
CHAPTER 9

Polar Coordinates and
Complex Numbers

9.1 Polar Coordinates

Up to now, points have been located by theirx and y coordinates. But if you were
a flight controller, and a plane appeared on the screen, you would not give its
position that way. Instead ofx andy, you would read off thedirection of the plane
and itsdistance. The direction is given by an angle�: The distance is given by a
positive numberr: Those are thepolar coordinatesof the point, wherex andy are
therectangular coordinates.

The angle� is measured from the horizontal. Suppose the distance is2 and
the direction is30� or �=6 (degrees preferred by flight controllers, radians by
mathematicians). A pilot looking along thex axis would give the plane’s direction
as “11 o’clock.” This totally destroys our system of units, by measuring direction in
hours. But the angle and the distance locate the plane.

How far to a landing strip atr D 1 and � D��=2 ? For that question polar
coordinates are not good. They are perfect for distance from the origin (which equals
r), but for most other distances I would switch tox andy: It is extremely simple
to determinex andy from r and� , and we will do it constantly. The most used
formulas in this chapter come from Figure 9.1—where the right triangle has angle�
and hypotenuser: The sides of that triangle arex andy:

xD r cos� and yD r sin�: (1)

Thepoint atr D 2;� D�=6 hasxD 2 cos.�=6/ andyD 2sin.�=6/: The cosine of
�=6 is

?
3=2 and the sine is1

2
: So xD

?
3 and yD 1: Polar coordinates convert

easily toxy coordinates—now we go the other way.
Alwaysx2 Cy2 D r2: In this example.

?
3/2 C .1/2 D .2/2: Pythagoras produces

r from x andy: The direction� is also available, but the formula is not so beautiful:

r D
a
x2 Cy2 and tan� D

y

x
and .almost/ � D tan�1 y

x
: (2)

Ourpoint hasy=xD 1=
?
3:One angle with this tangent is� D tan�1.1=

?
3/D�=6:

412



9.1 Polar Coordinates 413

Fig. 9.1 Polar coordinatesr;� and rectangular coordinatesxD r cos�;yD r sin�:

EXAMPLE 1 Point B in Figure 9.1c is at anegative angle� D��=4: The x
coordinater cos.��=4/ is the same asr cos�=4 (the cosine is even). But they
coordinater sin.��=4/ is negative. Computingr and� from xD 1 andyD 1, the
distance isr D

?
1C1 and tan� is�1=1:

Warning To any angle� we can add or subtract2�—which goes a full360� circle
and keeps the same direction. Thus��=4 or �45� is the same angle as7�=4 or
315�: So is15�=4 or 675�:

If we add or subtract180�, the tangent doesn’t change. The point.1;�1/ is on the�45� line atr D
?
2: The point.�1;1/ is on the135� line also withr D

?
2: Both

havetan� D�1:We had to write “almost” in equation(2), because a point has many
� ’s and two points have the samer andtan�:

Even worse, we could say thatB D .1;�1/ is on the135� line but at anegative
distancer D�?2: A negativer carries the pointbackwardalong the135� line,
which is forward toB: In giving the position ofB, I would always keepr ¡ 0: But
in drawing the graph of a polar equation,r   0 is allowed. We move now to those
graphs.

THE CIRCLE r D cos�

The basis for Chapters 1–8 wasyD f .x/: The key to this chapter isr DF.�/: That
is a relation between the polar coordinates, and the points satisfying an equation like
r D cos� produce apolar graph.

It is not obvious whyr D cos� gives a circle. The equationsr D cos2� and
r D cos2� and r D 1Ccos� produce entirely different graphs—not circles. The
direct approach is to take� D 0�;30�;60�; : : : and go out the distancer D cos� on
each ray. The points are marked in Figure 9.2a, and connected into a curve. It seems
to be a circle of radius1

2
, with its center at the point.1

2
;0/: We have to be able to

show mathematically thatr D cos� represents ashifted circle.

One point must be mentioned.The angles from0 to� give the whole circle. The
numberr D cos� becomes negative after�=2, and we go backwards along each ray.

Fig. 9.2 The circler D cos� and the switch tox andy: The circler D sin�:
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At � D� (to the left of the origin) the cosine is�1: Going backwards brings us
to the same point as� D 0 andr D C1—which completes the circle.

When� continues from� to 2� we go around again. The polar equation gives the
circle twice. (Or more times, when� continues past2�:) If you don’t like negative
r ’s and multiple circles, restrict� to the range from��=2 to �=2: We still have to
see why the graph ofr D cos� is a circle.

Method5 Multiply by r and convert to rectangular coordinatesx andy:

r D cos� ñ r2 D r cos� ñ x2 Cy2 D x: (3)

This is a circle because ofx2 Cy2: From rewriting as.x� 1
2
/2 Cy2 D .1

2
/2 we

recognize its center and radius. Center atxD 1
2

and yD 0; radius1
2
: Done.

Method6 Write x andy separatelyas functions of�: Then� is a “parameter”:

xD r cos� D cos2� and yD r sin� D sin� cos�: (4)

These are notpolar equations butparametricequations. The parameter� is the
angle, but it could be the time—the curve would be the same. Chapter 12 studies
parametric equations in detail—here we stay with the circle.

To find the circle, squarex andy and add. This producesx2 Cy2 D x in Problem
26: But here we do something new:Start with the circle and find equation(4). In
case you don’t reach Chapter 12, the idea is this. Add the vectorsOC to the center
andCP out the radius:

The point P in Figure9.2has.x;y/DOCCCP D .1
2
;0/C .1

2
cos t; 1

2
sin t/:

The parametert is the angle at the center of the circle. The equations are
xD 1

2
C 1

2
cos t andyD 1

2
sin t: A trigonometric person sees a double angle and sets

t D 2�: The result is equation(4) for the circle:

xD 1
2

C 1
2

cos2� D cos2� and yD 1
2

sin 2� D sin� cos�: (5)

This step rediscovers a basic theorem of geometry:The anglet at the center is twice
the angle� at the circumference. End of quick introduction to parameters.

A second circle isr D sin� , drawn in Figure 9.2c. A third circle isr D cos�C
sin� , not drawn. Problem27 asks you to find itsxy equation and its radius. All
calculations go back toxD r cos� and yD r sin�—the basic facts of polar
coordinates! The last exercise shows a parametric equation with beautiful graphs,
because it may be possible to draw them now. Then the next section concentrates on
r DF.�/—and goes far beyond circles.

9.1 EXERCISES

Read-through questions

Polar coordinatesr and� correspond toxD a andyD b .
The points withr ¡ 0 and� D� are located c . The points with
r D 1 and 0¤ � ¤� are located d . Reversing the sign of�
moves the point.x;y/ to e .

Givenx andy, the polar distance isr D f . The tangent of�
is g . The point.6;8/ hasr D h and� D i . Another
point with the same� is j . Another point with the samer is

k . Another point with the samer and tan� is l .

The polar equationr D cos� produces a shifted m . The
top point is at� D n , which givesr D o . When � goes
from 0 to 2�, we go p times around the graph. Rewriting as
r2 D r cos� leads to thexy equation q . Substitutingr D cos�
into xD r cos� yields xD r and similarlyyD s . In this
form x andy are functions of t �:
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Find the polar coordinatesr ¥ 0 and 0¤ �   2� of these points.

1 .x;y/D .0;1/ 2 .x;y/D .�4;0/
3 .x;y/D .

?
2;
?
2/ 4 .x;y/D .�1;?3/

5 .x;y/D .�1;�1/ 6 .x;y/D .3;4/

Find rectangular coordinates.x;y/ from polar coordinates.

7 .r;�/D .2;�=2/ 8 .r;�/D .1;3�=2/

9 .r;�/D .
?
20;�=4/ 10 .r;�/D .3�;3�/

11 .r;�/D .2;��=6/ 12 .r;�/D .2;5�=6/

13 What is the distance from.x;y/D .
?
3;1/ to .1;�?3/ ?

14 How far is the pointr D 3;� D�=2 from r D 4;� D� ?

15 How far is .x;y/D .r cos�;r sin�/ from .X;Y /D .R cos�;
R sin�/ ? Simplify .x�X/2 C.y�Y /2 by using cos.���/D

cos� cos�Csin� sin�:

16 Find a second set of polar coordinates (a differentr or �) for the
points

.r;�/D .�1;�=2/; .�1;3�=4/; .1;��=2/; .0;0/:

17 Using polar coordinates describe (a) the half-planex¡ 0;
(b) the half-planey¤ 0; (c) the ring withx2 Cy2 between4 and
5; (d) the wedgex¥|y|:
18 True or false, with a reason or an example:

(a) Changing to�r and�� produces the same point.

(b) Each point has only oner and � , when r   0 is not
allowed.

(c) The graph ofr D 1=sin� is a straight line.

19 Fromx and� find y andr:

20 Which other point has the samer and tan� asxD
?
3; yD 1 in

Figure 9.1b ?

21 Convert from rectangular to polar equations:

(a) yD x (b) xCyD 1 (c) x2 Cy2 D xCy

22 Show that the triangle with vertices at.0;0/; .r1;�1/, and
.r2;�2/ has areaAD 1

2 r1r2 sin.�2��1/: Find the base and height
assuming0¤ �1¤ �2¤�:

Problems 23–28 are about polar equations that give circles.

23 Convertr D sin � into anxy equation. Multiply first byr:

24 Graph r D sin � at � D 0�;30�;60�; : : : ;360�: These thirteen
values of� give different points on the graph. What range of
� ’s goes once around the circle ?

25 Substituter D sin� into xD r cos� andyD r sin� to find x
andy in terms of the parameter�: Then computex2 Cy2 to reach
thexy equation.

26 From the parametric equationsxD cos2� and yD sin� cos�
in (4), recover thexy equation. Square, add, eliminate�:

27 (a) Multiply r D cos�Csin � by r to convert into anxy
equation. (b) Rewrite the equation as.x� 1

2 /
2 C.y� 1

2 /
2 DR2 to

find the radiusR: (c) Draw the graph.

28 Find the radius ofr D acos�Cb sin �: (Multiply by r:)

29 ConvertxCyD 1 into an r� equation and solve forr: Then
substitute thisr into xD r cos� andyD r sin� to find parametric
equations for the line.

30 The equations xD cos2� and yD sin2 � also lead to
xCyD 1—but they are different from the answer to Problem29:
Explanation:� is no longer the polar angle and we should have
written t: Find a point xD cos2�;yD sin2 � that is not at the
angle�:

31 Convertr D cos2� into anxy equation (of sixth degree!)

32 If you have a graphics package for parametric curves, graph
some hypocycloids. The equations arexD .1�b/costCb cos.1�
b/t=b;yD .1�b/sin t�b sin.1�b/t=b: The figure showsbD 3

10
and part ofbD :31831:
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9.2 Polar Equations and Graphs

The most important equation in polar coordinates, by far, isr D 1: The angle� does
not even appear. The equation looks too easy, but that is the point! The graph is a circle
around the origin (the unit circle). Compare with the linexD 1: More important,
compare the simplicity ofr D 1 with the complexity ofyD�?1�x2: Circles are
so common in applications that they created the need for polar coordinates.

This section studies polar curvesr DF.�/:The cardioid is a sentimental favorite—
maybe parabolas are more practical. The cardioid isr D 1Ccos�; the parabola is
r D 1=.1Ccos�/: Section 12.2 adds cycloids and astroids. A graphics package can
draw them and so can we.

Together with the circlesr D constantgo the straight lines� D constant. The
equation� D�=4 is a ray out from the origin, at that fixed angle. If we allowr   0;
as we do in drawing graphs, the one-directional ray changes to a full line. Important:
The circles are perpendicular to the rays. We have “orthogonal coordinates”—
more interesting than thex�y grid of perpendicular lines. In principlex could be
mixed with� (non-orthogonal), but in practice that never happens.

Other curves are attractive in polar coordinates—we look first at five examples.
Sometimes we switch back toxD r cos� andyD r sin�; to recognize the graph.

EXAMPLE 1 The graph ofr D 1=cos� is thestraight linexD 1 (becauser cos� D 1).

EXAMPLE 2 The graph ofr D cos2� is thefour-petal flowerin Figure 9.3.

The points at� D 30� and�30� and150� and�150� are marked on the flower.
They all haver D cos2� D 1

2
: There are three important symmetries—across the

x axis, across they axis, and through the origin. This four-petal curve has them
all. So does the vertical flowerr D sin2�—but surprisingly, the tests it passes are
different.

(Across thex axis: y to�y) There are two ways to cross. First, change� to��:
The equationr D cos2� stays the same. Second, change� to ��� and alsor to�r: The equationr D sin2� stays the same. Both flowers havex axis symmetry.

(Across they axis: x to�x) There are two ways to cross. First, change� to���:
The equationr D cos2� stays the same. Second, change� to�� andr to�r: Now
r D sin2� stays the same (the sine is odd). Both curves havey axis symmetry.

(Through the origin) Now we changer to�r or � to �C�: The flower equations
pass the second test only:cos2.�C�/D cos2� andsin2.�C�/D sin2�: Every
equationr2 DF.�/ passes the first test, since.�r/2 D r2.

The circler D cos� hasx axis symmetry, but noty or r: The spiralr D �3 has
y axis symmetry, because�r D .��/3 is the same equation.

Question What happens if you changer to�r and also change� to �C� ?
Answer Nothing—because.r;�/ and.�r;�C�/ are always the same point.

EXAMPLE 3 The graph ofr D � is a spiral of Archimedes—or maybe two spi-
rals.

The spiral adds new points as� increases past2�: Our other examples are
“periodic”—�D 2� gives the same point as� D 0: A periodic curve repeats itself.
The spiral moves out by2� each time it comes around. If we allow negative angles
and negativer D �; a second spiral appears.
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Fig. 9.3 The four-petal flowerr D cos2� and the spiralr D � (r ¡ 0 in red).

EXAMPLE 4 The graph ofr D 1Ccos� is acardioid. It is drawn in Figure 9.4c.

The cardioid has no simplexy equation. Still the curve is very attractive. It has a
cusp at the origin and it is heart-shaped (hence its name). To draw it, plotr D 1C
cos� at30� intervals and connect the points. For this curver is never negative, since
cos� never goes below�1:

It is a curious fact that the electrical vector in your heart almost traces out a
cardioid. See Section 11.1 about electrocardiograms. If it is a perfect cardioid you
are in a little trouble.

Fig. 9.4 Limaçonsr D 1Cb cos�; including a cardioid and Mars seen from Earth.

EXAMPLE 5 The graph ofr D 1Cb cos� is alimaçon (a cardioid whenbD 1).

Limaçon (softc) is a French word for snail—not so well known as escargot but just
as inedible. (I am only referring to the shell. Excusez-moi!) Figure 9.4 shows how a
dimple appears asb increases. Then an inner loop appears beyondbD 1 (the cardioid
at bD 1 is giving birth to a loop). For largeb the curve looks more like two circles.
The limiting case is a double circle, when the inner loop is the same as the outer loop.
Remember thatr D cos� goes around the circle twice.

We could magnify the limaçon by a factorc; changing tor D c.1Cb cos�/: We
could rotate180� to r D 1�b cos�: But the real interest is whether these figures
arise in applications, and Donald Saari showed me a nice example.
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Mars seen from EarthTheEarth goes around the Sun and so does Mars. Roughly
speaking Mars is11

2
times as far out, and completes its orbit in two Earth years.

We take the orbits as circles:r D 2 for Earth andr D 3 for Mars. Those equations
tell wherebut notwhen. With time as a parameter, the coordinates of Earth and Mars
are given at every instantt :

xE D 2 cos2�t;yE D 2 sin2�t and xM D 3 cos�t;yM D 3 sin�t:

At t D 1 year, the Earth completes a circle (angleD 2�) and Mars is halfway.
Now the key step. Subtract to find the position of Marsrelative to Earth:

xM�E D 3 cos�t�2 cos2�t and yM�E D 3 sin�t�2 sin2�t:

Replacingcos2�t by 2cos2�t�1 andsin2�t by 2 sin�t cos�t; this is

xM�E D .3�4 cos�t/cos�tC2 and yM�E D .3�4 cos�t/sin�t:

Seen from the Earth, Mars does a loop in the sky! There are twot ’s for which
3�4cos�t D 0 (or cos�t D 3

4
). At both times, Mars is two units from Earth

(xM�E D 2 and yM�E D 0). When we move the origin to that point, the2 is
subtracted away—theM�Ecoordinates becomexD r cos�t andyD r sin�t with
r D 3�4cos�t: That is a limaçon with a loop, like Figure 9.4d.

Note added in proofI didn’t realize that a3-to-2 ratio is also responsible for heating
up two spots on opposite sides of Mercury. From the newspaper of June13; 1990:

“Astronomers today reported the first observations showing that Mercury
has two extremely hot spots. That is because Mercury, the planet closest to the
Sun, turns on its axis once every59:6 days, which is a day on Mercury. It goes
around the sun every88 days, a Mercurian year. With this3-to-2 ratio between
spin and revolution,the Sun appears to stop in the sky and move backward,
describing a loopover each of the hot spots.”

CONIC SECTIONS IN POLAR COORDINATES

The exercises include other polar curves, like lemniscates and 200-petal flowers. But
get serious. The most important curves are theellipseandparabolaandhyperbola.
In Section 3.5 their equations involved1;x;y;x2;xy;y2: With one focus at the ori-
gin, their polar equations are even better.

9A The graph ofr DA=.1Cecos�/ is a conic section with “eccentricity”e:

circle if eD 0 ellipse if0  e  1 parabola ifeD 1 hyperbola ife¡ 1:
EXAMPLE 6 .eD 1/ The graph ofr D 1=.1Ccos�/ is a parabola. This equation
is rCr cos� D 1 or r D 1�x: Squaring both sides givesx2 Cy2 D 1�2xCx2:
Cancelingx2 leavesy2 D 1�2x; the parabola in Figure 9.5b.

The amplifying factorA blows up all curves, with no change in shape.

EXAMPLE 7 .eD 2/ The same steps lead fromr.1C2cos�/D 1 to r D 1�2x:
Squaring givesx2 Cy2 D 1�4xC4x2 and thex2 terms do not cancel. Instead we
havey2�3x2 D 1�4x: This is the hyperbola in Figure 9.5c, with a focus at.0;0/:

The hyperbolay2�3x2 D 1 (without the�4x) has itscenterat .0;0/.
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EXAMPLE 8 .eD 1
2
/ The same steps lead fromr.1C 1

2
cos�/D 1 to r D 1� 1

2
x:

Squaring gives the ellipsex2 Cy2 D 1�xC 1
4
x2: Polar equations look at conics in

a new way, which happens to match the sun and planets perfectly.The sun at.0;0/
is not the center of the system, but a focus.

Finally eD 0 gives the circler D 1: Center of circleD both fociD .0;0/.

Fig. 9.5 r D 1=.1Cecos�) is an ellipse foreD 1
2 ; a parabola foreD 1; a hyperbola for

eD 2.

The directrix The figure shows the lined (the “directrix”) for each curve. All points
P on the curve satisfyr D |PF |D e|Pd |: The distance to the focus ise times the
distance to the directrix. (e is still the eccentricity, nothing to do with exponentials.)
A geometer would start from this propertyr D e|Pd | and construct the curve. We
derive the property from the equation:

r D
A

1Cecos�
ñ rCexDA ñ r D e

�

A

e
�x� : (1)

The directrix is the line atxDA=e: That last equation is exactly|PF |D e|Pd |.
Notice how two numbers determine these curves. Here the numbers areA ande: In

Section 3.5 they werea andb: (The ellipse wasx2=a2 Cy2=b2 D 1:) UsingA and
e we go smoothly from ellipses through parabolas (ateD 1) and on to hyperbolas.
With three more numbers we can move the focus to any point and rotate the curve
through any angle.Conics are determined by five numbers.

9.2 EXERCISES

Read-through questions

The circle of radius3 around the origin has polar equation
a . The 45� line has polar equation b . Those graphs

meet at an angle of c . Multiplying r D 4 cos� by r yields
the xy equation d . Its graph is a e with center at

f . The graph ofr D 4=cos� is the line xD g . The
equation r2 D cos2� is not changed when�Ñ�� (symmetric
across h ) and when�Ñ�C� (or rÑ i ). The graph of
r D 1Ccos� is a j .

The graph of r DA=( k ) is a conic section with one
focus at l . It is an ellipse if m and a hyperbola
if n . The equationr D 1=.1Ccos�/ leads to rCxD 1

which gives a o . Then r D distance from origin equals
1�xD distance from p . The equationsr D 3.1�x/ andr D

1
3 .1�x/ represents a q and an r . Including a shift
and rotation, conics are determined bys numbers.

Convert to xy coordinates to draw and identify these curves.

1 r sin� D 1

3 r D 2 cos�

5 r D 1=.2Ccos �/

2 r.cos��sin�/D 2

4 r D�2 sin�

6 r D 1=.1C2 cos�/

In 7–14 sketch the curve and check forx;y; and r symmetry.

7 r2 D 4 cos2�

8 r2 D 4 sin 2�

9 r D cos3�

(lemniscate)

(lemniscate)

(three petals)
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10 r2 D 10C6 cos4�

11 r D e�

12 r D 1=�

13 r D tan�

14 r D 1�2sin3�

(logarithmic spiral)

(hyperbolic spiral)

(rose inside rose)

15 Convert r D 6 sin�C8 cos� to the xy equation of a circle
(what radius, what center ? ).�16 Squaring and adding in the Mars-Earth equation gives
x2

M�ECy2
M�E D 13�12 cos�t: The graph ofr2 D 13�12 cos� is

not at all like Figure 9.4d. What went wrong ?

In 17–23 find the points where the two curves meet.

17 r D 2cos� and r D 1Ccos�
Warning: You might set2cos� D 1Ccos� to find cos� D 1: But
the graphs have another meeting point—they reach it at different
� ’s. Draw graphs to find all meeting points.

18 r2 D sin2� and r2 D cos2�

19 r D 1Ccos� and r D 1�sin�

20 r D 1Ccos� and r D 1�cos�

21 r D 2 andr D 4 sin 2�

22 r2 D 4 cos� and r D 1�cos�

23 r sin� D 1 and r cos.���=4/D
?
2 (straight lines)

24 When is there a dimple inr D 1Cb cos� ? From xD

.1Cb cos�/cos� find dx=d� andd2x=d�2 at � D�: When that
second derivative is negative the limaçon has a dimple.

25 How many petals forr D cos5� ? For r D cos� there was
one, forr D cos2� there were four.

26 Explain why r D cos100 � has 200 petals butr D cos101 �
only has 101: The other 101 petals are : What about
r D cos 1

2� ?

27 Find anxy equation for the cardioidr D 1Ccos� .

28 (a) The flowerr D cos2� is symmetric across thex and y
axes. Does that make it symmetric about the origin ? (Do
two symmetries imply the third, so�r D cos2� produces
the same curve ? )
(b) How can r D 1, � D�=2 lie on the curve but fail to
satisfy the equation ?

29 Find anxy equation for the flowerr D cos2� .

30 Find equations for curves with these properties:

(a) Symmetric about the origin but not thex axis

(b) Symmetric across the45� line but not symmetric inx
or y or r

(c) Symmetric in x and y and r (like the flower) but
changed whenxØ y (not symmetric across the45� line).

Problems 31–37 are about conic sections—especially ellipses.

31 Find the top point of the ellipse in Figure 9.5a, by maximizing
yD r sin� D sin �=.1C 1

2 cos�/.

32 (a) Show that all conicsr D 1=.1Cecos�/ go through
xD 0;yD 1.

(b) Find the second focus of the ellipse and hyperbola. For the
parabola.eD 1/ where is the second focus ?

33 The pointQ in Figure 9.5c hasyD 1: By symmetry findx
and thenr (negative!). Check thatx2 Cy2 D r2 and|QF |D 2|Qd |.
34 The equationsr DA=.1Cecos�/ and r D 1=.C CD cos�/
are the same ifC D and DD : For the mirror
image across they axis replace� by : This givesr D 1=.C �
D cos�/ as in Figure 12.10 for a planet around the sun.

35 The ellipser DA=.1Cecos�/ has length2a on thex axis. Add
r at � D 0 to r at � D� to prove thataDA=.1�e2/: The Earth’s
orbit hasaD 92;600;000 milesD one astronomical unit (AU).

36 The maximum heightb occurs whenyD r sin� DAsin�=
.1Cecos�/ hasdy=d� D 0: Show thatbD ymaxDA=

a
1�e2.

37 Combine a and b from Problems 35�36 to find cDa
a2�b2 DAe=.1�e2/: Then the eccentricity e is c=a.

Halley’s comet is an ellipse withaD 18:1 AU and bD 4:6 AU
soeD .

Comets have large eccentricity; planets have much smallere W

Mercury :21; Venus:01; Earth :02;Mars :09; Jupiter :05; Saturn
:05; Uranus :05; Neptune:01; Pluto :25; Kohoutek :9999.

38 If you have a computer with software to do polar graphs,
start with these:

1. Flowersr DACcosn� for nD 1
2 ;3;7;8; AD 0;1;2

2. Petals r D .cosm�C4 cosn�/=cos�; .m;n/D .5;3/, .3;5/,
.9;1/, .2;3/

3. Logarithmic spiralr D e�=2�

4. Nephroidr D 1C2 sin 1
2� from the bottom of a teacup

5. Dr. Fay’s butterflyr D ecos� �2 cos4�Csin5.�=12/

Then create and name your own curve.
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9.3 Slope, Length, and Area for Polar Curves

The previous sections introduced polar coordinates and polar equations and polar
graphs. There was no calculus! We now tackle the problems ofarea(integral calculus)
andslope(differential calculus), when the equation isr DF.�/. The use ofF instead
of f is a reminder that the slope isnotdF=d� and the area isnot

r
F.�/d� .

Start with area. The region is always divided into small pieces—what is their
shape ? Look between the angles� and�C�� in Figure 9.6a. Inside the curve is a
narrow wedge—almost a triangle, with�� as its small angle. If the radius is constant

Fig. 9.6 Area of a wedge and a circle and an intersection of circles.

thewedge is a sector of a circle. It is a piece of pie cut at the extremely narrow angle
�� . The area of that piece is a fraction (the angle�� divided by the whole angle2�)
of the whole area�r2 of the circle:

area of wedgeD
��

2�
�r2 D

1

2
r2�� D

1

2
ŒF.�/�2��: (1)

We admit that the exact shape is not circular. The true radiusF.�/ varies with�—
but in a narrow angle that variation is small. When we add up the wedges and let
�� approach zero, the area becomes an integral.

9B The area inside the polar curverDF.�/ is the limit of
P

1
2
r2�� D

P

1
2
F 2�� :

areaD

»
1

2
r2 d� D

»
1

2
ŒF.�/�2 d�: (2)

EXAMPLE 1 Find the area inside the circler D cos� of radius 1
2

(Figure 9.6).

areaD

» 2�

0

1

2
cos2 � d� D

cos� sin�C�

4

�2�

0

D
2�

4
:

That is wrong! The correct area of a circle of radius1
2

is�=4. The mistake is that
we wenttwicearound the circle as� increased to2� . Integrating from� to � gives
�=4.

EXAMPLE 2 Find the area between the circlesr D cos� and r D 1
2
.

The circles cross at the points wherer D cos� agrees withr D 1
2
. Figure 9.6 shows

these points at�60�, or� D��=3. Those are the limits of integration, wherecos� D
1
2
.
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The integral adds up the difference between two wedges,one out to r D cos� and
a smaller one withr D 1

2
:

areaD

» �=3��=3

1

2

"

.cos�/2��1
2

�2
#

d�: (3)

Note that chopped wedges have area1
2
.F 2

1 �F 2
2 /�� and not 1

2
.F1�F2/

2�� .

EXAMPLE 3 Find the area between the cardioidr D 1Ccos� and the circler D 1.

areaD

» �=2��=2

1

2

�

.1Ccos�/2�12
�

d�

�

limits � D��
2

where1Ccos� D 1

�

SLOPE OF A POLAR CURVE

Where is the highest point on the cardioidr D 1Ccos� ? What is the slope at
� D�=4 ? Those are not the most important questions in calculus, but still we should
know how to answer them. I will describe the method quickly, by switching to
rectangular coordinates:

xD r cos� D .1Ccos�/cos� and yD r sin� D .1Ccos�/sin�:

For the highest point, maximizey by setting its derivative to zero:

dy=d� D .1Ccos�/.cos�/C .�sin�/.sin�/D 0: (3)

Thuscos�Ccos2� D 0, which happens at60�. The height isyD .1C 1
2
/.
?
3=2/.

For the slope, use the chain ruledy=d� D .dy=dx/.dx=d�/:

dy

dx
D
dy=d�

dx=d�
D
.1Ccos�/.cos�/C .�sin�/.sin�/

.1Ccos�/.�sin�/C .�sin�/cos�
: (4)

Equations(3) and (4) avoid the awkward (or impossible) step of eliminating� .
Instead of trying to findy as a function ofx, we keepx and y as functions of
� . At � D�=4, the ratio in equation(4) yieldsdy=dxD�1=.1C

?
2/.

Problem18 finds a general formula for the slope, usingdy=dxD.dy=d�/=.dx=d�/.
Problem20 finds a more elegant formula, by looking at the question differently.

LENGTH OF A POLAR CURVE

The length integral always starts withdsD
a
.dx/2 C .dy/2. A polar curve has

xD r cos� DF.�/cos� andyDF.�/sin� . Now take derivatives by the product
rule:

dxD .F 1.�/cos��F.�/sin�/d� and dyD .F 1.�/sin�CF.�/cos�/d�:
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Squaring and adding (notecos2 �Csin2 � ) gives the element of lengthds:

dsD

b
ŒF 1.�/�2 C ŒF .�/�2 d�: (5)

Thefigure shows.ds/2 D .dr/2 C .rd�/2, the same formula with different letters.
The total arc length is

r
ds.

The area of a surface of revolution is
r
2�y ds (around thex axis) or

r
2�x ds

(around they axis).Write x;y, andds in terms of� andd� . Then integrate.

EXAMPLE 4 The circler D cos� hasdsD
?
1 d� . So its length is� (not2� !!—

don’t go around twice). Revolved around they axis the circle yields a doughnut with
no hole. SincexD r cos� D cos2 � , the surface area of the doughnut is

Fig. 9.7»
2�x dsD

» �

0

2� cos2 � d� D�2:

EXAMPLE 5 The length ofr D 1Ccos� is, by symmetry, double the integral from
0 to� :

length of cardioidD 2

» �

0

a
.�sin�/2 C .1Ccos�/2 d�

D 2

» �

0

?
2C2 cos� d� D 4

» �

0

cos
�

2
d� D 8:

We substituted4 cos2 1
2
� for 2C2 cos� in the square root. It is possible to skip

symmetry and integrate from0 to 2�—but that needs the absolute value|cos1
2
� | to

maintain a positive square root.

EXAMPLE 6 The logarithmic spiralr D e�� hasdsD
?
e�2� Ce�2� d� . It spi-

rals to zero as� goes to infinity, and the total length is finite:»
dsD

» 8
0

?
2 e�� d� D �?2 e��

i8
0

D
?
2:

Revolve this spiral for a mathematical seashell with area
r 8

0
.2�e�� cos�/

?
2 e��d� .

9.3 EXERCISES

Read-through questions

A circular wedge with angle�� is a fraction a of a whole
circle. If the radius isr , the wedge area is b . Then the
area insider DF.�/ is

r
c . The area insider D �2 from 0

to � is d . That spiral meets the circler D 1 at � D e .
The area inside the circle and outside the spiral isf . A chopped
wedge of angle�� betweenr1 andr2 has area g .

The curve r DF.�/ has xD r cos� D h and yD i .
The slopedy=dx is dy=d� divided by j . For length.ds/2 D

.dx/2 C.dy/2 D k . The length of the spiralr D � to � D�

is
r

l (not to compute integrals). The surface area when

r D � is revolved around thex axis is
r
2�y dsD

r
m . The

volume of that solid is
r
�y2 dxD

r
n .

In 1–6 draw the curve and find the area inside.

1 r D 1Ccos�

2 r D sin�Ccos� from 0 to �

3 r D 2Ccos�

4 r D 1C2 cos� (inner loop only)

5 r D cos2� (one petal only)

6 r D cos3� (one petal only)



424 9 Polar Coordinates and Complex Numbers

Find the area between the curves in 7–12 after locating their in-
tersections (draw them first).

7 circle r D cos� and circler D sin�

8 spiralr D � andy axis (first arch)

9 outside cardioidr D 1Ccos� inside circler D 3 cos�

10 lemniscater2 D 4 cos2� outsider D
?
2

11 circle r D 8 cos� beyond liner cos� D 4

12 circle r D 10 beyond liner cos� D 6

13 Locate the mistake and find the correct area of the lemniscate
r2 D cos2� : areaD

r �
0

1
2 r

2 d� D
r �

0
1
2 cos2� d� D 0.

14 Find the area between the two circles in Example 2.

15 Compute the area between the cardioid and circle in
Example 3.

16 Find the complete area (carefully) between the spiralr D

e�� .� ¥ 0/ and the origin.

17 At what � ’s does the cardioidr D 1Ccos� have infinite
slope ? Which points are furthest to the left (minimumx) ?

18 Apply the chain ruledy=dxD .dy=d�/=.dx=d�/ to xD

F.�/cos� , yDF.�/sin� . Simplify to reach

dy

dx
D

F C tan � dF=d��F tan�CdF=d�
:

19 The groove in a record is nearly a spiralr D c� :

length D
rb

r2 C.dr=d�/2 d� D
r 14

6

a
r2 Cc2 dr=c:

Take cD :002 to give 636 turns between the outer radius
14 cm and the inner radius6 cm .14�6 equals:002.636/2�/.

(a) Omitc2 andjust integrater dr=c.
(b) Compute the length integral. Tables and calculators
allowed. You will never trust integrals again.

20 Show that the angle between the ray from the origin
and the tangent line has tan DF=.dF=d�/.
Hint : If the tangent line is at an angle� with the horizontal,
then tan� is the slopedy=dx in Problem18. Therefore

tan D tan.���/D
tan�� tan�

1C tan� tan�
:

Substitute for tan� and simplify like mad.

21 The circle r DF.�/D 4 sin� has  D � . Draw a figure
including�;�; and check tan .

22 Draw the cardioid r D 1�cos� , noticing the minus sign.
Include the angles�;�; and show that D �=2.

23 The first limaçon in Figure 9.4 looks like a circle centered at
.1

3 ;0/. Prove that it isn’t.

24 Find the equation of the tangent line to the circler D cos�
at � D�=6.

In 25–28 compute the length of the curve.

25 r D � .� from 0 to 2�/

26 r D sec� .� from0 to �=4/

27 r D sin3.�=3/ .� from0 to 3�/

28 r D �2 .� from0 to �/

29 The narrow wedge in Figure 9.6 is almost a triangle. It
was treated as a circular sector but triangles are more familiar.
Why is the area approximately12 r

2�� ?

30 In Example 4 revolve the circle around thex axis and find
the surface area.We really only revolve a semicircle.

31 Compute the seashell area2�
?
2
r8

0 e
�2� cos� d� using

two integrations by parts.

32 Find the surface area when the cardioidr D 1Ccos�
is revolved around thex axis.

33 Find the surface area when the lemniscater2 D cos2� is
revolved around thex axis. What is� after one petal ?

34 When yD f .x/ is revolved around thex axis, the volume
is

r
�y2dx. When the circler D cos� is revolved, switch to a

�-integral from0 to �=2 and check the volume of a sphere.

35 Find the volume when the cardioidr D 1Ccos� is rotated
around thex axis.

36 Find the surface area and volume when the graph ofr D 1=cos�
is rotated around they axis.0¤ � ¤�=4/.
37 Show that the spiralsr D � and r D 1=� are perpendicular
when they meet at� D 1.

38 Draw three circles of radius1 that touch each other and
find the area of the curved triangle between them.

39 Draw the unit square0¤x¤ 1, 0¤y¤ 1. In polar coordinates
its right side isr D . Find the area from

r
1
2 r

2d� .

40 (Unravel the paradox) The area of the ellipsexD 4 cos�;
yD 3 sin� is ��4 �3D 12�. But the integral of12 r

2d� is» 2�

0

1

2
.16 cos2 �C9 sin2 �/d� D 12

1

2
�:
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9.4 Complex Numbers

Real numbers are sufficient for most of calculus. Starting fromx2 C4, its integral
1
3
x3 C4xCC is also real. If we are givenx3�1, its derivative3x2 is real.But the

roots(or zeros) of those polynomials are complex numbers:

x2 C4D 0 and x3�1D 0 have complex solutions:

We expect two square roots of�4. There are three cube roots of1. Complex numbers
are unavoidable, in order to findn roots for each polynomial of degreen.

This section explains how to work with complex numbers. You will see their
relation to polar coordinates. At the end, we use them to solve differential equations.

Start with the imaginary numberi . Everybody knows thatx2 D�1 has no real
solution. When you square a real number, the result is never negative. So the world has
agreed on a solution calledi . (Except that electrical engineers call itj .) Imaginary
numbers follow the normal rules of addition, subtraction, multiplication, and division,
with one difference:Wheneveri2 appears it is replaced by�1. In particular�i
times�i givesCi2 D�1. In other words,�i is also a square root of�1. There are
two solutions.i and�i / to the equationx2 C1D 0.

Finding cube roots of1 will stretch us further. We need complex numbers—real
plus imaginary.

9B A complex number(say 1C3i ) is the sum of a real number.1/ and a pure
imaginary number.3i/. Addition keeps those parts separate; multiplication uses
i2 D�1:

Addition W .1C3i/C .1C3i/D 1C1C i.3C3/D 2C6i

Multiplication W .1C3i/.1C3i/D 1C3iC3iC9i2 D�8C6i:

Adding1C3i to 5� i is easy.6C2i/. Multiplying is longer, but you see the rules:

.1C3i/.5� i /D 5C15i� i�3i2 D 8C14i:

The point is this: We don’t have to imagine any more new numbers. After accepting
i , the rest is straightforward. A real number is just a complex number with no
imaginary part! When1C3i combines with its “complex conjugate” 1�3i—adding
or multiplying—the answer is real:

.1C3i/C .1�3i/D 2 (real)
.1C3i/.1�3i/D 1�3iC3i�9i2 D 10: (real)

(1)

Thecomplex conjugate offers a way to do division, by making the denominator real:

1

1C3i
D

1

1C3i

1�3i
1�3i D

1�3i
10

and
1

xC iy
D

1

xC iy

x� iy
x� iy D

x� iy
x2 Cy2

:

9C The complex numberxC iy has real partx and imaginary party. Its
complex conjugate isx� iy. The product.xC iy/.x� iy/ equalsx2 Cy2 D r2.
Theabsolute value(or modulus) isr D |xC iy|Dax2 Cy2.
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THE COMPLEX PLANE

Complex numbers correspond to points in a plane. The number1C3i corre-
sponds to the point.1;3/. Similarly xC iy is paired with.x;y/—which isx units
along the “real axis” andy units up the “imaginary axis.” The ordinary plane turns
into thecomplex plane. The absolute valuer is the same as the polar coordinater
(Figure 9.8a).

The figure shows two more copies of the complex plane. The one in the middle
is for addition and subtraction. It uses rectangular coordinates. The one on the right
is for multiplication and division and squaring. It uses polar coordinates. In squaring
a complex number,r is squared and� is doubled—as the right figure and equation(3)
both show.

Fig. 9.8 The complex plane showsx, y, r , � . Add with x andy, multiply with r and� .

Adding complex numbers is like adding vectors (Chapter 11). The real parts give
3�1 and the imaginary parts give1C1. The vector sum.2;2/ corresponds to the
complex sum2C2i . The complex conjugate3� i is the mirror image across the real
axis.i reversed to�i /. The connection tor and� is the same as before (you see it in
the triangle):

xD r cos� and yD r sin� so that xC iyD r.cos�C i sin�/: (2)

In the third figure,1C i hasr D
?
2 and� D�=4. The polar form is

?
2 cos�=4C?

2i sin �=4. When this number is squared, its45� angle becomes90�: The square
is .1C i /2 D 1C2i�1D 2i . Its polar form is2 cos�=2C2i sin�=2.

9D Multiplication adds angles, division subtracts angles, and squaring doubles
angles. The absolute values are multiplied, divided, and squared:

.r cos�C ir sin�/2 D r2 cos2�C ir2 sin2�: (3)

For nth powers we reachrn and n� . For square roots,r goes to
?
r and � goes to

1
2
� . The number�1 is at180�, so its square rooti is at90�.
To see why� is doubled in equation(3), factor outr2 and multiply as usual:

.cos�C i sin�/.cos�C i sin�/D cos2��sin2 �C2i sin� cos�:

The right side iscos2�C i sin2� . The double-angle formulas from trigonometry
match the squaring of complex numbers. The cube would becos3�C i sin3�
(because2� and � add to 3� , and r is still 1). The nth power is in
de Moivre’s formula:

.cos�C i sin �/n D cosn�C i sinn�: (4)
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With nD�1 we getcos.��/C i sin.��/—which iscos�� i sin� , the complex
conjugate:

1

cos�C i sin �
D

1

cos�C i sin �

cos�� i sin�

cos�� i sin�
D

cos�� i sin�

1
: (5)

We are almost touchingEuler’s formula, the key to all numbers on the unit circle:

Euler’s formula : cos�C i sin� D ei� : (6)

Squaring both sides gives.ei�/.ei� /D e2i� . That is equation(3). The�1 power
is 1=ei� D e�i� . That is equation(5). Multiplying anyei� by ei� producesei.�C�/.
The special case�D � gives the square, and the special case�D�� givesei�e�i� D
1.

Euler’s formula appeared in Section 6.7, by changingx to i� in the series forex :

ex D 1CxC
x2

2
C
x3

6
C � � � becomes ei� D 1C i�� �2

2
� i �3

6
C � � � :

A highlight of Chapter 10 is to recognize two new series on the right. The real terms
1� 1

2
�2 C � � � add up tocos� . The imaginary part�� 1

6
�3 C � � � adds up tosin� .

Thereforeei� equalscos�C i sin� . It is fantastic that the most important periodic
functions in all of mathematics come together in this graceful way.

We learn from Euler (pronouncedoiler) thate2�i D 1. The cosine of2� is 1, the
sine is zero. If you substitutexD 2�i into the infinite series, somehow everything
cancels except the1—this is almost a miracle. From the viewpoint of angles,� D 2�
carries us around a full circle and back toe2�i D 1.

Multiplying Euler’s formula byr , we have a third way to write a complex number:

Every complex number is xC iyD r cos�C ir sin� D rei� : (7)

EXAMPLE 1 2ei� times3ei� equals6e2i� . For� D�=2, 2i times3i is�6.
EXAMPLE 2 Findw2 andw4 andw8 andw25 whenwD ei�=4.

Solution ei�=4 is 1=
?
2C i=

?
2. Note thatr2 D 1

2
C 1

2
D 1. Now watch angles:

w2 D ei�=2 D i w4 D ei� D�1 w8 D 1 w25 Dw8w8w8wDw:

Figure 9.9 shows the eight powers ofw. They are the eighth roots of1.

Fig. 9.9 The eight powers ofw and the cube roots of1.

EXAMPLE 3 .x2 C4D 0/ The square roots of�4 are 2i and�2i . Instead of
.i/.i/D�1we have.2i/.2i/D�4. If Euler insists, we write2i and�2i as2ei�=2

and2ei3�=2.
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EXAMPLE 4 (The cube roots of1) In rectangular coordinates we have to
solve .xC iy/3 D 1, which is not easy. In polar coordinates this same equation is
r3e3i� D 1. Immediatelyr D 1. The angle� can be2�=3 or 4�=3 or 6�=3—the
cube roots in the figure are evenly spaced:

.e2�i=3/3 D e2�i D 1 .e4�i=3/3 D e4�i D 1 .e6�i=3/3 D e6�i D 1:

You see why the angle8�=3 gives nothing new. It completes a full circle back to
2�=3.

Thenth roots of1 are e2�i=n, e4�i=n, : : :, 1. There aren of them.
They lie at angles2�=n, 4�=n, : : :, 2� around the unit circle.

SOLUTION OF DIFFERENTIAL EQUATIONS

The algebra of complex numbers is now applied to the calculus ofcomplex functions.
The complex number isc, the complex function isect . It will solve the equations
y2 D�4y andy3 D y, by connecting them toc2 D�4 andc3 D 1. Chapter 16 does
the same for all linear differential equations with constant coefficients—this is an
optional preview.

Please memorize the one key idea:SubstituteyD ect into the differential equa-
tion and solve forc. Each derivative brings a factorc, soy 1 D cect andy2 D c2ect :

d2y=dt2 D�4y leads toc2ect D�4ect ; which givesc2 D�4: (8)

Forthis differential equation,c must be a square root of�4. We know the candidates
.cD 2i andcD�2i/. The equation has two “pure exponential solutions”ect :

yD e2it and yD e�2it : (9)

Their combinationsyDAe2it CBe�2it give all solutions. In Chapter 16 we will
choose the two numbersA andB to match two initial conditions att D 0.

The solutionyD e2it D cos2tC i sin2t is complex. The differential equation is
real. For realy’s, take the real and imaginary parts of the complex solutions:

yrealD cos2t and yimaginaryD sin2t: (10)

These are the “pure oscillatory solutions.” WhenyD e2it travels around the
unit circle, its imaginary partsin2t moves up and down. (It is like the ball and its
shadow in Section 1.4, but twice as fast because of2t .) The real partcos2t goes
backward and forward. By the chain rule,the second derivative ofcos2t is�4cos2t .
Thusd2y=dt2 D�4y and we have real solutions.

EXAMPLE 5 Find three solutions and then threereal solutions tod3y=dt3 D y.

Key step: SubstituteyD ect . The result isc3ect D ect . Thusc3 D 1 andc is a cube
root of1. The candidatecD 1 givesyD et (our first solution). The nextc is complex:

cD e2�i=3 D�1
2

C i

?
3

2
yields yD ect D e�t=2ei

?
3t=2: (11)

Thereal part of the exponent leads to the absolute value|y|D e�t=2. It decreases

ast gets larger, soy moves toward zero. At the same time, the factorei
?

3t=2 goes
around the unit circle. Thereforey spirals in to zero (Figure 9.10). So does its complex
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conjugate, which is the third exponential. Changingi to �i in (11) gives the third
cube root of1 and the third solutione�t=2e�i

?
3t=2.

The first real solution isyD et . The others are the two parts of the spiral:

yrealD e�t=2 cos
?
3t=2 and yimaginaryD e�t=2 sin

?
3t=2: (12)

That isr cos� andr sin� . It is the ultimate use (until Chapter 16) of polar coordinates
and complex numbers. We might have discoveredcos2t andsin2t without help, for
y2 D�4y. I don’t think these solutions toy3 D y would have been found.

EXAMPLE 6 Find four solutions tod4y=dt4 D y by substitutingyD ect .

Four derivatives lead toc4 D 1. Thereforec is i or�1 or�i or 1. The solutions are
yD ei t , e�t , e�i t , andet . If we want real solutions,ei t ande�i t combine intocost
andsin t . In all casesy22 D y.

Fig. 9.10 Solutions move in the complex plane:y2 D�4y andy3 D y andy22 Dy.

9.4 EXERCISES

Read-through questions

The complex number3C4i has real part a and imagi-
nary part b . Its absolute value isr D c and its com-
plex conjugate is d . Its position in the complex plane is at
( e ). Its polar form isr cos�C ir sin� D f ei� . Its square
is g C i h . Its nth power is i ein� .

The sum of1C i and1� i is j . The product of1C i and 1� i
is k . In polar form this is

?
2ei�=4 times l . The quotient

.1C i/=.1� i/ equals the imaginary number m . The number

.1C i/8 equals n . An eighth root of1 iswD o . The other
eighth roots are p .

To solve d8y=dt8 D y, look for a solution of the form
yD q . Substituting and cancelingect leads to the equation

r . There are s choices for c, one of which is
.�1C i/=

?
2. With that choice|ect |D t . The real solutions are

Reect D u and Imect D v .

In 1�6 plot each number in the complex plane.

1 2C i and its complex conjugate2� i and their sum and
product

2 1C i and its square.1C i/2 and its reciprocal1=.1C i/

3 2ei�=6 and its reciprocal12e
�i�=6 and their squares

4 The sixth roots of1 (six of them)

5 cos3�=4C i sin 3�=4 and its square and cube

6 4ei�=3 and its square roots

7 For complex numberscD xC iyD rei� and their conjugates
NcD x� iyD re�i� , find all possible locations in the complex plane
of (1) cC Nc (2) c� Nc (3) c Nc (4) c= Nc.

8 Find x and y for the complex numbersxC iy at angles
� D 45�, 90�, 135� on the unit circle. Verify directly that the square
of the first is the second and the cube of the first is the third.

9 If cD 2C i and d D 4C3i find cd and c=d . Verify that the
absolute value|cd | equals |c| times |d |, and |c=d | equals |c|
divided by|d |.
10 Find a solutionx to eix D i and a solution toeix D 1=e. Then
find a second solution.
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Find the sum and product of the numbers in 11�14.

11 ei� ande�i� , alsoe2�i=3 ande4�i=3

12 ei� and ei� , alsoe�i=4 ande��i=4

13 The sixth roots of1 (add and multiply all six)

14 The two roots ofc2�4cC5D 0

15 If cD rei� is not zero, what arec4 andc�1 andc�4 ?

16 Multiply out .cos�C i sin �/3 D ei3� , to find the real part
cos3� and the imaginary part sin3� in terms of cos� and sin� .

17 Plot the three cube roots of a typical numberrei� . Show why
they add to zero. One cube root isr1=3ei�=3.

18 Prove that the four fourth roots ofrei� multiply to give�rei� .

In 19�22, find all solutions of the formyD ect :

19 y2CyD 0

21 y3�y1 D 0

20 y3CyD 0

22 y2C6y1C5yD 0

Construct two real solutions from the real and imaginary parts
of ect (first find c):

23 y2C49yD 0 24 y2�2y1C2yD 0

Sketch the path ofyD ect as t increases from zero, and mark
yD ec :

25 cD 1� i 26 cD�1C i 27 cD�i=4

28 What is the solution ofdy=dt D iy starting from y0 D 1 ?
For this solution, matching real parts and imaginary parts of
dy=dt D iy gives and .

29 In Figure 9.10b, at what timet does the spiral cross the real axis
at the far left ? What doesy equal at that time ?

30 Show that cos� D 1
2 .e

i� Ce�i� / and find a similar formula for
sin� .

31 True or false, with an example to show why:

(a) If c1 Cc2 is real, thec’s are complex conjugates.

(b) If |c1|D 2 and|c2|D 4 thenc1c2 has absolute value8.

(c) If |c1|D 1 and|c2|D 1 then|c1 Cc2| is (at least1) (at most
2) (equal to2).

(d) If ect approaches zero astÑ8, then (c is negative) (the
real part ofc is negative).|c| is less than1/.

32 The polar form ofrei� timesRei� is . The rectangular
form is . Circle the terms that giverR cos.�C�/.

33 The complex number1=.rei� / has polar form and rect-
angular form and square roots .

34 Show that cosixD coshx and sinixD i sinhx. What is the co-
sine ofi ?
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