —na® =7 (b* —y* —a”).

10 cm has aboutl0 thicknesses per centimeter, approximately (a) Find the upper limit ory (the top of the hole).

how long is the paper when unrolled ? (b) Integrate the area to verify the volume in Examtite

& 2mxf(xydx = [P (£ =1(Y))2dy.

54 Find the approximate volume of your brain. OK to include7 If the hole in the sphere has lengthshow that the volume is
everything above your eyes (skull too). 47 /3 regardless of the radii andb.

Use shells to find the volumes in 55-63. The rotated regions Iie68 An upright F:ylmder of radiug- is sliced by two parallel planes
at anglex. One is a height above the other.

between the curve andyx axis. )
(@) Draw a picture to show that the volume between the planes

55 y=1—x2,0<x <1 (around they axis) is 7r2h.

56 y=1/x,1<x <100 (around they axis) (b) Tilt the picture byx, so the base and top are flat. What is
) ) the shape of the base ? What is its ade2 What is the height

57 y=+/1—x2,0<x <1 (around either axis) H of the tilted cylinder ?

58y =1/(1+x?),0<x <3 (around they axis) 69 True or false with a reason.

59 y =sin(x2), 0 < x <+/7 (around they axis) (@) A cube can only be sliced into squares.
60 y= 1/\/@, 0<x <1 (around they axis) (b) Acube cannoF be cut into cylindrical shells.
) ) (c) The washer with radit and R has arear(R —r)2.
61 y=x% 0<x<2(around ther axis) (d) The planes = 1 slices a3-dimensional sphere out ofé
62 y=e*, 0<x <1 (around ther axis) dimensional sphere? +y2 +z2 + w2 =1.
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I 5.2 Length of a Plane Curve [N

The graph ofy = x*2 is a curve in thex-y plane.How long is that curve? A
definite integral needs endpoints, and we specify 0 andx = 4. The first problem
is to know what “length function” to integrate.

The distance along a curve is thec length To set up an integral, we break the
problem into small pieces. Roughly speakisgall pieces of a smooth curve are
nearly straight We know the exact lengths of a straight piece, and Figure 8.8
shows how it comes close to a curved piece.

8 Rz
SR |
(As)? = (Ax)* + (Ay)? o
d 2
(ds)? = (dx)? + (ﬁ) (dx)? dsf 4y
dx
ds = +/1+(dy/dx)*dx
X X

Fig. 8.8 LengthAs of short straight segment. Length of very short curved segment.

Here is the unofficial reasoning that gives the length of the curve. A straight piece
has(As)? = (Ax)?+ (Ay)2. Within that right triangle, the heighhy is the slope
(Ay/Ax) timesAx. This secant slope is close to the slope of the curve. Thuss
approximately(dy /dx) Ax.

As ~+/(Ax)?+ (dy/dx)2(Ax)? = /1+ (dy/dx)? Ax. 1)

Now add these pieces and make them smaller. The infinitesimal triangle has
(ds)? = (dx)*+ (dy)?. Think of ds asy/1 + (dy/dx)? dx and integrate:

length of curve= Ja’s = J\/ 1+ (dy/dx)? dx. 2
EXAMPLE 1 Keepy =x%2 anddy/dx = 2x'/2. Watch out for2 and 2:

4 3/274
length= [;'\/14+3x dx= (3) () (1+32)"7] = Ha02-132).  (3)
This answer is just abov& A straight line from(0,0) to (4,8) has exact length
1/80. Note4? 4 82 = 80. Sincey/80 is just belowd, the curve is surprisingly straight.

You may not approve of those numbers (or the reasoning behind them). We can fix
the reasoning, but nothing can be done about the numbers. This exampie/?
had to be chosen carefully to make the integration possible at all. The length integral
is difficult because of the square root. In most cases we integrate numerically.

EXAMPLE 2 The straightlinep =2x fromx =0to x =4 hasdy/dx = 2:

length = f(f V1+4dx =44/5=1+/80 asbe-fore  (just checking)

We return briefly to the reasoning. The curve is the graph of f(x). Each piece
contains at least one point where secant slope equals tangentAlppax = f'(c).
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8 Applications of the Integral

The Mean Value Theorem applies when the slope is continuous-isthéquired for

a smooth curve. The straight lenghty is exactly\/(Ax)2 +(f"(c)Ax)2. Adding
then pieces gives the length of the broken line (close to the curve):

Asn — o0 and Axmax— 0 this approaches the integral that gives arc length.

Ay =f'(c)Ax

ZAS, Z\/l—l—[f(cl 2 Ax;.

8A The length of the curvg = f(x) fromx =atox=61is

s=[ds= [P\ /T+ [ 0Pdx= [ /14 dy/dx)2dx.  (4)

EXAMPLE 3  Find the length of the first quarter of the cirgle= /1 — x2.

Heredy/dx = —x/+/1 —x2. From Figure 8.9a, the integral goes from=0 to
x=1

1 _ 1 2 Uy
length= 14+(dy/dx dx=f 1+ dxzj .
g L\/ (dy/dx) s |

1

The antiderivative isin™
the full circumferencér.

x. ltequalsr/2 atx = 1. This lengthsr /2 is a quarter of

EXAMPLE 4 Compute the distance around a quarter ofahipse y2 +2x2 = 2.
The equation iy = +/2 —2x2 and the slope idy /dx = —2x/4/2 —2x2. Sof ds

is
J / f /2+2x2 r /14 x2
dx
2 2x2 2— 2x2 o V1—x2

That integral can't be done in closed forifhe length of an ellipse can only be
computed numericallyThe denominator is zero at= 1, so a blind application of
the trapezoidal rule or Simpson’s rule would gilength= co. The midpoint rule
giveslength= 1.91 with thousands of intervals.

y=Y2-2x?
ds=41+ (.\")2 dx

x=cost,y=2 sin/

15 =4/ sin®1 + 2 cos?r dt

N2

I+(\) dx

X =cost, y=sint

ds =\f sin®t + cos2t dt

dy

dy dx

start at t = ()\‘_.

start at 1 = 0~ dx

X

Fig. 8.9  Circle and ellipse, directly by = f(x) or parametrically byt (¢) andy(z).
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LENGTH OF A CURVE FROM PARAMETRIC EQUATIONS: x(f) AND y(f)

We have met the unit circle in two forms. Onex+ y? = 1. The other isx = cost,

y =sint. Sinceco$t +sir’t = 1, this point goes around the correct circle. One
advantage of the “parameter is to give extra information—it tellgvherethe point

is and alsowhen In Chapter 1, the parameter was the time and also the angle—
because we moved around the circle with spked

Usingt is a natural way to give the position of a particle or a spacecraft. We can
recover the velocity if we know andy at every timef. An equationy = f(x) tells
the shape of the path, not the speed along it.

Chapter 12 deals with parametric equations for curves. Here we concentrate on
the path length—which allows you to see the idea of a parametavithout too
much detail. We giver as a function of andy as a function of. The curve is still
approximated by straight pieces, and each piece(hag? = (Ax)?+ (Ay)2. But
instead of using\y = (dy/dx) Ax, we approximaté\x andAy separately:

Ax~(dx/dt)At, Ay~ (dy/dt)At, As=~+/(dx/dt)?+ (dy/dt)? At.

8B The length of a parametric curve is an integral with respect to

[ ds = [(ds/dt)dt = [/(dx/dt)*+ (dy/d1) dt. (6)

EXAMPLE 5 Find the length of the quarter-circle usimg= cost and y = sint:

/2 /2 /2
J \/(dx/df)z-i-(dy/dt)zdtzf \/sin2t+co§tdt:j dt:%.
0 0 0

The integral is simpler thai /4/1 — x2, and there is one new advantayfée can
integrate around a whole circle with no troublearametric equations allow a path
to close up or even cross itself. The timéeeps going and the poik (¢), y(¢))
keeps moving. In contrast, curves= f(x) are limited to oney for eachx.

EXAMPLE 6 Find the length of the quarter-ellipse= cost and y = V2sint:

On this pathy? 4 2x? is 2 sir’t +2cogt =2 (same ellipse). Thaon-parametric
equationy = 4/2 — 2x2 comes from eliminating. We keep:

/2 /2
Iength:f V(dx/dt)? + (dy/dt)? dt = f Vit +2co2rdr. (7)
0 0

This integral(7) must equal5). If one cannot be done, neither can the other. They
are related by = cost, but(7) does not blow up at the endpoints. The trapezoidal
rule gives1.9101 with less thanl 00 intervals. Section 5.8 mentioned that calculators
automaticallydo a substitution that mak€S) more like(7).

EXAMPLE 7 The pathx =2, y =3 goes from(0,0) to (4, 8). Stop atr = 2.

To find this path without the parameterfirst solve fors = x'/2. Then substitute
into the equation fory: y =¢3 = x3/2. The non-parametric form(with ¢ elimi-
nated)is the same curve = x*/2 as in Examplel.

The length from thet-integral equals the length from the-integral. This is
Problem 22.
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EXAMPLE 8 Special choice of parameter is x. The curve becomes =1,
y =132,
If x=1¢ thendx/dt =1. The square root ir{6) is the same as the square root
in (4). Thus the non-parametric form= f(x) is a special case of the parametric
form—just taker = x.

Comparex =, y =t3/2 with x =2, y = 3. Same curve, same length, differ-
ent speed

EXAMPLE 9 Define “speedb short distance _ ds Itis dx 2-|— dy\*
P Y shorttme  dr’ dt dt )’

When a ball is thrown straight upwardx /dt is zero. But the speed is n@y /dt.
Itis |dy/dt|. The speed is positive downward as well as upward.

8.2 EXERCISES

Read-through questions

The length of a straight segmentA¢ across, Ay up) is 10 Find the length fromt =0 to t = of the curve given by

As= __a . Between two points of the graph of(x),Ay is x =cost +sint, y =cost —sinz. Show that the curve is a circle (of
approxmatelydy/dx times __ b . The length of that piece what radius ?).
is approximately r/(Ax)2 + . An infinitesimal piece of . .
the Eﬂrve has I)(/enggthis)— d Then the arc Iengtﬁ |ntegralll Find the length frony =0 to r = 7/2 of the curve given by
is[_e - X =Co0st, y =t —sint.
For y—4—x from x=0 to x=3 the arc length is 12 What integral gives the length of Archimedes’ spiral
- 3 N = =tsint ?
J_f = g .Fory = x3 the arc length integral is_h X =rCost, y=tsint
The curvex = cost, y =sin is the same as_i . The length 13 Find the distance traveled in the first second (te 1) if
- R = _1.2 . _1 3/2
of a curve given byx(z), y(t) is [4/ | dt. For example ¥=3i%y=30Q+ 7%
x=00st, y=sint from t=x/3 to t =x/2 has length__k . 14 x:(l——cosZt)cost and y_(1+ cos 2t)sint lead to
The speed isds/dt= __| . For the special casex =1, 4(1—x2—y2)3 27(x% — y2)2. Find the arc length from =0 to
y = f(t) the length formula goes back fo,/__m _dx. /4.

Find the lengths of the curves in Problems 18.

1 y=x3/2from(0,0) to (1,1) .

) 15 One arch ofy =sinx, fromx =0tox = .
2 y=x2/3 from (0,0) to (1,1) (compare with Probleni or put .
u = % + x2/3 in the length integral) 16 y=e*fromx=0tox=1.

Find the arc lengths in 15-18 by numerical integration.

17 y=Inxfromx=1tox =e.

18 x=cost,y=3s8nt,0<x <27,

4

9
3 y= %(x +2)3/2 fromx=0tox =1
4 y=

1(x2-2)3/2 fromx=2tox =4
3

19 Draw a rough picture of = x1°. Without computing the length

5 y:? %fromx_ltOx_3 of y =x" from (0,0) to (1, 1), find the limit asn — 0.
4 1 20 Which is longer between(1,1) and (2, %), the hyperbola
6 y="7+ <oz fromx=1tox=2 y = 1/x or the graph ofc +2y =3?
7 y= _x3/2 x1/2 fromx=1tox =4 21 Find the speeds/dt on the circlex =2 cos3t,y =2sin3t.
8 y=x2from (0,0) to (1,1) 22 Examplesl and7 werey = x3/2 andx =2, y =13:
9 The curve given byx=cos’s, y=sn is an astroid length= fé\/@d% length= [ \/42 1 9¢% d1.

(a hypocycloid). Its non-parametric form is2/3 + y2/3 =1.
Sketch the curve from=0to ¢ = /2 and find its length. Show by substituting = that these integrals agree.
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23 Instead ofy = f(x) a curve can be given as= g(y). Then staircase. (The length of this° line is v/2. The staircase can be

\/ 2 ; \/ 2 close when its length is not close.)
ds =1/(dx)?+(dy)? =+/(dx/dy)?+1dy.
30 The area of an ellipse igab. The area of a strip around

Draw.x =5y from y =0to y = 1 and find its length. it (width A) is 7(a+A)(b+A)—mwab ~m(a+b)A. The dis-
24 The length of x=y»32 from (0,00 to (1,1) is tance around the ellipse seems tobg: +b). But this distance
is impossible to find—what is wrong ?

[ds= fq/%y +1dy. Compare with Problem : Same length ?

Same curve ? 31 The pointx = cost, y =sint, z =t moves on &pace curve
25 Find the length ofc = L (e¥ +¢~7) fromy = —1to y = 1 and (@) In three-dimensional spacés)? equals(dx)?+ :
draw the curve. In equation (6)¢s is now dt.

(b) This particular curve hags = . Find its length from
t=0tor=2m.

(c) Describe the curve and its shadow in theplane.

26 The length ofx = g(y) is a special case of equation (6) with
y =t andx = g(¢). The length integral becomes .

27 Plot the point x=3cost, y =4sint at the five times
t=0, n/2, m, 3w/2, 2x. The equation of the curve is32 Explain in 50 words the difference between a non-

(x/3)2+(y/49)?=1, not a circle but an . This curve parametric equationy = f(x) and two parametric equations

cannot be written ay = f(x) because ) x=x(t),y=y().

28 (a) Find the length of = cot, y =sin?t,0< y <. 33 Write down the integral for the length of y = x2 from (0,0)
(b) Why does this path stay on the line-y =17? to(1,1). Shqw tha_ty = %xz from (_0, 0) to (2,2) is exactly twice as
(c) Why isn't the path length equal &2 ? long. If possible give a reason using the graphs.

29 (important) The liney =x is dose to a staircase of pieces34 (for professors) Compare the lengths of the parabotax?
that gostraight across or straight upWith 100 pieces of length and the line y = bx from (0,0) to (b,b?). Does the difference
Ax=1/100 or Ay =1/100, find the length of carpet on theapproach a limitag — oo ?
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I 3 Arca of a Surface of Revolution |

This section starts by constructing surfacksurve y = f(x) is revolved around
an axis That produces asurface of revolutiofi which is symmetric around the
axis. If we revolve a sloping line, the result is a cone. When the line is parallel to the
axis we get a cylinder (a pipe). By revolving a curve we might get a lamp or a lamp
shade (or even the light bulb).

Section 8.1 computed the volume inside that surfddes section computes the
surface areaPreviously we cut the solid into slices or shells. Now we need a good
way to cut up the surface.

The key idea ido revolve short straight line segmentheir slope isAy/Ax.
They can be the same pieces of lendth that were used to find length—now we
compute area. When revolved, a straight piece producdsrabband’ (Figure 8.10).
The curved surface, from revolving= f(x), is close to the bands. The first step is
to computethe surface area of a band

A small comment: Curved surfaces can also be cut into tiny patches. Each patch
is nearly flat, like a little square. The sum of those patches leads to a double integral
(with dx dy). Here the integral stays one-dimension&t (or dy or dt). Surfaces of
revolution are special—we approximate them by bands that go all the way around.
A band is just a belt with a slope, and its slope has an effect on its area.

middle radius x
2nr \

side As

height v

area AS = 2nrAs area AS = 2nxAs

area AS = 2myAs

Fig. 8.10 Revolving a straight piece and a curve around thexis andx axis.

Revolve a small straight piecéeqgth As not Ax). The center of the piece goes
around a circle of radius. The band isa slice of a coneWhen we flatten it out
(Problemsl 1 — 13) we discover its area. The area is side lengthAs times the
middle circumferencernr:

The surface area of aband BzrAs =2arv/1+ (Ay/Ax)? Ax.

For revolution around the axis, the radius isr = x. For revolution around the
x axis, the radius is the height:= y = f(x). Figure 8.10 shows both bands—the
problem tells us which to use. The sum of band af2as As is close to the ared

of the curved surface. In the limit we integr&er ds:

8C The surface area generated by revolving the cyrve f(x) betweenx = a
andx =bis

S — fab 2ny+/1+(dy/dx)?dx aroundthex axis (r=y) 1)
S =, 27x\/1+(dy/dx)2dx aroundthey axis (r=x). (2)




8.3 Area of a Surface of Revolution

EXAMPLE 1 Revolve a complete semicircle= 1/ R2 — x2 around thex axis.

The surface of revolution is sphere Its area (known!) igtr R?. The limits onx are

—R andR. The slope ofy =4/ R2 —x2 isdy/dx = —x/+/R? — x2:

R 2 R
areaS:f 271\/R2—x21/1+%dx=f 27R dx = 47 R,
—R —X _R

EXAMPLE 2 Revolve a piece of the straight line= 2x around thex axis.

The surface is @onewith (dy/dx)? = 4. The band fromx =0 to x = 1 has area

2n\/§:
S={[2nyds= fol 27 (2x)y/1+4 dx =274/5.

This answer must agree with the formdar As (which it came from). The line
from (0,0) to (1,2) has lengthAs = V5. 1ts mid-point is(%, 1). Around thex axis,
the middle radius i = 1 and the area i%n\/g.

EXAMPLE 3 Revolve the same straight line segment aroundytfzis. Now the
radius isx instead ofy = 2x. The area in Example 2 is cut in half:

S=[2nx ds:fo1 27x4/1+4 dx = 74/5.

For surfaces as for arc length, only a few examples have convenient answers.
Watermelons and basketballs and light bulbs are in the exercises. Rather than

stretching out this section, we give a final area formula and show how to use it.
The formula applies when there iparameter. Instead of x, f(x)) the points on

the curve aréx(r), y(t)). Ast varies, we move along the curve. The length formula

(ds)? = (dx)?+ (dy)? is expresseth terms oft.
For the surface of revolution around theaxis, the area becomes-antegral:

8D The surface area i 2y ds = | 27y (t)\/(dx/dt)? + (dy/dt)? dt.(3)

EXAMPLE 4 The pointx = cost,y =5+ sint travels on a circle with center at

(0,5). Revolving that circle around the axis produces a doughnut. Find its surface

area.

Solution  (dx/dt)®+ (dy/dt)? =sinft +cogt = 1. The circle is complete at
t=2m:

2w

0

[ 2ny ds= fozn 2n(5+sint)dt = [271(5[ —COS[)] =2072.

389
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8.3 EXERCISES

Read-through questions

A surface of revolution comes from revolving a a  around

13 By similar trianglesR/s = R'/s’ or Rs’=R's. The middle

b . This section computes the ¢ . When the curve is radiusr is %(R+R’). Substitute forr and As in the proposed

a short straight piece (length\s), the surface is a_d . Its
area is AS = e . In that formula (Problemi3) r is the
radius of__f . The line from(0,0) to (1,1) has length g

and revolving it produces area h .
When the curvey = f(x) revolves around ther axis, the

surface area is the integral i . For y =x2 the integral to
compute is j . Wheny =x2 is revolved around the axis,
the area isS= __k . For the curve given by =2r,y =12,
changedsto__ | dt.

Find the surface area when curves 1-6 revolve around theaxis.
1 y=+/x, 2<x<6
y= x3, 0<x<l1
y=7x, —1<x<1 (watch sign)

2

3

4 y=+/4—x2, 0<x<2
5 y=+/4—x2, —-1<x<I1
6

y=coshx, 0<x<l.

In 7-10 find the area of the surface of revolution around they
axis.

7 y=x%2, 0<x<2 8 y:%xz—l—%, 0<x<1

9 y=x+1, 0<x<3 10 y=x13, o<x<1

11 A cone with base radiuRR and slant heights is laid out
flat. Explain why the angle (in radians) &=2nzR/s. Then the
surface area is a fraction of a circle:

(52)m2=(5)=
area=| — |as“ = — | ns®“ =nRs.
2 s

12 A band with slant heightAs =s—s’ and radii R and R’
is laid out flat. Explain in one line why its surface area
aRs—naR's’.

area formula2zr As, to show that this gives the correct area
aRs —mR's'.

14 Slices of a basketball all have the same area of cover, if they
hawe the same thickness.

(a) Rotate y=+/1—x2 around thex axis. Show that
dS =2mdx.

(b) The area between=a andx =a+his

(c) % of the Earth’s area is above latitude .

15 Change the circle in Example 4 tor=a cost and
y=b+asint. Its radius is and its center is .
Find the surface area of a torus by revolving this circle around the
axis.

16 What part of the circle x= R cost,y = Rsint should
rotate around they axis to produce the top half of a sphere?
Choose limits on and verify the area.

17 The base of a lamp is constructed by revolving the
quarter-circle y = 1/2x —x2 (x =1tox =2) around they axis.
Draw the quarter-circle, find the area integral, and compute
the area.

18 The light bulb is a sphere of radius/2 with its bottom
sliced off to fit onto a cylinder of radiud/4 and lengthl1/3.
Draw the light bulb and find its surface area (ends of the
cylinder not included).

19 The lamp shade is constructed by rotating=1/x around
the y axis, and keeping the part from=1 to y =2. Set up
the definite integral that gives its surface area.

20 Compute the area of that lamp shade.

21 Explain why the surface area is infinite when=1/x
is rotated around thex axis (I <x <oo). But the volume
of “Gabriel's horn” is . It can't enough paint to
paint its surface.

22 A disk of radius1” can be covered by four strips of tape
igvidth 1”). If the strips are not parallel, prove that they can't
cover tﬁe disk.Hint: Change to a unit sphere sliced by planes
%” apart. Problem 14 gives surface arefor each slice.

23 A watermelon (maybe a football) is the result of rotating
haf of the ellipse x=+/2cost, y=sint (which means
x2+42y2 =2). Find the surface area, parametrically or not.

24 Estimate the surface area of an egg.
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I 5.4 Probability and Calculus | EEEEEEEE

Discrete probability usually involves careful counting. Not many samples are taken
and not many experiments are made. There is a list of possible outcomes, and a
known probability for each outcome. But probabilities go far beyond red cards and
black cards. The real questions are much more practical:

1. How often will too many passengers arrive for a flight ?
2. How many random errors do you make on a quiz ?
3. What is the chance of exactly one winner in a big lottery ?

Those are important questions and we will set up models to answer them.

There is another point. Discrete models do not involve calculus. The number of
errors or bumped passengers or lottery winners is a small whole nu@dleulus
enters for continuous probabilityInstead of results that exactly equabr 2 or
3, calculus deals with results that fall in a range of numbers. Continuous probability
comes up in at least two ways:

(A) An experimentis repeated many times and we &kerages
(B) The outcome lies anywhere in amterval of numbers.

In the continuous case, the probability of hitting a particular value = n becomes
zero. Instead we havemobability densityp (x)—which is a key ideaThe chance
that a randomX falls betweer: andb is found by integrating the densipy(x):

Prob{a < X <b} = (fab p(x)dx. (1)

Rouwghly speaking,p(x) dx is the chance of falling between and x + dx. Cer-
tainly p(x) = 0. If @ andbd are the extreme limits-co andoo, including all possible
outcomes, the probability is necessarily one:

Prob{—o0 < X < 4w} = f_// p(x)dx=1. (2)

This is a case where infinite limits of integration are natural and unavoidable. In
studying probability they create no difficulty—areas out to infinity are often easier.
Here are typical questions involving continuous probability and calculus:

4. How conclusive is &3% — 47% poll of 2500 voters ?
5. Are 16 random football players safe on an elevator with capa&60 pounds ?
6. How long before your car is in an accident ?

It is not so traditional for a calculus course to study these questions. They need extra
thought, beyond computing integrals (so this section is harder than average). But
probability is more important than some traditional topics, and also more interesting.
Drug testing and gene identification and market research are major applications.
Comparing Questiork-3 with 4-6 brings out the relation afiscreteto continuous—
the differences between them, and the parallels.

It would be impossible to give here a full treatment of probability theory. | believe
you will see the point (and the use of calculus) from our examples. Frank Morgan'’s
lectures have been a valuable guide.
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DISCRETE RANDOM VARIABLES

A discreterandom variable&X has a list of possible values. For two dice the outcomes
areX =2,3,...,12. For coin tosses (see below), the list is infiné=1,2,3, ....

A continuousvariable lies in an interval < X <b.

EXAMPLE 1 Toss a fair coin until heads come up. The outcothis the number
of tossesThe value ofX is 1 or 2 or 3 or ..., and the probability i% that X =1

(heads on the first toss). The probability of tails then heags s ;. The probability

thatX =nis p, = (%)"—this is the chance of — 1 tails followed by headsThe
sum of all probabilities is necessarily.

pitptpsteo=gz+z+gto=L

I

EXAMPLE 2 Suppose a student (not you) makes an avera@euiforced errors
per hour exam. The number of actual errors on the next exakh=s0 or 1 or 2
or .... A reasonable model for the probability aferrors—when they are random
and independent—is tHeoisson mode{pronounced Pwason):

n
pn = probability of n errors = — e 2.
n!

The probabilities of no errors, one error, and two errorsggiep;, and p;:

20, 1, 2t 22,
pozae :Te ~.135 plzﬂe r .27 pgzae

~.27.
The probability of more than two errorsis—.135 —.27 — .27 = .325.

This Poisson model can be derived theoretically or tested experimentally. The total
probability is agairl, from the infinite series (Sectiah6) for e?:

20 20 22 s 2 s
p0+p1+p2+---=(a+ﬁ+5+---)e =e“e =1 3)

EXAMPLE 3 Suppose on averageout of 100 passengers with reservations don’t
show up for a flight. If the plane hold8 passengersyhat is the probability that
someone will be bumpedl

If the passengers come independently to the airport, use the Poisson mod2| with
changed td. X is the number of no-shows, aidl= n happens with probability,, :

R » 3

_ _ - ,-3_ -3
Pn pO—O!e p1—1!€ =3e ",

~n!
There aré98 seats and 00 reservations. Someone is bumpe&it=0or X = 1:
chance of bumping= po+ p1 =e 3 +3e73 ~ 4/20.

We will soon define theverageor expected valuer meanof X —this model has
u=3.
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CONTINUOUS RANDOM VARIABLES

If X is the lifetime of a VCR, all numberX >0 are possible. IfX is a score on
the SAT, ther200 < X < 800. If X is the fraction of computer owners in a poll of
600 people,X is betweer) and 1. You may object that the SAT score is a whole
number and the fraction of computer owners mudi bel/600 or2/600 or.... But

it is completely impractical to work witl601 discrete possibilities. Instead we take
X to be acontinuous random variablefalling anywherein the rangeX >0 or
[200,800] or 0 < X < 1. Of course the various values &f are not equally probable.

EXAMPLE 4 The average lifetime of a VCR i yeas. A reasonable model for
breakdown time is aexponential random variablelts probability density is

p(x)= i e ** for 0<x<c0.
The probability that the VCR will eventually breakls

Jy peitdn =[] =0 (=1 @

The probability of breakdown withifh2 years X from 0 to 12) is .95:

jolz % e 4 dx = [—e’x/“](l)2 =—e34+1~.95. %)

An exponential distribution hap(x) =ae~%*. lts integral from0 to x is
F(x)=1—e %", Figure 8.11 is the graph far= 1. It shows the areaup to=1.
To repeatThe probability thata < X < b is the integral of p(x) from a to b.

i

2/e? 4.5¢7° 1
[ 41 S
1/e? p,= ""'{’_, &1 : == -
f e~ | I-1/e
n =

0 1 2w

Fig. 8.11  Probabilities add ta& p, = 1. Continuous density integrates fop(x) dx = 1.

EXAMPLE 5 We now define the most important density function. Suppose the
average SAT score i§00, and thestandard deviatioridefined below—it measures
the spread around the average}@®). Then thenormal distribution of grades has

2 2
e (X =50007/2Q2007  for  _op < x < o0,

1
Pl = 200421

This is the normal (or Gaussian) distribution with me#® and standard deviation
200. The graph ofp(x) is the famoudell-shaped curvén Figure 8.12.

A new objection is possible. The actual scores are bet@8@mnd800, while the
densityp(x) extends all the way from-c0 to co. | think the Educational Testing Ser-
vice counts all scores ov800 as800. The fraction of such scores is pretty small—in
fact the normal distribution gives

G
Prob{X > 800} = J e~ (x=50002/2(20002 5\ 0013.  (6)

800 2004/ 27
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.98
84 4 Y
p(x) F(x)= J p(x)dx
.50+ -
|

16 | ‘

.02 4 I 1
-2 -1 0 1 2 -2 —1 0 1 2
pu—20 u—o u u+o p+2o u—2o u—o 7, u+o u+2o

Fig. 8.12 The normal distribution (bell-shaped curve) and its cumuéatiensityF (x).

Regrettably;e—"2 has no elementary antiderivative. We need numerical integration.
But there is nothing the matter with that! The integral is called #dr function”

and special tables give its value to great accuracy. The integzeatl’t%f/2 from —o0
to o0 is exactlyy/27. Then division byy/27 keepsf p(x)dx=1.

Notice that the normal distribution involvé@/o parametersThey are the mean
value (in this casg = 500) and the standard deviation (in this case- 200). Those
numbergnuandsigmaare often given the “normalized” valugs= 0 ando = 1:

ef(xf/t)2/202 —e2/2

plx)= becomes p(x) = e

o 21
The bell-shaped graph gf is symmetric around the middle point= w. The width
of the graph is governed by the second parameteshich stretches the axis and
shrinks they axis (leaving total area equal 1Q. The axes are labeled to show the
standard casg = 0,0 = 1 and also the graph for any otherando.
We now give a name to the integral pfx). The limits will be —oo andx, so the
integral F'(x) measures thprobability that a random sample is below

Prob{X <x}=[" p(x)dx = cumulative density functionF(x).  (7)

F(x) accumulates the probabilities given Ipfx), so dF/dx = p(x). The total
probability is F(c0) = 1. This integral from—oc0 to co covers all outcomes.

Figure 8.12b shows the integral of the bell-shaped normal distribution. The middle
pointx = u hasF = % By symmetry there is 80 — 50 chance of an outcome below
the mean. The cumulative densif(x) is near./6 at u —o and near84 at it + o.
The chance of falling in between i84 — .16 = .68. Thus68% of the outcomes are
less than one deviatian away from the centen.

Moving out to u —20 and i+ 20, 95% of the area is in betweeWith 95%
confidenceX is less than two deviations from the mea®nly one sample iR0
is further out (less than one #0 on each side).

Note thato = 200 is not the precise value for the SAT!

MEAN, VARIANCE, AND STANDARD DEVIATION

In Examplel, X was the number of coin tosses until the appearance of heads. The
probabilitieswereyy = 1, p, = 1. p3 = 1. .... Whatis theaveragenumber of tosse®
We now find the “mean’x of any distributionp(x)—not only the normal distribu-
tion, where symmetry guarantees that the built-in numbesrthe mean.

To find w, multiply outcomes by probabilities and add

p=mean= > " np,=1(p1)+2(p2) +3(ps) +---. (8)
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The average number of tosseslig) +2(1) +3(3) + -+ . This series adds up (in
Section10.1) to u = 2. Please do the experimehd times. | am almost certain that
the average will be near.

When the average %= 2 quiz errors ol = 3 no-shows, the Poisson probabilities
arep, = A"e */n! Check that the formula = X np, does givel as the mean:

A A? A3 —A A A2 A A=A
[1;‘1‘254’3?4‘]6 =/\|:1+F+§+i|e = \Ae’e =A.
For continuous probability, the sum =X np, changes tou = [xp(x)dx.

We multiply outcomex by probability p(x) and integrate. In the VCR model,
integration by parts gives a mean breakdown timg ef 4 years:

[xpx)ydx= [ x(3e*/*) dx=[—xe */*— 46”‘/4]’0[" =4, 9)

Together with the meanwe introduce thariance It is always writteno'2, and in
the normal distribution that measured the “width” of the curve. Wiémas2002,
SAT scores spread out pretty far. If the testing service change#i t0 12, the scores
would be a disastef5% of them would be withint-2 of the mean. When a teacher
announces an average grad@®fthe variance should also be announced—ifit is big
then those with60 can relax. At least they have company.

8E The mearu is the expected value df. The variance ? is the expected valje
of (X —mean? = (X — u)?. Multiply outcome times probability and add:

=73 npn 02 =3(n—p)pa (discrete)

pw=[" xp(x)dx o%=[" (x—p)?p(x)dx (continuous)

Thestandard deviation(written o) is the square root af2.

EXAMPLE 6 (Yes-no poll, one person asked) The probabilitiesiaend1 — p.

A fraction p = % of the population thinkg/es the remaining fractiol — p =

thinks no. Suppose we only ask one personXf=1 for yes andX =0 for no,
the expected value of is u = p = J. The variance is> = p(1 — p) = £

()5 w3 ()3 ()

The standard deviation is = 4/2/9. When the fractiorp is near one or near zero,

the spread is smaller—and one person is more likely to give the right answer for

everybody. The maximum ef> = p(1 — p) isatp = 1, whereo = 1.
The table shows. ando? for important probability distributions.

WIN

Model Mean Variance Application
pr=p.po=1-p p p(1—p) yes-no
Poissonp,, = A"e~*/n! A A random occurrence
Exponentialp(x) = ae=%* 1/a 1/a? waiting time
Normal p(x) = e~ (x—w?/202 m o2 distribution

o around mean
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THE LAW OF AVERAGESAND THE CENTRAL LIMIT THEOREM

We come to the center of probability theory (without intendiagyive proofs). The

key idea is to repeat an experiment many times—poll many voters, or toss many
dice, or play considerable poker. Each independent experiment produces an outcome
X, and the average frolV experimentsisX . It is called “X bar”:

- X1+ Xo+-+ XN
X = N = average outcome

All we know aboutp(x) is its meanu and variancer2. It is amazing how much
information that gives about the averakje

8F Law of AveragesX is dmost sure to approagh asN — 0.
Central Limit Theorem The probability density » (x) for X approaches
a normal distribution with the same mearand variance 2/ N.

No matter what the probabilities fo, the probabilities forX move toward the
normal bell-shaped curveThe standard deviation is close &//N when the
experiment is repeatedy times. In the Law of Averages, “almost sure” means that
the chance o notapproaching. is zero. It can happen, but it won't.

Remark 1 The Boston Globe doesn’t understand the Law of Averages. | quote
from Septemben 988 : “What would happen if a giant Red Sox slump arrived ?
What would happen if the fabled Law of Averages came into play, reversing all those
can’t miss decisions during the winning streak ?” They think the Law of Averages
evens everything up, favoring heads after a series of tails. See Prablem

EXAMPLE 7 Yes-no poll of N =2500 voters Is a 53%—47% outcome
conclusive?

The fractionp of “yes” voters in the whole population isot known That is the
reason for the poll. The deviatien= 4/ p(1 — p) is also not known, but for one voter
this is never more tha§| (whenp = %). Thereforey/\/ﬁfor2500 votersis no larger
than /+/2500, which is 1%.

The result of the poll wagk’ = 53%. With 95% confidence, this sample is within
two standard deviations (he286) of its mean. Therefore witB5% confidencethe
unknown meanu = p of the whole population is betweefil % and 55%. This
poll is conclusive.

If the true mean had beem= 50%, the poll would have had only 8013 chance
of reaching53%. The error margin on each side of a poll is amazingly simple; it is

alwaysl/+/N.

Remark2 The New York Times has better mathematicians than the Globe. Two
days after Bush defeated Dukakis, their polldf= 11, 645 voters was printed with

the following explanation. “In theory, ih9 cases out 020 [there i$95%] the results
should differ by no more than one percentage point [thet¢is’ﬁ] from what would
have been obtained by seeking out all voters in the United States.”

EXAMPLE 8 Football players at Caltech (if any) have average wejght 210
pounds and standard deviatian= 30 pounds. AreN = 16 players safe on an
elevator with capacit$600 pounds ?16 times210 is 3360.
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The average weight is goproximately a normal random variable wih= 210 and

& =30/+/N = 30/4. There is only 2% chance thak is aboveii + 25 = 225 (see
Figure 8.12b—weights below the mean are no problem on an elevator). Bince
times225 is 3600, a statistician would hav@8% confidence that the elevator is safe.
This is an example whe#8% is not good enough—I wouldn’t get on.

EXAMPLE 9 (The famous Weldon Dice) Weldon threM dice 26, 306 times and
counted theé’s and6’s. They came up i33.77% of the315, 672 separate rolls. Thus
X =.3377 instead of the expected fractign= % of 5’s and6’s. Were the dice fair ?

The variance in each roll is?2 = p(1 — p) =2/9. The standard deviation of is

& =0/vN =+/2/9/4/315672 ~ .00084. For fair dice, there is 85% chance that
X will differ from % by less thar2a. (For Poisson probabilities that is false. Heéfe
is normal) But .3377 differs from.3333 by more tharbo. The chance of falling
standard deviations away from the mean is only abant10, 000.}

So the dice were unfair. The faces wiitor 6 indentations werdighter than the
others, and a little more likely to come up. Modern dice are made to compensate for

that, but Weldon never tried again.

8.4 EXERCISES

Read-through questions

Discrete probability uses counting, a probability uses __A . There is &5% chance tha (the fraction saying yes) will
caculus. The function p(x) is the probability _ b . The bebetween B and_ C .

chance that a random variable falls betweeandb is ¢ . The . -
RS 11f py=2%.pp=%.P3=1 ... whatis the probability of an

total probability is [~ dx= __d . In the discrete case
P yis o plx)dx . . outcomeX < 47? What are the probabilities of =4 andX >47?
Y pn= __e . The mean (or expected value)jis= [ _f in

the continuous case and= X np, inthe g . 2 With the samep, = (%)”, what is the probability thafX is
odd ? Why isp, = (%)” an impossible set of probabilities ? What

The Poisson distribution with meah has p, = __h . The multiple c(1)" is possible ?
sum X p, =1 comes from the__i _ series. The exponential P 3 P ’
distribution hasp(x)=e~* or 2¢=2* or _j . The standard 3 Why is p(x) =e~2* not an acceptable probability density for
Gaussian (or __k ) distribution has v27 p(x) =e *>/2. x=07? Whyisp(x)=4e ¥ —e ¥ not acceptable ?
Its graph is the well-known | curve. The chance that thek4 If pn = (1), show that the probability thatX is a prime num-
variable falls belowx is F(x)= __m . Fisthe_ n_ density p,, satisfie§2/16 <P <7/16.
function. The difference” (x +dx) — F(x) is about__o__, which ST
isthe chance thaX is betweenx andx + dx. 5 If p(x)=e~* for x =0, find the probability tha& > 2 and the

approximate probability that< X < 1.01.
The variance which measures the spread around is
02=[_p_ in the continuous case and>=3% g in
the discrete case. Its square rastis the __r . The normal
distribution hasp(x)= _s . If X isthe__t of N samples 7 |fyou choosex conpletely at random betwedhandr, what is
from any populatior] with meap and variances2, the Law of the densityp(x) and the cumulative densit§(x) ?
Averages says thak will approach__u . The Central Limit

Theorem says that the distribution faf approaches Vv . Its | 8-13 find the mean valuew = S np, of = [ xp(x)dx.
meanis__w__and its varianceis_x .
8 po=1/2,p1=1/4,p2=1/4
In a yes-no poll when the voters arf0-50, the mean

for one voter ispu=0(3)+1(3)= _y . The variance is 9 p=YTp=1T ...p7=1/T
O0—p)2po+(1—p)?p1=_2z .ForapollwithN =100,5is 10 p,=1/nle (po=1/e,p1=1/e.pa=1/2e,...)

6 If p(x)=C/x3 is a probability density forx>1, find the
constantC and the probability thak <2.

+Joe Di-Maggio’'s56-game hitting streak was much more improbable—I think it is statisti-
cally the most exceptional record in major sports.
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11 p(x)=2/m(14+x2), x=0 24 Use [ (x —w)?p(x)dx and alsof x2p(x) dx — pu? to find 62

12 p(x)=e—* (integrate by parts) for theuniform distribution: p(x)=1for0<x <1.

13 p(x) =ae™9* (integrate by parts) 25 Find o2 if po=1/3.p1=1/3.p2=1/3. Use Z(n—p)? pu
o and alsos n2 p, — u2.

14 Show by substitution that

. > s . ) 26 Use Problem23 ard integration by parts (equation 7.1.10) to
[7, e 2% ax =20 [, e ¥ du=+2n 0. find o2 for the exponential distributionp(x) =2e¢~2* for x >0,

15 Find the cumulative probabilityF (the integral of p) in which has mea%.

Problems11,12,13. In terms of F, what is the chance that a27 The waiting time to your next car accident has probability
random sample lies betweerandb ? dersity p(x) = %e—x/Z. What is . ? What is the probability of

- . i i ?
16 Can-Do Airlines booksl00 passengers when their plane onI;VO accident in the next four years

holds 98. If the average number of no-shows s what is the g Wwith p= %%% ..., find the average number of coin
Poisson probability that someone will be bumped ? tosses by writingp; +2p2 +3p3+--- as(p1+p2+p3+--)+

17 The waiting time for a bus has probability densityP2+p3+pat--)+(p3+ps+ps+--)+---.
(1/10)e=*/10 " with ;=10 minutes. What is the probability of

waiting longer tharl 0 minutes ? 29 In a poll of 900 Americansj30 are in favor of war. What range

can you give with95% confidence for the percentage of peaceful
18 You make a3-minute telephone call. If the waiting time forAmericans?
the next incoming call hag(x) =e¢~*, what is the probability

that your phone will be busy ? 30 Sketch rough graphs gf(x) for the fractionx of heads in4

tosses of a fair coin, and it6 tosses. The mean value%s
19 Supernovas are expected about evedy years. What is the . . . .
probability that you will be alive for the next one ? Use a Poissort A judge tosses a coizb00 times. How many heads does it take

model with X = .01 and estimate your lifetime. (Supernovas actd© Prove with95% confidence that the coin is unfair ?
ally occurred inl054 (Crab Nebula)]572,1604, and1987. Butthe - 35 | nq jife bulbs shine an average 2600 hours with standard
future distribution doesn’t depend on the date of the lastone.)  javiation150 hours. You can haves% confidence that your bulb

20 (@) A fair coin comes up head$) times in a row. Will heads will fail between and hours.

or tails be more likely on the next toss ? o .
y 33 Grades have a normal distribution with me@hand standard

(b) The fraction of heads afteV tosses isx. The expected deviation 10. If 300 students take the test and passing3s how
fraction afte2N tossesis . many are expected to fail ? (Estimate from Figure 8.12b.) What pass-

21 Show that the area betwegnand +o under the bell-shaped iNg grade will fail1/10 of the class ?

curve is a fixed number (nedy3), by substitutingy = : 34 The average weight of luggage ig =30 pounds with

ut+o g 22 1 g 5 deviationo = 8 pounds. What is the probability that the luggage for
G20t g | Y2y
ov2n N> Y. 64 passengers excee?l®00 pounds ? How does the answer change

1 for 256 passengers ar)00 pounds ?
What is the area betweep—o and u? The area outside
(u—o,u+0)?

22 For ayesno poll of two voters, explain why

35 A thousand people try independently to guess a number
betweenl and1000. This is like a lottery.

(@) What is the chance that the first person fails ?

2 2 2
po=(0=p)°, p1=2p=2p", pp=p~. (b) What is the chanc®, that they all fail ?

Find u ando?. N voters give the binomial distribution’ (c) Explain why Py is goproximatelyl/e.

23 Explain the last step in this reorganization of the formulg (a) In Problem 35, what is the chance that the first person
for o2: is right and all others are wrong ?

2 _ 2 ) 2
o= [(x—p?p(x)dx = [ (x*=2xp+p?)p(x)dx (b) Show that the probability?; of exactly one winner is
= [ x2p(x)dx —2u [ xp(x)dx+pu? [ p(x)dx also close td /e.

= x2p(x)dx — u2. (c) Guess the probability,, of » winners (fishy question).
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I 5.5 Masses and Moments RSN

This chapter concludes with two sections related to engineering and physics. Each
application starts with a finite number of masses or forces. Their sum is the total
mass or total force. Then comes the “continuous case,” in which the mass is spread
out instead of lumped. Its distribution is given bylansity functionp (Greek rho),

and the sum changes to griegral.

The first step (hardest step ?) is to get the physical quantities straight. The second
step is to move from sums to integrals (discrete to continuous, lumped to distributed).
By now we hardly stop to think about it—although this is the key idea of integral
calculus. The third step is to evaluate the integrals. For that we can use substitution or
integration by parts or tables or a computer.

Figure 8.13 shows the one-dimensional cavasses along the axis The total
mass is the sum of the masses. The new idea is thabofients—when the mass or
force is multiplied by alistance

momentof mass around the axis= mx =(mass) timesdistance to axis

ma\-\l m +m, +m,=M force| F,+F, :
L, l|
Xy 5]

mX,+myx, +myx;=MX m“—f'-'c[f-'lu.+f-'1.\1 +F. x,=FX

w
x|

]

moment

Fig. 8.13  The center of mass is at= (total moment) (total mass} average distance.

The figure has massds3,2. The total mass i$. The “lever arms” or “moment
arms” are the distances= 1, 3,7. The masses have momeimtand9 and14 (since
mx is 2 times7). The total moment i + 9+ 14 = 24. Then the balance point is at
X=M,/M=24/6=A4.

The total mass is the sum of thwe’'s. The total moment is the sum of,, times
X, (negative on the other side of=0). If the masses are children on a seesaw, the
balance point is the center of gravity—also called theenter of mass

> mux,  total moment

DEFINITION X = = .
> my total mass

D

If al masses are moved to, the total moment{ times4) is still 24. The moment
equals the masy_ m,, timesx. The masses act like a single massiat

Also: If we move the axis ta, and leave the children where they are, the seesaw
balances. The masses on the leftveE 4 will offset the mass on the righReason
The distances to the new axis arg— x. The moments add to zero by equatidn:

moment around new axis Z My (X —X) = Zmnx,, — Zmni =0.

Turn now to thecontinuous casewhen mass is spread out along the line. Each
piece of lengthAx has an average densijty = (mass of piecg(length of piecg =
Am/Ax. As the pieces get shorter, this approaches d x—the density at the point.
The limit of (small mass)(small length)s the densityp(x).
Integrating that derivative = dm/dx, we recover the total mas$: p, Ax be-
comes
total massM = [ p(x)dx. )

When the mass is spread eventyis constant. TheM = pL = density times length
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The moment formula is similar. For each piece, the moment is mpadsx
multiplied by distancec—and we add. In the continuous limjg(x)dx is multiplied
by x and we integrate:

total moment aroundy axis = M, = [ xp(x) dx. (3)

Moment is mass times distance. Dividing by the total madsgives “average
distance™:
monment M, [ xp(x)dx

o2 =i @

center of mass = = = =
mass M | p(x)dx

Remark If you studied Sectiol.4 on probability, you will notice how the formulas
match up. The masf p(x) dx is like the total probability| p(x)dx. The moment

| xp(x)dx is like the mearf xp(x)dx. The moment of inertig (x —X)?p(x) dx

is the variance. Mathematics keeps hammering away at the same basic ideas! The only
difference is that the total probability is alwaysThe mean really corresponds to the
centerof massx, but in probability we didn’t notice the division kﬁ/p(x)dx =1.

EXAMPLE 1 With constant density from 0 to L, the mass isM = pL. The
moment is

L L
My = [| xpdx = Lpx*]; =1pL>.
The center of mass is= M, /M = L/2. Itis halfway along.

EXAMPLE 2  With densitye™ the mass id, the momentid, andx is 1:

0

i et dv=[-e]y =1 and [ et dx=[xe ™~ =1

MASSES AND MOMENTS IN TWO DIMENSIONS

Instead of placing masses along theaxis, suppose:; is at the poini{xy, y;) inthe
plane. Similarlym,, is at(x,, y,). Now there arewo momentso consider. Around
they axisM,, = ¥ m,x, and around the axis M, = X m, y,. Please notice that
the x’s go into the moment\/,—because the coordinate gives the distance from
the y axis!

Around thex axis, the distance ig and the moment id/,.. Thecenter of masss
the point(x, y) at which everything balances:

= % _ Z My Xn and = % _ Z MpYn . (5)

M > my M > my

In the continuous case these sums become two-dimensional integrals. The total
mass iﬁp(x,y)dx dy, when the density ip =mass per unit area. These “double
integrals” are for the future (Sectioh¥.1). Here we consider the most important
case:p = constant Think of a thin plate, made of material with constant density (say
p =1). To compute its mass and moments, the plate is cut into strips Figure 8.14:

massM = area of plate (6)
momentM,, = [ (distancex) (length of vertical strip)lx (7)
momentM, = [ (heighty) (length of horizontal strip)/y. (8)
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centroid y=4-2 S-S
x=2/3,y=4/3® ; T S

% dy e
. W ’ centroid ® ;
e\ (724 3x

de 2 -r 0 r

I\J/‘

Fig. 8.14 Plates cut into strips to compute masses and moments and csntroi

The mass equals the area becapse 1. For moments, all points in a vertical strip
are the same distance from theaxis. That distance isc. The moment ist times
area, orx times length timeg x—and the integral accounts for all strips.

Similarly thex-moment of ahorizontalstrip is y times strip length timegy.

EXAMPLE 3 Aplate hassides =0amdy =0andy =4 —2x.FindM,M,, M.

massM = area= fg ydx = fg (4—2x)dx = [4x —x2]2

c=4.

The vertical strips go up to = 4 — 2x, and the horizontal strips go out o= %(4—
y):
2

2
2
momentM,, = J x(4—-2x)dx= [2x2 — §x3] ==
0 0

[am—

8
3
4 4
1 1 6
momenth:J y§(4_y)dy=|:y2_€y3j| :?.
0 0

The “center of mass” has=M,/M =2/3 andy = M,/M =4/3. This is thecen-
troid of the triangle (and also the “center of gravity”). Wjth= 1 these terms all refer
to the same balance poi(g, y). The plate will not tip over, if it rests on that point.

EXAMPLE 4  Find M, and M, for the half-circle below? + y2 = r2.

M, = 0 because the region is symmetric—Figure 8.14 balances on &xés. In the
x-moment we integratg times the length of a horizontal strip (notice the fa&pr

My=[(y-2¢/x2—y2dy=—2(r? —y2)3/2]0

Divide by the mass (the aréarrz) to find the height of the centroigi= M, /M =
4r/37.Thisis less thalér because the bottom of the semicircle is wider than the top.

r_er
=3r.

MOMENT OF INERTIA

The moment of inertiacomes from multiplying each mass by tisguare of its
distance from the axis. Around theaxis, the distance is. Around the origin, itis':

I,=%x2m, and I,=Xy2m, and Io=Xrim,.

Notice thatl, + I, = Iy becausex? + y? =rZ. In the continuous case we inte-
grate.
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The moment of inertia around they axis is 7, = [[ x%p(x, y) dx dy. With
a constant densitg = 1, we again keep together the points on a strip. On a vertical
strip they share the same On a horizontal strip they shaye

I, = [ (x?) (vertical strip length)/x and I, = [ (y?) (horizontal strip lengthyly.

In engineering and physics, itistation that leads to the moment of inertia. Look at

the energy of a mass going around a circle of radius It hasly = mr?2.

kinetic energy= 1mv? = Im(ro)* = 1 lyo*. 9)

The angular velocity isv (radians per second). The speetvis- rw (meters per
second).

An ice skater reduceky by putting her arms up instead of out. She stays close to
the axis of rotation( is small). Since her rotational eneréyoa)2 does not change,
w increases a%, decreases. Then she spins faster.

Another example: It takes force to turn a revolving door. More correctly, it takes
torque The force is multiplied by distance from the turning axis= Fx, so a push
further out is more effective.

To see the physics, replace Newton’s ldw=ma =mdv/dt by its rotational
form: T =1dw/dt. Where F makes the mass move, the tordliemakes it turn.
Wherem measures unwillingness to change spdetdgeasures unwillingness to change
rotation.

EXAMPLE 5 Find the moment of inertia of a rod about (a) its end and (b) itsare

The distancer from the end of the rod goes frofrto L. The distance from the center
goes from—L /2 to L /2. Around the center, turning is easier becalise smaller:

L L/2
Iendz J‘O x2 dx = %L:s ]Cen’[erz J‘_é/z x2 dx = %L:; (10)

il
J
1]

: px=lx)dx

Fig. 8.15 Moment of inertia for rod and propeller. Rolling balls beat oglrs.

MOMENT OF INERTIA EXPERIMENT

Experiment: Roll a solid cylinder (a coin), a hollow cylinder (a ring), a solid ball

(a marble), and a hollow balhft a pingpong ball) down a slope. Galileo dropped
things from the Leaning Tower—this experiment requires a Leaning Table. Objects
that fall together from the tower don’t roll together down the table.

Question1  What is the order of finish Record your prediction first
Question 2 Does size make a difference if shape and density are the same ?

Question 3  Does density make a difference if size and shape are the same ?



8.5 Masses and Moments 403

Question 4 Find formulas for the velocity andthe finish timeT'.

To computev, the key is that potential energy plus kinetic energy is practically
constant. Energy loss from rolling friction is very small. If the massisand the
vertical drop ish, the energy at the top (all potential) iggh. The energy at the
bottom (all kinetic) has two parts%mv2 from movement along the plane plus

%Iw2 from turning.Important fact v=wr for a rolling cylinder or ball of radius.
Equate energies and set=v/r:

1, 1. 5, 1 I
mgh:imv +51a) = 5mv (1+W)' (11

The ratio I /mr? is critical. Call it J and solve(11) for v?:

2¢h
2= 8L (smallerJ means larger velocity (12)

14+J
The order ofJ'’s, for different shapes and sizes, should decide the race. Apparently
the density doesn’t matter, because it is a factor in Hodndm—so it cancels in
J =1/mr?. Ahollow cylinder has/ = 1, which is the largest possible—all its mass
is at the full distance: from the axis. So the hollow cylinder should theoretically
come in last. This experiment was developed by Daniel Drucker.

Problems35 — 37 find the other thred'’s. Problemd0 finds the timel” by integra-
tion. Your experiment will show how close this comes to the measured time.

8.5 EXERCISES

Read-through questions

If massesn,, are at distances,,, the total mass iV = a . Compute the massM along thex axis, the momentM, around
The total moment around =0 is My, = __ b . The center of x =0, and the center of massc = My, /M.

mass is att=_c _.In the continuous case, the mass distribu- my=2atx;=l.my=4atx, =2

tion is given by the _d  p(x). The total mass is¥ = __e

and the center of mass is &= _ f . With p=x, the inte- 2 m=3atx=0,1,2,6

grals from0 to L give M = g and [xp(x)dx= h p=1for—1<x<3

and x = i . The total moment is the same if the whole
massM is placed at |

p=1for0<x<l1,p=2for 1<x<2
In a plane, with massesn, at the points (x,,yn), the
moment around the axis is__k . The center of mass has=

| _andy= __m . For a plate with density = 1, the mass

M equals the_n_. If the plate is divided into vertical stripsind the massM, the momentsM, and M, and the center of
of height y(x), then M = [ y(x)dx and My = [ __o__ dx. For Mass(¥.y).

3
4 p:xzfor 0<x<L
5
6

p=sinxfor0<x<nm

a square plate0 <x,y <L, the mass isM = p_and the 7 Unitmasses atx, y) = (1, 0),(0, 1), and(1,1)
moment around they axis is M, = g . The center of
. . L 8 =1lat(1,0), =4a (0,1
mass is at(x,y)= __r__. This point is the__s , where the m (1, 0). m2 ©.1
plate balances. 9 p=7inthesquar®<x<1,0<y<1.

A massm at a distancex from the axis has moment oflO p=3in the triangle with vertice0, 0), (a, 0), and(0, ).
rertla I=_t . A deI with Ph=1 fron:j x=a tof ﬁ:i Find the area M and the centroid (%, 7) inside curves 11-16.
asly = u . For a plate withp=1 and strips of height > .

y(x), this becomesl, ={ __v_. The torque7 is _w__ 1 ¥y=VI=x%y=0,x=0 (quarter-circle)

times__x__. 12 y=x,y=2—x,y=0 (triangle)
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13 y=e2* y=0,x=0 (infinite dagger) 27 Find My and M, for a thin wire along the semicircle
14 y=x2 y=x (lens) y=+/1—x2. Takep=1soM = length=x.

28 A second theorem of Pappus givds=2ryL as the surface
area when a wire of length is rotated around the axis. Verify
16 x?+y?=1,x2+y?=4,y=0 (half-ring). his formula for a horizontal wire along =3 (x =0tox = L) and
averticalwirep=1toy=L+1).

15 x24y2=1,x24+y2=4 (ring)

Verify these engineering formulas for7, with p = 1:

length L
17 Rectangle bounded byx=0, x=a, y=0, y=b:Iy= polar Iy
3
a’b/3.
18 Square bounded byx = —%a, X = %a, y= —%a,y = %a:
Iy, =a*/12.
19 Triangle bounded by =0, y =0, x +y =a: Iy, =a*/12.
20 Disk of radiusa certered att =y =0: [, = wa*/4.
21 The moment of inertia around the point=¢ of a rod with (r2)(2m rdr)

density p(x) is I = [(x—1)?p(x)dx. Expand (x—¢)® and I
into three terms. Show that/ /dt = 0 whent = x. The moment of

: o 29 The surface area of a sphere k=47 when r=1. So
inertia is smallest around the center of mass.

A=2nyL leads toy= for the semicircular wire in
22 A region has =0 if M, = [x(heightofstripdx=0. Problem 27.
The moment of inertia about any other axis=c is /= 37 Rotatingy=mx around thex axis betweenxt =0 andx = 1

_[()_c—_c)2 (height of strip) dx. Show that/ = I, + (area(c?). produces the surface arda—
This is the parallel axis theorem I is smallest around the

balancing axig = 0. 31 Put a massn atthe point(x,0). Around the origin the torque

from gravity is the forceng times the distance. This equalsg
23 (With thanks to Trivial Pursuit) In what state is the centgimes the mx.

of gravity of the United States—the “geographical center” or
centroid ? 32 If ten equal forcesF are alternately down and up at

x=1,2,...,10, what is their torque ?

24 [ [ [ ; i
Pappus (an ancient Greek) noticed that the volume is 33 The solar system has nine masses at dstancesr, with

V = [ 2my(strip width)dy = 27 M =275 M angular velocitie_Swn. Wha‘F is the moment of _inertia around
the sun? What is the rotational energy ? What is the torque pro-
when a region of ared/ is revolved around the axis. In the first Vvided by the sun?
step the solid was cutinto___. 34 The diskx2+ y% <a? hasly = J};l r22mr dr = %na“. Why
is this different from 7, in Problem20? Find the radius of
gyration 7 =+/Ip/M. (The rotational energy%low2 equals
1 M72»?—when the whole mass is turning at radiuy

=

Questions 35-42 come from the moment of inertia experiment.

35 A solid cylinder of radius is assembled from hollow cylinders
of length/, radiusx, and volume(2z x)(/)(dx). The solid cylinder
has

massM = [y 2zxlp dx and I= [j x*2nxlp dx.
With p =7 find M and/ andJ =1/ Mr2.

36 Problem 14.4.40 finds J =2/5 for a solid ball. It is less
than J for a solid cylinder because the mass of the ball is more
Jroncentrated near .

25 Use this theorem of Pappus to find the volume of a tor
Rewlve a disk of radiug whose center is at heighit=5 > a. 37 Problem14.4.39 findsJ = %_[(;’ sn® ¢ d¢ = for a hol-

26 Rotate the triangle of Example 3 around the axis low ball. The four rolling objects finish in the order .

and find the volume of the resulting cone—first frdm=27yM, 38 By varying the density of the ball how could you make it roll
second from%nrzh. fager than any of these shapes ?
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39 Answer Questior2 abaut the experiment. 42 True or false:
40 For a vertical drop ofy, equation (12) gives the velocity along ~ (8) Basketballs roll downhill faster than baseballs.
the planew? =2gy/(1+J). Thusv =cy1/2 for c = . The (b) The center of mass is always at the centroid.
vertical velocity isdy /dt = vsina: (c) By putting your arms up you redudg and/,.
(d) The center of mass of a high jumper goes over the bar
dy/dt =cy'?sine and [y 2dy=[csinad:. (on successful jumps).

Integrate to findy(¢). Show that the bottom is reachéd =) at
time 7 =2v/h/c sin a.

41 What is the theoretical ratio of the four finishing times ?
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I 5.6 Force, Work, and Energy | EEEEEEEEE

Chapterl introduced derivativedf/dt anddf/dx. The independent variable could
bet or x. For velocity it was natural to use the letterThis section is about two
important physical quantities—for@ndwork—for which x is the right choice.

The basic formula iV = Fx. Work equals force times distance movédis-
tance in the direction of’). With a force of100 pounds on a car that movee feet,
the work is2000 foot-pounds. If the car is rolling forward and you are pushing back-
ward, the work is—2000 foot-pounds. If your force is onlg0 pounds and the car
doesn’'t move, the work is zero. In these examples the force is constant.

W = Fx is completely parallel tof =vt. Whenv is constant, we only need
multiplication. It is achanging velocityhat requires calculus. The integrfab (t)d ¢
adds up small multiplications over short times. For a changing force, we add up
small pieces of worl¢” dx over short distances:

W = Fx (constant force W = [ F(x)dx (changing force.

In the first case we lift a suitcase weighifig= 30 pounds upx = 20 feet of stairs.
The work isW = 600 foot-pounds. The suitcase doesn’t get heavier as we go up—it
only seems that way. Actually it gets lighter (we study gravity below).

In the second case we stretch a spring, which needs more forceraseases.
Hooke's law says that'(x) = kx. The force is proportional to the stretching dis-
tancex. Starting fromx = 0, the work increases with thequareof x:

F=kx and W= fox kx dx = %kx2. (0]

In metric units the force is measured in Newtons and the distance in meters. The unit
of work is a Newton-meter (a joule). TH#0 foot-pounds for an American suitcase
would have been abo800 joules in France.

EXAMPLE 1 Suppose a force af = 20 pounds stretches a spririgioot.
(@) Findk. The elastic constant is= F/x = 20 pounds per foot.
(b) Find W. Theworkisgkx? = -20-1% =10 foot-pounds.

]Ec) Find x whenF = —10 pounds. This is compression not stretching: —%
oot.

Compressing the same spring through the same distance requires the same work
For compressionr and F' are negative. But the work/ = %kx2 is still positive.
Please note thdl’ does not equatx timesx! That is the whole point of variable
force (change”x to [ F(x) dx).

May | add another important quantity from physics ? It comes from looking at the
situation from the viewpoint of the spring. In its natural position, the spring rests
comfortably. It feels no strain and has no enefggnsion or compression gives it
potential energyMore stretching or more compression means more endiug.
change in energy equals the workhe potential energy of the suitcase increases by
600 foot-pounds, when it is lifte@0 feet.

Write V(x) for the potential energy. Hereis the height of the suitcase or the ex-
tension of the spring. In moving from= a to x = b, work = increase in potential

W= [? F(x)dx=V(b)—V(a). )

This is absolutely beautiful. The woll¢ is thedefinite integral The potential’ is
theindefinite integral If we carry the suitcase up the stairs and back down, our total
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work is zera We may feel tired, but the trip down should have given back our energy.
(It was in the suitcase.) Starting with a spring that is compressed one foot, and ending
with the spring extended one foot, again we have done no vdéﬁc.%kxz is the

same forx = —1 andx = 1. But an extension fromr = 1 to x = 3 requires work:

W =change iV = k(3)* — 3k(1)*.

Indefinite integrals likd” come with a property that we know welthey include
an arbitrary constant. The correct potential is not simplyk x2, itis 2kx2 + C.
To compute achangein potential, we don't need’. The constant cancels. But to
determineV itself, we have to choosE€. By fixing V' = 0 at one point, the potential
is determined at all other points. A common choicd’is= 0 at x = 0. Sometimes
V =0 atx = oo (for gravity). Electric fields can be “grounded” at any point.

There is another connection between the potemtiaind the forceF’. According
to (2), V is the indefinite integral of". ThereforeF (x) is the derivative ofV’(x).
The fundamental theorem of calculus is also fundamental to physics:

force exertenspring: F = dV/dx (3a)

force exertedy spring: F = —dV/dx (3b)
Those lines say the same thing. One is our force pulling on the spring, the other
is the “restoring force” pulling back3a)and (3b) are a warning that the sign of
F depends on the point of view. Electrical engineers and physicists use the minus
sign. In mechanics the plus sign is more common. It is one of the ironies of fate that

F =V’, while distance and velocity have those letters reversed:f’. Note the
change to capital letters and the change to

» . - »
= Q - Ve GMm © ..
s 5 il > E;:' i } Motion
> i 1 GMm ¥ RS e
BEw=5iw2 B @ r-Y .
e X=

Fig. 8.16  Stretched spring; suitcag® feet up; moon of mass; oscillating spring.

EXAMPLE 2 Newton'’s law of gravitation(inverse square law):
force to overcome gravit: GM m /x> force exerted by gravits —GMm /x>

An engine pushes a rocket forward. Gravity pulls it back. The gravitational constant
is G and the Earth’s mass . The mass of the rocket or satellite or suitcaseris
and the potential is the indefinite integral:

V(x)=[ F(x)dx=—-GMm/x+C. 4)
Usually C = 0, which makes the potential zeroat= c0.

Remark When carrying the suitcase upstairschanged by20 feet. The weight

was regarded as constant—which it nearly is. But an exact calculation of work uses
the integral of F(x), not just the multiplicatiorB0 times20. The serious difference
comes when the suitcase is carriedte- 0. With constant force that requires infinite
work. With the correct (decreasing) force, the work eqlrats infinity (which is zero)
minusV at the pickup poinkg. The change iV is W = GMm/ xy.

407
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KINETIC ENERGY

This optional paragraph carries the physics one step furthpp&e you release the
spring or drop the suitcase. The external force changds t00. But the internal
force still acts on the spring, and gravity still acts on the suitcase. They both start
moving. The potential energy of the suitcase is convertddrtetic energyuntil it
hits the bottom of the stairs.

Time enters the problem, either through Newton’s law or Einstein’s:

dv d
(Newton) F =ma :md—t (Einstein) F = Z(mv). (5)

Here we stay with Newton, and pretend the mass is constant. Exétigalows
Einstein; the mass increases with velocity. There=my/+/1 —v2/c? goes to
infinity as v approacheg:, the speed of light. That correction comes from the
theory of relativity, and is not needed for suit-cases.

What happens as the suitcase falls? From a at the top of the stairs t& = b
at the bottom, potential energy is lost. But kinetic enefyyv2 is gained, as we see
from integrating Newton’s law:

dv_ d_vd_x_ dv

force F = mz—mdx 7 —mva
b b
d 1 1
Workj Fdx = J mv—vdx=—mv2(b)——mv2(a). (6)
a . dx 2 2

This same forcd' is given by—d V/dx. So the work is also the changelif

b b
workf Fdx= f (—‘;—z) dx =—V(b)+V(a). @)

a a

Since(6) = (7), the total energ%mv2 + V (kinetic plus potentiglis constant:

1 2 1 2

smv= (D) +V(b) = smv=(a) +V(a). (8)
This is the law ofconservation of energyThe total energy is conserved.

EXAMPLE 3 Attach a massn to the end of a stretched spring and let go. The
spring’s

energyV = %kx2 is gradually converted to kinetic energy of the massx At 0 the
change to kinetic energy is complete: the origi?;uialx2 has become%mvz. Beyond

x =0 the potential energy increases, the force reverses sign and pulls back, and
kinetic energy is lost. Eventually all energy is potential—when the mass reaches the
other extreme. Itisimple harmonic motigrexactly as in Chaptdr(where the mass

was the shadow of a circling ball). The equation of motion is the statemertthihat

rate of change of energy is zer@nd we cancel = dx/dt):

d (1 1 dv dx d?
Z(Emvz_'—ikxz):}77vd_1;+kxd_;:() or mﬁ—l—kx:O. (9)

Thatis F = ma in disguise. For a spring, the solutien= cos+/k /mt will be found
in this book. For more complicated structures, engineers spend a billion dollars a year
computing the solution.
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PRESSURE AND HYDROSTATIC FORCE

Our forces have been concentrated at a single points. That isheotase for
pressure A fluid exerts a force all over the base and sides of its container. Suppose a
water tank or swimming pool has constant depttin meters or feet). The water has
weight-densityw ~ 9800 N/m? ~ 62 Ib/ft>. On the base, the pressureigimesh.

The force iswh times the base areé:

F =whA (pounds or Newtons) p = F/A=wh(lb/ft?orN/m?).  (10)

Thus pressure is force per unit areélerep and F are computed by multiplication,
because the depthis constant. Pressure is proportional to depth (as divers know).
Down the side wall varies and we need calculus.

The pressure on the side is stilk—the same in all directiondVe divide the side
into horizontal strips of thicknesAk. Geometry gives the length() at depthi
(Figure 8.17). The area of a stripligh) Ah. The pressurev’ is nearly constant on
the strip—the depth only changes hy:. The force on the strip isA F = whl Ah.
Adding those forces, and narrowing the strips so thdt— 0, the total force
approaches an integral:

total force F = | whi(h) dh (11)

1 =60

h=0
‘ M\ [(h) /
an
length /=2mr \ /h =20

area A =2 =50
pressure p=wh

Fig. 8.17 Water tank and dam: length of side steid/, area of layer= A.

EXAMPLE 4 Find the total force on the trapezoidal dam in Figure 8.17.

Theside length id = 60 whenh = 0. The depth: increases fron) to 20. The main
problemiis to find at an in-between depth With straight sides the relation is linear:
| =60+ ch. We choose to givel = 50 whenh = 20. Then50 = 60 + ¢(20) yields

1
Cc = —3-
The total force is the integral abil. So substituté = 60 — %h:

20
F = [2°wh(60—h)dh = [30wh2 - éwh3]0 = 12000w — &(8000w).

With distance in feet and) = 62 Ib/ft>, F is in pounds. With distance in meters and
w = 9800 N/m?, the force is in Newtons.

Note that(weightdensityw) = (massdensityp) times(g) = (1000)(9.8). These
Sl units were chosen to make the density of watérat exactlyp = 1000 kg/m3.

EXAMPLE 5 Find the work to pump water out of a tank. The area at depih
is A(h).

Imagine lifting outonelayer of water at a timeThe layer weighsvA(h) Ah. The
work to lift it to the top is its weight times the distandeor whA(h) Ah. The work



410 8 Applications of the Integral

to empty the whole tank is the integral:
W = [ whA(h) dh. (12)

Suppose the tank is the bottom half of a sphere of radisThe cross-sectional
area at depth is A = 7 (R? —h?). Then the work is the integrgl 2) from 0 to R.
It equalsW = rwR*/4.

Units:w = force/ (distancg? timesR* = (distancg* gives workW = (force) (distance.

8.6 EXERCISES

Read-through questions

Work equals__a times _ b . For a spring the force is 5 (a) A 120-lb person makes a scale go downinches. How

F = ¢, proportional to the extension (this is _ d much work is done ?
law). With this variable force, the work in stretching froénto (b) If the same person gogsnches down the stairs, how much
xisw=/{ e = f . This equals the increase in the potential energy is lost?

g energyV. Thus W is a__h integral andV is the ) )
corresponding_i__ integral, which includes an arbitrary j . 6 Arocket burns itd00 kg of fuel at a steady rate to reach a height
The derivative dV/dx equals__k . The force of gravity is Of 25 km.

F=__1 _andthe potential i¥ = __m . (a) Find the weight of fuel left at heiglht
. . (b) How much work is done lifting fuel ?

In falling, V is converted to__ n__energyK= _ 0o . The
total energyK+V is p (this is the law of g when 7 Integrate to find the work in winding up a hanging cable of
there is no external force). length 100 feet and weight densitg Ib/ft. How much additional

work is caused by 200-pound weight hanging at the end of the

Pressure is force per unit_r . Water of densityw in a
pool of depths and aread exerts a downward forceF =
s on the base. The pressurejis= __t . On the sides the 8 The great pyramid (heigh00’'—you can see it from Cairo)

u_is still wh a depth’, so the total force is[ whidh, has a square bas®0’ by 800’. Find the aread at heighth. If

cable ?

where [ is v_. In a cubic pool of sides, the force the rock weighsv =100 Ib/ft3, approximately how much work did
on the base isF = w_, the length around the sides it take to lift all the rock ?
= x_, and the total force on the four sides B =

.9 The force of gravity on a mass is F = —GMm/x?. With
. The work to pump the water out of the pool is
W—ijwhA dhe 2 pump P G =6-10"17 and Earth massM =6-10>* and rocket mass
I m = 1000, compute the work to lift the rocket fromx = 6400
1 (8 Find the workW when a constant forcd” = 12 pounds to x =6500. (The units are kgs and kms and Newtons, giving

moves an object fromt = .9 feet tox = 1.1 feet. work in Newton-kms.)
(b) ComputeW by integration when the forcé” = 12/x2
varies withx. 10 The approximate work to lift 80-pound suitcase0 feet is

. L . 600 foot-pounds. The exact work is the change in the potential
pf)u':‘déz inch spring is stretched 105 inches by a force of5 V=—GmM/x. Show thatAV is 600 times a correction factor

2/(R2 _ 102 .
(@) What is the spring constaktin pounds per foo? R%/(R*—10%), when x changes fromR—10 to R+10. (This

(b) Find the work done in stretching the spring. factor is practicallyl, whenR = radius of the Earth

(c) Find the work to stretch & more inches. 11 Find the work to lift the rocket in Probleri from x = 6400

3 A shock-absorber is compressédnch by a weight ofl ton. clJut to x =o0. If this work equals the original kinetic energy

1.2 -
Find its spring constank in pounds per foot. What potentiaIva - what was the originat (the escape velocit
energy is stored in the shock-absorber ? 12 The kinetic energyimv? of a rocket is converted into

4 Aforce F =20x —x3 stretches a nonlinear spring by potential energy—GMm/x. Starting from the Earth's radius
(a) What work is required to stretch it from= 0 to x =2 ? x = R, whatx does the rocket reach ? If it reaches- oo show that

(b) Whatis its potential energy atx = 2, if V(0) =52 v =4/2GM/R. This escape velocity 85,000 miles per hour.

(¢) What is k=dF/dx for a small additional stretch at13 It takes 20 foot-pounds of work to stretch a sprirng feet.
x=27 How much work to stretch it one more foot ?
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14 A barrel full of beer is4 feet high with al foot radius and an 20 For a cone-shaped tank the cross-sectional area increases wit
opening at the bottom. How much potential energy is lost by the beepth: A = 7 r2h2/H?. Show that the work to empty it is half the

as it comes out of the barrel ?

15 Arectangular dam i$0 feet high andh0 feet wide. Compute the

work for a cylinder with the same height and base. What is the ratio

of volumes of water ?

total side forcel” on the dam when  (a) the wateris atthe top () |n relativity the mass ism =mo/~/1—v2/c2. Find the

the water level is halfway up.

16 A triangular dam has aB0-meter base at a depth 80 meters.
If water covers the triangle, find

(a) the pressure at depth

(b) the length of the dam at depth

(c) the total force on the dam.

17 A cylinder of depthH andcross-sectional area stands full of
water (densityw). (a) Compute the worly’ = [wAh dh to lift all
the water to the top. (b) Check the unitslgf (c) What is the work
W if the cylinder is only half full ?

18 In Probleml17, computeW in both cases i =20 feet,w = 62
Ib/ft3, and the base is a circle of radius= 5 feet.

0
19 How much work is required to pump out a swimming pool, if

correction factor in Newton’s equatiafi = mga to give Einstein’s
equationF = d(mv)/dt = (d(mv)/dv)(dv/dt) = mod.

22 Estimate the depth of thE&tanic, the pressure at that depth, and
the force on a cabin door. Why doesn't every door collapse at the
bottom of the Atlantic Ocean ?

23 A swimming pool is4 mekers wide, 10 meters long, and
2 meters deep. Find the weight of the water and the total force on
the bottom.

24 Ifthe pool in Problen23 has a shallow end only one meter deep,
what fraction of the water is saved ? Draw a cross-section (a trape-
zoid) and show the direction of force on the sides and the sloping
bottom

thearea of the base ®R00 square feet, the water ésfeet deep, and 25 In what ways is work like a definite integral and energy like an

the top is one foot above the water level ?

indefinite integral ? Their derivative is the .
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