CHAPTER 11

Vectors and Matrices

This chapter opens up a new part of calculus. Inisitidimensional calculus
because the subject moves into more dimensions. In the first ten chapters, all
functions depended on tinteor positionx—but not both. We had (¢) or y (x). The
graphs were curves in a plane. There was one independent variabde 1)
and one dependent variable ¢r f). Now we meet functions'(x,?) that depend
on bothx and¢. Their graphs arsurfacesinstead of curves. This brings us to the
calculus of several variables

Start with the surface that represents the functfén, ¢) or f(x,y) or f(x,y,?).
I emphasize functions, because that is what calculus is about.

EXAMPLE 7  f(x,t) =codx —t) is a traveling wave (cosine curve in motion).

At t =0 the curve is f =cosx. At a later time, the curve moves to the right
(Figure 11.1). At each we get a cross-section of the wholet surface. For a wave
traveling along a string, the height depends on position as well as time.

A similar function gives a wave going around a stadium. Each person stands up and
sits down. Somehow the wave travels.

EXAMPLE 8  f(x,y) =3x+ y+ 1 isasloping roof (fixed in time).

The surface is two-dimensional—you can walk around on it. It is flat because
3x +y+1is a linear function. In the direction the surface goes up 46°. If y
increases byl, so doesf. That slope isl. In the x direction the roof is steeper
(slope3). There is a direction in between where the roof is steepest (s}/d_m)e.

EXAMPLE 9  f(x,y,t) =co9x — y —t) is an ocean surface with traveling waves.

This surface moves. At each tintewe have a newr-y surface. There are three
variables,x and y for position andr for time. | can't draw the function, it needs
four dimensions! The base coordinatesare, ¢ and the heightigf'. The alternative
is a movie that shows the-y surface changing with.

At time ¢ = 0 the ocean surface is given lopSx — y). The waves are in straight
lines. The linex — y = 0 follows a crest becaus®s0 = 1. The top of the next wave
is on the parallel linec — y = 2xr, becaus€os2sw = 1. Figure 11.1 shows the ocean
surface at a fixed time.
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The linex —y =t gives the crest at time. The water goes up and down (like
people in a stadium)'he wave goes to shorbut the water stays in the ocean

Slope V10

Fig. 11.1  Moving cosine with a small optical illusion—the darker Fig. 11.2  Linear functions give planes.
bards seem to go from top to bottom as you turn.

Of course multidimensional calculus is not only for waves. In business, demand is
a function of price and date. In engineering, the velocity and temperature depend on
positionx and timet. Biology deals with many variables at once (and statistics is
always looking for linear relations like= x +2y). A serious job lies ahead, to carry
derivatives and integrals into more dimensions.
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I 1.1 Vectors and Dot Products | IS

In a plane, every point is described by two numbers. We measure acrossrimy
up by y. Starting from the origin we reach the point with coordingtesy). | want
to describe this movement by \sector—the straight line that starts 0,0) and
ends at(x, y). This vectorv has adirection, which goes from(0,0) to (x, y) and
not the other way.

In a picture, the vector is shown by an arrow. In algelwras given by its two
components. For eolumn vectorwrite x abovey:

V= [Y} (x andy are the components o). (1)
y

Note thatv is printed in boldface; its componentsand y are in lightfacei The
vector —V in the opposite direction changes signs. Addintp —v gives thezero
vector(different from the zero number and also in boldface):

—X X—X 0
—V= and v—-v= = =0. 2
] EH

Notice how vector addition or subtraction is done separately ow’thandy’s:

[

Fig. 11.3  Parallelogram forv 4w, stretching for2v, signs reversed forv.

The vectorv has components; =3 and v, = 1. (I write v; for the first compo-
nent andv, for the second component. | also writeand y, which is fine for two
components.) The vectav hasw; = —1 andw, = 2. To add the vectors, add the
componentsTo draw this addition, place the start oW at the end ofv. Fig-
ure 11.3 shows howv starts wheres ends.

VECTORS WITHOUT COORDINATES

In that head-to-tail additionof v+ w, we did something new. The vectar was
moved away from the origin. Its length and direction were not changed! The new
arrow is parallel to the old arrow—only the starting point is differéitie vector
is the same as befare

A vector can be defined without an origin and withauandy axes. The purpose
of axes is to give the components—the separate distanessl y. Those numbers

+Another way to indicate a vector is. You will recognize vectors without needing arrows.
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are necessary for calculations. Buandy coordinates are not necessary for head-to-
tail additionv 4+ w, or for stretching t@v, or for linear combination2v + 3w. Some
applications depend on coordinates, others don't.

Generally speaking, physics works without axes—it is “coordinate-freeglac-
ity has direction and magnitude, but it is not tied to a poinfioce also has direction
and magnitude, but it can act anywhere—not only at the origin. In contrast, a vec-
tor that gives the prices of five stocks is not floating in space. Each component has
a meaning—there are five axes, and we know when prices are zero. After examples
from geometry and physics (no axes), we return to veetitfs coordinates.

EXAMPLE 1 (Geometry) Take any four-sided figure in space. Connect the mid
points

of the four straight sideskemarkable fact Those four midpoints lie in the same
plane More than that, they form parallelogram.

Frankly, this is amazing. Figure 11.4a cannot do justice to the problem, because it
is printed on a flat page. Imagine the vectrandD coming upwardB andC go
down at different angles. Notice how easily we indicate the four sides as vectors, not
caring about axes or origin.
I will prove thatV = W. That shows that the midpoints form a parallelogram.
WhatisV ? It starts halfway aloné and ends halfway alori§. The small triangle
at the bottom show¥ = 1A + 1B. This is vector addition—the tail 0B is at the
head of%A. Together they equal the shortddit For the same reasdil = %C + %D.
The heart of the proof is to see these relationships.
One step is left. Why iSA + 1B equal to 3C+ 3D ? In other words, why is
A+ B equal toC+D? (I multiplied by2.) When the right question is asked, the
answer jumps out. A head-to-tail additién- B brings us to the poinR. AlsoC + D
brings us toR. The proof comes down to one line:

A+B=PR=C+D. ThenV = A+ 3B equals W = C + 3D.
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Fig. 11.4  Four midpoints form a parallelograity = W). Three medians meet &.

EXAMPLE 2 (Also geometry) In any triangle, draw lines from the cornershi® t
midpoints of the opposite sides. To prove by vectdisose three lines meet at a
point. Problem38 finds the meeting point in Figure 11.4c. Probl8msays thathe
three vectors add to zero
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EXAMPLE 3 (Medicine) An electrocardiogram shows the sum of many small
vedors, the voltages in the wall of the heart. What happens to this sumhethg
vectorV—in two cases that a cardiologist is watching for ?

Casel. Part of the heart is deathfarction).
Case2. Part of the heart is abnormally thickypertrophy).

A heart attack kills part of the muscle. A defective valve, ordrgension, overworks
it. In case 1the cells die from the cutoff of blood (loss of oxygen).dase 2the
heart wall can triple in size, from excess pressure. The causes can be chemical or
mechanical. The effect we see is electrical.

The machine is adding small vectors arfghrojecting’ them in twelve direc-
tions.
The leads on the arms, left leg, and chest give twelve directions in the body. Each
graph shows the componentéfin one of those directions. Three of the projections—
two in the vertical plane, plus le&dfor front-back—produce the “mean QRS vector”
in Figure 11.5. That is the su when the ventricles start to contract. The left
ventricle is larger, so the heart vector normally points down and to the left.

Fig. 11.5 Vis a sum of small voltage vectors, at the moment of depolarization.

Fig. 11.6  Changes inv shav dead muscle and overworked muscle.

We come soon to projections, but here the question is alfatsgelf. How does
the ECG identify the problem ?
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Casel: Heart attack The dead cells make no contribution to the
electrical potential. Some small vectors are missing. Therefore the
sumV turnsawayfrom the infarcted part.

Case 2: Hypertrophy The overwork increases the contribution to
the potential. Some vectors are larger than normal. Therefére
turnstowardthe thickened part.

WhenV points in an abnormal direction, the ECG graphs locate the problem. The
P,Q,R,S,T waves on separate graphs can all indicate hypertrophy, in different
regions of the heart. Infarctions generally occur in the left ventricle, which needs the
greatest blood supply. When the supply of oxygen is cut back, that ventricle feels it
first. The result can be a heart attaek fhyocardial infarction= coronary occlusion).
Section 11.2 shows how the projections on the ECG point to the location.

First come the basic facts about vectors—components, lengths, and dot products.

COORDINATE VECTORS AND LENGTH

To compute with vectors we need axes and coordinates. Tha@icfuhe heart is
“coordinate-free,” but calculations require numbers. A vector is known by its com-
ponentsThe unit vectors along the axes alieandj in the plane andi, j, k in
space

= lel] = ff]

Notice how easily we moved into three dimensions! The only chasghat vectors
have three components. The combinationsaridj (ori, j, k) produce all vectors
in the plane (and all vectoké in space):

3
v:3i+j:{l} V=i+2j—2k=| 2
—2

Those vectors are also written= (3,1) andV = (1,2, —2). The components of
the vector are also the coordinates of a point. (The vector goes from the origin to the
point.) This relation between point and vector is so close that we allow them the same
notation:P = (x, y,z) andv = (x,y,z) = xi+ yj + zk.

The sumv 4V is totally meaningless. Those vectors live in different dimensions.

From the components we find tlength. The length 013, 1) is /32 412 = 1/10.
This comes directly from a right triangle. In three dimensioNs,has a third

componentto be squared and added. The lendth=ef(x, y,z) is |[V| = 1 /x2 + y% + z2.
Vertical bars indicate length which takes the place of absolute value. The length
of v = 3i 4] is the distance from the poi®, 0) to the point(3, 1):

V| =4/v3+0v3=4/10  |V]|=4/174+2%4(-2)?=3.

A unit vector is a vector of length oneDividing v andV by their lengths produces
unit vectors in the same directions:
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1/3
v 3/4/10 \% / )
— = and —=| 2/3 are unit vectors
V| 1/4/10 V| Y

11A Each nonzero vector has a positive lenpth The direction ofv is given byj
a unit vectoru = v/ |v|. The length times direction equats

A unit vector in the plane is determined by its anglevith thex axis:
cos e : 2 :
u=|gng |= (cosh)i+ (sind)j is a unit vector |u|? = cogd + sintd = 1.
Si

In 3-space the components of a unit vector are its “direction cosines”:
U = (cosa)i+ (cosp)j + (cosy)k: «, B,y = angles withx, y, z axes

ThencoSa + cog B + cogy = 1. We are doing algebra with numbers while we are
doing geometry with vectors. It was the great contribution of Descartes to see how to
study algebra and geometry at the same time.

Fig. 11.7 Coordinate vectors,j,k. Papendicular vectors-w = (6)(1) + (—2)(3) =0.

THE DOT PRODUCT OF TWO VECTORS

There are two basic operations on vectors. First, vectorsdaieddv + w). Second,

a vector is multiplied by a scald7v or —2w). That leaves a natural question—how

do you multiply two vectors ? The main part of the answer is—you don't. But there is
an extremely important operation that begins with two vectors and produces a
number. It is usually indicated by a dot between the vectors, as\n so it is
called thedot product

DEFINITION 1 The dot product multiplies the length$/| times |w| times a

cosine
V-w = |v||w|cosf, 6 = angle betweex andw.

3 2 .
EXAMPLE 0 haslength3, 5 haslength/g,theanglels;LS".

The dot product i$v||w|cosf = (3)(v/8)(1/4/2), which simplifies to6. The square
roots in the lengths are “canceled” by square roots in the cosine. For computing
a second and much simpler way involves no square roots in the first place.
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DEFINITION 2  The dot productv -w multiplies component by component and
adds:

37 [2
VW = vywi + vaw; [0][2}:(3)(2)+(O)(2):6.

The first form |v||w|cosf is coordinate-free. The second formw; + vow»
computes with coordinates. Remark 4 explains why these two forms are equal.

11B Thedot productor scalar productor inner productof three-dimensiong
vectors is
VW= |V[|W|cost = Vi W1 + V2 W, + V3 Ws. (4)

If the vectors are perpendicular thér= 90° andcosf = 0 andV - W = 0.

4 2 —1
2 |-| 5 | =32(not perpendiculay 21-| 2 |=0(perpendicula).
3 6 —1 2

These dot product32 and0 equal|V||W|cosé. In the second one&osf must be
zero. The angle ia /2 or —m/2—in either case a right angle. Fortunately the cosine
is the same fof and—6, so we need not decide the signtbf

Remarkl WhenV =W the angle is zero but not the cosine! In this cesst = 1
andV -V = |V|2. The dot product oV with itself is the length squared

V-V =V, Vo, Va)-(Vi.Va, Va) = V24 V24 Vi=|V|% (5)

Remark 2 The dot product ofi = (1,0,0) with j =(0,1,0) is i-j=0. The
axes are perpendicular. Similariyk =0 and j-k =0. Those are unit vectors:
i-i=j-j=k-k=1.

Remark3 The dot product has three properties that keep the algebra simple:

1. V-W=W-V 2. (cV)-W=c(V-W) 3. U+V)-W=U-W+V-W

WhenV is doubled(c = 2) the dot product is doubled. Whah is split intoi,j, k
components, the dot product splits in three pieces. The same appWs since
V-W =W V. The nine dot products ofj, k are zeros and ones, and a giant splitting
of bothV andW gives back the corredt - W:

(V,-W,)?
w + V]2 + W[
(V,—W,)°
+ -2|V| |W|cos 8
0 (V3-W5)~
/ v 4 v

Fig. 11.8 Length squared= (V —W) - (V —W), from coordinates and the cosine law.
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V-W = 1i- Wi+ Vaj - Waj + Vik - Wik + six zeroes= Vi Wy + VoW + V3 Wi,

Remark4 The two forms of the dot product are equalhis comes from com-
puting|V — W |? by coordinates and also by the “law of cosines”:

with coordinates|V —W|? = (V; — W})? + (Vo — Wa)? + (V3 — W3)?
from cosine law |V —W |?> = |V|? + |W|? —2|V||W| cosf.

Compare those two lines. LinecontainsV’? and V2 and V3. Their sum matches
[V|? in the cosine law. Alsd¥% + W2 + W2 matches|W|?. Therefore the terms
containing—2 are the same (you can mentally cancel+®. The definitions agree

—2(ViWy + VoW, + V3 W3) equals—2|V||W|cosf equals—2V -W.

The cosine law is coordinate-free. It applies to all triangles (evendimensions).
Its vector form in Figure 11.8 i/ —W|? = |V |?> —2V -W + |W|2. This application
toV -W is its brief moment of glory.

Remark5 The dot product is the best way to compute the cosirte of

(6)

Here are examples of andW with a range of angles froihto =:

i and3i have the same direction cosf =1 6=0
i-(i+]j) = lis positive cosf=1/4/2 O=n/4
i andj are perpendiculai:j =0 cosf =0 0=m/2
i-(—i+j) = —1is negative cosd =—1/v/2 6=3rn/4
i and —3i have opposite directions cosf = —1 O0=nm

Remarké The Cauchy-Schwarz inequality]V-W| < [V||W| comes from
|cosd| < 1.

The left side is|V ||W/|| cosé|. It never exceeds the right sidlé||W|. This is a key
inequality in mathematics, from which so many others follow:

Geometric mean /xy < arithmetic mean%(x +y) (true foranyx >0 andy = 0).
Triangle inequality |V +W| < |V|+ W]  (|V].|W]|, |V +W] are lengths of sides).

These and other examples are in Probledfsto 44. The Schwarz inequality
|V-W| < |V||W]|becomes an equality whenosf| = 1 and the vectorsare .
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11.1 EXERCISES

Read-through questions

A vector has length and _a . If v has componentss and 11 True or falsein three dimensions:
-8, its length is|v|=__b  and its direction vector isu= 1. If bothU andV make a30° angle withW, so doesJ +V.

¢ . The product of|v| with uis __d . This vector goes 2. If they make ®0° angle withwW, so doesJ + V.
from (0.0) to_ the pomtx_:_e R f . A combination 3. If they make a90° angle withW they are perpendicular:
of the coordinate vectors= g andj= h _ produces U-V=0
v=_i i+ j . ’

) 12 FromW = (1,2,3) subtract a multiple oV = (1,1,1) so that
To add vectors we add their k . The sum of (6,—8) \w _¢V is perpendicular t&/. DrawV andW andW —cV.

and(1,0) is __| . To seev+i geometrically, put the__m _ of )
i athe n_ of v. The vectors form a_ o with diagonal 13 (a) Whatis the sunV of the twelve vectors from the center of
v+i. (The other diagonal is p .) The vectors2v and —v a clock to the hours ? _ ]
are g and_r . Theirlengthsare s and_t . (b) If the 4 o’'clock vector is removed, fin&/ for the other
- . . . eleven vectors.
In a space without axes and .coordlnates, the tailVotan (c) If the vectors tol,2,3 are cut in half, findV for the
be placed__u . Two vectors with the same v __ are the twelve vectors.

same. If a triangle starts withv and continues withW, the )
third side is__w . The vector connecting the midpoint & 14 (a) Byremoving one or more of the twelve clock vectors, make

to the midpoint ofW is _ x . That vector is y the third thelength|V| as large as possible. .
side. In this coordinate-free form the dot producVisW = __ z . (b) Suppose the vectors start from the top instead of the
center (the origin is moved tt2 o’clock, sovy, =0). What is
Using components, V-W = A and (1,2,1)- the new sumv* ?
(2,-3,7)= B . The vectors are perpendicular if C .

The vectors are parallel if_D . V.V is the same as E . 15 Find the angle POQ by vector methods if? = (1.1,0),
The dot product ofU+V with W equals__F . The angle 0=(0.0.0), 0 =(1.2.-2).

betweenV andW has co¥¥ = __ G . WhenV-W is negative 16 (a) Draw the unit vectors u; = (cosf, sind) and
thend is _ H . The angle betweemn+j and i+k is __ | . U = (cos¢, sing). By dot products find the formula for
The Cauchy-Schwarz inequality is J , and for V =i+]j coq6 —¢).

andW =i+kitbecomesl < _K_. (o) Draw the unit vectous from a90° rotation ofu,. By dot

products find the formula for si@ + ¢).
In 1—4 compute V+W and 2V —3W and |V|?> and V-W and

coso 17 Describe all pointgx, y) such thaw = xi + yj satisfies

(@ |v|=2 (b) N—i]=2
1 V=(L11),W=(-1,-1,-1) © vii=2 @ v-i=

2 V=it W=j-k 18 (Important) IfA andB are non-parallel vectors from the origin,
3 V=i=-2j+k,W=i+j-2k describe

4 V=(1,1,1,1), W=(1,2,3,4) (a) the endpoints afB for all numbers

(b) the endpoints of +¢B for all ¢

(c) the endpoints ofA +¢B for all s andt¢

(d) the vectorw that satisfyv-A =v-B

5 (a) Find a vector that is perpendicular(tg , v3).
(b) Find two vectors that are perpendiculan(tg, va, v3).

6 Find two vectors that are perpendicular(ig1,0) and to each

other. 19 (a) Ifv+2w=iand2v+3w=j findv andw.

(b) If v=i+j andw = 3i+4j theni = v+ w.
7 What vector is perpendlgular to aﬂ-d|mens’|)onal vectors? 50 s p — (0,0) ard R = (0, 1) chooseQ so the angle? OR is 90°.
What vector is parallel to a-dimensional vectors ~ All possible 0’s lie in a

8 In Problemsl —4 construct unit vectors in the same directiop (8) Choose d so that A=2i+3j is perpendicular to

asV. B=9i+dj.
9 If vandw are unit vectors, what is the geometrical meaning of (b) Find a vector C perpendicular toA=i+j+k and
v-w? What is the geometrical meaning @f w)v? Draw a figure B=i—Kk.

with v =i andw = (3/5)i+(4/5)i- 22 If a boat has velocity with respect to the water and the water

10 Write down all unit vectors that make an anglewith the has velocityW with respect to the land, then . The speed of
vector(1,0). Write downall vectors at that angle. the boat is notV |+ |W| but .
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23 Find the angle between the diagonal of cube and (a) an edge The vector from the earth’s center to Seattleiis- bj + ck.
(b) the (_jiagonal of a face (c) another diagonal of the cube. (@ Along the circle at the latitude of Seattle, what two
Choose lines that meet. functions ofa, b, ¢ stay constant k goes to the North Pole.

24 Draw the triangleP QR in Examplel (the four-sided figure in (br)] totn ﬂ;e C|tr.cle athth: Iontgltude otf Ste;attle—the meridian—
space). By geometry not vectors, show tiRR is twice as long what two func |_ons 0_ 0, ¢ stay F:ons ant N
as V. Similarly | PR|=2|W|. Also V is parallel toW because (c) Ex.tr.a credit: Estlmate,b.,c in your present position. The
both are parallel to . SoV = W as before. 0° meridian through Greenwich has=0.

36 If |A+BJ|? =|A|>+|B|?, prove thatA is perpendicular t@.

25 (a) If A andB are unit vectors, show that they make equal an- ) )
gles withA -+ B. 37 In Figure 11.4, the medians go from the corners to the

midpoints of the opposite sides. Exprebs;,M,,M3 in terms
(b) If A,B,C are unit vectors witlh +B+C =0, they forma of A B,C. Prove thatM;4+Mj, +M3 =0. What relation holds
triangle and the angle between any twois . betweemA,B,C?

. 2 .
26 (a) Find perpendicular unit vectorand J in the plane that are 38 The point 5 of the way along is the same for all three
different fromi andj. medians. This means that+ 2M3 = 2M, = . Prove that

those three vectors are equal.

39 (a) Verify the Schwarz inequality|V-W|<|V||W| for
27 If | andJ are perpendicular, take their dot products with= V=i+2j+2k andW =2i+2j +k.
al +bJ to finda andb. (b) What does the inequality become whée= (1/x. /y) and

W= (/y,v/x)?
28 Supposel = (i+])/v2 and J=(i—j)/v/2. Check |-J=0 \/—. ) ) ) )
and write A=2i+3j as a combinatiorul +5J. (Best method: 40 By choosing the right vectdd in the Schwarz inequality, show

2 2,12, y3 ;
usea and b from Problem?27. Alternative: Findi andj from that(Vi+Va+V3)"<3(Vi+V3+V3). Whatisw?

I andJ and substitute inté.) 41 The Schwarz inequality fomi+bj and ci+dj says that

(a? +b%)(c? 4 d?) = (ac + bd)?. Multiply out to show that the dif-
29 (a) Find the position vectoOP and the velocity vectorPQ  ference is> 0.

when the pointP moves around the unit circle (see figure) with ) )
speed!. (b) Change to speeti 42 The vectorsA,B,C form a triangle if A+B+C=0. The

triangle inequality |A +B| < |A|4|B| says that any one side length
30 The sum(A-i)2 4+ (A-})2 + (A-k2) equals ) is less than . The proof comes from Schwarz:

(b) Find perpendicular unit vectots],K different fromi,j, k.

2 e . . .
31 In the semicircle findC and D in terms of A and B. Prove IA+B|"=A-A+2A-B+B-B
thatC-D = 0 (they meet at right angles). < AP+ +|B|? = (JA|+|BJ?).

32 The diagonal PR has |PR|>=(A+B)-(A+B)=A-A+ 43 True or false,with reason or example:
A-B+B-A+B-B. Add |QS|? from the other diagonal to prove
the parallelogram IaV\M’R|2 + |QS|2 = sum of squares of the four (@ |V +W|2 is never larger thaW|2 + |W|2

side lengths. (b) Inareal trianglgV +W| never equal$V| + |W|
33 If (1,2,3).(3,4,7), and (2,1,2) are corners of a parallelogram, (¢) V-W equalsw -V
find all possible fourth corners. (d) The vectors perpendicular ite-j +k lie along a line.

34 The diagonals of the parallelogram afe+B and .
If they have the same length, prove thaB = 0 and the regionisa 44 If V=i+2k chose W so that V-W=|V|W| and
V+W|=|V|+|W|.
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45 A methane molecule has a carbon atom (8t0,0) and 46 (a) FindavectoW ata45° angle withi andj.

hydrogen atoms at(1,1,—1), (1,-11), (=1,1,1), and (b) FindW that makes &0° angle withi andj.

(=1,—1,-1). Find (c) Explain why no vector makes3° angle withi and;.
(a) the distance between hydrogen atoms

(b) the angle between vectors going out from the carbon atom
to the hydrogen atoms.
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I 11.2 Planes and Projections |G

The most important “curves” are straight lines. The most important functions are
linear. Those sentences take us back to the beginning of the book—the graph of
mx +b is a line. The goal now is to move into three dimensions, wiggsphs

are surfacesEventually the surfaces will be curved. But calculus starts with the flat
surfaces that correspond to straight lines:

What are the most important surfacePanes
What are the most important functionsStill linear.

The geometrical idea of a plane is turned into algebra, by fintiegequation of a
plane Not just a general formula, but the particular equation of a particular plane.

A line is determined by one pointxg, yo) and the slopen. The point-slope
equationisy — yo = m(x — x¢). Thatis a linear equation, it is satisfied wher= yq
andx = xo, anddy/dx is m. For a plane, we start again with a particular point—
which is now(xyg, yo, zo). But the slope of a plane is not so simple. Many planes
climb at a45° angle—with “slopel —and more information is needed.

The direction of a plane is described by a vedtorThe vector is noin the plane,
butperpendiculatto the plane. In the plane, there are many directions. Perpendicular
to the plane, there is only one direction. A vector in that perpendicular direction is
anormal vector

The normal vectoN can point “up” or “down”. The length dN is not crucial (we
often make it a unit vector and callrij. KnowingN and the pointPy = (x¢, Y0, Z0),
we know the plane (Figure 11.9). For its equation we switch to algebra and use the
dot product—which is the key to perpendicularity.

N is described by its componer(is, b, ¢). In other wordN is ai + bj + ck. This
vector is perpendicular to every direction in the plan& typical direction goes

from
N=(1,-1,3
N=ai+bj+ck ( ) | Ax-y+32=
N=(11)
normal vector
x=y+3:=0

3x-3y+9:=-15

Fig. 11.9 The normal vector to a plan®arallel planes have the same N.

Py to another pointP = (x,y,z) in the plane. The vector fronP, to P has
component$x — xo, ¥y — Yo,z — Zo). This vector lies in the plane, sts dot product
with N is zera

11C  The plane througt?y pempendicular taN = (a, b, c) has the equation

(a,b,c)-(x—x0,y —Y0,2—20) =0 or

a(x —xo) +b(y —yo) +c(z—2z0) =0. (1)
The pointP lies on the plane when its coordinatesy, z satisfy this equation.
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EXAMPLE 1 The plane throughPy = (1,2,3) perpendicular toN = (1,1, 1) has
the equationx — 1) + (y —2) + (z — 3) = 0. That can be rewritten as+ y +z =
6.

Notice three things. FirstPy lies on the plane becaudet 2+ 3 = 6. Second,
N = (1,1, 1) can be recognized from the y, z coefficients inx + y + z = 6. Third,
we could changé&l to (2,2,2) and we could chang®, to (8,2, —4)—becausd is
still perpendicular andP is still in the plane8 +2 — 4 = 6.

The new normal vectoN = (2,2,2) produce2(x —1)+2(y—2)+2(z—3) =
0. That can be rewritten & + 2y 4+ 2z = 12. Same normal direction, same plane.

The new pointPy = (8,2, —4) producegx —8) + (y—2)+ (z+4) =0. That is
another form ofx + y 4+ z = 6. All we require is a perpendicul®& and a pointPy in
the plane.

EXAMPLE 2 The plane througlifl,2,4) with the sameN = (1, 1, 1) has a differ-
ent equation(x — 1)+ (y —2) 4+ (z —4) =0. This isx + y + z = 7 (instead 0f6).
These planes witlY and 6 are parallel

Starting fromu (x — xo) +5(y — yo) + ¢(z — z0) = 0, we often moverxg + byo +
¢z to the right hand side—and call this constant

11D  With the Py tems on the right side, the equation of the pland id> = d:
ax+by+cz=axo+byy+czo=d. (2)
A differentd gives aparallel plane d = 0 gives aplane through the origin

EXAMPLE 3 The planex —y +3z =0 goes through the origir{0,0,0). The
normal vector is read directly from the equatidd= (1,—1,3). The equation is
satisfied byPy = (1,1,0) and P = (1,4, 1). Subtraction gives a vectd = (0,3, 1)
that is in the plane, and-V = 0.

The parallel planes — y 4 3z = d have the saml but differentd’s. These planes
miss the origin becausé is not zero(x =0,y =0,z =0 on the left side needs
d =0 on the right side). Note th&x —3y 4 9z = —15 is parallel to both planes.
N is changed t@N in Figure 11.9, but its direction is not changed.

EXAMPLE 4 The angle between two planes is the angle between their normal
vedors.

The planesx —y 43z =0 and 3y + z =0 are perpendicular, becaugg, —1,3) -
(0,3,1) =0. The planeg =0 andy =0 are also perpendicular, becau$e0, 1) -
(0,1,0) =0. (Those are they plane and thecz plane.) The planes + y =0 and
X +z = 0 make a60° angle, becauseoss0° = (1,1,0)-(1,0,1)/4/2v/2=1.

N,|. See Figure 11.10.

The cosine of the angle between two plangdlis- N |/|N1 |



478 11 Vectors and Matrices

normal
direction parallel
( 0 direction
e (1, m) B=(1,1,1)
/ | V=2i-j-k
line
y=mx+b 2=@3,0,0)

Fig. 11.10 Angle between planes = angle between normals. Parallel anénmticplar to a
line. A line in space througtPg and Q.

Remarkl We gave the “point-slope” equation of a line (usimg, and the “point-
normal” equation of a plane (usind). What is the normal vectd to a line ?

The vectoV = (1,m) is parallel to the liney = mx + b. The line goes across by
1 and up bym. The perpendicular vector i = (—m, 1). The dot producN-V is
—m +m = 0. Then the point-normal equation matches the point-slope equation:

—m(x —x9) + 1(y — yo) = 0is the same ag — yo = m(x —xp). 3)

Remark2 What is the point-slope equation for a plane ? The difficulty is that a
plane has different slopes in the and y directions. The functionf(x,y) =
m(x —xo) + M(y — yo) hastwo derivativesn and M.

This remark has to stop. In Chapte}, “slopes” become “partial derivative’s

A LINE IN SPACE

In three dimensions, a line is not as simple as a pl&nBne in space needs two
equations. Each equation gives a plane, and the line imteesection of two planes

The equationsx + y +z =3 and 2x + 3y + z = 6 determine a line

Two points on that line arePy = (1,1,1) and Q =(3,0,0). They satisfy both
equations so they lie on both planes. Therefore they are on the line of intersection.
The direction of that line, subtracting coordinatesRaffrom Q, is along the vector
V=2i—j—k

The line goes throughPy = (1,1, 1) in the direction of V =2i —j —k.

Starting from (xo, y0,20) = (1,1,1), add on any multiplerV. Thenx =1+ 2¢

and

y=1—t and z=1—¢. Those are the components of the vector equation
P = Py + tV—which produces the line.

Here is the problem. The line needs two equations—or a vector equation path a
rametert. Neither form is as simple asx + by + cz = d. Some books push ahead
anyway, to give full details about both forms. After trying this approach, | believe
that those details should wait. Equations with parameters are the subject of
Chapterl2, and a line in space is the first example. Vectors and planes give plenty to
do here—especially when a vector is projected onto another vector or a plane.

PROJECTION OF A VECTOR

What is the projection of a vectd® onto another vectoA ? One part oB goes
along A—that is the projection. The other partBfis perpendicularto A. We now
compute these two parts, which &#andB — P.
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In geometry, projections involveoss. In algebra, we use the dot product (which
is closely tied tacosd). In applications, the vectd® might be avelocityV or aforce
F:

An airplane flies northeast, andl@0-mile per hour wind blows due
east. What is the projection & = (100, 0) in the flight directionA ?

Gravity makes a ball roll down the surfa2e 4+ 2y + z = 0. What are
the projections of = (0,0, —mg) in the plane and perpendicular to
the plane ?

The component ol along A is the push from the wind (tail wind). The other
component ofV pushes sideways (crosswind). Similarly the force parallel to the
surface makes the ball move. Adding the two components brings\bacl.

N=2i+2j+k

downhill force:

tailwind = projection -
projection of F e
of Von A P
V= 100i
crosswind force of gravity

F=-mgk

Fig. 11.11  Projections alon@\ of wind velocityV and forceF and vectoB.

We now compute the projection d onto A. Call this projectionP. Since its
direction is known—~Hs alongA—we can describ® in two ways:

1) Give thelength of P alongA
2) Give thevector P as a multiple ofA.

Figure 11.11b shows the projectidhandits length. The hypotenuse 8|. The
length is|P| = |B| cosy. The perpendicular componeBt— P has length/B|siné.

The cosine is positive for angles less th#¥. The cosine (andP!) are zero when

A andB are perpendiculafB|cos is negative for angles greater théd°, and the
projection points along A (the length is|B||cosf|). Unless the angle i8° or 30°

or 45° or 60° or 90°, we don’t want to compute cosines—and we don’t have to. The
dot product does it automatically:

A-B

|A||B|cost = A-B so the length of P along A is |B|cosd = W

(4)

Notice that the length oA cancels out at the end of (4). K is doubled,P is
unchanged. But iB is doubled, the projection is doubled.

What is the vectoP ? Its length aloncA is A-B/|A|. If A is a unit vector, then
|A| = 1and the projection i# - B timesA. GenerallyA is not a unit vector, until we
divide by |A|. Here is the projectiorP of B alongA:

. A-B A A-B
P = (length of P)(unit vecton = (W) (W) = WA. (5)
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EXAMPLE 5 For the wind velocityV = (100,0) and flying directionA = (1, 1),
find P. HereV points eastA points northeast. The projection\dfontoA is P:

A-V 100 AV 100
length|P — vectorP=—A= 1,1) = (50,50).
ength|P| = 37 == vestorP =T A= —=(1.1) = (50.50)

EXAMPLE 6 ProjectF = (0,0, —mg) onto the plane with norm&l = (2,2, 1).
The projection of alongN is notthe answer. But compute that first:

F-N mg F-N mg
—_— :—N:——2,2,1

N3 CTmpN T e @

P is the component of perpendicularto the plane. It doesot move the ball. The
in-plane component is the differenBe- P. Any vectorB has two projections, along
A and perpendicular:

.B ) o
W A is perpendicular to the remaining componeii — P.
EXAMPLE 7 ExpressB =i—j as the sum of a vectd? parallel toA = 3i+j and
a vectorB — P perpendicular té\. NoteA - B =2.

A-B 2 6 4 12

Solution P=—A=—A——I+—j ThenB—P=—i——j.
|A|? 10 10 10 10 10

Check P-(B—P)=(3)(75) — (%) (32) = 0. These projections d8 are perpendicular.

Pythagoras: |P|?>+ |B — P|? equals|B|?. Check that too0.4 + 1.6 = 2.0.

The projectionP =

Question WhenisP=0? Answer WhenA andB are perpendicular.

EXAMPLE 8 Find the nearest point to the origin on the plane +2y +2z =
5.

The shortest distance from the origin is along the normal vectdrThe vectoiP
to the nearest point (Figure 11.12)imesN, for some unknown number We find
t by requiringP = ¢ N to lie on the plane.

The planex +2y +2z =5 has normal vectoN = (1,2,2). ThereforeP =t N =
(z,2t,2t). To lie on the plane, this must satisfy+ 2y +2z = 5:

1+2(20)+2Q21)=5 or 9 =5 or t=3. (6)

ThenP=3N=(3, 4, 1). That locates the nearest point. The distancg|l$|=3
This example is important enough to memorize, with letters not numbers:

11E Onthe planeix + by + cz = d, the nearest point t@, 0, 0) is

(da,db, dc) The distance is 41

= 2" e ——————% 7
a?+b2+c? Va2 +b2+c2 (7)

The steps are the sanid.has componenta, b, c. The nearest point on the plane is
amultiple(za,tb,tc). Itlies on the plane iti(ta) +b(th) +c(tc) =d
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Thust =d/(a?+b?+c?). The point(ta,th,tc) =tN is in equation (7). The
distance to the plane {sN| = |d|/|N].

N=i+2j+2k

« Q=i+3j+2k
. 5 5 -
P=(N |P| = —2—=2 |5-11]
v 3 [N| = == =2
1+4+4 [ adsd
plane x + 2y +2z=5 P=Q+IN

Fig. 11.12  Vector to the nearest poirt is amultiple#N. The distance is ii7) and(9).

Question How far is the plane from an arbitrary poitk = (x1, y1,21) ?

Answer The vector fronQ to P is our multiplezN. In vector formP = Q +¢N.
This reaches the planelf-N = d, and again we find:

(Q+tN)-N=d vyields t=(d—Q-N)/|NJ% (8)

This new termQ - N enters the distance frof to the plane:

distance=|tN|=|d —Q-N|/|N|=|d —ax, —by; —cz1|/\ a?>+b>+ 2. (9)

When the pointis on the plane, that distance is zero—becauge- by +cz; =d.
WhenQ is i+ 3j + 2Kk, the figure show® -N = 11 and distance= 2.

PROJECTIONS OF THE HEART VECTOR

An electrocardiogram has leads to your right arm—left arnté&f. You produce

the voltage The machine amplifies and records the readings. There are also six chest
leads, to add a front-back dimension that is monitored across the heart. We will
concentrate on the big “Einthoven triangle,” named after the inventor of the ECG.

The graphs show voltage variations plotted against time. The first graph plots the
voltage difference between the arms. Lead Il connects the left leg to the right arm.
Lead Ill completes the triangle, which has roughly equal sides (especially if you are
a little lopsided). So the projections are based®hand120° angles.

The heart vectoV is the sum of many small vectors—all moved to the same
origin. V is the net effect of action potentials from the cells—small dipoles adding
to a single dipole. The pacemak&-A node) starts the impulse. The atria depolar-
ize to give the P wave on the graphs. This is actuallyladp of the heart vector—
the graphs only show its projections. The impulse reachefYheode, pauses, and
moves quickly through the ventricles. This produces the QRS complex—the large
sharp movement on the graph.
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LEAD Il LEAD oVp LEAD 1l

Fig. A The graphs show the component of the moving heart vector alactglead. These
figures art reproduced with permission from the CIBA Collection of Medical lllustra-
tions by Frank H. Netter, M.D. Copyright978 CIBA-GEIGY, all rights reserved.

The total QRSinterval should not exceed/10 seconcK2% spaces on the print-
out).V points first toward the right shoulder. This direction is opposite to the leads,
so the tracings go slightly down. That is the Q wave, small and negative. Then the
heart vector sweeps toward the left leg. In positiBred4, its projection on lead |
(between the arms) is strongly positive. The R wave is this first upward deflection in
each lead. Closing the loop, the S wave is negative (best seen in leads | and aVR).

Question1  How many graphs from the arms and leg are really independent ?

Answer  Only two! In a plane, the heart vectdrhas two components. If we know

two projections, we can compute the others. (The ECG does that for us.) Different
vectors show better in different projections. A mathematician would08eangles,

with an electrode at your throat.

Question2  How are the voltages related ? What is the aVR lead ?
Answer Project the heart vectdf onto the sides of the triangle:

The lead vectors hade, — L, +L; = 0— they form a triangle.
The projections hav¥/y =V, +V,, =V-L,—-V-L, +V-L;; =0.

The aVR lead is—%L. — %L”. Itis pure algebra (no wire). By vector addition it points

toward the electrode on the right arm. Its Iength/f§ if the other lengths ar2.
Including aVL and aVF to the left arm and foot, there sbeleads intersecting at
equal angles. Visualize them going out from a single point (the origin in the chest).

Question3  Ifthe heart vector i = 2i —j, what voltage differences are recorded ?
Answer The leads around the triangle have lengtffhe machine projecty’:

Lead | is the horizontal vect®i. SoV -L|, = 4.
Lead Il is the—60° vectori — \/gj. SoV-L; =2+4/3.
Lead Ill is the—120° vector—i — \/§j. SoV Ly =—2+4/3.

The first and third add to the second. The largest R waves are in leads | and Il. In
aVR the projection oV will be negative (Problend6), and will be labeled an S
wave.

Question 4  What about thepotential (not just its differences). Is it zero at the
center?
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aVR aVL

111 aVF I

Fig. B Heart vector goes around the QRS loop. Projections are spikidedCG.

Answer Itis zero if we say soThe potential contains an arbitrary constéht(lt
is like an indefinite integral. Its differences are like definite integrals.) Cardiologists
define a “central terminal” where the potential is zero.

The average o¥ over a loop is thenean heart vectoH. This average requires
det, by Chaptel5. With no time to integrate, the doctor looks for a lead where the
area under the QRS complex is zero. Then the directidth (the axis) is perpendic-
ular to that lead. There is so much to say about calculus in medicine.

11.2 EXERCISES

Read-through questions

A plane in space is determined by a poi®y = (xg,y0,z0) When B is a velocity vectorP represents the _x . WhenB
and a__a vector N with components(a,b,c). The point isa force vectorPis y . The component oB perpendicular
P =(x,y,z) is on the plane if the dot product &f with _ b to A equals__z . The shortest distance frong0,0,0) to
is zero. That answer was notP!) The equation of this planethe planeax+by+cz=d is along the__A  vector. The
is a(__c )+b(_ d )+c(_ e )=0. The equation is also distanceis B _and the closest point on the planefis=__ C
written asax+by +cz=d, whered equals__f . A parallel The distance fronQ = (x1,y1,z1) tothe planeis_D .

plane has the same g and a different__h . A plane

through the originhagd = __i . Find two points P and Py on the planes 1-6 and a normal
vector N. Verify that N - (P — Py) =0.

The equation of the plane througBRy = (2,1,0) perpendicu-

lar to N=(3,4,5) is j . A second point in the plane is _ _
P =(0,0, __k ). The vector fromPy to P is__ 1 , and itis 1 x+2y+32=0 2 x+2y+3z,_6 3 theyz plane
m__ to N. (Check by dot product) The plane throughy — “ the plane througko.0.0) perpendicular to+j —k
(2,1,0) perpendicular to the axis hasN= __n and equation 5 the plane througltl, 1, 1) perpendicular to+j —k
o)

6 the plane througl0,0,0) and(1,0,0) and(0, 1, 1).
The component ofB in the direction of A is p , )
where 0 is the angle between the vectors. ThisAisB divided Findanx—y—z equation for planes 7-10.
by g . The projection vectorP is |B|cosf times a 7 The plane througtPy = (1,2, —1) perpendicular tN =i +j
r__ vector in the direction ofA. Then P = (|B|cosf)(A/|A|)
simplifies to__s . WhenB is doubled,P is __t . WhenA
is doubled,P is __u . If B reverses direction theR __ v . If

A reverses directiontheR _w__. 9 The plane througll,0, 1) parallel tox +2y +z =0

8 The plane throughPy=(1,2,—1) perpendicular toN =
i+2j—k
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10 The plane througltxg, yo.zo) parallel tox +y +z =1. 29 P=(x,y,z) is on the planeax+by+cz=5 if P-N=
|P|IN|cosf = 5. Since the largest value of césis 1, the smallest

11 When is a plane with normal vectoN pamllel to the : g .
P P value of|P| is . This is the distance between .

vectorV ? When is it perpendicular 1@ ?
d%o If the air speed of a jet i$00 and the wind speed i$0,

12 (a) If two planes are perpendicular (front wall and si . ; .
wall), is every line in one plane perpendicular to every line iWhat information do you need to compute the jet's speed over
y find? What is that speed ?

the other ?
(b) If athird plane is perpendicular to the first, it might be (paBl How far is the planex+y—z=1 from (0,0,0) and also
allel) (perpendicular) (at 45° angle) to the second. from (1,1, —1) ? Find the nearest points.

13 Explain why a plane cannot 32 Describe all points at a distancd from the plane
(a) contain (1,2,3) and (2,3,4) and be perpendicular to* 2V T22=3.
N=i+j 33 The shortest distance fromQ =(2,1,1) to the plane
(b) be perpendicular thl =i+j and parallel to/ =i+k x+y+z=0 is along the vector . The point P=
(c) contain(1,0,0),(0,1,0),(0,0,1), and(1,1,1) Q+tN=Q2+1¢,1+1¢,1417) lies on the plane ift=__

(d) contain(1,1,—1) ifithasN=i+j —k (maybe it cah The_n _P: — and the shortest distance is
Q'hls distance is ngiP|.)

(e) go through the origin and have the equatio
ax+by+cz=1. 34 The plane through (1,1,1) perpendicular to N=
i+2j +2k is a distance from (0,0,0).

14 The equation3x+4y+7z—t=0 yields a hyperplane in
four dimensions. Find its normal vectbrand two pointsP, Q on 35 (Distance between planesRx—2y+z=1 is parallel

the hyperplane. Chedk? — Q)-N=0. to 2x —2y +z =3 because . Choose a vectd on the first

15 The plane througltx, y, z) perpendicular tai +bj +ck goes ir;IT?'\T'a_nd find so thatQ + ¢N lies on the second plane. The distance
through (0,0,0) if . The plane goes througbxg, yo,z0) I

if . 36 The distance between the planes+y+5z=7 amd

16 A curve in three dimensions is the intersection of 3x+2y+z=liszerobecause .

surfaces. A line in four dimensions is the intersectionof __ hy- |y proplems 37—41 all points and vectors are in the y plane.

perplanes. ) ] ]
37 The line 3x+4y =10 is perpendicular to the vectoN =

17 (angle between planes) Find the cosine of the angle . On the line, the closest point to the origin B=¢N.
betveen x+2y+2z=0 and (a) x+2z=0 (b) x+2z2=5 FndsandP and|P|.
(c)x=0.

. . . ) 38 Draw the line x+2y =4 and the vectorN=i+2j. The
18 N is perpendicular to a plane and is along a line. Draw cjosest point taQ = (3,3) is P = Q +¢N. Findz. Find P.
the angle® between the plane and the line, and explain why ) ) o s o
V-N/|V||N| is sin® not cosf. Find the angle between they 39 A néw way to find 2 in Problem 37: minimize x*+ y* =

plane andV =i +j +v/2k. R %x)z. By calculus find the best andy.

In 19-26 find the projection P of B along A. Also find|P). 40 To catch a drug runner going frof0,0) to (4,0) at 8 meters
per second, you must travel frof9,3) to (4,0) at meters

19 A=(4,2,4),B=(1,-1,0) per second. The projection of your velocity vector onto his velocity

20 A=(1,—1,0), B=(4,2,4) vector will have length .

21 B = unit vector ai60° angle withA 41 Show by vectors that the distance froowy,y;) to the line
g ax+by=dis|d—axy —byi|/Va%+b2.
22 B = vector of length2 at60° angle withA ) .
o ) 42 It takes three points to determine a plane. So why does
23 B=—-A 24 A=i+j,B=i+k ax +by +cz = d contain four numbers,b,c,d ? When doesx +

= 2
25 Ais perpendicularta —y+z=0,B=i+j. fy+gz=1represent the same plane

43 (projections by calculus) The dot product &—rA with
itself is |B[>—2tA-B+¢2|A|%. (a) This has a minimum at
27 The forceF = 3i — 4k acts at the pointl,2,2). How much force ¢ = . (b) ThenrA isthe projection of . Afigure show-
pulls toward the origin? How much force pulls vertically down hg B, tA, andB —tA is worth 1000 words.

Which direction does a mass move under the fér€e

26 Ais perpendicularta —y +z=5,B=i+j+5k.

44 From their equations, how can you tell if two planes are
28 The projection ofB along A is P= .The projection (a)parallel (b) perpendicular (c) at4s° angle ?
of B perpendicular tA is . Check the dot product of the
two projections. Problems 45-48 are about the ECG and heart vector.
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45 The aVR lead is—%L| —%L”. Find the aVL and aVF 47 If the potentials arepra =1 (right arm) andg.a =2 and
leads toward the left arm and foot. Show thap | = -3, find the heart vectoN. The differencesin potential
aVR+aVL+aVF =0. They go out from the center at20° are the projections of.

angles. 48 If V is perpendicular to a leall, the reading on that lead

46 Find the projection on the aVR lead o =2i—j in is . If [V(r)dt is perpendicular to leadl, why is the
Question3. areaunder the reading zero ?
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B (1.3 Cross Products and Determinants

After saying that vectors are not multiplied, we offered the dot product. Now we

area |A||B||sin®|=|AxB| moment |R||F|sin @

contradict ourselves further, by defining the cross product. WAei2 was a number,
the cross produch x B is a vector It has length and direction:

The length is|A||B]|sinf|. The direction is perpendicular té\ andB.

The cross product (also called vector product) is defined iretdimensions only.
A andB lie on a plane through the origiA x B is along the normal vectoN,
perpendicular to that plane. We still have to say whether it points “up” or “down”
alongN.

The length ofA x B depends osin @, whereA - B involvedcosf. The dot product
rewards vectors for being parall@os0 = 1). The cross product is largest whans
perpendicular tdB (sinz/2 = 1). At every angle

|A-B|*+|A x B|*= |A|*|B|*cos6 + |A[*|B|*sin?0 = |A]*|B]®. (1)

That will be a bridge from geometry to algebfizhis section goes from definition
to formula to volume to determinantEquationg6) and(14) are the key formulas
for A x B.

Notice thatA x A = 0. (This is the zero vector, not the zero number.) WEeis
parallel toA, the angle is zero and the sine is zero. Parallel vectors Aav8& = 0.
Perpendicular vectors hagin § = 1 and|A x B| = |A||B| = area of rectangle with
sidesA andB.

Here are four examples that lead to the cross producB.

EXAMPLE 1 (From geometry) Find the area of a parallelogram and a triangle.

VectorsA andB, going out from the origin, form two sides of a triangle. They produce
the parallelogram in Figure 11.13, which is twice as large as the triangle.

The area of a parallelogram is base times height (perpendicular height not sloping

height). The base ifA|. The height is|B||siné|. We take absolute values because
height and area are not negative. Then the area is the length of the cross product:

area of parallelogram= |A||B||sinf| = |A x B|. (2)

turning f axis

height

I

I
I
I
|

base |A|

Fig. 11.13  Area|A x B| and momen{R x F|. Cross products are perpendicular to the page.

EXAMPLE 2  (From physics) The torque vectdr = R x F produces rotation.

The forceF acts at the poinfx, y,z). WhenF is parallel to the position vector
R = xi+ yj + zKk, the force pushes outward@ turning. WhenF is perpendicu-
lar to R, the force createmotation. For in-between angles there is an outward force
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|F|cosé and a turning forcéF| sin 6. The turning force times the distan{i| is the
moment|R||F|siné.

The moment gives the magnitude and sign oftiigue vectorT =R x F. The
direction of T is along the axis of rotation, at right anglesRandF.

EXAMPLE 3 Does the cross product go up or dowkJ8ethe right-hand rule

Forces and torques are probably just fine for physicists. Those who are not natural
physicists want to see something tdgriiVe can visualize a record or compact disc
rotating around its axis—which comes up through the center.

At a point on the disc, you give a push. When the push is outward (hard to do),
nothing turns. Rotation comes from force “around” the axis. The disc can turn
either way—depending on the angle between force and position. A sign convention
is necessary, and it is thight-hand rule:

A x B points along your right thumb when the fingers curl frorA towardB.

This rule is simplest for the vectorg, k in Figure 11.14—which is all we need.

Suppose the fingers curl froirto j. The thumb points alonf. The x-y-z axes
form a“right-handed triple .” Since|i| = 1 and|j| = 1 andsin /2 = 1, the length
of i xj is 1. The cross product i x j = k. The disc turns counterclockwise—its
angular velocity is up—when the force actg at the direction.

Figure 11.14b reversésandj. The force acts at and its direction id. The disc
turns clockwise (the way records and compact discs actually turn). When the fingers
curl fromj toi, the thumb pointslown Thusj x i = —k. This is a special case of an
amazing rule:

The cross product isnicommutative B x A = —(A x B). 3

Tha is quite remarkable. Its discovery by Hamilton produced an intellectual
revolution in19th century algebra, which had been totally accustometiBo= BA.

This commutative law is old and boring for numbers (it is new and boring for dot
products). Here we see itgpositefor vector product#\ x B. Neither law holds for
matrix products.

ixj=k

sCrew going in screw coming out

Fig. 11.14  ixj=k=—(j xi) ixk=—j=—(kxi) jxk=i=—(kxj).

EXAMPLE 4 A screw goes into a wall or out, following the right-hand rule.

Thedisc was in thexy plane. So was the force. (We are not breaking records here.)
The axis was up and down. To see the cross product more completely we need to
turn a screw into a wall.

Figure 11.14b shows thez plane as the wall. The screw is in tipedirection. By
turning fromx towardz we drive the screvinto the wall—which is thenegativey

1 Everybody is a natural mathematician. That is the axiom behind this book.
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direction. In other wordé x k equalsminusj. We turn the screw clockwise to make
it go in. To take out the screw, twist fromtowardi. Thenk x i equalsplus;j.

To summarizek x i =j andj x k =i have plus signs becaukg andjki are in the
same tyclic ordef asijk . (Anticyclic is minug Thez-x-y and y-z-x axes form
righthanded triples liker-y-z.

THE FORMULA FOR THE CROSS PRODUCT

We begin the algebra oA x B. It is essential for computation, and it comes out
beautifully. The square roots |A||B|| sin®| will disappear in formulg6) for A x B.
(The square roots also disappeared\irB, which is|A||B|cos6. But |A||B|tand
would be terrible.) Sincé x B is a vector we need to firifhiree components

Start with the two-dimensional case. The vectoys+ a,j andbi+ b,j are inthe
xy plane. Their cross product must go in thdirection. Thereford xB=__2 k
and there is only one nonzero component. It musijAgB|sind (with the correct
sign), but we want a better formula. There are two clean ways to confput,
either by algebrag) or by a bridge ) to the dot product and geometry:

(@) (aii+az)) x (bii+ b)) =a1byi Xi+a1bsi X |j+azbij xi+azbsj xj(4)

On the right are0, a1b,k, —a,b1k and 0. The cross product iSa1b, —aybq)kK.

(b) RotateB = b,i + b,j clockwise throug®0° into B* = b,i — b,j. Its length is
unchanged (anB - B* = 0). Then|A||B*|sin6 equal§A||B*cosf, whichisA -B*:

b
|A||B|Sin9=A-B"‘=|:a1 :||: 2 :|=a1b2—a2b1. (5)
an —bl

11F Inthexy plane A x B equalga;b, — asb1)k. The parallelogram with sidgs
A andB has areda;b, —azb;|. The triangleOA B has areazl la1bs —asby|.

EXAMPLE 5 For A =i+ 2j andB = 4i + 5j the cross productisl(5—2-4)k =
—3k. Area of parallelograms= 3, area of triangle= 3/2. The minus sign itA x B =
—3k is absent in the areas.

Note Splitting A x B into four separate cross products is correct, but it does not
follow easily from |A||B|sind. Method @) is not justified until Remarl below.

An algebraist would change the definitionAfx B to start with the distributive law
(splitting rule) and the anticommutative law:

Ax(B+C)=(AxB)+(AxC) and AxB=—(BxA).

THE CROSS PRODUCT FORMULA (3 COMPONENTS)

We move to three dimensions. The goal is to compute all threepaonemts of
A x B (not just the length). Methodj splits each vector into its j, kK components,
making nine separate cross products:

(a1l +azj +ask) x (by1i+baj + bsk) =a1by(i x i) +a1b2(i x]) + seven more terms
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Rememberi xi=j xj =k xk=0. Those three terms disappear. The other six
terms come in pairs, aqlease notice the cyclic pattern

FORMULA A xB= (Clzbg} —a3b2)i + (613171 —alb3)j + (Cllbz —azbl)k. (6)

Thek componentis th@ x 2 answer, whems = b3 = 0. Thei component involves
indices2 and3, j involves3 and 1, k involves1 and2. The cross product formula
is written as a “determinant” in equati¢h4) below—many people use that form to
computeA x B.

EXAMPLE 6 (i+2j+3k) x (4i+5j+6k)=(2-6—3-5)i+(3-4—1-6)j+(1-
5_

2-4)k. Thei,j, k components givé\ x B = —3i+ 6j —3k. Never add the-3,6,
and—3.

Remarkl The three-dimensional formul@) is still to be matched wittA x B
from geometry. One way is to rotaRinto B* as before, staying in the plane Af
andB. Fortunately there is an easier test. The vector in equé@ipsatisfies all four
geometric requirements @ x B: perpendicular toA, perpendicular toB, correct
length, right-hand rule The length is checked in Problelb—here is the zero dot
product withA:

A-(AxB)= a(aybs —asby) +a2(a3b1 —a1b3) +az(a1by —a2b1) =0. (7)

Remark2 (Optional) There is a wonderful extension of the Pythagoras formula

a? +b? = ¢?. Instead of sides of a triangle, we goateas of projectionsn theyz,

xz, andxy planes3? + 62 + 32 is the square of the parallelogram area in Example 6.
For triangles these areas are cut in half. Figure 11.15a shows three projected

triangles of ared. Its Pythagoras formula ('315)2 + (%)2 + (%)2 = (area ofPQR?.

EXAMPLE7 P =(1,0,0),Q0=(0,1,0),R=(0,0,1) lie in a plane. Find its
equation.

Idea for any P, Q, R: Find vectorsA and B in the plane. Compute the normal
N=A xB.

Solution  The vector fromP to Q has components-1, 1,0. Itis A =] —i (subtract
to go from P to Q). Similarly the vector fromP to R is B=k —i. SinceA andB
are in the plane of Figure 11.18,= A x B is perpendicular:

(G —i)x (k—i)=(j x k) — (i x k) — (j )+ xi) =i+] +k (8)

The normal vector ifN =i+j + k. Theequation of the planeidx + 1y + 1z =
d.

With the right choice! = 1, this plane contain®, Q, R The equationis +y +z =
1.

EXAMPLE 8 What is the area of this same trian§l®QR?
Solution  The area is half of the cross-product lengthx B| = |i +j +k| = /3.
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R=(0.0.1)

B=k-i
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plane x+v+:=1
normal N=i+j+k
Q=0.1.0) |Alcos @

f‘=j—i
P=(1,0,0)

Fig. 11.15 Area ofPQRis v/3/2. Niis PQ x PR. Volume of box is|A - (B x C)|.

DETERMINANTS AND VOLUMES

We are close to good algebra. The two plane veatgis- a,j and byi+ b,j are the
sides of a parallelogram. Its areaiigh, — ab1, possibly with a sign change. There
is a special way to write these four numbers—irsgtiare matrix’ There is also a
name for the combination that leads to area. It is thetérminant of the matrix:

ai

Y2 a1y —ash
bl b2 =da1bp—ajbLq.

.. ap dz . . .
The matrix is [ } , Its determinant is
1 2

This is a2 by 2 mdrix (notice brackets) and 2 by 2 determinant (notice vertical
bars). The matrix is an array of four numbers and the determinant is one number:

2

1
Examples of determinant*;:4 3 ‘ =6—4=2,

The second has no area becafise B. The third is a unit squaréA =i,B =j).

Now move to three dimensions, where determinants are most useful. The
parallelogram becomes a parallelepiped. The word “box” is much shorter, and we
will use it, but remember thahe box is squashefLike a rectangle squashed to a
parallelogram, the angles are generally 9@t.) The three edges from the origin are
A =(ay,az,a3),B=(b1,b2,b3),C = (c1,c2,c3). Those edges are at right angles
onlywhenA-B=A-C=B-C=0.

Question What is the volume of the boR The right-angle case is easy—it is
length times width times height. The volume|#| times |B| times |C|, when the
angles ar®0°. For a squashed box (Figure 11.15) we need the perpendicular height,
not the sloping height.

There is a beautiful formula for volumB.andC give a parallelogram in the base,
and|B x C| is the base area. This cross product points straight up. The third vector
A points up at an angle—its perpendicular heighfA$cosf. Thus the volume is
arealB x C| times|A| timescos6. The volume is the dot product of with B x
C

11G Thetriple scalar productis A - (B x C). Volume of box= |A - (B x C)|.

Important: A- (B x C) is a number, not a vector. This volume is zero wlieis in
the same plane @& andC (the box is totally flattened). Thds x C is perpendicular
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to A and their dot product is zero.
Usefulfacts: A-(BxC)=(AxB)-C=C-(AxB)=B-(CxA).

All those come from the same box, with different sides choséass—but no change
in volume. Figure 11.15 hd8 andC in the base but it can b& andB or A andC.
The triple productA - (C x B) has opposite signsinceC x B= —(B x C). This
orderACB is not cyclic likeABC andCAB andBCA.

To compute this triple produé - (B x C), we takeB x C from equation(6):
A- (B xC)=ai(bycs —bscz) +as(bzcy —bicz) +az(bica —bacy).  (9)

Thenumbersay,as,as multiply 2 by 2 determinants to give a by 3 determinant!
There are three terms with plus signs (likeb,c3). The other three have minus signs
(like —a1b3c3). The plus terms have indicé23,231,312in cyclic order. The minus
terms have anticyclic indicel32,213,321. Again there is a special way to write the
nine components oh, B, C—as a “3by 3 matrix.” The combination i(9), which
gives volume, is a “by 3 determinant:”

ay ap as ay dz das
matrix = | by by b3 |, determinant=A-(BxC)=| by by b3
c1 C» C3 i1 C2 C3

A single number is produced out of nine numbers, by form@a The nine
numbers are multiplied three at a time, asaipb,c,—except this product is not
allowed.Each row and column must be represented ong@eis gives the six terms
in the determinant:

ay dp das b b b
ai1brcz+arbszcy +aszbicy
by by b3 |= (10)
—a1b3cz—a2b1c'3—a3b2c'1
(& Co C3

Thetrick is in the £ signs. Products down to the right are “plus”:

2 1 1
2:2.241-1-1-41-1-1 8+1+1
1 2 1|= = =4
—2-1-1—1-1-2—-1-2-1 —2-2-2
11 2

With practice the six products lik2-2-2 are done in your head. Write down only
84+14+1—2—-2—-2=4.Thisis the determinant and the volume.
Note the special case when the vectorsigr. The box is a unit cube:

1 0 0
1+0+0
volume of cube=(0 1 0|= =1.
—0—-0-0
0 0 1

If A,B,C lie in the same plane, the volume is zera zero determinant is the
test to see whether three vectors lie in a plane. Here&Aewrow B— row C:

01 —1
L1 ole OTIHIOEDHED(D0 a1
Lo g | 000D = (=D (=)

Zeros in the matrix simplify the calculation. All three products with plus signs—
down to the right—are zero. The only two nonzero products cancel each other.
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If the three—1's are changed te-1's, the determinant is-2. The determinant can
be negative when all nine entries are positive! A negative determinant only means
that the rowsA, B, C form a “left-handed triple.” This extra information from the
sign—right-handed vs. left-handed—is free and useful, but the volume is the absolute
value.

The determinant yields the volume also in higher dimensions. In physics, four
dimensions give space-time. Ten dimensions give superstrings. Mathematics uses
all dimensions. Th&4 numbers in ar8 by 8 matrix give the volume of an eight-
dimensional box—witt8! = 40,320 terms instead oB! = 6. Under pressure from
my class | omit the formula.

Question When is the poin{x, y, z) on the plane through the origin containiBg
andC ? For the vectoA = xi + yj + zk to lie in that plane, the volumA - (B x C)
must be zero. The equation of the plandéterminant= zera

Follow this example foB =] —i andC = k —i to find the plane parallel tB and
C:

=
~<
N

x-1-14+y-0-(=1)+z-0-(—1)

-1 1 =
—x-0-0—y-1-(=1)—z-1-(=1)

-1 0

0. (12)

—_ O

This equationis + y +z = 0. The normal vectoN = B x C has components 1, 1.

THE CROSS PRODUCT AS A DETERMINANT

There is a connection betwe8rby 3 and 2 by 2 determinants that you have to see.
The numbers in the top row multiply determinants from the other rows:

ay daz as

- by b3 by b3 by by

by by b3y |=ai| — T |—a as (13)
- | 2 C3 c1 C3 1 C2

1 C2 C3 -

The highlighted producti; (byc3 —bsc2) gives two of the six termsAll six
products contain ane and b and ¢ from different columns There are3! =6
different orderings of columns,2,3. Note howas; multiplies a determinant from
columnsl and2.

Equation(13) is identical with equation§9) and(10). We are meeting the same
six terms in different ways. The new feature is the minus sign in fronrt,ef-and
the common mistake is to forget that sign. 14 by 4 determinantg, —as,a3, —aq
would multiply 3 by 3 determinants.

Now comes a key step. We wrie x B as a determinant. The vectarg k go in
the top row, the components AfandB go in the other rowsThe “determinant” is
exactlyA x B:

i i k
a a a a a a
AxB=|a, ax a3z |=i 2 | = gk (14)
- - bz b3 b] b3 bl b2
by by ﬁ -

This time we highlighted th¢é component with its minus sign. There is no great
mathematics in formul§l4)—it is probably illegal to mixi,j, k with six numbers
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but it works. This is the good way to remember and computeB. In the example

(j —1) x (k —i) from equation(8), those two vectors go into the last two rows:

K
0 |=)
1

[—

10‘_‘—10‘ —1

1
- =i+ +k.
I I ——_19‘ T

|
—_
o 1=

The k component is highlighted, to segb, —a,b; again. Note the change from
equation(11), which had), 1, —1 in the top row. That triple product was a number
(zero). This cross product is a vectiot j + k.

Review question 1 With thei, j, k rowchanged t3, 4,5, what is the determinant ?
Answer 3-1+4-145-1=12.Thattriple product is the volume of a box.

Review question 2 When isA x B=0and whenidA - (B x C) =07? Zero vector,
zero number.
Answer WhenA andB are on the same line. Wheh, B, C are in the same plane.

Review question 3 Does the parallelogram argA x B| equal a2 by 2 determi-
nant?
Answer If A andB lie in thexy plane,yes Generallyno.

Review question 4 What are thevedor triple products (A xB) xC and
Ax(BxC)?
Answer  Not computed yet. These are two new vectors in Probiém

Review question 5 Find the plane through the origin containidg=i+j + 2k
andB =i + k. Find the cross product of those same vectdy@ndB.
Answer The position vectoP = xi + yj + zK is perpendicular tiN = A x B:

X y z i j ok
P-(AxB)y=|1 1 2 |=x4y—z=0. AxB=]1 1 2 |=i+j—k.
1 0 1 1 0 1

11.3 EXERCISES

Read-through questions

The cross productA xB is a __a whose length is_ b . The vectorsaji+azj+aszk and byi+byj+bsk have cross
Its direction is__ ¢ to A and B. That length is the area ofproduct__ r i+_ s j+_t k. The vectorsA=i+j+k and
a__d , whose base i$A| and whose heightis_e . When B=i+j have AxB = u . (This is also the 3 by
A=aji+apj and B=b1i+bsj, the area is_f . This equals 3 determinant__v__.) Perpendicular to the plane containing
a2by2 g .In generaI|A~B|2+|A><B|2: h . (0,0,0),(1,1,1),(1,1,0) is the normal vectorN=__w . The
area of the triangle with those three vertices_isx__, which is
The rules for cross product areAxA=_ i and half the area of the parallelogram with fourth vertex aty
AxB=—( j ) and Ax(B+C)=AxB+ k . In
particular AxB needs the__ | -hand rule to decide its Vectors,A,B,C from the origin determine a_z . Its volume
direction. If the fingers curl fromA towardsB (not more than |A-(__A )| comes from & by 3 _ B . There are six terms,
180°), then__m points__n . By thisruleixj=_0 and C withaplussignand D with minus. In every term each

ixk= p andjxk= q . rowand__E _is represented once. The roso0,0), (0,0, 1), and
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(0,1,0) have determinant=__F . That box isa G , but its

sidesforma_H -handed triple in the order given.

If A,B,C lie in the same plane theA-(BxC) is _ | . For
A = xi+ yj +zk the first row contains the letters J . So the
plane containingB and C has the equation K =0. When

B=i+jandC =k that equationis L .BxCis__ M

A 3 by 3 determinant splits into__ N __ 2 by 2 determinants.

They come from row® and 3, and are multiplied by the entries27

in row 1. With i, j, k in row 1, this determinant equals the O
product. It§ componentis__P__,includingthe__Q sign which
iseasy to forget.

Compute the cross products 1-8 from formula (6) or the
determinant (14). Do one example both ways.

1 (ixj)xk

3 Qi+3)) % (i+k)

Qi +3j +K) x (i—j —k)
(i +2j + 3K) x (4i —9j)
(icosf +j sin @) x (i sinf —j cosb)

When argA x B| = |A||B| and]A - (B x C)| = |A||B]|C|?

2 (ixj)xi

4 (2i+3j+k)x 2i+3j—k)
5 6 (i+j—k)x(@i—j+k)
7
8
9
10 True or false:

(&) A xBnever equal#\-B.
(b) IfAxB=0andA-B=0,theneitheh =00rB=0.
(c) fAxB=AxCandA#0,thenB=C.

In 11-16 find |A x B| by equation (1) and then by computing
A x B and its length.

11 A=i+j+k,B=i

13 A=-B

15 A=ari+azj, B=bii+boj
16 A= (a1.,az,a3), B=(b1,b2,b3)

12 A=i+j,B=i—]j
14 A=i+j,B=j+k

In Problem 16 (the general case), equation (1) proves that the
length from equation (6) is correct.

17 True or false, by testing onfA =i,B=j,C=k:
(@ Ax(AxB)=0 (b) A-BxC)=(AxB)-C
(c) A-BxC)=C-(BxA)
(d) (A—B)x (A+B)=2(AxB).

18 (a) FromA x B = —(B xA) deduce thaA x A =0.

11 Vectors and Matrices

Find N and the equation of the plane described in 23-29.

23 Contains the point&,1,1), (1,2,1), (1,1,2)
24 Contains the pointé, 1,2), (1,2,3), (2,3,4)

25 Through(0,0,0), (1,1,1), (a,b,c) [Whatifa=b=c?]

26 Parallel toi +j andk

N makes at5° angle withi andj

28 N makes &0° angle withi andj

29 N makes &0° angle withi andj

30 The triangle with sidesi and j is as large as
the parallelogram with those sides. The tetrahedron with edges
i,j.k is as large as the box with those edges. Extra
credit: In four dimensions the “simplex” with edgesj,k,|I

has volume=

31 If the points (x,y,z), (1,1,0), and (1,2,1) lie on a plane
through the origin, what determinant is zero? What equation
does this give for the plane ?

32 Give an example of a right-hand triple and left-hand triple.
Usevectors other than justj, k.

33 When B=3i+] is rotated 90° clockwise in thexy plane
it becomesB* = . When rotated90° counterclockwise
itis . When rotated 80° it is .

34 From formula (6) verify thaB- (A x B) =0.

35 Compute
1 2 3 2 1 0 1 0 2
2 3 44,1 2 11,/0 3 O
3 4 6 0 1 2 2 0 1

36 Which of the following are equal t& x B ?
(A+B) xB, (—B) x (—A), |A||B]||sind], (A+C) x (B—C),
3(A—B)x (A+B).

37 Compare the six terms on both sides to prove that

ay b1 1 ay az as
a by c2 |=| by by b3
az bz c3 cT ¢ 3

(b) Split (A+B) x (A+B) into four terms, to deduce that' '€ Malrixis transposeti—same determinant.

(AxB)=—(BxA).

What are the normal vectors to the planes 19-22
19 (2,1,0)-(x,y,z)=4 20 3x+44z=5

X
1
0

X
1
1

y
1

1

y
1

1

z z
21 0|=2 22 1
1 2

38 Compare the six terms to prove that

ai az as
az as ai as ai az
b1 by b3|=-by +by —bs3 .
2 (3 1 €3 (& )
1 c2 c3

This is an “expansion on ro@.” Note minus signs.
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39 Choose the signs antlby 2 determinants in 45 (1) The projections ofA =aji+aszj+aszk ad B=5bi+

baj + b3k onto thexy plane are .
ay az as

b1 by b3 |=*c1

ax as
by b3

(2) The parallelogram with side®\ and B projects to a
parallelogram with area .

(3) General fact: The projection onto the plane normal to
the unit vecton has areqA x B) -n. Verify for n=Kk.

te

tez

€1 €2 €3

40 Show that (AxB)+(BxC)+(CxA) is perpendicular to

B—A andC—-B andA —C.

Problems 41-44 compute the areas of triangles

41 The trianglePQRin Example7 has squared are@/3/2)2 =
(12 +($H)?+($)?, from the 3D version of Pythagoras in

6 (@) For A=i+j—4k and B=—i+j, compute (A x B)-i

and (AxB)-j and (A xB)-k. By Problem 45 those are
the areas of projections onto the andxz andxy planes.

(b) Square and add those areas to fildx B|2. This is
the Pythagoras formula in space (Remayk

Remark2. Find the area o0PQRwhen P = (¢,0,0), Q0 =(0,5,0),

andR = (0.0.c). Check With%|A>< B|. 47 (@) The triple cross produdtA x B) x C is in the plane of

A and B, because it is perpendicular to the cross product
42 A triangle in thexy plane has corners at,b1),(az,b2)
and (as,b3). Its area A is half the area of a parallelogram.
Find two sides of the parallelogram and explain why

(b) Compute (AxB)xC when A=aji+azj+aszk,B=
bii+bsj+b3k,C=i.

(c) Compute (A-C)B—(B-C)A when C=i. The answers
in (b) and (c) should agree. This is also tru€i& j or C =Kk or
C =c1i+c2j +c3k. That proves the tricky formula

(AxB)xC=(A-C)B—(B-C)A. (%)

A= Ll(ax—a1)(b3—b1) — (a3 —a1)(b2—b1)|.

43 By Problem42 find the aread of the triangle with corners
(2,1) and (4,2) and (1,2). Where is a fourth corner to make a
parallelogram ?

44 Lifting the triangle of Problem42 up to the planez =1 48 Take the dot product of equatigm) with D to prove

gives corners(ay,b1,1),(az,b3.1),(a3,b3,1). The area of the
triangle times% is the volume of the upside-down pyramid
from (0,0,0) to these corners. This pyramid volume és the 49 The plane containingP? =(0,1,1) and Q =(1,0,1) and
box volume, soé— (area of triangle)= %(volume of box): R=(1,1,0) is perpendicular to the cross produdi=

Find the equation of the plane and the area of
trianglePQR
50 Let P=(1,0,—1),Q0 =(1,1,1),R=(2,2,1). Choose S so
that PQRSis a parallelogram and compute its area. Choose

T,U,V so that OPQRSTUVis a box (parallelepiped) and
compute its volume.

(AxB)-(CxD)=(A-C)(B-D)—(B-C)(A-D).

ay; by 1
. 1
area of triangle= 3 a, by 1

az by 1

Find the area in Problem43 from this determinant.
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I 114 Matrices and Linear Equations | EEEEEEEEEE

We are moving from geometry to algebra. Eventually we get back to calculus, where
functions are nonlinear—but linear equations come first. In Chapter=linx + b
produced a line. Two equations produce two lines. If they cross, the intersection point
solves both equations—and we want to find it.

Three equations in three variablesy,z produce three planes. Again they go
through one pointysually. Again the problem is to find that intersection point
—which solves the three equations.

The ultimate problem is to solve equations inn unknowns. There are:
hyperplanes im-dimensional space, which meet at the solution. We need a test to
be sure they meet. We also want the solution. These are the objectiliesarf
algebra which joins with calculus at the center of pure and applied mathematics.

Like every subject, linear algebra requires a good notation. To state the equations
and solve them, we introduce a “matriXthe problem will beAu = d. The solution
will be u= A~'d. It remains to understand where the equations come from, where
the answer comes from, and what the matridemndA~! stand for.

TWO EQUATIONS IN TWO UNKNOWNS

Linear algebra has no reason to choose one variable as spduaédhationy —
yo =m(x — xg) separatey from x. A better equation for a line isx +by =d.
(A vertical line like x = 5 appears whel = 0. The first form did not allow slope
m = 00.) This section studies two lines:

arx+byy=d; (1)

Clzx—f—bzy =d,.

By solving both equations at once, we are askingy) to lie on both lines. The
practical question is: Where do the lines cross? The mathematician’s question is:
Does a solution exist and is it unique ?

To understand everything is not possible. There are parts of life where you never
know what is going on (until too late). But two equations in two unknowns can have
no mysteries. There are three ways to write the systemsetg, by columns and
by matrices Please look at all three, since setting up a problem is generally harder
and more important than solving it. After that comes the concession to the real world:
we computer andy.

EXAMPLE 1 How do you inves$5000 to earn$400 a year interest, if a money
market account pays% and a deposit account paj8% ?

Set up equations by rowswith x dollars at5% the interest isQ5x. With y dollars
at 10% the interest isLOy. One row for principal, another row for interest:

x+ y=5000

2
05x+.10y = 400.

tLinear algebra dominates some applications while calculus governs others. Both are
essential. A fuller treatment is presented in the author's bbmiear Algebra and Its
Applications(Harcourt Brace JovanovicBrd edition 1988), and in many other texts.
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Same equations by columnsTheleft side of(2) containsx times one vector plus
y times another vector. The right side is a third vector. The equation by columns is

17 [ 17 [s000 X
1os| TV 0| T 00| 3

Sane equations by matricesLook again at the left side. There are two unknowns
x andy, which go into a vectou. They are multiplied by the four numbetls.05, 1,
and 10, which go into awo by two matrix4. The left side becomesmatrix times

a vector
1 1 X 5000
Au= = ) (4)
05 .10 ||y 400

Now you see where the “rows” and “columns” came from. They are the rows and
columns of a matrix. The rows entered the separate equafynsThe columns
entered the vector equatidB). The matrix-vector multiplicatiou is defined so
that all these equations are the same:

ay by || x aix+byy (each row is
Au by rows: =
a, by ||y arx +byy a dot product)
a, b X a b inafi
Auby columns: | = ! x| M4 y| 0t | (combination of
a; by ||y as by column vectors)

A is thecoefficient matrix The unknown vector ig. The known vector on the right
side, with componentS000 and400, is d. The matrix equation igtu = d.

KW

x+y=5000 .05x+.10y=400 a4+ vh=d

Fig. 11.16  Each row of Au =d gives a line. Each column gives a vector.

This notationAu = d continues to apply when there are more equations and more
unknowns. The matri¥d has arow for each equation(usuallym rows). It has a
column for each unknown(usuallyn columns). Fo2 equations irB unknowns it is
a2 by 3 matrix (therefore rectangular). Férequations irb unknowns the matrix is
6 by 6 (therefore square). The best way to get familiar with matrices is to work with
them. Note also the pronunciation: “magiesand never “matrixes.”

Answer to the practical questiomhe solution isx = 2000, y = 3000. That is the
intersection point in the row picture (Figure 11.16). It is also the correct combination
in the column picture. The matrix equation checks both at once, because matrices are
multiplied by rowsor by columns. The product either wayds

1 1 ][2000 2000 + 3000 5000 g
05 .10 || 3000 | | (.05)2000 + (.10)3000 | | 400 |
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Singular caseln the row picture, the lines cross at the solution. But there is a case
that gives troubleWhen the lines are parallelthey never cross and thererig
solution. When the lines are the same, there iginity of solutions:

. 2x4+y=0 . 2x+ y=0
parallel lines same line 5)
2x+y=1 4x 42y =0

This trouble also appears in the column picture. The columns are veaodb. The
equationdAu = d is the same asa+ yb = d. We are asked to find the combination
of a andb (with coefficientsx and y) that producesl. In the singular casa and

b lie along the same line (Figure 11.17). No combination can produyaemless it
happens to lie on this line.

parallel

lines cross at solution a,
x=1, y=1

Fig. 11.17  Row and column picturessingular (no solution) andonsingular(x =y = 1).

The investment problem isonsingular, and2000a+ 3000b equalsd. We also
drew
EXAMPLE 2 : The matrix4 multipliesu = (1,1) to solvex +2y =3 andx —y =
0:

ol U] o L)

The crossing point ig1, 1) in the row picture. The solution is =1,y =1 in the
column picture (Figure 11.17b). Thdntimesa plus 1 timesb equals the right side
d.

SOLUTION BY DETERMINANTS

Up to now we just wrote down the answer. The real problem is toXiadd y when
they are unknown. We solve two equations with letters not numbers:

aix +by=d
arx + bz_,\’ =d,.

The key is to eliminater. Multiply the first equation by, and the second equation
by a;. Subtract the first from the second and ttie disappear:

(a1ba —azby)y = (a1d2 — azdy). (6)
To eliminatey, subtract;, times the second equation fram times the first:

(bra1 —braz)x = (bady — b1d>). (7)
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What you see in those parentheses arby 2 determinants! Remember from
Section11.3:

. ap by | . ai 1
The determinant of is the number =a1by—asbh;.
as 2 aj 2

This number appears on the left side(6) and (7). The right side of7) is also a
determinant—but it hagd’s in place ofa’s. The right side 0f{6) hasd’s in place of
b’s. Sox andy areratios of determinantsgiven by Cramer’s Rule:

dl bl al dl
. dr by a; dp
11H Cramers Rule  Thesolutionisx = ——, y=——.
aq bl ay bl
ax by a by

The investment example is solved by three determinants from the three columns:

05 .10 400 .10|

1 1 5000 1 1 5000
.05 400

‘: 150.

Cramer’s Rule has = 100/.05 =2000 andy = 150/.05 = 3000. This is the solu-
tion. The singular case is whéine determinant of A is zereand we can't divide by
it.

111 Cramer’'s Rule breaks down when dédt= 0—which is the singular casg.
Then the lines in the row picture are parallel, and one column is a multifle of
the other column.

EXAMPLE 3 The lines2x +y =0, 2x +y =1 are parallel. The determinant is

2 1 X 0 2 1
= has detd = =0.
2 1]y 1 2 1

The lines in Figure 11.17a don’t meet. Notice the colunfdg:is a multiple of] ; .

One final comment o by 2 systems. They are small enough so that all solution
methods apply. Cramer’s Rule usdsterminants Larger systems usalimination
(3 by 3 matrices are on the borderline). A third solution (the same solution!) comes
from theinverse matrixA~!, to be described next. But the inverse is more a symbol
for the answer than a new way of computing it, because to find we still use
determinants or elimination.

THE INVERSE OF A MATRIX

The symbolA~! is pronounced “Ainverse’ It stands for a matrix—the one that
solvesAu = d. | think of A as a matrix that takes to d. ThenA~! is a matrix that
takesd back tou. If Au=d thenu= A~'d (provided the inverse exists). This is
exactly like functions and inverse functiongix) = y andx = g~ '(y). Our goal is
to find A~! when we knowA.

499
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The first approach will be very direct. Cramer's Rule gave foamufor
x andy, the components afi. From that rule we can read off !, assuming that
D =ayby, —ayby is not zero D is detA and we divide by it:

1 brdy — b1d 1 by, —b d
Cramer. u= — 2 "2 Thisisd—'d = — ’ ! !
D | —ardy + a1d> D | —a, ai d>

8
The matrix on the right (including /D in all four entries) isA~!. Notice the sign
pattern and the subscript pattern. The inverse exist® iis not zero—this is
important. Then the solution comes from a matrix-vector multiplicatibn! times
d. We repeat the rules for that multiplication:

DEFINITION A matrix M times a vectow equals a vector of dot products:

|:rowl} |: } [(rowl)-v}
Mv= V(= . 9
row 2 (row 2) -v

Equation(8) follows this rule withM = A~! andv = d. Look at Example 1:

1 1 . 1 10 —1 2 =20
A= , detdA=.05, A7 =— = .
.05 .10 05| —.05 1 -1 20

There stands the inverse matrix. It multiplie$o give the solutionu:
A-1g 2 =201 5000 (2)(5000) — (20)(400) 2000
=1 20| 400| | (=1)(5000)+(20)(400) | | 3000 |
The formulas work perfectly, but you have to see a direct way to reiactd. Mul-

tiply both sides ofdu = d by A~!. The multiplication “cancels4 on the left side,
and leavesi = A~'d. This approach comes next.

MATRIX MULTIPLICATION

To understand the power of matrices, we must multiply them. @oeluct of A~}
with Au is a matrix times a vector. But that multiplication can be done another way.
First A~ ! multiplies A, a matrix times a matrix. The produdt ! 4 is another matrix
(a very special matrix). Then this new matrix multiplies

The matrix-matrix rule comes directly from the matrix-vector rule. Effectively, a
vectorv is a matrixV with only one column. When there are more columystimes
V splits into separate matrix-vector multiplications, side by side:

DEFINITION A matrix M times a matrix’ equals a matrix of dot products:

|:row 1:| |: :| [(row 1)-v1 (row 1)-v2}
MV = Vi Vo | = . (10)
row 2 (row 2)-v1 (row 2)-v,

I 2[5 6 1-542-7 1-6+2-8 19 22
EXAMPLE 4 = = .
3 4117 8 3-5+4-7 3:6+4-8 43 50
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1 O
EXAMPLE 5 Multiplying A~ times A produces the “identity matriX|:O 1}:

bz —bl alb2 —Clzbl 0
. —a, ap||a; by 0 —azb1+a1b; 1 0
AT A==———"—= = = .
D ar by D 0 1
11)

This identity matrix is denoted b¥. It has1’s on the diagonal an@'s off the diagonal.
It acts like the numbet. Every vector satisfiegu = u.

11J (Inverse matrix and identity matrixAA=! =7 andA='A =17 and/u =
u:

O B S o B R H A

Note the placement af, b, ¢, d. With these letterd isad — bc.

The next section moves to three equations. The algebra gets more complicated (and
4 by 4 is worse). It is not easy to write out~!. So we stay longer with th2 by 2
formulas, where each step can be checked. Multiplying= d by the inverse matrix
givesA~! Au = A~'d—and the left side ig u = u.

(J .
d=[ ]n -1gq = [sm B}
1 Ad cos B

Fig. 11.18 Rotatev forward into Av. Rotated backward intod —!d.

cosf —sind

EXAMPLE 6 A= [ } rotates every to Av, through the anglé.

sing@ cos6

1
Questionl Where is the vector = {0:| rotated to ?

Question2 WhatisA~!?

0
Question3 Which vectoru is rotated intod = |:1 ?

sing cosf |0

_ . cosf —sind |[1
Solution1l vrotates intodv =

Il
1

cosf
sinf |
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) cosf sin6 )
Solution2 detd=1s04"! = . = rotation through— 6.
—sinfd coso
] cosfd sind || 0 sind
Solution3 If Au=dthenu=A"'d= _ = .
—sinfd cosO || 1 cosd

Historical note | was amazed to learn that it was Leibniz (again!) who proposed
the notation we use for matriceShe entry in rowi and columnj is a;;. The
identity matrix hasi;; = a; = 1 anda; = a,; = 0. Thisisin a linear algebra book
by Charles Dodgson—Dbetter known to the world as Lewis Carroll, the authdiasf

in Wonderlandl regret to say that he preferred his own notatigy instead ofa;; .

“I have turned the symbol toward the left, to avoid all chance of confusion fvith

It drove his typesetter mad.

PROJECTION ONTO A PLANE = LEAST SQUARES FITTING BY A LINE

We close with a genuine application. It starts with three-disienal vectorsa, b,d
and leads to & by 2 system. One good featura;b,d can ben-dimensional with
no change in the algebra. In practice that happens. Second good feature: There is a
calculus problem in the background. The exampleift points by a straight line
There are three ways to state the problem, and they look different:

1. Solvexa+ yb = d aswell as possible (three equations, two unknowasdy ).
2. Project the vectod onto the plane of the vectoasandb.
3. Find the closest straight linel¢ast squarey to three given points.

Figure 11.19 shows a three-dimensional vect@tove the plane ofi andb. Its
projection onto the plane 8= xa+ yb. The numbersc andy are unknown, and
our goal is to find them. The calculation will use the dot product, which is always the
key to right angles.

The differenced — p is the “error.” There has to be an error, because no combina-
tion of a andb can producel exactly. (Otherwisal is in the plane.) The projection
p is the closest point td, and it is governed by one fundamental lalhe error is
perpendicular to the planeThat makes the error perpendicular to both vectors
andb:

a-(xa+yb—d)y=0 and b-(xa+yb—-d)=0. (13)
Rewrite those as two equations for the two unknown numbensd y:

(a-a)x + (a-b)y = a-d
(14)
(b-a)x + (b-b)y =b-d.
These are the famousormal equationsn statistics, to compute andy andp.

EXAMPLE 7 Fora=(l,1,1)andb=(1,2,3)andd = (0,5,4), solve equatiofl4):

3x4+ 6y= 9 x=-1 .
gives so p=—a+2b=(1,3,5) = projection
6x + 14y =22 y= 2
Notice the three equations that we are not solving (we caré} yb =d is
x+ y=0 11
x+2y=5 withthe3by2matrixd=|1 2 |. (15)

x+3y=4 1 3
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Ford = (0, 5, 4) there is no solutiongl is not in the plane o andb. Forp = (1,3,5)
there is a solutiony = —1 andy = 2. The vectop is in the plane. The errat —p
is (—1,2,—1). This error is perpendicular to the columfis 1, 1) and(1,2,3), so it
is perpendicular to their plane.

SAME EXAMPLE (written as a line-fitting probleiyFit the pointg1,0) and(2, 5)
and(3, 4) as closely as possible (“least squares”) by a straight line.

Two points determine a line. The example asks the lfne x 4 y¢ to go through
threepoints. That gives the three equationg1p), which can'’t be solved with two
unknowns. We have to settle for the closest line, drawn in Figure 11.19b. This line is
computed again below, by calculus.

Notice that the closest line has heights,5 where the data points have heights
0,5,4. Those are the numbers mandd! The heightsl, 3,5 fit onto a line; the
heights0, 5,4 do not. In the first figurep = (1, 3, 5) is in the plane and = (0,5,4)
is not. Vectors in the plane lead to heights that lie on a line.

Notice another coincidence. The coefficientss —1 andy = 2 give the projection
—a+2b. They also give the closest ling = —1 4 2¢. All numbers appear in both
figures.

i 0 - 5T (2.5)‘3_'
= : I:I"I'EJ‘I'[ 2] R b =]
\ -1 & LS ®(3,4)

\  projection I ) 0
=—a+2b=[3] 31 crmr[ 2]
5

Fig. 11.19 Projection onto plane i¢l1, 3, 5) with coefficients—1,2. Closest line has heights
1,3,5 with coefficients—1,2. Error in both pictures is-1,2, —1.

Remark Finding the closest line is@alculus problemMinimize a sum of squares
The numbers: andy that minimizeE give the least squares solution:

E(x,y)=(x4+y—0)2+(x+2y =52+ (x +3y —4)% (16)

Those are the three errors in equatid®), squared and added. They are also the
three errors in the straight line fit, between the line and the data points. The projection
minimizes the error (by geometry), the normal equatid® minimize the error (by
algebra), and now calculus minimizes the error by setting the derivativesmfero.

The new feature is thisZ depends on two variablasandy. ThereforeE has two
derivatives They both have to be zero at the minimum. That gives two equations for
x andy:

x derivative of E iszero:2(x 4+ y)+2(x+2y—5) +2(x+3y—4) =0
y derivative ofE is zero:2(x + y) +2(x +2y—5)(2) +2(x + 3y —4)(3)=0.

When we divide by2, those are the normal equatiodis + 6y =9 and6x + 14y =
22. The minimizingx andy from calculus are the same number$ and2.
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Thex derivative treaty asa constant. The derivative treats as a constant. These
arepartial derivatives This calculus approach to least squares is in Chapter 13, as
an important application of partial derivatives.

We now summarize thkeast squares problem—to find the closest line:tdata
points. In practice may bel 000 instead 08. The points have horizontal coordinates
b1,ba, ...,b,. The vertical coordinates awd,d>, ...,d,. These vectorb andd,
together witha= (1,1, ...,1), determine a projection—the combinatipn= xa+
vb
that is closest ta. This problem is the same im dimensions—the errodl —p is
perpendicular t@ andb. That is still tested by dot products;a=d-aandp-b =
d-b, which give the normal equations ferand y:

(a-a)x + (a-b)y=a-d (n) x4+ (Zb))y=2%d,;
17
(b-a)x+(b-b)y=b-d o (Zb)x+ (Tb?)y=Xb;d;. 4

11K The least squares problem projectsonto the plane ofa and b. The
projection isp = xa+ yb, in n dimensions. The closest liné = x + y¢, in two
dimensions. The normal equatiofis) give the besk andy.

11.4 EXERCISES

Read-through questions F 1}[ 1/2 —1/2}_[_ _} [1 0} [A}—[_ _}
The equations3x 4+y =8 and x +y = 6 combine into the vector L=z 32 T 01 -

equatiokx__a +y_b =_ ¢ =d.Theleftsideisdu, with . ) .
coefficient matrixd = d _ and unknown vecton = e _The 1he last line contains the _u _ matrix, denoted byl. It has
the property that/A= Al =__v__ for every matrix A, and

w__ for every vectoru. The inverse matrix satisfies

determinant ofd is __f , so this problem is not g . The row

picture shows two intersecting_h . The column picture showsILilz

xatyb=d wherea=__i andb= | .The inverse matrix 4~ A=_X_. Then Au=d is solved by multiplying both
isA-l— Kk . Thesolutionisi=A-ld= | sides by y ,togiveu=__z . There is no inverse matrix
T - I — when__A

A matrix-vector multiplication produces a vector of dotm

from the rows. and also a combination of then The combinationxa+ yb is the projection ofd when the

error__B isperpendicularto C and_ D .Ifa=(1,1,1),
b=(1,2,3), andd = (0,8,4), the equations fox andy are__E
A _ X 3 1111 _ 7 Solving them also gives the closest F__ to the data pointsl,0),
[B}[u} = [ } [a b}[ } = [ } [1 1}[5} :[ } G, and(3,4). The solution isx =0, y =2, which means the

- y —J1 bestlineis__H . The projection ia+2b=__1 . The three

error components are_J . Check perpendicularity: K =0

If the entries arez,b,c,d, the determinantiD=__ o . A 1is and L =0. Applying calculus to this problemx and y
[ p ]divided by D. Cramer’s Rule shows components w& minimize the sum of squareds=__M

A~1d as ratios of determinants:= g /Dandy=_r_/D.
A matrix-matrix multiplicationM V yields a matrix of dot prod-

ucts, from the rows of s _ and the columns of t - In 1-8 find the point (x, y) where the two lines intersect (if they

do). Also show how the right side is a combination of the columns
on the left side (if it is). Also find the determinant D.

I e e e A P mel
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3 3x—y=38 4 x+42y=3 27 Find the determinant and inverse.6f=[3 2]. Dothe same for
x—=3y=0 2x+4y =7 24,471, —A, andI.
5 2x—4y=0 6 lox+y=1 28 Show that the determinant af ! is 1/det A:
x—=2y=0 x+y=1
d/(ad —bc) —b/(ad —bc)
7 ax+ by=0 8 ax+by=1 A1=|: / /
2ax +2by=2 cx+dy=1 —c/(ad =bc)  a/(ad —bc)
9 Solve Problens by Cramer's Rule. 29 Computed B and BA and alsoBC andCB:
10 Try to solve Problend by Cramer’s Rule. I 4 31 11
11 What are the ratios for Cramer’s Rule in Probl&m A= |:2 _1i| B= [1 1} C= |:0 2i|~

12 If A =1 show how Cramer’s Rule solvetu =d.

13 Draw the row picture and column picture for Problém Verify the associative lawA 5 timesC equalsA times 5C.

14 Draw the row and column pictures for Problem 30 (&) Findthe determinants of, B, 4B, and B4 above.

15 Find A= in ProblemL. (b) Propose a law for the determinant®€ and test it.

. 71. . _ _ a b e
16 Find A~ " in Problem8 if ad —bc =1. 31 For A— and B= Z write out AB and

17 A 2 by 2 system issingular when the two lines in the row pic- ) ¢ d. ) g
ture . This system is still solvable if one equation is a factor its determinant into (ad —bc)(eh— fg). Therefore
of the other equation. In that case the two lines are  and the det(AB) = (det4)(detB).
number of solutionis . 32 Usually detd+ B) does not equal detd+detB. Find
18 Try Cramer's Rule when there is no solution or infinitely manygxamples of inequality and equality.
x4+ y=0 x4+ y=1 33 Find the inverses, and cheek !4 =1 andBB~1 =1, for
or
6x +2y =2 6x +2y =2. 1 4 2 2
A= and B= .
19 Au=d is singular when the columns ofl are 0 2 0 1
A solution exists if the right sided is . In this solvable
case the number of solutions is . 34 In Problem 33 computel B and the inverse ofd B. Check that
o -1 -1
20 The equationsx —y =d; and 9x —9y =d, can be solved this inverse equalg " timesA™".
if . 35 The matrix productdBB—14~1 equals the matrix.
1 Therefore the inverse od B is . Important The associative

21 Supposex = z billion people live in the U.S. andy =5 ) . e
billion live outside. If 4 per cent of those inside move oufaW in Problerm29 allows you to multiplyBB—" first.

and2 per cent of those outside move in, find the populatidis 36 The matrix multiplication C=1B=1A~14ABC yields the
inside andd, outside after the move. Express this as a matrix matrix. Therefore the inverse of BC is

multiplication Au = d (and find the matrix).
P ( ) 37 The equations +2y + 3z and4x + 5y 4+ cz =0 always have a

22 In Problem21 what is special abouti; +az and b1 +b2 nonzero solution. The vectar= (x, y,z) is required to be
(the sums down the columns df) ? Explain whyd; +d> equals tov=(1,2,3) andw = (4,5,¢). So choosel =

x+y.
Y 38 Find the combinatiorp =xa-+ yb of the vectorsa=(1,1,1)

23 With the same percentages moving, SUppa$e=0.58 andh=(—1,0,1) that comes closest = (2,6,4). (a) Solve the

billion are inside andd, =4.92 billion are outsideat the end [ormal equations (14) for andy. (b) Check that the errat —p is
Set up and solve two equations for the original populatians perpendicular ta andb.

andy.
39 Plot the three data point$—1,2),(0,6),(1,4) in a plane.

2471What is the dej?rmlnant off in Problems21-23? What IS praw the straight linex + yr with the samer andy as in Problem

A7 7 Checkthatt™ A =1. 38. Locate the three errors up or down from the data points and com-
25 The equationsax+y =0, x+ay=0 have the solution pare with Problen3s.

x =y =0. For which two values ofz are there other solutions

(and what are the other solutions) ? 40 Solve equation (14) to find the combinationa+ yb of

a=(1,1,1) and b=(-1,1,2) that is closest tod=(1,1,3).

26 The equationsax +by =0, cx+dy =0 have the solution Draw the corresponding straight line for the data points

x=y=0. There are other solutions if the two lines aré¢—1,1),(1,1), and (2,3). What is the vector of three errors and
. This happens i&, b, c,d satisfy . what is it perpendicular to ?
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41 Under what condition ondy,d>,ds do the three points

. 505 , o
(0.dy).(1.dy).(2.d3) lie on a line ? 43 Multiplying by P = [.5 .5} projectsu onto the45° line.

42 Find the matrices that reverseand y and project: () Find the projectioPuof u=[,].
(b) Why doesP timesP equalP ?

(c) DoesP~! exist? What vectors giv®u =07?

M o and P o 44 Supposeu is not the zero vector bulu=0. Then4~! can't
y ' exist: It would multiply and producel.
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I 11.5 Linear Algebra |

This section moves from two to three dimensions. There are three unkngwns
and also three equations. This is at the crossover point between formulas and
algorithms—it is real linear algebra. The formulas give a direct solution using
determinants. The algorithms use elimination and the numbersz appear at the
end. In practice that end result comes quicklpmputers solve linear equations by
elimination

The situation for a nonlinear equation is similar. Quadratic equations
ax?+bx +c =0 are solved by a formula. Cubic equations are solved by Newton’s
method (even though a formula exists). For equations involvihgr x 12, algorithms
take over completely.

Since we are at the crossover point, we look both ways. This section has a lot to do,
in mixing geometry, determinants, addy 3 matrices:

1. The row picture: three planes intersect at the solution

2. The column picture: a vector equation combines the columns
3. The formulas: determinants and Cramer’s Rule

4. Matrix multiplication andA !

5. The algorithm: Gaussian elimination.

Part of our goal is three-dimensional calculus. Another partdémensional algebra.
And a third possibility is that you may not take mathematics next year. If that happens,
I hope you willusemathematics. Linear equations are so basic and important, in such
a variety of applications, that the effort in this section is worth making.

An example is needed. It is convenient and realistic if the matrix contains zeros.
Most equations in practice are fairly simple—a thousand equations eact99ith
zeros would be very reasonable. Here are three equations in three unknowns:

x+ y = 1
x +2z= 0 (1)
—2y+4+2z=—4.

In matrix-vector form, the unknowmhas components, y, z. The rightsided, 0, —4
go intod. The nine coefficients, including three zeros, enter the marix

1 1 0 X 1
1 0 2||y|= 0 or Au=d. (2)
0-2 2 z —4

The goal is to understand that system geometrically, and then solve it.

THE ROW PICTURE: INTERSECTING PLANES

Start with the first equation + y = 1. In the xy plane that produces a line. In three
dimensions it is @lane It has the usual formx + by 4+ cz = d, except that hap-
pens to be zero. The plane is easy to visualize (Figure 11.20a), because it cuts straight
down through the line. The equatiorH- y = 1 allows z to have any value, so the
graph includes all points above and below the line.

The second equation+2z =0 gives a second plane, which goes through the
origin. When the right side is zero, the poitt, 0,0) satisfies the equatiofhis
time y is absent from the equation, so the plane contains the whalas. All points
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(0, y,0) meet the requirement+ 2z = 0. The normal vector to the plane ié=
i + 2K. The plane cuts across, rather than down, in 11.20b.
Before the third equation we combine the first tbe intersection of two planes
is a line. In three-dimensional space, two equations (not one) describe a line. The
points on the line have to satisky+ y = 1 and alsax + 2z = 0. A convenient point
is P =(0,1,0). Another pointisQ = (—1,2, %). The line throughP? andQ extends
out in both directions.
The solution is on that line. The third plane decides where.

x==2,y=3,z=1

solution

intersection
line of first
two planes

third plane -2y + 2: =—4

Fig. 11.20  First plane, second plane, interesection line meets thirce@asolution.

The third equation-2y + 2z = —4 gives the third plane—which misses the origin
because the right side is not zero. What is importarihés point where the three
planes meetThe intersection line of the first two planes crosses the third plane.
We used determinants (but elimination is better) to fing —2, y =3, z = 1. This
solution satisfies the three equations and lies on the three planes.

A brief comment ortt by 4 systems. The first equation mightbe-y +z —¢ =0.

It represents a three-dimensional “hyperplane” in four-dimensional space. (In
physics this is space-time.) The second equation gives a second hyperplane, and
its intersection with the first one is two-dimensional. The third equation (third
hyperplane) reduces the intersection to a line. The fourth hyperplane meets that line
at a point, which is the solution. It satisfies the four equations and lies on the four
hyperplanes. In this course three dimensions are enough.

COLUMN PICTURE: COMBINATION OF COLUMN VECTORS

There is an extremely important way to rewrite our three equoatiln(1) they were
separate, if2) they went into a matrix. Now they become a vector equation:

1 1 0 1
x| 1]|+y| Of|4+z|2|=| O0]. 3
0 -2 2 —4

The columns of the matrix are multiplied by, y, z. That is a special way to see
matrix-vector multiplication:Au is a combination of the columns ofd. We are
looking for the numbers, y, z so that the combination produces the right side

The column vectors, b, ¢ are shown in Figure 11.21a. The vector equation is
xa+ yb+ zc=d. The combination that solves this equation must again be—2,
y =3,z =1. That agrees with the intersection point of the three planes in the row
picture.
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J I :,’ a,b,cin

new ¢, same plane
’

' 4 ¥ = d not in that plane:
=lc+3b-2a B S
, d . ' s ’ no solution

L=4] Y - A \ O=1lc+2b-2a

Fig. 11.21  Columns combine to give. Columns combine to giveero (singular case).

THE DETERMINANT AND THE INVERSE MATRIX

For a3 by 3 determinant, the section on cross products gave two formulas. One was
the triple produca- (b x c). The other wrote out the six terms:

detdA=a- (b xc)=ay(bacz —bscz)+az(bscy —bic3)+asz(bica —bacy).

Geometrically this igshe volume of a baxThe columnsa, b, ¢ are the edges going
out from the origin. In our example the determinant and volumeare

ay bl C1 1 1 0
(DO)2) = (DH(=2)2)+ (1)(=2)(0)
an bz Cor| = 1 0 2= =2
—(H(MH2)+0)(1)(2) = (0)(0)(0)
as b3 C3 0-2 2

A slight dishonesty is present in that calculation, and will be admitted now. In
Section 11.3 the vecto&, B,C wererows In this sectiona, b, c are columns It
doesn’'t matter, because the determinant is the same either way. Any matrix can be
“transposed” —exchanging rows for columns—uwithout altering the determinant. The
six terms @1 b, c3 is the first) may come in a different order, but they are the same six
terms. Here four of those terms are zero, because of the zeros in the matrix. The sum
of all six terms isD = detA4 = 2.

SinceD is not zero, the equations can be solved. The three planes meet at a point.
The column vectora, b, ¢ produce a genuine box, and are not flattened into the same
plane (with zero volume). The solution involvelividing by D—which is only
possible if D = detA is not zero.

11L When the determinanD is rot zero, A bas an inversedA ! = A1
A = I. Then the equationdu = d have one and only one solution= A~ 'd.

The3 by 3 identity matrix/ is at the end of equatiofb). Always /u = u.
We now computefi‘1 , first with letters and then with numbers. The neatest formula
uses cross products of the columns4ef-it is special for3 by 3 matrices.

bxc
1
Every entry is divided byD: Theinverse matrix isA~! = D cxa |.(4)
axb

To test this formula, multiply byd. Matrix multiplication produces a matrix of
dot products—from the rows of the first matrix and the columns of the secbnbd =

509
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I:
bxc a-(bxc)b-(bxc)c-(bxc) 10O
% cxal||labc :% a-(cxab-(cxa)c-(cxa) |[=|010
axb a-(axb)b-(axhb)c-(axb) 001

On the right side, six of the triple products are zero. They are the off-diagonals like
b- (b x ¢), which contain the same vector twice. Sifze ¢ is perpendicular td,

this triple product is zero. The same is true of the others,dik@ x b) = 0. That

is the volume of a box with two identical sides. The six off-diagonal zeros are the
volumes of completely flattened boxes.

On the main diagonal the triple products equal The order of vectors can be
abcorbcaorcab, and the volume of the box stays the same. Dividing by this number
D, which is placed outside for that purpose, givestllisan the identity matrix/.

Now we change to numbers. The goal is to fitd! and to test it.

1 10 | 4 -2 2
EXAMPLE 1 Theinverseod=|1 0 2 isA*I:E -2 2 =2
0-2 2 -2 2 -1

That comes from the formula, and it absolutely has to be checked. Do not fail to
multiply A~ times A (or 4 times A~!). Matrix multiplication is much easier than
the formula forA=!. We highlight row3 times columnl, with dot product zero:

e I N e e 100
5172 2201 0 2f=-)-242 —244 4-41=|0 1 0
2 2-1]]l0o-2 2 242 242 42 00 1

Renark on A~! Inverting a matrix require® # 0. We divide by D = detA. The
cross productb x candc x aanda x b give A~1 in a neat form, but errors are easy.
We prefer to avoid writing, j, k. There are nin& by 2 determinants to be calculated,
and here isA~! in full—containing the nine ¢ofactors divided by D:

bycz—bsca  bzci—bics  bica—bacy

A_1=B Cpd3 —C3dy C3d]—C1d3z Ci1dz —Caaq |. (6)
azbz—asby aszby—arbs aiby—azb,

Important The first row ofA~! does not use the first column df exceptinl/D.
In other wordsh x cdoes notinvolve. Here are th@ by 2 determinants that produce
4, —2,2—which is divided byD =2 in the top row ofd~1:

1 1 01 1 OJ[1 1 0 + — +
1 0 2|1 o 2f|1 0 2 -+ .
0 -2 2]lo -2 2]l0o -2 2 + - +

The second highlighted determinant looks l& not —2. But thesign matrix on
the right assigns a minus to that positiondr!. We reverse the sign &f, c3 — bscy,
to find the cofactobsc; — b1 c3 in the top row of(6).

To repeatfor a row of 4!, cross out the corresponding column of. Find
the three2 by 2 determinants, use the sign matrix, and divide B
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111 1 =1 0
EXAMPLE2 B—10 1 1|hasD=1andB~'=|0 1 —1]|. (8)
0 0 1 0 0 1

The multiplicationBB ! = I checks the arithmetic. Notice ho{/v} in B leadsto a
zero in the top row oB~!. To find row1, column3 of B~! we ignore columr and

row 3 of B. (Also: the inverse of a triangular matrix is triangular.) The minus signs
come from the sign matrix.

THE SOLUTION u= 4 !d

The purpose oi~! is to solve the equatioAu = d. Multiplying by A~! produces
Iu= A"'d. The matrix becomes the identity,u equalsu, and the solution is
immediate:

bxc d-(bxc)
u:A*Id:% cxa ||d :% d-(cxa) |. 9)
axb d-(axh)

By writing those components y, z asratios of determinants, we have Cramer’s Rule:

11M (Cramer’s Rulg

dbc|  Jadc _ |abd|

The solution isx = , = = .
labc labc |a b c

(10)

’

The right sided replaces, in turn, columna andb andc. All denominators are
D =a- (b x ¢). The numerator of is the determinard - (b x ¢) in (9). The second
numerator agrees with the second compomerit x a), because the cyclic order is
correct. The third determinant with columabd equals the triple product- (a x b)

in A~'u. Thus(10)is the same a9).

EXAMPLE A:  Multiply by A~! to find the known solutionr = —2, y =3,z =1:

| 4 =2 2 1 | 4—38 -2
u=A—1o|=5 -2 2 =2 0 =3 —2+48|=| 3
-2 2 —1||-4 —2+4 1

EXAMPLE B:  Multiply by B! to solve Bu = d whend is the column(6, 5, 4):
1 -1 0 6 1 1 1 1 1
u=Bl'd=[0 1 —1]||5|=|1]|. CheckBu=|0 1 1]|]|1|=
0 0 1 4 4 0 0 1 4

A~ L
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EXAMPLE C: Putd=(6,5,4) in each column ofB. Cramer’s Rule givesl =
(1,1,4):

6 1 1 1 6 1 1 1 6 1 11
51 1{=11]0 5 1|=1(0 1 5|=4 alldividedbyD=|0 1 1|{=1.
4 0 1 0 4 1 0 0 4 0 0 1

This rule fills the page with determinants. Those are good ones to check by eye,
without writing down the six terms (three and three-).

The formulas for4d ! are honored chiefly in their absence. They are not used by
the computer, even though the algebra is in some ways beautiful. In big calculations,
the computer never findé—!—just the solution.

We now look at the singular case = 0. Geometry-algebra-algorithm must all
break down. After that is the algorithm: Gaussian elimination.

THE SINGULAR CASE

Changing one entry of a matrix can make the determinant zemtrie product

a- (b x c¢), which is also the volume, becomés= 0. The box is flattened and the
matrix is singular. That happens in our example when the lower right entry is changed
from 2 to 4:

1 10
S=|1 0 2| hasdeterminanb =0.
0 -2 4

This does more than change the inversaldstroysthe inverse. We can no longer
divide by D. There is naS 1.

What happens to the row picture and column picture ? Zby 2 systems, the
singular case had two parallel lines. Now the row picture has three planes, which
need not be parallel. Here the planes a0t parallel Their normal vectors are the
rows ofS, which go in different directions. But somehow the planes fail to go through
a common point.

What happens is more subtle. The intersection line from two planes misses the third
plane. The line is parallel to the plane and stays above it (Figure 11.22)a. When all
three planes are drawn, they form an open tunnel. The picture tells more than the
numbers, about how three planes can fail to meet. The third figure shows an end view,
where the planes go directly into the page. Each pair meets in a line, but those lines
don’'t meet in a point.

,\\L‘“

S Lt
a L o o
VoL
- ﬁ
AN
oN

X

/ plane N
P 3 .
Sl = -2
. ¥ 3
tunnel between = «
planes end view

Fig. 11.22  The row picture in the singular case: no interestion point, Hotems.

When two planes are parallel, the determinant is again zero. One row of the matrix
is a multiple of another row. The extreme case has all three planes parallel—as in a
matrix with ninel'’s.
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The column picture must also break down. In thigy 2 failure (previous section),
the columns were on the same lifdow the three columns are in the same plane.
The combinations of those columns proddaenly if it happens to lie in that particu-
lar plane. Most vectord will be outside the plane, so most singular systems have no
solution.

When the determinant is zerofu = d has no solution or infinitely many.

THE ELIMINATION ALGORITHM

Go back to the3 by 3 example Au =d. If you were given those equations, you
would never think of determinants. You would—quite correetigtart with the first
equation. It givesc = 1 — y, which goes into the next equation to eliminate

x+ y = 1
X +2z= 0 1— y+2z= 0
—2y4+2z=—4 —2y+2z=—4.

x=1—-y
_—

Stop there for a minute. On the right is2aby 2 system fory and z. The first
equation and first unknown are eliminated—exactly what we want. But that step was
not organized in the best way, becauselaénded up on the left side. Constants
should stay on the right side—the pattern should be preserved. It is better to take the
same step bgubtracting the first equation from the second

X+ y = 1
X +2z= 0 —— — y+2z=-1 (11)
—2y+2z=—4 —2y+2z=—4.

Same equations, better organization. Now look at the corner-teynits coefficient
—1 is the second pivat(The first pivot was+1, the coefficient ofx in the first
corner.) We are ready for the next elimination step:

Plan. Subtract a multiple of the “pivot equation” from the equation below it.
Goal: To produce a zero below the pivot, $ds eliminated.
Method Subtrac® times the pivot equation to cancely.

- y+2z=-1

— (12)
—2y+4+2z=—4 —2z=-2.

The answer comes Hyack substitution Equation(12) givesz = 1. Then equation
(11) gives y = 3. Then the first equation gives= —2. This is much quicker than
determinants. You may asWhy use Cramer’s Rufe Good question.

With numbers elimination is better. It is faster and also safer. (To check against
error, substitute—2,3,1 into the original equations.) The algorithm reaches the
answerwithout the determinant and without the inverSalculations with letters
usedetd andA~!.

Here are the steps in a definite order (top to bottom):

Subtract a multiple of equation 1 to produein equation 2
Subtract a multiple of equation 1 to produzein equation 3
Subtract a multiple of equation 2 (new) to prodiigein equation 3.
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EXAMPLE (notice the zeros appearing under the pivots):

x+ y+ z=1 x+ y+ z=1 x4+ y+z=1
2x+5y+3z=7 — 3y+ z=5 — 3y4+z=5

dx+Ty+6z=11 3y+2z=7 z=2.
Elimination leads to driangular system The coefficients below the diagonal are
zero.
Firstz =2, theny = 1, thenx = —2. Back substitution solves triangular systems
(fast).

As a final example, try the singular caSel = d when the corner entry is changed
from 2 to 4. With D =0, there is no inverse matri§ —!. Elimination also fails, by
reaching an impossible equatifn= —2:

x+y = 1 X + y = 1 x+y — 1
X +2z= 0 » — y+2z=-1 —» —y4 2z=-1
—2y+4+4z=—4 —2y+4z=-4 0=-2

The three planes do not meet at a point—a fact that was not obvious at the start.
Algebra discovers this fact fro = 0. Elimination discovers it fron) = —2. The
chapter is ending at the point where my linear algebra book begins.

One final comment. In actual computing, you will use a code written by
professionals. The steps will be the same as above. A multiple of equbtien
subtracted from each equation below it, to eliminate the first unknowith one
fewer unknown and equation, elimination starts again. (A parallel computer executes
many steps at once.) Extra instructions are included to reduce roundoff error. You
only see the result! But it is more satisfying to know what the computer is doing.

In the end, solving linear equations is the key step in solving nonlinear equations.
The central idea of differential calculus islinearizenear a point.

11.5 EXERCISES

Read-through questions The rows of A1 are the cross productsxc, _r , s
divided by D. The entries ofA—! are2by2 __ t , divided byD.

Three equations in three unknowns can be writtemlas=d. The  The ypper left entry equals u_. The2 by 2 determinants needed

_a uhascomponents,y,zandAisa__b . Therow picture o 4 row of A~ do not use the correspondingv__ of A.
has a__c for each equation. The first two planes intersect in a

d , and all three planes intersect inae , whichis__f . The solution isu= A~1d. Its first componentr is a ratio of
The column picture starts with vectoesb, ¢ from the columns of determinantsjdbc| divided by __w . Cramer’s Rule breaks down
g and combines them to produce h . The vector equation when detd = X . Then the columnsa,b,c lie in the same
is i =d. y . Thereis no solution taa+ yb+zc=d, if d is not on that
) ) ) ) o z . In a singular row picture, the intersection of plarieand 2
The determinant of4 is the triple product i This is the i A to the third plane.
volume of a box, whose edges from the origin arek . If
detA= __| then the system is_m . Otherwise there is an Inpracticeuis computed by B . The algorithm starts by sub-
n_matrixsuchthad=!4=__o0 (the p matrix).Inthis tracting a multiple of rowl to eliminatex from __c . If the first

case the solutiontdlu=disu= q . two equations arer —y =1 and 3x +z =7, this elimination step
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leaves D . Similarly x iseliminated from the third equation, and 1 1
then__E is eliminated. The equations are solved by back . 14 Solvedu=1|0 | and Bu= | 0 |. With this right sided, why
When the system has no solution, we reach an impossible equation
. Lo 0 0
like __G . The examplex—y =1,3x+z =7 has no solution if . ) .
- L is u the first column of the inverse ?
the third equationis H .
15 Suppose all three columns of a matrix add to zero, & atove.

Rewrite 1-4 as matrix equationsAu = d (do not solve) The dot product of each column with=(1,1,1) is Al
1 d=(0.0.8) is a combination ofa= (1,2,0) andb = (2.3.2) three columns lie in the same . The determinant o€ must
be .
andc=(2,5,2).
16 Find a nonzero solution taCu=0. Find all solutions to

2 The planesx+y=0,x+y+z=1, and y +z =0 intersect Cu=0
atu=(x,y,z). e
17 Choose any right side tha is perpendicular to = (1,1,1) and

3 The point u=(x,y,z) is on the planesx=y, y=z, solveCu=d. Then find a second solution.

x—z=1.

18 Choose any right sided that is not perpendicular to
v=(1,1,1). Show by elimination (reach an impossible equation)
thatCu =d has no solution.

4 A combination of a=(1,0,0)0 and b=(0,2,0) and
¢=1(0,0,3) equalsd = (5,2,0).

5 Show that Problen8 hasno solution in two ways: find the

. . . 19 Compute the matrix product B ard then its determinant. How
determinant of4, and combine the equations to produce 1.

is detd B related to de#t and detB ?

6 Solve Problen2 in two ways: by inspiration and Cramer’s Rule20 Compute the matrix product8C and CB. All columns of CB
7 Solve Problemt in two ways: by inspection and by computingadd to , and its determinant is .
the determinant and inverse of tgonal matrix

21 Add 4 and C by adding each entry ofl to the correspond-

100 ing entry of C. Check whether the determinant df+C equals
det4 +detC.
A=[(0 2 0 o
22 Compute 24 by multiplying each entry ofA by 2. The
003 determinant o2 A equals times the determinant of.
8 Solve the three equations of Problérby dimination. 23 Which four entries of4 give the upper left corner entry of

—1 P — ) . . .
9 The vectors andc lie in a plane which is perpendicular to theA , after dividing byD = detd ? Which four entries ofl give the

oo . entryq in row 1, column2 of A—1 ? Findp andg.
vector . In case the vectar also lies in that plane, it is also ya P a
perpendicular an- =0. The of the matrix with 24 The2 by 2 determinants from the first two rows a8 are —1
columns in a plane is . (from columns2, 3) and —2 (from columnsl, 3) and (from

) . . columnsl,?2). These numbers go into the third of B—1, after
10 The plane ajx+b1y+ci1z=d; is perpendicular to its dividing by and changing the sign of _
normal vectorN; = . The planeasx +bsy +crz=d> is . o ]
perpendicular toN, = . The planes meet in a line that is25 Why does every inverse matrix—" have an inverse ?
perpendicular to both vectors, so the line is parallel to theil From the multiplicationd BB—1 41 = I it follows that the in-

—_ product. If this line is also parallel to the third plane angerse of4 B is . The separate inverses comein___ order.

perpendicular toNs, the system is_____. The matrix has no |f you put on socks and then shoes, the inverse begins by taking off
, which happens whefiN; x N3)-N3 =0.

27 Fi i i i
Problems 1124 use the matrices. B. C. Find the determinants of these fguemutation matrices

0 1 0 0 0 1 01 0
1 4 0 0 0 1 1 -1 =3
P=|(1 0 O =0 1 0 PO=|0 0 1
A=[0 2 6 B=|2 1 0 C=|(-1 2 0
0 0 1 1 0 0 1 0 0
0 0 3 6 4 0 0 -1 3
and QP = . Multiply u=(x,y,z) by each permutation to

11 Find the determinantsd|, | B, |C|. SinceA is triangular, its de- find Pu, Qu, PQu, andQPu.

terminant is the product . 28 Find all six of the3 by 3 permutation matrices (includingd),

12 Compute the cross products of each pair of columnB {fthree with a singlel in each row and column. Which of them are “even”
cross products). (determinant) and which are “odd” (determinant1) ?

13 Compute the inverses of and B above. Checkthat =14 =17 29 How many2 by 2 permutation matrices are there, includifig®
andB~1B=1. How many4 by 4 ?
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30 Multiply any matrix A by the permutation matrix? and 34 The pivots in Problem32a are 1,—1, and 4. Circle those
explain howPA is related toA. In the opposite order explain howas they appear along the diagonal in elimination. Check that the
AP is related toA. product of the pivots equals the determinant. (This is how

31 Eliminatex from the last two equations by subtracting the ﬁr&etermlnants are computed.)

equation. Then eliminatg from the new third equation by using thess Find the pivots and determinants in Problain
new second equation:

1 1 0
Xt oyt z=2 *+y =1 36 Findtheinverseofi=|0 1 1 |and also ofB = A2.
@ x+3y+3z=0 (b) x+ z=3 0 0 1
3 7z=2 =5. .
. x +. y+iz . y .+ z 37 The symbolg;; stands for the entry in row, column j.
After elimination solve forz, y, x (back substitution). Find a2 and az; in Problem36. The formulaXa;; bj; gives
32 By elimination and back substitution solve the entry in which row and column of the matrix produtcB ?
X 42y +22=0 x—y -1 38 Write down a3 by 3 singular matrixS in which no two rows are
parallel. Find a combination of rowsand? that is parallel to row
@ 2x+3y+52=0 (b) —z=4 3. Find a combination of columnkand? that is parallel to column
2y +2z=38 y—z=1. 3. Find a nonzero solution t8u = 0.

33 Eliminatex from equation 2 by using equation 1:

xX+2y+2z2=0 39 Compute these determinants. Théey 2 matrix is invertible if
2x+4y+5z=0 . The3 by 3 matrix (is)(is not) invertible.
2y +2z =8.

Why can’t the new second equation eliminatérom the third equa-
tion? Is there a solution or is the system singular ?

Note If elimination creates a zero in the “pivot position,” try to
exchange that pivot equation with an equation below it. Elimination
succeeds when there is a full set of pivots.
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