
CHAPTER 12

Motion Along a Curve

12.1 The Position Vector

This chapter is about “vector functions.” The vector2i C4j C8k is constant. The
vectorR.t/D t i C t2j C t3k is moving. It is a function of the parametert , which
often represents time. At each timet , the position vectorR.t/ locates the moving
body:

position vectorD R.t/D x.t/i Cy.t/j Cz.t/k: (1)

Our example hasxD t; yD t2; zD t3. As t varies, these points trace out acurve
in space. The parametert tells when the body passes each point on the curve. The
constant vector2i C4j C8k is the position vectorR.2/ at the instantt D 2.

What are the questions to be asked ? Every student of calculus knows the first
question:Find the derivative. If something moves, the Navy salutes it and we
differentiate it. At each instant, the body moving along the curve has a speed and
a direction. This information is contained in another vector function—the velocity
vectorv.t/ which is the derivative ofR.t/:

v.t/D
dR
dt

D
dx

dt
i C

dy

dt
j C

dz

dt
k: (2)

Since i; j; k are fixed vectors, their derivatives are zero. In polar coordinatesi and j
are replaced by moving vectors. Then the velocityv has more terms from the product
rule (Section12:4).

Two important cases are uniform motionalong a line and around a circle. We
study those motions in detail (v D constant on line,v D tangent to circle). This section
also finds the speed and distance and acceleration for any motionR.t/.

Equation(2) is the computing rule for the velocitydR=dt . It is not thedefinition
of dR=dt , which goes back to basics and does not depend on coordinates:

dR
dt

D lim
�tÑ0

�R
�t

D lim
�tÑ0

R.tC�t/�R.t/
�t

:

Werepeat:R is a vector so�R is a vector sodR=dt is a vector. All three vectors are
in Figure 12.1 (t is not a vector!). This figure reveals the key fact about the geometry:
The velocityv D dR=dt is tangent to the curve.
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518 12 Motion Along a Curve

The vector�R goes from one point on the curve to a nearby point. Dividing by
�t changes its length, not its direction. That direction lines up with the tangent to
the curve, as the points come closer.

EXAMPLE 1 R.t/D t i C t2j C t3k v.t/D i C2t j C3t2k
This curve swings upward ast increases. Whent D 0 the velocity isv D i. The tan-
gent is along thex axis, since thej and k components are zero. Whent D 1 the
velocity is i C2j C3k, and the curve is climbing.

For the shadow on thexy plane, drop thek component. Position on the shadow is
t i C t2j. Velocity along the shadow isi C2t j. The shadow is a plane curve.

Fig. 12.1 Position vectorR, change�R,
velocitydR=dt .

Fig. 12.2 Equations of a line, with and
without the parametert .

EXAMPLE 2 Uniform motion in a straight line:the velocity vectorv is constant.
The speed and direction don’t change. The position vector moves withdR=dt D v:

R.t/D R0 C tv .R0 fixed,v fixed, t varying/ (3)

That is theequation of a line in vector form. CertainlydR=dt D v. The starting
pointR0 D x0i Cy0j Cz0k is given. The velocityv D v1i Cv2j Cv3k is also given.
Separating thex, y andz components, equation(3) for a line is

line with parameterW xD x0 C tv1; yD y0 C tv2; zD z0 C tv3: (4)

The speed along the line is|v|Dav2
1 Cv2

2 Cv2
3 : The direction of the line is the

unit vectorv=|v|. We have three equations forx;y;z, and eliminatingt leaves two
equations. The parametert equals.x�x0/=v1 from equation(4). It also equals
.y�y0/=v2 and.z�z0/=v3. So these ratios equal each other, andt is gone:

line without parameterW
x�x0

v1

D
y�y0

v2

D
z�z0

v3

: (5)

An example isxD y=2D z=3. In this case.x0;y0;z0/D .0;0;0/—the line goes
through the origin. Another point on the line is.x;y;z/D .2;4;6/. Becauset is
gone, we cannot say when we reach that point and how fast we are going. The equa-
tionsx=4Dy=8Dz=12 give the same line. Withoutt we can’t know the velocityv D
dR=dt .

EXAMPLE 3 Find an equation for the line throughP D .0;2;1/ andQD .1;3;3/.

Solution We have choices!R0 cango toany pointon the line. The velocityv can
beany multipleof the vector fromP toQ. The decision onR0 controls where we
start, andv controls our speed.

The vector fromP toQ is i C j C2k. Those numbers1;1;2 come from subtracting
0;2;1 from 1;3;3. We choose this vectori C j C2k as a firstv, and double it for a
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secondv. We choose the vectorR0 D P asa first start andR0 D Q as a second start.
Here are two different expressions for the same line—they arePC tv andQC t.2v/:

R.t/D .2j Ck/C t.i C j C2k/ R�.t/D .i C3j C3k/C t.2i C2j C4k/:

The vectorR.t/ givesxD t; yD 2C t; zD 1C2t . The vectorR� is at a different
point on the same line at the same time:x� D 1C2t; y� D 3C2t; z� D 3C4t .

If I pick t D 1 in R andt D 0 in R�, the point is.1;3;3/. We arrive there at different
times. You are seeing how parameters work, to tell “where” and also “when.” Ift
goes from�8 to C8, all points on one line are also on the other line. The path is
the same, but the “twins” are going at different speeds.

Question 1 When do these twins meet ? When doesR.t/D R�.t/ ?
Answer They meet att D�1, whenR D R� D�i C j�k.

Question 2 What is an equation for the segment betweenP andQ (not beyond)?
Answer In the equation forR.t/, let t go from0 to 1 (not beyond):

xD t yD 2C t zD 1C2t Œ0¤ t ¤ 1 for segment�: (6)

At t D 0 westart fromP D .0;2;1/. At t D 1 we reachQD .1;3;3/.

Question 3 What is an equation for the line without the parametert ?
Answer Solve equations(6) for t or use.5/: x=1D .y�2/=1D .z�1/=2.
Question 4 Which point on the line is closest to the origin ?
Answer The derivative ofx2 Cy2 Cz2 D t2 C .2C t/2 C .1C2t/2 is8C8t . This
derivative is zero att D�1. So the closest point is.�1;1;�1/.
Question 5 Where does the line meet the planexCyCzD 11 ?
Answer Equation(6) givesxCyCzD 3C4t D 11. Sot D 2. The meeting point
is xD t D 2;yD tC2D 4;zD 1C2t D 5.

Question 6 What line goes through.3;1;1/ perpendicular to the planex�y�zD
1 ?
Answer The normal vector to the plane isN D i� j�k. That isv. The position
vector to.3;1;1/ is R0 D 3i C j Ck. ThenR D R0 C tv.

COMPARING LINES AND PLANES

A line has one parameter or two equations. We give the starting point and veloc-
ity: .x;y;z/D .x0;y0;z0/C t.v1;v2;v3/. That tells directly which points are on the
line. Or we eliminatet to find the two equations in.5/.

A plane has one equation or two parameters! The equation isaxCbyCczD d .
That tells usindirectly which points are on the plane. (Instead of knowingx;y;z;
we know the equation they satisfy. Instead of directionsv andw in the plane, we are
told the perpendicular directionN D .a;b;c/:/ With parameters, the line contains
R0 C tv and the plane containsR0 C tvCsw. A plane looks worse with parameters
(t ands), a line looks better.

Questions5 and6 connected lines to planes. Here are two more. See Problems
41�44:
Question 7 When is the lineR0 C tv parallel to the plane ? When is it
perpendicular?
Answer The test isv �N D 0. The test isv�N D 0.



520 12 Motion Along a Curve

EXAMPLE 4 Find the plane containingP0 D .1;2;1/ and the line of points
.1;0;0/C t.2;0;�1/. That vectorv will be in the plane.

Solution The vectorv D 2i�k goes along the line. The vectorw D 2j Ck goes
from .1;0;0/ to .1;2;1/. Their cross product is

N D v�w D

������� i j k

2 0 �1
0 2 1

�������D 2i�2j C4k:

The plane2x�2yC4zD 2 has this normalN and contains the point.1;2;1/.

SPEED, DIRECTION, DISTANCE, ACCELERATION

We go back to the curve traced out byR.t/. The derivativev.t/D dR=dt is the
velocity vector along that curve. Thespeedis the magnitude ofv:

speedD |v|Da.dx=dt/2 C .dy=dt/2 C .dz=dt/2: (7)

Thedirection of the velocity vector isv=|v|. This is a unit vector, sincev is divided
by its length.The unit tangent vectorv=|v| is denoted byT.

The tangent vector is constant for lines. It changes direction for curves.

EXAMPLE 5 (important) Findv and|v| andT for steady motion around a circle:

xD r cos!t; yD r sin!t; zD 0:

Solution The position vector isR D r cos!t i Cr sin!t j. The velocity is

v D dR=dt D�!r sin!t i C!r cos!t j .tangent, not unit tangent/

The speed is the radiusr times the angular velocity!:|v|Da.�!r sin!t/2 C .!r cos!t/2 D!r:

The unit tangent vector isv divided by|v|:
T D�sin!t i Ccos!t j .length1 sincesin2!tCcos2!t D 1/:

Think next about thedistance traveled. Distance along a curve is always denoted by
s (calledarc length). I don’t know why we uses—certainly not as the initial for
speed. In fact speed is distance divided by time. The ratios=t gives average speed;
ds=dt is instantaneous speed. We are back to Chapter1 and Section8:3, the relation
of speed to distance:

speed|v|D ds=dt distancesD
r
.ds=dt/dt D

r |v.t/|dt:
Notice that|v| ands andt are scalars. The direction vector isT:

T D
v|v| D

dR=dt
ds=dt

D
dR
ds

D unit tangent vector. (8)

In Figure 12.3, the chord length (straight) is|�R|. The arc length (curved) is�s. As
�R and�s approach zero, the ratio|�R=�s| approaches|T|D 1.
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Think finally about theacceleration vectora.t/. It is the rate of change of velocity
(not the rate of change of speed):

aD
dv
dt

D
d2R
dt2

D
d2x

dt2
i C

d2y

dt2
j C

d2z

dt2
k: (9)

Fig. 12.3 Steady motion around a circle. Half turn up a helix.

For steady motion along a line, as inxD t;yD 2C t;zD 1C2t , there is no accel-
eration. The second derivatives are all zero. For steady motion around a circle, there
is acceleration. In driving a car, you accelerate with the gas pedal or the brake.You
also accelerate by turning the wheel. It is the velocity vector that changes, not the
speed.

EXAMPLE 6 Find the distances.t/ and accelerationa.t/ for circular motion.

Solution The speed in Example5 is ds=dt D!r . After integrating, the distance
is sD!rt . At time t we have gone through an angle of!t . The radius isr , so
the distance traveled agrees with!t timesr . Note that the dimension of! is 1=time.
(Angles are dimensionless.) At timet D 2�=! we have gone once around the circle—
to sD 2�r not back tosD 0.

The acceleration isaD d2R=dt2. RememberR D r cos!t i Cr sin!t j:

a.t/D�!2r cos!t i�!2r sin!t j: (10)

That direction is opposite toR. This is a special motion, with no action on the gas
pedal or the brake. All the acceleration is from turning. The magnitude is|a|D!2r ,
with the correct dimension of distance=(time)2.

EXAMPLE 7 Findv ands and a around the helixR D cost i Csin t j C t k.

Solution The velocity isv D�sin t i Ccost j Ck. The speed is

ds=dt D |v|Dasin2tCcos2tC1D
?
2 (constant):

Then distance issD
?
2t . At time t D� , a half turn is complete. The distance along

the shadow is� (a half circle). The distance along the helix is
?
2� , because of its

45� slope.
The unit tangent vector is velocity=speed, and the acceleration isdv=dt :

T D .�sin t i Ccost j Ck/=
?
2 aD�cost i�sin t j:
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EXAMPLE 8 Findv ands and a around the ellipsexD cost;yD 2 sin t;zD 0.

Solution Take derivatives:v D�sin t i C2 cost j and |v|Dasin2tC4cos2t .
This is the speedds=dt . For the distances, something bad happens (or something
normal). The speed is not simplified bysin2tCcos2t D 1. We cannot integrateds=dt
to find a formula fors. The square root defeats us.

The acceleration�cost i�2 sin t j still points to the center. This isnot the Earth
going around the sun. The path is an ellipse but the speed is wrong. See Section12:4
(the pound note) for a terrible error in the position of the sun.

12A The basic formulas for motion along a curve are

v D
dR
dt

aD
dv
dt

|v|D ds

dt
T D

v|v| D
dR=dt
ds=dt

D
dR
ds
:

Suppose we know the accelerationa.t/ and the initial velocityv0 and positionR0.
Thenv.t/ andR.t/ are also known. We integrate each component:

a.t/Dconstantñv.t/Dv0 Cat ñR.t/DR0 Cv0tC
1
2
at2

a.t/Dcost k ñv.t/Dv0 Csin t kñR.t/DR0 Cv0t�cost k:

THE CURVE OF A BASEBALL

There is a nice discussion of curve balls in the calculus book byEdwards and Penney.
We summarize it here (optionally). The ball leaves the pitcher’s hand five feet off the
ground:R0 D 0i C0j C5k. The initial velocity isv0 D 120i�2j C2k (120 ft=sec
is more than80 miles per hour). The acceleration is�32k from gravity, plus a new
term fromspin. If the spin is around thez axis, and the ball goes along thex axis,
then this acceleration is in they direction. (It comes from the cross productk� i—
there is a pressure difference on the sides of the ball.) A good pitcher can achieve
aD 16j�32k. The batter integrates as fast as he can:

v.t/Dv0 Cat D 120i C .�2C16t/j C .2�32t/k
R.t/DR0 Cv0tC

1
2
at2 D 120t i C .�2tC8t2/j C .5C2t�16t2/k:

Notice thet2. The effect of spin is small at first, then suddenly bigger (as every batter
knows). So is the effect of gravity—the ball starts to dive. Att D 1

2
, the i component

is 60 feet and the ball reaches the batter. Thej component is1 foot and thek
component is2 feet—the curve goes low over the outside corner.

At t D 1
4
, when the batter saw the ball halfway, thej component was zero. It looked

as if it was coming right over the plate.

Fig. 12.4 A curve ball approaches home plate. Halfway it is on line.



12.1 The Position Vector 523

12.1 EXERCISES

Read-through questions

The position vector a along the curve changes with the
parameter t . The velocity is b . The acceleration is c .
If the position isi C t j C t2k, then v D d and aD e .
In that example the speed is|v|D f . This equalsds=dt ,
where s measures the g . Then sD

r
h . The tangent

vector is in the same direction as the i , butT is a j vector.
In generalT D k and in the exampleT D l .

Steady motion along a line hasaD m . If the line is xD

yD z, the unit tangent vector isT D n . If the speed is|v|D?3, the velocity vector isv D o . If the initial position
is .1;0;0/, the position vector isR.t/D p . The general
equation of a line isxD x0 C tv1;yD q , zD r . In vector
notation this isR.t/D s . Eliminating t leaves the equations
.x�x0/=v1 D .y�y0/=v2 D t . A line in space needs u
equations where a plane needsv . A line has one parameter
where a plane has w . The line fromR0 D .1;0;0/ to .2;2;2/
with |v|D 3 is R.t/D x .

Steady motion around a circle (radiusr , angular velocity!) has
xD y , yD z , zD 0. The velocity isv D A . The
speed is|v|D B . The acceleration isaD C , which has
magnitude D and direction E . Combining upward motion
R D tk with this circular motion produces around a F . Then
v D G and|v|D H .

1 Sketch the curve with parametric equationsxD t;yD t3. Find
the velocity vector and the speed att D 1.

2 Sketch the path with parametric equationsxD 1C t;y D 1� t .
Find thexy equation of the path and the speed along it.

3 On the circlexD cost;yD sin t explain by the chain rule and
then by geometry whydy=dxD�cot t .

4 Locate the highest point on the curvexD 6t;yD 6t� t2. This
curve is a . What is the accelerationa?

5 Find the velocity vector and thexy equation of the tangent
line to xD et ;yD e�t at t D 0. What is thexy equation of the
curve ?

6 Describe the shapes of these curves: (a)xD 2t ;yD 4t ; (b) xD

4t ;yD 8t ; (c) xD 4t ;yD 4t:

Note: To find“parametric equations”is to findx.t/, y.t/, and pos-
sibly z.t/.

7 Find parametric equations for the line throughP D .1;2;4/

and QD .5;5;4/. Probably your speed is5; change the
equations so the speed is10. Probably yourR0 is P ; change the
start toQ.

8 Find an equation for any one plane that is perpendicular
to the line in Problem7. Also find equations for any one line that
is perpendicular.

9 On a straight line from.2;3;4/ with velocity v D i�k, the
position vector is R.t/D . If the velocity vector is
changed to t i� tk, then R.t/D . The path is still

.

10 Find parametric equations for steady motion fromP D

.3;1;�2/ at t D 0 on a line toQD .0;0;0/ at t D 3. What is the
speed ? Change parameters so the speed iset .

11 The equations x�1D 1
2 .y�2/D 1

3 .z�2/ describe a
. The same path is given parametrically byxD 1C t;

yD ;zD . The same path is also given by
xD 1C2t;y D ;zD .

12 Find parametric equations to go around the unit circle
with speedet starting from xD 1;yD 0. When is the circle
completed ?

13 The pathxD 2yD 3zD 6t is a traveled with speed
. If t is restricted byt ¥ 1 the path starts at . If t is

restricted by0¤ t ¤ 1 the path is a .

14 Find the closest point to the origin on the linexD 1C t;

yD 2� t . When and where does it cross the45� line through the
origin ? Find the equation of a line it never crosses.

15 (a) How far apart are the two parallel linesxD y and
xD yC1 ? (b) How far is the pointxD t;yD t from the point
xD t;yD tC1 ? (c) What is the closest distance if their speeds
are different:xD t;yD t andxD 2t;yD 2tC1 ?

16 Which vectors follow the same path asR D t i C t2 j ? The
speed along the path may be different.

(a)2t i C2t2 j (b) 2t i C4t2 j (c)�t i C t2 j (d) t3i C t6 j

17 Find a parametric form for the straight lineyDmxCb.

18 The line xD 1Cv1t;yD 2Cv2t passes through the origin
provided v1 C v2 D 0. This line crosses the
45� line yD x unless v1 C v2 D 0.

19 Find the velocity v and speed |v| and tangent vectorT
for these motions: (a)R D t i C t�1j (b) R D t cost i C t sin t j
(c) R D .tC1/i C.2tC1/j C.2tC2/k.

20 If the velocity dx=dt i Cdy=dt j is always perpendicular to
the position vectorxi Cyj , show from their dot product that
x2 Cy2 is constant. The point stays on a circle.

21 Find two pathsR.t/ with the samev D cost i Csint j . Find a
third path with a differentv but the same acceleration.

22 If the acceleration is a constant vector, the path must be .
If the path is a straight line, the acceleration vector must be .

23 Find the minimum and maximum speed ifxD tCcost;
yD t�sin t . Show that |a| is constant but nota. The point is
going around a circle while the center is moving on what line ?
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24 Find x.t/;y.t/ so that the point goes around the circle
.x�1/2 C.y�3/2 D 4 with speed1:

25 A ball that is circling withxD cos2t;yD sin2t flies off on a
tangent att D�=8. Find its departure point and its position at a later
time t (linear motion; compute its constant velocityv).

26 Why is |a| generally different fromd2s=dt2 ? Give an
example of the difference, and an example where they are
equal.

27 Change t so that the speed along the helixR D

cost i Csin t j C t k is 1 instead of
?
2. Call the new

parameters.

28 Find the speedds=dt on the line xD 1C6t;y D 2C3t;

zD 2t . Integrate to find the lengths from .1;2;0/ to .13;8;4/. Check
by using122 C62 C42.

29 Find v and |v| and a for the curvexD tant;yD sect . What
is this curve ? At what time does it go to infinity, and along
what line ?

30 Construct parametric equations for travel on a helix with
speedt .

31 Suppose the unit tangent vectorT.t/ is the derivative of
R.t/. What does that say about the speed ? Give a noncircular
example.

32 For travel on the pathyD f .x/, with no parameter, it is
impossible to find the but still possible to find the
at each point of the path.

Find x.t/ and y.t/ for paths 33–36.

33 Around the square bounded byxD 0; xD 1; yD 0; yD 1,
with speed2. The formulas have four parts.

34 Around the unit circle with speede�t . Do you get all the
way around ?

35 Around a circle of radius4 with acceleration|a|D 1.

36 Up and down they axis with constant acceleration�j ,
returning to.0;0/ at t D 10.

37 True (with reason) or false (with example):

(a) If |R|D 1 for all t then|v|D constant.

(b) If aD 0 thenR D constant.
(c) If v �v D constant thenv �aD 0.

(d) If v �R D 0 thenR �R D constant.

(e) There is no path withv D a.

38 Find the position vector to the shadow oft i C t2 j C t3k on
thexz plane. Is the curve ever parallel to the linexD yD z ?

39 On the ellipsexD a cost;yD b sin t , the angle� from the
center is not the same ast because .

40 Two particles are racing from.1;0/ to .0;1/. One follows
xD cost; yD sin t , the other followsxD 1Cv1t;yD v2t . Choose
v1 andv2 so that the second particle goes slower but wins.

41 Two lines in space are given byR.t/D PC tv and R.t/D

QC tw. Four possibilities: The lines are parallel or the same or
intersecting or skew. Decide which is which based on the vectors
v andw andu D Q�P (which goes between the lines):

(a) The lines are parallel if are parallel.
(b) The lines are the same if are parallel.

(c) The lines intersect if are not parallel but lie
in the same plane.

(d) The lines are skew if the triple productu �.v�w/ is
.

42 If the lines are skew (not in the same plane), find a formula
based on u;v;w for the distance between them. The vectoru
may not be perpendicular to the two lines, so project it onto
a vector that is.

43 The distance fromQ to the line PC tv is the projection of
u D Q�P perpendicular tov. How far isQ D .9;4;5/ from the line
xD 1C t; yD 1C2t; zD 3C2t ?

44 Solve Problem 43 by calculus: substitute forx;y;z in
.x�9/2 C.y�4/2 C.z�5/2 and minimize. Which.x;y;z/ on the
line is closest to.9;4;5/ ?

45 Practice with parameters, starting fromxDF.t/;yDG.t/.

(a) The mirror image across the45� line is xD ;

yD .

(b) Write the curvexD t3;yD t2 asyD f .x/.

(c) Why can’txD t2;yD t3 be written asyDf .x/?

(d) If F is invertible thent DF�1.x/ andyD .x/.

46 From 12:00 to 1:00 a snail crawls steadily out the minute
hand (one meter in one hour). Find its position at timet starting
from .0;0/.
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12.2 Plane Motion: Projectiles and Cycloids

The previous section started withR.t/: From this position vector we computedv and
a: Now we findR.t/ itself, from more basic information. The laws of physics govern
projectiles, and the motion of a wheel produces a cycloid (which enters problems in
robotics). The projectiles fly without friction, so the only force is gravity.

These motions occur in a plane. The two components of position will bex (across)
andy (up). A projectile moves ast changes, so we look forx.t/ andy.t/: We are
shooting a basketball or firing a gun or peacefully watering the lawn, and we have
to aim in the right direction (not directly at the target). If the hose delivers water at
10meters=second; can you reach the car12meters away ?

The usual initial position is.0;0/: Some flights start higher, at.0;h/: The initial
velocity is .v0 cos˛;v0 sin˛/; wherev0 is the speed and̨ is the angle with the
horizontal. The acceleration from gravity is purely vertical:d2y=dt2 D�g: So the
horizontal velocity stays at its initial value. The upward velocity decreases by�gt :

dx=dt D v0 cos˛; dy=dt D v0 sin˛�gt:
The horizontal distancex.t/ is steadily increasing. The heighty.t/ increases and
then decreases. To find the position, integrate the velocities (for a high start addh to
y):

The projectile path isx.t/D .v0 cos˛/t; y.t/D .v0 sin˛/t� 1
2
gt2: (1)

This path is aparabola. But it is not written asyD ax2 CbxCc: It could be, if we
eliminatedt: Then we would lose track of time. The parabola isy.x/, with no
parameter, where we havex.t/ andy.t/:

Basic question:Where does the projectile hit the ground? For the parabola, we
solvey.x/D 0: That gives the positionx: For the projectile we solvey.t/D 0:
That gives thetimeit hits the ground, not the place. If that time isT; thenx.T / gives
the place.

The information is there. It takes two steps instead of one, but we learn more.

EXAMPLE 1 Water leaves the hose at10meters=second(this isv0). It starts up
at the anglę : Find the timeT wheny is zero again, and find where the projectile
lands.

Solution The flight ends whenyD .10sin ˛/T � 1
2
gT 2 D 0: The flight time is

T D .20sin˛/=g: At that time, the horizontal distance is

x.T /D .10 cos˛/T D .200 cos˛ sin˛/=g: This is therangeR:

The projectile (or water from the hose) hits the ground atxDR: To simplify, replace
200 cos˛ sin˛ by 100sin2˛: SincegD 9:8meters=sec2; we can’t reach the car:

The rangeRD .100 sin2˛/=9:8 is at most100=9:8: This is less than12:

The range is greatest when sin2˛D 1.˛ is 45�). To reach12 meters we could stand
on a ladder (Problem14). To hit a baseball against air resistance, the best angle is
nearer to35�: Figure 12.5 shows symmetric parabolas (no air resistance) and unsym-
metric flight paths that drop more steeply.

12B The flight timeT and the horizontal rangeRD x.T / are reached when
yD 0, which means.v0 sin˛/T D 1

2
gT 2:

T D .2v0 sin˛/=g andRD .v0 cos˛/T D .v2
0 sin2˛/=g:
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Fig. 12.5 Equal rangeR;different timesT:Baseballs hit at350 with increasingv0:The dots are
at half-seconds (fromThe Physics of Baseballby Robert Adair: Harper and Row 1990).

EXAMPLE 2 What are the correct angles̨for a given rangeR and givenv0 ?

Solution The range isRD .v2
0 sin 2˛/=g: This determines the sine of2˛—but

two angles can have the same sine. We might find2˛D 60� or 120�: The starting
angles̨ D 30� and˛D 60� in Figure 12.5 give the same sin2˛ and the same range
R: The flight times containsin˛ and are different.

By calculus, the maximum height occurs whendy=dt D 0: Thenv0 sin˛D gt ,
which means thatt D .v0 sin˛/=g: This is half of the total flight timeT—the time
going up equals the time coming down. The value ofy at this halfway timet D 1

2
T

is
ymax D .v0 sin˛/.v0 sin˛/=g� 1

2
g.v0 sin˛=g/2 D .v0 sin˛/2=2g: (2)

EXAMPLE 3 If a ski jumper goes90 meters down a30� slope, after taking off at
28meters=second; find equations for the flight time and the ramp angle˛:

Solution The jumper lands at the pointxD 90 cos30�; yD�90 sin30� (minus
sign for obvious reasons). The basic equation(2) isxD .28 cos˛/t; yD .28sin˛/t�
1
2
gt2: Those are two equations for̨ and t: Note thatt is notT , the flight time to
yD 0:

Conclusion The position of a projectile involves three parametersv0;˛, andt: Three
pieces of information determine the flight(almost). The reason for the wordalmost
is the presence ofsin˛ and cos˛: Some flight requirements cannot be met (reach-
ing a car at12 meters). Other requirements can be met in two ways (when the car
is close). The equationsin˛D c is more likely to have no solution or two solutions
than exactly one solution.

Watch for the three pieces of information in each problem. When a football starts at
v0 D 20meters=secondand hits the ground atxD 40meters, the third fact is :
This is like a lawyer who is asked the fee and says$1000 for three questions. “Isn’t
that steep ? ” says the client. “Yes,” says the lawyer, “now what’s your last question ? ”

CYCLOIDS

A projectile’s path is a parabola. To compute it, eliminatet from the equations forx
andy: Problem5 findsyD ax2 Cbx, a parabola through the origin. The path of a
point on a wheel seems equally simple, but eliminatingt is virtually impossible. The
cycloid is a curve that really needs and uses a parameter.

To trace out a cycloid,roll a circle of radiusa along thex axis. Watch the point
that starts at the bottom of the circle. It comes back to the bottom atxD 2�a, after
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a complete turn of the circle. The path in between is shown in Figure 12.6. After a
centuryof looking for thexy equation, a series of great scientists (Galileo, Christopher
Wren, Huygens, Bernoulli, even Newton and l’Hôpital) found the right way to study
a cycloid—by introducing a parameter. We will call it� ; it could also bet:

Fig. 12.6 Path ofP on a rolling circle is a cycloid. Fastest slide toQ:

The parameter is the angle� through which the circle turns. (This angle is not at
the origin, like� in polar coordinates.) The circle rolls a distancea� , radius times
angle, along thex axis. So the center of the circle is atxD a�; yD a: To account for
the segmentCP , subtractasin� from x anda cos� from y:

The pointP hasxD a.��sin�/ andyD a.1� cos�/: (3)

At � D 0 the position is.0;0/: At � D 2� the position is.2�a;0/: In between, the
slope of the cycloid comes from the chain rule:

dy

dx
D
dy=d�

dx=d�
D

asin �

a.1� cos�/
: (4)

This is infinite at� D 0: The point on the circle starts straight upward and the cycloid
has acusp. Note how all calculations use the parameter�: We go quickly:

Question 1 Find the area under one arch of the cycloid.� D 0 to � D 2�/:

Answer The area is
r
ydxD

r 2�

0
a.1� cos�/a.1� cos�/d�: This equals3�a2:

Question 2 Find the length of the arch, usingdsD
a
.dx=d�/2� .dy=d�/2 d�:

Answer
r
dsD

r 2�

0
a
a
.1� cos�/2� .sin�/2 d� D

r 2�

0
a
?
2�2 cos� d�:

Now substitute1� cos� D 2sin2 1
2
�: The square root is2sin 1

2
�: The length is8a:

Question 3 If the cycloid is turned over (y is downward), find the time to slide to
the bottom. The slider starts withvD 0 atyD 0:
Answer Kinetic plus potential energy is1

2
mv2�mgyD 0 (it starts from zero and

can’t change). So the speed isvD
?
2gy: This isds=dt and we knowds:

sliding timeD

»
dt D

»
ds?
2gy

D

» �

0

a
?
2�2 cos� d�?
2ga.1� cos �/

D�
a
a=g:

Check dimensions:aD distance; gD distance=.times/2; �
?
a=gD time: That is

the shortest sliding time for any curve. The cycloid solves the “brachistochrone
problem,” which minimizes the time down curves fromO to Q (Figure 12.6). You
might think a straight path would be quicker—it is certainly shorter. A straight line
has the equationxD�y=2, so the sliding time is

r
dt D

r
ds=

?
2gyD

r 2a

0

a
.�=2/2 C1dy=

?
2gyD

?
�2 C4

?
a=g: (5)

This is larger than the cycloid time�
?
a=g: It is better to start out vertically and pick

up speed early, even if the path is longer.
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Instead of publishing his solution, John Bernoulli turned thisproblem into an
international challenge:Prove that the cycloid gives the fastest slide. Most
mathematicians couldn’t do it. The problem reached Isaac Newton (this was later
in his life). As you would expect, Newton solved it. For some reason he sent back his
proof with no name. But when Bernoulli received the answer, he was not fooled for a
moment:“I recognize the lion by his claws.”

What is also amazing is a further property of the cycloid:The time toQ is the
same if you begin anywhere along the path. Starting from rest atP instead ofO,
the bottom is reached at the same time. This time Bernoulli got carried away: “You
will be petrified with astonishment when I say...”.

There are other beautiful curves, closely related to the cycloid. For anepicycloid,
the circle rolls around the outside of another circle. For ahypocycloid, the rolling
circle is inside the fixed circle. Theastroid is the special case with radii in the ratio1
to 4: It is the curved star in Problem34, wherexD acos3 � andyD asin3 �:

The cycloid even solves the old puzzle:What point moves backward when a train
starts forward? The train wheels have a flange that extends below the track, and
dx=dt   0 at the bottom of the flange.

12.2 EXERCISES

Read-through questions

A projectile starts with speedv0 and angle˛: At time t its
velocity is dx=dt D a , dy=dt D b (the downward
acceleration isg). Starting from.0;0/, the position at timet is
xD c , yD d . The flight time back toyD 0 isT D e .
At that time the horizontal range isRD f . The flight path is a

g .

The three quantities v0; h ; i determine the
projectile’s motion. Knowingv0 and the position of the target, we
(can) (cannot) solve for̨: Knowing˛ and the position of the target,
we (can) (cannot) solve forv0:

A j is traced out by a point on a rolling circle. If the
radius is a and the turning angle is� , the center of the circle is
at xD k , yD l . The point is atxD m , yD n ,
starting from .0;0/: It travels a distance o in a full turn of
the circle. The curve has a p at the end of every turn. An
upside-down cycloid gives the q slide between two points.

Problems 1–18 and 41 are about projectiles

1 Find the time of flightT , the rangeR, and the maximum height
Y of a projectile withv0 D 16 ft=sec and

(a) ˛D 30� (b) ˛D 60� (c) ˛D 90�:
2 If v0 D 32 ft=sec and the projectile returns to the ground at
T D 1, find the anglę and the rangeR:

3 A ball is thrown at60� with v0 D 20 meters=sec to clear a wall
2 meters high. How far away is the wall ?

4 If v.0/D 3i C3j find v.t/;v.1/;v.2/ andR.t/;R.1/;R.2/:

5 (a) Eliminate t from xD t;yD t � 1
2 t

2 to find the xy

equation of the path. At whatx is yD 0?

(b) Do the same for anyv0 and˛:

6 Find the anglę for a ball kicked at30meters=second if it clears
6 meters traveling horizontally.

7 How far out does a stone hit the waterh feet below, starting with
velocityv0 at anglę D 0 ?

8 How far out does the same stone go, starting at angle˛ ? Find
an equation for the angle that maximizes the range.

9 A ball starting from.0;0/ passes through.5;2/ after2 seconds.
Findv0 and˛: (The units are meters.)�10 With x andy from equation (1), show that

v2
0 ¥ .gx=v0/

2 C2gy:

If a fire is at heightH and the water velocity isv0, how far can
the fireman put the hose back from the fire ? (The parabola in this
problem is the “envelope” enclosing all possible paths.)

11 Estimate the initial speed of a100-meter golf shot hit at
˛D 45�: Is the truev0 larger or smaller, when air friction is
included ?

12 T D 2v0.sin˛/=g is in seconds andRD .v2
0 sin2˛/=g is in me-

ters ifv0 andg are in :

13 (a) What is the greatest height a ball can be thrown ? Aim
straight up withv0 D 28 meters=sec.
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14 If a baseball goes100 miles per hour for60 feet, how long does
it take (in seconds) and how far does it fall from gravity (in feet) ?
Use 1

2gt
2:

15 If you double v0, what happens to the range and maximum
height ? If you change the angle byd˛, what happens to those
numbers ?

16 At what point on the path is the speed of the projectile (a) least
(b) greatest ?

17 If the hose withv0 D 10m=sec is at a45� angle,x reaches
12 meters whent D and yD : From a ladder of
height the water will reach the car (12 meters).

18 Describe the two trajectories a golf ball can take to land right in
the hole, if it starts with a large known velocityv0: In reality (with
air resistance) which of those shots would fall closer ?

Problems 19–34 are about cycloids and related curves

19 Find the unit tangent vectorT to the cycloid. Also find the speed
at� D 0 and� D�, if the wheel turns atd�=dt D 1:

20 The slope of the cycloid is infinite at� D 0:
dy

dx
D
dy=d�

dx=x�
D

sin �

1� cos�
:

By whose rule ? Estimate the slope at� D 1
10 and � D� 1

10 :Where
does the slope equal one ?

21 Show that the tangent to the cycloid atP in Figure 12.6a goes
throughxD a�; yD 2a: Where is this point on the rolling circle ?

22 For a trochoid, the pointP is a distanced from the center of
the rolling circle. Redraw Figure 12.6b to findxD a��d sin� and
yD :

23 If a circle of radiusa rolls inside a circle of radius2a, show that
one point on the small circle goes across on a straight line.

24 Findd2y=dx2 for the cycloid, which is concave :

25 If d�=dt D c, find the velocitiesdx=dt anddy=dt along the
cycloid. Where isdx=dt greatest and where isdy=dt greatest ?

26 Experiment with graphs ofxD a cos�Cb sin �; yD c cos�C

d sin� using a computer. What kind of curves are they ? Why are
they closed ?

27 A stone in a bicycle tire goes along a cycloid. Find equations for
the stone’s path if it flies off at the top (a projectile).

28 Draw curves on a computer withxDa cos�Cb cos3� and
yD c sin�Cd sin3�: Is there a limit to the number of loops ?

35 Find the area inside the astroid.

36 Explain whyxD 2acot � andyD 2asin2 � for the pointP on
thewitch of Agnesi. Eliminate� to find thexy equation.

Note: Maria Agnesi wrote the first three-semester calculus text
(I’Hôpital didn’t do integral calculus). The word “witch” is a
total mistranslation, nothing to do with her or the curve.

29 When a penny rolls completely around another penny, the head
makes turns. When it rolls inside a circle four times larger
(for the astroid), the head makes turns.

30 Display the cycloid family with computer graphics:

(a) cycloid
(b) epicycloidxDC cos�� cosC�;yDC sin�CsinC�

(c) hypocycloidxD c cos�C cosc�;y D c sin��sinc�
(d) astroid .cD 3/

(e) deltoid .cD 2/:

31 If one arch of the cycloid is revolved around thex axis, find the
surface area and volume.

32 For a hypocycloid the fixed circle has radiuscC1 and the
circle rolling inside has radius1: There arecC1 cusps ifc is an
integer. How many cusps (use computer graphics if possible) for
cD 1=2 ? cD 3=2 ? cD

?
2‹ What curve forcD 1 ?

33 When a string is unwound from a circle findx.�/ andy.�/ for
pointP: Its path is the “involute” of the circle.

34 For the pointP on the astroid, explain why xD 3 cos�C

cos3� and yD 3 sin��sin3�: The angle in the figure is3�
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because both circular arcs have length : Convert to
xD 4cos3 �;yD 4 sin3 � by triple-angle formulas.

37 For a cardioid the radiusC �1 of the fixed circle equals
the radius1 of the circle rolling outside (epicycloid withC D 2).
(a) The coordinates ofP are xD�1C2 cos�� cos2�;
yD : (b) The double-angle formulas yieldxD 2 cos�
.1� cos�/;yD : (c)x2 Cy2 D so its square root
is r D :

38 Explain the last two steps in equation (5) for the sliding time
down a straight path.

39 On an upside-down cycloid the slider takes the same timeT to
reach bottomwherever it starts. Starting at� D˛, write1� cos� D

2 sin2 �=2 and1� cos˛D 2 sin2 ˛=2 to show that

TD

» �

˛

a
2a2.1� cos�/d�a
2ag.cos˛� cos�/

D�



a

g
:

40 Suppose a heavy weight is attached to the top of the rolling cir-
cle. What is the path of the weight ?

41 The wall in Fenway Park is37 feet high and315 feet from home
plate. A baseball hit3 feet above the ground at̨D 22:5� will just
go over ifv0 D : The time to reach the wall is :
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12.3 Curvature and Normal Vector

A driver produces acceleration three ways—by the gas pedal, the brake, and steering
wheel. The first two change the speed. Turning the wheel changes the direction.All
three change the velocity(they give acceleration). For steady motion around a circle,
the change is from steering—the accelerationdv=dt points to the center. We now
look at motion along other curves, to separate change in the speed|v| from change in
the directionT:

The direction of motion isT D v=|v|: It depends on the path but not the speed
(because we divide by|v|). For turning we measure two things:

1. How fast T turns: this will be the curvature� (kappa).
2. Which direction T turns: this will be the normal vectorN.

� andN depend, likes and T, only on the shape of the curve. Replacingt by 2t or
t2 leaves them unchanged. For a circle we give the answers in advance. The normal
vectorN points to the center. The curvature� is 1=radius.

A smaller turning circle means a larger curvature� : more bending.

The curvature� is change in direction|dT| divided by change in position|ds|:
There are three formulas for�—a direct one for graphsy.x/, a brutal but valuable
one for any parametric curve.x.t/; y.t//; and a neat formula that uses the vectorsv
anda:We begin with the definition and the neat formula.

DEFINITION �D |dT=ds| FORMULA �D |v�a|=|v|3 (1)

The definition does not involve the parametert—but the calculations do. The
position vectorR.t/ yields v D dR=dt andaD dv=dt: If t is changed to2t , the
velocity v is doubled anda is multiplied by4: Then|v�a| and|v|3 are multiplied
by 8, and their ratio� is unchanged.

Proof of formula (1) Start fromv D |v|T and compute its derivativea:

aD
d |v|
dt

T C |v|dT
dt

by the product rule:

Now take the cross product withv D |v|T:Remember thatT�T D 0:

v�aD |v|T�|v|dT
dt
: (2)

We know that|T|D 1: Equation(4) will show thatT is perpendicular todT=dt: So|v�a| is the first length|v| times the second length|v||dT=dt |: The factorsin� in
the length of a cross product is1 from the90� angle. In other words����dT

dt

����D |v�a||v|2 and �D

����dT
ds

����D ����dT=dt
ds=dt

����D |v�a||v|3 : (3)

The chain rule brings the extra|ds=dt |D |v| into the denominator.

Before any examples, we show thatdT=dt is perpendicular toT: The reason is
thatT is a unit vector. Differentiate both sides ofT �T D 1:

dT
dt
�T CT � dT

dt
D 0 or 2T � dT

dt
D 0: (4)

That proof used the product ruleU1 �V CU �V1 for the derivative of U �V
(Problem23, with U D V D T). Think of the vectorT moving around the unit sphere.
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To keep a constant length.T CdT/ � .T CdT/D 1, we need2T �dT D 0: Move-
mentdT is perpendicular to radius vectorT:

Our first examples will beplane curves. The position vectorR.t/ has components
x.t/ andy.t/ but noz.t/: Look at the components ofv anda andv�a (x1 means
dx=dt ):

R x.t/ y.t/ 0

v x1.t/ y1.t/ 0

a x2.t/ y2.t/ 0

v�a 0 0 x1y2�y 1y2 |v| D
a|x1|2 C |y 1|2

� D
|x1y2�y 1x2|

..x1/2 C .y 1/2/3=2
(5)

Equation(5) is the brutal but valuable formula for�: Apply it to movement around a
circle. We should find�D 1=radiusa:

EXAMPLE 1 WhenxD acos !t andyD a sin !t we substitutex1; y 1; x2; y2 into (5):

�D
.�!asin!t/.�!2asin!t/� .!acos!t/.�!2acos!t/

Œ.!asin !t/2 C .!acos!t/2�3=2
D

!2a2

Œ!2a2�3=2
:

This is!3a2=!3a3 and! cancels. The speed makes no difference to�D 1=a:

The third formula for� applies to an ordinary plane curve given byy.x/: The
parametert is x! You see the square root in the speed|v|D ds=dx:

R x y.x/ 0

v 1 dy=dx 0

a 0 d2y=dx2 0

v�a 0 0 d2y=dx2

|v| D
a
1C .dy=dx/2

� D
|d2y=dx2|

.1C .dy=dx/2/3=2
(6)

In practice this is the most popular formula for�: The most popular approximation is|d2y=dx2|: (The denominator is omitted.) For the bending of a beam, the nonlinear
equation uses� and the linear equation usesd2y=dx2:We can see the difference for
a parabola:

EXAMPLE 2 The curvature ofyD 1
2
x2 is�D |y2|=.1C .y 1/2/3=2 D 1=.1Cx2/3=2:

Fig. 12.7 Normal N divided by curvature� for circle and parabola and unit helix.

The approximation isy2 D 1: This agrees with� atxD 0, where the parabola turns
the corner. But for largex, the curvature approaches zero. Far out on the parabola, we
go a long way for a small change in direction.

The parabolayD�1
2
x2, opening down, has the same�: Now try a space curve.
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EXAMPLE 3 Find the curvature of the unit helixR D cost i Csin t j C tk:

Take the cross product ofv D�sin t i Ccost j Ck andaD�cost i�sin t j:

v�aD

������� i j k�sin t cost 1�cost �sin t 0

�������D sin t i�cost j Ck:

This cross product has length
?
2: Also the speed is|v|Dasin2 tCcos2 tC1D?

2 W
�D |v�a|=|v|3 D

?
2=.
?
2/3 D 1

2
:

Compare with a unit circle. Without the climbing termtk, the curvature would be1:
Because of climbing, each turn of the helix is longer and�D 1

2
:

That makes one think: Is the helix twice as long as the circle ? No. The length of
a turn is only increased by|v|D?2: The other

?
2 is because the tangentT slopes

upward. The shadow in the base turns a full360�, butT turns less.

THE NORMAL VECTOR N

The discussion is bringing us to an important vector. Where� measures therate of
turning, the unit vectorN gives thedirectionof turning.N is perpendicular toT, and
in the plane that leaves practically no choice. Turn left or right. For a space curve,
follow dT: Remember equation(4), which makesdT perpendicular toT:

The normal vectorN is a unit vector alongdT=dt: It is perpendicular toT:

DEFINITION N D
dT=ds|dT=ds| D

1

�

dT
ds

FORMULA N D
dT=dt|dT=dt | : (7)

EXAMPLE 4 Find the normal vectorN for the same helixR D cost i Csin t j C
tk:

Solution Copyv from Example 3, divide by|v|, and computedT=dt :

T D v=|v|D .�sint i Ccost j Ck/=
?
2 and dT=dt D .�cost i�sin t j/=

?
2:

To changedT=dt into a unit vector, cancel the
?
2: The normal vector isN D�cost i�sin t j: It is perpendicular toT: Since thek component is zero,N is

horizontal. The tangentT slopes up at45�—it goes around the circle at that
latitude. The normalN is tangent to this circle (N is tangent to the path of the
tangent!). SoN stays horizontal as the helix climbs.

There is also a third direction, perpendicular toT andN: It is thebinormal vector
B D T�N, computed in Problems25�30: The unit vectorsT;N;B provide the nat-
ural coordinate system for the path—along the curve, in the plane of the curve, and
out of that plane. The theory is beautiful but the computations are not often done—we
stop here.

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

May I return a last time to the gas pedal and brake and steering wheel ? The first
two give acceleration alongT: Turning gives acceleration alongN: The rate of turn-
ing (curvature�) and the directionN are established. We now ask about theforce
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required. Newton’s Law isF Dma, so we need the accelerationa—especially its
component alongT and its component alongN:

The acceleration isaD
d2s

dt2
T C�

�

ds

dt

�2

N: (8)

For a straight path,d2s=dt2 is the only acceleration—the ordinary second
derivative. The term�.ds=dt/2 is the acceleration in turning. Both have the
dimension of length=(time)2:

The force to steer around a corner depends on curvature and speed—as all drivers
know. Acceleration is the derivative ofv D |v|T D .ds=dt/T:

aD
d2s

dt2
T C

ds

dt

dT
dt

D
d2s

dt2
T C

ds

dt

dT
ds

ds

dt
: (9)

That last term is�.ds=dt/2N, sincedT=dsD �N by formula(7). So(8) is proved.

EXAMPLE 5 A fixed speedds=dt D 1 givesd2s=dt2 D 0:Theonly acceleration is�N:

EXAMPLE 6 Find the components ofa for circular speed-upR.t/D cost2 i Csin t2 j:

Without stopping to think, computedR=dt D v andds=dt D |v| andv=|v|D T:

v D�2t sin t2 i C2t cost2 j; |v|D 2t; T D�sin t2 i Ccost2 j:

The derivative ofds=dt D |v| is d2s=dt2 D 2: The derivative ofv is a:

aD�2 sin t2 i C2 cost2 j�4t2 cost2 i�4t2 sin t2 j:

In the first terms ofa we see2T: In the last terms we must be seeing�|v|2N:
Certainly|v|2 D 4t2 and�D 1, because the circle has radius1: ThusaD 2T C4t2N
has the tangential component2 and normal component4t2—acceleration along the
circle and in to the center.

Table of Formulas

v D dR=dt aD dv=dt|v|D ds=st T D v=|v|D |dR=ds|
Curvature�D |dT=ds|D |v�a|=|v|3
Plane curves�D

|x1y2�y 1x2|
..x1/2 C .y 1/2/3=2

D
|d2y=dx2|

.1C .dy=dx/2/3=2

Normal vectorN D
1

�

dT
ds

D
dT=dt|dT=dt |

AccelerationaD .d2s=dt2/T C�|v|2N

Fig. 12.8 Components ofa as car turns corner.
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12.3 EXERCISES

Read-through questions

The curvature tells how fast the curve a . For a circle
of radius a, the direction changes by2� in a distance b ,
so �D c . For a plane curveyD f .x/ the formula is�D|y2|= d . The curvature ofyD sin x is e . At a point where
y2 D 0 (an f point) the curve is momentarily straight and
�D g . For a space curve�D |v�a|= h .

The normal vectorN is perpendicular to i . It is a j
vector along the derivative ofT, so N D k . For motion around
a circle N points l . Up a helixN also points m . Moving
at unit speed on any curve, the timet is the same as the n s:

Then |v|D o andd2s=dt2 D p anda is in the direction
of q .

Acceleration equals r TC s N: At unit speed
around a unit circle, those components are t : An
astronaut who spins once a second in a radius of one meter
has|a|D u meters=sec2, which is about v g:

Compute the curvature � in Problems 1–8.

1 yD ex

2 yD ln x (where is� largest ? )

3 xD 2 cost;yD 2 sin t

4 xD cost2;yD sin t2

5 xD 1C t2;yD 3t2 (the path is a ).

6 xD cos3 t;yD sin3 t

7 r D � D t (soxD t cos t;yD /

8 xD t;yD ln cost

9 Find T andN in Problem4:

10 Show thatN D sin t i Ccost j in Problem6:

11 ComputeT andN in Problem8:

12 Find the speed|v| and curvature� of a projectile:

xD .v0 cos˛/t; yD .v0 sin ˛/t � 1
2
gt2:

13 FindT and|v| and� for the helixR D 3 cost i C3 sin t j C4t k:
How much longer is a turn of the helix than the corresponding cir-
cle ? What is the upward slope ofT ?

14 When�D 0 the path is a : This happens whenv and a
are : Thenv�aD :

15 Find the curvature of a cycloidxD a.t�sin t/; yD

a.1�cost/:

16 If all points of a curve are moved twice as far from the origin
.xÑ 2x; yÑ 2y/, what happens to� ? What happens toN ?

17 Find� andN at� D� for the hypocycloidxD 4 cos�Ccos4�;
yD 4 sin��sin4�:

18 Fromv D |v|T anda in equation (8), derive�D |v�a|=|v|3:
19 From a point on the curve, go along the vectorN=� to find the
center of curvature. Locate this center for the point.1;0/ on the cir-
cle xD cost;yD sin t and the ellipsexD cost;yD 2 sin t and the
parabolayD 1

2 .x
2�1/: The path of the center of curvature is the

“evolute” of the curve.

20 Which of these depend only on the shape of the curve, and which
depend also on the speed ?v;T; |v|; s;k;a;N;B:
21 A plane curve through.0;0/ and.2;0/ with constant curvature
� is the circular arc : For which� is there no such curve ?

22 Sketch a smooth curve going through.0;0/; .1;�1/, and.2;0/:
Somewhered2y=dx2 is at least : Somewhere the curvature
is at least : (Proof is for instructors only.)

23 For plane vectors, the ordinary product rule applied to
U1V1 CU2V2 shows that.U �V/1 D U1 �V C :

24 If v is perpendicular toa, prove that the speed is constant. True
or false: The path is a circle.

Problems 25–30 work with the T-N-B system—along the curve,
in the plane of the curve, perpendicular to that plane.

25 ComputeB D T�N for the helix R D cost i Csin t j C t k in
Examples3�4:
26 Using Problem23; differentiateB �T D 0 andB �B D 1 to show
that B1 is perpendicular toT and B: So dB=dsD��N for some
number� called thetorsion.

27 Compute the torsion� D |dB=ds| for the helix in Problem25:

28 FindB D TN for the curvexD 1; yD t; zD t2:

29 A circle lies in the xy plane. Its normal N lies
andB D and � D |dB=ds|D :

30 The Serret-Frenet formulas aredT=dsD �N; dN=dsD�kT C�B; dB=dsD��N: We know the first and third.
DifferentiateN D�T�B to find the second.

31 The angle � from the x axis to the tangent line is� D

tan�1.dy=dx/, whendy=dx is the slope of the curve.

(a) Computed�=dx:
(b) Divide by ds=dxD .1C.dy=dx/2/1=2 to show that|d�=ds| is � in equation (5). Curvature is change in direction|d� | divided by change in position|ds|:

32 If the tangent direction is at angle� then T D cos� i Csin� j : In
Problem31 |d�=ds| agreed with�D |dT=ds| because|dT=d� |D

:

In 33–37 find the T and N components of acceleration.

33 xD 5 cos!t;yD 5 sin !t;zD 0 (circle)

34 xD 1C t;y D 1C2t;zD 1C3t (line)
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35 xD t cost;yD t sin t;zD 0 (spiral)

36 xD et cost;yD et sin t; zD 0 (spiral)

37 xD 1;yD t;zD t2:

38 For the spiral in36, show that the angle betweenR and a
(position and acceleration) is constant. Find the angle.

39 Find the curvature of a polar curver DF.�/:
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12.4 Polar Coordinates and Planetary Motion

This section has a general purpose—to do vector calculus inpolar coordinates. It
also has a specific purpose—to studycentral forcesand themotion of planets. The
main gravitational force on a planet is from the sun. It is a central force, because it
comes from the sun at the center. Polar coordinates are natural, so the two purposes
go together.

You may feel that the planets are too old for this course. But Kepler’s laws are more
than theorems, they are something special in the history of mankind—“the greatest
scientific discovery of all time.” If we can recapture that glory we should do it. Part
of the greatness is in the difficulty—Kepler was working sixty years before Newton
discovered calculus. From pages of observations, and some terrific guesses, a theory
was born. We will try to preserve the greatness without the difficulty, and show how
elliptic orbits come from calculus. The first conclusion is quick.

Motion in a central force field always stays in a plane.

F is a multiple of the vectorR from the origin (central force).F also equalsma
(Newton’s Law). ThereforeR anda are in the same direction andR�aD 0: Then
R�v has zero derivative and is constant:

by the product ruleW
d

dt
.R�v/D v�vCR�aD 0C0: (1)

R�v is a constant vectorH: SoR stays in the plane perpendicular toH:

How does a planet move in that plane ? We turn to polar coordinates. At each point
except the origin (where the sun is),ur is the unit vector pointing outward. It is the
position vectorR divided by its lengthr (which is

a
x2 Cy2):

ur D R=r D .xi C yj/=rD cos� i C sin� j: (2)

That is a unit vector becausecos2 �Csin2 � D 1: It goes out from the center.
Figure 12.9 showsur and the second unit vectoru� at a90� angle:

u� D�sin� i Ccos� j: (3)

Thedot product isur � u� D 0:Thesubscriptsr and� indicate direction (not derivative).

Question 1: How dour and u� change asr changes (out a ray) ?They don’t.

Question 2: How dour andu� change as� changes ?Take the derivative:

dur=d� D�sin� i Ccos� j D u�

du�=d� D�cos� i Csin� j D�ur :
(4)

Fig. 12.9 ur is outward,u� is around the center. Components ofv anda in this directions.
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Sinceur D R=r , one formula is simple:The position vector isR D rur : For its
derivativev D dR=dt , use the chain ruledur=dt D .dur=d�/.d�=dt/D .d�=dt/u� :

The velocity isv D
d

dt
.rur/D

dr

dt
ur Cr

d�

dt
u� : (5)

Theoutward speed isdr=dt:The circular speed isr d�=dt:The sum of squares is|v|2:
Return one more time to steady motion around a circle, sayr D 3 and� D 2t: The

velocity isv D 6u� , all circular. The acceleration is�12ur , all inward. For circlesu�

is the tangent vectorT: But the unit vectorur points outward andN points inward—
the way the curve turns.

Now we tackle acceleration for any motion in polar coordinates. There can be
speedup inr and speedup in� (also change of direction). Differentiatev in (5) by the
product rule:

dv
dt

D
d2r

dt2
ur C

dr

dt

dur

dt
C
dr

dt

d�

dt
u� Cr

d2�

dt2
u� Cr

d�

dt

du�

dt
:

For dur=dt anddu�=dt , multiply equation(4) by d�=dt: Then all terms contain
ur or u� : The formula fora is famous but not popular (except it got us to the moon):

aD
dv
dt

D

�

d2r

dt2
�r�d�

dt

�2�

ur C

�

r
d2�

dt2
C2

dr

dt

d�

dt

�

u� : (6)

In the steady motion withr D 3 and� D 2t , only one acceleration term is nonzero:
aD�12ur : Formula(6) can be memorized (maybe). Problem14 gives a new way to
reach it, usingrei� :

EXAMPLE 1 FindR andv and a for speedup� D t2 around the circler D 1:

Solution The position vector isR D ur : Then v anda come from.5�6/:
v D .r d�=dt/u� D 2tu� aD�.2t/2ur C2u� :

This question and answer were also in Example 6 of the previous section. The
acceleration was2T C4t2N: Notice again thatT D u� andN D�ur , going round
the circle.

EXAMPLE 2 FindR andv and |v| anda for the spiral motionr D 3t; � D 2t:

Solution The position vector isR D 3t ur : Equation(5) gives velocity and speed:

v D 3urC D 6tu� and |v|Da.3/2 C .6t/2:

The motion goesoutand alsoaround. From(6) the acceleration is�12t ur C12u� :
The same answers would come more slowly fromR D 3t cos2t i C3t sin2t j:

This example uses polar coordinates, butthe motion is not circular. One of
Kepler’s inspirations, after many struggles, was to get away from circles.

KEPLER’S LAWS

You may know that before Newton and Leibniz and calculus and polar coordinates,
Johannes Kepler discovered three laws of planetary motion. He was the court
mathematician to the Holy Roman Emperor, who mostly wanted predictions of wars.
Kepler also determined the date of every Easter—no small problem. His triumph was
to discover patterns in the observations made by astronomers (especially by Tycho
Brahe). Galileo and Copernicus expected circles, but Kepler found ellipses.
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Law 1: Each planet travels in an ellipse with one focus at the sun.

Law 2: The vector from sun to planet sweeps out area at a steady rate:dA=dt D
constant.

Law 3: The length of the planet’s year isT D ka3=2, wherea = maximum distance
from the center (not the sun) andkD 2�=

?
GM is the same for all planets.

With calculus the proof of these laws is a thousand times quicker. But Law2 is the
only easy one. The sun exerts a central force. Equation(1) gaveR�v D H D con-
stant for central forces. ReplaceR by rur and replacev by equation(5):

H D rur��dr
dt

ur Cr
d�

dt
u�

�

D r2d�

dt
.ur�u� /: (7)

This vectorH is constant, soits lengthhD r2d�=dt is constant. In polar coordi-
nates, the area isdAD 1

2
r2d�: This areadA is swept out by the planet (Figure 12.10),

and we have proved Law2:

dA=dt D 1
2
r2d�=dt D 1

2
hD constant: (8)

Near the sunr is small. Sod�=dt is big and planets go around faster.

Fig. 12.10 The planet is on an ellipse with the sun at a focus. Notea, b, c, q.

Now for Law 1, about ellipses. We are aiming for1=r DC �D cos� , which is
the polar coordinate equation of an ellipse. It is easier to writeq than1=r , and
find an equation forq: The equation we will reach isd2q=d�2 CqDC: The desired
qDC �D cos� solves that equation (check this), and gives us Kepler’s ellipse.

The first step is to connectdr=dt to dq=d� by the chain rule:

dr

dt
D
d

dt

�

1

q

�

D
�1
q2

dq

dt
D
�1
q2

dq

d�

d�

dt
D�hdq

d�
: (9)

Notice especiallyd�=dt D h=r2 D hq2:What we really want are second derivatives:

d2r

dt2
D�h d

dt

�

dq

d�

�

D�h d
d�

�

dq

d�

�

d�

dt
D�h2q2d

2q

d�2
: (10)

After this trick of introducingq, we are ready for physics. The planet obeys Newton’s
Law F Dma, and the central forceF is the sun’s gravity:

F
m

D a is �GM
r2

D
d2r

dt2
�r �d�

dt

�2

: (11)
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That right side is theur component ofa in (6). Changer to 1=q and changed�=dt
to hq2: The preparation in(10) allows us to rewrited2r=dt2 in equation(11). That
equation becomes �GM q2 D�h2q2d

2q

d�2
� 1
q
.hq2/2:

Dividing by�h2q2 gives what we hoped for—the simple equation forq:

d2q=d�2 CqDGM=h2 DC .a constant/: (12)

Thesolution isqDC �D cos�: Section9:3 gave this polar equation for an ellipse
or parabola or hyperbola. To be sure it is an ellipse, an astronomer computesC andD
from the sun’s massM and the constantG and the earth’s position and velocity.The
main point is thatC ¡D: Thenq is never zero andr is never infinite. Hyperbolas
and parabolas are ruled out, and the orbit in Figure 12.10 must be an ellipse.�

Astronomy is really impressive. You should visit the Greenwich Observatory in
London, to see how Halley watched his comet. He amazed the world by predicting
the day it would return. Also the discovery of Neptune was pure mathematics—the
path of Uranus was not accounted for by the sun and known planets. LeVerrier
computed a point in the sky and asked a Berlin astronomer to look. Sure enough
Neptune was there.

Recently one more problem was solved—to explain the gap in the asteroids around
Jupiter. The reason is “chaos”—the three-body problem goes unstable and an asteroid
won’t stay in that orbit. We have come a long way from circles.

Department of Royal Mistakes The last pound note issued by the Royal Mint
showed Newton looking up from his great bookPrincipia Mathematica. He is not
smiling and we can see why. The artist put the sun at the center! Newton has just
proved it is at the focus. True, the focus is markedS and the planet isP: But those
rays at the center brought untold headaches to the Mint—the note is out of circulation.
I gave an antique dealer three pounds for it (in coins).

Kepler’s third law gives the timeT to go around the ellipse—the planet’s year.
What is special in the formula isa3=2—and for Kepler himself, the15th of May
1618 was unforgettable: “the right ratio outfought the darkness of my mind, by the
great proof afforded by my labor of seventeen years on Brahe’s observations.” The
second lawdA=dt D 1

2
h is the key, plus two facts about an ellipse—its area�ab

and the heightb2=a above the sun:

1. The areaAD

» T

0

dA

dt
dt D

1

2
hT must equal�ab, soT D

2�ab

h

2. The distancer D 1=C at� D�=2 must equalb2=a, sobD
?
a=C :

The heightb2=a is in Figure 12.10 and Problems25�26:The constantC DGM=h2

is in equation(12). Put them together to find the period:

T D
2�ab

h
D
2�a

h



a

C
D

2�?
GM

a3=2: (13)

�An amateur sees the planet come around again, and votes for an ellipse.
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To think of Kepler guessinga3=2 is amazing. To think of Newton proving Kepler’s
laws by calculus is also wonderful—because we can do it too.

EXAMPLE 3 When a satellite goes around in a circle, find the timeT:

Let r be the radius and! be the angular velocity. The time for a complete circle (angle
2�) is T D 2�=!: The acceleration isGM=r2 from gravity, and it is alsor!2 for
circular motion. Therefore Kepler is proved right:

r!2 DGM=r2 ñ !D
a
GM=r3 ñ T D 2�=!D 2�r3=2=

?
GM:

12.4 EXERCISES

Read-through questions

A central force points toward a . Then R�d2R=dt2 D 0
because b . ThereforeR�dR=dt is a c (calledH).

In polar coordinates, the outward unit vector is
ur D cos� iC d . Rotated by90� this becomesu� D e .
The position vectorR is the distancer times f . The velocity
v D dR=dt is g ur C h u� : For steady motion around the
circle r D 5 with � D 4t , v is i and|v| is j anda is k .

For motion under a circular force,r2 times l is constant. Di-
viding by 2 gives Kepler’s second lawdA=dt D m . The first
law says that the orbit is an n with the sun at o . The polar
equation for a conic section is p DC �D cos�: UsingF Dma
we foundq��C q DC: So the path is a conic section; it must
be an ellipse because r . The properties of an ellipse lead to the
period T D s , which is Kepler’s third law.

1 Find the unit vectorsur andu� at the point.0;2/: Theur and
u� components ofv D i C j at that point are :

2 Find ur and u� at .3;3/: If v D i C j then v D ur :

Equation (5) givesdr=dt D andd�=dt D :

3 At the point.1;2/, velocities in the direction will give
dr=dt D 0: Velocities in the direction will give d�=dt D 0:

4 Traveling on the cardioidr D 1�cos� with d�=dt D 2, what is
v ? How long to go around the cardioid (no integration involved) ?

5 If r D e� and� D 3t , find v anda whent D 1:

6 If r D 1 and� D sin t , describe the path and findv anda from
equations.5�6/: Where is the velocity zero ?

7 (important)R D 4cos5t i C4sin5t j D 4ur travels on a circle of
radius4 with � D 5t and speed20: Find the components ofv anda
in three systems:i andj ;T andN;ur andu� :

8 When is the circler D 4 completed, if the speed is8t ? Findv
anda at the return to the starting point.4;0/:

9 The u� component of acceleration is D 0 for a central
force, which is in the direction of : Then r2d�=dt is
constant (new proof) because its derivative isr times :
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10 If r2d�=dt D 2 for travel up the linexD 1, draw a triangle to
show thatr D sec� and integrate to find the time to reach.1;1/:

11 A satellite is r D 10;000 km from the center of the Earth,
traveling perpendicular to the radius vector at4 km=sec: Findd�=dt
andh:

12 From |ur |D 1, it follows that dur=dr and dur=d� are
to ur (Section 12:3). In fact dur=dr is and

dur=d� is :

13 Momentum ismv and its derivative ismaD force. Angu-
lar momentum ismH DmR�v and its derivative is D

torque. Angular momentum is constant under a central force
because the is zero.

14 To find (and remember)v and a in polar coordinates, start with
the complex numberrei� and take its derivatives:

R D rei� dR
dt

D
dr

dt
ei� C ir

d�

dt
ei�

d2R
dt2

D C C C C :

Key idea: The coefficients ofei� and iei� are theur and u�

components ofR; v; a:

R D rur C0u� v D
dr

dt
ur Cr

d�

dt
u� aD :

(a) Fill in the five terms from the derivative ofdR=dt
(b) Convertei� to ur andiei� to u� to finda
(c) CompareR;v;a with formulas (5–6)

(d) (for instructors only) Why does this method work ?

Note howei� D cos�C i sin� corresponds tour D cos� i Csin� j :
This is one place where electrical engineers are allowed to writej

instead ofi for
?�1:

15 If the period isT find from (13) a formula for the distancea:

16 To stay above New York what should be the period of a
satellite ? What should be its distancea from the center of the
Earth ?

17 FromT anda find a formula for the massM:

18 If the moon has a period of28 days at an average distance of
aD 380;000 km, estimate the mass of the :

19 The Earth takes3651
4 days to go around the sun at a distance

a� 93 million miles� 150 million kilometers. Find the mass of the
sun.

20 True or false:

(a) The paths of all comets are ellipses.

(b) A planet in a circular orbit has constant speed.

(c) Orbits in central force fields are conic sections.

21
?
GM � 2 �107 in what units, based on the Earth’s mass

M D 6 �1024 kg and the constantG�6:67 �10�11Nm2=kg2 ? A
force of one kg�meter=sec2 is a Newton N.

22 If a satellite circles the Earth at9000 km from the center,
estimate its periodT in seconds.

23 The Viking 2 orbiter around Mars had a period of about
10;000 seconds. If the mass of Mars isM D 6:4 �1023 kg, what was
the value ofa ?

24 Convert 1=r DC �D cos� , or 1DCr�Dx, into the xy
equation of an ellipse.

25 The distancesa andc on the ellipse give the constants inr D

1=.C �D cos�/: Substitute� D 0 and� D� as in Figure 12.10 to
findDD c=.a2�c2/ andC D a=.a2�c2/D a=b2:

26 Show that xD�c; yD b2=a lies on the ellipse
x2=a2 Cy2=b2 D 1: Thusy is the height1=C above the sun in Fig-
ure 12.10. The distance from the sun to the center hasc2 D a2�b2:

27 The point xD acos2�t=T , yD b sin2�t=T travels
around an ellipse centered at.0;0/ and returns at timeT: By sym-
metry it sweeps out area at the same rate at both ends of the major
axis. Why does thisbreakKepler’s second law ?

28 If a central force is F D�ma.r/ur ; explain why
d2r=dt2�r.d�=dt/2 D�a.r/: What is a.r/ for gravity ?
Equation (12) forqD 1=r leads toq�� CqD r2a.r/:

29 WhenF D 0 the body should travel in a straight :

The equationq�� CqD 0 allowsqD cos� , in which case the path
1=r D cos� is : Extra credit: Mark off equal distances on a
line, connect them to the sun, and explain why the triangles have
equal area. SodA=dt is still constant.

30 The strong nuclear force increases with distance,a.r/D r: It
binds quarks so tightly that up to now no top quarks have been seen
(reliably). Problem28 givesq�� CqD 1=q3:

(a) Multiply by q� and integrate to find1
2q

2
�

C 1
2q

2 D

CC:�(b) Integrate again (with tables) after settinguD q2;

u� D 2qq� :

31 The path of a quark in 30(b) can be written as
r2.ACB cos2�/D 1: Show that this is the same as the ellipse
.ACB/x2 C.A�B/y2 D 1 with the origin at thecenter. The
nucleus is not at a focus, and the pound note is correct for
Newton watching quarks. (Quantum mechanics not accounted for.)

32 When will Halley’s comet appear again ? It disappeared in1986

and its mean distance to the sun (average ofaCc and a�c) is
aD 1:6 �109 kilometers.

33 You are walking at2 feet=second toward the center of a
merry-go-round that turns once every ten seconds. Starting from
r D 20; � D 0 find r.t/; �.t/; v.t/; a.t/ and the length of your path
to the center.
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34 From Kepler’s lawsr D 1=.C �D cos�/ and r2d�=dt D h,
show that

1. dr=dt D�Dh sin� 2. d2r=dt2 D

�

1

r
�C�h2=r2

3. d2r=dt2�r.d�=dt/D�Ch2=r2:

When Newton reached3, he knew that Kepler’s laws required a cen-
tral force ofCh2=r2: This is hisinverse square law. Then he went

backwards, in our equations (8–12), to show that this force yields
Kepler’s laws.

35 How long is our year ? The Earth’s orbit hasaD 149:57 �106

kilometers.
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