
CHAPTER 8

Applications of the Integral

We are experts in one application of the integral—to find the area under a curve.
The curve is the graph ofyD v.x/; extending fromxD a at the left toxD b at the
right. The area between the curve and thex axis is the definite integral.

I think of that integral in the following way. The region is made up ofthin strips.
Their width isdx and their height isv.x/: The area of a strip isv.x/ timesdx:

The area of all the strips is
r b

a
v.x/ dx: Strictly speaking, the area of one strip is

meaningless—genuine rectangles have width�x:My point is that the picture of thin
strips gives the correct approach.

We know what function to integrate (from the picture). We also know how (from
this course or a calculator). The new applications to volume and length and surface
area cut up the region in new ways. Again the small pieces tell the story. In this
chapter,what to integrate is more important thanhow.
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8.1 Areas and Volumes by Slices 373

8.1 Areas and Volumes by Slices

This section starts with areas between curves. Then it moves tovolumes, where the
strips becomeslices. We are weighing a loaf of bread by adding the weights of the
slices. The discussion is dominated by examples and figures—the theory is minimal.
The real problem is to set up the right integral. At the end we look at a different way
of cutting up volumes, into thin shells.All formulas are collected into final table.

Figure 8.1 showsthe area between two curves. The upper curve is the graph of
yD v.x/: The lower curve is the graph ofyDw.x/: The strip height isv.x/�
w.x/; from one curve down to the other. The width isdx (speaking informally again).
The total area is the integral of “top minus bottom”:

area between two curvesD
» b

a

h

v.x/�w.x/idx: (1)

EXAMPLE 1 The upper curve isyD 6x (straight line). The lower curve isyD 3x2

(parabola). The area lies between the points where those curves intersect.

To find the intersection points, solvev.x/Dw.x/ or 6xD 3x2:

Fig. 8.1 Area between curvesD integral ofv�w: Area in Example 2 starts withx¥ 0:
One crossing is atxD 0; the other is atxD 2: The area is an integral from0 to 2:

areaD
r b

a
.v�w/dxD

r 2

0
.6x�3x2/dxD 3x2�x3

i2

0
D 4:

EXAMPLE 2 Find the area between the circlevD
?
1�x2 and the45� linewD

x:

First question: Which area and what limits ? Start with the pie-shaped wedge in
Figure 8.1b. The area begins at they axis and ends where the circle meets the line.
At the intersection point we havev.x/Dw.x/:

from
a
1�x2 D x squaring gives1�x2 D x2 and then2x2 D 1:
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Thusx2 D 1
2
: The endpoint is atxD 1=

?
2: Now integrate the strip heightv�w:» 1=

?
2

0

.
a
1�x2�x/dxD

1

2
sin�1xC

1

2
x
a
1�x2� 1

2
x2

�1=
?

2

0

D
1

2
sin�1

�

1?
2

�

C
1

4
� 1
4

D
1

2

�

�

4

�

:

The area is�=8 (one eighth of the circle). To integrate
?
1�x2 dx we apply the

techniques of Chapter 7: SetxD sin�; convert to
r

cos2� d� D 1
2
.�Csin � cos�/;

convert back using� D sin�1x: It is harder than expected, for a familiar shape.

Remark Suppose the problem is to find thewhole areabetween the circle and
the line. The figure showsvDw at two points, which arexD 1=

?
2 (already used)

and alsoxD�1=?2: Instead of starting atxD 0; which gave1
8

of a circle, we now
include the area to the left.

Main point:Integrating fromxD�1=?2 to xD 1=
?
2 will give the wrong an-

swer. It misses the part of the circle that bulges out over itself, at the far left. In that
part, the strips have height2v instead ofv�w: The figure is essential, to get the
correct area of this half-circle.

HORIZONTAL STRIPS INSTEAD OF VERTICAL STRIPS

There is more than one way to slice a region.Vertical slices givex integrals.
Horizontal slices givey integrals. We have a free choice, and sometimes they
integral is better.

Fig. 8.2 Vertical slices (xintegrals) vs. horizontal slices (y integrals).

Figure 8.2 shows a unit parallelogram, with base1 and height1: To find its area
from vertical slices, three separate integrals are necessary. You should see why! With

horizontal slices of length1 and thicknessdy; the area is just
r 1

0
dyD 1:

EXAMPLE 3 Find the area underyD ln x (or beyondxD ey) out toxD e:

Thex integral from vertical slices is in Figure 8.2c. They integral is in Figure 8.2d.
The area is a choice between two equal integrals (I personally would choosey):

r e

xD1
ln x dxD

h

x ln x�xie

1
D 1 or

r 1

yD0
.e�ey/ dyD

h

ey�ey
i1

0
D 1:
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VOLUMES BY SLICES

For the first time in this book, we now look atvolumes. The regions are
three-dimensional solids. There are three coordinatesx;y;z—and many ways to
cut up a solid.

Figure 8.3 shows one basic way—usingslices. The slices have thicknessdx; like
strips in the plane. Instead of the heighty of a strip, we now havethe areaA of a
cross-section. This area is different for different slices:A depends onx: The volume
of the slice is its area times its thickness:dV DA.x/dx: The volume of the whole
solid is the integral:

volumeD integral of area times thicknessD
r
A.x/ dx: (2)

Note An actual slice does not have the same area on both sides! Its thickness is
�x (notdx). Its volume is approximatelyA.x/�x (but not exactly). In the limit, the
thickness approaches zero and the sum of volumes approaches the integral.

For a cylinder all slices are the same. Figure 8.3b shows a cylinder—not circular.
The area is a fixed numberA; so integration is trivial.The volume isA timesh. The

Fig. 8.3 Cross-sections have areaA.x/: Volumes are
r
A.x/ dx:

letterh; which stands forheight, reminds us that the cylinder often stands on its end.
Then the slices are horizontal and they integral orz integral goes from0 to h:

When the cross-section is a circle, the cylinder has volume�r2h:

EXAMPLE 4 Thetriangular wedgeinFigure 8.3b has constant cross-sections with
areaAD 1

2
.3/.4/D 6: The volume is6h:

EXAMPLE 5 For thetriangular pyramidin Figure 8.3c, the areaA.x/ drops from
6 to 0: It is a general rule for pyramids or cones that their volume has an extra factor
1
3

(compared to cylinders). The volume is now2h instead of6h: For a cone with base

area�r2; the volume is1
3
�r2h: Tapering the area to zero leaves only1

3
of the

volume.
Why the 1

3
? Triangles sliced from the pyramid have shorter sides. Starting from

3 and4; the side lengths3.1�x=h/ and4.1�x=h/ drop to zero atxD h: The area
is AD 6.1�x=h/2: Notice: The side lengths go down linearly, the area drops
quadratically. The factor1

3
really comes from integratingx2 to get 1

3
x3:» h

0

A.x/ dxD

» h

0

6

�

1� x
h

�2

dxD�2h �1� x
h

�3
#h

0

D 2h:



376 8 Applications of the Integral

EXAMPLE 6 A half-sphere of radiusR has known volume 1
2
.4

3
�R3/: Its

cross-sections aresemicircles. The key relation isx2 Cr2 DR2; for the right
triangle in Figure 8.4a. The area of the semicircle isAD 1

2
�r2 D 1

2
�.R2�x2/:

So we integrateA.x/:

volumeD
r R�R

A.x/ dxD 1
2
�.R2x� 1

3
x3/

iR�R
D 2

3
�R3:

EXAMPLE 7 Find the volume of the same half-sphere using horizontal slices
(Figure 8.4b). The sphere still has radiusR: The new right triangle givesy2 Cr2 D
R2: Since we have full circles the area is�r2 D�.R2�y2/:Notice that this isA.y/
notA.x/: But they integral starts at zero:

volumeD
r R

0
A.y/ dyD�.R2y� 1

3
y3/

iR

0
D 2

3
�R3 (as before):

Fig. 8.4 A half-sphere sliced vertically or horizontally. Washer area�f 2��g2:

SOLIDS OF REVOLUTION

Cones and spheres and circular cylinders are “solids of revolution.” Rotating a
horizontal line around thex axis gives a cylinder. Rotating a sloping line gives a
cone. Rotating a semicircle gives a sphere. If a circle is moved away from the axis,
rotation produces a torus (a doughnut). The rotation of any curveyD f .x/ produces
asolid of revolution.

The volume of that solid is made easier becauseevery cross-section is a circle.
All slices are pancakes (or pizzas). Rotating the curveyD f .x/ around thex axis
gives disks of radiusy; so the area isAD�y2 D�Œf .x/�2: We add the slices:

volume of solid of revolutionD
» b

a

�y2 dxD

» b

a

� Œf .x/�2dx:

EXAMPLE 8 Rotating yD
?
x with AD�.

?
x2/2 produces a “headlight”

(Figure 8.5a):

volume of headlightD
r 2

0
AdxD

r 2

0
�x dxD 1

2
�x2

i2

0
D 2�:

If the same curve is rotated around they axis, it makes a champagne glass.The slices
are horizontal. The area of a slice is�x2 not�y2: WhenyD

?
x this area is�y4:

Integrating fromyD 0 to
?
2 gives the champagne volume�.

?
2/5=5:

revolution around they axisW volumeD

»
�x2 dy:
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EXAMPLE 9 The headlight has a hole down the center (Figure 8.5b). VolumeD ?

The hole has radius1: All of the
?
x solid is removed, up to the point where

?
x

reaches1: After that, fromxD 1 to xD 2; each cross-section is a disk with a hole.
The disk has radiusf D

?
x and the hole has radiusgD 1: The slice is a flat ring

or a “washer.” Its area is the full disk minus the area of the hole:

area of washerD�f 2��g2 D�.
?
x/2��.1/2 D�x��:

This is the areaA.x/ in themethod of washers. Its integral is the volume:

r 2

1
AdxD

r 2

1
.�x��/ dxD

h

1
2
�x2��xi2

1
D 1

2
�:

Please notice:The washer area is not�.f �g/2. It isAD�f 2��g2:

Fig. 8.5 yD
?
x revolved;yD 1 revolved inside it; circle revolved to give torus.

EXAMPLE 10 (Doughnut sliced into washers) Rotate a circle of radiusa around
thex axis. The center of the circle stays out at a distanceb¡ a: Show that the volume
of the doughnut (or torus) is2�2a2b:

The outside half of the circle rotates to give the outside of the doughnut. The inside
half gives the hole. The biggest slice (through the center plane) has outer radiusbCa
and inner radiusb�a:

Shifting over byx; the outer radius isf D bC
?
a2�x2 and the inner radius is

gD b�?a2�x2: Figure 8.5c shows a slice (a washer) with area�f 2��g2:

areaAD�.bC
a
a2�x2/2��.b�aa2�x2/2 D 4�b

a
a2�x2:

Now integrate over the washers to find the volume of the doughnut:

r a�a
A.x/ dxD 4�b

r a�a

?
a2�x2 dxD .4�b/.1

2
�a2/D 2�2a2b:

That integral1
2
�a2 is the area of a semicircle. When we setxD a sin� the area isr

a2 cos2� d�: Not for the last time do we meetcos2�:
The hardest part is visualizing the washers, because a doughnut usually breaks the

other way. A better description is abagel, sliced the long way to be buttered.
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VOLUMES BY CYLINDRICAL SHELLS

Finally we look at a different way of cutting up a solid of revolution. So far it was
cut into slices. The slices were perpendicular to the axis of revolution. Now the cuts
areparallel to the axis, and each piece is athin cylindrical shell. The new formula
gives the same volume, but the integral to be computed might be easier.

Figure 8.6a shows a solid cone. A shell is inside it. The inner radius isx and the
outer radius isxCdx: The shell is an outer cylinder minus an inner cylinder:

shell volume�.xCdx/2h��x2hD�x2hC2�x.dx/hC�.dx/2h��x2h:
(3)

The term that matters is2�x.dx/h: The shell volume is essentially2�x (the dis-
tance around)timesdx (the thickness)timesh (the height). The volume of the solid
comes from putting together the thin shells:

solid volumeD integral of shell volumesD
»
2�xh dx: (4)

This is the central formula of the shell method. The rest is examples.

Remark on this volume formulaIt is completely typical of integration that.dx/2

and .�x/2 disappear. The reason is this. The number of shells grows like1=�x:
Terms of order.�x/2 add up to a volume of order�x (approaching zero).The
linear term involving�x or dx is the one to get right. Its limit gives the integralr
2�xh dx: The key is to build the solid out of shells—and to find the area or volume

of each piece.

EXAMPLE 11 Find the volume of a cone (base area�r2; height b) cut into shells.

A tall shell at the center hash nearb: A short shell at the outside hash near zero.
In between the shell heighth decreases linearly, reaching zero atxD r: The height
in Figure 8.6a ishD b�bx=r: Integrating over all shells gives the volume of the
cone (with the expected1

3
):» r

0

2�x

�

b�b x
r

�

dxD

�

�x2b� 2�x3b

3r

�r

0

D
1

3
�r2b:

Fig. 8.6 Shells of volume2�xh dx inside cone, sphere with hole, and paraboloid.
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EXAMPLE 12 Bore a hole of radiusa through a sphere of radiusb¡ a:
The hole removes all points out toxD a; where the shells begin. The height of the
shell ishD 2

?
b2�x2: (The key is the right triangle in Figure 8.6b. The height

upward is
?
b2�x2—this is half the height of the shell.) Therefore the sphere-with-

hole has
volumeD

r b

a
2�xh dxD

r b

a
4�x

?
b2�x2 dx:

With uD b2�x2 we almost seedu: Multiplying duD�2x dx is an extra factor�2� :
volumeD�2� r ?

u duD�2��2
3
u3=2

�

:

We can find limits onu; or we can put backuD b2�x2:

volumeD�4�
3
.b2�x2/3=2

�b

a

D
4�

3
.b2�a2/3=2:

If aD b (the hole is as big as the sphere) this volume is zero. IfaD 0 (no hole) we
have4�b3=3 for the complete sphere.

Question What if the sphere-with-hole is cut into slices instead of shells ?
Answer Horizontal slices are washers (Problem66). Vertical slices are not good.

EXAMPLE 13 Rotate the parabolayD x2 around they axis to form a bowl.

We go out toxD
?
2 (and up toyD 2). The shells in Figure 8.6c have height

hD 2�x2: The bowl (or paraboloid) is the same as the headlight in Example 8,
but we have shells not slices:» ?

2

0

2�x.2�x2/ dxD 2�x2� 2�x4

4

�

?
2

0

D 2�:

TABLE
OF

AREAS
AND

VOLUMES

area between curves: AD
r
.v.x/�w.x// dx

solid volume cut into slices: V D
r
A.x/ dx or

r
A.y/ dy

solid of revolution: cross-sectionAD�y2 or �x2

solid with hole: washer areaAD�f 2��g2

solid of revolution cut into shells: V D
r
2�xh dx:

Which to use, slices or shells? Start with a vertical line going up toyD cosx:
Rotating the line around thex axis produces aslice (a circular disk). The radius is
cosx: Rotating the line around they axis produces ashell(the outside of a cylinder).
The height iscosx: See Figure 8.7 for the slice and the shell. For volumes we just
integrate� cos2x dx (the slice volume) or2�x cosx dx (the shell volume).

This is the normal choice—slices through thex axis and shells around they
axis. ThenyD f .x/ gives the disk radius and the shell height. The slice is a washer
instead of a disk if there is also an inner radiusg.x/: No problem—just integrate
small volumes.

What if you use slices for rotation around they axis ? The disks are in Figure 8.7b,
andtheir radius isx: This isxD cos�1y in the example. It isxD f �1.y/ in gen-
eral. You have to solveyD f .x/ to findx in terms ofy: Similarly for shells around
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thex axis: The length of the shell isxD f �1.y/: Integrating may be difficult or
impossible.

WhenyD cosx is rotated around thex axis, here are the choices for volume:

(good by slices)
r
� cos2x dx (bad by shells)

r
2�y cos�1y dy:

Fig. 8.7 Slices throughx axis and shells aroundy axis (good). The opposite way needsf �1.y/:

8.1 EXERCISES

Read-through questions

The area betweenyD x3 and yD x4 equals the integral of
a . If the region ends where the curves intersect, we find

the limits on x by solving b . Then the area equals c .
When the area betweenyD

?
x and the y axis is sliced

horizontally, the integral to compute is d .

In three dimensions the volume of a slice is its thickness
dx times its e . If the cross-sections are squares of side
1�x; the volume comes from

r
f . From xD 0 to xD 1;

this gives the volume g of a square h . If the cross-
sections are circles of radius1�x; the volume comes fromr

i . This gives the volume j of a circular k .

For a solid of revolution, the cross-sections are l .
Rotating the graph ofyD f .x/ around thex axis gives a solid
volume

r
m . Rotating around they axis leads to

r
n .

Rotating the area betweenyD f .x/ and yDg.x/ around thex
axis, the slices look like o . Their areas are p so the
volume is

r
q .

Another method is to cut the solid into thin cylindrical
r . Revolving the area underyD f .x/ around they axis,

a shell has height s and thicknessdx and volume t .
The total volume is

r
u .

Find where the curves in 1–12 intersect, draw rough graphs, and
compute the area between them.

1 yD x2�3 andyD 1

3 y2 D x andxD 9

5 yD x4�2x2 andyD 2x2

2 yD x2�2 andyD 0

4 y2 D x andxD yC2

6 xD y5 andyD x4

7 yD x2 andyD�x2 C18x

8 yD 1=x andyD 1=x2 andxD 3

9 yD cosx andyD cos2x

10 yD sin�x andyD 2x andxD 0

11 yD ex andyD e2x�1 andxD 0

12 yD e andyD ex and yD e�x

13 Find the area inside the three linesyD 4�x;yD 3x; and
yD x:

14 Find the area bounded byyD 12�x;y D
?
x; andyD 1:

15 Does the parabolayD 1�x2 out to xD 1 sit inside or
outside the unit circlex2 Cy2 D 1 ? Find the area of the “skin” be-
tween them.

16 Find the area of the largest triangle with base on thex axis
that fits (a) inside the unit circle (b) inside that parabola.

17 Rotate the ellipsex2=a2 Cy2=b2 D 1 around thex axis to
find the volume of a football. What is the volume around they
axis ? If aD 2 and bD 1; locate a point.x;y;z/ that is in one
football but not the other.

18 What is the volume of the loaf of bread which comes from
rotatingyD sinx.0¤x¤�/ around thex axis ?

19 What is the volume of the flying saucer that comes from
rotatingyD sinx.0¤x¤�/ around they axis ?

20 What is the volume of the galaxy that comes from rotating
yD sinx.0¤x¤�) around thex axis and then rotating the whole
thing around they axis ?

Draw the region bounded by the curves in 21–28. Find the
volume when the region is rotated (a) around thex axis (b)
around the y axis.

21 xCyD 8; xD 0;yD 0

22 y�ex D 1; xD 1;yD 0; xD 0

23 yD x4;yD 1; xD 0
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24 yD sinx;yD cosx; xD 0

25 xyD 1; xD 2;yD 3

26 x2�y2 D 9; xCyD 9 (rotate the region wherey¥ 0)
27 x2 D y3; x3 D y2

28 .x�2/2 C.y�1/2 D 1

In 29–34 find the volume and draw a typical slice.

29 A cap of heighth is cut off the top of a sphere of radiusR: Slice
the sphere horizontally starting atyDR�h:
30 A pyramid P has height 6 and square base of side2: Its
volume is1

3 .6/.2/
2 D 8:

(a) Find the volume up to height3 by horizontal slices.
What is the length of a side at heighty ?
(b) Recompute by removing a smaller pyramid fromP:

31 The base is a disk of radiusa: Slices perpendicular to the
base are squares.

32 The base is the region under the parabolayD 1�x2:

Slices perpendicular to thex axis are squares.

33 The base is the region under the parabolayD 1�x2:

Slices perpendicular to they axis are squares.

34 The base is the triangle with corners.0;0/; .1;0/; .0;1/:
Slices perpendicular to thex axis are semicircles.

35 Cavalieri’s principle for areas: If two regions have strips
of equal length, then the regions have the same area. Draw a
parallelogram and a curved region, both with the same strips
as the unit square. Why are the areas equal ?

36 Cavalieri’s principle for volumes: If two solids have slices
of equal area, the solids have the same volume. Find the
volume of the tilted cylinder in the figure.

37 Draw another region with the same slice areas as the
til ted cylinder. When all areasA.x/ are the same, the volumesr

are the same.

38 Find the volume common to two circular cylinders of radiusa:
One eighth of the region is shown (axes are perpendicular and hori-
zontal slices are squares).

39 A wedge is cut out of a cylindrical tree (see figure). One
cut is along the ground to thex axis. The second cut is at
angle�; also stopping at thex axis.

(a) The curveC is part of a (circle) (ellipse) (parabola).

(b) The height of pointP in terms ofx is .

(c) The areaA.x/ of the triangular slice is .

(d) The volume of the wedge is .

40 The same wedge is sliced perpendicular to they axis.

(a) The slices are now (triangles) (rectangles) (curved).
(b) The slice area is (slice heighty tan �).

(c) The volume of the wedge is the integral .

(d) Change the radius from1 to r: The volume is
multiplied by .

41 A cylinder of radiusr and height h is half full of water.
Tilt it so the water just covers the base.

(a) Find the volume of water by common sense.

(b) Slices perpendicular to thex axis are (rectangles)
(trapezoids) (curved). I had to tilt an actual glass.�42 Find the area of a slice in Problem41: (The tilt angle has

tan� D 2h=r:) Integrate to find the volume of water.

The slices in 43–46 are washers. Find the slice area and vol-
ume.

43 The rectangle with sidesxD 1; xD 3; yD 2; yD 5 is rotated
around thex axis.

44 The same rectangle is rotated around they axis.

45 The same rectangle is rotated around the lineyD 1:

46 Draw the triangle with corners.1;0/; .1;1/; .0;1/: After ro-
tation around thex axis, describe the solid and find its
volume.

47 Bore a hole of radiusa down the axis of a cone and
through the base of radiusb: If it is a 45� cone (height also
b), what volume is left ? CheckaD 0 andaD b:

48 Find the volume common to two spheres of radiusr if
their centers are2.r�h/ apart. Use Problem29 on spherical
caps.

49 (Shells vs. disks) RotateyD 3�x around thex axis from
xD 0 to xD 2: Write down the volume integral by disks and
then by shells.

50 (Shells vs. disks) RotateyD x3 around the y axis from
yD 0 to yD 8: Write down the volume integral by shells and
disks and compute both ways.
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51 Yogurt comes in a solid of revolution. Rotate the line
yDmx around they axis to find the volume betweenyD a

andyD b:

52 SupposeyD f .x/ decreases fromf .0/D b to f .1/D 0: The
curve is rotated around they axis.Compare shells to disks:

r 1
0 2�xf .x/dxD

r b
0 �.f �1.Y //2dy:

SubstituteyD f .x/ in the second. Also substitutedyD f 1.x/dx:
Integrate by parts to reach the first.

53 If a roll of paper with inner radius2 cm and outer radius
10 cm has about10 thicknesses per centimeter, approximately
how long is the paper when unrolled ?

54 Find the approximate volume of your brain. OK to include
everything above your eyes (skull too).

Use shells to find the volumes in 55–63. The rotated regions lie
between the curve andx axis.

55 yD 1�x2; 0¤ x¤ 1 (around they axis)

56 yD 1=x; 1¤x¤ 100 (around they axis)

57 yD
a
1�x2; 0¤x¤ 1 (around either axis)

58 yD 1=.1Cx2/; 0¤x¤ 3 (around they axis)

59 yD sin.x2/; 0¤x¤?� (around they axis)

60 yD 1=
a
1�x2; 0¤x¤ 1 (around they axis)

61 yD x2; 0¤x¤ 2 (around thex axis)

62 yD ex; 0¤x¤ 1 (around thex axis)

63 yD ln x; 1¤x¤ e (around thex axis)

64 The region betweenyD x2 andyD x is revolved around they
axis. (a) Find the volume by cutting into shells. (b) Find the volume
by slicing into washers.

65 The region betweenyDf .x/ and yD 1Cf .x/ is rotated
around they axis. The shells have height . The volume out to
xD a is . It equals the volume of a because the shells
are the same.

66 A horizontal slice of the sphere-with-hole in Figure 8.6b is a
washer. Its area is�x2��a2 D�.b2�y2�a2/:

(a) Find the upper limit ony (the top of the hole).

(b) Integrate the area to verify the volume in Example12:

67 If the hole in the sphere has length2; show that the volume is
4�=3 regardless of the radiia andb:�68 An upright cylinder of radiusr is sliced by two parallel planes
at anglę : One is a heighth above the other.

(a) Draw a picture to show that the volume between the planes
is �r2h:

(b) Tilt the picture by̨ ; so the base and top are flat. What is
the shape of the base ? What is its areaA ? What is the height
H of the tilted cylinder ?

69 True or false, with a reason.

(a) A cube can only be sliced into squares.

(b) A cube cannot be cut into cylindrical shells.

(c) The washer with radiir andR has area�.R�r/2:
(d) The planewD 1

2 slices a3-dimensional sphere out of a4-
dimensional spherex2 Cy2 Cz2 Cw2 D 1:
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8.2 Length of a Plane Curve

The graph ofyD x3=2 is a curve in thex-y plane.How long is that curve? A
definite integral needs endpoints, and we specifyxD 0 andxD 4: The first problem
is to know what “length function” to integrate.

The distance along a curve is thearc length. To set up an integral, we break the
problem into small pieces. Roughly speaking,small pieces of a smooth curve are
nearly straight. We know the exact length�s of a straight piece, and Figure 8.8
shows how it comes close to a curved piece.

.�s/2 D .�x/2 C .�y/2

.ds/2 D .dx/2 C

�

dy

dx

�2

.dx/2

dsD
a
1C.dy=dx/2 dx

Fig. 8.8 Length�s of short straight segment. Lengthds of very short curved segment.

Here is the unofficial reasoning that gives the length of the curve. A straight piece
has.�s/2 D .�x/2 C .�y/2: Within that right triangle, the height�y is the slope
.�y=�x/ times�x: This secant slope is close to the slope of the curve. Thus�y is
approximately.dy=dx/ �x:

�s�a.�x/2 C .dy=dx/2.�x/2 D
a
1C .dy=dx/2�x: (1)

Now add these pieces and make them smaller. The infinitesimal triangle has
.ds/2 D .dx/2 C .dy/2: Think of ds as

a
1C .dy=dx/2 dx and integrate:

length of curveD

»
dsD

» a
1C .dy=dx/2 dx: (2)

EXAMPLE 1 KeepyD x3=2 anddy=dxD 3
2
x1=2: Watch out for3

2
and 9

4
:

lengthD
r 4

0

b
1C 9

4
x dxD

�

2
3

��

4
9

��

1C 9
4
x
�3=2

i4

0
D 8

27
.103=2�13=2/: (3)

This answer is just above9: A straight line from.0;0/ to .4;8/ has exact length?
80:Note42 C82 D 80:Since

?
80 is just below9; the curve is surprisingly straight.

You may not approve of those numbers (or the reasoning behind them). We can fix
the reasoning, but nothing can be done about the numbers. This exampleyD x3=2

had to be chosen carefully to make the integration possible at all. The length integral
is difficult because of the square root. In most cases we integrate numerically.

EXAMPLE 2 The straight lineyD 2x fromxD 0 to xD 4 hasdy=dxD 2:

length D
r 4

0

?
1C4 dxD 4

?
5D

?
80 as be-fore (just checking):

We return briefly to the reasoning. The curve is the graph ofyD f .x/: Each piece
contains at least one point where secant slope equals tangent slope:�y=�xD f 1.c/:
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The Mean Value Theorem applies when the slope is continuous—this is required for
a smooth curve. The straight length�s is exactly

a
.�x/2 C .f 1.c/�x/2: Adding

then pieces gives the length of the broken line (close to the curve):

n
X

1

�si D

n
X

1

a
1C Œf 1.ci/�2�xi :

As nÑ8 and�xmaxÑ 0 this approaches the integral that gives arc length.

8A The length of the curveyD f .x/ from xD a to xD 6 is

sD
r
dsD

r b

a

a
1C Œf 1.x/�2 dxD

r b

a

a
1C .dy=dx/2 dx: (4)

EXAMPLE 3 Find the length of the first quarter of the circleyD
?
1�x2:

Heredy=dxD�x=?1�x2: From Figure 8.9a, the integral goes fromxD 0 to
xD 1:

lengthD

» 1

0

a
1C .dy=dx/2 dxD

» 1

0



1C

x2

1�x2
dxD

» 1

0

dx?
1�x2

:

The antiderivative issin�1x: It equals�=2 atxD 1: This length�=2 is a quarter of
the full circumference2�:

EXAMPLE 4 Compute the distance around a quarter of theellipsey2 C2x2 D 2:

The equation isyD
?
2�2x2 and the slope isdy=dxD�2x=?2�2x2: So

r
ds

is » 1

0



1C

4x2

2�2x2
dxD

» 1

0



2C2x2

2�2x2
dxD

» 1

0



1Cx2

1�x2
dx: (5)

That integral can’t be done in closed form.The length of an ellipse can only be
computed numerically. The denominator is zero atxD 1, so a blind application of
the trapezoidal rule or Simpson’s rule would givelengthD8: The midpoint rule
giveslengthD 1:91 with thousands of intervals.

Fig. 8.9 Circle and ellipse, directly byyD f .x/ or parametrically byx.t/ andy.t/:
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LENGTH OF A CURVE FROM PARAMETRIC EQUATIONS: x.f / AND y.f /

We have met the unit circle in two forms. One isx2 Cy2 D 1: The other isxD cost ,
yD sin t: Sincecos2tCsin2t D 1, this point goes around the correct circle. One
advantage of the “parameter” t is to give extra information—it tellswherethe point
is and alsowhen. In Chapter 1, the parameter was the time and also the angle—
because we moved around the circle with speed1:

Using t is a natural way to give the position of a particle or a spacecraft. We can
recover the velocity if we knowx andy at every timet: An equationyD f .x/ tells
the shape of the path, not the speed along it.

Chapter 12 deals with parametric equations for curves. Here we concentrate on
the path length—which allows you to see the idea of a parametert without too
much detail. We givex as a function oft andy as a function oft: The curve is still
approximated by straight pieces, and each piece has.�s/2 D .�x/2 C .�y/2: But
instead of using�y� .dy=dx/�x; we approximate�x and�y separately:

�x� .dx=dt/�t; �y� .dy=dt/�t; �s�a.dx=dt/2 C .dy=dt/2�t:

8B The length of a parametric curve is an integral with respect tot :

r
dsD

r
.ds=dt/ dt D

r a
.dx=dt/2 C .dy=dt/2 dt: (6)

EXAMPLE 5 Find the length of the quarter-circle usingxD cost andyD sin t :» �=2

0

a
.dx=dt/2 C .dy=dt/2 dt D

» �=2

0

a
sin2tCcos2t dt D

» �=2

0

dt D
�

2
:

The integral is simpler than1=
?
1�x2, and there is one new advantage.We can

integrate around a whole circle with no trouble. Parametric equations allow a path
to close up or even cross itself. The timet keeps going and the point.x.t/;y.t//
keeps moving. In contrast, curvesyD f .x/ are limited to oney for eachx:

EXAMPLE 6 Find the length of the quarter-ellipse:xD cost andyD
?
2sin t :

On this pathy2 C2x2 is 2 sin2tC2cos2t D 2 (same ellipse). Thenon-parametric
equationyD

?
2�2x2 comes from eliminatingt: We keept :

lengthD

» �=2

0

a
.dx=dt/2 C .dy=dt/2 dt D

» �=2

0

a
sin2tC2 cos2t dt: (7)

This integral(7) must equal(5). If one cannot be done, neither can the other. They
are related byxD cost , but (7) does not blow up at the endpoints. The trapezoidal
rule gives1:9101with less than100 intervals. Section 5.8 mentioned that calculators
automaticallydo a substitution that makes(5) more like(7).

EXAMPLE 7 The pathxD t2, yD t3 goes from.0;0/ to .4;8/: Stop att D 2:

To find this path without the parametert , first solve fort D x1=2: Then substitute
into the equation foryWyD t3 D x3=2: The non-parametric form(with t elimi-
nated)is the same curveyD x3=2 as in Example1.

The length from thet -integral equals the length from thex-integral. This is
Problem 22.
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EXAMPLE 8 Special choice of parameter: t is x: The curve becomesxD t ,
yD t3=2:

If xD t then dx=dt D 1: The square root in(6) is the same as the square root
in (4). Thus the non-parametric formyD f .x/ is a special case of the parametric
form—just taket D x:

ComparexD t , yD t3=2 with xD t2, yD t3: Same curve, same length, differ-
ent speed.

EXAMPLE 9 Define “speed” by
short distance

short time
D
ds

dt
: It is

d
�

dx

dt

�2

C

�

dy

dt

�2

:

When a ball is thrown straight upward,dx=dt is zero. But the speed is notdy=dt:
It is |dy=dt |: The speed is positive downward as well as upward.

8.2 EXERCISES

Read-through questions

The length of a straight segment (�x across, �y up) is
�sD a . Between two points of the graph ofy.x/;�y is
approximatelydy=dx times b . The length of that piece
is approximately

a
.�x/2 C c . An infinitesimal piece of

the curve has lengthdsD d . Then the arc length integral
is

r
e .

For yD 4�x from xD 0 to xD 3 the arc length isr
f D g . ForyD x3 the arc length integral is h .

The curvexD cost; yD sin t is the same as i . The length

of a curve given byx.t/; y.t/ is
r b

j dt: For example

xD cost , yD sin t from t D�=3 to t D�=2 has length k .
The speed isds=dt D l . For the special casexD t;

yD f .t/ the length formula goes back to
r ?

m dx:

Find the lengths of the curves in Problems 1�8.

1 yD x3=2 from .0;0/ to .1;1/

2 yD x2=3 from .0;0/ to .1;1/ (compare with Problem1 or put
uD 4

9 Cx2=3 in the length integral)

3 yD 1
3 .x

2 C2/3=2 from xD 0 to xD 1

4 yD 1
3 .x

2�2/3=2 from xD 2 to xD 4

5 yD
x3

3
C
1

4x
fromxD 1 to xD 3

6 yD
x4

4
C

1

8x2
fromxD 1 to xD 2

7 yD 2
3x

3=2� 1
2x

1=2 from xD 1 to xD 4

8 yD x2 from .0;0/ to .1;1/

9 The curve given byxD cos3t , yD sin3t is an astroid
(a hypocycloid). Its non-parametric form isx2=3 Cy2=3 D 1:

Sketch the curve fromt D 0 to t D�=2 and find its length.

10 Find the length fromt D 0 to t D� of the curve given by
xD costCsin t; yD cost�sin t: Show that the curve is a circle (of
what radius ? ).

11 Find the length fromt D 0 to t D�=2 of the curve given by
xD cost; yD t�sin t:

12 What integral gives the length of Archimedes’ spiral
xD t cost; yD t sin t ?

13 Find the distance traveled in the first second (tot D 1) if
xD 1

2 t
2; yD 1

3 .2tC1/
3=2:

14 xD .1� 1
2 cos 2t/cos t and yD .1C 1

2 cos 2t/sin t lead to
4.1�x2�y2/3 D 27.x2�y2/2: Find the arc length fromt D 0 to
�=4:

Find the arc lengths in 15�18 by numerical integration.

15 One arch ofyD sinx, from xD 0 to xD�:

16 yD ex from xD 0 to xD 1:

17 yD lnx from xD 1 to xD e:

18 xD cost;yD 3 sin t;0¤ x¤ 2�:
19 Draw a rough picture ofyD x10:Without computing the length
of yD xn from .0;0/ to .1;1/, find the limit asnÑ8:
20 Which is longer between.1;1/ and .2; 1

2 /, the hyperbola
yD 1=x or the graph ofxC2y D 3 ?

21 Find the speedds=dt on the circlexD 2 cos3t;yD 2sin3t:

22 Examples1 and7 wereyD x3=2 andxD t2, yD t3:

lengthD
r 4
0

b
1C 9

4x dx; lengthD
r 2
0

?
4t2 C9t4 dt:

Show by substitutingxD that these integrals agree.
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23 Instead ofyD f .x/ a curve can be given asxDg.y/: Then

dsD

b
.dx/2 C.dy/2 D

b
.dx=dy/2 C1 dy:

DrawxD 5y from yD 0 to yD 1 and find its length.

24 The length of xD y3=2 from .0;0/ to .1;1/ is
r
dsD

r b
9
4yC1 dy: Compare with Problem1 W Same length ?

Same curve ?

25 Find the length ofxD 1
2 .e

y Ce�y/ from yD�1 to yD 1 and
draw the curve.

26 The length ofxDg.y/ is a special case of equation (6) with
yD t andxDg.t/: The length integral becomes .

27 Plot the point xD 3 cos t; yD 4 sin t at the five times
t D 0, �=2, �, 3�=2, 2�: The equation of the curve is
.x=3/2 C.y=4/2 D 1, not a circle but an . This curve
cannot be written asyDf .x/ because .

28 (a) Find the length ofxD cos2 t , yD sin2 t , 0¤y¤�:
(b) Why does this path stay on the linexCyD 1 ?
(c) Why isn’t the path length equal to

?
2 ?

29 (important) The lineyD x is close to a staircase of pieces
that gostraight across or straight up. With 100 pieces of length
�xD 1=100 or �yD 1=100, find the length of carpet on the

staircase. (The length of the45� line is
?
2: The staircase can be

close when its length is not close.)

30 The area of an ellipse is�ab: The area of a strip around
it (width �) is �.aC�/.bC�/��ab ��.aCb/�: The dis-
tance around the ellipse seems to be�.aCb/: But this distance
is impossible to find—what is wrong ?

31 The pointxD cost , yD sin t , zD t moves on aspace curve.

(a) In three-dimensional space.ds/2 equals.dx/2 C :

In equation (6),ds is now dt:

(b) This particular curve hasdsD : Find its length from
t D 0 to t D 2�:

(c) Describe the curve and its shadow in thexy plane.

32 Explain in 50 words the difference between a non-
parametric equationyD f .x/ and two parametric equations
xD x.t/, yD y.t/:

33 Write down the integral for the lengthL of yD x2 from .0;0/

to .1;1/: Show thatyD 1
2x

2 from .0;0/ to .2;2/ is exactly twice as
long. If possible give a reason using the graphs.

34 (for professors) Compare the lengths of the parabolayD x2

and the line yD bx from .0;0/ to .b;b2/: Does the difference
approach a limit asbÑ8 ?
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8.3 Area of a Surface of Revolution

This section starts by constructing surfaces.A curveyD f .x/ is revolved around
an axis. That produces a “surface of revolution,” which is symmetric around the
axis. If we revolve a sloping line, the result is a cone. When the line is parallel to the
axis we get a cylinder (a pipe). By revolving a curve we might get a lamp or a lamp
shade (or even the light bulb).

Section 8.1 computed the volume inside that surface.This section computes the
surface area. Previously we cut the solid into slices or shells. Now we need a good
way to cut up the surface.

The key idea isto revolve short straight line segments. Their slope is�y=�x:
They can be the same pieces of length�s that were used to find length—now we
compute area. When revolved, a straight piece produces a “thin band” (Figure 8.10).
The curved surface, from revolvingyD f .x/, is close to the bands. The first step is
to computethe surface area of a band.

A small comment: Curved surfaces can also be cut into tiny patches. Each patch
is nearly flat, like a little square. The sum of those patches leads to a double integral
(with dx dy). Here the integral stays one-dimensional (dx or dy or dt ). Surfaces of
revolution are special—we approximate them by bands that go all the way around.
A band is just a belt with a slope, and its slope has an effect on its area.

Fig. 8.10 Revolving a straight piece and a curve around they axis andx axis.

Revolve a small straight piece (length�s not�x). The center of the piece goes
around a circle of radiusr: The band isa slice of a cone. When we flatten it out
(Problems11�13) we discover its area. The area is theside length�s times the
middle circumference2�r :

The surface area of a band is2�r�sD 2�r
a
1C .�y=�x/2�x:

For revolution around they axis, the radius isr D x: For revolution around the
x axis, the radius is the height:r D yD f .x/: Figure 8.10 shows both bands—the
problem tells us which to use. The sum of band areas2�r �s is close to the areaS
of the curved surface. In the limit we integrate2�r ds:

8C The surface area generated by revolving the curveyD f .x/ betweenxD a
andxD b is

S D
r b

a
2�y

a
1C .dy=dx/2 dx around thex axis .r D y/ (1)

S D
r b

a
2�x

a
1C .dy=dx/2 dx around they axis .r D x/: (2)
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EXAMPLE 1 Revolve a complete semicircleyD
?
R2�x2 around thex axis.

The surface of revolution is asphere. Its area (known!) is4�R2: The limits onx are�R andR: The slope ofyD
?
R2�x2 is dy=dxD�x=?R2�x2:

areaS D

» R�R

2�
a
R2�x2



1C

x2

R2�x2
dxD

» R�R

2�R dxD 4�R2:

EXAMPLE 2 Revolve a piece of the straight lineyD 2x around thex axis.

The surface is aconewith .dy=dx/2 D 4: The band fromxD 0 to xD 1 has area
2�
?
5:

S D
r
2�y dsD

r 1

0
2�.2x/

?
1C4 dxD 2�

?
5:

This answer must agree with the formula2�r �s (which it came from). The line
from .0;0/ to .1;2/ has length�sD

?
5: Its mid-point is.1

2
;1/: Around thex axis,

the middle radius isr D 1 and the area is2�
?
5:

EXAMPLE 3 Revolve the same straight line segment around they axis. Now the
radius isx instead ofyD 2x: The area in Example 2 is cut in half:

S D
r
2�x dsD

r 1

0
2�x

?
1C4 dxD�

?
5:

For surfaces as for arc length, only a few examples have convenient answers.
Watermelons and basketballs and light bulbs are in the exercises. Rather than
stretching out this section, we give a final area formula and show how to use it.

The formula applies when there is aparametert: Instead of.x;f .x// the points on
the curve are.x.t/;y.t//: As t varies, we move along the curve. The length formula
.ds/2 D .dx/2 C .dy/2 is expressedin terms oft .

For the surface of revolution around thex axis, the area becomes at -integral:

8D The surface area is
r
2�y dsD

r
2�y.t/

a
.dx=dt/2 C .dy=dt/2 dt: (3)

EXAMPLE 4 The pointxD cost;yD 5Csin t travels on a circle with center at
.0;5/: Revolving that circle around thex axis produces a doughnut. Find its surface
area.

Solution .dx=dt/2 C .dy=dt/2 D sin2 tCcos2 t D 1: The circle is complete at
t D 2� :r

2�y dsD
r 2�

0
2�.5Csin t/dt D

h

2�.5t�cost/
i2�

0
D 20�2:
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8.3 EXERCISES

Read-through questions

A surface of revolution comes from revolving a a around
b . This section computes the c . When the curve is

a short straight piece (length�s), the surface is a d . Its
area is �S D e . In that formula (Problem13) r is the
radius of f . The line from.0;0/ to .1;1/ has length g ,
and revolving it produces area h .

When the curveyD f .x/ revolves around thex axis, the
surface area is the integral i . For yD x2 the integral to
compute is j . When yD x2 is revolved around they axis,
the area isS D k . For the curve given byxD 2t;yD t2,
changeds to l dt:

Find the surface area when curves 1–6 revolve around thex axis.

1 yD
?
x; 2¤ x¤ 6

2 yD x3; 0¤x¤ 1
3 yD 7x; �1¤x¤ 1 (watch sign)

4 yD
a
4�x2; 0¤x¤ 2

5 yD
a
4�x2; �1¤x¤ 1

6 yD coshx; 0¤x¤ 1:
In 7–10 find the area of the surface of revolution around they
axis.

7 yD x2; 0¤x¤ 2
9 yD xC1; 0¤x¤ 3 8 yD 1

2x
2 C 1

2 ; 0¤x¤ 1
10 yD x1=3; 0¤x¤ 1

11 A cone with base radiusR and slant heights is laid out
flat. Explain why the angle (in radians) is� D 2�R=s: Then the
surface area is a fraction of a circle:

areaD

�

�

2�

�

�s2 D

�

R

s

�

�s2 D�Rs:

12 A band with slant height�sD s�s1 and radii R and R1
is laid out flat. Explain in one line why its surface area is
�Rs��R1s1:

13 By similar trianglesR=sDR1=s1 or Rs1 DR1s: The middle
radius r is 1

2 .RCR1/: Substitute forr and�s in the proposed
area formula 2�r �s, to show that this gives the correct area
�Rs��R1s1:
14 Slices of a basketball all have the same area of cover, if they
have the same thickness.

(a) Rotate yD
a
1�x2 around the x axis. Show that

dS D 2� dx:

(b) The area betweenxD a andxD aCh is .

(c) 1
4 of the Earth’s area is above latitude .

15 Change the circle in Example 4 toxD a cos t and
yD bCasin t: Its radius is and its center is .
Find the surface area of a torus by revolving this circle around thex

axis.

16 What part of the circle xDR cost;yDRsin t should
rotate around they axis to produce the top half of a sphere ?
Choose limits ont and verify the area.

17 The base of a lamp is constructed by revolving the
quarter-circle yD

a
2x�x2 .xD 1 to xD 2/ around they axis.

Draw the quarter-circle, find the area integral, and compute
the area.

18 The light bulb is a sphere of radius1=2 with its bottom
sliced off to fit onto a cylinder of radius1=4 and length1=3:
Draw the light bulb and find its surface area (ends of the
cylinder not included).

19 The lamp shade is constructed by rotatingyD 1=x around
the y axis, and keeping the part fromyD 1 to yD 2: Set up
the definite integral that gives its surface area.

20 Compute the area of that lamp shade.

21 Explain why the surface area is infinite whenyD 1=x

is rotated around thex axis .1¤x 8/: But the volume
of “Gabriel’s horn” is . It can’t enough paint to
paint its surface.

22 A disk of radius 12 can be covered by four strips of tape
(width 1

2
2). If the strips are not parallel, prove that they can’t

cover the disk.Hint : Change to a unit sphere sliced by planes
1
2
2 apart. Problem 14 gives surface area� for each slice.

23 A watermelon (maybe a football) is the result of rotating
half of the ellipse xD

?
2 cos t; yD sin t (which means

x2 C2y2 D 2). Find the surface area, parametrically or not.

24 Estimate the surface area of an egg.
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8.4 Probability and Calculus

Discrete probability usually involves careful counting. Not many samples are taken
and not many experiments are made. There is a list of possible outcomes, and a
known probability for each outcome. But probabilities go far beyond red cards and
black cards. The real questions are much more practical:

1. How often will too many passengers arrive for a flight ?

2. How many random errors do you make on a quiz ?

3. What is the chance of exactly one winner in a big lottery ?

Those are important questions and we will set up models to answer them.
There is another point. Discrete models do not involve calculus. The number of

errors or bumped passengers or lottery winners is a small whole number.Calculus
enters for continuous probability. Instead of results that exactly equal1 or 2 or
3, calculus deals with results that fall in a range of numbers. Continuous probability
comes up in at least two ways:

(A) An experiment is repeated many times and we takeaverages.
(B) The outcome lies anywhere in anintervalof numbers.

In the continuous case, the probabilitypn of hitting a particular valuexD n becomes
zero. Instead we have aprobability densityp.x/—which is a key idea.The chance
that a randomX falls betweena andb is found by integrating the densityp.x/:

Probta¤X ¤ buD
r b

a
p.x/ dx: (1)

Roughly speaking,p.x/ dx is the chance of falling betweenx andxCdx: Cer-
tainlyp.x/¥ 0: If a andb are the extreme limits�8 and8, including all possible
outcomes, the probability is necessarily one:

Probt�8 X C8uD
r8�8 p.x/ dxD 1: (2)

This is a case where infinite limits of integration are natural and unavoidable. In
studying probability they create no difficulty—areas out to infinity are often easier.

Here are typical questions involving continuous probability and calculus:

4. How conclusive is a53%�47% poll of 2500 voters ?

5. Are16 random football players safe on an elevator with capacity3600 pounds?

6. How long before your car is in an accident ?

It is not so traditional for a calculus course to study these questions. They need extra
thought, beyond computing integrals (so this section is harder than average). But
probability is more important than some traditional topics, and also more interesting.
Drug testing and gene identification and market research are major applications.
Comparing Questions1–3with 4–6brings out the relation ofdiscretetocontinuous—
the differences between them, and the parallels.

It would be impossible to give here a full treatment of probability theory. I believe
you will see the point (and the use of calculus) from our examples. Frank Morgan’s
lectures have been a valuable guide.
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DISCRETE RANDOM VARIABLES

A discreterandom variableX has a list of possible values. For two dice the outcomes
areX D 2;3; : : : ;12: For coin tosses (see below), the list is infinite:X D 1;2;3; : : : :

A continuousvariable lies in an intervala¤X ¤ b:
EXAMPLE 1 Toss a fair coin until heads come up. The outcomeX is thenumber
of tosses. The value ofX is 1 or 2 or 3 or : : :, and the probability is1

2
thatX D 1

(heads on the first toss). The probability of tails then heads isp2 D 1
4
: The probability

thatX D n is pn D .1
2
/n—this is the chance ofn�1 tails followed by heads.The

sum of all probabilities is necessarily1:

p1 Cp2 Cp3 C � � �D 1
2

C 1
4

C 1
8

C � � �D 1:

EXAMPLE 2 Suppose a student (not you) makes an average of2 unforced errors
per hour exam. The number of actual errors on the next exam isX D 0 or 1 or 2
or : : : : A reasonable model for the probability ofn errors—when they are random
and independent—is thePoisson model(pronounced Pwason):

pn D probability ofn errorsD
2n

nŠ
e�2:

The probabilities of no errors, one error, and two errors arep0;p1; andp2:

p0 D
20

0Š
e�2 D

1

1
e�2� :135 p1 D

21

1Š
e�2� :27 p2 D

22

2Š
e�2� :27:

The probability of more than two errors is1� :135� :27� :27D :325:

This Poisson model can be derived theoretically or tested experimentally. The total
probability is again1; from the infinite series (Section6:6) for e2:

p0 Cp1 Cp2 C � � �D�

20

0Š
C
21

1Š
C
22

2Š
C � � ��e�2 D e2e�2 D 1: (3)

EXAMPLE 3 Suppose on average3 out of 100 passengers with reservations don’t
show up for a flight. If the plane holds98 passengers,what is the probability that
someone will be bumped?

If the passengers come independently to the airport, use the Poisson model with2
changed to3: X is the number of no-shows, andX D n happens with probabilitypn:

pn D
3n

nŠ
e�3 p0 D

30

0Š
e�3 p1 D

31

1Š
e�3 D 3e�3:

There are98 seats and100 reservations. Someone is bumped ifX D 0 orX D 1:

chance of bumpingD p0 Cp1 D e�3 C3e�3� 4=20:
We will soon define theaverageor expected valueor meanof X—this model has
�D 3:
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CONTINUOUS RANDOM VARIABLES

If X is the lifetime of a VCR, all numbersX ¥ 0 are possible. IfX is a score on
the SAT, then200¤X¤ 800: If X is the fraction of computer owners in a poll of
600 people,X is between0 and1: You may object that the SAT score is a whole
number and the fraction of computer owners must be0 or1=600 or 2=600 or : : : : But
it is completely impractical to work with601 discrete possibilities. Instead we take
X to be acontinuous random variable, falling anywherein the rangeX ¥ 0 or
Œ200;800� or 0¤X¤ 1:Of course the various values ofX are not equally probable.

EXAMPLE 4 The average lifetime of a VCR is4 years. A reasonable model for
breakdown time is anexponential random variable. Its probability density is

p.x/D 1
4
e�x=4 for 0¤ x 8:

The probability that the VCR will eventually break is1:

r 8
0

1
4
e�x=4 dxD

��e�x=4
�8
0

D 0� .�1/D 1: (4)

The probability of breakdown within12 years (X from 0 to 12) is :95:

r 12

0
1
4
e�x=4 dxD

��e�x=4
�12

0
D�e�3 C1� :95: (5)

An exponential distribution hasp.x/D ae�ax : Its integral from 0 to x is
F.x/D 1�e�ax: Figure 8.11 is the graph foraD 1: It shows the area up toxD 1:

To repeat:The probability thata¤X ¤ b is the integral ofp.x/ from a to b.

Fig. 8.11 Probabilities add to† pn D 1: Continuous density integrates to
r
p.x/ dxD 1:

EXAMPLE 5 We now define the most important density function. Suppose the
average SAT score is500; and thestandard deviation(defined below—it measures
the spread around the average) is200: Then thenormal distributionof grades has

p.x/D
1

200
?
2�

e�.x�500/2=2.200/2

for �8  x 8:
This is the normal (or Gaussian) distribution with mean500 and standard deviation
200: The graph ofp.x/ is the famousbell-shaped curvein Figure 8.12.

A new objection is possible. The actual scores are between200 and800, while the
densityp.x/ extends all the way from�8 to8: I think the Educational Testing Ser-
vice counts all scores over800 as800: The fraction of such scores is pretty small—in
fact the normal distribution gives

ProbtX ¥ 800uD

» 8
800

1

200
?
2�

e�.x�500/2=2.200/2

dx� :0013: (6)
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Fig. 8.12 The normal distribution (bell-shaped curve) and its cumulative densityF.x/:

Regrettably,e�x2
has no elementary antiderivative. We need numerical integration.

But there is nothing the matter with that! The integral is called the “error function,”
and special tables give its value to great accuracy. The integral ofe�x2=2 from�8
to8 is exactly

?
2�: Then division by

?
2� keeps

r
p.x/ dxD 1:

Notice that the normal distribution involvestwo parameters. They are the mean
value (in this case�D 500) and the standard deviation (in this case� D 200). Those
numbersmuandsigmaare often given the “normalized” values�D 0 and� D 1:

p.x/D
1

�
?
2�

e�.x��/2=2�2

becomes p.x/D
1?
2�

e�e2=2:

The bell-shaped graph ofp is symmetric around the middle pointxD�: The width
of the graph is governed by the second parameter�—which stretches thex axis and
shrinks they axis (leaving total area equal to1). The axes are labeled to show the
standard case�D 0;� D 1 and also the graph for any other� and�:

We now give a name to the integral ofp.x/: The limits will be�8 andx, so the
integralF.x/measures theprobability that a random sample is belowx:

ProbtX ¤ xuD
r x�8 p.x/ dxD cumulative density functionF.x/: (7)

F.x/ accumulates the probabilities given byp.x/, so dF=dxDp.x/: The total
probability isF.8/D 1: This integral from�8 to8 covers all outcomes.

Figure 8.12b shows the integral of the bell-shaped normal distribution. The middle
pointxD� hasF D 1

2
: By symmetry there is a50�50 chance of an outcome below

the mean. The cumulative densityF.x/ is near:l6 at��� and near:84 at�C�:
The chance of falling in between is:84� :16D :68: Thus68% of the outcomes are
less than one deviation� away from the center�:

Moving out to��2� and�C2� , 95% of the area is in between.With 95%
confidenceX is less than two deviations from the mean. Only one sample in20
is further out (less than one in40 on each side).

Note that� D 200 is not the precise value for the SAT!

MEAN, VARIANCE, AND STANDARD DEVIATION

In Example1, X was the number of coin tosses until the appearance of heads. The
probabilities werep1 D 1

2
;p2 D 1

4
;p3 D 1

8
; : : : :What is theaveragenumber of tosses?

We now find the “mean”� of any distributionp.x/—not only the normal distribu-
tion, where symmetry guarantees that the built-in number� is the mean.

To find�; multiply outcomes by probabilities and add:

�D meanD
X

npn D 1.p1/C2.p2/C3.p3/C � � � : (8)
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The average number of tosses is1.1
2
/C2.1

4
/C3.1

8
/C � � � : This series adds up (in

Section10:1) to �D 2: Please do the experiment10 times. I am almost certain that
the average will be near2:

When the average is�D 2 quiz errors or�D 3 no-shows, the Poisson probabilities
arepn D�ne��=nŠ Check that the formula�D†npn does give� as the mean:
�

1
�

1Š
C2

�2

2Š
C3

�3

3Š
C � � ��e�� D�

�

1C
�

1Š
C
�2

2Š
C � � ��e�� D�e�e�� D�:

For continuous probability, the sum�D† npn changes to�D
r
xp.x/ dx:

We multiply outcomex by probability p.x/ and integrate. In the VCR model,
integration by parts gives a mean breakdown time of�D 4 years:

r
x p.x/ dxD

r 8
0
x.1

4
e�x=4/ dxD

��xe�x=4�4e�x=4
�8
0

D 4: (9)

Together with the meanwe introduce thevariance. It is always written�2, and in
the normal distribution that measured the “width” of the curve. When�2 was2002,
SAT scores spread out pretty far. If the testing service changed to�2 D 12, the scores
would be a disaster.95% of them would be within�2 of the mean. When a teacher
announces an average grade of72, the variance should also be announced—if it is big
then those with60 can relax. At least they have company.

8E The mean� is the expected value ofX: The variance�2 is the expected value
of .X�mean/2 D .X��/2: Multiply outcome times probability and add:

�D
P

npn �2 D
P

.n��/2pn (discrete)

�D
r 8�8 xp.x/ dx �2 D

r 8�8.x��/2p.x/ dx (continuous)

Thestandard deviation(written� ) is the square root of�2:

EXAMPLE 6 (Yes-no poll, one person asked) The probabilities arep and1�p:
A fraction pD 1

3
of the population thinksyes, the remaining fraction1�pD 2

3
thinks no. Suppose we only ask one person. IfX D 1 for yes andX D 0 for no,
the expected value ofX is�DpD 1

3
: The variance is�2 Dp.1�p/D 2

9
:

�D 0

�

2

3

�

C1

�

1

3

�

D
1

3
and �2 D

�

0� 1
3

�2�
2

3

�

C

�

1� 1
3

�2�
1

3

�

D
2

9
:

The standard deviation is� D
?
2=9: When the fractionp is near one or near zero,

the spread is smaller—and one person is more likely to give the right answer for
everybody. The maximum of�2 Dp.1�p/ is atpD 1

2
, where� D 1

2
:

The table shows� and�2 for important probability distributions.

Model Mean Variance Application

p1 Dp;p0 D 1�p p p.1�p/ yes-no

Poissonpn D�ne��=nŠ � � random occurrence

Exponentialp.x/D ae�ax 1=a 1=a2 waiting time

Normalp.x/D
1?
2��

e�.x��/2=2�2
� �2 distribution

around mean
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THE LAW OF AVERAGESAND THE CENTRAL LIMIT THEOREM

We come to the center of probability theory (without intending to give proofs). The
key idea is to repeat an experiment many times—poll many voters, or toss many
dice, or play considerable poker. Each independent experiment produces an outcome
X , and the average fromN experiments isNX: It is called “X bar”:

NX D
X1 CX2 C � � �CXN

N
D average outcome:

All we know aboutp.x/ is its mean� and variance�2: It is amazing how much
information that gives about the averageNX :

8F Law of Averages: NX is almost sure to approach� asN Ñ8:
Central Limit Theorem: The probability densitypN .x/ for NX approaches
a normal distribution with the same mean� and variance�2=N:

No matter what the probabilities forX , the probabilities for NX move toward the
normal bell-shaped curve. The standard deviation is close to�=

?
N when the

experiment is repeatedN times. In the Law of Averages, “almost sure” means that
the chance ofNX not approaching� is zero. It can happen, but it won’t.

Remark 1 The Boston Globe doesn’t understand the Law of Averages. I quote
from September1988 W “What would happen if a giant Red Sox slump arrived ?
What would happen if the fabled Law of Averages came into play, reversing all those
can’t miss decisions during the winning streak ? ” They think the Law of Averages
evens everything up, favoring heads after a series of tails. See Problem20:

EXAMPLE 7 Yes-no poll ofN D 2500 voters. Is a 53%�47% outcome
conclusive?

The fractionp of “yes” voters in the whole population isnot known. That is the
reason for the poll. The deviation� D

?
p.1�p/ is also not known, but for one voter

this is never more than1
2

(whenpD 1
2
). Therefore�=

?
N for2500 voters is no larger

than 1
2
=
?
2500, which is1%:

The result of the poll wasNX D 53%: With 95% confidence, this sample is within
two standard deviations (here2%) of its mean. Therefore with95% confidence,the
unknown mean�Dp of the whole population is between51% and 55%. This
poll is conclusive.

If the true mean had beenpD 50%, the poll would have had only a:0013 chance
of reaching53%: The error margin on each side of a poll is amazingly simple; it is
always1=

?
N:

Remark 2 The New York Times has better mathematicians than the Globe. Two
days after Bush defeated Dukakis, their poll ofN D 11;645 voters was printed with
the following explanation. “In theory, in19 cases out of20 [there is95%] the results
should differ by no more than one percentage point [there is1=

?
N ] from what would

have been obtained by seeking out all voters in the United States.”

EXAMPLE 8 Football players at Caltech (if any) have average weight�D 210
pounds and standard deviation� D 30 pounds. AreN D 16 players safe on an
elevator with capacity3600 pounds ?16 times210 is 3360:
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The average weightNX is approximately a normal random variable withN�D 210 and
N� D 30=

?
N D 30=4: There is only a2% chance thatNX is aboveN�C2 N� D 225 (see

Figure 8.12b—weights below the mean are no problem on an elevator). Since16
times225 is 3600, a statistician would have98% confidence that the elevator is safe.
This is an example where98% is not good enough—I wouldn’t get on.

EXAMPLE 9 (The famous Weldon Dice) Weldon threw12 dice26;306 times and
counted the5’s and6’s. They came up in33:77%of the315;672 separate rolls. Thus
NX D :3377 instead of the expected fractionpD 1

3
of 5’s and6’s. Were the dice fair ?

The variance in each roll is�2 Dp.1�p/D 2=9: The standard deviation ofNX is
N� D �=

?
N D

?
2=9=

?
315672� :00084: For fair dice, there is a95% chance that

NX will differ from 1
3

by less than2 N�: (For Poisson probabilities that is false. HereNX
is normal.) But :3377 differs from :3333 by more than5 N�: The chance of falling5
standard deviations away from the mean is only about1 in 10;000:�

So the dice were unfair. The faces with5 or 6 indentations werelighter than the
others, and a little more likely to come up. Modern dice are made to compensate for
that, but Weldon never tried again.

8.4 EXERCISES

Read-through questions

Discrete probability uses counting, a probability uses
calculus. The function p.x/ is the probability b . The
chance that a random variable falls betweena andb is c . The
total probability is

r8�8 p.x/ dxD d . In the discrete case
†pn D e . The mean (or expected value) is�D

r
f in

the continuous case and�D†npn in the g .

The Poisson distribution with mean� has pn D h . The
sum †pn D 1 comes from the i series. The exponential
distribution hasp.x/D e�x or 2e�2x or j . The standard

Gaussian (or k ) distribution has
?
2�p.x/D e�x2=2:

Its graph is the well-known l curve. The chance that the
variable falls belowx is F.x/D m . F is the n density
function. The differenceF.xCdx/�F.x/ is about o , which
is the chance thatX is betweenx andxCdx:

The variance, which measures the spread around�, is
�2 D

r
p in the continuous case and�2 D† q in

the discrete case. Its square root� is the r . The normal
distribution hasp.x/D s . If NX is the t of N samples
from any population with mean� and variance�2, the Law of
Averages says thatNX will approach u . The Central Limit
Theorem says that the distribution forNX approaches v . Its
mean is w and its variance is x .

In a yes-no poll when the voters are50-50, the mean
for one voter is �D 0.1

2 /C1.
1
2 /D y . The variance is

.0��/2p0 C.1��/2p1 D z . For a poll withN D 100, N� is

A . There is a95% chance thatNX (the fraction saying yes) will
be between B and C .

1 If p1 D 1
2 ;p2 D 1

4 ;P3 D 1
8 ; : : : ; what is the probability of an

outcomeX   4? What are the probabilities ofX D 4 andX ¡ 4?

2 With the samepn D .1
2 /

n, what is the probability thatX is
odd ? Why ispn D .1

3 /
n an impossible set of probabilities ? What

multiple c.1
3 /

n ispossible ?

3 Why is p.x/D e�2x not an acceptable probability density for
x¥ 0 ? Why isp.x/D 4e�2x�e�x not acceptable ?�4 If pn D .1

2 /
n, show that the probabilityP thatX is a prime num-

ber satisfies6=16¤P ¤ 7=16:
5 If p.x/D e�x for x¥ 0, find the probability thatX ¥ 2 and the

approximate probability that1¤X ¤ 1:01:
6 If p.x/DC=x3 is a probability density forx¥ 1, find the

constantC and the probability thatX ¤ 2:
7 If you choosex completely at random between0 and�, what is

the densityp.x/ and the cumulative densityF.x/?

In 8–13 find the mean value�D†npn or �D
r
xp.x/dx.

8 p0 D 1=2;p1 D 1=4;p2 D 1=4

9 p1 D 1=7;p2 D 1=7; : : : ;p7 D 1=7

10 pn D 1=nŠe .p0 D 1=e;p1 D 1=e;p2 D 1=2e; : : :/

�Joe Di-Maggio’s56-game hitting streak was much more improbable—I think it is statisti-
cally the most exceptional record in major sports.



398 8 Applications of the Integral

11 p.x/D 2=�.1Cx2/; x¥ 0
12 p.x/D e�x (integrate by parts)

13 p.x/Dae�ax (integrate by parts)

14 Show by substitution that
r8�8 e�x2=2�2

dxD
?
2 �

r8�8 e�u2
duD

?
2� �:

15 Find the cumulative probabilityF (the integral of p) in
Problems11;12;13: In terms of F , what is the chance that a
random sample lies betweena andb ?

16 Can-Do Airlines books100 passengers when their plane only
holds 98: If the average number of no-shows is2; what is the
Poisson probability that someone will be bumped ?

17 The waiting time for a bus has probability density
.1=10/e�x=10, with �D 10 minutes. What is the probability of
waiting longer than10 minutes ?

18 You make a3-minute telephone call. If the waiting time for
the next incoming call hasp.x/D e�x, what is the probability
that your phone will be busy ?

19 Supernovas are expected about every100 years. What is the
probability that you will be alive for the next one ? Use a Poisson
model with�D :01 and estimate your lifetime. (Supernovas actu-
ally occurred in1054 (Crab Nebula),1572;1604; and1987: But the
future distribution doesn’t depend on the date of the last one.)

20 (a) A fair coin comes up heads10 times in a row. Will heads
or tails be more likely on the next toss ?

(b) The fraction of heads afterN tosses is̨ : The expected
fraction after2N tosses is .

21 Show that the area between� and�C� under the bell-shaped
curve is a fixed number (near1=3), by substitutingyD :» �C�

�

1

�
?
2�

e�.x��/2=2�2

dxD

» 1

0

1?
2�

e�y2=2dy:

What is the area between��� and �? The area outside
.���;�C�/ ?

22 For ayes-no poll of two voters, explain why

p0 D .1�p/2;p1 D 2p�2p2;p2 Dp2:

Find� and�2: N voters give the “binomial distribution.”

23 Explain the last step in this reorganization of the formula
for �2:

�2 D
r
.x��/2p.x/dxD

r
.x2�2x�C�2/p.x/ dx

D
r
x2p.x/ dx�2�r

xp.x/dxC�2
r
p.x/ dx

D
r
x2p.x/ dx��2:

24 Use
r
.x��/2p.x/dx and also

r
x2p.x/dx��2 to find �2

for theuniform distribution: p.x/D 1 for 0¤x¤ 1:
25 Find �2 if p0 D 1=3;p1 D 1=3;p2 D 1=3: Use †.n��/2pn

and also†n2pn��2:

26 Use Problem23 and integration by parts (equation 7.1.10) to
find �2 for the exponential distributionp.x/D 2e�2x for x¥ 0,
which has mean12 :

27 The waiting time to your next car accident has probability
density p.x/D 1

2e
�x=2: What is�? What is the probability of

no accident in the next four years ?

28 With pD 1
2 ;

1
4 ;

1
8 ; : : : ; find the average number� of coin

tosses by writingp1 C2p2 C3p3 C � � � as .p1 Cp2 Cp3 C � � � /C
.p2 Cp3 Cp4 C � � � /C.p3 Cp4 Cp5 C � � � /C � � � :
29 In a poll of 900 Americans,30 are in favor of war. What range
can you give with95% confidence for the percentage of peaceful
Americans ?

30 Sketch rough graphs ofp.x/ for the fractionx of heads in4
tosses of a fair coin, and in16 tosses. The mean value is1

2 :

31 A judge tosses a coin2500 times. How many heads does it take
to prove with95% confidence that the coin is unfair ?

32 Long-life bulbs shine an average of2000 hours with standard
deviation150 hours. You can have95% confidence that your bulb
will fail between and hours.

33 Grades have a normal distribution with mean70 and standard
deviation10: If 300 students take the test and passing is55; how
many are expected to fail ? (Estimate from Figure 8.12b.) What pass-
ing grade will fail1=10 of the class ?

34 The average weight of luggage is�D 30 pounds with
deviation� D 8 pounds. What is the probability that the luggage for
64 passengers exceeds2000 pounds ? How does the answer change
for 256 passengers and8000 pounds ?

35 A thousand people try independently to guess a number
between1 and1000: This is like a lottery.

(a) What is the chance that the first person fails ?

(b) What is the chanceP0 that they all fail ?

(c) Explain whyP0 is approximately1=e:

36 (a) In Problem 35, what is the chance that the first person
is right and all others are wrong ?

(b) Show that the probabilityP1 of exactly one winner is
also close to1=e:
(c) Guess the probabilityPn of n winners (fishy question).
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8.5 Masses and Moments

This chapter concludes with two sections related to engineering and physics. Each
application starts with a finite number of masses or forces. Their sum is the total
mass or total force. Then comes the “continuous case,” in which the mass is spread
out instead of lumped. Its distribution is given by adensity function� (Greek rho),
and the sum changes to anintegral.

The first step (hardest step ? ) is to get the physical quantities straight. The second
step is to move from sums to integrals (discrete to continuous, lumped to distributed).
By now we hardly stop to think about it—although this is the key idea of integral
calculus. The third step is to evaluate the integrals. For that we can use substitution or
integration by parts or tables or a computer.

Figure 8.13 shows the one-dimensional case:masses along thex axis. The total
mass is the sum of the masses. The new idea is that ofmoments—when the mass or
force is multiplied by adistance:

momentof mass around they axisDmxD(mass) times (distance to axis):

Fig. 8.13 The center of mass is atNxD (total moment)=(total mass)D average distance.

The figure has masses1;3;2. The total mass is6. The “lever arms” or “moment
arms” are the distancesxD 1;3;7. The masses have moments1 and9 and14 (since
mx is 2 times7). The total moment is1C9C14D 24. Then the balance point is at
NxDMx=M D 24=6D 4.

The total mass is the sum of them’s. The total moment is the sum ofmn times
xn (negative on the other side ofxD 0). If the masses are children on a seesaw, the
balance point is the center of gravityNx—also called thecenter of mass:

DEFINITION NxD

P

mnxn
P

mn

D
total moment

total mass
: (1)

If all masses are moved toNx, the total moment (6 times4) is still 24: The moment
equals the mass

P

mn times Nx. The masses act like a single mass atNx.
Also: If we move the axis toNx, and leave the children where they are, the seesaw

balances. The masses on the left ofNxD 4 will offset the mass on the right.Reason:
The distances to the new axis arexn� Nx. The moments add to zero by equation.1/:

moment around new axisD
X

mn.xn� Nx/D
X

mnxn�Xmn NxD 0:

Turn now to thecontinuous case, when mass is spread out along the line. Each
piece of length�x has an average density�n D .mass of piece//.length of piece/D
�m=�x. As the pieces get shorter, this approachesdm=dx—the density at the point.
The limit of (small mass)=(small length)is the density�.x/.

Integrating that derivative�D dm=dx, we recover the total mass:
P

�n�x be-
comes

total massM D
r
�.x/dx: (2)

When the mass is spread evenly,� is constant. ThenM D �LD density times length.
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The moment formula is similar. For each piece, the moment is mass�n�x
multiplied by distancex—and we add. In the continuous limit,�.x/dx is multiplied
by x and we integrate:

total moment aroundy axis DMy D
r
x�.x/ dx: (3)

Moment is mass times distance. Dividing by the total massM gives “average
distance”:

center of massNxD
moment

mass
D
My

M
D

r
x�.x/ dxr
�.x/ dx

: (4)

Remark If you studied Section8:4 on probability, you will notice how the formulas
match up. The mass

r
�.x/dx is like the total probability

r
p.x/dx. The momentr

x�.x/dx is like the mean
r
xp.x/dx. The moment of inertia

r
.x� Nx/2�.x/dx

is the variance. Mathematics keeps hammering away at the same basic ideas! The only
difference is that the total probability is always1: The mean really corresponds to the
centerof massNx, but in probability we didn’t notice the division by

³
p.x/dxD 1.

EXAMPLE 1 With constant density� from 0 to L, the mass isM D �L. The
moment is

My D
r L

0
x�dxD 1

2
�x2

�L

0
D 1

2
�L2:

The center of mass isNxDMy=M DL=2. It is halfway along.

EXAMPLE 2 With densitye�x the mass is1, the moment is1, and Nx is 1:

r 8
0
e�x dxD

��e�x
�8

0
D 1 and

r 8
0
xe�x dxD

��xe�x �e�x
�8
0

D 1:

MASSES AND MOMENTS IN TWO DIMENSIONS

Instead of placing masses along thex axis, supposem1 is at the point.x1; y1/ in the
plane. Similarlymn is at.xn; yn/. Now there aretwo momentsto consider. Around
they axisMy D†mnxn and around thex axisMx D†mnyn. Please notice that
thex’s go into the momentMy—because thex coordinate gives the distance from
they axis!

Around thex axis, the distance isy and the moment isMx . Thecenter of massis
the point. Nx; Ny/ at which everything balances:

NxD
My

M
D

P

mnxn
P

mn

and NyD
Mx

M
D

P

mnyn
P

mn

: (5)

In the continuous case these sums become two-dimensional integrals. The total
mass is

rr
�.x;y/dx dy, when the density is�Dmass per unit area. These “double

integrals” are for the future (Section14:1). Here we consider the most important
case:�D constant. Think of a thin plate, made of material with constant density (say
�D 1). To compute its mass and moments, the plate is cut into strips Figure 8.14:

massM D area of plate (6)

momentMy D
r
.distancex/ (length of vertical strip)dx (7)

momentMx D
r
.heighty/ (length of horizontal strip)dy: (8)
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Fig. 8.14 Plates cut into strips to compute masses and moments and centroids.

The mass equals the area because�D 1. For moments, all points in a vertical strip
are the same distance from they axis.That distance isx. The moment isx times
area, orx times length timesdx—and the integral accounts for all strips.

Similarly thex-moment of ahorizontalstrip isy times strip length timesdy.

EXAMPLE 3 A plate has sidesxD 0 andyD 0 andyD 4�2x. FindM;My ;Mx .

massM D areaD
r 2

0
y dxD

r 2

0
.4�2x/dxD

�

4x�x2
�2

0
D 4:

The vertical strips go up toyD 4�2x, and the horizontal strips go out toxD 1
2
.4�

y/:

momentMy D

» 2

0

x.4�2x/dxD

�

2x2� 2
3
x3

�2

0

D
8

3

momentMx D

» 4

0

y
1

2
.4�y/dyD

�

y2� 1
6
y3

�4

0

D
16

3
:

The “center of mass” hasNxDMy=MD2=3 and NyDMx=MD4=3. This is thecen-
troid of the triangle (and also the “center of gravity”). With�D 1 these terms all refer
to the same balance point. Nx; Ny/. The plate will not tip over, if it rests on that point.

EXAMPLE 4 FindMy andMx for the half-circle belowx2 Cy2 D r2.

My D 0 because the region is symmetric—Figure 8.14 balances on they axis. In the
x-moment we integratey times the length of a horizontal strip (notice the factor2):

Mx D
r r

0
y �2ax2�y2 dyD �2

3
.r2�y2/3=2

ir

0
D 2

3
r3:

Divide by the mass (the area1
2
�r2) to find the height of the centroid:NyDMx=M D

4r=3�.This is less than1
2
r because the bottom of the semicircle is wider than the top.

MOMENT OF INERTIA

The moment of inertiacomes from multiplying each mass by thesquareof its
distance from the axis. Around they axis, the distance isx. Around the origin, it isr :

Iy D†x2
nmn and Ix D†y2

nmn and I0 D†r2
nmn:

Notice thatIx CIy D I0 becausex2
n Cy2

n D r2
n . In the continuous case we inte-

grate.
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The moment of inertia around they axis is Iy D
rr

x2�.x; y/dx dy. With
a constant density�D 1, we again keep together the points on a strip. On a vertical
strip they share the samex. On a horizontal strip they sharey:

Iy D
r
.x2/ (vertical strip length)dx and Ix D

r
.y2/ (horizontal strip length)dy:

In engineering and physics, it isrotation that leads to the moment of inertia. Look at
the energy of a massm going around a circle of radiusr . It hasI0 Dmr2.

kinetic energyD 1
2
mv2 D 1

2
m.r!/2 D 1

2
I0!

2: (9)

The angular velocity is! (radians per second). The speed isvD r! (meters per
second).

An ice skater reducesI0 by putting her arms up instead of out. She stays close to
the axis of rotation (r is small). Since her rotational energy1

2
I0!

2 does not change,
! increases asI0 decreases. Then she spins faster.

Another example: It takes force to turn a revolving door. More correctly, it takes
torque. The force is multiplied by distance from the turning axis:T DFx, so a push
further out is more effective.

To see the physics, replace Newton’s lawF DmaDmdv=dt by its rotational
form: T D I d!=dt . WhereF makes the mass move, the torqueT makes it turn.
Wheremmeasures unwillingness to change speed,I measures unwillingness to change
rotation.

EXAMPLE 5 Find the moment of inertia of a rod about (a) its end and (b) its center.

The distancex from the end of the rod goes from0 toL. The distance from the center
goes from�L=2 toL=2. Around the center, turning is easier becauseI is smaller:

IendD
r L

0
x2 dxD 1

3
L3 IcenterD

r L=2�L=2
x2 dxD 1

12
L3: (10)

Fig. 8.15 Moment of inertia for rod and propeller. Rolling balls beat cylinders.

MOMENT OF INERTIA EXPERIMENT

Experiment: Roll a solid cylinder (a coin), a hollow cylinder (a ring), a solid ball
(a marble), and a hollow ball (not a pingpong ball) down a slope. Galileo dropped
things from the Leaning Tower—this experiment requires a Leaning Table. Objects
that fall together from the tower don’t roll together down the table.

Question 1 What is the order of finish ?Record your prediction first!

Question 2 Does size make a difference if shape and density are the same ?

Question 3 Does density make a difference if size and shape are the same ?
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Question 4 Find formulas for the velocityv andthe finish timeT .

To computev, the key is that potential energy plus kinetic energy is practically
constant. Energy loss from rolling friction is very small. If the mass ism and the
vertical drop ish, the energy at the top (all potential) ismgh. The energy at the
bottom (all kinetic) has two parts:1

2
mv2 from movement along the plane plus

1
2
I!2 from turning.Important fact: vD!r for a rolling cylinder or ball of radiusr .

Equate energies and set!D v=r :

mghD
1

2
mv2 C

1

2
I!2 D

1

2
mv2

�

1C
I

mr2

�

: (11)

The ratioI=mr2 is critical. Call it J and solve.11/ for v2:

v2 D
2gh

1CJ
.smallerJ means larger velocity/: (12)

The order ofJ ’s, for different shapes and sizes, should decide the race. Apparently
the density doesn’t matter, because it is a factor in bothI andm—so it cancels in
J D I=mr2. A hollow cylinder hasJ D 1, which is the largest possible—all its mass
is at the full distancer from the axis. So the hollow cylinder should theoretically
come in last. This experiment was developed by Daniel Drucker.

Problems35�37 find the other threeJ ’s. Problem40 finds the timeT by integra-
tion. Your experiment will show how close this comes to the measured time.

8.5 EXERCISES

Read-through questions

If massesmn are at distancesxn, the total mass isM D a .
The total moment aroundxD 0 is My D b . The center of
mass is at NxD c . In the continuous case, the mass distribu-
tion is given by the d �.x/. The total mass isM D e
and the center of mass is atNxD f . With �D x, the inte-
grals from 0 to L give M D g and

r
x �.x/dxD h

and NxD i . The total moment is the same if the whole
massM is placed at j .

In a plane, with massesmn at the points .xn;yn/, the
moment around they axis is k . The center of mass hasNxD

l and NyD m . For a plate with density�D 1, the mass
M equals the n . If the plate is divided into vertical strips
of heighty.x/, thenM D

r
y.x/dx andMy D

r
o dx. For

a square plate0¤x;y¤L; the mass isM D p and the
moment around they axis is My D q . The center of
mass is at. Nx; Ny/D r . This point is the s , where the
plate balances.

A mass m at a distancex from the axis has moment of
inertia I D t . A rod with �D 1 from xD a to xD b

has Iy D u . For a plate with�D 1 and strips of height
y.x/, this becomesIy D

³
v . The torque T is w

times x .

Compute the massM along thex axis, the momentMy around
xD 0, and the center of massNxDMy=M .

1 m1 D 2 atx1 D 1;m2 D 4 atx2 D 2

2 mD 3 atxD 0;1;2;6

3 �D 1 for �1¤x¤ 3
4 �D x2 for 0¤ x¤L
5 �D 1 for 0¤x  1; �D 2 for 1¤x¤ 2
6 �D sinx for 0¤x¤�

Find the massM , the momentsMy and Mx, and the center of
mass. Nx; Ny/.

7 Unit masses at.x; y/D .1; 0/; .0; 1/; and.1;1/

8 m1 D 1 at .1; 0/; m2 D 4 at .0; 1/

9 �D 7 in the square0¤x¤ 1; 0¤ y¤ 1.
10 �D 3 in the triangle with vertices.0; 0/; .a; 0/; and.0; b/.

Find the areaM and the centroid . Nx; Ny/ inside curves 11–16.

11 yD
a
1�x2; yD 0; xD 0 (quarter-circle)

12 yD x; yD 2�x; yD 0 (triangle)
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13 yD e�2x; yD 0; xD 0 (infinite dagger)

14 yD x2; yDx (lens)

15 x2 Cy2 D 1; x2 Cy2 D 4 (ring)

16 x2 Cy2 D 1; x2 Cy2 D 4;yD 0 (half-ring).

Verify these engineering formulas forIy with �D 1:

17 Rectangle bounded byxD 0; xD a; yD 0; yD b W Iy D

a3b=3.

18 Square bounded byxD�1
2 a; xD 1

2 a; yD�1
2 a;yD 1

2a W

Iy D a4=12.

19 Triangle bounded byxD 0; yD 0; xCyD a W Iy D a4=12.

20 Disk of radiusa centered atxD yD 0: Iy D�a4=4.

21 The moment of inertia around the pointxD t of a rod with
density �.x/ is I D

r
.x� t/2�.x/ dx. Expand .x� t/2 and I

into three terms. Show thatdI=dt D 0 whent D Nx. The moment of
inertia is smallest around the center of mass.

22 A region has NxD 0 if My D
r
x.height of strip/ dxD 0.

The moment of inertia about any other axisxD c is I Dr
.x�c/2 (height of strip) dx. Show thatI D Iy C.area/.c2/.

This is the parallel axis theorem: I is smallest around the
balancing axiscD 0.

23 (With thanks to Trivial Pursuit) In what state is the center
of gravity of the United States—the “geographical center” or
centroid ?

24 Pappus (an ancient Greek) noticed that the volume is

V D
r
2�y(strip width)dyD 2�Mx D 2� NyM

when a region of areaM is revolved around thex axis. In the first
step the solid was cut into .

25 Use this theorem of Pappus to find the volume of a torus.
Revolve a disk of radiusa whose center is at heightNyD b¡a.

26 Rotate the triangle of Example 3 around thex axis
and find the volume of the resulting cone—first fromV D 2� NyM ,
second from1

3�r
2h.

27 Find Mx and My for a thin wire along the semicircle

yD
a
1�x2. Take�D 1 soM D lengthD�.

28 A second theorem of Pappus givesAD 2� NyL as the surface
area when a wire of lengthL is rotated around thex axis. Verify
his formula for a horizontal wire alongyD 3 .xD 0 to xDL/ and
a vertical wire (yD 1 to yDLC1).

29 The surface area of a sphere isAD 4� when r D 1. So
AD 2� NyL leads to NyD for the semicircular wire in
Problem 27.

30 RotatingyDmx around thex axis betweenxD 0 andxD 1

produces the surface areaAD .

31 Put a massm at the point.x;0/. Around the origin the torque
from gravity is the forcemg times the distancex. This equalsg
times the mx.

32 If ten equal forcesF are alternately down and up at
xD 1;2; : : : ;10; what is their torque ?

33 The solar system has nine massesmn at distancesrn with
angular velocities!n. What is the moment of inertia around
the sun ? What is the rotational energy ? What is the torque pro-
vided by the sun ?

34 The diskx2 Cy2¤a2 hasI0 D
r a
0 r22�r dr D 1

2�a
4. Why

is this different from Iy in Problem 20‹ Find the radius of
gyration Nr D

a
I0=M . (The rotational energy1

2I0!
2 equals

1
2M Nr2!2—when the whole mass is turning at radiusNr .)

Questions 35–42 come from the moment of inertia experiment.

35 A solid cylinder of radiusr is assembled from hollow cylinders
of lengthl , radiusx, and volume.2�x/.l/.dx/. The solid cylinder
has

massM D
r r
0 2�xl� dx and I D

r r
0 x22�xl� dx:

With �D 7 findM andI andJ D I=Mr2.

36 Problem 14:4:40 finds J D 2=5 for a solid ball. It is less
than J for a solid cylinder because the mass of the ball is more
concentrated near .

37 Problem14:4:39 findsJ D 1
2

r �
0 sin3 � d�D for a hol-

low ball. The four rolling objects finish in the order .

38 By varying the density of the ball how could you make it roll
faster than any of these shapes ?
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39 Answer Question2 about the experiment.

40 For a vertical drop ofy, equation (12) gives the velocity along
the plane:v2 D 2gy=.1CJ /. ThusvD cy1=2 for cD . The
vertical velocity isdy=dt D vsin˛:

dy=dt D cy1=2 sin˛ and
r
y�1=2dyD

r
c sin˛ dt:

Integrate to findy.t/. Show that the bottom is reached.yDh/ at
timeT D 2

?
h=c sin ˛:

41 What is the theoretical ratio of the four finishing times ?

42 True or false:

(a) Basketballs roll downhill faster than baseballs.

(b) The center of mass is always at the centroid.

(c) By putting your arms up you reduceIx andIy .

(d) The center of mass of a high jumper goes over the bar
(on successful jumps).
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8.6 Force, Work, and Energy

Chapter1 introduced derivativesdf=dt anddf=dx: The independent variable could
be t or x. For velocity it was natural to use the lettert: This section is about two
important physical quantities—forceandwork—for whichx is the right choice.

The basic formula isW DFx: Work equals force times distance moved(dis-
tance in the direction ofF ). With a force of100 pounds on a car that moves20 feet,
the work is2000 foot-pounds. If the car is rolling forward and you are pushing back-
ward, the work is�2000 foot-pounds. If your force is only80 pounds and the car
doesn’t move, the work is zero. In these examples the force is constant.
W DFx is completely parallel tof D vt: When v is constant, we only need

multiplication. It is achanging velocitythat requires calculus. The integral
r
v.t/dt

adds up small multiplications over short times. For a changing force, we add up
small pieces of workF dx over short distances:

W DFx .constant force/ W D
r
F.x/ dx .changing force/:

In the first case we lift a suitcase weighingF D 30 pounds upxD 20 feet of stairs.
The work isW D 600 foot-pounds. The suitcase doesn’t get heavier as we go up—it
only seems that way. Actually it gets lighter (we study gravity below).

In the second case we stretch a spring, which needs more force asx increases.
Hooke’s law says thatF.x/D kx: The force is proportional to the stretching dis-
tancex. Starting fromxD 0; the work increases with thesquareof x:

F D kx and W D
r x

0
kx dxD 1

2
kx2: (1)

In metric units the force is measured in Newtons and the distance in meters. The unit
of work is a Newton-meter (a joule). The600 foot-pounds for an American suitcase
would have been about800 joules in France.

EXAMPLE 1 Suppose a force ofF D 20 pounds stretches a spring1 foot.

(a) Find k: The elastic constant iskDF=xD 20 pounds per foot.

(b) FindW: The work is1
2
kx2 D 1

2
�20 �12 D 10 foot-pounds.

(c) Find x whenF D�10 pounds. This is compression not stretching:xD�1
2

foot.

Compressing the same spring through the same distance requires the same work.
For compressionx andF are negative. But the workW D 1

2
kx2 is still positive.

Please note thatW does not equalkx timesxŠ That is the whole point of variable
force (changeFx to

r
F.x/ dx).

May I add another important quantity from physics ? It comes from looking at the
situation from the viewpoint of the spring. In its natural position, the spring rests
comfortably. It feels no strain and has no energy.Tension or compression gives it
potential energy. More stretching or more compression means more energy.The
change in energy equals the work. The potential energy of the suitcase increases by
600 foot-pounds, when it is lifted20 feet.

Write V.x/ for the potential energy. Herex is the height of the suitcase or the ex-
tension of the spring. In moving fromxD a toxD b;work D increase in potential:

W D
r b

a
F.x/ dxDV.b/�V.a/: (2)

This is absolutely beautiful. The workW is thedefinite integral. The potentialV is
theindefinite integral. If we carry the suitcase up the stairs and back down, our total
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work iszero. We may feel tired, but the trip down should have given back our energy.
(It was in the suitcase.) Starting with a spring that is compressed one foot, and ending
with the spring extended one foot, again we have done no work.V D 1

2
kx2 is the

same forxD�1 andxD 1: But an extension fromxD 1 to xD 3 requires work:

W D change inV D 1
2
k.3/2� 1

2
k.1/2:

Indefinite integrals likeV come with a property that we know well.They include
an arbitrary constantC . The correct potential is not simply1

2
kx2; it is 1

2
kx2 CC:

To compute achangein potential, we don’t needC: The constant cancels. But to
determineV itself, we have to chooseC . By fixing V D 0 at one point, the potential
is determined at all other points. A common choice isV D 0 at xD 0: Sometimes
V D 0 atxD8 (for gravity). Electric fields can be “grounded” at any point.

There is another connection between the potentialV and the forceF: According
to (2), V is the indefinite integral ofF: ThereforeF.x/ is the derivative ofV.x/:
The fundamental theorem of calculus is also fundamental to physics:

force exertedonspringWF D dV=dx (3a)

force exertedbyspring WF D�dV=dx (3b)

Those lines say the same thing. One is our force pulling on the spring, the other
is the “restoring force” pulling back.(3a) and (3b) are a warning that the sign of
F depends on the point of view. Electrical engineers and physicists use the minus
sign. In mechanics the plus sign is more common. It is one of the ironies of fate that
F DV 1; while distance and velocity have those letters reversed:vD f 1: Note the
change to capital letters and the change tox:

Fig. 8.16 Stretched spring; suitcase20 feet up; moon of massm; oscillating spring.

EXAMPLE 2 Newton’s law of gravitation(inverse square law):

force to overcome gravityDGMm=x2 force exerted by gravityD�GMm=x2

An engine pushes a rocket forward. Gravity pulls it back. The gravitational constant
isG and the Earth’s mass isM: The mass of the rocket or satellite or suitcase ism;
and the potential is the indefinite integral:

V.x/D
r
F.x/ dxD�GMm=xCC: (4)

Usually C D 0; which makes the potential zero atxD8:
Remark When carrying the suitcase upstairs,x changed by20 feet. The weight
was regarded as constant—which it nearly is. But an exact calculation of work uses
the integral ofF.x/; not just the multiplication30 times20: The serious difference
comes when the suitcase is carried toxD8:With constant force that requires infinite
work. With the correct (decreasing) force, the work equalsV at infinity (which is zero)
minusV at the pickup pointx0: The change inV isW DGMm=x0:
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KINETIC ENERGY

This optional paragraph carries the physics one step further. Suppose you release the
spring or drop the suitcase. The external force changes toF D 0: But the internal
force still acts on the spring, and gravity still acts on the suitcase. They both start
moving. The potential energy of the suitcase is converted tokinetic energy, until it
hits the bottom of the stairs.

Time enters the problem, either through Newton’s law or Einstein’s:

.Newton/ F DmaDm
dv

dt
.Einstein/ F D

d

dt
.mv/: (5)

Here we stay with Newton, and pretend the mass is constant. Exercise21 follows
Einstein; the mass increases with velocity. TheremDm0=

a
1�v2=c2 goes to

infinity as v approachesc; the speed of light. That correction comes from the
theory of relativity, and is not needed for suit-cases.

What happens as the suitcase falls ? FromxD a at the top of the stairs toxD b
at the bottom, potential energy is lost. But kinetic energy1

2
mv2 is gained, as we see

from integrating Newton’s law:

forceF D m
dv

dt
Dm

dv

dx

dx

dt
Dmv

dv

dx

work

» b

a

F dx D

» b

a

mv
dv

dx
dxD

1

2
mv2.b/� 1

2
mv2.a/: (6)

This same forceF is given by�dV=dx: So the work is also the change inV :

work

» b

a

F dxD

» b

a

��dV
dx

�

dxD�V.b/CV.a/: (7)

Since(6)D (7), the total energy1
2
mv2 CV (kinetic plus potential) is constant:

1
2
mv2.b/CV.b/D 1

2
mv2.a/CV.a/: (8)

This is the law ofconservation of energy. The total energy is conserved.

EXAMPLE 3 Attach a massm to the end of a stretched spring and let go. The
spring’s
energyV D 1

2
kx2 is gradually converted to kinetic energy of the mass. AtxD 0 the

change to kinetic energy is complete: the original1
2
kx2 has become1

2
mv2: Beyond

xD 0 the potential energy increases, the force reverses sign and pulls back, and
kinetic energy is lost. Eventually all energy is potential—when the mass reaches the
other extreme. It issimple harmonic motion, exactly as in Chapter1 (where the mass
was the shadow of a circling ball). The equation of motion is the statement thatthe
rate of change of energy is zero(and we cancelvD dx=dt ):

d

dt

�

1

2
mv2 C

1

2
kx2

�

Dmv
dv

dt
Ckx

dx

dt
D 0 or m

d2x

dt2
CkxD 0: (9)

That isF Dma in disguise. For a spring, the solutionxD cos
?
k=mt will be found

in this book. For more complicated structures, engineers spend a billion dollars a year
computing the solution.
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PRESSURE AND HYDROSTATIC FORCE

Our forces have been concentrated at a single points. That is notthe case for
pressure. A fluid exerts a force all over the base and sides of its container. Suppose a
water tank or swimming pool has constant depthh (in meters or feet). The water has
weight-densityw� 9800 N=m3� 62 lb=ft3:On the base, the pressure isw timesh:
The force iswh times the base areaA W

F DwhA (pounds or Newtons) pDF=ADwh.lb=ft2 or N=m2/: (10)

Thuspressure is force per unit area. Herep andF are computed by multiplication,
because the depthh is constant. Pressure is proportional to depth (as divers know).
Down the side wall,h varies and we need calculus.

The pressure on the side is stillwh—the same in all directions. We divide the side
into horizontal strips of thickness�h. Geometry gives the lengthl.h/ at depthh
(Figure 8.17). The area of a strip isl.h/�h: The pressurewh is nearly constant on
the strip—the depth only changes by�h: The force on the strip is�F Dwhl�h.
Adding those forces, and narrowing the strips so that�hÑ 0; the total force
approaches an integral:

total forceF D
r
whl.h/ dh (11)

Fig. 8.17 Water tank and dam: length of side stripD l; area of layerDA:

EXAMPLE 4 Find the total force on the trapezoidal dam in Figure 8.17.

Theside length isl D 60 whenhD 0: The depthh increases from0 to 20: The main
problem is to findl at an in-between depthh:With straight sides the relation is linear:
l D 60Cch. We choosec to givel D 50whenhD 20: Then50D 60Cc.20/ yields
cD�1

2
.

The total force is the integral ofwhl: So substitutel D 60� 1
2
h:

F D
r 20

0
wh.60� 1

2
h/dhD

h

30wh2� 1
6
wh3

i20

0
D 12000w� 1

6
.8000w/:

With distance in feet andwD 62 lb=ft3, F is in pounds. With distance in meters and
wD 9800N=m3, the force is in Newtons.

Note that.weight-densityw/D .mass-density�/ times.g/D .1000/.9:8/:These
SI units were chosen to make the density of water at0�C exactly�D 1000 kg=m3:

EXAMPLE 5 Find the work to pump water out of a tank. The area at depthh
isA.h/.

Imagine lifting outonelayer of water at a time. The layer weighswA.h/�h: The
work to lift it to the top is its weight times the distanceh; orwhA.h/�h: The work
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to empty the whole tank is the integral:

W D
r
whA.h/ dh: (12)

Suppose the tank is the bottom half of a sphere of radiusR. The cross-sectional
area at depthh is AD�.R2�h2/: Then the work is the integral(12) from 0 toR:
It equalsW D�wR4=4.

Units:wD force=.distance/3 timesR4 D .distance/4 gives workW D .force/.distance/.

8.6 EXERCISES

Read-through questions

Work equals a times b . For a spring the force is
F D c , proportional to the extensionx (this is d
law). With this variable force, the work in stretching from0 to
x is W D

r
e D f . This equals the increase in the

g energy V: Thus W is a h integral andV is the
corresponding i integral, which includes an arbitrary j .
The derivative dV=dx equals k . The force of gravity is
F D l and the potential isV D m .

In falling, V is converted to n energyKD o . The
total energyKCV is p (this is the law of q when
there is no external force).

Pressure is force per unit r . Water of densityw in a
pool of depth h and areaA exerts a downward forceF D

s on the base. The pressure ispD t . On the sides the
u is still wh at depth h; so the total force is

r
whl dh;

where l is v . In a cubic pool of sides; the force
on the base isF D w , the length around the sides is
l D x , and the total force on the four sides isF D

y . The work to pump the water out of the pool is
W D

r
whA dhD z .

1 (a) Find the workW when a constant forceF D 12 pounds
moves an object fromxD :9 feet toxD 1:1 feet.
(b) ComputeW by integration when the forceF D 12=x2

varies withx.

2 A 12�inch spring is stretched to15 inches by a force of75
pounds.

(a) What is the spring constantk in pounds per foot?
(b) Find the work done in stretching the spring.

(c) Find the work to stretch it3 more inches.

3 A shock-absorber is compressed1 inch by a weight of1 ton.
Find its spring constantk in pounds per foot. What potential
energy is stored in the shock-absorber ?

4 A forceF D 20x�x3 stretches a nonlinear spring byx.
(a) What work is required to stretch it fromxD 0 to xD 2 ?

(b) What is its potential energyV atxD 2; if V.0/D 5 ?

(c) What is kD dF=dx for a small additional stretch at
xD 2?

5 (a) A 120-lb person makes a scale go downx inches. How
much work is done ?
(b) If the same person goesx inches down the stairs, how much
potential energy is lost ?

6 A rocket burns its100 kg of fuel at a steady rate to reach a height
of 25 km.

(a) Find the weight of fuel left at heighth.

(b) How much work is done lifting fuel ?

7 Integrate to find the work in winding up a hanging cable of
length 100 feet and weight density5 lb=ft. How much additional
work is caused by a200-pound weight hanging at the end of the
cable ?

8 The great pyramid (height5001—you can see it from Cairo)
has a square base8001 by 8001: Find the areaA at heighth: If
the rock weighswD 100 lb=ft3, approximately how much work did
it take to lift all the rock ?

9 The force of gravity on a massm is F D�GMm=x2: With
GD 6 �10�17 and Earth massM D 6 �1024 and rocket mass
mD 1000; compute the work to lift the rocket fromxD 6400

to xD 6500: (The units are kgs and kms and Newtons, giving
work in Newton-kms.)

10 The approximate work to lift a30-pound suitcase20 feet is
600 foot-pounds. The exact work is the change in the potential
V D�GmM=x: Show that�V is 600 times a correction factor
R2=.R2�102/; when x changes fromR�10 to RC10: (This
factor is practically1, whenRD radius of the Earth:)

11 Find the work to lift the rocket in Problem9 from xD 6400

out to xD8: If this work equals the original kinetic energy
1
2mv

2; what was the originalv (the escape velocity) ?

12 The kinetic energy 1
2mv

2 of a rocket is converted into
potential energy�GMm=x: Starting from the Earth’s radius
xDR, whatx does the rocket reach ? If it reachesxD8 show that
vD

a
2GM=R: This escape velocity is25;000 miles per hour.

13 It takes 20 foot-pounds of work to stretch a spring2 feet.
How much work to stretch it one more foot ?
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14 A barrel full of beer is4 feet high with a1 foot radius and an
opening at the bottom. How much potential energy is lost by the beer
as it comes out of the barrel ?

15 A rectangular dam is40 feet high and60 feet wide. Compute the
total side forceF on the dam when (a) the water is at the top (b)
the water level is halfway up.

16 A triangular dam has an80-meter base at a depth of30 meters.
If water covers the triangle, find

(a) the pressure at depthh

(b) the lengthl of the dam at depthh
(c) the total force on the dam.

17 A cylinder of depthH andcross-sectional areaA stands full of
water (densityw). (a) Compute the workW D

r
wAhdh to lift all

the water to the top. (b) Check the units ofW: (c) What is the work
W if the cylinder is only half full ?

18 In Problem17, computeW in both cases ifH D 20 feet,wD 62

lb=ft3; and the base is a circle of radiusr D 5 feet.

19 How much work is required to pump out a swimming pool, if
thearea of the base is800 square feet, the water is4 feet deep, and
the top is one foot above the water level ?

20 For a cone-shaped tank the cross-sectional area increases with
depth:AD�r2h2=H2: Show that the work to empty it is half the
work for a cylinder with the same height and base. What is the ratio
of volumes of water ?

21 In relativity the mass ismDm0=
a
1�v2=c2: Find the

correction factor in Newton’s equationF Dm0a to give Einstein’s
equationF D d.mv/=dt D .d.mv/=dv/.dv=dt/D m0a.

22 Estimate the depth of theTitanic, the pressure at that depth, and
the force on a cabin door. Why doesn’t every door collapse at the
bottom of the Atlantic Ocean ?

23 A swimming pool is 4 meters wide, 10 meters long, and
2 meters deep. Find the weight of the water and the total force on
the bottom.

24 If the pool in Problem23 has a shallow end only one meter deep,
what fraction of the water is saved ? Draw a cross-section (a trape-
zoid) and show the direction of force on the sides and the sloping
bottom.

25 In what ways is work like a definite integral and energy like an
indefinite integral ? Their derivative is the .
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