CHAPTER 9

Polar Coordinates and
Complex Numbers

I .1 Polar Coordinates |

Up to now, points have been located by theiand y coordinates. But if you were

a flight controller, and a plane appeared on the screen, you would not give its
position that way. Instead of andy, you would read off thelirection of the plane

and itsdistance The direction is given by an angke The distance is given by a
positive number. Those are th@olar coordinatesof the point, wherer andy are
therectangular coordinates.

The anglef is measured from the horizontal. Suppose the distanc asd
the direction is30° or 7 /6 (degrees preferred by flight controllers, radians by
mathematicians). A pilot looking along theaxis would give the plane’s direction
as “11 o’clock.” This totally destroys our system of units, by measuring direction in
hours. But the angle and the distance locate the plane.

How far to a landing strip at =1 and § = —n/2? For that question polar
coordinates are not good. They are perfect for distance from the origin (which equals
r), but for most other distances | would switch toand y. It is extremely simple
to determinex and y from r and 8, and we will do it constantly. The most used
formulas in this chapter come from Figure 9.1—where the right triangle has éngle
and hypotenuse The sides of that triangle areand y:

x=rcosf and y=rsinf. (1)

Thepointatr =2,0 = /6 hasx =2 cos(x/6) andy = 2sin(sr/6). The cosine of
7/6 is v/3/2 and the sine is}. So x =+/3 and y = 1. Polar coordinates convert
easily toxy coordinates—now we go the other way.

Alwaysx? + y2 = r2. In this examplg+/3)? + (1)2 = (2)2. Pythagoras produces
r from x andy. The directiord is also available, but the formula is not so beautiful:

)

r=4/x2+y% and tanez% and (almos o=tan' L.

412 Ourpoint hasy/x = 1/4/3. One angle with this tangent = tan' (1/+/3) = 7 /6.
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y=rsin@ y=1 Mt 1337

x=rcos@ x=v3 /B =—-45° = —1/d

B=(1,-1)

Fig. 9.1 Polar coordinates, § and rectangular coordinates=r cosé,y =rsiné.

EXAMPLE 1 Point B in Figure 9.1c is at anegative angled = —x /4. The x
coordinater cos(—m/4) is the same as cosn/4 (the cosine is even). But the
coordinater sin(—m/4) is negative. Computing andf from x =1 andy =1, the
distance i =+/1+4 1 andtanf is —1/1.

Warning To any anglé we can add or subtra@&z—which goes a fulB60° circle
and keeps the same direction. Thus /4 or —45° is the same angle @&t /4 or
315°. Sois157w/4 or 675°.

If we add or subtract80°, the tangent doesn’t change. The pdiht—1) is on the
—45° line atr = /2. The point(—1,1) is on thel35° line also withr = 4/2. Both
havetan6 = —1. We had to write “almost” in equatiof2), because a point has many
0’s and two points have the sameandtané.

Even worse, we could say th& = (1, —1) is on thel35° line but at anegative
distancer = —/2. A negativer carries the poinbackwardalong the135° line,
which is forward toB. In giving the position ofB, | would always keep > 0. But
in drawing the graph of a polar equation< 0 is allowed. We move now to those
graphs.

THE CIRCLE r = cos6

The basis for Chapters 1-8 was= f(x). The key to this chapter is= F(6). That
is a relation between the polar coordinates, and the points satisfying an equation like
r = cosé produce golar graph

It is not obvious whyr = cosf gives a circle. The equations= cos26 and
r=cog6 andr =1+ cosf produce entirely different graphs—not circles. The
direct approach is to takeé = 0°,30°,60°, ... and go out the distanoe= cosf on
each ray. The points are marked in Figure 9.2a, and connected into a curve. It seems
to be a circle of radiu%, with its center at the poir(t%,O). We have to be able to
show mathematically that= cosé represents ahifted circle

One point must be mentionefihe angles fromD to r give the whole circleThe
number = cosf becomes negative after/2, and we go backwards along each ray.

r=cos 0

cos 0= 1
9 LOql

T
\jﬂ:_]

Fig. 9.2 The circler = cos6 and the switch tor andy. The circler = siné.
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At 8 = 7 (to theleft of the origin) the cosine is-1. Going backwards brings us
to the same point &= 0 andr = + 1—which completes the circle.

When# continues fromrz to 27z we go around again. The polar equation gives the
circle twice (Or more times, whef continues pas?z.) If you don't like negative
r's and multiple circles, restrid to the range from-x/2 to /2. We still have to
see why the graph of = cos# is a circle.

Method5 Multiply by r and convert to rectangular coordinateandy:

r=cos) = r?>=rcosl = x*>+y%=nx. 3)
This is a circle because of? + y2. From rewriting as(x — 3)2+ 2 = ()% we
recognize its center and radius. Center at % and y =0; radius%. Done.

Method 6 Write x andy separatelyas functions of. Thend is a “parametet:
x=rcosf =cogf and y=rsind =sinfcosé. (4)

These are nopolar equations buparametricequations. The parametéris the
angle, but it could be the time—the curve would be the same. Chapter 12 studies
parametric equations in detail—here we stay with the circle.

To find the circle, square andy and add. This produces + y2 = x in Problem
26. But here we do something ne®tart with the circle and find equatiorf4). In
case you don’t reach Chapter 12, the idea is this. Add the ve€térdo the center
andCP out the radius:

The point P in Figure.2has(x, y) = OC + CP = (3,0) + (3 cosz, 1 sin ).

The parameter is the angle at the center of the circle. The equations are
x=1+1costandy = 1 sint. Atrigonometric person sees a double angle and sets
t =26. The result is equatiofd) for the circle:

x=1+1cos20=cos6 and y=1sn20=sinfcosfd. (5)

This step rediscovers a basic theorem of geométng angle at the center is twice
the angled at the circumferenceéEnd of quick introduction to parameters.

A second circle is" = sin#, drawn in Figure 9.2c. A third circle is = cosé +
sin#, not drawn. Problem7 asks you to find itsxy equation and its radius. All
calculations go back toc =rcosf and y =rsinf—the basic facts of polar
coordinates! The last exercise shows a parametric equation with beautiful graphs,
because it may be possible to draw them now. Then the next section concentrates on
r = F(0#)—and goes far beyond circles.

9.1 EXERCISES

Read-through questions

Polar coordinates andé correspondtac=__a andy=_ b . The polar equationr =cosf produces a shifted _m__. The

The points withr > 0 andf = 7 are located ¢ . The points with top point is atd =__n , which givesr=__o . When 8 goes

r=1and 0<6 < are located d . Reversing the sign of fromO0 to2x7, wego p times around the graph. Rewriting as

moves the poin{x,y)to__e . r2 =rcos# leads to thery equation g . Substituting: = cos 8
Givenx andy, the polar distance is=__f . The tangent o N0 x =rcosf yieldsx=_r and similarlyy=__s . In this

is g .The point(6,8) hasr=_h andf=_ i .Another 'O'mxandy arefunctionsof t 6.

point with the samef is | . Another point with the same is
k__. Another point with the sameand tanf is __|




9.1 Polar Coordinates

Find the polar coordinatesr >0 and 0 < 0 <2 of these points.

1 (x,y)=(0.1)
3 (x,3)=(V2.V2)

5 (x,y)=(=1-1

2 (X,y) = (_470)
4 (x,3)=(=1,v/3)

6 (x.y)=03.4

Find rectangular coordinates(x, y) from polar coordinates.

7 (r,0)=(2,7/2) 8 (r,0)=(1,37/2)

9 (r,0)=(v20,7/4) 10 (r,0) = (3m,37)

11 (r,0) = (2,—7/6) 12 (r,0) = (2,57/6)

13 What is the distance frortx, y) = (v/3,1) to (1, —/3) ?
14 How far is the point =3,0 =z /2 fromr=4,0 =7 ?

15 How far is (x,y) = (rcosf,rsind) from (X,Y) = (R cos¢,
R sing) ? Simplify (x —X)%+(y —Y)? by using co$d —¢) =
cos6 cos¢ +sind sing.

16 Find a second set of polar coordinates (a differeot 8) for the
points

(r.0)=(=1,7/2), (1,—7/2),

17 Using polar coordinates describe (a) the half-plane 0;
(b) the half-planey <0; (c) the ring withx2 + y2 betweernd and
5; (d) the wedgex > |y/|.

(—1,37/4), (0,0).

18 True or false, with a reason or an example:

(@) Changing to—r and—6 produces the same point.

(b) Each point has only one and 6, when r <0 is not
allowed.

(c) The graph of = 1/sin6 is a straight line.
19 Fromx andé find y andr.

20 Which other point has the sameard tanf asx = V3, y=1in
Figure 9.1b?

21 Convert from rectangular to polar equations:
(@ y=x (b) x+y=1 © x2+y*=x+y

22 Show that the triangle with vertices &0,0),(r1,61), and

(r2,602) has ared = %rlrz sin(6, —67). Find the base and height

assuming) < 61 <6, <.
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Problems 23-28 are about polar equations that give circles
23 Convertr = sin 8 into anxy equation. Multiply first byr.

24 Graphr=sin6 a 6 =0°30°60°,...,360°. These thirteen
values off give different points on the graph. What range of
0'sgoes once around the circle ?

25 Substituter =sinf into x =rcosf and y =rsin6 to find x
andy in terms of the parametér. Then computer? + y?2 to reach
thexy equation.

26 From the parametric equations=cos6 and y = sinf cosf
in (4), recover thecy equation. Square, add, eliminate

27 (a) Multiply r=cosé+sin6 by r to convert into anxy
equation. (b) Rewrite the equation @s—1)2+(y — 3)2=R? to
find the radiusk. (c) Draw the graph.

28 Find the radius of =acos6 +bsin 6. (Multiply by r.)

29 Convertx+y =1 into anrf equation and solve for. Then
substitute this- into x =rcosf andy =rsin6 to find parametric
equations for the line.

30 The equations x =cof and y=si?0 also lead to

x +y = 1—but they are different from the answer to Problét
Explanation:6 is no longer the polar angle and we should have
written 7. Find a pointx = cos*6,y =sin?# that is not at the
angled.

31 Convertr = cos?6 into anxy equation (of sixth degree!)

32 If you have a graphics package for parametric curves, graph
sore hypocycloids The equations are = (1 —b) cost + b cos(1 —
b)t/b,y =(1—b)sint —bsin(1 —b)t/b. The figure shows = %

and part ofb = .31831.
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I o2 Polar Equations and Graphs

The most important equation in polar coordinates, by far,4s1. The angled does

not even appear. The equation looks too easy, but that is the point! The graphis a circle
around the origin (the unit circle). Compare with the line= 1. More important,
compare the simplicity of = 1 with the complexity ofy = +4/1 — x2. Circles are

so common in applications that they created the need for polar coordinates.

This section studies polar curves= F (). The cardioid is a sentimental favorite—
maybe parabolas are more practical. The cardioid4s1 + cosf, the parabola is
r=1/(1+cosf). Section 12.2 adds cycloids and astroids. A graphics package can
draw them and so can we.

Together with the circles = constantgo the straight line$ = constant The
equationd = /4 is a ray out from the origin, at that fixed angle. If we allow 0,
as we do in drawing graphs, the one-directional ray changes to a full line. Important:
The circles are perpendicular to the ray$Ve have “orthogonal coordinates™—
more interesting than the — y grid of perpendicular lines. In principle could be
mixed with& (non-orthogonal), but in practice that never happens.

Other curves are attractive in polar coordinates—we look first at five examples.
Sometimes we switch back o= r cosf andy =r sin 6, to recognize the graph.

EXAMPLE 1 The graph of- = 1/ cos8 is thestraight line x = 1 (because cos6 = 1).

EXAMPLE 2 The graph of- = cos26 is thefour-petal flowerin Figure 9.3.

The points at? = 30° and —30° and 150° and —150° are marked on the flower.
They all haver = c0s26 = % There are three important symmetriesacross the

x axis, across they axis, and through the origin This four-petal curve has them
all. So does the vertical flower= sin26—but surprisingly, the tests it passes are
different.

(Across thex axis: y to —y) There are two ways to cross. First, chag® —6.
The equationr = cos26 stays the same. Second, chaig® = — 0 and alsor to
—r. The equationr = sin20 stays the same. Both flowers havaxis symmetry.

(Across they axis: x to —x) There are two ways to cross. First, chafige = — 6.
The equationr = c0s26 stays the same. Second, chafAge —6 andr to —r. Now
r = sin26 stays the same (the sine is odd). Both curves haagis symmetry.

(Through the origiin  Now we change to —r or 6 to 8 + . The flower equations
pass the second test onlyos2 (6 + ) = cos26 andsin2(6 + ) = sin26. Every
equatiorv? = F(0) passes the first test, sinter)? = r2.

The circler = cosf hasx axis symmetry, but nop or r. The spiralr = 63 has
y axis symmetry, becauser = (—6)? is the same equation.

Question What happens if you changeto —r and also chang@to 6 + 7 ?
Answer Nothing—becausér, §) and(—r, 8 + ) are always the same point.

EXAMPLE 3 The graph ofr = 6 is a spiral of Archimedes—or maybe two spi-
rals.

The spiral adds new points & increases pasRz. Our other examples are
“periodic™—# = 27 gives the same point @= 0. A periodic curve repeats itself.
The spiral moves out b each time it comes around. If we allow negative angles
and negative = 6, a second spiral appears.
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r=cos 20

Fig. 9.3  The four-petal flower = cos26 and the spirat =6 (r >0 in red).

EXAMPLE 4 The graph of- = 1 4+ cos#6 is acardioid. It is drawn in Figure 9.4c.

The cardioid has no simpley equation. Still the curve is very attractive. It has a
cusp at the origin and it is heart-shaped (hence its name). To draw it; pidt+
cos#h at30° intervals and connect the points. For this cunis never negative, since
cosf never goes below-1.

It is a curious fact that the electrical vector in your heart almost traces out a
cardioid. See Section 11.1 about electrocardiograms. If it is a perfect cardioid you
are in a little trouble.

_/

1
r=1+—cos@ r=l+%cosa r=1+cos@ r=|++cos@

no dimple dimple cardioid inner loop

Fig. 9.4 Limagonsr = 1+ cos#, including a cardioid and Mars seen from Earth.

EXAMPLE 5 The graph of- = 145 cosf is alimacon (a cardioid wheb = 1).

Limagon (softc) is a French word for snail—not so well known as escargot but just
as inedible.(am only referring to the shell. Excusez-m@iigure 9.4 shows how a
dimple appears dsincreases. Then an inner loop appears beyosdl (the cardioid
ath =1 is giving birth to a loop). For largé the curve looks more like two circles.
The limiting case is a double circle, when the inner loop is the same as the outer loop.
Remember that = cosf goes around the circle twice.

We could magnify the limagon by a factor changing tor = ¢(1 + b cosf). We
could rotatel80° to r = 1 — b cosf. But the real interest is whether these figures
arise in applications, and Donald Saari showed me a nice example.
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Mars seen from Earth The Earth goes around the Sun and so does Mars. Roughly
speaking Mars is% times as far out, and completes its orbit in two Earth years.

We take the orbits as circles:= 2 for Earth andr = 3 for Mars. Those equations
tell wherebut notwhen With time as a parameter, the coordinates of Earth and Mars
are given at every instant

Xg=2C0S2nt, yg =2 Sin2nt and xy=3cosxt,yy =3sinmt.

At t =1 year, the Earth completes a circle (angi€) and Mars is halfway.
Now the key step. Subtract to find the position of Magkative to Earth

XM_E=23C0Snt —2 COS2mt and YM_g=3Sinxt—2sin2xt.
Replacingcos2rt by 2cogrt — 1 andsin2xt by 2 sinwt cosrnt, this is
xv—g = (3—4cosnr)cosnt +2 and ym—e = (3—4cosnt)sinrxt.

Seen from the Earth, Mars does a loop in the sky! There arettsvéor which
3—4cosnt =0 (or coswt = %). At both times, Mars is two units from Earth
(xm_e=2 and yy_g=0). When we move the origin to that point, the is
subtracted away—thd — E coordinates become= r cosx ¢t andy = r Sin ¢t with

r =3 —4cosnt. Thatis a limacon with a loop, like Figure 9.4d.

Note added in proofl didn't realize that 8-to-2 ratio is also responsible for heating
up two spots on opposite sides of Mercury. From the newspaper ofl3uri@90:

“Astronomers today reported the first observations showing that Mercury
has two extremely hot spots. That is because Mercury, the planet closest to the
Sun, turns on its axis once evex9.6 days, which is a day on Mercury. It goes
around the sun eveBgB days, a Mercurian year. With thisto-2 ratio between
spin and revolutiorthe Sun appears to stop in the sky and move backward,
describing a loopver each of the hot spots.”

CONIC SECTIONS IN POLAR COORDINATES

The exercises include other polar curves, like lemniscaté26®-petal flowers. But
get serious. The most important curves areghipseandparabolaandhyperbola
In Section 3.5 their equations involvédx,y,xz,xy,yz. With one focus at the ori-
gin, their polar equations are even better.

9A The graph of- = A/ (1 + ecosf) is a conic section with “eccentricity’

circleife=0 ellipseif0<e<1 parabolaife=1 hyperbolaife > 1.

EXAMPLE 6 (e =1) The graph of = 1/(1 + cosf) is a parabola. This equation
isr+rcosf =1 orr =1—x. Squaring both sides gives® + y2 =1 —2x + x2.
Cancelingx? leavesy? = 1 —2x, the parabola in Figure 9.5b.

The amplifying factord blows up all curves, with no change in shape.

EXAMPLE 7 (e =2) The same steps lead fromil +2cosf) =1tor =1—2x.
Squaring gives:? + y2 = 1 — 4x + 4x2 and thex? terms do not cancel. Instead we
havey? —3x2 = 1 —4x. This is the hyperbola in Figure 9.5¢, with a focug@t0).

The hyperbola? —3x2 = 1 (without the—4x) has itscenterat (0, 0).
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EXAMPLE 8 (e = 1) The same steps lead fronil 4+  cos) =1tor =1 —1x.
Squaring gives the ellipse? +y2 =1—x + %xz. Polar equations look at conics in
a new way, which happens to match the sun and planets perfEagtysun a0, 0)

is not the center of the system, but a focus.

Finally e = 0 gives the circle' = 1. Center of circle= both foci= (0, 0).

Fig. 9.5 r=1/(14+ecos) is an ellipse fore = % a parabola fore =1, a hyperbola for
e=2.

The directrix The figure shows the liné (the “directrix”) for each curve. All points
P onthe curve satisfy = | PF| = e| Pd|. The distance to the focus istimes the
distance to the directrix(e is still the eccentricity, nothing to do with exponentials.)
A geometer would start from this property=e| Pd | and construct the curve. We
derive the property from the equation:

A
fr=—
1 +ecosd
The directrix is the line at = A/e. That last equation is exact|y’ F| = e|Pd |.

A
= r4+ex=4 = r=e(——x). Q)
e

Notice how two numbers determine these curves. Here the numbetsaude. In
Section 3.5 they were andb. (The ellipse wasc?/a? + y2/b? = 1.) Using 4 and
e we go smoothly from ellipses through parabolase(at 1) and on to hyperbolas.
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With three more numbers we can move the focus to any point and rotate the curve

through any angleConics are determined by five numbers

9.2 EXERCISES

Read-through questions

The circle of radius3 around the origin has polar equationé—(l—x) represents a q and an__r

. Including a shift

a . The 45° line has polar equation b . Those graphs and rotation, conics are determined bys numbers.
meet at an angle of _c¢ . Multiplying r =4 cosf by r yields

the xy equation

f . The graph ofr =4/cosf is the line x =
equation r2 = cos26 is not changed whe — —6 (symmetric

across _h )and whenf -z +6 (orr—__i ). The graph of

r=14cosfisa

_d . Its graph is a__e  with center at Convertto xy coordinates to draw and identify these curves
g . The 1 rsing=1 2 r(cosh —sinf) =2

3 r=2cosf 4 r=-2siné

. 5 r=1/(2+cos¥b) 6 r=1/(14+2cocsh)

The graph of r=A4/(__k ) is a conic section with one In 7-14 sketch the curve and check for, y, and r symmetry.

focus at _ |

which gives a

. It is an ellipse if __m and a hyperbola 7 ,2_4¢cos20 (lemniscate)
if n_. The equationr =1/(14cosf) leads tor+x=1
0 . Then r = distance from origin equals 8

r2=4sn20 (lemniscate)

1—x = distance from p . The equations =3(1—x) andr= g , —=cos36 (three petals)
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10 r2=10+6cos46 (@) Symmetric about the origin but not theaxis

11 r=ef (logarithmic spiral) (b) Symmetric across thé5° line but not symmetric inx
. ) oryorr

12 r=1/0 (hyperbolic spiral) (c) Symmetric inx and y and r (like the flower) but

13 r =tan® changed when < y (not symmetric across th° line).

14 r=1-2sin36 (rose inside rose)

Problems 3137 are about conic sections-especially ellipses
15 Convertr =6sinf +8 cosé to the xy equation of a circle ] ) . o o
(what radius, what center ?). 31 Find the top point of the ellipse in Figure 9.5a, by maximizing
_ - _ _y=rsinf=sin6/(1+ L cosh).
*16 Squaring and adding in the Mars-Earth equation gives )
X% _g+ ¥ _g=13—12cosnt. The graph of 2 = 13— 12 cosf is 32 (a) Show that all conicsr =1/(1+ecosf) go through

not at all like Figure 9.4d. What went wrong ? x=0,y=1
(b) Find the second focus of the ellipse and hyperbola. For the
In 17-23 find the points where the two curves meet. parabolae = 1) where is the second focus ?

17 r=2cosf and r = 1+cosf ] 33 The point Q in Figure 9.5¢ hasy = 1. By symmetry findx
Warning You might set2cosf = 1+cos#é to find cosfd = 1. But and then- (negative!). Check that? + y2 = r2 and|QF| =2|0d|.
the graphs have another meeting point—they reach it at different

0's. Draw graphs to find all meeting points. 34 The equationsr = A/(14+ecosf) and r =1/(C + D cosf)
8 12 —sin20 andr? — cos2o are the same ifC = and D = . For the mirror

18 r7=sin2t andr= = cos image across the axis replacé by . This givesr =1/(C —

19 r=14cosf ardr =1-sinf D cosf) as in Figure 12.10 for a planet around the sun.

20 r=14cosf ad r =1—cosf 35 Theellipser = A/(1+ecos) has lengti2a on thex axis. Add

. t=0tor atf = to prove thatz = A/(1 —e?). The Earth’s

21 r=2andr=4sin20 ra ; . !
r2 anar sin orbit hasa = 92,600,000 miles = one astronomical unit (AU).

22 =4cosf and r = 1—cosf . . . .

’ ’ 36 The maximum heighth occurs wheny =rsinf = Asiné/

23 rsing =1andr cogd —n/4) = V2 (straight lines) (1+ecosh) hasdy/df = 0. Show thath = ymax= 4/\/1—e2.

24 When is there a dimple inr=1+bcosf? From x= 37 combine ¢ and b from Problems35—36 to find ¢ =
(1+bcosf)cost find dx/df andd?x/d6> atf =x. When that | /;2 _p2 — 4¢/(1—¢2). Then the eccentricitye is c/a.
second derivative is negative the limagon has a dimple. Halley’s comet is an ellipse witl = 18.1 AU and b =4.6 AU

25 How many petals forr =cos50 ? For r =cosf there was SO0¢=___

one, forr = cos26 there were four.

Comets have large eccentricity planets have much smallere:
Mercury .21, Venus.01, Earth .02, Mars .09, Jupiter .05, Saturn
.05, Uranus .05, Neptune.01, Pluto .25, Kohoutek .9999.

26 Explain why r =c0s1006 has 200 petals butr =cos101 6
only has 101. The other 101 petals are . What about
r=cost6?

38 If you have a computer with software to do polar graphs,

start with these:
28 (a) The flowerr =cos26 is symmetric across the and y | 0 i 1 )
axes. Does that make it symmetric about the origin? (Dlo Flowersr = A +cosn orn=3378 4=0,12
two symmetries imply the third, se-r =cos20 produces 2. Petals r =(cosmb +4 cosnf)/cost, (m.n)=(5,3), (3.,5),

27 Find anxy equation for the cardioid = 1+ cosf.

the same curve ?) 9. 1), (2.3)

(b) How canr=1, 6 =x/2 lie on the curve but fail to 3. Logarithmic spiral- = ¢?/27™

satisfy the equation ? 4. Nephroidr = 1+2 sin$6 from the bottom of a teacup
29 Find anxy equation for the flower = cos26. 5. Dr. Fay’s butterflyr = ¢®? —2 cos46 +sin®(6/12)

30 Find equations for curves with these properties: Then create and name your own curve.
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The previous sections introduced polar coordinates and polar equations and polar
graphs. There was no calculus! We now tackle the problerasa#(integral calculus)
andslope(differential calculus), when the equationris= F(6). The use of instead
of f is areminder that the sloper®td F/d6 and the area iaotj F(0)do.

Start with area. The region is always divided into small pieces—what is their
shape ? Look between the angleand6f 4+ A6 in Figure 9.6a. Inside the curve is a
narrow wedge—almost a triangle, witkd as its small angle. If the radius is constant

r=cos 9 =3 r=cos@

area
L cos20A0 ;"

area

-
bicza o1y
2((:05 9—{2) JAD

Fig. 9.6

Area of a wedge and a circle and an intersection of circles.

thewedge is a sector of a circle. It is a piece of pie cut at the extremely narrow angle
A#6. The area of that piece is a fraction (the angjl¢ divided by the whole angl&r)

of the whole arear r2 of the circle:

A 1 1
area of wedge= A0 e Lapng L [F(6)) A6.
2 2 2

(1)

We admit that the exact shape is not circular. The true raHii$) varies with6d—
but in a narrow angle that variation is small. When we add up the wedges and let

A6 approach zero, the area becomes an integral.

area= f%ﬂ do = B [F(0)])* d6.

9B The areainside the polar curve= F(6) isthe limitof ) 3r2A0 =3 2 F2A4:

()

EXAMPLE 1 Find the area inside the circte= cosé of radius% (Figure 9.6).

21 : 2w
area= f l 00329 do = W} = 2_7T
o 2 4 o 4

That is wrong! The correct area of a circle of radil%sis 7 /4. The mistake is that
we wenttwice around the circle a8 increased t@r. Integrating fromf to = gives

/4.

EXAMPLE 2 Find the area between the circlkes= cosf andr = %

1

The circles cross at the points where= cost agrees withr = 5

. Figure 9.6 shows

these points at60°, or8 = +/3. Those are the limits of integration, wherest =
1

3
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The integral adds up the difference between two wedges,on® outtcosd and
a smaller one withr = 1:

/3 1 1 2
area:f — | (cos6)? — (—) de. 3)
_x/32 2
Note that chopped wedges have ark@F2 — F7)A6 and noti (Fy — F»)?A6.

EXAMPLE 3 Find the area between the cardioie: 1 + cosf and the circler = 1.

J'[/2 1
area= f 3 [(1+cosh)?—1%]db (Iimits 0=+
—m/2

S

wherel + cosf = 1)

SLOPE OF A POLAR CURVE
Where is the highest point on the cardigid= 1 4+ cosf ? What is the slope at
0 = /4 ? Those are not the most important questions in calculus, but still we should

know how to answer them. | will describe the method quickly, by switching to
rectangular coordinates:

x =r cosf = (14 cosé)cosé and y=rsinf =(1+cosf)sinb.
For the highest point, maximizg by setting its derivative to zero:
dy/d6 = (14 cosb)(cost) + (—sinb)(sind) =0. 3)
Thuscosé + cos26 = 0, which happens &0°. The height isy = (1+ 1)(+/3/2).
For the slope, use the chain ruly /d60 = (dy/dx)(dx/d0):

dy dy/df  (1+cost)(cost)+ (—sind)(sinb)

dx dx/df  (1+cosf)(—sinf)+ (—sind)cosd’ “)

Equations(3) and (4) avoid the awkward (or impossible) step of eliminatifig
Instead of trying to findy as a function ofx, we keepx and y as functions of
6. At 6 = /4, the ratio in equatiofd) yieldsdy /dx = —1/(1 +/2).

Probleml8 finds a general formulafor the slope, usihg/dx = (dy/d6)/(dx/d9).
Problem20 finds a more elegant formula, by looking at the question differently.

LENGTH OF A POLAR CURVE

The length integral always starts withs = /(dx)2 + (dy)2. A polar curve has
x =rcosf = F(6)coso andy = F(0)sinf. Now take derivatives by the product

rule:

dx = (F'(0)cosh — F(9)sin6)dd  and  dy = (F'(0)sinf+ F(0)cosh)do.
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Squaring and adding (not®s 6 + sin? #) gives the element of lengtlhs:
. D
ds = \/[F/(e)]2 +[F ()] db. (5) as \
Thefigure showsds)? = (dr)? + (rd)?, the same formula with different letters. -
The total arc length if ds. r—Ho)

The area of a surface of revolution 2y ds (around thex axis) or [ 2wxds  (ds)*=(dr)*+(rab)’

(around they axis).Write x, y, andds in terms of@ and d6. Then integrate. Fig. 9.7

EXAMPLE 4 The circler = cosf hasds = /1 df. So its length ist (not2z!l—
don’t go around twice). Revolved around thexis the circle yields a doughnut with
no hole. Sincer = r cosf = cog §, the surface area of the doughnutis

J27rx ds = f 27 cog 0 do =2
0

EXAMPLE 5 Thelength of =1+ cas@ is, by symmetry, double the integral from
Otom:

length of cardioid= 2 f +/(—sind)2 + (1+cosh)2 df
0

=2f v/2+2cosf do =4J cos€d9=8.
0

0 2

We substitutedt cog %9 for 242 cosé in the square root. It is possible to skip

symmetry and integrate frothto 2.7—but that needs the absolute V&'UE)S%9| to
maintain a positive square root.

EXAMPLE 6 The logarithmic spiral = e~% hasds = v/e—20 +¢-20 4. It spi-
rals to zero a# goes to infinity, and the total length is finite:

fds: LI\/EeQ 46 = —\/ie’e]: =2

Revolve this spiral for a mathematical seashell with af¢d2me ¢ cos)v/2 e 9 d6.

9.3 EXERCISES

Read-through questions

A circular wedge with angleAd is a fraction__a  of a whole r =46 is revolved around the: axis is [2ryds=[_m . The
circle. If the radius isr, the wedge area is_b__. Then the volume of that solid isf 7y?dx = [__n

area insider = F(6) is [__c . The area inside =62 from 0
tox is__d . That spiral meets the circle=1 a 6 =

The area inside the circle and outside the spirali§ . Achopped 1 r=1+cost
wedge of angleAd betweernr; andr, hasarea g .

In 1-6 draw the curve and find the area inside.

r=sinf +cosf fromOto

2

3 r=2+cosd
The curver =F(0) hasx=rcosf=_h andy=_1i . 4
The slopedy/dx is dy/d# divided by j . For length(ds)? =
(dx)?2+(dy)2=__k . The length of the spirat =6 to ==
is [_ 1 (not to compute integrals). The surface area wheh r =cos36 (one petal only)

r =142 cos@ (inner loop only)

5 r =co0s26 (one petal only)
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Find the area between the curves in 7-12 after locating their in-

tersections (draw them first).

7 circler =cosf and circler =sin6

8 spiralr =6 andy axis (first arch)

9 outside cardioid = 1+ cos# inside circler =3 cosé
10 lemniscate-2 = 4 cos26 outsider = /2
11 circle r =8 cosé beyond liner cosf =4
12 circler =10 beyond liner cosf =6

13
r2=cos20: area= [j 4r2d6 = [{ Lcos20d6=0.

14 Find the area between the two circles in Example 2.

15 Compute the area between the cardioid and circle
Example 3.

16 Find the complete area (carefully) between the spirat
e~%(6 =0) and the origin.

17 At what 6’s does the cardioidr =14cosf have infinite
slope ? Which points are furthest to the left (minimuiy®

18 Apply the chain ruledy/dx = (dy/d0)/(dx/df) to x=
F(0)cosh, y = F(#)sin6. Simplify to reach

dy F+tan0dF/do

dx —Ftanf+dF/d’

19 The groove in a record is nearly a spirak c6:

length = [1/r2+(dr/d6)2 d6 = [{*\/r2 +c2dr/e.

Locate the mistake and find the correct area of the Iemnisc%?e

9 Polar Coordinates and Complex Numbers

22 Draw the cardioidr = 1—cos#, noticing the minus sign.
Include the angle8, ¢, v and show thaty =6/2.

23 The first limagon in Figure 9.4 looks like a circle centered at
(1.0). Prove that it isn't.

24 Find the equation of the tangent line to the cirele= cosf
af=mn/6.

In 25-28 compute the length of the curve.

25 r=20 (6 from0to2x)

r=sech (6 from0ton/4)

27 r=sin?(6/3) (6 from0 to 37)

28 r=602% (0 from0to )

9 The narrow wedge in Figure 9.6 is almost a triangle. It
was treated as a circular sector but triangles are more familiar.
Why is the area approximate%frzAG ?

30 In Example 4 revolve the circle around theaxis and find
the surface ared\Ve really only revolve a semicircle

31 Compute the seashell arezrv/2[Je=2%cosddf using
two integrations by parts.

32 Find the surface area when the cardioid=1+cosf
is revolved around the axis.

33 Find the surface area when the lemniscafe=cos26 is
revolved around the axis. What is9 after one petal ?

34 When y = f(x) is revolved around ther axis, the volume
is [my2dx. When the circler =cosé is revolved, switch to a
f-integral from0 to 7 /2 and check the volume of a sphere.

Take ¢=.002 to give 636 turns between the outer radius5 Find the volume when the cardioid=1-+cosé is rotated

14 cm and the inner radiuscm (14 — 6 equals.002(636)27).

(@) Omitc? andjust integrate dr/c.

around thex axis.

36 Find the surface area and volume when the graph-ofl / cos 6

(b) Compute the length integral. Tables and calculatdssrotated around the axis(0 <60 < /4).

allowed. You will never trust integrals again.

37 Show that the spirals =60 ard r=1/6 are perpendicular

20 Show that the angley beween the ray from the origin When they meetat =1.

and the tangent line has ten= F/(dF/d6).
Hint: If the tangent line is at an angl¢ with the horizontal,
then tany is the slopely/dx in Problemi18. Therefore

tan¢g —tanf

t =t ) =—".
any =tan(¢—9) 1+tang tané
Substitute for tarp and simplify like mad.

21 The circle r=F(#)=4sin6 has v =60. Draw a figure
including 6, ¢, v and check tagk.

38 Draw three circles of radiud tha touch each other and
find the area of the curved triangle between them.

39 Draw the unit squaré <x <1,0< y < 1. In polar coordinates
its right side isr = . Find the area fronf %ﬂde.

40 (Unravel the paradox) The area of the ellipse=4 cosf,
y=3sing is7-4-3=127. But the integral o r2d0 is

27
JO

1 . 1
516 cos 0 +9si? ) do = 12-7.
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I 9.4 Complex Numbers NN

Real numbers are sufficient for most of calculus. Starting fadra- 4, its integral
1x3+4x+ Cis also real. If we are given® — 1, its derivative3x? is real.But the
roots(or zero$ of those polynomials are complex numbers

x>+4=0 and x*—1=0 have complex solutions

We expect two square roots ef4. There are three cube rootslofComplex numbers
are unavoidable, in order to findroots for each polynomial of degrae

This section explains how to work with complex numbers. You will see their
relation to polar coordinates. At the end, we use them to solve differential equations.

Start with the imaginary numbei . Everybody knows that? = —1 has no real
solution. When you square a real number, the result is never negative. So the world has
agreed on a solution called (Except that electrical engineers calljit) Imaginary
numbers follow the normal rules of addition, subtraction, multiplication, and division,
with one differenceWheneveri? appears it is replaced by-1. In particular—i
times—i gives+i? = —1. In other words—i is also a square root ef 1. There are
two solutions(i and—i) to the equation® + 1 = 0.

Finding cube roots of will stretch us further. We need complex numbers—real
plus imaginary.

9B A complex number(say 1 + 3i) is the sum of a real numbét) and a purg
imaginary numbe(3i). Addition keeps those parts separate; multiplication Yises
i2=-—1:
Addition: (14+3i)+(14+3i)=14+14+i(3+3)=2+6i
Multiplication: (1 43i)(1+3i)=143i43i +9i? = —8+6i.

Adding 1+ 3i to5—i is easy(6 + 2i). Multiplying is longer, but you see the rules:
(A+3i)5—i)=5+15i—i —3i2 =8+ 14i.

The point is this: We don’t have to imagine any more new numbers. After accepting
i, the rest is straightforward. A real number is just a complex number with no
imaginary part! When + 3i combines with its “complex conjugatd — 3i—adding

or multiplying—the answer is real:

(14+3i)+(1-3i)=2 (real)

(143i)(1—3i)=1-3i+3i —9i2=10. (real) (1)

Thecomplex conjugate offers a way to do division, by making the denominator real:

I 1 1-3 1-3i an I 1 x—iy x—iy
143 143i1-3 10 x+iy x+iyx—iy x24y2

9C The complex numbex +iy has real partx and imaginary party. Its
complex conjugate is —iy. The productx +iy)(x —iy) equalsc? + y? = r2.
Theabsolute valugor modulus) is” = |x +iy| = +/x% + y2.
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THE COMPLEX PLANE

Complex numbers correspond to points in a planghe numberl + 3i corre-
sponds to the pointl, 3). Similarly x 4 iy is paired with(x, y)—which is x units
along the “real axis” ang units up the “imaginary axis.” The ordinary plane turns
into thecomplex plane The absolute value is the same as the polar coordinate
(Figure 9.8a).

The figure shows two more copies of the complex plane. The one in the middle
is for addition and subtraction. It uses rectangular coordinates. The one on the right
is for multiplication and division and squaring. It uses polar coordinates. In squaring
a complex number, is squared and is doubled—as the right figure and equat{8j

both show.
Z (1+i)
] 4 I r: = 2 1 +1
axis ‘*-~‘. P i ‘

imaginary axis conjugate r.0—>r2, 20

Fig. 9.8 The complex plane shows y, r, 8. Add with x andy, multiply with r and6.

Adding complex numbers is like adding vectors (Chapter 11). The real parts give
3 —1 and the imaginary parts give+ 1. The vector sum(2,2) corresponds to the
complex sun? 4 2i. The complex conjugateé— i is the mirror image across the real
axis (i reversed te-i). The connection to andé is the same as before (you see itin
the triangle):

x=rcosfd and y=rsind sothat x+iy=r(cosfd+isind). (2)

In the third figure | +i hasr = /2 and# = /4. The polar form isy/'2 cosz/4 +

v/2i sin 7t /4. When this number is squared, #5° angle become80°. The square
is(14i)?>=142i —1=2i.Its polar form is2 cosz /2 +2i sinm/2.

9D Multiplication adds angles, division subtracts angles, anisgg double$
angles. The absolute values are multiplied, divided, and squared:

(r cosf +ir sinf)? =r?cos20 +ir? sin26. (3)

For nth powers we reach” and n6. For square roots; goes to,/r and 6 goes to
%9. The number-1 is at180°, so its square roatis at90°.

To see whyd is doubled in equatio(B), factor outr? and multiply as usual:
(cosf +i sinf)(cosh +i sinf) = cogh —sir? 6 +2i sinf cosh.
The right side iscos26 +i sin26. The double-angle formulas from trigonometry
match the squaring of complex numbers. The cube woulccde36 + i sin36
(because26 and 6 add to 36, and r is stil 1). The nth power is in
de Moivre’s formula

(cosf +i sin 0)" =cosnb +i sinnb. 4)
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With n = —1 we getcog—0) +i sin(—#)—which iscosé —i sinf, the complex
conjugate:

1 B 1 cosf —i sind _ cosf—i sing

cosf+isnf cosf+isinf coshd—i sinh 1 ’

©®)
We are almost touchinguler's formula, the key to all numbers on the unit circle:
Euler's formula:  cosf+i sinf =e¢'%. (6)

Squaring both sides givege'?)(e?) = 2. That is equat|or(3) The —1 power
is1/e'? =% Thatis equatiorf5). Multiplying any e’? by ¢'? produceg’(?¢+%),
The special casg¢ = 6 gives the square, and the special aase —6 givese!?e 19 =
1.

Euler's formula appeared in Section 6.7, by changirtg i 6 in the series foe*:

ex—1+x—|—x—2+x—3—|— becomes ¢!’ 1—1—19—9—2—19—34-
B 2 6 B 2 6

A highlight of Chapter 10 is to recognize two new series on the right. The real terms
1—16%+--- add up tocos6. The imaginary parf — 16+ - adds up tesin6.

Thereforee’® equalscosd +i sinf. It is fantastic that the most important periodic
functions in all of mathematics come together in this graceful way.

We learn from Euler (pronouncailer) thate?™ = 1. The cosine o2 is 1, the
sine is zero. If you substitute = 2§ into the infinite series, somehow everything
cancels except the—this is almost a miracle. From the viewpoint of angles; 2
carries us around a full circle and backeftF’ = 1.

Multiplying Euler’s formula byr, we have a third way to write a complex number;

Every complex numberis x+iy=r cosf+ir sinf =re'’. (7

EXAMPLE 1 2¢'% times3e’? equalste?’?. Forf = 7/2, 2i times3i is —6.
EXAMPLE 2 Findw? andw? ard w® andw?® whenw = ¢/ ™/4.
Solution  ¢™/*is1/+/2+i/~/2. Note that? = 1 + 1 = 1. Now watch angles:

25 8 .8 .8

2 _pim/2 4 T—_1 w¥=1 w¥=wdwiwivw=w.

w I w =e

Figure 9.9 shows the eight powerswf They are the eighth roots of.

Fig. 9.9 The eight powers ofv and the cube roots of.

EXAMPLE 3 (x244=0) The square roots of-4 are2i and —2i. Instead of
(i)(i) = —1we have(2i)(2i) = —4. If Euler insists, we writ€i and—2i as2e!™/2
and2ei37/2,

427



428

9 Polar Coordinates and Complex Numbers

EXAMPLE 4 (The cube roots ofl) In rectangular coordinates we have to
solve (x +iy)3 =1, which is not easy. In polar coordinates this same equation is
r3¢3% = 1. Immediatelyr = 1. The angled can be2r/3 or 47/3 or 67 /3—the
cube roots in the figure are evenly spaced

(eZJTi/3)3 — eZni =1 (e4ﬂi/3)3 :e47'[i =1 (e6ni/3)3 — e67ri =1.

You see why the angl8x/3 gives nothing new. It completes a full circle back to
27/3.

Thenthroots of1 are e27i/7 ¢4i/n 1. There aren of them.
They lie at anglex/n, 47/n, ..., 27t around the unit circle.

SOLUTION OF DIFFERENTIAL EQUATIONS

The algebra of complex numbers is now applied to the calculasraplex functions.
The complex number ig, the complex function ig“’. It will solve the equations
y" = —4y andy” = y, by connecting them to?> = —4 andc? = 1. Chapter 16 does
the same for all linear differential equations with constant coefficients—this is an
optional preview.

Please memorize the one key id8atbstitutey = ¢’ into the differential equa-
tion and solve forc. Each derivative brings a factor soy’ = ce“’ andy” = ¢2e¢*:

d?y/dt? = —4yleads toc?e® = —4e°", which givesc? = —4. (8)

Forthis differential equation; must be a square root ef4. We know the candidates
(¢ =2i andc = —2i). The equation has two “pure exponential solutioa&"

y=e*" and y=e. 9)

Their combinationsy = Ae?* 4+ Be 2! give all solutions. In Chapter 16 we will
choose the two numbersand B to match two initial conditions at= 0.

The solutiony = 2/’ = cos2t +i sin2t is complex. The differential equation is
real. For realy’s, take the real and imaginary parts of the complex solutions

These are the “pure oscillatory solutions.” When=¢2/* travels around the
unit circle, its imaginary parsin2¢ moves up and down. (It is like the ball and its
shadow in Section 1.4, but twice as fast becausgrof The real parcos2¢ goes
backward and forward. By the chain rulbe second derivative abs2r is —4 cos2t.
Thusd?y/dt* = —4y and we have real solutions.

EXAMPLE 5  Find three solutions and then thnel solutions tad 3y /dt3 = y.

Key step Substitutey = e?. The result is-3e¢! = e¢’. Thusc® = 1 andc is a cube
rootof 1. The candidate = 1 givesy = ¢’ (our first solution). The nextis complex:
, 1 3. .

¢ = e27i/3 = -3 —l—f% yields y = el — e—t/2€t\/§t/2. (11)
Thereal part of the exponent leads to the absolute valyé = e /2. It decreases

ast gets larger, sy moves toward zero. At the same time, the factof3'/2 goes
around the unit circle. Therefosespirals in to zero (Figure 9.10). So does its complex
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conjugate, which is the third exponential. Changing —i in (11) gives the third
cube root ofl and the third solutiom—*/2¢~1V3t/2,
The first real solution iy = ¢’. The others are the two parts of the spiral:

yrea| = e_t/z COS\/§I/2 al’ld yimaginary= e_t/z Sln \/§I/2 (12)

Thatisr cosf andr sin 6. Itis the ultimate use (until Chapter 16) of polar coordinates
and complex numbers. We might have discoveres2¢ andsin2z without help, for
y" = —4y. | don’t think these solutions tp” = y would have been found.

EXAMPLE 6 Find four solutions taf*y /dt* = y by substitutingy = e<’.

Four derivatives lead to* = 1. Thereforer isi or —1 or —i or 1. The solutions are
y=c¢'l, e e ' ande’. If we want real solutions;’’ ande ! combine intocost

andsint. In all casey”” = y.

Feeesec”
N3 2

Fig. 9.10  Solutions move in the complex plang” = —4y andy” =y andy”” = y.

9.4 EXERCISES

Read-through questions

nary part _ b . Its absolute value i =_ ¢ and its com-

plex conjugate is _d . Its position in the complex plane is at
(__e ). lts polar formisrcos6 +ir sinf=__f 9 Its square 4 The sixth roots ofl (six of them)
is g 4+i__h .lts nthpoweris i ei"?.

The complex number3+4i has real part__a and imagi- 2 14 and its squar€l +)? and its reciprocal /(1 +1)

w

2¢/7/6 and its reciprocak e~/ and their squares

al

cos3n/4+isin3x/4 and its square and cube

Thesumofl +iandl—iis__j .Theproductol +iand1—i g 4,i7/3 and its square roots
is__k . In polar form this isy/2¢'7/4 times__1 . The quotient

(1+i)/(1—i) equals the imaginary number m . The number _’ For complexﬂnumbers =x+iy :rel:e and their conjugates
(1+i)® equals_n . An eighth root ofl isw— o Theother c=x—iy=re 'Y find all possible locations in the complex plane

—— of (De+é (@Qc—¢ (3)cé (d)c/e.

eighthrootsare p .
8 Find x and y for the complex numbersc+iy at angles
To solve d®y/di® =y, look for a solution of the form g —45° 90°, 135° on the unit circle. Verify directly that the square
y=__0 . Substituting and canceling®’ leads to the equationof the first is the second and the cube of the first is the third.

r . There are__s choices for ¢, one of which is ) o )
(—1+1i)/+/2. With that choicele’| =__t . The real solutions are 9 If ¢c=2+i and d =4+3i find cd andc/d. Verify that the

Ree’= u andImet = v absolute value|cd| equals|c| times |d|, and |c/d| equals|c|
divided by|d|.
In 1—6 plot each number in the complex plane 10 Find a solutionx to e/* = and a solution tee’* = 1/e. Then

find a second solution.
1 24i and its complex conjugate —i and their sum and

product
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Find the sum and product of the numbersin 11-14.
11 €9 ande—i9, alsoe2™i/3 ande4™i/3

12 €9 andei?, alsoe™!/4 ande—7i/4

13 The sixth roots ofl (add and multiply all six)

14 The two roots o2 —4c+5=0

15

16 Multiply out (cosf+isin8)3 =3¢ to find the real part
cos36 and the imaginary part s¥ in terms of co® and sing.

If ¢ = re'? is not zero, what are* andc—! andc—4 ?

17 Plot the three cube roots of a typical numbet?. Show why
they add to zero. One cube rooti¥3¢9/3.
18 Prove that the four fourth roots o#'® multiply to give —re’?.

In 19—22, find all solutions of the form y = e¢*.

19 y"+y=0 20 y"+y=0
21 y"—y'=0 22 y"4+6y'+5y=0
Construct two real solutions from the real and imaginary parts
of e¢? (first find c):

23 y"+49y =0 24 y"—2y'+2y=0

Sketch the path of y =e¢? ast increases from zero, and mark
y=e":
25 ¢c=1—i

26 c=—1+i 27 c=mi/4

9 Polar Coordinates and Complex Numbers

28 What is the solution ofdy/dt =iy starting fromyo=17
For this solution, matching real parts and imaginary parts of
dy/dt =iy gives and

29 In Figure 9.10b, at what timredoes the spiral cross the real axis
at the far left? What doeg equal at that time ?

30 Show that co® = %(e"a +e~19) and find a similar formula for
sinég.

31 True or false with an example to show why:

(@) Ifcy+cy isreal, thee's are complex conjugates.

(b) If |c1| =2 and|c2| =4 thenc; ¢, has absolute valug

(¢) If|c1]=1and|cz| =1then|c +c2|is (at least) (at most
2) (equal to2).

(d) If e approaches zero as— o, then ¢ is negative) (the
real part ofc is negative)|c| is less tharl).

32 The polar form ofre!? times Re'? is . The rectangular

formis . Circle the terms that giveR cos(6 + ¢).
33 The complex number/(reie) has polar form and rect-
angular form and square roots

34 Show that cosx = coshx and sinix =i sinhx. What is the co-
sine ofi ?
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