CHAPTER 12

Motion Along a Curve

I 12.1 The Position Vector I

This chapter is about “vector functions.” The vecfr 4j 4+ 8k is constant. The
vectorR(¢) = ti+12j + 13k is moving. It is a function of the parameter which
often represents time. At each timethe position vectoR(¢) locates the moving
body:

position vectoe= R(z) = x(¢)i + y(¢)] + z(¢)k. (1)

Ourexample hast =1, y =12, z =1t3. Ast varies, these points trace outarve
in space The parameter tells when the body passes each point on the curve. The
constant vectoRi + 4j + 8k is the position vectoR(2) at the instant = 2.

What are the questions to be asked ? Every student of calculus knows the first
guestion:Find the derivative If something moves, the Navy salutes it and we
differentiate it. At each instant, the body moving along the curve has a speed and
a direction. This information is contained in another vector function—the velocity
vectorv(z) which is the derivative oR(¢):

dR dx. dy. d:z
v(t)_dt_d[|+d[1+dtk. 2
Sincei,j, k are fixed vectors, their derivatives are zero. In polar coordiricdesl j
are replaced by moving vectors. Then the velogityas more terms from the product
rule (Sectionl 2.4).

Two important cases are uniform motiatong a line and around a circleWe
study those motions in detail & constant on liney = tangent to circle). This section
also finds the speed and distance and acceleration for any nidtion

Equation(2) is the computing rule for the velocigyR /d¢. It is not thedefinition
of dR/dt, which goes back to basics and does not depend on coordinates:

dR AR im R(t 4+ At) —R(?)

—=lim —=1i
dt Ar—0 At At—0 At

WerepeatR is a vector sAR is a vector s@/R/dt is a vector. All three vectors are
in Figure 12.1( is not a vector!). This figure reveals the key fact about the geometry:
The velocityv = dR/dt is tangent to the curve
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518 12 Motion Along a Curve

The vectorAR goes from one point on the curve to a nearby point. Dividing by
At changes its length, not its direction. That direction lines up with the tangent to
the curve, as the points come closer.

EXAMPLE 1 R(#)=ti+1%j+13%k  v(t)=i+21j+31%k
This curve swings upward asincreases. When= 0 the velocity isv =i. The tan-
gent is along thex axis, since thg andk components are zero. When=1 the
velocity isi + 2j + 3k, and the curve is climbing.

For the shadow on they plane, drop thé&« component. Position on the shadow is
ti +12j. Velocity along the shadow is+ 2¢j. The shadow is a plane curve.

v=i+j+2k
0=(1,33)

x=4y=2+12z=1+2
X »
x=y-2= &z 3 D
Fig. 12.1  Position vectorR, changeAR, Fig. 12.2  Equations of a line, with and
velocitydR/dt. without the parameter.

EXAMPLE 2  Uniform motion in a straight linethe velocity vectow is constant
The speed and direction don’t change. The position vector movesiiRfhlt = v:

R(t)=Ro+1tv (R fixed,v fixed, ¢ varying 3)

That is theequation of a linein vector form. Certainlyd R/dt = v. The starting
pointRy = xoi + yoj + zok is given. The velocity = vyi + v»j + v3K is also given.
Separating ther, y andz components, equatiqi) for a line is

line with parameter. x=xo+tvy, y=yo+tvy, z=2zo+tvs. (4)

The speed along the line ip/| = /v? 4 v3 4 v3. The direction of the line is the
unit vectorv/|v|. We have three equations fer y, z, and eliminating’ leaves two
equations. The parameterequals(x — xo)/v; from equation(4). It also equals
(y —y0)/v2 and(z —zp)/v3. So these ratios equal each other, amgone:

~

X—Xo Y—Yo Z—Zo (5)
U1 1%) U3 ’

line without parametet

An example isx = y/2=2z/3. In this case(xo, yo,z0) = (0,0,0)—the line goes
through the origin. Another point on the line (s,y,z) = (2,4,6). Because is

gone, we cannot say when we reach that point and how fast we are going. The equa-
tionsx/4=y/8=z/12 give the same line. Withoutwe can’t know the velocity =
dR/dt.

EXAMPLE 3 Find an equation for the line through= (0,2,1) andQ = (1,3, 3).

Solution  We have choicedR, cango toany pointon the line. The velocity can
be any multipleof the vector fromP to Q. The decision orR, controls where we
start, ands controls our speed.

The vector fromP to Q isi+j + 2k. Those numberk, 1,2 come from subtracting
0,2,1 from 1,3, 3. We choose this vectartj + 2k as a firstv, and double it for a
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secondv. We choose the vect®®y = P asa first start andRy = Q as a second start.
Here are two different expressions for the same line—thefarev andQ + ¢ (2v):

R(t)=Qj +K)+1(+]+2K)  R*(t) = (i +3j +3K) +£(2i +2j + 4k).

The vectorR(z) givesx =t, y=2+t,z=142¢. The vectorR* is at a different
point on the same line at the same timé&:= 1+ 2¢, y* =3 +2¢, z* =3 4+ 4¢.

Ifl pick £ =1in Rands = 0in R*, the pointig(1, 3, 3). We arrive there at different
times. You are seeing how parameters work, to tell “where” and also “when.” If
goes from—o0 to +o0, all points on one line are also on the other line. The path is
the same, but the “twins” are going at different speeds.

Question1  When do these twins meet? When d&4s) = R*(¢) ?
Answer Theymeetat=—1,whenR=R*=—i+j—k.

Question2  What is an equation for the segment betwéeard Q (not beyond) ?
Answer Inthe equation foR(?), let ¢ go fromO to 1 (not beyond):

x=t y=2+4+t z=1+42¢t [0<t <1 forsegmerit (6)
At t =0 westart fromP = (0,2,1). At =1 we reachQ = (1, 3,3).

Question 3  What is an equation for the line without the paramet@r
Answer  Solve equation§g) forz oruse(5): x/1=(y—2)/1=(z—-1)/2.

Question 4  Which point on the line is closest to the origin ?
Answer The derivative of? 4+ y2 422 =12+ (2+1)% + (1 +2¢)? is8 + 8¢. This
derivative is zero at = —1. So the closest pointis—1,1, —1).

Question5  Where does the line meet the plang-y +z =117
Answer Equation(6) givesx +y +z =344t = 11. Sot = 2. The meeting point
isx=t=2,y=t4+2=4,z=142¢t=5.

Question 6  What line goes througts, 1, 1) perpendicular to the plane—y —z =
17?

Answer The normal vector to the plane B =1i—j —k. That isv. The position
vectorto(3,1,1) isRy =3i+]j + k. ThenR =Ry +tv.

COMPARING LINES AND PLANES

A line has one parameter or two equations. We give the stariig pnd veloc-
ity: (x,y,z) = (X0, y0,20) +t(v1,v2,v3). Thattells directly which points are on the
line. Or we eliminatée to find the two equations i6).

A plane has one equation or two parameters! The equation isby +cz =d.
That tells usindirectly which points are on the plane. (Instead of knowing, z,
we know the equation they satisfy. Instead of directiomsmdw in the plane, we are
told the perpendicular directioN = (a,b,c).) With parameters, the line contains
Ro 4 tv and the plane contair®y + v + sw. A plane looks worse with parameters
(t ands), a line looks better.

Questions5 and 6 connected lines to planes. Here are two more. See Problems
41 —44:

Question 7 When is the lineRy+¢tv pamllel to the plane? When is it
perpendicular?
Answer Thetestisv-N=0. Thetestisr x N=0.
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EXAMPLE 4 Find the plane containing?y = (1,2,1) and the line of points
(1,0,0)+1(2,0,—1). That vectowv will be in the plane.

Solution  The vectorv = 2i —k goes along the line. The vectar= 2j +k goes
from (1,0,0) to (1,2, 1). Their cross product is

i j ok
N=vxw=[2 0 —1|=2i—2j+4k.
02 1

The plan€x — 2y + 4z = 2 has this normaN and contains the poirgt, 2, 1).

SPEED, DIRECTION, DISTANCE, ACCELERATION

We go back to the curve traced out BY(¢). The derivativev(t) = dR/dt is the
velocity vector along that curve. Tlspeeds the magnitude of:

speed= |V| = A/(dx/dt)? + (dy/d1)? + (dz/d1)2. (7)

Thedirection of the velocity vector is//|v|. This is a unit vector, since is divided
by its length.The unit tangent vector/|v| is denoted byl .
The tangent vector is constant for lines. It changes direction for curves.

EXAMPLE 5 (important) Findv and|v| andT for steady motion around a circle:
X =rcoswt, y=rsSinwt, z=0.
Solution  The position vector iR = r coswt i+ r Sinwtj. The velocity is
v=dR/dt = —wr Sinwti+ wr coOswtj (tangent, not unit tangent

The speed is the radiustimes the angular velocity:

V| = v/(—or sinwt)? + (or coswt)? = wr.
The unit tangent vector i divided by/|v|:
T=—sinwri+coswtj  (lengthl sincesirfwt 4+ coSwr = 1).

Think next about thelistance traveledistance along a curve is always denoted by
s (calledarc length. | don't know why we uses—certainly not as the initial for
speed. In fact speed is distance divided by time. The satiogives average speed;
ds/dt is instantaneous speed. We are back to Chdpaeid Sectior8.3, the relation

of speed to distance:

speedv|=ds/dt  distances = [ (ds/dt)dt = [ |v(t)|dt.
Notice that|v| ands ands are scalars. The direction vectorTis

_ vV _dR/dl_dR_ it tangent vector (8)
T dsyar as T |

In Figure 12.3, the chord length (straight) BR|. The arc length (curved) iAs. As
AR andAs approach zero, the ratild R/ As| approache$T | = 1.
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Think finally about theacceleration vector(z). It is the rate of change of velocity
(not the rate of change of speed):

a_dv_dzR_dzx_ d?y d?z

dt dzz_d12|+dt5j+ﬁk ©)

s=mr
X=rcos ®t
y =rsin ®f

Fig. 12.3  Steady motion around a circle. Half turn up a helix.

For steady motion along a line, asin=1¢,y =2+1¢,z =1+ 2t¢, there is no accel-

eration. The second derivatives are all zero. For steady motion around a circle, there

is acceleration. In driving a car, you accelerate with the gas pedal or the biake.
also accelerate by turning the whedt is the velocity vector that changes, not the
speed.

EXAMPLE 6 Find the distance(¢) and acceleratioa(t) for circular motion.

Solution  The speed in Examplgis ds/dt = wr. After integrating, the distance
is s =wrt. At time r we have gone through an angle @f. The radius isr, so
the distance traveled agrees with timesr. Note that the dimension af is 1 /time.
(Angles are dimensionless.) At time= 277 /w we have gone once around the circle—
tos =2mr not back tas = 0.

The acceleration ia= d?R/dt?. RemembeR = r coswt i +r sinwt j:

a(t) = —w?r coswti —w’r sinwtj. (20)

That direction is opposite tR. This is a special motion, with no action on the gas
pedal or the brake. All the acceleration is from turning. The magnitupi is w?r,
with the correct dimension of distant@me)’.

EXAMPLE 7 Findv ands and a around the heliR = cosri+sintj +tk.

Solution  The velocity isv = —sint i+ cost j + k. The speed is

ds/dt = |v| = V/sirPt + cot + 1 = /2 (constant)

Then distance is = 4/2¢. At time = 7, a half turn is complete. The distance along
the shadow ist (a half circle). The distance along the helix\& 7, because of its
45° slope.

The unit tangent vector is velocjtgpeed, and the accelerationdig/dt:

T =(—sinti+costj+k)/v2  a=—costi—sintj.
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12 Motion Along a Curve

EXAMPLE 8 Findv ands and a around the ellipse = cost, y =2 sint,z =0.

Solution  Take derivativesy = —sinzi+2 costj and |v| = 4/sin’t + 4 cost.
This is the speeds/dt. For the distance, something bad happens (or something
normal). The speed is not simplified iy + cogt = 1. We cannotintegratés/dt
to find a formula fors. The square root defeats us.

The accelerationr- cost i —2 sin¢j still points to the center. This isot the Earth
going around the sun. The path is an ellipse but the speed is wrong. See $&ction
(the pound note) for a terrible error in the position of the sun.

12A The basic formulas for motion along a curve are

_dR__dv ds v _dR/di _dR

V=2 ¥ M=% TNt e T o

Suppose we know the accelerata) and the initial velocityy and positiorRy.
Thenv(¢) andR(¢) are also known. We integrate each component:

a(r)=constaneVv(t)=Vvo+a  =R()=Ro+ Vot + ar?
a(t)=costk =v(t)=vo+sintk=R(t)=Ro+ Vot —cost k.

THE CURVE OF A BASEBALL

There is a nice discussion of curve balls in the calculus bodkdwards and Penney.
We summarize it here (optionally). The ball leaves the pitcher’s hand five feet off the
ground:Rg = 0i + 0j + 5k. The initial velocity isvg = 120i — 2j + 2k (120 ft/sec

is more thar80 miles per hour). The acceleration-s32k from gravity, plus a new
term fromspin. If the spin is around the axis, and the ball goes along tlveaxis,

then this acceleration is in the direction. (It comes from the cross prodck i—
there is a pressure difference on the sides of the ball.) A good pitcher can achieve
a= 16j — 32k. The batter integrates as fast as he can:

V(t) =Vo+ar = 120i + (=24 161)] + (2—321)k
R(t) =Ro +Vor + yar? = 12071 + (=27 + 8%)j + (5+ 2t — 16¢?)k.

Notice ther?. The effect of spin is small at first, then suddenly bigger (as every batter
knows). So is the effect of gravity—the ball starts to divers At % thei component
is 60 feet and the ball reaches the batter. Theomponent isl foot and thek
component i® feet—the curve goes low over the outside corner.

Att = %, when the batter saw the ball halfway, fheomponentwas zero. It looked
as if it was coming right over the plate.

x=30z=55 x=0z=5
G i e e e T T e L - @
i 1
rzT_\zl & y=0 t=0 y=0

Fig. 12.4 A curve ball approaches home plate. Halfway it is on line.
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12.1 EXERCISES

Read-through questions

The position vector__a  along the curve changes with the 9 On a straight line from(2,3,4) with velocity v=i—k, the
parameter . The velocity is__ b . The acceleration is ¢ . position vector isR(t) = If the velocity vector is
If the position isi+¢j+¢2k, thenv= _d anda= __e . changed to ri—tk, then R(r)= . The path is still
In that example the speed ig|= __f . This equalsds/dz,

where s measures the g . Thens= | h . The tangent

vector is in the same directionasthei ,butTisa | vector. 10 Find parametric equatlons for steady motion frc_)m:
Ingenerall =k _and in the exampl@ = __| i (3,1,—2) att =0 on a line toQ =(0,0,0) a_1tt=3. What is the
- - speed ? Change parameters so the spe€d is
Steady motion along a line has= __m__. If the line isx =

y =2z, the unit tangent vector i = n . If the speed is
[v| = /3, the velocity vector isy= __o . If the initial position
is (1,0,0), the position vector isR(t) = p . The general
equation ofalineisc=xo+tvi,.y= q ,z=_r .Invector
notation this isR(r)= __s . Eliminating leaves the equations12 Find parametric equations to go around the unit circle
(x—x0)/v1 =(y —yg)/va= __t . Alinein space needs u with speede’ starting from x =1,y =0. When is the circle
equations where a plane needsv__. A line has one parametercompleted ?

where a plane has_w . The line fromRg = (1,0,0) to (2,2,2)

11 The equations x—1=1(y—2)=1(z—2) describe a
. The same path is given parametrically by=1+1,

= ,Z= . The same path is also given by

x=142t,y= Z=

X - 13 The pathx =2y =3z=6¢ is a traveled with speed
with [v| =3isR()= _x__ . If ¢ is restricted by > 1 the path starts at ftis
Steady motion around a circle (radiusangular velocityw) has 'estricted byo<z<1thepathisa .
x=_y ,y=_z ,z=0.Thevelocityisv=__A . The 14 Find the closest point to the origin on the line=1+1,
speed is|v|= __ B . The acceleration ia= __C , which has y =2_;. When and where does it cross t&° line through the

magnitude_ D and direction E . Combining upward motion origin? Find the equation of a line it never crosses.

R =tk with this circular motion produces around aF . Then .
H 15 (a) How far apart are the two parallel lines=y and

v=_G andlv|=
M x=y+1? (b) How far is the pointx =¢,y =¢ from the point
x=t,y=t+1? (c) What is the closest distance if their speeds

1 Sketch the curve with parametric equations= ¢, y = 3. Find :
are differentx =¢,y =t andx =2¢,y =2t +1?

the velocity vector and the speedrat 1.
16 Which vectors follow the same path &=ri+:2j? The
speed along the path may be different.

(@) 211 +2¢2] (b)2ti+4¢2] (c) —ti+r2j (d)e3i+16]

2 Sketch the path with parametric equations=1+1¢,y =1—t.
Find thexy equation of the path and the speed along it.

3 On the circlex = cost, y = sint explain by the chain rule and

then by geometry whyly /dx = —cott. 17 Find a parametric form for the straight line= mx +b.
4 Lopate the highest point on the curve= 6t,y =6t —t2. This 18 The line x = 1+v1t,y =2+vyt passes through the origin
curve is a . What is the acceleratiom? provided v+ v =0. This line crosses the

= x unless vy + vy =0.

5 Find the velocity vector and they equation of the tangent 45° line y
line to x=e’,y=e~" atr=0. What is thexy equation of the 19 Find the velocity v and speed |v| and tangent vectofT
curve ? for these motions: (@R =ri+:"!j (b) R=rcosti+zsintj

6 Describe the shapes of these curvesx(&)2!,y = 4'; () x= (OVR=(+Di+Q2r+1Dj+ 21 +2)k.
4 y=8;(c)x=4y=4r 20 If the velocity dx/dti+dy/dtj is always perpendicular to
the position vectorxi+ yj, show from their dot product that

Note: To find“parametric equationgs to findx(z), y(¢), and pos- . . .
P a x(0), y (1) POS™ 2 + y2 is constant. The point stays on a circle.

sibly z(¢).
21 Find two pathsR(¢) with the samev =costi+sinzj. Find a

7 Fi i i i = . ) ) .
Find parametric equations for the line through=(1,2.4) third path with a different but the same acceleration.

and Q =(5,5,4). Probably your speed is5; change the
equations so the speed i8. Probably yourRg is P; change the 22 If the acceleration is a constant vector, the path must be
starttoQ. If the path is a straight line, the acceleration vector must be .

8 Find an equation for any one plane that is perpendiculz® Find the minimum and maximum speed ¥ =1+ cost,
to the line in Problent. Also find equations for any one line thaty = —sinz. Show that|a| is constant but not. The point is
is perpendicular. going around a circle while the center is moving on what line ?
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24 Find x(z),y(t) so that the point goes around the circle

(x —1)2 4+ (y —3)2 = 4 with speedl.

25 A ball that is circling withx = cos2t, y = sin2¢ flies off on a

12 Motion Along a Curve

(d) If v-R=0thenR-R = constant.
(e) There is no path withh = a.

38 Find the position vector to the shadow df+:2j+13k on

tangent at = /8. Find its departure point and its position at a lat%e xz plane. Is the curve ever parallel to the line= y = z ?

timer (linear motion; compute its constant velocity

26 Why is |a] generally different fromd?2s/dt*>? Give an
example of the difference, and an example where they
equal.

27 Change + so that the speed along the helR=
costi+sintj+tk is 1 instead of 4/2. Call the new
parameters.

28 Find the speedds/dt on the line x=146¢,y =2+3¢,
z = 2¢. Integrate to find the lengthfrom (1,2,0) to (13,8, 4). Check
by using122 4 62 4-42.

29 Find v and |v| and a for the curvex =tant, y = sect. What

is this curve? At what time does it go to infinity, and along

what line ?

30 Construct parametric equations for travel on a helix with

speedt.

31 Suppose the unit tangent vectdi(¢) is the derivative of

R(t). What does that say about the speed? Give a noncirmﬁér

example.

32 For travel on the pathy = f(x), with no parameter, it is
impossible to find the but still possible to find the
at each point of the path.

Find x(z) and y(¢) for paths 33-36
33 Around the square bounded hy=0,x=1,y=0,y=1,
with speed. The formulas have four parts.

34 Around the unit circle with speed—?. Do you get all the
way around ?

35 Around a circle of radiug with acceleratiorja| = 1.

36 Up and down they axis with constant acceleratior-j,
returning to(0,0) atz = 10.
37 True (with reason) or false (with example):

(a) If |R|=1for allt then|v| = constant.

(b) If a=0thenR = constant.

(c) If v-v=constant thew-a=0.

39 On the ellipsex =a cost,y =b sint, the angled from the
gr%nter is not the same adecause .

40 Two particles are racing frongl,0) to (0,1). One follows
x =cost, y =sint, the other followst = 1 +v;7, y = vpt. Choose
v1 andv; so that the second particle goes slower but wins.

41 Two lines in space are given bR(r) =P+tv and R(r) =
Q+tw. Four possibilities: The lines are parallel or the same or
intersecting or skew. Decide which is which based on the vectors
v andw andu = Q — P (which goes between the lines):

(@) The lines are parallel if are parallel.
(b) The lines are the same if are parallel.
(c) The lines intersect if are not parallel but lie

in the same plane.
(d) The lines are skew if the triple product-(vxw) is

If the lines are skew (not in the same plane), find a formula
®d onu,v,w for the distance between them. The vector
may not be perpendicular to the two lines, so project it onto
a vector that is.

43 The distance fromQ to the line P+rv is the projection of
u=Q—P perpendicular tov. How far isQ = (9,4, 5) from the line
x=14+t,y=142t,z=34+2t7?

44 Solve Problem43 by calculus: substitute forx,y,z in

(x—9)2 +(y —4)2 + (z — 5)% and minimize. Whichx, y,z) on the
line is closest ta9,4,5) ?

45 Practice with parameters, starting from= F(¢), y = G(¢).

(@) The mirror image across th#5° line is x = ,
y= .
(b) Write the curvex =13,y =12 asy = f(x).

(c) Why can'tx =12,y =13 be written ayy = f(x) ?

(d) If Fisinvertible therr = F~1(x) andy = (x).
46 From 12:00 to 1:00 a snail crawls steadily out the minute

hand (one meter in one hour). Find its position at timgarting
from (0,0).




12.2 Plane Motion: Projectiles and Cycloids 525

B (2.2 Plane Motion: Projectiles and Cycloids [

The previous section started wi(¢). From this position vector we computgdind

a. Now we findR(¢) itself, from more basic information. The laws of physics govern
projectiles, and the motion of a wheel produces a cycloid (which enters problems in
robotics). The projectiles fly without friction, so the only force is gravity.

These motions occur in a plane. The two components of position witl (a&ross)
andy (up). A projectile moves as changes, so we look for(z) andy(¢). We are
shooting a basketball or firing a gun or peacefully watering the lawn, and we have
to aim in the right direction (not directly at the target). If the hose delivers water at
10 meterg'secondcan you reach the cd®2 meters away ?

The usual initial position ig0,0). Some flights start higher, 0, /). The initial
velocity is (vg COSa, vy Sina), wherewvy is the speed and is the angle with the
horizontal. The acceleration from gravity is purely vertiedty /dt? = —g. So the
horizontal velocity stays at its initial value. The upward velocity decreasesday

dx/dt =vg cosa, dy/dt = vg Sino — gt.

The horizontal distance (¢) is steadily increasing. The heigli(¢) increases and
then decreases. To find the position, integrate the velocities (for a high stdrttadd

y):
The projectile path isx(¢) = (vg cosa)t, y(t) = (v Sinw)t — %gzz. (0]

This path is gparabola But it is not written agy = ax? + bx +c. It could be, if we
eliminatedz. Then we would lose track of time. The parabolayiéx), with no
parameter, where we hawér) andy (¢).

Basic questionWhere does the projectile hit the grourtd For the parabola, we
solve y(x) = 0. That gives the positiorx. For the projectile we solve () =0.
That gives thaimeit hits the ground, not the place. If that timefisthenx (T") gives
the place.

The information is there. It takes two steps instead of one, but we learn more.

EXAMPLE 1 Water leaves the hose &b meters/second(this is vg). It starts up
at the anglex. Find the timeT wheny is zero again, and find where the projectile
lands.

Solution  The flight ends whery = (10sina)T — %gT2 =0. The flight time is
T = (20sina)/g. At that time, the horizontal distance is
x(T)=(10cosa)T = (200 cosa sina)/g. This is therange R.

The projectile (or water from the hose) hits the ground at R. To simplify, replace
200 cosa sina by 100sin2a. Sinceg = 9.8 meterg'se, we can't reach the car

The rangeR = (100 sin2«)/9.8 is at mosti00/9.8. This is less thar?2.

The range is greatest when fia = 1(« is 45°). To reachl2 meters we could stand

on a ladder (Problent4). To hit a baseball against air resistance, the best angle is
nearer t@5°. Figure 12.5 shows symmetric parabolas (no air resistance) and unsym-
metric flight paths that drop more steeply.

12B The flight time T" and the horizontal range&k = x(T") are reached when
y =0, which meangvo sina)T = 1 g7

T = (2upSina)/g andR = (vo cosa)T = (v3 sin2a)/g.
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Fig. 12.5 EqualrangeR, different timesl. Baseballs hit a35° with increasingo. The dots are
at half-seconds (fromihe Physics of Basebably Robert Adair: Harper and Row 1990).

EXAMPLE 2 What are the correct anglesfor a given rangeR and givenvg ?

Solution  The range isR = (v3 sin 2«)/g. This determines the sine @k—but
two angles can have the same sin&e might find2« = 60° or 120°. The starting
anglesy = 30° anda = 60° in Figure 12.5 give the same st and the same range
R. The flight times contaisina and are different.

By calculus, the maximum height occurs whén/dt = 0. ThenvgSina = gt,
which means that = (vo Sin)/g. This is half of the total flight tim&"—the time
going up equals the time coming down. The value dt this halfway timeg = %T
is

Ymax = (v Sina)(vo Sine) /g — 3 g(vo sine/g)> = (vo sina)?/2g.  (2)

EXAMPLE 3 If a ski jumper goe®0 meters down a30° slope, after taking off at
28 meterg secondfind equations for the flight time and the ramp angle

Solution The jumper lands at the point= 90 cos30°, y = —90 sin30° (minus
sign for obvious reasons). The basic equaf®is x = (28 cosw)t, y = (28sina)r —
%gtz. Those are two equations farandz. Note thatt is not T, the flight time to
y=0.
Conclusion The position of a projectile involves three parametgrgr, and:. Three
pieces of information determine the fliglfelmost). The reason for the woadimost
is the presence dfina and cosa. Some flight requirements cannot be met (reach-
ing a car atl2 meters). Other requirements can be met in two ways (when the car
is close). The equatiosina = ¢ is more likely to have no solution or two solutions
than exactly one solution.

Watch for the three pieces of information in each problem. When a football starts at
vo = 20 meterg secondand hits the ground at = 40 meters, the third factis .
This is like a lawyer who is asked the fee and s&y6800 for three questions. “Isn’t
that steep ?” says the client. “Yes,” says the lawyer, “now what'’s your last question ?”

CYCLOIDS

A projectile’s path is a parabola. To compute it, eliminafeom the equations fox
andy. Problem5 finds y = ax? 4+ bx, a parabola through the origin. The path of a
point on a wheel seems equally simple, but eliminatimgyvirtually impossible. The
cycloid is a curve that really needs and uses a parameter.

To trace out a cycloidoll a circle of radiusa along thex axis. Watch the point
tha starts at the bottom of the circle. It comes back to the bottom-at2ra, after
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a complete turn of the circle. The path in between is shown inrEig2.6. After a
century of looking for thery equation, a series of great scientists (Galileo, Christopher
Wren, Huygens, Bernoulli, even Newton and I'Hé6pital) found the right way to study
a cycloid—by introducing a parameter. We will calbit it could also be.

ab na 2na ah

Fig. 12.6  Path of P on arolling circle is a cycloid. Fastest slide @

The parameter is the anghethrough which the circle turns. (This angle is not at
the origin, liked in polar coordinates.) The circle rolls a distano#, radius times
angle, along the axis. So the center of the circle isxat= af, y = a. To account for
the segmen€ P, subtractz sinf from x anda cos6 from y:

The pointP hasx = a(f —sinf)andy = a(1 — cos0). 3)
At 6 =0 the position is(0,0). At 8 =27z the position is(2ra,0). In between, the
slope of the cycloid comes from the chain rule:
d_y:dy/dQZ asiné . @)
dx dx/d6 a(l—cosb)

This is infinite atd = 0. The point on the circle starts straight upward and the cycloid
has acusp Note how all calculations use the paraméteWWe go quickly:

Question1  Find the area under one arch of the cycl@id= 0 to 6 = 2x).
Answer Theareaiy ydx = fé” a(1—cosf)a(1 — cosh)db. This equal$ma?.

Question2  Find the length of the arch, usinaly = \/(dx/de)z —(dy/d0)?d6.

Answer [ ds= [ ar/(1—cosf)?—(sinf)2d6 = [, ar/2—2cosh dé.
Now substitutel — cosf = 2sin? 6. The square root i3sin 16. The length is8a.

Question 3 If the cycloid is turned overy is downward), find the time to slide to
the bottom. The slider starts with=0 at y = 0.
Answer  Kinetic plus potential energy i§mv2 —mgy = 0 (it starts from zero and

can't change). So the speedvis= 4/2gy. This isds/dt and we knowds:

T an/2—2
sliding time:fdt:f s __["4a cos04d8 _ o \/a/z.
28y o v2ga(l—cos6)

Check dimensionsz = distance g = distance (timeg?2, 7+/a/g = time. That is

the shortest sliding time for any curveThe cycloid solves the “brachistochrone
problem,” which minimizes the time down curves frathto Q (Figure 12.6). You
might think a straight path would be quicker—it is certainly shorter. A straight line
has the equation = 7y /2, so the sliding time is

[dt=[ds/\J2gy = [3" \/(m/2)2+1dy//2gy =v/7>+4r/aJg.  (5)

This is larger than the cycloid time+/a/g. It is better to start out vertically and pick
up speed early, even if the path is longer.
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Instead of publishing his solution, John Bernoulli turned thisblem into an
international challengeProve that the cycloid gives the fastest slidéost
mathematicians couldn’t do it. The problem reached Isaac Newton (this was later
in his life). As you would expect, Newton solved it. For some reason he sent back his
proof with no name. But when Bernoulli received the answer, he was not fooled for a
moment:‘l recognize the lion by his claws.”

What is also amazing is a further property of the cyclditie time to Q is the
same if you begin anywhere along the pattarting from rest aP instead ofO,
the bottom is reached at the same time. This time Bernoulli got carried away: “You
will be petrified with astonishment when | say...”.

There are other beautiful curves, closely related to the cycloid. Fepaycloid
the circle rolls around the outside of another circle. Fdrypocycloid the rolling
circle is inside the fixed circle. Thastroidis the special case with radii in the rafio
to 4. It is the curved star in Problef#, wherex = a cos' § andy = asin® 6.

The cycloid even solves the old puz2What point moves backward when a train
starts forward? The train wheels have a flange that extends below the track, and
dx/dt <0 at the bottom of the flange.

12.2 EXERCISES

Read-through questions

A projectile starts with speedy and anglex. At time ¢ its 5 (a) Eliminate ¢+ from x=r,y =t _%[2 to find the xy
velocity is dx/dt = a , dy/dt= b (the downward equation of the path. Atwhatisy =07
acceleration isg). Starting from(0,0), the position at time is
x=_¢ ,y=_d .Theflighttimebackty =0isT =__e

At that time the horizontal range B=__f . The flight path isa 6 Find the angler for a ball kicked aB0 metergsecond if it clears

g . 6 meters traveling horizontally.

The three quantities vg,_ h . i determine the 7 How farout does a stone hit the watefeet below, starting with
projectile’s motion. Knowingvo and the position of the target, wevelocity vo at anglex =07?

(can) (cannot) solve far. Knowing« and the position of the target, g How far out does the same stone go, starting at angleFind
we (can) (cannot) solve far. an equation for the angle that maximizes the range.

(b) Do the same for anyy anda.

A _j s traced out by a point on a rolling circle. If the 9 A ball starting from(0,0) passes througts, 2) after2 seconds.
radius isa and the turning angle ig, the center of the circle is Find vy ande. (The units are meters.)
atx=_k ,y=_1 .Thepointisatt=_m ,y=_n |,
starting from (0,0). It travels a distance o _in a full turn of 10 With x andy from equation (1), show that
the circle. The curve has a p at the end of every turn. An

upside-down cycloid gives the q slide between two points.

vg = (gx/vo)* +2g.

If a fire is at heightH and the water velocity isg, how far can

Problems 1-18 and 41 are about projectiles the fireman put the hose back from the fire ? (The parabola in this
1 Find the time of flightT’, the rangeR, and the maximum height Problem is the “envelope” enclosing all possible paths.)
Y of a projectile withvg = 16 ft/sec and 11 Estimate the initial speed of @00-meter golf shot hit at
(@) a=30° (b) o=060° (€) a=90°. a=45°Is the truevq larger or smaller, when air friction is
o included ?
2 If vo=32 ft/sec and the projectile returns to the ground at ] o ) o
T =1, find the anglex and the range. 12 T =2vg(sina)/g isin seconds an® = (v(z) sin2a)/g isin me-

) ) ters ifvg andg are in
3 Aball is thrown at60° with v = 20 metergsec to clear a wall

2 meters high. How far away is the wall ?
4 1f v(0) = 3i+3j find v(z),v(1),v(2) andR(?),R(1),R(2).

13 (a) What is the greatest height a ball can be thrown? Aim
straight up withvg = 28 metergsec.
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14 If a baseball goeBd0 miles per hour foi60 feet, how long does 23 If a circle of radius: rolls inside a circle of radiu2a, show that

it take (in seconds) and how far does it fall from gravity (in feet)@e point on the small circle goes across on a straight line.
1,2

Usezgt”. 24 Findd?y/dx? for the cycloid, which is concave .

15 If you double v, what happens to the range and maximury, ¢ df/dt = c, find the velocitiesdx/dt anddy/dt along the

i ?
:Elr?]tl;tersg you change the angle bix, what happens to thosecycloid. Where isix/dt greatest and where i& /dt greatest ?

26 Experiment with graphs of =a cosf +5b sin 6, y = ¢ cosf +

16 Atwhat point on the path is the speed of the projectile (a) 1east;, ;° sing a computer. What kind of curves are they? Why are
(b) greatest ? they closed ?

17 If the hose withvg =10m/sec is at a45° angle, x reaches
12 meters whert = and y = . From a ladder of
height the water will reach the car 2imeters).

27 Astone in a bicycle tire goes along a cycloid. Find equations for
the stone’s path if it flies off at the top (a projectile).

. . . . 8 Draw curves on a computer with=a cosf +5b cos36 and
18 Describe the two trajectories a golf ball can take to land rlghtl2 P “ +

e : . . . =csinf +d sin36. Is there a limit to the number of loops ?
the hole, if it starts with a large known velocity. In reality (with 7 + P
air resistance) which of those shots would fall closer ?

Problems 19-34 are about cycloids and related curves

19 Find the unit tangent vectdr to the cycloid. Also find the speed
atd =0 andf = r, if the wheel turns at/6/dt = 1.

20 The slope of the cycloid is infinite &= 0:
dy dy/d0 _ sinf

dx  dx/x0 1—cosf’
By whose rule ? Estimate the slopefat {5 and 6 = —{5.Where
does the slope equal one ? 35 Find the area inside the astroid.

21 Show that the tangent to the cycloid Atin Figure 12.6a goes 54 Explain whyx = 2acat 8 andy = 2asin? 6 for the point? on
throughx = a0, y =2a. Where is this point on the rolling circle ? hawitch of Agnesi. Eliminatef to find thexy equation.

22 For atrochoid, the point P is a distance! from the center of Note: Maria Agnesi wrote the first three-semester calculus text
the rolling circle. Redraw Figure 12.6b to find=a6 —d sind and (I'Hopital didn't do integral calculus). The word “witch” is a
y= . total mistranslation, nothing to do with her or the curve.

Involute ﬂ
T »
‘

D
arc TS/= line TP 2asin“8

Cardioid

0

29 When a penny rolls completely around another penny, the hedd If one arch of the cycloid is revolved around thexs, find the
makes turns. When it rolls inside a circle four times largesurface area and volume.

(for the astroid), the head makes___ turns. 32 For a hypocycloid the fixed circle has radiust-1 and the

30 Display the cycloid family with computer graphics: circle rolling inside has radius. There arec +1 cusps ifc is an
_ integer. How many cusps (use computer graphics if possible) for
(@ cycloid c=1/2?¢=3/2? ¢ =+/27 What curve forc = 1 ?

(b) epicycloid x = C cosf — cosC6,y =Csinf +sinCHo
(c) hypocycloid x = ¢ cosf + cosc,y =csinf —sinch
(d) astroid (¢ =3)

(e) deltoid (¢ =2).

33 When a string is unwound from a circle find#) andy (6) for
point P. Its path is the thvolute” of the circle.

34 For the point P on the astroid, explain why x =3 cosé +
cos30 and y =3 sinf —sin36. The angle in the figure iS6
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because both circular arcs have length . Convert to 39 On an upside-down cycloid the slider takes the same finte

x =4c0S’ 0, y = 4 sin’ § by triple-angle formulas. reach bottomwherever it startsStarting ab) = «, write 1 — cosf =
2sir? 6/2 and1 — cosa = 2 sin? «/2 to show that
37 For a cardioid the radiusC —1 of the fixed circle equals 7T \/mdQ 7
the radiusl of the circle rolling outside (epicycloid witle = 2). Tzf =74
o« ~/2ag(cosa — cosh) g

(& The coordinates of P are x=—1+2cosf— cos26,

2)1:_ cosh) ' @) The dg)cl;blze_—l_angls formulasso )Iltlgki :uirzos;got 40 Suppose a heavy weight is attached to the top of the rolling cir-
- = SETTE q cle. What is the path of the weight ?

41 The wall in Fenway Park i37 feet high and3 15 feet from home
38 Explain the last two steps in equation (5) for the sliding timglate. A baseball his feet above the ground at=22.5° will just
down a straight path. go over ifvg = . The time to reach the wall is .
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I 12.3 Curvature and Normal Vector [N

A driver produces acceleration three ways—by the gas pedal, the brake, and steering
wheel. The first two change the speed. Turning the wheel changes the dirédtion.
three change the velocifthey give acceleration). For steady motion around a circle,
the change is from steering—the acceleratibrydt points to the center. We now
look at motion along other curves, to separate change in the $pgfedm change in
the directionT .

The direction of motion isT =v/|v|. It depends on the path but not the speed
(because we divide bjy|). For turning we measure two things:

1. How fast T turns: this will be the curvaturex (kappa).
2. Which direction T turns: this will be the normal vectorN.

«x andN depend, likes and T, only on the shape of the curve. Replacinigy 2¢ or
t? leaves them unchanged. For a circle we give the answers in advance. The normal
vectorN points to the center. The curvatures 1/radius.

A smaller turning circle means a larger curvaturenore bending.

The curvature is change in direction|d T | divided by change in positiofs|.
There are three formulas far—a direct one for graphg(x), a brutal but valuable
one for any parametric curve (¢), y(¢)), and a neat formula that uses the vectors
anda. We begin with the definition and the neat formula.

DEFINITION « = |dT/ds| = FORMULA «=|vxal/|v|® )

The definition does not involve the parameterbut the calculations do. The
position vectorR(¢) yieldsv=dR/dt anda=dv/dzt. If t is changed t®¢, the
velocity v is doubled and is multiplied by4. Then|v x a| and|v|? are multiplied
by 8, and their ratioc is unchanged.

Proof of formula (1) Start fromv = |v|T and compute its derivative

d|v daT
a= %T +|v| N by the product rule

Now take the cross product with= |v|T. Remember thaf x T =0:
aT
vxa=|V|T x |v|—. 2
VT xS @

We know thatT| = 1. Equation(4) will show thatT is perpendicular té/ T /d¢. So
|v x @] is the first lengtHv| times the second lengtk||d T /dt|. The factorsin 6 in
the length of a cross productisrom the90° angle. In other words

_|vxal

dT| _ g e |dT =‘dT/dt

_|vxal
dt [v|? Clds ds/dt

YR

®3)

The chain rule brings the exttds/dt| = |v| into the denominator.

Before any examples, we show th&l /dt is perpendicular td'. The reason is
thatT is a unit vector. Differentiate both sides®f T = 1:
al T+T dT—() or 2T dT—O 4
dt dt dt
Tha proof used the product rul&’-V 4+U-V’ for the derivative ofU-V
(Problem23, with U =V =T). Think of the vectoil moving around the unit sphere.



532 12 Motion along a Curve

To keep a constant lengifT +dT)-(T+dT)=1, we need2T -dT =0. Move-
mentd T is perpendicular to radius vector

Our first examples will blane curves The position vectoR(7) has components
x(t) andy(¢) but noz(¢). Look at the components afanda andv x a (x’ means

dx/dt):
R x() y@) 0
viooxn Y 0 V=V IxX P+ 1y
a x”(t) y”(t) 0 |.X/y”_y/.x”|
K= (5)
Vxa 0 0 x/y// _ y/y// ((x/)z + (}‘/)2)3/2

Equation(5) is the brutal but valuable formula far. Apply it to movement around a
circle. We should find = 1 /radiusa:

EXAMPLE 1 Whenx = a cos wt andy = a Sin wt we substitute’, y’, x”, y” into (5):
_ (—wasin wt)(—w?asinwt) — (wa coswt ) (—w?a coswt) . w?a?
B [(wasin wt)? + (wa coswt)?]3/2  [w2a?]3/2

Thisisw3a?/w3a? andw cancels. The speed makes no differenceto1/a.

The third formula fork applies to an ordinary plane curve given pyx). The
parameter is x! You see the square root in the spdefi=ds/dx:

Rox  yk) 0
vl dy/dx 0 V| = /14 (dy/dx)?
a 0 d?y/dx? 0 |d2y/dx?|
vxa 0 0 d?y/dx? = (1+ (dy/dx)?)3/2 (6)

In practice this is the most popular formula forThe most popular approximation is
|d?y/dx?|. (The denominator is omitted.) For the bending of a beam, the nonlinear
equation uses and the linear equation usé€y/dx?.We can see the difference for

a parabola:

EXAMPLE 2 The curvature of = 2x2isk = |y”|/(1+ (y)?)3/2 = 1/(1 +x2)3/2.

Fig. 12.7 Normal N divided by curvature for circle and parabola and unit helix.

The approximation i” = 1. This agrees withlr at x = 0, where the parabola turns
the corner. But for large, the curvature approaches zero. Far out on the parabola, we
go a long way for a small change in direction.

The paraboly = —%xz, opening down, has the sareeNow try a space curve.
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EXAMPLE 3 Find the curvature of the unit helR = cost i +sin¢j + tk.
Take the cross product #f= —sin¢ i+ cost j + k anda= —cost i —sin¢ j:
[ j k
vxa=|—sint cost 1|=sinzi—costj+Kk.
—cost —sint 0

This cross product has lengifi2. Also the speed i$v| = \/Sinzt +cos?i+1=
V2:
e=vxal/|V’=v2/(v2)’ = 3.

Compare with a unit circle. Without the climbing tenrk, the curvature would bé.
Because of climbing, each turn of the helix is longer and %

That makes one think: Is the helix twice as long as the circle ? No. The length of
aturn is only increased bly| = V2. The othery/2 is because the tangehtdopes
upward. The shadow in the base turns a36l)°, butT turns less.

THE NORMAL VECTOR N

The discussion is bringing us to an important vector. Whemseasures thaate of
turning, the unit vectoN gives thedirectionof turning.N is perpendicular td’, and

in the plane that leaves practically no choice. Turn left or right. For a space curve,
follow d T. Remember equatiof@), which makes!/ T perpendicular td' .

The normal vecto is a unit vector alongd T /dt. It is perpendicular toT:

dT/ds _1dT dT/dt

DEFINITION N=———=— —.
|dT/ds| « ds |dT/dt]|

FORMULA N= 7

EXAMPLE 4  Find the normal vectoN for the same helbR = cost i +sinz j +
tk.

Solution  Copyv from Example 3, divide byv|, and compute/ T /d¢:
T =v/|v|=(—sinti+costj+k)/v2 and dT/dt=(—costi—sintj)/V2.

To changed T /dt into a unit vector, cancel the/2. The normal vector isN =
—costi—sintj. It is perpendicular toT. Since thek component is zeroN is
horizontal. The tangenT slopes up at45°—it goes around the circle at that
latitude. The normaN is tangent to this circleN is tangent to the path of the
tangent!). SA\ stays horizontal as the helix climbs.

There is also a third direction, perpendiculaiit@ndN. It is the binormal vector
B =T x N, computed in Probleni — 30. The unit vectord , N, B provide the nat-
ural coordinate system for the path—along the curve, in the plane of the curve, and
out of that plane. The theory is beautiful but the computations are not often done—we
stop here.

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

May | return a last time to the gas pedal and brake and steerirgl®hThe first
two give acceleration alon§. Turning gives acceleration alomd, The rate of turn-
ing (curvaturex) and the directiorN are established. We now ask about fbece
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required. Newton’s Law i~ = ma, sowe need the acceleratiam—especially its
componentalond and its component alony.

The acceleration isa = dZST + ds 2N (8)
“aee flad] T

For a straight path,d?s/dt? is the only acceleration—the ordinary second
derivative. The termic(ds/dt)? is the acceleration in turning. Both have the
dimension of lengtfi(time)?.

The force to steer around a corner depends on curvature and speed—as all drivers
know. Acceleration is the derivative uf= |v|T = (ds/d1)T:

d?s dsd_T_dst_’_ﬁd_T@ )

= Y T ar Taasar

That last term isc(ds/dt)*N, sinced T /ds = kN by formula(7). So(8) is proved.
EXAMPLE 5 Afixed speedls/dt = 1givesd?s/dt*> = 0. The only acceleration isN.

EXAMPLE 6 Find the components affor circular speed-uR () = cost? i +sint?j.

Without stopping to think, computéR /d¢ = v andds/dt = |v| andv/|v| =T:

v=—2tsint?i+2¢ cost?j, |v|=2¢, T=—sint?i+cost?|.

The derivative ofls/dt = |v|is d?s/dt? = 2. The derivative of/ is a:
a=—2sint?i+2cost?j—4t% cost?i—4t2 sint?|.

In the first terms ofa we see2T. In the last terms we must be seeirgy|>N.
Certainly|v|? = 41 andk = 1, because the circle has radiusThusa = 2T + 4¢>N
has the tangential componehand normal componertr>—acceleration along the
circle and in to the center.

Table of Formulas

v=dR/dt a=dv/dt a |T
vV|=ds/st T=v/|v|=|dR/ds| %)0
r2
Curvaturec = |dT/ds| = |v x a|/|v|? accelerate
N
[N/ W/ 2 2
Plane curves = 'y =y = |47y /dx"]
(x)2+ ()32 (1+(dy/dx)*)a, _
1dT  dT/dt =

Normal vectorN = —— =
kds |dT/dt] s

Accelerationa= (d2s/dt*)T +k|v|*N dr?

< () brake

Fig. 12.8 Components of1as @r turns corner.
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12.3 EXERCISES

Read-through questions

The curvature tells how fast the curve a . For a circle 18 Fromv=|v|T andain equation (8), derive = |v x a|/|v|3.
of radius a, the direction changes b$x in a distance__b ,
so k=__c . For a plane curvey = f(x) the formula isx =
|»"]/__d__.The curvature of =sinxis__e . Ata point where
y"=0 (an __f  point) the curve is momentarily straight an(icJ
k= ¢ .Foraspacecurve=|vxal/__h

The normal vecto_lN i_s perpendicular to_i_. Itisa_ j 20 Which of these depend only on the shape of the curve, and which
vector along the derivative df, so N =

; : ; —k__. For motion around depend also on the speed?T, |v|,s.k.a,N,B.
acircle N points__| . Up a helixN also points__m__. Moving

at unit speed on any curve, the timas the same as the n__ .

19 From a point on the curve, go along the vedtbfi to find the
center of curvature Locate this center for the poift, 0) on the cir-

le x = cost, y =sint and the ellipsex = cost, y =2 sint and the
arabolay = %(x2 —1). The path of the center of curvature is the
“evoluté of the curve.

21 A plane curve througlt0,0) and(2,0) with constant curvature

Then|v|=__o andd?s/di>= p andais in the direction & is the circulararc . For whichx is there no such curve ?

of ¢ 22 Sketch a smooth curve going through0), (1,—1), and(2,0).
Acceleration equals__ r T+ s N. At unit speed Somewherel?y/dx? is at least . Somewhere the curvature

aound a unit circle, those components are t . An iSatleast . (Proofis forinstructors only.)

astronaut who spins once a second in a radius of one meter For plane vectors, the ordinary product rule applied to
hasjaj= __u__metergsec?, whichis about_v__g. U1 V1 +UsV shaws that(U- V)Y = U’ -V + .

24 If vis perpendicular t@, prove that the speed is constant. True

Compute the curvature « in Problems 1-8 . .
or false: The path is a circle.

y=e*
Problems 25-30 work with the T-N-B system—along the curve,
in the plane of the curve, perpendicular to that plane.

y =In x (where isc largest?)

x=2cost,y=2dnt
25 ComputeB=T x N for the helixR=costi+sintj+zk in
Examples3 —4.

26 Using Problen23, differentiateB-T =0 andB-B =1 to show
that B’ is perpendicular tol andB. So dB/ds = —tN for some
numberr called thetorsion.

27 Compute the torsiom = |dB/ds| for the helix in Problen®5.

x =cost?,y =sinr?

x=1+1%y=3¢2 (thepathisa___ ).
x=cos’t,y =sin3¢
r=0=t(sox=tcost,y=___ )
x=t,y=Incost

, ) 28 FindB=TN forthe curvex =1, y =1, z =¢2.
Find T andN in Problem4.

© 00 N o o b~ W N P

29 A circle lies in the xy plane. Its normal N lies

andB=andt=[dB/ds|= ___

30 The Serret-Frenet formulas ar€T/ds=«N, dN/ds=
—kT+1B, dB/ds=—tN. We know the first and third.
DifferentiateN = —T x B to find the second.

=
o

Show thatN = sin ¢ i + cost j in Problem6.
ComputeT andN in Problems.

Find the speedl| and curvature of a projectile:

=
N

x = (vg cosa)t, y = (vo Sin @)t — %gtz.
31 The anglef from the x axis to the tangent line i$ =

13 FindT and|v| andk for the helixR = 3 cost i +3 sint j + 4t k.

tan—!(dy/dx), whendy /dx is the slope of the curve.

How much longer is a turn of the helix than the corresponding cir- (a) Compute/6/dx.

cle? What is the upward slope of?

14 Whenk =0 the path is a . This happens whewn and a
are . Thenvxa=

15 Find the curvature of a cycloidx =a(t —sint),
a(l—cost).

y:

16 If all points of a curve are moved twice as far from the origin

(x = 2x, y = 2y), what happens to ? What happens td ?

17 Findx andN at@ = = for the hypocycloidk = 4 cosé + cos46,
y=4sinf —sin46.

(b) Divide by ds/dx=(1+(dy/dx)*)'/? to show that
|d6/ds| is k in equation (5). Curvature is change in direction
|d6| divided by change in positiofa/s|.

32 Ifthe tangent direction is at angfethen T =cosf i +sinéj. In
Problem31 |d6/ds| agreed withe = |d T /ds| becausedT/df| =

In 33-37 find the T and N components of acceleration.

33 x=5coswt,y=5snwt,z=0 (circle)

34 x=1+4t,y=1+42t,z=1+3t (line)
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35 x=tcost,y=tsint,z=0 (spiral) 38 For the spiral in36, show that the angle betweeR and a

36 x=elcost,y=elsns,z=0 (spiral) (position and acceleration) is constant. Find the angle.

37 x=1,y=t,z=12. 39 Find the curvature of a polar curve= F(6).



12.4 Polar Coordinates and Planetary Motion 537

B 2.2 Polar Coordinates and Planetary Motion |

This section has a general purpose—to do vector calculpslar coordinates It

also has a specific purpose—to stuntral forcesand themotion of planets The

main gravitational force on a planet is from the sun. It is a central force, because it
comes from the sun at the center. Polar coordinates are natural, so the two purposes
go together.

You may feel that the planets are too old for this course. But Kepler's laws are more
than theorems, they are something special in the history of mankind—"the greatest
scientific discovery of all time.” If we can recapture that glory we should do it. Part
of the greatness is in the difficulty—Kepler was working sixty years before Newton
discovered calculus. From pages of observations, and some terrific guesses, a theory
was born. We will try to preserve the greatness without the difficulty, and show how
elliptic orbits come from calculus. The first conclusion is quick.

Motion in a central force field always stays in a plane

F is a multiple of the vectoR from the origin (central force)}r also equalsna
(Newton’s Law). Therefor® anda are in the same direction aitlx a= 0. Then
R x v has zero derivative and is constant:

d
by the product rule E(va):vxv+Rxa:0+0. (1)

R x vis a constant vectdfl. SOR stays in the plane perpendiculartio

How does a planet move in that plane ? We turn to polar coordinatesch point
except the origin (where the sun isl), is the unit vector pointing outwardlt is the

position vectoR divided by its lengthr (which is4/x2 + y?2):
u-=R/r = (xi+ yj)/r=cosfi+ sindj. (2)

Tha is a unit vector becauseos f +sir? 6 = 1. It goes out from the center.
Figure 12.9 shows, and the second unit vectap at a90° angle:

Ug = —sindi—+ cosb]. 3)
Thedotproductisi, - ug = 0. The subscripts andd indicate direction (notderivative).
Question 1:  How dou, and ug change as changes (out a ray) Phey don't
Question 2:  How dou, andug change a® changes 7Take the derivative
du,/df =—sinfi+cosfj=uy

B AR (@)
dug/df = —cosfi+sinfj = —u,.

drfdt

Fig. 12.9  u, is outward,uy isaround the center. Componentsvadnda in this directions.
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Sinceu, =R/r, one formula is simpleThe position vector iR =ru,. For its
derivativev = dR/dt, use the chainruléu, /dt = (du,/d0)(d0/dt) = (d6/dt)ug:
o d dr do
The velocity isv = E(ru,.) = Eu,. + I”EUQ. 5)

Theoutward speed iér/dt. The circular speed isd6/dt. The sum of squares|js|?.

Return one more time to steady motion around a circlersay andf = 2¢. The
velocity isv = 6ug, all circular. The acceleration is12u,, all inward. For circleslg
is the tangent vectdr. But the unit vectou, points outward anél points inward—
the way the curve turns.

Now we tackle acceleration for any motion in polar coordinates. There can be
speedup i and speedup ifl (also change of direction). Differentiagen (5) by the
product rule:

dv d2ru +drdu, +dr d9u . d29u n dé dug

—_—=— — —_—— r—s- r——.

dt —diz " di dt ' drdt 0 dez 07 dt dr

For du,/dt anddug/dt, multiply equation(4) by d6/dt. Then all terms contain
U, or ug. The formula fora is famous but not popular (except it got us to the moon):

. dv d?r do\? - d20+2dr do ! ©)
= — = —_ 1| — y—— —_— .
dt dr? dt ! dr2 dr dr ) °

In the steady motion witlh = 3 andf = 2¢, only one acceleration term is nonzero:
a= —12u,. Formula(6) can be memorized (maybe). Problérgives a new way to
reach it, using-e’®.

EXAMPLE 1 FindR andv and a for speedu = ¢2 around the circle = 1.
Solution  The position vector iR = u,. Then v anda come from(5 — 6):
v=(rdf/dt)ug=2tusg  a=—(2t)%u, +2up.

This question and answer were also in Example 6 of the previous section. The
acceleration wa&T + 472N. Notice again thall = ug andN = —u,, going round
the circle.

EXAMPLE 2 FindR andv and |v| anda for the spiral motion = 3¢, 6 = 21.

Solution  The position vector iR = 37 u,.. Equation(5) gives velocity and speed:

v=3u,+=6tug and |v|=+/(3)2+(61)2.

The motion goesutand alsaaround From(6) the acceleration is-12¢ u, + 12ug.
The same answers would come more slowly fi@rs= 37 cOS2¢ i + 3¢ sin2¢ .

This example uses polar coordinates, b motion is not circularOne of
Kepler’s inspirations, after many struggles, was to get away from circles.

KEPLER'’S LAWS

You may know that before Newton and Leibniz and calculus anerpalordinates,
Johannes Kepler discovered three laws of planetary motion. He was the court
mathematician to the Holy Roman Emperor, who mostly wanted predictions of wars.
Kepler also determined the date of every Easter—no small problem. His triumph was
to discover patterns in the observations made by astronomers (especially by Tycho
Brahe). Galileo and Copernicus expected circles, but Kepler found ellipses.
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Law 1: Each planet travels in an ellipse with one focus at the sun.

Law 2: The vector from sun to planet sweeps out area at a steadyirdjeir =
constant.

Law 3: The length of the planet’s year = ka?3/2, wherea = maximum distance
from the center (not the sun) akd= 27r/4/GM is the same for all planets.

With calculus the proof of these laws is a thousand times quicker. But2 evthe
only easy one. The sun exerts a central force. EqudfipgaveR x v=H = con-
stant for central forces. ReplaBeby ru, and replace by equation(5):

H=ru, x (%Ur‘f'r%u@) ZVZ%(UV X Ug). ()

This vectorH is constant, sits lengthz = r2d6/dt is constant In polar coordi-

nates, the areaisd = %rde. This areal A is swept out by the planet (Figure 12.10),

and we have proved La:
dA/dt =1r?d6/dt = 1h = constant (8)

Nea the surv is small. Sad6/dt is big and planets go around faster.

r=1/C

NOT
CIRCLES!

Fig. 12.10 The planet is on an ellipse with the sun at a focus. Note c, q.

Now for Law 1, about ellipses. We are aiming foy r = C — D cosé, which is
the polar coordinate equation of an ellipsé is easier to writeg than1/r, and
find an equation fog. The equation we will reach i82¢/d6? 4+ g = C. The desired
q = C — D cosf solves that equation (check this), and gives us Kepler's ellipse.

The first step is to connedtr/dt to dq/d6 by the chain rule:

dr d (1)_—1d_q_—1dqd9_ dq

—=—- — 9
dt dt \q ©

T q2dt q*dodt do

Notice especially/d/dt = h/r? = hq?. What we really want are second derivatives:

d?r d (dq d (dq\ db d’q
_:_h— —_— :—h— —_— —:—h2 2_. 10
dr2 di (d@) 6 (d@) dt TR (19

After this trick of introducingg, we are ready for physics. The planet obeys Newton’s

Law F = ma, and the central forcE is the sun’s gravity:

F GM  d*r do\?
T_gjs 2 _4T_ (2T 11
m as r2 az " (dt) (11

539



540

12 Motion along a Curve

That right side is thel, component ofa in (6). Change to 1/¢ and chang@8/dt
to hg?. The preparation ifi0) allows us to rewrite??r/dt? in equation(11). That
equation becomes

d?q

—GM ¢* = _hzqzm

1
——(hg?)*.
q
Dividing by —h2¢? gives what we hoped for—the simple equationgor
d?q/d0* +q=GM/h* = C (a constany. (12)

The solution isq = C — D cos6. Section9.3 gave this polar equation for an ellipse
or parabola or hyperbola. To be sure itis an ellipse, an astronomer condpatesD
from the sun’s mass/ and the constar& and the earth’s position and velocifjhe
main point is thatC > D. Theng is never zero and is never infinite. Hyperbolas
and parabolas are ruled out, and the orbit in Figure 12.10 must be an gllipse.

Astronomy is really impressive. You should visit the Greenwich Observatory in
London, to see how Halley watched his comet. He amazed the world by predicting
the day it would return. Also the discovery of Neptune was pure mathematics—the
path of Uranus was not accounted for by the sun and known planets. LeVerrier
computed a point in the sky and asked a Berlin astronomer to look. Sure enough
Neptune was there.

Recently one more problem was solved—to explain the gap in the asteroids around
Jupiter. The reason ichaos"—the three-body problem goes unstable and an asteroid
won't stay in that orbit. We have come a long way from circles.

Department of Royal Mistakes The last pound note issued by the Royal Mint
showed Newton looking up from his great bo&kincipia MathematicaHe is not
smiling and we can see why. The artist put the sun at the center! Newton has just
proved it is at the focus. True, the focus is markednd the planet if. But those
rays at the center brought untold headaches to the Mint—the note is out of circulation.
| gave an antique dealer three pounds for it (in coins).

Kepler’s third law gives the timel’ to go around the ellipse—the planet’s year.
What is special in the formula i83/2—and for Kepler himself, thd 5th of May
1618 was unforgettable: “the right ratio outfought the darkness of my mind, by the
great proof afforded by my labor of seventeen years on Brahe’s observations.” The
second lawdA/dt = %h is the key, plus two facts about an ellipse—its araab

and the heighb? /a above the sun:

T
A 1 2

1. The aread :J d—dt = —hT mustequalrab, soT = mab

o dt 2 h

2. The distance = 1/C atd = /2 must equalb? /a, sob =+/a/C.

The heighth? /a is in Figure 12.10 and Probler2§ — 26. The constan€ = GM/ h?
is in equation(12). Put them together to find the period:

2rab 2 2
_2mab _2ma fa 2w 55

h n \NC VoM

+An amateur sees the planet come around again, and votes for an ellipse.

(13)
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To think of Kepler guessing3/2 is amazing. To think of Newton proving Kepler's
laws by calculus is also wonderful—because we can do it too.

EXAMPLE 3 When a satellite goes around in a circle, find the tifhe

Let r be the radius an@ be the angular velocity. The time for a complete circle (angle
2m) is T =27 /w. The acceleration i&M/r? from gravity, and it is also'w? for
circular motion. Therefore Kepler is proved right:

ro>=GM/r? = w=+/GM/r3 = T =21/w=2nr"?/\/GM.

12.4 EXERCISES

Read-through questions

A central force points toward a . Then Rxd?R/dt>=0 3 Atthe point(1,2), velocities in the direction will give
because b . ThereforeR xdR/dtisa__c (calledH). dr/dt = 0. Velocities in the direction will give d8/dt =0.
In polar coordinates, the outward unit vector is . - . .
. . 4 = — =2,
Uy =cosdi+_d . Rotated by90° this becomesiy = e Traveling on the cardioid = 1 —cosf with d6/dt =2, what is

o . . . —"v? How long to go around the cardioid (no integration involved) ?
The position vectoR is the distance times__f . The velocity glog ( 9 )

v=dR/dtis g ur+__h uy.For steady motion around the 5 |f ; = 0% andg = 3¢, find v andawhent = 1.

circler =5with6 =4¢,vis__i__and|v|is | andais__k

For motion under a circular force? times__ | _is constant. Di- 6 If r=1and6 =sin¢, describe the path and findanda from

viding by 2 gives Kepler's second lawA/dt =__m . The first equationg5—6). Where is the velocity zero ?

law says that the orbitisan n__ withthesunat o . The polar _— {aNDR — 4C0S5¢ |+ 4sin5s i — 4u. t | ircle of
equation for a conic sectionis p = C — Dcosf. UsingF =ma (important)R = 4cos5¢ i +4sin 5t j = 4u, travels on a circle o

we foundgge+ q =C. So the path is a conic section; it mustrad'US4 with 8 = 5t and spee@0. Find the components of anda

be an ellipse because r__. The properties of an ellipse lead to the” three systems:andj, T andN, u, andu.
period T = __s , which is Kepler’s third law.

8 When is the circle = 4 completed, if the speed i8 ? Findv

1 Find the unit vectorsi, andug at the point(0,2). Theu, and 2andaatthe return to the starting poit#, 0).

Ug components of =i+] atthat pointare____. 9 Theug component of acceleration is =0 for a central

2 Find u, and uy at (3,3). If v=i+jthenv= ur. force, which is in the direction of . Then r2d0/dt is
Equation (5) givesir/dt = anddf/dt = . constant (new proof) because its derivative tames .
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10 If r2d6/dr =2 for travel up the linex = 1, draw a triangle to 22 If a satellite circles the Earth 000 km from the center,
show thatr = sec) and integrate to find the time to reach 1). estimate its period” in seconds.

11 A_satellite is_r:l0,000 km _from the center of_ the Earth,23 The Viking 2 orbiter around Mars had a period of about
traveling perpendicular to the radius vectod &m/sec Findd6/dt 10,000 seconds. If the mass of Marsi = 6.4- 1023 kg, what was

andh. the value ofz ?
12 From |uy|=1, it follows that du,/dr and du,/df are )

to u, (Section 12.3). In fact du,/dr is and 24 Convert 1/r=C—Dcosf, or 1=Cr—Dx, into the xy
duy,/do is ) equation of an ellipse.

13 Momentum ismv and its derivative isma= force. Angu- 25 The distances andc on the ellipse give the constants ir=
lar momentum ismH =mR x v and its derivative is = 1/(C — Dcosh). Substituted =0 andd = = as in Figure 12.10 to
torque. Angular momentum is constant under a central forfiad D = c/(a? —c?) andC =a/(a? —c?) =a/b?.

because the is zero.

26 Show that x=—c, y=b%/a lies on the ellpse
x2/a? +y?/b? = 1. Thusy is the heightl /C above the sun in Fig-
ure 12.10. The distance from the sun to the centerhasa? —b2.

14 To find (and rememben) and a in polar coordinates, start with
the complex numbere!? and take its derivatives:

R=re' W:Eele‘F”EEHQ 27 The point x=acos2nt/T, y=bsin2xt/T travels
2R around an ellipse centered @ 0) and returns at tim&. By sym-
2 + + + + ) metry it sweeps out area at the same rate at both ends of the major
dr? axis. Why does thibreakKepler’'s second law ?

Key idea: The coefficients ofe’® andie’® are theu, and ug

28 If a central force is F=—ma(r)u,, explain wh
components oR, v, a: (r)ur p y

d?r/dt?> —r(d0/dt)?> = —a(r). What is a(r) for gravity?
d de Equation (12) foy = 1/r leads t =r2a(r).
R =ru, +0ug v=d—:ur +rﬁu9 a= q (12)fog =1/r % +q=r-alr)
29 WhenF =0 the body should travel in a straight .

(& Fillin the five terms from the derivative @fR/dt The equationggg +¢ = 0 allows ¢ = cosé, in which case the path

(b) Converte’® tou, andie’® to ug to finda 1/r =cosf is . Extra credit: Mark off equal distances on a
(c) CompareR,v,awith formulas (5-6) line, connect them to the sun, and explain why the triangles have
(d) (for instructors only) Why does this method work ? equal area. SdA/dt is still constant.

Note howe!? = cosé +i sin6 corresponds ta, =cosfi+sinfj. 30 The strong nuclear force increases with distande) = r. It

This is one place where electrical engineers are allowed to iritdinds quarks so tightly that up to now no top quarks have been seen
instead ofi for /—1. (reliably). Problen®8 givesggg +¢ = 1/43.

15 If the period isT find from (13) a formula for the distanee ) ) 1 1.2
(@ Multiply by g and integrate to find5gg+59°=
16 To stay above New York what should be the period of a +C.

saellite? What should be its distanee from the center of the

Earth? *(b) Integrate again (with tables) after setting=g¢2,

17 FromT anda find a formula for the masa/. ug =2qqg-

18 If the moon has a period a8 days at an average distance ok, Tpe path of a quark in30(b) can be written as
a = 380,000 km, estimate the mass of the . r2(A+ Bcos20) =1. Show that this is the same as the ellipse

19 The Earth take$65% days to go around the sun at a distancéA-f-B)x? +(A—B)y? =1 with the origin at thecenter The
a ~ 93 million miles~ 150 million kilometers. Find the mass of thenucleus is not at a focus, and the pound note is correct for

sun. Newton watching quarks. (Quantum mechanics not accounted for.)
20 True or false: 32 When will Halley’s comet appear again ? It disappeareths
(@) The paths of all comets are ellipses. and its mean distance to the sun (average: #fc anda —c) is
. . . _ 9 i
(b) A planet in a circular orbit has constant speed. a=1.6-10" kilometers.

() Orbits in central force fields are conic sections. 33 You are walking at2 feet/second toward the center of a

21 v/GM ~2-107 in what units, based on the Earth’s masmerry-go-round that turns once every ten seconds. Starting from
M =6-10** kg and the constanG —6.67-10"1INm2/kg?? A r =20, 8 =0 find r(r), 6(¢), v(z), a(r) and the length of your path
force of one kgmeter'se@ is a Newton N. to the center.
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34 From Kepler's lawsr =1/(C —Dcosf) and r2d0/dt =h, backwards, in our equations (8-12), to show that this force yields
show that Kepler's laws.

1
- i 2 2_ (L _ 2.2
Lodr/di==Dhsing 2. d%r/di"= (r C)h /r 35 How long is our year? The Earth’s orbit has= 149.57-10°
3. d?r/dt* —r(df/dt) =—Ch*/r?. kilometers.
When Newton reache8| he knew that Kepler’s laws required a cen-
tral force of Ch2/r2. This is hisinverse square lawThen he went
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