
CHAPTER 11

Vectors and Matrices

This chapter opens up a new part of calculus. It ismultidimensional calculus,
because the subject moves into more dimensions. In the first ten chapters, all
functions depended on timet or positionx—but not both. We hadf .t/ or y.x/. The
graphs were curves in a plane. There was one independent variable (x or t )
and one dependent variable (y or f ). Now we meet functionsf .x; t/ that depend
on bothx andt . Their graphs aresurfacesinstead of curves. This brings us to the
calculus of several variables.

Start with the surface that represents the functionf .x; t/ or f .x;y/ or f .x;y; t/.
I emphasize functions, because that is what calculus is about.

EXAMPLE 7 f .x; t/D cos.x� t/ is a traveling wave (cosine curve in motion).

At t D 0 the curve isf D cosx. At a later time, the curve moves to the right
(Figure 11.1). At eacht we get a cross-section of the wholex-t surface. For a wave
traveling along a string, the height depends on position as well as time.

A similar function gives a wave going around a stadium. Each person stands up and
sits down. Somehow the wave travels.

EXAMPLE 8 f .x;y/D 3xCyC1 is a sloping roof (fixed in time).

The surface is two-dimensional—you can walk around on it. It is flat because
3xCyC1 is a linear function. In they direction the surface goes up at45�. If y
increases by1, so doesf . That slope is1. In the x direction the roof is steeper
(slope3). There is a direction in between where the roof is steepest (slope

?
10).

EXAMPLE 9 f .x;y; t/D cos.x�y� t/ is an ocean surface with traveling waves.

This surface moves. At each timet we have a newx-y surface. There are three
variables,x andy for position andt for time. I can’t draw the function, it needs
four dimensions! The base coordinates arex;y; t and the height isf . The alternative
is a movie that shows thex-y surface changing witht .

At time t D 0 the ocean surface is given bycos.x�y/. The waves are in straight
lines. The linex�yD 0 follows a crest becausecos0D 1. The top of the next wave
is on the parallel linex�yD 2� , becausecos2� D 1. Figure 11.1 shows the ocean
surface at a fixed time.
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11 Vectors and Matrices 465

The linex�yD t gives the crest at timet . The water goes up and down (like
people in a stadium).The wave goes to shore; but the water stays in the ocean.

Fig. 11.1 Moving cosine with a small optical illusion—the darker
bands seem to go from top to bottom as you turn.

Fig. 11.2 Linear functions give planes.

Of course multidimensional calculus is not only for waves. In business, demand is
a function of price and date. In engineering, the velocity and temperature depend on
positionx and timet . Biology deals with many variables at once (and statistics is
always looking for linear relations likezD xC2y). A serious job lies ahead, to carry
derivatives and integrals into more dimensions.
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11.1 Vectors and Dot Products

In a plane, every point is described by two numbers. We measure across byx and
up byy. Starting from the origin we reach the point with coordinates.x;y/. I want
to describe this movement by avector—the straight line that starts at.0;0/ and
ends at.x;y/. This vectorv has adirection, which goes from.0;0/ to .x;y/ and
not the other way.

In a picture, the vector is shown by an arrow. In algebra,v is given by its two
components. For acolumn vector, writex abovey:

v D

"

x

y

#

(x andy are the components ofv): (1)

Note thatv is printed in boldface; its componentsx andy are in lightface.� The
vector�v in the opposite direction changes signs. Addingv to �v gives thezero
vector(different from the zero number and also in boldface):�v D

"�x�y# and v�v D

"

x�x
y�y#D

"

0

0

#

D 0: (2)

Notice how vector addition or subtraction is done separately on thex’s andy’s:

vCw D

"

3

1

#

C

"�1
2

#

D

"

2

3

#

: (3)

Fig. 11.3 Parallelogram forvCw, stretching for2v, signs reversed for�v.

The vectorv has componentsv1 D 3 andv2 D 1. (I write v1 for the first compo-
nent andv2 for the second component. I also writex andy, which is fine for two
components.) The vectorw hasw1 D�1 andw2 D 2. To add the vectors, add the
components.To draw this addition, place the start ofw at the end ofv. Fig-
ure 11.3 shows howw starts wherev ends.

VECTORS WITHOUT COORDINATES

In that head-to-tail additionof vCw, we did something new. The vectorw was
moved away from the origin. Its length and direction were not changed! The new
arrow is parallel to the old arrow—only the starting point is different.The vector
is the same as before.

A vector can be defined without an origin and withoutx andy axes. The purpose
of axes is to give the components—the separate distancesx andy. Those numbers

�Another way to indicate a vector is
Ñ
v . You will recognize vectors without needing arrows.
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are necessary for calculations. Butx andy coordinates are not necessary for head-to-
tail additionvCw, or for stretching to2v, or for linear combinations2vC3w. Some
applications depend on coordinates, others don’t.

Generally speaking, physics works without axes—it is “coordinate-free.” Aveloc-
ity has direction and magnitude, but it is not tied to a point. Aforcealso has direction
and magnitude, but it can act anywhere—not only at the origin. In contrast, a vec-
tor that gives the prices of five stocks is not floating in space. Each component has
a meaning—there are five axes, and we know when prices are zero. After examples
from geometry and physics (no axes), we return to vectorswith coordinates.

EXAMPLE 1 (Geometry) Take any four-sided figure in space. Connect the mid-
points
of the four straight sides.Remarkable fact: Those four midpoints lie in the same
plane. More than that, they form aparallelogram.

Frankly, this is amazing. Figure 11.4a cannot do justice to the problem, because it
is printed on a flat page. Imagine the vectorsA andD coming upward.B andC go
down at different angles. Notice how easily we indicate the four sides as vectors, not
caring about axes or origin.

I will prove thatV D W. That shows that the midpoints form a parallelogram.
What isV ? It starts halfway alongA and ends halfway alongB. The small triangle

at the bottom showsV D 1
2
A C 1

2
B. This is vector addition—the tail of1

2
B is at the

head of1
2
A. Together they equal the shortcutV. For the same reasonW D 1

2
CC 1

2
D.

The heart of the proof is to see these relationships.
One step is left. Why is1

2
A C 1

2
B equal to 1

2
CC 1

2
D ? In other words, why is

A CB equal toCCD ? (I multiplied by2.) When the right question is asked, the
answer jumps out. A head-to-tail additionA CB brings us to the pointR. AlsoCCD
brings us toR. The proof comes down to one line:

A CB DPRD CCD: Then V D 1
2
A C 1

2
B equals W D 1

2
CC 1

2
D:

Fig. 11.4 Four midpoints form a parallelogram.V D W/. Three medians meet atP .

EXAMPLE 2 (Also geometry) In any triangle, draw lines from the corners to the
midpoints of the opposite sides. To prove by vectors:Those three lines meet at a
point. Problem38 finds the meeting point in Figure 11.4c. Problem37 says thatthe
three vectors add to zero.
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EXAMPLE 3 (Medicine) An electrocardiogram shows the sum of many small
vectors, the voltages in the wall of the heart. What happens to this sum—theheart
vectorV—in two cases that a cardiologist is watching for ?

Case1. Part of the heart is dead (infarction).
Case2. Part of the heart is abnormally thick (hypertrophy).

A heart attack kills part of the muscle. A defective valve, or hypertension, overworks
it. In case 1the cells die from the cutoff of blood (loss of oxygen). Incase 2the
heart wall can triple in size, from excess pressure. The causes can be chemical or
mechanical. The effect we see is electrical.

The machine is adding small vectors and“projecting” them in twelve direc-
tions.
The leads on the arms, left leg, and chest give twelve directions in the body. Each
graph shows the component ofV in one of those directions. Three of the projections—
two in the vertical plane, plus lead2 for front-back—produce the “mean QRS vector”
in Figure 11.5. That is the sumV when the ventricles start to contract. The left
ventricle is larger, so the heart vector normally points down and to the left.

Fig. 11.5 V is a sum of small voltage vectors, at the moment of depolarization.

Fig. 11.6 Changes inV show dead muscle and overworked muscle.

We come soon to projections, but here the question is aboutV itself. How does
the ECG identify the problem?
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Case1W Heart attack The dead cells make no contribution to the
electrical potential. Some small vectors are missing. Therefore the
sumV turnsawayfrom the infarcted part.
Case2W Hypertrophy The overwork increases the contribution to
the potential. Some vectors are larger than normal. ThereforeV
turnstoward the thickened part.

WhenV points in an abnormal direction, the ECG graphs locate the problem. The
P;Q;R;S;T waves on separate graphs can all indicate hypertrophy, in different
regions of the heart. Infarctions generally occur in the left ventricle, which needs the
greatest blood supply. When the supply of oxygen is cut back, that ventricle feels it
first. The result can be a heart attack (D myocardial infarctionD coronary occlusion).
Section 11.2 shows how the projections on the ECG point to the location.

First come the basic facts about vectors—components, lengths, and dot products.

COORDINATE VECTORS AND LENGTH

To compute with vectors we need axes and coordinates. The picture of the heart is
“coordinate-free,” but calculations require numbers. A vector is known by its com-
ponents.The unit vectors along the axes arei and j in the plane andi; j; k in
space:

in 2DW i D

"

1

0

#

; j D

"

0

1

#

in 3DW i D

2

6

4

1

0

0

3

7

5
; j D

2

6

4

0

1

0

3

7

5
; k D

2

6

4

0

1

0

3

7

5
:

Notice how easily we moved into three dimensions! The only change is that vectors
have three components. The combinations ofi andj (or i, j, k) produce all vectorsv
in the plane (and all vectorsV in space):

v D 3i C j D

"

3

1

#

V D i C2j�2k D

2

6

4

1

2�2375 :
Those vectors are also writtenv D .3;1/ and V D .1;2;�2/. The components of
the vector are also the coordinates of a point. (The vector goes from the origin to the
point.) This relation between point and vector is so close that we allow them the same
notation:P D .x;y;z/ andv D .x;y;z/D xi Cyj Czk.

The sumvCV is totally meaningless. Those vectors live in different dimensions.

From the components we find thelength. The length of.3;1/ is
?
32 C12 D

?
10.

This comes directly from a right triangle. In three dimensions,V has a third
component to be squared and added. The length ofV D .x;y;z/ is |V|Dax2 Cy2 Cz2.

Vertical bars indicate length, which takes the place of absolute value. The length
of v D 3i C j is the distance from the point.0;0/ to the point.3;1/:|v|Dbv2

1 Cv2
2 D

b
10 |V|Db12 C22 C .�2/2 D 3:

A unit vector is a vector of length one. Dividing v andV by their lengths produces
unit vectors in the same directions:
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v|v| D

"

3=
?
10

1=
?
10

#

and
V|V| D

2

6

4

1=3

2=3�2=3375 are unit vectors:

11A Each nonzero vector has a positive length|v|. The direction ofv is given by
a unit vectoru D v=|v|. The length times direction equalsv.

A unit vector in the plane is determined by its angle� with thex axis:

u D

"

cos�

sin�

#

D .cos�/i C .sin�/j is a unit vectorW |u|2 D cos2�Csin2� D 1:

In 3-space the components of a unit vector are its “direction cosines”:

U D .cos˛/i C .cosˇ/j C .cos
/k W ˛;ˇ;
 D angles withx;y;z axes:

Thencos2˛Ccos2ˇCcos2
 D 1. We are doing algebra with numbers while we are
doing geometry with vectors. It was the great contribution of Descartes to see how to
study algebra and geometry at the same time.

Fig. 11.7 Coordinate vectorsi; j ;k. Perpendicular vectorsv�w D .6/.1/C.�2/.3/D 0.

THE DOT PRODUCT OF TWO VECTORS

There are two basic operations on vectors. First, vectors are added.vCw/. Second,
a vector is multiplied by a scalar.7v or�2w/. That leaves a natural question—how
do you multiply two vectors ? The main part of the answer is—you don’t. But there is
an extremely important operation that begins with two vectors and produces a
number. It is usually indicated by a dot between the vectors, as inv �w, so it is
called thedot product.

DEFINITION 1 The dot product multiplies the lengths|v| times |w| times a
cosine:

v �w D |v||w|cos�; � D angle betweenv andw:

EXAMPLE

"

3

0

#

has length3;

"

2

2

#

has length
?
8, the angle is45�:

The dot product is|v||w|cos� D .3/.
?
8/.1=

?
2/, which simplifies to6: The square

roots in the lengths are “canceled” by square roots in the cosine. For computingv �w,
a second and much simpler way involves no square roots in the first place.
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DEFINITION 2 The dot productv �w multiplies component by component and
adds:

v �w D v1w1 Cv2w2

"

3

0

# �"2
2

#

D .3/.2/C .0/.2/D 6:

The first form |v||w|cos� is coordinate-free. The second formv1w1 Cv2w2

computes with coordinates. Remark 4 explains why these two forms are equal.

11B Thedot productor scalar productor inner productof three-dimensional
vectors is

V �W D |V||W|cos� DV1W1 CV2W2 CV3W3: (4)

If the vectors are perpendicular then� D 90� andcos� D 0 andV �W D 0.

2

6

4

1

2

3

3

7

5
�26
4

4

5

6

3

7

5
D 32 (not perpendicular)

2

6

4

2

2�1375 �264�122375D 0 (perpendicular):

These dot products32 and0 equal|V||W|cos� . In the second one,cos� must be
zero. The angle is�=2 or��=2—in either case a right angle. Fortunately the cosine
is the same for� and�� , so we need not decide the sign of� .

Remark1 WhenV D W the angle is zero but not the cosine! In this casecos� D 1
andV �V D |V|2. The dot product ofV with itself is the length squared:

V �V D .V1;V2;V3/ � .V1;V2;V3/DV 2
1 CV 2

2 CV 2
3 D |V|2: (5)

Remark 2 The dot product ofi D .1;0;0/ with j D .0;1;0/ is i � j D 0. The
axes are perpendicular. Similarlyi �k D 0 and j �k D 0. Those are unit vectors:
i � i D j � j D k �k D 1.

Remark3 The dot product has three properties that keep the algebra simple:

1. V�W D W �V 2. .cV/ �W D c.V �W/ 3. .UCV/ �W D U �W CV �W
WhenV is doubled.cD 2/ the dot product is doubled. WhenV is split into i; j; k
components, the dot product splits in three pieces. The same applies toW, since
V �W D W �V. The nine dot products ofi; j; k are zeros and ones, and a giant splitting
of bothV andW gives back the correctV �W:

Fig. 11.8 Length squaredD .V�W/ �.V�W/, from coordinates and the cosine law.
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V �W DV1i �W1i CV2j �W2j CV3k �W3k Csix zeroesDV1W1 CV2W2 CV3W3:

Remark4 The two forms of the dot product are equal. This comes from com-
puting|V�W|2 by coordinates and also by the “law of cosines”:

with coordinatesW |V�W|2 D .V1�W1/
2 C .V2�W2/

2 C .V3�W3/
2

from cosine lawW |V�W|2 D |V|2 C |W|2�2|V||W|cos�:

Compare those two lines. Line1 containsV 2
1 andV 2

2 andV 2
3. Their sum matches|V|2 in the cosine law. AlsoW 2

1 CW 2
2 CW 2

3 matches|W|2. Therefore the terms
containing�2 are the same (you can mentally cancel the�2). The definitions agree:�2.V1W1 CV2W2 CV3W3/ equals�2|V||W|cos� equals�2V �W:

The cosine law is coordinate-free. It applies to all triangles (even inn dimensions).
Its vector form in Figure 11.8 is|V�W|2 D |V|2�2V �W C |W|2. This application
to V �W is its brief moment of glory.

Remark5 The dot product is the best way to compute the cosine of� :

cos� D
V �W|V||W|: (6)

Here are examples ofV andW with a range of angles from0 to � :

i and3i have the same direction cos� D 1 � D 0

i � .i C j/ D 1 is positive cos� D 1=
?
2 � D�=4

i and j are perpendicular:i � j D 0 cos� D 0 � D�=2

i � .�i C j/ D�1 is negative cos� D�1=?2 � D 3�=4

i and�3i have opposite directions cos� D�1 � D�

Remark6 The Cauchy-Schwarz inequality|V �W| ¤ |V||W| comes from|cos� | ¤ 1.
The left side is|V||W||cos� |. It never exceeds the right side|V||W|. This is a key
inequality in mathematics, from which so many others follow:

Geometric mean
?
xy¤ arithmetic mean1

2
.xCy/ (true for anyx¥ 0 andy¥ 0).

Triangle inequality |V CW| ¤ |V|C |W| .|V|; |W|; |V CW| are lengths of sides).

These and other examples are in Problems39 to 44: The Schwarz inequality|V �W| ¤ |V||W| becomes an equality when|cos� |D 1 and the vectors are .
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11.1 EXERCISES

Read-through questions

A vector has length and a . If v has components6 and�8, its length is |v|D b and its direction vector isu D
c . The product of|v| with u is d . This vector goes

from .0;0/ to the point xD e , yD f . A combination
of the coordinate vectorsi D g and j D h produces
v D i i C j j .

To add vectors we add their k . The sum of .6;�8/
and .1;0/ is l . To seevC i geometrically, put the m of
i at the n of v. The vectors form a o with diagonal
vC i. (The other diagonal is p .) The vectors2v and �v
are q and r . Their lengths are s and t .

In a space without axes and coordinates, the tail ofV can
be placed u . Two vectors with the same v are the
same. If a triangle starts withV and continues withW, the
third side is w . The vector connecting the midpoint ofV
to the midpoint ofW is x . That vector is y the third
side. In this coordinate-free form the dot product isV �W D z .

Using components, V �W D A and .1;2;1/ �
.2;�3;7/D B . The vectors are perpendicular if C .
The vectors are parallel if D . V �V is the same as E .
The dot product ofUCV with W equals F . The angle
between V and W has cos� D G . When V �W is negative
then � is H . The angle betweeni C j and i Ck is I .
The Cauchy-Schwarz inequality is J , and for V D i C j
and W D i Ck it becomes1¤ K .

In 1�4 compute VCW and 2V�3W and |V|2 and V �W and
cos�:

1 V D .1;1;1/; W D .�1;�1;�1/
2 V D i C j ; W D j�k

3 V D i�2j Ck; W D i C j�2k
4 V D .1;1;1;1/; W D .1;2;3;4/

5 (a) Find a vector that is perpendicular to.v1;v2/.

(b) Find two vectors that are perpendicular to.v1;v2;v3/.

6 Find two vectors that are perpendicular to.1;1;0/ and to each
other.

7 What vector is perpendicular to all2-dimensional vectors ?
What vector is parallel to all3-dimensional vectors ?

8 In Problems1�4 construct unit vectors in the same direction
asV.

9 If v andw are unit vectors, what is the geometrical meaning of
v �w ? What is the geometrical meaning of.v �w/v ? Draw a figure
with v D i andw D .3=5/i C.4=5/j .

10 Write down all unit vectors that make an angle� with the
vector.1;0/. Write downall vectors at that angle.

11 True or falsein three dimensions:
1. If bothU andV make a30� angle withW, so doesUCV.

2. If they make a90� angle withW, so doesUCV.

3. If they make a90� angle withW they are perpendicular:
U �V D 0.

12 From W D .1;2;3/ subtract a multiple ofV D .1;1;1/ so that
W�cV is perpendicular toV. DrawV andW andW�cV.

13 (a) What is the sumV of the twelve vectors from the center of
a clock to the hours ?
(b) If the 4 o’clock vector is removed, findV for the other
eleven vectors.

(c) If the vectors to1;2;3 are cut in half, findV for the
twelve vectors.

14 (a) By removing one or more of the twelve clock vectors, make
the length|V| as large as possible.
(b) Suppose the vectors start from the top instead of the
center (the origin is moved to12 o’clock, sov12 D 0/. What is
the new sumV� ?

15 Find the anglePOQ by vector methods ifP D .1;1;0/;

O D .0;0;0/; QD .1;2;�2/:
16 (a) Draw the unit vectors u1 D .cos�; sin�/ and

u2 D .cos�; sin�/. By dot products find the formula for
cos.���/.
(b) Draw the unit vectoru3 from a90� rotation ofu2. By dot
products find the formula for sin.�C�/.

17 Describe all points.x;y/ such thatv D xi Cyj satisfies

(a) |v|D 2

(c) v � i D 2

(b) |v� i|D 2

(d) v � i D |v|
18 (Important) IfA andB are non-parallel vectors from the origin,
describe

(a) the endpoints oftB for all numberst

(b) the endpoints ofA C tB for all t
(c) the endpoints ofsA C tB for all s andt

(d) the vectorsv that satisfyv �A D v �B
19 (a) If vC2w D i and2vC3w D j findv andw.

(b) If v D i C j andw D 3i C4j theni D vC w.

20 If P D .0;0/ andRD .0;1/ chooseQ so the anglePQR is 90�.
All possibleQ’s lie in a .

21 (a) Choose d so that A D 2i C3j is perpendicular to
B D 9i Cd j .

(b) Find a vector C perpendicular toA D i C j Ck and
B D i�k.

22 If a boat has velocityV with respect to the water and the water
has velocityW with respect to the land, then . The speed of
the boat is not|V|C |W| but .
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23 Find the angle between the diagonal of cube and (a) an edge
(b) the diagonal of a face (c) another diagonal of the cube.
Choose lines that meet.

24 Draw the trianglePQR in Example1 (the four-sided figure in
space). By geometry not vectors, show thatPR is twice as long
as V. Similarly |PR|D 2|W|. Also V is parallel to W because
both are parallel to . SoV D W as before.

25 (a) If A andB are unit vectors, show that they make equal an-
gles withA CB.

(b) If A;B;C are unit vectors withA CBCC D 0, they form a
triangle and the angle between any two is .

26 (a) Find perpendicular unit vectorsI and J in the plane that are
different fromi andj .

(b) Find perpendicular unit vectorsI ;J;K different fromi; j ;k.

27 If I andJ are perpendicular, take their dot products withA D

aI CbJ to finda andb.

28 SupposeI D .i C j /=
?
2 and J D .i� j /=

?
2. Check I �J D 0

and write A D 2i C3j as a combinationaI CbJ. (Best method:
use a and b from Problem27. Alternative: Find i and j from
I andJ and substitute intoA.)

29 (a) Find the position vectorOP and the velocity vectorPQ
when the pointP moves around the unit circle (see figure) with
speed1. (b) Change to speed2.

30 The sum.A � i/2 C.A � j /2 C.A �k2/ equals .

31 In the semicircle findC and D in terms ofA and B. Prove
thatC �D D 0 (they meet at right angles).

35 The vector from the earth’s center to Seattle isai Cbj Cck.

(a) Along the circle at the latitude of Seattle, what two
functions ofa;b;c stay constant ?k goes to the North Pole.

(b) On the circle at the longitude of Seattle—the meridian—
what two functions ofa;b;c stay constant ?

(c) Extra credit: Estimatea;b;c in your present position. The
0� meridian through Greenwich hasbD 0.

36 If |A CB|2 D |A|2 C |B|2, prove thatA is perpendicular toB.

37 In Figure 11.4, the medians go from the corners to the
midpoints of the opposite sides. ExpressM1;M2;M3 in terms
of A;B;C. Prove thatM1 CM2 CM3 D 0. What relation holds
betweenA;B;C ?

38 The point 2
3 of the way along is the same for all three

medians. This means thatA C 2
3 M3 D 2

3 M2 D . Prove that
those three vectors are equal.

39 (a) Verify the Schwarz inequality|V �W|¤ |V||W| for
V D i C2j C2k andW D 2i C2j Ck.

(b) What does the inequality become whenV D .
?
x;
?
y/ and

W D .
?
y;
?
x/?

40 By choosing the right vectorW in the Schwarz inequality, show
that.V1 CV2 CV3/

2¤ 3.V 2
1 CV 2

2 CV 3
2/. What isW ?

41 The Schwarz inequality forai Cbj and ci Cd j says that
.a2 Cb2/.c2 Cd2/¥ .acCbd/2. Multiply out to show that the dif-
ference is¥ 0:
42 The vectorsA;B;C form a triangle if A CBCC D 0. The
triangle inequality |A CB|¤ |A|C |B| says that any one side length
is less than . The proof comes from Schwarz:|A CB|2 D A �A C2A �BCB �B¤|A|2 C C |B|2 D .|A|C |B|2/:

32 The diagonal PR has |PR|2 D .A CB/ � .A CB/D A �A C

A �BCB �A CB �B. Add |QS |2 from the other diagonal to prove
the parallelogram law:|PR|2 C |QS |2 D sum of squares of the four
side lengths.

33 If .1;2;3/; .3;4;7/, and .2;1;2/ are corners of a parallelogram,
find all possible fourth corners.

34 The diagonals of the parallelogram areA CB and .
If they have the same length, prove thatA �B D 0 and the region is a

.

43 True or false,with reason or example:

(a) |V CW|2 is never larger than|V|2 C |W|2
(b) In a real triangle|V CW| never equals|V|C |W|
(c) V �W equalsW �V
(d) The vectors perpendicular toi C j Ck lie along a line.

44 If V D i C2k choose W so that V �W D |V||W| and|V CW|D |V|C |W|.
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45 A methane molecule has a carbon atom at.0;0;0/ and
hydrogen atoms at .1;1;�1/; .1;�1;1/; .�1;1;1/; and
.�1;�1;�1/. Find

(a) the distance between hydrogen atoms

(b) the angle between vectors going out from the carbon atom
to the hydrogen atoms.

46 (a) Find a vectorV at a45� angle withi andj .
(b) FindW that makes a60� angle withi andj .
(c) Explain why no vector makes a30� angle withi andj .
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11.2 Planes and Projections

The most important “curves” are straight lines. The most important functions are
linear. Those sentences take us back to the beginning of the book—the graph of
mxCb is a line. The goal now is to move into three dimensions, wheregraphs
are surfaces.Eventually the surfaces will be curved. But calculus starts with the flat
surfaces that correspond to straight lines:

What are the most important surfaces ?Planes.
What are the most important functions ?Still linear.

The geometrical idea of a plane is turned into algebra, by findingthe equation of a
plane. Not just a general formula, but the particular equation of a particular plane.

A line is determined by one point.x0; y0/ and the slopem. The point-slope
equation isy�y0 Dm.x�x0/. That is a linear equation, it is satisfied whenyD y0

andxD x0, anddy=dx is m. For a plane, we start again with a particular point—
which is now.x0; y0; z0/. But the slope of a plane is not so simple. Many planes
climb at a45� angle—with “slope1”—and more information is needed.

The direction of a plane is described by a vectorN. The vector is notin the plane,
butperpendicularto the plane. In the plane, there are many directions. Perpendicular
to the plane, there is only one direction. A vector in that perpendicular direction is
anormal vector.

The normal vectorN can point “up” or “down”. The length ofN is not crucial (we
often make it a unit vector and call itn). KnowingN and the pointP0 D .x0;y0;z0/,
we know the plane (Figure 11.9). For its equation we switch to algebra and use the
dot product—which is the key to perpendicularity.

N is described by its components.a;b;c/. In other wordsN is ai Cbj Cck. This
vector is perpendicular to every direction in the plane. A typical direction goes
from

Fig. 11.9 The normal vector to a plane.Parallel planes have the same N.

P0 to another pointP D .x;y;z/ in the plane. The vector fromP0 to P has
components.x�x0;y�y0;z�z0/: This vector lies in the plane, soits dot product
with N is zero:

11C The plane throughP0 perpendicular toN D .a;b;c/ has the equation

.a;b;c/ � .x�x0; y�y0; z�z0/D 0 or

a.x�x0/Cb.y�y0/Cc.z�z0/D 0: (1)
The pointP lies on the plane when its coordinatesx;y;z satisfy this equation.
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EXAMPLE 1 The plane throughP0 D .1;2;3/ perpendicular toN D .1;1;1/ has
the equation.x�1/C .y�2/C .z�3/D 0. That can be rewritten asxCyCzD
6.

Notice three things. First,P0 lies on the plane because1C2C3D 6. Second,
N D .1;1;1/ can be recognized from thex;y;z coefficients inxCyCzD 6. Third,
we could changeN to .2;2;2/ and we could changeP0 to .8;2;�4/—becauseN is
still perpendicular andP0 is still in the plane:8C2�4D 6.

The new normal vectorN D .2;2;2/ produces2.x�1/C2.y�2/C2.z�3/D
0. That can be rewritten as2xC2yC2zD 12. Same normal direction, same plane.

The new pointP0 D .8;2;�4/ produces.x�8/C .y�2/C .zC4/D 0. That is
another form ofxCyCzD 6. All we require is a perpendicularN and a pointP0 in
the plane.

EXAMPLE 2 The plane through.1;2;4/ with the sameN D .1;1;1/ has a differ-
ent equation:.x�1/C .y�2/C .z�4/D 0. This isxCyCzD 7 (instead of6).
These planes with7 and6 are parallel.

Starting froma.x�x0/Cb.y�y0/Cc.z�z0/D 0, we often moveax0 Cby0 C
cz0 to the right hand side—and call this constantd :

11D With theP0 terms on the right side, the equation of the plane isN �PD d :

axCbyCczD ax0 Cby0 Ccz0 D d: (2)

A differentd gives aparallel plane; d D 0 gives aplane through the origin.

EXAMPLE 3 The planex�yC3zD 0 goes through the origin.0;0;0/. The
normal vector is read directly from the equation:N D .1;�1;3/. The equation is
satisfied byP0 D .1;1;0/ andP D .1;4;1/. Subtraction gives a vectorV D .0;3;1/
that is in the plane, andN�V D 0.

The parallel planesx�yC3zD d have the sameN but differentd ’s. These planes
miss the origin becaused is not zero.xD 0;yD 0;zD 0 on the left side needs
d D 0 on the right side). Note that3x�3yC9zD�15 is parallel to both planes.
N is changed to3N in Figure 11.9, but its direction is not changed.

EXAMPLE 4 The angle between two planes is the angle between their normal
vectors.

The planesx�yC3zD 0 and3yCzD 0 are perpendicular, because.1;�1;3/ �
.0;3;1/D 0. The planeszD 0 andyD 0 are also perpendicular, because.0;0;1/ �
.0;1;0/D 0. (Those are thexy plane and thexz plane.) The planesxCyD 0 and
xCzD 0make a60� angle, becausecos60� D .1;1;0/ � .1;0;1/=?2?2D 1

2
.

The cosine of the angle between two planes is|N1 �N2|=|N1||N2|. See Figure 11.10.
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Fig. 11.10 Angle between planes = angle between normals. Parallel and perpendicular to a
line. A line in space throughP0 andQ.

Remark1 We gave the “point-slope” equation of a line (usingm), and the “point-
normal” equation of a plane (usingN). What is the normal vectorN to a line ?

The vectorV D .1;m/ is parallel to the lineyDmxCb. The line goes across by
1 and up bym. The perpendicular vector isN D .�m;1/. The dot productN�V is�mCmD 0. Then the point-normal equation matches the point-slope equation:�m.x�x0/C1.y�y0/D 0 is the same asy�y0 Dm.x�x0/: (3)

Remark2 What is the point-slope equation for a plane ? The difficulty is that a
plane has different slopes in thex and y directions. The functionf .x;y/D
m.x�x0/CM.y�y0/ hastwo derivativesm andM .

This remark has to stop. In Chapter13; “slopes” become “partial derivatives.”

A LINE IN SPACE

In three dimensions, a line is not as simple as a plane.A line in space needs two
equations. Each equation gives a plane, and the line is theintersection of two planes.

The equationsxCyCzD 3 and 2xC3yCzD 6 determine a line:

Two points on that line areP0 D .1;1;1/ and QD .3;0;0/. They satisfy both
equations so they lie on both planes. Therefore they are on the line of intersection.
The direction of that line, subtracting coordinates ofP0 fromQ, is along the vector
V D 2i� j�k.

The line goes throughP0 D .1;1;1/ in the direction of V D 2i� j�k:

Starting from .x0;y0;z0/D .1;1;1/, add on any multipletV. ThenxD 1C2t
and
yD 1� t and zD 1� t . Those are the components of the vector equation
PD P0 C tV—which produces the line.

Here is the problem. The line needs two equations—or a vector equation with apa-
rametert . Neither form is as simple asaxCbyCczD d . Some books push ahead
anyway, to give full details about both forms. After trying this approach, I believe
that those details should wait. Equations with parameters are the subject of
Chapter12; and a line in space is the first example. Vectors and planes give plenty to
do here—especially when a vector is projected onto another vector or a plane.

PROJECTION OF A VECTOR

What is the projection of a vectorB onto another vectorA ? One part ofB goes
alongA—that is the projection. The other part ofB is perpendicularto A. We now
compute these two parts, which areP andB�P.
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In geometry, projections involvecos� . In algebra, we use the dot product (which
is closely tied tocos� ). In applications, the vectorB might be avelocityV or aforce
F:

An airplane flies northeast, and a100-mile per hour wind blows due
east. What is the projection ofV D .100;0/ in the flight directionA ?

Gravity makes a ball roll down the surface2xC2yCzD 0. What are
the projections ofF D .0;0;�mg/ in the plane and perpendicular to
the plane ?

The component ofV along A is the push from the wind (tail wind). The other
component ofV pushes sideways (crosswind). Similarly the force parallel to the
surface makes the ball move. Adding the two components brings backV or F.

Fig. 11.11 Projections alongA of wind velocityV and forceF and vectorB.

We now compute the projection ofB onto A. Call this projectionP. Since its
direction is known—Pis alongA—we can describeP in two ways:

1) Give thelength of P alongA
2) Give thevector Pas a multiple ofA.

Figure 11.11b shows the projectionP and its length. The hypotenuse is|B|. The
length is|P|D |B|cos� . The perpendicular componentB�P has length|B|sin� .
The cosine is positive for angles less than90�: The cosine (andP!) are zero when
A andB are perpendicular.|B|cos� is negative for angles greater than90�; and the
projection points along –A (the length is|B||cos� |). Unless the angle is0� or 30�
or 45� or 60� or 90�; we don’t want to compute cosines—and we don’t have to. The
dot product does it automatically:|A| |B|cos� D A �B so the length ofP along A is |B|cos� D

A �B|A| : (4)

Notice that the length ofA cancels out at the end of (4). IfA is doubled,P is
unchanged. But ifB is doubled, the projection is doubled.

What is the vectorP? Its length alongA is A �B=|A|. If A is a unit vector, then|A|D 1 and the projection isA �B timesA. GenerallyA is not a unit vector, until we
divide by|A|. Here is the projectionP of B alongA:

PD (length of P)(unit vector) D

�

A �B|A| �� A|A|�D
A �B|A|2 A: (5)
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EXAMPLE 5 For the wind velocityV D .100;0/ and flying directionA D .1;1/,
find P. HereV points east,A points northeast. The projection ofV ontoA is P:

length|P|D A �V|A| D
100?
2

vectorPD
A �V|A|2 A D

100

2
.1;1/D .50;50/:

EXAMPLE 6 ProjectF D .0;0;�mg/ onto the plane with normalN D .2;2;1/.

The projection ofF alongN is not the answer. But compute that first:

F �N|N| D�mg
3

PD
F �N|N|2 N D�mg

9
.2;2;1/:

P is the component ofF perpendicularto the plane. It doesnot move the ball. The
in-plane component is the differenceF�P. Any vectorB has two projections, along
A and perpendicular:

The projectionPD
A �B|A|2 A is perpendicular to the remaining componentB�P:

EXAMPLE 7 ExpressB D i� j as the sum of a vectorP parallel toA D 3iC j and
a vectorB�P perpendicular toA. NoteA �B D 2.

Solution PD
A �B|A|2 A D

2

10
A D

6

10
i C

2

10
j . ThenB�PD

4

10
i� 12

10
j .

Check: P�.B�P/D
�

6
10

��

4
10

��� 2
10

��

12
10

�

D 0: These projections ofB are perpendicular.

Pythagoras: |P|2 C |B�P|2 equals|B|2. Check that too:0:4C1:6D 2:0.

Question When isPD 0? Answer WhenA andB are perpendicular.

EXAMPLE 8 Find the nearest point to the origin on the planexC2yC2zD
5.

The shortest distance from the origin is along the normal vectorN. The vectorP
to the nearest point (Figure 11.12) ist timesN, for some unknown numbert . We find
t by requiringPD tN to lie on the plane.

The planexC2yC2zD 5 has normal vectorN D .1;2;2/. ThereforePD tN D
.t;2t;2t/. To lie on the plane, this must satisfyxC2yC2zD 5:

tC2.2t/C2.2t/D 5 or 9t D 5 or t D 5
9
: (6)

ThenPD 5
9
ND.5

9
; 10

9
; 10

9
/.That locates the nearest point.The distance is5

9
|N|D 5

3
.

This example is important enough to memorize, with letters not numbers:

11E On the planeaxCbyCczD d , the nearest point to.0;0;0/ is

P D
.da;db;dc/

a2 Cb2 Cc2
: The distance is

|d |?
a2 Cb2 Cc2

: (7)

The steps are the same.N has componentsa;b;c. The nearest point on the plane is
a multiple.ta; tb; tc/. It lies on the plane ifa.ta/Cb.tb/Cc.tc/Dd .
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Thus t D d=.a2 Cb2 Cc2/. The point.ta; tb; tc/D tN is in equation (7). The
distance to the plane is|tN|D |d |=|N|.

Fig. 11.12 Vector to the nearest pointP is amultiple tN. The distance is in.7/ and.9/:

Question How far is the plane from an arbitrary pointQD .x1;y1;z1/ ?

Answer The vector fromQ toP is our multipletN. In vector formPD QC tN.
This reaches the plane ifP�N D d , and again we findt :

.QC tN/ �N D d yields t D .d�Q �N/=|N|2: (8)

This new termQ �N enters the distance fromQ to the plane:

distanceD|tN|D|d�Q �N|=|N|D|d�ax1�by1�cz1|=aa2 Cb2 Cc2: (9)

When the point is on the plane, that distance is zero—becauseax1 Cby1 Ccz1 D d .
WhenQ is i C3j C2k, the figure showsQ �N D 11 and distanceD 2.

PROJECTIONS OF THE HEART VECTOR

An electrocardiogram has leads to your right arm–left arm–left leg. You produce
the voltage. The machine amplifies and records the readings. There are also six chest
leads, to add a front-back dimension that is monitored across the heart. We will
concentrate on the big “Einthoven triangle,” named after the inventor of the ECG.

The graphs show voltage variations plotted against time. The first graph plots the
voltage difference between the arms. Lead II connects the left leg to the right arm.
Lead III completes the triangle, which has roughly equal sides (especially if you are
a little lopsided). So the projections are based on60� and120� angles.

The heart vectorV is the sum of many small vectors—all moved to the same
origin. V is the net effect of action potentials from the cells—small dipoles adding
to a single dipole. The pacemaker (S�A node) starts the impulse. The atria depolar-
ize to give the P wave on the graphs. This is actually a Ploop of the heart vector—
the graphs only show its projections. The impulse reaches theAV node, pauses, and
moves quickly through the ventricles. This produces the QRS complex—the large
sharp movement on the graph.
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Fig. A The graphs show the component of the moving heart vector along each lead. These
figures art reproduced with permission from the CIBA Collection of Medical Illustra-
tions by Frank H. Netter, M.D. Copyright1978 CIBA-GEIGY, all rights reserved.

The totalQRSinterval should not exceed1=10 second(21
2

spaces on the print-
out).V points first toward the right shoulder. This direction is opposite to the leads,
so the tracings go slightly down. That is the Q wave, small and negative. Then the
heart vector sweeps toward the left leg. In positions3 and4, its projection on lead I
(between the arms) is strongly positive. The R wave is this first upward deflection in
each lead. Closing the loop, the S wave is negative (best seen in leads I and aVR).

Question 1 How many graphs from the arms and leg are really independent?

Answer Only two! In a plane, the heart vectorV has two components. If we know
two projections, we can compute the others. (The ECG does that for us.) Different
vectors show better in different projections. A mathematician would use90� angles,
with an electrode at your throat.

Question 2 How are the voltages related ? What is the aVR lead ?

Answer Project the heart vectorV onto the sides of the triangle:

The lead vectors haveL I �L II CL III D 0— they form a triangle.

The projections haveVI�VII CVIII D V �L I�V �L II CV �L III D 0.

The aVR lead is�1
2
L I � 1

2
L I I . It is pure algebra (no wire). By vector addition it points

toward the electrode on the right arm. Its length is
?
3 if the other lengths are2:

Including aVL and aVF to the left arm and foot, there aresix leads intersecting at
equal angles. Visualize them going out from a single point (the origin in the chest).

Question 3 If the heart vector isV D 2i� j, what voltage differences are recorded ?

Answer The leads around the triangle have length2: The machine projectsV:

Lead I is the horizontal vector2i. SoV �L I D 4.
Lead II is the�60� vector i�?3j . SoV �L II D 2C

?
3.

Lead III is the�120� vector�i�?3j . SoV �L III D�2C
?
3.

The first and third add to the second. The largest R waves are in leads I and II. In
aVR the projection ofV will be negative (Problem46), and will be labeled an S
wave.

Question 4 What about thepotential (not just its differences). Is it zero at the
center ?
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Fig. B Heart vector goes around the QRS loop. Projections are spikes onthe ECG.

Answer It is zero if we say so. The potential contains an arbitrary constantC . (It
is like an indefinite integral. Its differences are like definite integrals.) Cardiologists
define a “central terminal” where the potential is zero.

The average ofV over a loop is themean heart vectorH. This average requiresr
Vdt , by Chapter5:With no time to integrate, the doctor looks for a lead where the

area under the QRS complex is zero. Then the direction ofH (theaxis) is perpendic-
ular to that lead. There is so much to say about calculus in medicine.

11.2 EXERCISES

Read-through questions

A plane in space is determined by a pointP0 D .x0;y0;z0/

and a a vector N with components.a;b;c/. The point
P D .x;y;z/ is on the plane if the dot product ofN with b
is zero. (That answer was notP Š) The equation of this plane
is a. c /Cb. d /Cc. e /D 0. The equation is also
written asaxCbyCczD d , where d equals f . A parallel
plane has the same g and a different h . A plane
through the origin hasd D i .

The equation of the plane throughP0 D .2;1;0/ perpendicu-
lar to N D .3;4;5/ is j . A second point in the plane is
P D .0;0; k ). The vector fromP0 to P is l , and it is

m to N. (Check by dot product.) The plane throughP0 D

.2;1;0/ perpendicular to thez axis hasN D n and equation
o .

The component of B in the direction of A is p ,
where � is the angle between the vectors. This isA �B divided
by q . The projection vector P is |B|cos� times a

r vector in the direction ofA. Then PD .|B|cos�/.A=|A|/
simplifies to s . When B is doubled,P is t . When A
is doubled,P is u . If B reverses direction thenP v . If
A reverses direction thenP w .

When B is a velocity vector,P represents the x . WhenB
is a force vector,P is y . The component ofB perpendicular
to A equals z . The shortest distance from.0;0;0/ to
the plane axCbyCczD d is along the A vector. The
distance is B and the closest point on the plane isP D C
The distance fromQ D .x1;y1;z1/ to the plane is D .

Find two points P and P0 on the planes 1–6 and a normal
vector N:Verify that N �.P �P0/D 0.

1 xC2yC3zD 0 2 xC2yC3zD 6 3 theyz plane
4 the plane through.0;0;0/ perpendicular toi C j�k

5 the plane through.1;1;1/ perpendicular toi C j�k

6 the plane through.0;0;0/ and.1;0;0/ and.0;1;1/:

Find an x�y�z equation for planes 7–10.

7 The plane throughP0 D .1;2;�1/ perpendicular toN D i C j

8 The plane throughP0 D .1;2;�1/ perpendicular toN D

i C2j�k

9 The plane through.1;0;1/ parallel toxC2yCzD 0
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10 The plane through.x0;y0;z0/ parallel toxCyCzD 1.

11 When is a plane with normal vectorN parallel to the
vectorV ? When is it perpendicular toV ?

12 (a) If two planes are perpendicular (front wall and side
wall), is every line in one plane perpendicular to every line in
the other ?
(b) If a third plane is perpendicular to the first, it might be (par-
allel) (perpendicular) (at a45� angle) to the second.

13 Explain why a plane cannot

(a) contain .1;2;3/ and .2;3;4/ and be perpendicular to
N D i C j
(b) be perpendicular toN D i C j and parallel toV D i Ck
(c) contain.1;0;0/; .0;1;0/; .0;0;1/, and.1;1;1/

(d) contain.1;1;�1/ if it has N D i C j�k (maybe it can)

(e) go through the origin and have the equation
axCbyCczD 1.

14 The equation3xC4yC7z� t D 0 yields a hyperplane in
four dimensions. Find its normal vectorN and two pointsP , Q on
the hyperplane. Check.P �Q/ �N D 0.

15 The plane through.x;y;z/ perpendicular toai Cbj Cck goes
through .0;0;0/ if . The plane goes through.x0;y0;z0/

if .

16 A curve in three dimensions is the intersection of
surfaces. A line in four dimensions is the intersection of hy-
perplanes.

17 (angle between planes) Find the cosine of the angle
between xC2yC2zD 0 and (a) xC2zD 0 (b) xC2zD 5

(c) xD 0.

18 N is perpendicular to a plane andV is along a line. Draw
the angle� between the plane and the line, and explain why
V �N=|V||N| is sin� not cos� . Find the angle between thexy
plane andV D i C j C

?
2k.

In 19–26 find the projection P of B along A. Also find|P|.
19 A D .4;2;4/; B D .1;�1;0/
20 A D .1;�1;0/; B D .4;2;4/

21 B D unit vector at60� angle withA

22 B D vector of length2 at60� angle withA

23 B D�A 24 A D i C j ; B D i Ck

25 A is perpendicular tox�yCzD 0; B D i C j .

26 A is perpendicular tox�yCzD 5; B D i C j C5k.

27 The forceF D 3i�4k acts at the point.1;2;2/. How much force
pulls toward the origin ? How much force pulls vertically down ?
Which direction does a mass move under the forceF ?

28 The projection ofB along A is PD .The projection
of B perpendicular toA is . Check the dot product of the
two projections.

29 PD .x;y;z/ is on the planeaxCbyCczD 5 if P�N D|P||N|cos� D 5. Since the largest value of cos� is 1, the smallest
value of|P| is . This is the distance between .

30 If the air speed of a jet is500 and the wind speed is50,
what information do you need to compute the jet’s speed over
land ? What is that speed ?

31 How far is the planexCy�zD 1 from .0;0;0/ and also
from .1;1;�1/ ? Find the nearest points.

32 Describe all points at a distance1 from the plane
xC2yC2zD 3.

33 The shortest distance fromQD .2;1;1/ to the plane
xCyCzD 0 is along the vector . The point PD

QC tN D .2C t;1C t;1C t/ lies on the plane if t D .
Then PD and the shortest distance is .
(This distance is not|P|.)
34 The plane through .1;1;1/ perpendicular to N D

i C2j C2k is a distance from .0;0;0/.

35 (Distance between planes)2x�2yCzD 1 is parallel
to 2x�2yCzD 3 because . Choose a vectorQ on the first
plane and findt so thatQC tN lies on the second plane. The distance
is |tN|D .

36 The distance between the planesxCyC5zD 7 and
3xC2yCzD 1 is zero because .

In Problems 37–41 all points and vectors are in thexy plane.

37 The line 3xC4y D 10 is perpendicular to the vectorN D

. On the line, the closest point to the origin isP D tN.
Find t andP and|P |.
38 Draw the line xC2yD 4 and the vector N D i C2j . The
closest point toQD .3;3/ isP DQC tN. Find t . FindP .

39 A new way to findP in Problem 37: minimize x2 Cy2 D

x2 C
�

10
4 � 3

4x
�2. By calculus find the bestx andy.

40 To catch a drug runner going from.0;0/ to .4;0/ at 8 meters
per second, you must travel from.0;3/ to .4;0/ at meters
per second. The projection of your velocity vector onto his velocity
vector will have length .

41 Show by vectors that the distance from.x1;y1/ to the line
axCbyD d is |d�ax1�by1|=?a2 Cb2.

42 It takes three points to determine a plane. So why does
axCbyCczD d contain four numbersa;b;c;d ? When doesexC

fyCgzD 1 represent the same plane ?

43 (projections by calculus) The dot product ofB� tA with
itself is |B|2�2tA �BC t2 |A|2. (a) This has a minimum at
t D . (b) ThentA is the projection of . A figure show-
ing B; tA, andB� tA is worth1000 words.

44 From their equations, how can you tell if two planes are

(a) parallel (b) perpendicular (c) at a45� angle ?

Problems 45–48 are about the ECG and heart vector.
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45 The aVR lead is�1
2 L I � 1

2 L I I . Find the aVL and aVF
leads toward the left arm and foot. Show that
aVRCaVLCaVF D 0. They go out from the center at120�
angles.

46 Find the projection on the aVR lead ofV D 2i� j in
Question3:

47 If the potentials are'RA D 1 (right arm) and'LA D 2 and
'LL D�3, find the heart vectorV. The differencesin potential
are the projections ofV.

48 If V is perpendicular to a leadL , the reading on that lead
is . If

r
V.t/dt is perpendicular to leadL , why is the

areaunder the reading zero ?
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11.3 Cross Products and Determinants

After saying that vectors are not multiplied, we offered the dot product. Now we
contradict ourselves further, by defining the cross product. WhereA �B was a number,
the cross productA�B is a vector. It has length and direction:

The length is|A||B||sin� |: The direction is perpendicular toA and B:

The cross product (also called vector product) is defined in three dimensions only.
A and B lie on a plane through the origin.A�B is along the normal vectorN,
perpendicular to that plane. We still have to say whether it points “up” or “down”
alongN:

The length ofA�B depends onsin� , whereA �B involvedcos�: The dot product
rewards vectors for being parallel.cos0D 1/: The cross product is largest whenA is
perpendicular toB .sin�=2D 1/: At every angle|A �B|2 C |A�B|2 D |A|2|B|2 cos2�C |A|2|B|2 sin2� D |A|2|B|2: (1)

That will be a bridge from geometry to algebra.This section goes from definition
to formula to volume to determinant. Equations(6) and(14) are the key formulas
for A�B:

Notice thatA�A D 0: (This is the zero vector, not the zero number.) WhenB is
parallel toA, the angle is zero and the sine is zero. Parallel vectors haveA�B D 0:
Perpendicular vectors havesin� D 1 and|A�B|D |A||B|D area of rectangle with
sidesA andB:

Here are four examples that lead to the cross productA�B:

EXAMPLE 1 (From geometry) Find the area of a parallelogram and a triangle.

VectorsA andB, going out from the origin, form two sides of a triangle. They produce
the parallelogram in Figure 11.13, which is twice as large as the triangle.

The area of a parallelogram is base times height (perpendicular height not sloping
height). The base is|A|: The height is|B||sin� |: We take absolute values because
height and area are not negative. Then the area is the length of the cross product:

area of parallelogramD |A||B||sin� |D |A�B|: (2)

Fig. 11.13 Area|A�B| and moment|R�F|: Cross products are perpendicular to the page.

EXAMPLE 2 (From physics) The torque vectorT D R�F produces rotation.

The forceF acts at the point.x;y;z/: When F is parallel to the position vector
R D xi Cyj Czk, the force pushes outward (no turning). WhenF is perpendicu-
lar to R, the force createsrotation. For in-between angles there is an outward force



11.3 Cross Products and Determinants 487|F|cos� and a turning force|F|sin�: The turning force times the distance|R| is the
moment|R||F|sin�:

The moment gives the magnitude and sign of thetorque vectorT D R�F. The
direction ofT is along the axis of rotation, at right angles toR andF:

EXAMPLE 3 Does the cross product go up or down ?Usethe right-hand rule.

Forces and torques are probably just fine for physicists. Those who are not natural
physicists want to see something turn.� We can visualize a record or compact disc
rotating around its axis—which comes up through the center.

At a point on the disc, you give a push. When the push is outward (hard to do),
nothing turns. Rotation comes from force “around” the axis. The disc can turn
either way—depending on the angle between force and position. A sign convention
is necessary, and it is theright-hand rule:

A�B points along your right thumb when the fingers curl fromA towardB:

This rule is simplest for the vectorsi; j; k in Figure 11.14—which is all we need.
Suppose the fingers curl fromi to j: The thumb points alongk: The x-y-z axes

form a “ right-handed triple .” Since|i|D 1 and|j |D 1 andsin�=2D 1, the length
of i� j is 1: The cross product isi� j D k. The disc turns counterclockwise—its
angular velocity is up—when the force acts ati in the directionj:

Figure 11.14b reversesi and j: The force acts atj and its direction isi: The disc
turns clockwise (the way records and compact discs actually turn). When the fingers
curl from j to i, the thumb pointsdown. Thusj� i D�k: This is a special case of an
amazing rule:

The cross product isanticommutative: B�A D�.A�B/: (3)

That is quite remarkable. Its discovery by Hamilton produced an intellectual
revolution in19 th century algebra, which had been totally accustomed toABDBA:
This commutative law is old and boring for numbers (it is new and boring for dot
products). Here we see itsoppositefor vector productsA�B: Neither law holds for
matrix products.

Fig. 11.14 i� j D k D�.j� i/ i�k D�j D�.k� i/ j�k D i D�.k� j /:

EXAMPLE 4 A screw goes into a wall or out, following the right-hand rule.

Thedisc was in thexy plane. So was the force. (We are not breaking records here.)
The axis was up and down. To see the cross product more completely we need to
turn a screw into a wall.

Figure 11.14b shows thexz plane as the wall. The screw is in they direction. By
turning fromx towardz we drive the screwinto the wall—which is thenegativey

�Everybody is a natural mathematician. That is the axiom behind this book.
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direction. In other wordsi�k equalsminusj: We turn the screw clockwise to make
it go in. To take out the screw, twist fromk towardi: Thenk� i equalsplusj:

To summarize: k� i D j andj�k D i have plus signs becausekij andjki are in the
same “cyclic order” as ijk : (Anticyclic is minus.) Thez-x-y andy-z-x axes form
righthanded triples likex-y-z:

THE FORMULA FOR THE CROSS PRODUCT

We begin the algebra ofA�B: It is essential for computation, and it comes out
beautifully. The square roots in|A||B||sin� |will disappear in formula(6) for A�B:
(The square roots also disappeared inA �B, which is |A||B|cos�: But |A||B| tan�
would be terrible.) SinceA�B is a vector we need to findthree components.

Start with the two-dimensional case. The vectorsa1i Ca2j andb1i Cb2j are in the
xy plane. Their cross product must go in thez direction. ThereforeA�B D ? k
and there is only one nonzero component. It must be|A||B|sin� (with the correct
sign), but we want a better formula. There are two clean ways to computeA�B,
either by algebra (a) or by a bridge (b) to the dot product and geometry:

(a) .a1i Ca2j/� .b1i Cb2j/ D a1b1i� i Ca1b2i� j Ca2b1j� i Ca2b2j� j:(4)

On the right are0; a1b2k; �a2b1k and 0: The cross product is.a1b2�a2b1/k:

(b) RotateB D b1i Cb2j clockwise through90� into B� D b2i�b1j: Its length is
unchanged (andB �B� D 0). Then|A||B�|sin� equals|A||B�cos� , which isA �B�:|A||B|sin� D A �B� D

"

a1

a2

# �" b2�b1

#

D a1b2�a2b1: (5)

11F In thexy plane,A�B equals.a1b2�a2b1/k: The parallelogram with sides
A andB has area|a1b2�a2b1|: The triangleOAB has area1

2
|a1b2�a2b1|:

EXAMPLE 5 For A D i C2j andB D 4i C5j the cross product is (1 �5�2 �4)k D�3k: Area of parallelogramD 3, area of triangleD 3=2: The minus sign inA�B D�3k is absent in the areas.

Note Splitting A�B into four separate cross products is correct, but it does not
follow easily from |A||B|sin�: Method (a) is not justified until Remark1 below.
An algebraist would change the definition ofA�B to start with the distributive law
(splitting rule) and the anticommutative law:

A� .BCC/D .A�B/C.A�C/ and A�B D�.B�A/:

THE CROSS PRODUCT FORMULA (3 COMPONENTS)

We move to three dimensions. The goal is to compute all three components of
A�B (not just the length). Method (a) splits each vector into itsi; j; k components,
making nine separate cross products:

.a1i Ca2j Ca3k/� .b1i Cb2j Cb3k/D a1b2.i� i/Ca1b2.i� j/C seven more terms:
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Rememberi� i D j� j D k�k D 0: Those three terms disappear. The other six
terms come in pairs, andplease notice the cyclic pattern:

FORMULA A �B D .a2b3�a3b2/i C .a3b1�a1b3/j C .a1b2�a2b1/k: (6)

Thek component is the2�2 answer, whena3 D b3 D 0: The i component involves
indices2 and3, j involves3 and1, k involves1 and2: The cross product formula
is written as a “determinant” in equation(14) below—many people use that form to
computeA�B:

EXAMPLE 6 .i C2j C3k/� .4i C5j C6k/D .2 �6�3 �5/i C .3 �4�1 �6/j C .1 �
5�
2 �4/k: The i; j; k components giveA�B = �3i C6j�3k: Never add the�3;6;
and�3:
Remark1 The three-dimensional formula(6) is still to be matched withA�B
from geometry. One way is to rotateB into B� as before, staying in the plane ofA
andB: Fortunately there is an easier test. The vector in equation(6) satisfies all four
geometric requirements onA�B: perpendicular toA, perpendicular toB, correct
length, right-hand rule. The length is checked in Problem16—here is the zero dot
product withA:

A � .A�B/D a1.a2b3�a3b2/Ca2.a3b1�a1b3/Ca3.a1b2�a2b1/D 0: (7)

Remark2 (Optional) There is a wonderful extension of the Pythagoras formula
a2 Cb2 D c2: Instead of sides of a triangle, we go toareas of projectionson theyz,
xz, andxy planes.32 C62 C32 is the square of the parallelogram area in Example 6.

For triangles these areas are cut in half. Figure 11.15a shows three projected

triangles of area1
2
: Its Pythagoras formula is

�

1
2

�2
C
�

1
2

�2
C
�

1
2

�2
= (area ofPQR)2:

EXAMPLE 7 P D .1;0;0/;QD .0;1;0/;RD .0;0;1/ lie in a plane. Find its
equation.

Idea for anyP;Q;R: Find vectorsA and B in the plane. Compute the normal
N D A�B:

Solution The vector fromP toQ has components�1;1;0: It is A D j� i (subtract
to go fromP toQ). Similarly the vector fromP to R is B D k� i: SinceA andB
are in the plane of Figure 11.15,N D A�B is perpendicular:

.j� i/� .k� i/D .j�k/� .i�k/� .j� i/C .i� i/D i C j Ck: (8)

The normal vector isN D i C j Ck: Theequation of the plane is1xC1yC1zD
d:

With the right choiced D 1, this plane containsP, Q, R. The equation isxCyCzD
1:

EXAMPLE 8 What is the area of this same trianglePQR?

Solution The area is half of the cross-product length|A�B|D |i C j Ck|D?3:
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Fig. 11.15 Area ofPQRis
?
3=2: N isPQ�PR: Volume of box is|A �.B�C/|:

DETERMINANTS AND VOLUMES

We are close to good algebra. The two plane vectorsa1i Ca2j and b1i Cb2j are the
sides of a parallelogram. Its area isa1b2�a2b1, possibly with a sign change. There
is a special way to write these four numbers—in a “square matrix.” There is also a
name for the combination that leads to area. It is the “determinant of the matrix”:

The matrix is

"

a1 a2

b1 b2

#

; its determinant is

���� a1 a2

b1 b2

����D a1b2�a2b1:

This is a2 by 2 matrix (notice brackets) and a2 by 2 determinant (notice vertical
bars). The matrix is an array of four numbers and the determinant is one number:

Examples of determinants:

���� 2 1

4 3

����D 6�4D 2;

���� 2 1

2 1

����D 0;

���� 1 0

0 1

���� D 1:

The second has no area becauseA D B: The third is a unit square.A D i;B D j/:
Now move to three dimensions, where determinants are most useful. The

parallelogram becomes a parallelepiped. The word “box” is much shorter, and we
will use it, but remember thatthe box is squashed. (Like a rectangle squashed to a
parallelogram, the angles are generally not90�.) The three edges from the origin are
A D .a1;a2;a3/;B D .b1;b2;b3/;C D .c1; c2; c3/: Those edges are at right angles
only whenA �B D A �C D B �C D 0:

Question: What is the volume of the box? The right-angle case is easy—it is
length times width times height. The volume is|A| times |B| times |C|, when the
angles are90�. For a squashed box (Figure 11.15) we need the perpendicular height,
not the sloping height.

There is a beautiful formula for volume.B andC give a parallelogram in the base,
and|B�C| is the base area. This cross product points straight up. The third vector
A points up at an angle—its perpendicular height is|A|cos�: Thus the volume is
area|B�C| times|A| timescos�: The volume is the dot product ofA with B�
C:

11G Thetriple scalar productis A � .B�C/: Volume of boxD |A �.B�C/|:
Important : A �.B�C/ is a number, not a vector. This volume is zero whenA is in
the same plane asB andC (the box is totally flattened). ThenB�C is perpendicular
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to A and their dot product is zero.

Useful factsW A � .B�C/D .A�B/ �C D C �.A�B/D B � .C�A/:

All those come from the same box, with different sides chosen asbase—but no change
in volume. Figure 11.15 hasB andC in the base but it can beA andB or A andC:
The triple productA � .C�B) has opposite sign, sinceC�B D�.B�C). This
orderACB is not cyclic likeABC andCAB andBCA:

To compute this triple productA � .B�C/, we takeB�C from equation(6):

A � .B�C/D a1.b2c3�b3c2/Ca2.b3c1�b1c3/Ca3.b1c2�b2c1/: (9)

Thenumbersa1;a2;a3 multiply 2 by 2 determinants to give a3 by 3 determinant!
There are three terms with plus signs (likea1b2c3). The other three have minus signs
(like�a1b3c2). The plus terms have indices123;231;312 in cyclic order. The minus
terms have anticyclic indices132;213;321: Again there is a special way to write the
nine components ofA;B;C—as a “3by 3 matrix.” The combination in(9), which
gives volume, is a “3by 3 determinant:”

matrix D

2

6

4

a1 a2 a3

b1 b2 b3

c1 c2 c3

3

7

5
; determinant D A � .B�C/D

������� a1 a2 a3

b1 b2 b3

c1 c2 c3

������� :
A single number is produced out of nine numbers, by formula.9/: The nine

numbers are multiplied three at a time, as ina1b1c2—except this product is not
allowed.Each row and column must be represented once. This gives the six terms
in the determinant:������� a1 a2 a3

b1 b2 b3

c1 c2 c3

�������D a1b2c3 Ca2b3c1 Ca3b1c2�a1b3c2�a2b1c3�a3b2c1

(10)

Thetrick is in the� signs. Products down to the right are “plus”:������� 2 1 1

1 2 1

1 1 2

�������D 2 �2 �2C1 �1 �1�C1 �1 �1�2 �1 �1� 1 �1 �2 �1 �2 �1 D
8C1C1�2�2�2 D 4:

With practice the six products like2 �2 �2 are done in your head. Write down only
8C1C1�2�2�2D 4: This is the determinant and the volume.

Note the special case when the vectors arei; j; k: The box is a unit cube:

volume of cube D

�������1 0 0

0 1 0

0 0 1

�������D 1C0C0�0�0�0 D 1:

If A;B;C lie in the same plane, the volume is zero. A zero determinant is the
test to see whether three vectors lie in a plane. Here rowA D row B� row C:������� 0 1 �1�1 1 0�1 0 1

�������D 0 �1 �1C1 �0 � .�1/C .�1/ � .�1/ �0�0 �0 �0�1 � .�1/ �1� .�1/ �1 � .�1/ D 0: (11)

Zeros in the matrix simplify the calculation. All three products with plus signs—
down to the right—are zero. The only two nonzero products cancel each other.
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If the three�1’s are changed toC1’s, the determinant is�2: The determinant can
be negative when all nine entries are positive! A negative determinant only means
that the rowsA;B;C form a “left-handed triple.” This extra information from the
sign—right-handed vs. left-handed—is free and useful, but the volume is the absolute
value.

The determinant yields the volume also in higher dimensions. In physics, four
dimensions give space-time. Ten dimensions give superstrings. Mathematics uses
all dimensions. The64 numbers in an8 by 8 matrix give the volume of an eight-
dimensional box—with8ŠD 40;320 terms instead of3ŠD 6: Under pressure from
my class I omit the formula.

Question When is the point.x;y;z/ on the plane through the origin containingB
andC ? For the vectorA D xi Cyj Czk to lie in that plane, the volumeA � .B�C/
must be zero. The equation of the plane isdeterminantD zero.

Follow this example forB D j� i andC D k� i to find the plane parallel toB and
C: ������� x y z�1 1 0�1 0 1

�������D x �1 �1Cy �0 � .�1/Cz �0 � .�1/�x �0 �0�y �1 � .�1/�z �1 � .�1/ D 0: (12)

This equation isxCyCzD 0: The normal vectorN D B�C has components1;1;1:

THE CROSS PRODUCT AS A DETERMINANT

There is a connection between3 by 3 and 2 by 2 determinants that you have to see.
The numbers in the top row multiply determinants from the other rows:������� a1 a2 a3

b1 b2 b3

c1 c2 c3

�������D a1

���� b2 b3

c2 c3

�����a2

���� b1 b3

c1 c3

����Ca3

���� b1 b2

c1 c2

���� : (13)

The highlighted producta1.b2c3�b3c2/ gives two of the six terms.All six
products contain ana and b and c from different columns. There are3ŠD 6
different orderings of columns1;2;3: Note howa3 multiplies a determinant from
columns1 and2:

Equation(13) is identical with equations(9) and(10). We are meeting the same
six terms in different ways. The new feature is the minus sign in front ofa2—and
the common mistake is to forget that sign. In a4 by 4 determinant,a1;�a2;a3;�a4

would multiply3 by 3 determinants.
Now comes a key step. We writeA�B as a determinant. The vectorsi; j; k go in

the top row, the components ofA andB go in the other rows.The “determinant” is
exactlyA�B:

A�B D

������� i j k

a1 a2 a3

b1 b2 b3

�������D i

���� a2 a3

b2 b3

����� j

���� a1 a3

b1 b3

����Ck

���� a1 a2

b1 b2

���� : (14)

This time we highlighted thej component with its minus sign. There is no great
mathematics in formula(14)—it is probably illegal to mixi; j; k with six numbers
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but it works. This is the good way to remember and computeA�B: In the example
.j� i/� .k� i/ from equation(8), those two vectors go into the last two rows:������� i j k�1 1 0�1 0 1

�������D i

���� 1 0

0 1

����� j

���� �1 0�1 1

����Ck

���� �1 1�1 0

����D i C j Ck:

The k component is highlighted, to seea1b2�a2b1 again. Note the change from
equation(11), which had0;1;�1 in the top row. That triple product was a number
(zero). This cross product is a vectori C j Ck:

Review question 1 With thei; j; k row changed to3;4;5;what is the determinant ?
Answer 3 �1C4 �1C5 �1D 12:That triple product is the volume of a box.

Review question 2 When isA�B D 0and when isA � .B�C/D 0 ? Zero vector,
zero number.
Answer WhenA andB are on the same line. WhenA;B;C are in the same plane.

Review question 3 Does the parallelogram area|A�B| equal a2 by 2 determi-
nant ?
Answer If A andB lie in thexy plane,yes. Generallyno.

Review question 4 What are thevector triple products .A�B/�C and
A� .B�C/ ?
Answer Not computed yet. These are two new vectors in Problem47:

Review question 5 Find the plane through the origin containingA D i C j C2k
andB D i Ck: Find the cross product of those same vectorsA andB:
Answer The position vectorPD xi Cyj Czk is perpendicular toN D A�B:

P� .A�B/D

������� x y z

1 1 2

1 0 1

�������D xCy�zD 0: A�B D

������� i j k

1 1 2

1 0 1

�������D i C j�k:

11.3 EXERCISES

Read-through questions

The cross productA�B is a a whose length is b .
Its direction is c to A and B: That length is the area of
a d , whose base is|A| and whose height is e . When
A D a1i Ca2j and B D b1i Cb2j , the area is f . This equals
a2 by 2 g . In general|A �B|2 C |A�B|2 D h .

The rules for cross product areA�A D i and
A�B D�( j ) and A�.BCC/D A�BC k . In
particular A�B needs the l -hand rule to decide its
direction. If the fingers curl fromA towards B (not more than
180�), then m points n . By this rule i� j D o and
i�k D p andj�k D q .

The vectorsa1i Ca2j Ca3k and b1i Cb2j Cb3k have cross
product r iC s jC t k: The vectorsA D i C j Ck and
B D i C j have A�B D u . (This is also the 3 by
3 determinant v .) Perpendicular to the plane containing
.0;0;0/; .1;1;1/; .1;1;0/ is the normal vectorN D w . The
area of the triangle with those three vertices isx , which is
half the area of the parallelogram with fourth vertex aty .

Vectors,A;B;C from the origin determine a z . Its volume|A �. A /| comes from a3 by 3 B . There are six terms,
C with a plus sign and D with minus. In every term each

row and E is represented once. The rows.1;0;0/; .0;0;1/, and
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.0;1;0/ have determinantD F . That box is a G , but its
sides form a H -handed triple in the order given.

If A;B;C lie in the same plane thenA �.B�C/ is I . For
A D xi Cyj Czk the first row contains the letters J . So the
plane containingB and C has the equation K D 0: When
B D i C j andC D k that equation is L . B�C is M .

A 3 by 3 determinant splits into N 2 by 2 determinants.
They come from rows2 and 3, and are multiplied by the entries
in row 1: With i, j , k in row 1, this determinant equals the O
product. Itsj component is P , including the Q sign which
iseasy to forget.

Compute the cross products 1–8 from formula (6) or the
determinant (14). Do one example both ways.

1 .i� j /�k

3 .2i C3j /�.i Ck/

5 .2i C3j Ck/�.i� j�k/

2 .i� j /� i

4 .2i C3j Ck/�.2i C3j�k/

6 .i C j�k/�.i� j Ck/

7 .i C2j C3k/�.4i�9j /
8 .i cos�C j sin �/�.i sin�� j cos�/

9 When are|A�B|D |A||B| and|A �.B�C/|D |A||B||C|?
10 True or false:

(a) A�B never equalsA �B:
(b) If A�B D 0 andA �B D 0, then eitherA D 0 or B D 0:
(c) If A�B D A�C andA ¤ 0; thenB D C:

In 11–16 find |A�B| by equation (1) and then by computing
A�B and its length.

11 A D i C j Ck; B D i

13 A D�B

12 A D i C j ; B D i� j

14 A D i C j ; B D j Ck

15 A D a1i Ca2j ; B D b1i Cb2j

16 A D .a1;a2;a3/; B D .b1;b2;b3/

In Problem 16 (the general case), equation (1) proves that the
length from equation (6) is correct.

17 True or false, by testing onA D i; B D j ; C D k:
(a) A�.A�B/D 0 (b) A � .B�C/D .A�B/ �C
(c) A �.B�C/D C � .B�A/
(d) .A�B/�.A CB/D 2.A�B/:

18 (a) FromA�B D�.B�A/ deduce thatA�A D 0.
(b) Split .A CB/�.A CB/ into four terms, to deduce that
.A�B/D�.B�A/:

What are the normal vectors to the planes 19–22?

19 .2;1;0/ �.x;y;z/D 4

21

������� x y z

1 1 0

0 1 1

�������D 2

20 3xC4zD 5

22

������� x y z

1 1 1

1 1 2

�������D 0

Find N and the equation of the plane described in 23–29.

23 Contains the points.2;1;1/, .1;2;1/, .1;1;2/

24 Contains the points.0;1;2/, .1;2;3/, .2;3;4/

25 Through.0;0;0/, .1;1;1/, .a;b;c/ [What if aD bD c ? ]

26 Parallel toi C j andk

27 N makes a45� angle withi andj

28 N makes a60� angle withi andj

29 N makes a90� angle withi andj

30 The triangle with sidesi and j is as large as
the parallelogram with those sides. The tetrahedron with edges
i; j ;k is as large as the box with those edges. Extra
credit: In four dimensions the “simplex” with edgesi; j ;k; l
has volumeD :

31 If the points .x;y;z/, .1;1;0/, and .1;2;1/ lie on a plane
through the origin, what determinant is zero ? What equation
does this give for the plane ?

32 Give an example of a right-hand triple and left-hand triple.
Usevectors other than justi; j ; k:

33 When B D 3i C j is rotated 90� clockwise in thexy plane
it becomesB� D : When rotated90� counterclockwise
it is : When rotated180� it is :

34 From formula (6) verify thatB �.A�B/D 0:

35 Compute������� 1 2 3

2 3 4

3 4 6

������� ; ������� 2 1 0

1 2 1

0 1 2

������� ; ������� 1 0 2

0 3 0

2 0 1

������� :
36 Which of the following are equal toA�B ?
.A CB/�B; .�B/�.�A/; |A||B| |sin� |; .A CC/�.B�C/;
1
2.A�B/�.A CB/:

37 Compare the six terms on both sides to prove that������� a1 b1 c1

a2 b2 c2

a3 b3 c3

�������D ������� a1 a2 a3

b1 b2 b3

c1 c2 c3

������� :
The matrix is “transposed”—same determinant.

38 Compare the six terms to prove that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1 a2 a3

b1 b2 b3

c1 c2 c3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D�b1

ˇ

ˇ

ˇ

ˇ

ˇ

a2 a3

c2 c3

ˇ

ˇ

ˇ

ˇ

ˇ

Cb2

ˇ

ˇ

ˇ

ˇ

ˇ

a1 a3

c1 c3

ˇ

ˇ

ˇ

ˇ

ˇ

�b3

ˇ

ˇ

ˇ

ˇ

ˇ

a1 a2

c1 c2

ˇ

ˇ

ˇ

ˇ

ˇ

:

This is an “expansion on row2:” Note minus signs.
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39 Choose the signs and2 by 2 determinants in������� a1 a2 a3

b1 b2 b3

c1 c2 c3

�������D�c1 ����� a2 a3

b2 b3

������c2 �c3 :

40 Show that .A�B/C.B�C/C.C�A/ is perpendicular to
B�A andC�B andA�C:

Problems 41–44 compute the areas of triangles.

41 The trianglePQR in Example7 has squared area.
?
3=2/2 D

.1
2 /

2 C.1
2 /

2 C.1
2 /

2, from the 3D version of Pythagoras in
Remark2: Find the area ofPQRwhenP D .a;0;0/;QD .0;b;0/;

andRD .0;0;c/: Check with1
2 |A�B|:

42 A triangle in the xy plane has corners at.a1;b1/; .a2;b2/

and .a3;b3/: Its area A is half the area of a parallelogram.
Find two sides of the parallelogram and explain why

AD 1
2 |.a2�a1/.b3�b1/�.a3�a1/.b2�b1/|:

43 By Problem42 find the areaA of the triangle with corners
.2;1/ and .4;2/ and .1;2/: Where is a fourth corner to make a
parallelogram ?

44 Lifting the triangle of Problem42 up to the planezD 1

gives corners.a1;b1;1/; .a2;b2;1/; .a3;b3;1/: The area of the
triangle times 1

3 is the volume of the upside-down pyramid
from .0;0;0/ to these corners. This pyramid volume is16 the

box volume, so1
3 (area of triangle)D 1

6 (volume of box):

area of triangleD
1

2

������� a1 b1 1

a2 b2 1

a3 b3 1

������� :
Find the areaA in Problem43 from this determinant.

45 (1) The projections ofA D a1i Ca2j Ca3k and B D b1i C
b2j Cb3k onto thexy plane are :

(2) The parallelogram with sidesA and B projects to a
parallelogram with area :

(3) General fact: The projection onto the plane normal to
the unit vectorn has area.A�B/ �n: Verify for n D k:

46 (a) For A D i C j�4k and B D�i C j , compute .A�B/ � i
and .A�B/ � j and .A�B/ �k: By Problem 45 those are
the areas of projections onto theyz andxz andxy planes.

(b) Square and add those areas to find|A�B|2: This is
the Pythagoras formula in space (Remark2).

47 (a) The triple cross product.A�B/�C is in the plane of
A and B, because it is perpendicular to the cross product

:

(b) Compute .A�B/�C when A D a1i Ca2 j Ca3k; B D

b1i Cb2j Cb3k;C D i:
(c) Compute .A �C/B�.B �C/A when C D i: The answers
in (b) and (c) should agree. This is also true ifC D j or C D k or
C D c1i Cc2 j Cc3k: That proves the tricky formula

.A�B/�C D .A �C/B�.B �C/A: (�)

48 Take the dot product of equation.�/ with D to prove

.A�B/ �.C�D/D .A �C/.B �D/�.B �C/.A �D/:
49 The plane containingP D .0;1;1/ and QD .1;0;1/ and
RD .1;1;0/ is perpendicular to the cross productN D

: Find the equation of the plane and the area of
trianglePQR.

50 Let P D .1;0;�1/;QD .1;1;1/;RD .2;2;1/: Choose S so
that PQRS is a parallelogram and compute its area. Choose
T;U;V so that OPQRSTUV is a box (parallelepiped) and
compute its volume.
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11.4 Matrices and Linear Equations

We are moving from geometry to algebra. Eventually we get back to calculus, where
functions are nonlinear—but linear equations come first. In Chapter 1,yDmxCb
produced a line. Two equations produce two lines. If they cross, the intersection point
solves both equations—and we want to find it.

Three equations in three variablesx;y;z produce three planes. Again they go
through one point (usually). Again the problem is to find that intersection point
—which solves the three equations.

The ultimate problem is to solven equations inn unknowns. There aren
hyperplanes inn-dimensional space, which meet at the solution. We need a test to
be sure they meet. We also want the solution. These are the objectives oflinear
algebra, which joins with calculus at the center of pure and applied mathematics.�

Like every subject, linear algebra requires a good notation. To state the equations
and solve them, we introduce a “matrix.”The problem will beAu D d: The solution
will be u DA�1d. It remains to understand where the equations come from, where
the answer comes from, and what the matricesA andA�1 stand for.

TWO EQUATIONS IN TWO UNKNOWNS

Linear algebra has no reason to choose one variable as special. The equationy�
y0 Dm.x�x0/ separatesy from x: A better equation for a line isaxCbyD d:
(A vertical line likexD 5 appears whenbD 0: The first form did not allow slope
mD8:) This section studies two lines:

a1xCb1yDd1

a2xCb2yDd2:
(1)

By solving both equations at once, we are asking.x;y/ to lie on both lines. The
practical question is: Where do the lines cross ? The mathematician’s question is:
Does a solution exist and is it unique ?

To understand everything is not possible. There are parts of life where you never
know what is going on (until too late). But two equations in two unknowns can have
no mysteries. There are three ways to write the system—byrows, by columns, and
by matrices. Please look at all three, since setting up a problem is generally harder
and more important than solving it. After that comes the concession to the real world:
we computex andy:

EXAMPLE 1 How do you invest$5000 to earn$400 a year interest, if a money
market account pays5% and a deposit account pays10%?

Set up equations by rows:With x dollars at5% the interest is .05x:With y dollars
at10% the interest is .10y:One row for principal, another row for interest:

xC yD5000

:05xC :10yD 400:
(2)

�Linear algebra dominates some applications while calculus governs others. Both are
essential. A fuller treatment is presented in the author’s bookLinear Algebra and Its
Applications(Harcourt Brace Jovanovich,3rd edition 1988), and in many other texts.
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Same equations by columns: Theleft side of(2) containsx times one vector plus
y times another vector. The right side is a third vector. The equation by columns is

x

"

1

:05

#

Cy

"

1

:10

#

D

"

5000

400

#

: (3)

Same equations by matrices: Look again at the left side. There are two unknowns
x andy; which go into a vectoru: They are multiplied by the four numbers1; .05; 1;
and .10;which go into atwo by two matrixA: The left side becomesa matrix times
a vector:

Au D

"

1 1

:05 :10

#"

x

y

#

D

"

5000

400

#

: (4)

Now you see where the “rows” and “columns” came from. They are the rows and
columns of a matrix. The rows entered the separate equations(2). The columns
entered the vector equation(3). The matrix-vector multiplicationAu is defined so
that all these equations are the same:

Au by rows:

"

a1 b1

a2 b2

#"

x

y

#

D

"

a1xCb1y

a2xCb2y

#

(each row is
a dot product)

Au by columns:

"

a1 b1

a2 b2

#"

x

y

#

Dx

"

a1

a2

#

Cy

"

b1

b2

#

(combination of
column vectors)

A is thecoefficient matrix. The unknown vector isu: The known vector on the right
side, with components5000 and400; is d: The matrix equation isAu D d:

Fig. 11.16 Each row ofAu D d gives a line. Each column gives a vector.

This notationAu D d continues to apply when there are more equations and more
unknowns. The matrixA has arow for each equation(usuallym rows). It has a
column for each unknown(usuallyn columns). For2 equations in3 unknowns it is
a 2 by 3 matrix (therefore rectangular). For6 equations in6 unknowns the matrix is
6 by 6 (therefore square). The best way to get familiar with matrices is to work with
them. Note also the pronunciation: “matrisees” and never “matrixes.”

Answer to the practical questionThe solution isxD 2000; yD 3000: That is the
intersection point in the row picture (Figure 11.16). It is also the correct combination
in the column picture. The matrix equation checks both at once, because matrices are
multiplied by rowsor by columns. The product either way isd:

"

1 1

:05 :10

#"

2000

3000

#

D

"

2000C 3000

.:05/2000C .:10/3000

#

D

"

5000

400

#

D d:
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Singular caseIn the row picture, the lines cross at the solution. But there is a case
that gives trouble.When the lines are parallel, they never cross and there isno
solution. When the lines are the same, there is aninfinity of solutions:

parallel lines
2x C y D 0

2x C y D 1
same line

2x C y D 0

4x C 2y D 0
(5)

This trouble also appears in the column picture. The columns are vectorsaandb: The
equationAu D d is the same asxaCyb D d: We are asked to find the combination
of a andb (with coefficientsx andy) that producesd: In the singular casea and
b lie along the same line (Figure 11.17). No combination can produced; unless it
happens to lie on this line.

Fig. 11.17 Row and column pictures:singular (no solution) andnonsingular.xD yD 1/:

The investment problem isnonsingular, and2000aC3000b equalsd: We also
drew
EXAMPLE 2 : The matrixA multipliesu D .1;1/ to solvexC2yD 3 andx�yD
0:

Au D

"

1 2

1 �1#"11#D

"

1C 2

1� 1#D

"

3

0

#

: By columns

"

1

1

#

C

"

2�1#D

"

3

0

#

:

The crossing point is.1;1/ in the row picture. The solution isxD 1;yD 1 in the
column picture (Figure 11.17b). Then1 timesa plus1 timesb equals the right side
d:

SOLUTION BY DETERMINANTS

Up to now we just wrote down the answer. The real problem is to findx and y when
they are unknown. We solve two equations with letters not numbers:

a1x C b1y D d1

a2x C b2y D d2:

The key is to eliminatex: Multiply the first equation bya2 and the second equation
by a1: Subtract the first from the second and thex’s disappear:

.a1b2�a2b1/yD .a1d2�a2d1/: (6)

To eliminatey; subtractb1; times the second equation fromb2 times the first:

.b2a1�b1a2/xD .b2d1�b1d2/: (7)
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What you see in those parentheses are2 by 2 determinants! Remember from
Section11:3:

The determinant of

"

a1 b1

a2 b2

#

is the number

����a1 b1

a2 b2

����D a1b2�a2b1:

This number appears on the left side of(6) and (7). The right side of(7) is also a
determinant—but it hasd ’s in place ofa’s. The right side of(6) hasd ’s in place of
b’s. Sox andy areratios of determinants, given by Cramer’s Rule:

11H Cramer’s Rule The solution isxD

����d1 b1

d2 b2

��������a1 b1

a2 b2

���� ; yD

����a1 d1

a2 d2

��������a1 b1

a2 b2

���� :
The investment example is solved by three determinants from the three columns:���� 1 1

:05 :10

����D :05

����5000 1

400 :10

����D 100

���� 1 5000

:05 400

����D 150:

Cramer’s Rule hasxD 100=:05D 2000 andyD 150=:05D 3000: This is the solu-
tion. The singular case is whenthe determinant of A is zero—and we can’t divide by
it.

11I Cramer’s Rule breaks down when detAD 0—which is the singular case.
Then the lines in the row picture are parallel, and one column is a multiple of
the other column.

EXAMPLE 3 The lines2xCyD 0; 2xCyD 1 are parallel. The determinant is
zero:

"

2 1

2 1

#"

x

y

#

D

"

0

1

#

has detAD

����2 1

2 1

����D 0:

The lines in Figure 11.17a don’t meet. Notice the columns:
�

2
2

�

is a multiple of
�

1
1

�

:
One final comment on2 by 2 systems. They are small enough so that all solution

methods apply. Cramer’s Rule usesdeterminants. Larger systems useelimination
(3 by 3 matrices are on the borderline). A third solution (the same solution!) comes
from theinverse matrixA�1; to be described next. But the inverse is more a symbol
for the answer than a new way of computing it, because to findA�1 we still use
determinants or elimination.

THE INVERSE OF A MATRIX

The symbolA�1 is pronounced “Ainverse.” It stands for a matrix—the one that
solvesAu D d: I think of A as a matrix that takesu to d: ThenA�1 is a matrix that
takesd back tou: If Au D d thenu DA�1d (provided the inverse exists). This is
exactly like functions and inverse functions:g.x/D y andxD g�1.y/: Our goal is
to findA�1 when we knowA:
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The first approach will be very direct. Cramer’s Rule gave formulas for
x andy; the components ofu: From that rule we can read offA�1; assuming that
DD a1b2�a2b1 is not zero.D is detA and we divide by it:

Cramer: u D
1

D

"

b2d1 � b1d2�a2d1 C a1d2

#

This isA�1d D
1

D

"

b2 �b1�a2 a1

#"

d1

d2

#

(8)
Thematrix on the right (including1=D in all four entries) isA�1: Notice the sign
pattern and the subscript pattern. The inverse exists ifD is not zero—this is
important. Then the solution comes from a matrix-vector multiplication,A�1 times
d:We repeat the rules for that multiplication:

DEFINITION A matrixM times a vectorv equals a vector of dot products:

Mv D

"

row 1

row 2

#"

v

#

D

"

(row 1) �v
(row 2) �v# : (9)

Equation(8) follows this rule withM DA�1 andv D d: Look at Example 1:

AD

"

1 1

:05 :10

#

; detAD :05; A�1 D
1

:05

"

:10 �1�:05 1

#

D

"

2 �20�1 20

#

:

There stands the inverse matrix. It multipliesd to give the solutionu:

A�1d D

"

2 �20�1 20

#"

5000

400

#

D

"

.2/.5000/� .20/.400/
.�1/.5000/C.20/.400/#D

"

2000

3000

#

:

The formulas work perfectly, but you have to see a direct way to reachA�1d: Mul-
tiply both sides ofAu D d byA�1. The multiplication “cancels”A on the left side,
and leavesu DA�1d: This approach comes next.

MATRIX MULTIPLICATION

To understand the power of matrices, we must multiply them. Theproduct ofA�1

with Au is a matrix times a vector. But that multiplication can be done another way.
FirstA�1 multipliesA; a matrix times a matrix. The productA�1A is another matrix
(a very special matrix). Then this new matrix multipliesu:

The matrix-matrix rule comes directly from the matrix-vector rule. Effectively, a
vectorv is a matrixV with only one column. When there are more columns,M times
V splits into separate matrix-vector multiplications, side by side:

DEFINITION A matrixM times a matrixV equals a matrix of dot products:

MV D

"

row 1

row 2

#"

v1 v2

#

D

"

(row 1)�v1 (row 1)�v2

(row 2)�v1 (row 2)�v2

#

: (10)

EXAMPLE 4

"

1 2

3 4

#"

5 6

7 8

#

D

"

1 �5C2 �7 1 �6C2 �8
3 �5C4 �7 3 �6C4 �8#D

"

19 22

43 50

#

:
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EXAMPLE 5 Multiplying A�1 timesA produces the “identity matrix”

"

1 0

0 1

#

:

A�1AD

"

b2 �b1�a2 a1

#

D

"

a1 b1

a2 b2

#

D

"

a1b2�a2b1 0

0 �a2b1 Ca1b2

#

D
D

"

1 0

0 1

#

:

(11)
This identity matrix is denoted byI: It has1’s on the diagonal and0’s off the diagonal.
It acts like the number1: Every vector satisfiesIu D u:

11J (Inverse matrix and identity matrix)AA�1 D I andA�1AD I andIu D
u:

AD

"

a b

c d

#

A�1 D
1

D

"

d �b�c a

# "

1 0

0 1

#"

x

y

#

D

"

x

y

#

: (12)

Note the placement ofa;b;c;d:With these lettersD is ad�bc:
The next section moves to three equations. The algebra gets more complicated (and
4 by 4 is worse). It is not easy to write outA�1: So we stay longer with the2 by 2
formulas, where each step can be checked. MultiplyingAu D d by the inverse matrix
givesA�1Au DA�1d—and the left side isIu D u:

Fig. 11.18 Rotatev forward intoAv: Rotated backward intoA�1d:

EXAMPLE 6 AD

"

cos� �sin�

sin� cos�

#

rotates everyv toAv; through the angle�:

Question1 Where is the vectorv D

"

1

0

#

rotated to ?

Question2 What isA�1 ?

Question3 Which vectoru is rotated intod D

"

0

1

#

?

Solution 1 v rotates intoAv D

"

cos� �sin�

sin� cos�

#"

1

0

#

D

"

cos�

sin�

#

:
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Solution 2 detAD 1 soA�1 D

"

cos� sin��sin� cos�

#

D rotation through��:
Solution 3 If Au D d thenu DA�1d D

"

cos� sin��sin� cos�

#"

0

1

#

D

"

sin�

cos�

#

.

Historical note I was amazed to learn that it was Leibniz (again!) who proposed
the notation we use for matrices.The entry in row i and columnj is aij : The
identity matrix hasa11 D a22 D 1 anda12 D a21 D 0: This is in a linear algebra book
by Charles Dodgson—better known to the world as Lewis Carroll, the author ofAlice
in Wonderland. I regret to say that he preferred his own notationiğj instead ofaij :
“I have turned the symbol toward the left, to avoid all chance of confusion with

r
:”

It drove his typesetter mad.

PROJECTION ONTO A PLANE D LEAST SQUARES FITTING BY A LINE

We close with a genuine application. It starts with three-dimensional vectorsa;b;d
and leads to a2 by 2 system. One good feature:a;b;d can ben-dimensional with
no change in the algebra. In practice that happens. Second good feature: There is a
calculus problem in the background. The example isto fit points by a straight line.

There are three ways to state the problem, and they look different:

1. SolvexaCyb D d aswell as possible (three equations, two unknownsx andy).
2. Project the vectord onto the plane of the vectorsa andb:
3. Find the closest straight line (“least squares”) to three given points.

Figure 11.19 shows a three-dimensional vectord above the plane ofa andb: Its
projection onto the plane isp D xaCyb: The numbersx andy are unknown, and
our goal is to find them. The calculation will use the dot product, which is always the
key to right angles.

The differenced�p is the “error.” There has to be an error, because no combina-
tion of a andb can produced exactly. (Otherwised is in the plane.) The projection
p is the closest point tod; and it is governed by one fundamental law:The error is
perpendicular to the plane. That makes the error perpendicular to both vectorsa
andb:

a�.xaCyb�d/D 0 and b � .xaCyb�d/D 0: (13)

Rewrite those as two equations for the two unknown numbersx andy:

.a�a/x C .a�b/y D a�d

.b �a/x C .b �b/y D b �d: (14)

These are the famousnormal equationsin statistics, to computex andy andp:

EXAMPLE 7 ForaD .1;1;1/andb D .1;2;3/ andd D .0;5;4/; solve equation(14):

3x C 6y D 9

6x C 14y D 22
gives

x D�1
y D 2

so p D�aC2b D .1;3;5/D projection.

Notice the three equations that we are not solving (we can’t):xaCyb D d is

x C y D 0

x C 2y D 5

x C 3y D 4

with the3 by 2matrixAD

2

6

4

1 1

1 2

1 3

3

7

5
: (15)
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Ford D .0;5;4/ there is no solution;d is not in the plane ofa andb: Forp D .1;3;5/
there is a solution,xD�1 andyD 2: The vectorp is in the plane. The errord�p
is .�1;2;�1/: This error is perpendicular to the columns.1;1;1/ and.1;2;3/; so it
is perpendicular to their plane.

SAME EXAMPLE (written as a line-fitting problem) Fit the points.1;0/ and.2;5/
and.3;4/ as closely as possible (“least squares”) by a straight line.

Two points determine a line. The example asks the linef D xCyt to go through
threepoints. That gives the three equations in(15), which can’t be solved with two
unknowns. We have to settle for the closest line, drawn in Figure 11.19b. This line is
computed again below, by calculus.

Notice that the closest line has heights1;3;5 where the data points have heights
0;5;4: Those are the numbers inp and d! The heights1;3;5 fit onto a line; the
heights0;5;4 do not. In the first figure,p D .1;3;5/ is in the plane andd D .0;5;4/
is not. Vectors in the plane lead to heights that lie on a line.

Notice another coincidence. The coefficientsxD�1 andyD 2 give the projection�aC2b: They also give the closest linef D�1C2t: All numbers appear in both
figures.

Fig. 11.19 Projection onto plane is.1;3;5/ with coefficients�1;2: Closest line has heights
1;3;5 with coefficients�1;2: Error in both pictures is�1;2;�1:

Remark Finding the closest line is acalculus problem: Minimize a sum of squares.
The numbersx andy that minimizeE give the least squares solution:

E.x;y/D .xCy�0/2 C .xC2y�5/2 C .xC3y�4/2: (16)

Those are the three errors in equation(15), squared and added. They are also the
three errors in the straight line fit, between the line and the data points. The projection
minimizes the error (by geometry), the normal equations(14)minimize the error (by
algebra), and now calculus minimizes the error by setting the derivatives ofE to zero.

The new feature is this:E depends on two variablesx andy: ThereforeE has two
derivatives. They both have to be zero at the minimum. That gives two equations for
x andy:

x derivative ofE is zero:2.xCy/C2.xC2y�5/ C2.xC3y�4/ D 0

y derivative ofE is zero:2.xCy/C2.xC2y�5/.2/C2.xC3y�4/.3/D 0:

When we divide by2; those are the normal equations3xC6yD 9 and6xC14yD
22: The minimizingx andy from calculus are the same numbers�1 and2:
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Thex derivative treatsy asa constant. They derivative treatsx as a constant. These
arepartial derivatives. This calculus approach to least squares is in Chapter 13, as
an important application of partial derivatives.

We now summarize theleast squares problem—to find the closest line ton data
points. In practicenmay be1000 instead of3: The points have horizontal coordinates
b1;b2; : : : ;bn: The vertical coordinates ared1;d2; : : : ;dn: These vectorsb andd;
together withaD .1;1; : : : ;1/; determine a projection—the combinationp D xaC
yb
that is closest tod: This problem is the same inn dimensions—the errord�p is
perpendicular toa andb: That is still tested by dot products,p �aD d �a andp �b D
d �b; which give the normal equations forx andy:

.a�a/xC .a�b/yDa�d

.b �a/xC .b �b/yDb �d or
.n/ xC .†bi/yD†di

.†bi /xC.†b2
i /yD†bidi :

(17)

11K The least squares problem projectsd onto the plane ofa and b: The
projection isp D xaCyb; in n dimensions. The closest linef D xCyt; in two
dimensions. The normal equations(17)give the bestx andy:

11.4 EXERCISES

Read-through questions

The equations3xCy D 8 and xCyD 6 combine into the vector
equationx a Cy b D c D d: The left side isAu;with
coefficient matrixAD d and unknown vectoru D e : The
determinant ofA is f , so this problem is not g . The row
picture shows two intersecting h . The column picture shows
xaCyb D d; whereaD i andb D j : The inverse matrix
isA�1 D k . The solution isu DA�1d D l :

A matrix-vector multiplication produces a vector of dot m
from the rows, and also a combination of then :

"

A

B

#"

u

#

D

"��#; "

a b

#"

x

y

#

D

"�#; "

3 1

1 1

#"

1

5

#

D

"��#:
If the entries area;b;c;d; the determinant isDD o . A�1 is
[ p ] divided byD: Cramer’s Rule shows components ofu D

A�1d as ratios of determinants:xD q =D andyD r =D:

A matrix-matrix multiplicationMV yields a matrix of dot prod-
ucts, from the rows of s and the columns of t :

"

A

B

#"

v1 v2

#

D

"� �� �# "

3 1

1 1

#"

1 2

5 6

#

D

"� �� �#

"

3 1

1 1

#"

1=2 �1=2�1=2 3=2

#

D

"� �� �# "

1 0

0 1

#"

A

#

D

"� �� �# :
The last line contains the u matrix, denoted byI: It has
the property thatIADAI D v for every matrix A; and
Iu D w for every vector u: The inverse matrix satisfies
A�1AD x : Then Au D d is solved by multiplying both
sides by y , to give u D z . There is no inverse matrix
when A .

The combinationxaCyb is the projection ofd when the
error B is perpendicular to C and D . If aD .1;1;1/;

b D .1;2;3/; andd D .0;8;4/; the equations forx andy are E .
Solving them also gives the closest F to the data points.1;0/;

G , and.3;4/: The solution isxD 0;yD 2; which means the
best line is H . The projection is0aC2b D I . The three
error components are J . Check perpendicularity: K D 0

and L D 0: Applying calculus to this problem,x and y

minimize the sum of squaresED M :

In 1–8 find the point .x;y/ where the two lines intersect (if they
do). Also show how the right side is a combination of the columns
on the left side (if it is). Also find the determinantD:

1 xCy D 7

x�y D 3

2 2xCy D 11

xCy D 6
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3 3x�y D 8

x�3y D 0

5 2x�4y D 0

x�2y D 0

7 axC byD 0

2axC2byD 2

4 xC2y D 3

2xC4y D 7

6 10xCy D 1

xCy D 1

8 axCby D 1

cxCdy D 1

9 Solve Problem3 by Cramer’s Rule.

10 Try to solve Problem4 by Cramer’s Rule.

11 What are the ratios for Cramer’s Rule in Problem5 ?

12 If AD I show how Cramer’s Rule solvesAu D d:

13 Draw the row picture and column picture for Problem1:

14 Draw the row and column pictures for Problem6:

15 FindA�1 in Problem1:

16 FindA�1 in Problem8 if ad�bcD 1:

17 A 2 by 2 system issingular when the two lines in the row pic-
ture : This system is still solvable if one equation is a
of the other equation. In that case the two lines are and the
number of solution is :

18 Try Cramer’s Rule when there is no solution or infinitely many:

3x C y D 0

6x C 2y D 2
or

3x C y D 1

6x C 2y D 2:

19 Au D d is singular when the columns ofA are :

A solution exists if the right sided is : In this solvable
case the number of solutions is :

20 The equationsx�yD d1 and 9x�9yD d2 can be solved
if :

21 Suppose xD 1
4 billion people live in the U.S. andyD 5

billion live outside. If 4 per cent of those inside move out
and 2 per cent of those outside move in, find the populationsd1

inside andd2 outside after the move. Express this as a matrix
multiplicationAu D d (and find the matrix).

22 In Problem 21 what is special abouta1 Ca2 and b1 Cb2

(the sums down the columns ofA) ? Explain whyd1 Cd2 equals
xCy:

23 With the same percentages moving, supposed1 D 0:58

billion are inside andd2 D 4:92 billion are outsideat the end.
Set up and solve two equations for the original populationsx

andy:

24 What is the determinant ofA in Problems21–23 ? What is
A�1 ? Check thatA�1AD I:

25 The equationsaxCy D 0; xCayD 0 have the solution
xD yD 0: For which two values ofa are there other solutions
(and what are the other solutions) ?

26 The equationsaxCbyD 0; cxCdy D 0 have the solution
xD yD 0: There are other solutions if the two lines are

: This happens ifa;b;c;d satisfy :

27 Find the determinant and inverse ofAD
� 2

3
4
5

�

:Do the same for
2A;A�1;�A; andI:

28 Show that the determinant ofA�1 is 1=detA:

A�1 D

"

d=.ad�bc/ �b=.ad�bc/�c=.ad�bc/ a=.ad �bc/ #
29 ComputeAB andBA and alsoBC andCB:

AD

"

1 4

2 �1# B D

"

3 1

1 1

#

C D

"

1 1

0 2

#

:

Verify theassociative law: AB timesC equalsA timesBC:

30 (a) Find the determinants ofA;B;AB; andBA above.

(b) Propose a law for the determinant ofBC and test it.

31 For AD

"

a b

c d

#

and BD

"

e f

g h

#

write out AB and

factor its determinant into .ad�bc/.eh�fg/: Therefore
det.AB/D .detA/.detB/:

32 Usually det.ACB/ does not equal detACdetB: Find
examples of inequality and equality.

33 Find the inverses, and checkA�1AD I andBB�1 D I; for

AD

"

1 4

0 2

#

and B D

"

2 2

0 1

#

:

34 In Problem 33 computeAB and the inverse ofAB: Check that
this inverse equalsB�1 timesA�1:

35 The matrix productABB�1A�1 equals the matrix.
Therefore the inverse ofAB is : Important: The associative
law in Problem29 allows you to multiplyBB�1 first.

36 The matrix multiplication C�1B�1A�1ABC yields the
matrix. Therefore the inverse ofABC is :

37 The equationsxC2yC3z and 4xC5yCczD 0 always have a
nonzero solution. The vectoru D .x;y;z/ is required to be
to v D .1;2;3/ andw D .4;5;c/: So chooseu D :

38 Find the combinationp D xaCyb of the vectorsaD .1;1;1/

andb D .�1;0;1/ that comes closest tod D .2;6;4/: (a) Solve the
normal equations (14) forx andy: (b) Check that the errord�p is
perpendicular toa andb:

39 Plot the three data points.�1;2/; .0;6/; .1;4/ in a plane.
Draw the straight linexCyt with the samex andy as in Problem
38: Locate the three errors up or down from the data points and com-
pare with Problem38:

40 Solve equation (14) to find the combinationxaCyb of
aD .1;1;1/ and b D .�1;1;2/ that is closest tod D .1;1;3/:

Draw the corresponding straight line for the data points
.�1;1/; .1;1/; and .2;3/: What is the vector of three errors and
what is it perpendicular to ?
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41 Under what condition ond1;d2;d3 do the three points
.0;d1/; .1;d2/; .2;d3/ lie on a line ?

42 Find the matrices that reversex and y and project:

M

"

x

y

#

D

"

y

x

#

and P

"

x

y

#

D

"

x

0

#

:

43 Multiplying by P D

"

:5 :5

:5 :5

#

projectsu onto the45� line.

(a) Find the projectionPu of u D
� 1

0

�

:

(b) Why doesP timesP equalP ?

(c) DoesP�1 exist ? What vectors givePu D 0?

44 Supposeu is not the zero vector butAu D 0: ThenA�1 can’t
exist: It would multiply and produceu:
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11.5 Linear Algebra

This section moves from two to three dimensions. There are three unknownsx;y;z
and also three equations. This is at the crossover point between formulas and
algorithms—it is real linear algebra. The formulas give a direct solution using
determinants. The algorithms use elimination and the numbersx;y;z appear at the
end. In practice that end result comes quickly.Computers solve linear equations by
elimination.

The situation for a nonlinear equation is similar. Quadratic equations
ax2 CbxCcD 0 are solved by a formula. Cubic equations are solved by Newton’s
method (even though a formula exists). For equations involvingx5 orx10, algorithms
take over completely.

Since we are at the crossover point, we look both ways. This section has a lot to do,
in mixing geometry, determinants, and3 by 3matrices:

1: The row picture: three planes intersect at the solution
2: The column picture: a vector equation combines the columns
3: The formulas: determinants and Cramer’s Rule
4:Matrix multiplication andA�1

5: The algorithm: Gaussian elimination.

Part of our goal is three-dimensional calculus. Another part isn-dimensional algebra.
And a third possibility is that you may not take mathematics next year. If that happens,
I hope you willusemathematics. Linear equations are so basic and important, in such
a variety of applications, that the effort in this section is worth making.

An example is needed. It is convenient and realistic if the matrix contains zeros.
Most equations in practice are fairly simple—a thousand equations each with990
zeros would be very reasonable. Here are three equations in three unknowns:

xC y D 1

x C2z D 0�2yC2z D� 4: (1)

In matrix-vector form, the unknownu has componentsx;y;z: The right sides1;0;�4
go intod: The nine coefficients, including three zeros, enter the matrixA:

2

6

4

1 1 0

1 0 2

0 �2 2

3

7

5

2

6

4

x

y

z

3

7

5
D

2

6

4

1

0�4375 or Au D d: (2)

The goal is to understand that system geometrically, and then solve it.

THE ROW PICTURE: INTERSECTING PLANES

Start with the first equationxCyD 1: In thexy plane that produces a line. In three
dimensions it is aplane. It has the usual formaxCbyCczD d , except thatc hap-
pens to be zero. The plane is easy to visualize (Figure 11.20a), because it cuts straight
down through the line. The equationxCyD 1 allows z to have any value, so the
graph includes all points above and below the line.

The second equationxC2zD 0 gives a second plane, which goes through the
origin. When the right side is zero, the point.0;0;0/ satisfies the equation. This
timey is absent from the equation, so the plane contains the wholey axis. All points
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.0;y;0/ meet the requirementxC2zD 0: The normal vector to the plane isN D
i C2k: The plane cuts across, rather than down, in 11.20b.

Before the third equation we combine the first two.The intersection of two planes
is a line. In three-dimensional space, two equations (not one) describe a line. The
points on the line have to satisfyxCyD 1 and alsoxC2zD 0: A convenient point
isP D .0;1;0/:Another point isQD .�1;2; 1

2
/: The line throughP andQ extends

out in both directions.
The solution is on that line. The third plane decides where.

Fig. 11.20 First plane, second plane, interesection line meets third plane at solution.

The third equation�2yC2zD�4 gives the third plane—which misses the origin
because the right side is not zero. What is important isthe point where the three
planes meet. The intersection line of the first two planes crosses the third plane.
We used determinants (but elimination is better) to findxD�2; yD 3; zD 1: This
solution satisfies the three equations and lies on the three planes.

A brief comment on4 by4 systems. The first equation might bexCyCz� t D 0:
It represents a three-dimensional “hyperplane” in four-dimensional space. (In
physics this is space-time.) The second equation gives a second hyperplane, and
its intersection with the first one is two-dimensional. The third equation (third
hyperplane) reduces the intersection to a line. The fourth hyperplane meets that line
at a point, which is the solution. It satisfies the four equations and lies on the four
hyperplanes. In this course three dimensions are enough.

COLUMN PICTURE: COMBINATION OF COLUMN VECTORS

There is an extremely important way to rewrite our three equations. In(1) they were
separate, in(2) they went into a matrix. Now they become a vector equation:

x

2

6

4

1

1

0

3

7

5
Cy

2

6

4

1

0�2375Cz

2

6

4

0

2

2

3

7

5
D

2

6

4

1

0�4375 : (3)

The columns of the matrix are multiplied byx;y;z: That is a special way to see
matrix-vector multiplication:Au is a combination of the columns ofA: We are
looking for the numbersx;y;z so that the combination produces the right sided:

The column vectorsa;b;c are shown in Figure 11.21a. The vector equation is
xaCybCzcD d: The combination that solves this equation must again bexD�2,
yD 3;zD 1: That agrees with the intersection point of the three planes in the row
picture.



11.5 Linear Algebra 509

Fig. 11.21 Columns combine to gived: Columns combine to givezero (singular case).

THE DETERMINANT AND THE INVERSE MATRIX

For a3 by 3 determinant, the section on cross products gave two formulas. One was
the triple producta�.b�c/: The other wrote out the six terms:

detAD a�.b�c/D a1.b2c3�b3c2/Ca2.b3c1�b1c3/Ca3.b1c2�b2c1/:

Geometrically this isthe volume of a box. The columnsa;b;c are the edges going
out from the origin. In our example the determinant and volume are2:�������a1 b1 c1

a2 b2 c2

a3 b3 c3

�������D �������1 1 0

1 0 2

0 �2 2

�������D .1/.0/.2/� .1/.�2/.2/C .1/.�2/.0/�.1/.1/.2/C .0/.1/.2/� .0/.0/.0/ D 2:

A slight dishonesty is present in that calculation, and will be admitted now. In
Section 11.3 the vectorsA;B;C were rows. In this sectiona;b;c arecolumns. It
doesn’t matter, because the determinant is the same either way. Any matrix can be
“transposed” —exchanging rows for columns—without altering the determinant. The
six terms (a1b2c3 is the first) may come in a different order, but they are the same six
terms. Here four of those terms are zero, because of the zeros in the matrix. The sum
of all six terms isDD detAD 2:

SinceD is not zero, the equations can be solved. The three planes meet at a point.
The column vectorsa;b;c produce a genuine box, and are not flattened into the same
plane (with zero volume). The solution involvesdividing by D—which is only
possible ifDD detA is not zero.

11L When the determinantD is not zero,A bas an inverse:AA�1 DA�1

AD I: Then the equationsAu D d have one and only one solutionu DA�1d:

The3 by 3 identity matrixI is at the end of equation(5). AlwaysIu D u:
We now computeA�1; first with letters and then with numbers. The neatest formula

uses cross products of the columns ofA—it is special for3 by 3matrices.

Every entry is divided byD: The inverse matrix isA�1 D
1

D

2

6

4

b�c

c�a

a�b

3

7

5
: (4)

To test this formula, multiply byA: Matrix multiplication produces a matrix of
dot products—fromthe rows of the first matrix and the columns of the second,A�1AD
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I :

1

D

2

6

4

b�c

c�a

a�b

3

7

5

2

6

4
a b c

3

7

5
D
1

D

2

6

4

a�.b�c/ b � .b�c/ c�.b�c/

a�.c�a/ b � .c�a/ c�.c�a/

a�.a�b/ b � .a�b/ c�.a�b/

3

7

5
D

2

6

4

1 0 0

0 1 0

0 0 1

3

7

5
:

(5)
On the right side, six of the triple products are zero. They are the off-diagonals like
b � .b�c/, which contain the same vector twice. Sinceb�c is perpendicular tob,
this triple product is zero. The same is true of the others, likea�.a�b/D 0: That
is the volume of a box with two identical sides. The six off-diagonal zeros are the
volumes of completely flattened boxes.

On the main diagonal the triple products equalD: The order of vectors can be
abcorbcaorcab, and the volume of the box stays the same. Dividing by this number
D, which is placed outside for that purpose, gives the1’s in the identity matrixI:

Now we change to numbers. The goal is to findA�1 and to test it.

EXAMPLE 1 The inverse ofAD

2

6

4

1 1 0

1 0 2

0 �2 2

3

7

5
isA�1 D

1

2

2

6

4

4 �2 2�2 2 �2�2 2 �1375 :
That comes from the formula, and it absolutely has to be checked. Do not fail to
multiply A�1 timesA (or A timesA�1). Matrix multiplication is much easier than
the formula forA�1:We highlight row3 times column1, with dot product zero:

1

2

2

6

4

4 �2 2�2 2 �2�2 2 �13752641 1 0

1 0 2

0 �2 2

3

7

5
D
1

2

2

6

4

4�2 4�4 �4C4�2C2 �2C4 4�4�2C2 �2C2 4�2375D

2

6

4

1 0 0

0 1 0

0 0 1

3

7

5
:

Remark onA�1 Inverting a matrix requiresD¤ 0: We divide byDD detA: The
cross productsb�c andc�a anda�b giveA�1 in a neat form, but errors are easy.
We prefer to avoid writingi; j; k: There are nine2 by 2 determinants to be calculated,
and here isA�1 in full—containing the nine “cofactors” divided byD:

A�1 D
1

D

2

6

4

b2c3�b3c2 b3c1�b1c3 b1c2�b2c1

c2a3�c3a2 c3a1�c1a3 c1a2�c2a1

a2b3�a3b2 a3b1�a1b3 a1b2�a2b1

3

7

5
: (6)

Important: The first row ofA�1 does not use the first column ofA, except in1=D:
In other words,b�cdoes not involvea:Here are the2 by2 determinants that produce
4;�2;2—which is divided byDD 2 in the top row ofA�1:

2

6

4

1 1 0

1 0 2

0 �2 2

3

7

5

2

6

4

1 1 0

1 0 2

0 �2 2

3

7

5

2

6

4

1 1 0

1 0 2

0 �2 2

3

7

5

2

6

4

C � C� C �
C � C

3

7

5
: (7)

The second highlighted determinant looks likeC2 not�2: But thesign matrix on
the right assigns a minus to that position inA�1:We reverse the sign ofb1c3�b3c1,
to find the cofactorb3c1�b1c3 in the top row of(6).

To repeat:For a row of A�1; cross out the corresponding column ofA: Find
the three2 by2 determinants, use the sign matrix, and divide byD:
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EXAMPLE 2 BD

2

6

4

1 1 1

0 1 1

0 0 1

3

7

5
hasDD 1 andB�1 D

2

6

4

1 �1 0

0 1 �1
0 0 1

3

7

5
: (8)

The multiplicationBB�1 D I checks the arithmetic. Notice how1
1

1
1

in B leads to a
zero in the top row ofB�1: To find row1, column3 of B�1 we ignore column1 and
row 3 of B: (Also: the inverse of a triangular matrix is triangular.) The minus signs
come from the sign matrix.

THE SOLUTION u D A�1d

The purpose ofA�1 is to solve the equationAu D d: Multiplying by A�1 produces
Iu DA�1d: The matrix becomes the identity,Iu equalsu, and the solution is
immediate:

u DA�1d D
1

D

2

6

4

b�c

c�a

a�b

3

7

5

2

6

4
d

3

7

5
D
1

D

2

6

4

d � .b�c/

d � .c�a/

d � .a�b/

3

7

5
: (9)

By writing those componentsx;y;z asratios of determinants, we have Cramer’s Rule:

11M (Cramer’s Rule)

The solution isxD
|d b c||a b c| ; yD

|a d c||a b c| ; zD
|a b d||a b c| : (10)

The right sided replaces, in turn, columnsa and b and c: All denominators are
DD a�.b�c/: The numerator ofx is the determinantd � .b�c/ in (9). The second
numerator agrees with the second componentd � .c�a/, because the cyclic order is
correct. The third determinant with columnsabd equals the triple productd � .a�b/
in A�1u: Thus(10) is the same as(9).

EXAMPLE A: Multiply by A�1 to find the known solutionxD�2; yD 3; zD 1:

u DA�1d D
1

2

2

6

4

4 �2 2�2 2 �2�2 2 �1375264 1

0�4375D
1

2

2

6

4

4�8�2C8�2C4

3

7

5
D

2

6

4

�2
3

1

3

7

5
:

EXAMPLE B: Multiply by B�1 to solveBu D d whend is the column.6;5;4/:

u DB�1d D

2

6

4

1 �1 0

0 1 �1
0 0 1

3

7

5

2

6

4

6

5

4

3

7

5
D

2

6

4

1

1

4

3

7

5
: CheckBu D

2

6

4

1 1 1

0 1 1

0 0 1

3

7

5

2

6

4

1

1

4

3

7

5
D

2

6

4

6

5

4

3

7

5
:
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EXAMPLE C: Put d D .6;5;4/ in each column ofB: Cramer’s Rule givesu D
.1;1;4/:�������6 1 1

5 1 1

4 0 1

�������D 1

�������1 6 1

0 5 1

0 4 1

�������D 1

�������1 1 6

0 1 5

0 0 4

�������D 4 all divided byDD

�������1 1 1

0 1 1

0 0 1

�������D 1:

This rule fills the page with determinants. Those are good ones to check by eye,
without writing down the six terms (threeC and three�).

The formulas forA�1 are honored chiefly in their absence. They are not used by
the computer, even though the algebra is in some ways beautiful. In big calculations,
the computer never findsA�1—just the solution.

We now look at the singular caseDD 0: Geometry-algebra-algorithm must all
break down. After that is the algorithm: Gaussian elimination.

THE SINGULAR CASE

Changing one entry of a matrix can make the determinant zero. The triple product
a�.b�c/, which is also the volume, becomesDD 0: The box is flattened and the
matrix is singular. That happens in our example when the lower right entry is changed
from 2 to 4:

S D

2

6

4

1 1 0

1 0 2

0 �2 4

3

7

5
has determinantDD 0:

This does more than change the inverse. Itdestroysthe inverse. We can no longer
divide byD: There is noS�1:

What happens to the row picture and column picture ? For2 by 2 systems, the
singular case had two parallel lines. Now the row picture has three planes, which
need not be parallel. Here the planes arenot parallel. Their normal vectors are the
rows ofS , which go in different directions. But somehow the planes fail to go through
a common point.

What happens is more subtle. The intersection line from two planes misses the third
plane. The line is parallel to the plane and stays above it (Figure 11.22)a. When all
three planes are drawn, they form an open tunnel. The picture tells more than the
numbers, about how three planes can fail to meet. The third figure shows an end view,
where the planes go directly into the page. Each pair meets in a line, but those lines
don’t meet in a point.

Fig. 11.22 The row picture in the singular case: no interestion point, no solutions.

When two planes are parallel, the determinant is again zero. One row of the matrix
is a multiple of another row. The extreme case has all three planes parallel—as in a
matrix with nine1’s.
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The column picture must also break down. In the2 by 2 failure (previous section),
the columns were on the same line.Now the three columns are in the same plane.
The combinations of those columns produced only if it happens to lie in that particu-
lar plane. Most vectorsd will be outside the plane, so most singular systems have no
solution.

When the determinant is zero,Au D d has no solution or infinitely many.

THE ELIMINATION ALGORITHM

Go back to the3 by 3 exampleAu D d: If you were given those equations, you
would never think of determinants. You would—quite correctly—start with the first
equation. It givesxD 1�y, which goes into the next equation to eliminatex:

xC y D 1

x C2zD 0�2yC2zD�4 xD 1�yÝÝÝÝÝÝÑ 1� yC2zD 0�2yC2zD�4:
Stop there for a minute. On the right is a2 by 2 system fory and z: The first
equation and first unknown are eliminated—exactly what we want. But that step was
not organized in the best way, because a “1” ended up on the left side. Constants
should stay on the right side—the pattern should be preserved. It is better to take the
same step bysubtracting the first equation from the second:

xC y D 1

x C2zD 0�2yC2zD�4 �������Ñ � yC2zD�1�2yC2zD�4: (11)

Same equations, better organization. Now look at the corner term�y: Its coefficient�1 is the second pivot. (The first pivot wasC1, the coefficient ofx in the first
corner.) We are ready for the next elimination step:

Plan: Subtract a multiple of the “pivot equation” from the equation below it.
Goal: To produce a zero below the pivot, soy is eliminated.

Method: Subtract2 times the pivot equation to cancel�2y:� yC2zD�1�2yC2zD�4 Ñ �2zD�2: (12)

The answer comes byback substitution. Equation(12) giveszD 1: Then equation
(11) givesyD 3: Then the first equation givesxD�2: This is much quicker than
determinants. You may ask:Why use Cramer’s Rule? Good question.

With numbers elimination is better. It is faster and also safer. (To check against
error, substitute�2;3;1 into the original equations.) The algorithm reaches the
answerwithout the determinant and without the inverse. Calculations with letters
usedetA andA�1:

Here are the steps in a definite order (top to bottom):

Subtract a multiple of equation 1 to produce0x in equation 2
Subtract a multiple of equation 1 to produce0x in equation 3
Subtract a multiple of equation 2 (new) to produce0y in equation 3.
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EXAMPLE (notice the zeros appearing under the pivots):

xC yC zD 1

2xC 5yC3zD 7

4xC7yC6zD11

Ñ xC yC zD1

3yC zD5

3yC2zD7

Ñ xC yCzD1

3yCzD5

zD2:

Elimination leads to atriangular system. The coefficients below the diagonal are
zero.
First zD 2, thenyD 1, thenxD�2: Back substitution solves triangular systems
(fast).

As a final example, try the singular caseSu D d when the corner entry is changed
from 2 to 4: With DD 0, there is no inverse matrixS�1: Elimination also fails, by
reaching an impossible equation0D�2:

x C y D 1

x C 2z D 0�2y C 4z D�4 Ñ x C y D 1� y C 2z D�1� 2y C 4z D�4 Ñ x C y D 1� yC 2z D�1
0D�2

The three planes do not meet at a point—a fact that was not obvious at the start.
Algebra discovers this fact fromDD 0: Elimination discovers it from0D�2: The
chapter is ending at the point where my linear algebra book begins.

One final comment. In actual computing, you will use a code written by
professionals. The steps will be the same as above. A multiple of equation1 is
subtracted from each equation below it, to eliminate the first unknownx: With one
fewer unknown and equation, elimination starts again. (A parallel computer executes
many steps at once.) Extra instructions are included to reduce roundoff error. You
only see the result! But it is more satisfying to know what the computer is doing.

In the end, solving linear equations is the key step in solving nonlinear equations.
The central idea of differential calculus is tolinearizenear a point.

11.5 EXERCISES

Read-through questions

Three equations in three unknowns can be written asAu D d: The
a u has componentsx;y;z andA is a b . The row picture

has a c for each equation. The first two planes intersect in a
d , and all three planes intersect in a e , which is f .

The column picture starts with vectorsa;b;c from the columns of
g and combines them to produce h . The vector equation

is i D d:

The determinant ofA is the triple product j . This is the
volume of a box, whose edges from the origin arek . If
detAD l then the system is m . Otherwise there is an

n matrix such thatA�1AD o (the p matrix). In this
case the solution toAu D d is u D q .

The rows ofA�1 are the cross productsb�c; r , s ,
divided byD: The entries ofA�1 are2 by 2 t , divided byD:
The upper left entry equals u . The2 by 2 determinants needed
for a row ofA�1 do not use the corresponding v of A:

The solution isu DA�1d: Its first componentx is a ratio of
determinants,|dbc| divided by w . Cramer’s Rule breaks down
when detAD x . Then the columnsa;b;c lie in the same

y . There is no solution toxaCybCzcD d, if d is not on that
z . In a singular row picture, the intersection of planes1 and 2

is A to the third plane.

In practiceu is computed by B . The algorithm starts by sub-
tracting a multiple of row1 to eliminatex from c . If the first
two equations arex�yD 1 and 3xCzD 7, this elimination step
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leaves D . Similarlyx iseliminated from the third equation, and
then E is eliminated. The equations are solved by backF .
When the system has no solution, we reach an impossible equation
like G . The examplex�yD 1;3xCz D 7 has no solution if
the third equation is H .

Rewrite 1–4 as matrix equationsAu D d (do not solve).

1 d D .0;0;8/ is a combination ofaD .1;2;0/ and b D .2;3;2/

andcD .2;5;2/:

2 The planesxCyD 0;xCyCzD 1, and yCzD 0 intersect
atu D .x;y;z/:

3 The point u D .x;y;z/ is on the planesxD y; yD z;

x�zD 1:

4 A combination of aD .1;0;0/ and b D .0;2;0/ and
cD .0;0;3/ equalsd D .5;2;0/:

5 Show that Problem3 has no solution in two ways: find the
determinant ofA, and combine the equations to produce0D 1:

6 Solve Problem2 in two ways: by inspiration and Cramer’s Rule.

7 Solve Problem4 in two ways: by inspection and by computing
the determinant and inverse of thediagonal matrix

AD

2

6

4

1 0 0

0 2 0

0 0 3

3

7

5
:

8 Solve the three equations of Problem1 by elimination.

9 The vectorsb andc lie in a plane which is perpendicular to the
vector : In case the vectora also lies in that plane, it is also
perpendicular anda� D 0: The of the matrix with
columns in a plane is :

10 The plane a1xCb1yCc1zD d1 is perpendicular to its
normal vectorN1 D . The planea2xCb2yCc2zD d2 is
perpendicular toN2 D : The planes meet in a line that is
perpendicular to both vectors, so the line is parallel to their

product. If this line is also parallel to the third plane and
perpendicular toN3, the system is : The matrix has no

, which happens when.N1�N2/ �N3 D 0:

Problems 11–24 use the matricesA;B;C:

AD

2

6

4

1 4 0

0 2 6

0 0 3

3

7

5
B D

2

6

4

0 0 1

2 1 0

6 4 0

3

7

5
C D

2

6

4

1 �1 �3�1 2 0

0 �1 3

3

7

5
:

11 Find the determinants|A|; |B|; |C |:SinceA is triangular, its de-
terminant is the product :

12 Compute the cross products of each pair of columns inB (three
cross products).

13 Compute the inverses ofA andB above. Check thatA�1AD I

andB�1BD I:

14 SolveAu D

2

6

4

1

0

0

3

7

5
and Bu D

2

6

4

1

0

0

3

7

5
: With this right sided; why

is u the first column of the inverse ?

15 Suppose all three columns of a matrix add to zero, as inC above.
The dot product of each column withv D .1;1;1/ is : All
three columns lie in the same : The determinant ofC must
be :

16 Find a nonzero solution toCu D 0: Find all solutions to
Cu D 0:

17 Choose any right sided that is perpendicular tov D .1;1;1/ and
solveCu D d: Then find a second solution.

18 Choose any right sided that is not perpendicular to
v D .1;1;1/: Show by elimination (reach an impossible equation)
thatCu D d has no solution.

19 Compute the matrix productAB and then its determinant. How
is detAB related to detA and detB ?

20 Compute the matrix productsBC and CB: All columns ofCB
add to , and its determinant is :

21 Add A andC by adding each entry ofA to the correspond-
ing entry of C: Check whether the determinant ofACC equals
detACdetC:

22 Compute 2A by multiplying each entry ofA by 2: The
determinant of2A equals times the determinant ofA:

23 Which four entries ofA give the upper left corner entryp of
A�1, after dividing byDD detA ? Which four entries ofA give the
entryq in row 1, column2 of A�1 ? Findp andq:

24 The 2 by 2 determinants from the first two rows ofB are�1
(from columns2;3) and�2 (from columns1;3) and (from
columns1;2). These numbers go into the third of B�1, after
dividing by and changing the sign of :

25 Why does every inverse matrixA�1 have an inverse ?

26 From the multiplicationABB�1A�1 D I it follows that the in-
verse ofAB is : The separate inverses come in order.
If you put on socks and then shoes, the inverse begins by taking off

:

27 Find the determinants of these fourpermutation matrices:

P D

2

6

4

0 1 0

1 0 0

0 0 1

3

7

5
QD

2

6

4

0 0 1

0 1 0

1 0 0

3

7

5
PQD

2

6

4

0 1 0

0 0 1

1 0 0

3

7

5

andQP D : Multiply u D .x;y;z/ by each permutation to
findPu;Qu;PQu, andQPu:

28 Find all six of the3 by 3 permutation matrices (includingI ),
with a single1 in each row and column. Which of them are “even”
(determinant1) and which are “odd” (determinant�1) ?

29 How many2 by 2 permutation matrices are there, includingI ?
How many4 by 4 ?
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30 Multiply any matrix A by the permutation matrixP and
explain howPA is related toA: In the opposite order explain how
AP is related toA:

31 Eliminatex from the last two equations by subtracting the first
equation. Then eliminatey from the new third equation by using the
new second equation:

(a)

x C y C z D 2

x C 3y C 3z D 0

x C 3y C 7z D 2

(b)

x C y D 1

x C z D 3

y C z D 5:

After elimination solve forz;y;x (back substitution).

32 By elimination and back substitution solve

(a)

x C 2y C 2z D 0

2x C 3y C 5z D 0

2y C 2z D 8

(b)

x � y D 1

x � z D 4

y � z D 7:

33 Eliminatex from equation 2 by using equation 1:

x C 2y C 2z D 0

2x C 4y C 5z D 0

2y C 2z D 8:

Why can’t the new second equation eliminatey from the third equa-
tion ? Is there a solution or is the system singular ?

Note: If elimination creates a zero in the “pivot position,” try to
exchange that pivot equation with an equation below it. Elimination
succeeds when there is a full set of pivots.

34 The pivots in Problem32a are 1;�1; and 4: Circle those
as they appear along the diagonal in elimination. Check that the
product of the pivots equals the determinant. (This is how
determinants are computed.)

35 Find the pivots and determinants in Problem31:

36 Find the inverse ofAD

2

6

4

1 1 0

0 1 1

0 0 1

3

7

5
and also ofB DA2:

37 The symbol aij stands for the entry in rowi , column j:
Find a12 and a21 in Problem36: The formula†aij bjk gives
the entry in which row and column of the matrix productAB ?

38 Write down a3 by 3 singular matrixS in which no two rows are
parallel. Find a combination of rows1 and2 that is parallel to row
3: Find a combination of columns1 and2 that is parallel to column
3: Find a nonzero solution toSu D 0:

39 Compute these determinants. The2 by 2 matrix is invertible if
. The3 by 3 matrix (is)(is not) invertible.
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