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CHAPTER 13

Partial Derivatives

This chapter is at the center of multidimensional calculufie®©thapters and other
topics may be optional; this chapter and these topics are required. We are back to the
basic idea of calculus—the derivativEhere is a functionf, the variables move a
little bit, and f moves. The question is how mughmoves and how fast. Chapters
1-4 answered this question f¢fx), a function of one variable. Now we hay&x, y)

or f(x,y,z)—with two or three or more variables that move independentlyxAs
and y change,f changes. The fundamental problem of differential calculus is to
connectAx andAy to A f. Calculus solves that problem in the limlitconnectsd x

and dy to df. In using this language | am building on the work already done. You
know thatdf/dx is the limit of A f/Ax. Calculus computes the rate of change—
which is the slope of the tangent line. The goal is to extend those ideas to

f,y)=x2—y% or f(x,y)=4/x24+y2 or f(x,y,z)=2x+3y+4z.

These functions have graphs, they have derivatives, and they must have tangents.
The heart of this chapter is summarized in six lines. The subjedifferential

calculus—small changes in a short time. Still to comategral calculus—adding

up those small changes. We give the words and symbolg'eor y), matched with

the words and symbols fof (x). Please use this summary as a guide, to know where

calculus is going.

Curvey = f(x) vs Surfacez= f(x,y)

d—f becomes two partial denvatwes—f and 6_f
dx Ox 0y
d> f >f f f &f

becomes four second derivatives

dx? 0x2" 0xdy’ O0yox 0y2
Af ~ d—fo becomes the linear approximatiom\ f ~ —fA —|—a—fA
dx Ox 0y

0 0
tangent line becomes the tangent plare—z¢ = —f(x —Xo) + a—f(y —¥0)
y

dy _dydx . dz 0Ozdx 0z dy
b the ch le— =
i dxar Coomesthechaintuie = o dr T oy dr
Z—f =0 becomes two maximum-minimum equatlonsgi 0 and Z_f =0.
X y
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The graph ofy = f(x) is a curve in thexy plane. There are two variables—x
is independent and freg, is dependent o. Above x on the base line is the point
(x,y) on the curve. The curve can be displayed on a two-dimensional printed page.
The graph oz = f(x, y) is asurface inxyz space There arghree variables-
x andy are independent, is dependent. Abovéx, y) in the base plane is the point
(x,y,z)onthe surface (Figure 13.1). Since the printed page remains two-dimensional,
we shade or color or project the surface. The eyes are extremely good at converting
two-dimensional images into three-dimensional understanding—they get a lot of
practice. The mathematical part of our brain also has something new to work on—two
partial derivatives

This section uses examples and figures to illustrate surfaces and their level curves.
The next section is also short. Then the work begins.

EXAMPLE 1 Describe thesurfaceand thelevel curvedor z= f(x,y)=+/x2 + y2.

The surface is a coneReasonx/x2 + y2 is the distance in the base plane from
(0,0) to (x,y). When we go out a distancein the base plane, we go up the same
distance5 to the surface. The cone climbs with slopeThe distance out tgx, y)
equals the distance up to(this is a45° cone).

The level curves are circlest height5, the cone contains a circle of points—all
at the same “level” on the surface. The plane 5 meets the surface= 4/ x2 + y2
at those points (Figure 13.1b). The circle below them (in the base plane) is the level
curve.

DEFINITION A level curveor contour line of z = f(x, y) contains all point§x, y)
that share thesame valuef'(x, y) = c. Above those points, the surface is at the
heightz = c.

There are different level curves for different To see the curve for =2, cut
through the surface with the horizontal plane=2. The plane meets the surface
above the points wher¢(x, y) = 2. The level curve in the base plane has the
equation f(x,y)=2. Above it are all the points at “level” or “level ¢” on the
surface.

Every curve f(x,y) =c is labeled by its constant. This produces aontour
map (the base plane is full of curves). For the cone, the level curves are given by

/X2 4 y% =, and the contour map consists of circles of radius

Question What are the level curves of= f(x,y) = x2+ y2?

Answer  Still circles But the surface is not a cone (it bends up like a parabola). The
circle of radius3 is the level curvex? + y2 = 9. On the surface above, the height is
9.

EXAMPLE 2 For thelinear function f(x, y) = 2x + y, the surface is a plane. Its
level curves are straight line$he surfacez =2x + y meets the plane =c¢ in

the line 2x + y = c. That line is above the base plane wheis positive, and below
whenc is negative. The contour lines arethe base plane. Figure 13.2b labels these
parallel lines according to their height in the surface.

Question If the level curves are all straight lines, must they be parallel
Answer No. The surface = y/x has level curvey /x = c. Those linesy =cx
swing around the origin, as the surface climbs like a spiral playground slide.
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Fig. 13.1 The surface for = f(x,y) = /x2 + y2 is a cone. The level curves are circles.

(¥}

2x+y=0 2x ::=l\2.t+_v=2 .L=0 1 2

Fig. 13.2 A plane has parallel level lines. The spiral slide- y /x has linesy/x =c.

EXAMPLE 3 The weather map shows contour lines of teaperature function

Each level curve connects points at a constant temperature. One line runs from Seattle
to Omabha to Cincinnati to Washington. In winter it is painful even to think about the
line through L.A. and Texas and FloriddSA Todayseparates the contours by color,

which is better. We had never seen a map of universities.
Question From a contour map, how do you find the highest point?

Answer The level curves fornoopsaround the maximum point. Asincreases the
loops become tighter. Similarly the curves squeeze to the lowest pairdexyeases.

EXAMPLE 4 A contour map of a mountain may be the best example of all.
Normally the level curves are separatedIf)) feet in height. On a steep trail those
curves are bunched together—the trail climbs quickly. In a flat region the contour
lines are far apart. Water runs perpendicular to the level curves. On my map of New
Hampshire that is true of creeks but looks doubtful for rivers.

Question Which direction in the base plane is uphill on the surface?
Answer The steepest direction is perpendicular to the level curviis.i$ impor-
tant. Proof to come.

EXAMPLE 5 Ineconomics:?y is autility functionandx?y = c is anindifference
curve

The utility functionx?y gives the value ok hours awake ang hours asleep. Two
hours awake and fifteen minutes asleep have the \gélue(Zz)(%). This is the same
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Fig. 13.3  The temperature at many U.S. and Canadian universities. Mtalffaock in New Hampshire is said to be the most
climbed mountain (except Fuji?) &5,000/year. Contour lines every meters.

as one hour of eachf = (12)(1). Those lie on the same level curve in Figure 13.4a.
We are indifferent, and willing to exchange any two points on a level curve.

The indifference curve isconvex We prefer the average of any two points. The
line between two points is up on higher level curves.

Figure 13.4b shows an extreme case. The level curves are straighittires = c.
Four quarters are freely substituted for one dollar. The valyeis4x + y dollars.

Figure 13.4c shows the other extreme. Extra left shoes or extra right shoes are
useless. The value (or utility) is tinallerof x andy. That countgairs of shoes.

asleep ¥ quarters right shoes
1 1
8
v+ —-l-—;r =52 1 .
min (x, v)
=2
| 4+ 4 2
=1
l +
Ll
¥ hours left
- - : x dollars + - 4 e
1 5  awake 5 0 5 shoes

Fig. 13.4  Utility functions x2y, 4x + y, min(x, ). Convex, straight substitution, complements.
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13.1 EXERCISES

Read-through questions

The graph ofz = f(x,y)isa__a _in__b -dimensional space. Draw two level curves in 17-20. Are they ellipses, parabolas,
The __c¢ curve f(x,y) =7 lies down in the base plane. Aboveor hyperbolas? Write Vo —2x=cas,/ =c+2x before

this level curve are all points at height d _ in the surface. The squaring both sides.
e z=7 cuts through the surface at those points. The level . ——— _ —>
curves f(x,y)=__f are drawn in thery plane and labeled by L1 f=~axtty 18 f=nAxfty—2x
g . The family of labeled curvesisa h _map. 19 f=~/5x24y2—2x 20 f=~321)2—2x

For z= f(x,y)=x%—y2, the equation for a level curve is

i Thi]sr(ch};\)/e is ay i Fo?z:x—y the curves are 21. The level curvesoj‘.:(y.—Z?/(x—l) are__ through the

k . Level curves never cross becausel . They crowd point (1.2) except that this point is nat
together when the surface is m . The curves tighten to a22 Sketch a map of the US with lines of constant temperature
point when__n__. The steepest direction on a mountain iso (isotherms) based on today’s paper.

to the . . .
P 23 (@) The contour lines ot =x2+y2—2x—2y are circles

1 Draw the surface = f(x, y) for these four functions: around the point____, wherez is a minimum.
b) The contour lines of = are the circles? + y2 =
=A/4—x2_y2 —2_/x212 ( _
N Y /2 x2+); ¢+ 1 onwhich f =c.
f3=2-3(2+y%) fa=lde ™Y .
24 Draw a contour map of any state or country (lines of constant
. height above sea level). Florida may be too flat.
2 The level curves of all four functions are . They enclose 9 ) y
the maximum at . Draw the four curveg(x,y) =1 andrank 25 Thegraphofw = F(x,y,z)isa -dimensional surface in
them by increasing radius. xyzw space. Its level set§'(x,y,z)=c are ______-dimensional

surfaces inxyz space. Forw=x—2y+z those level sets are

3 Sety=0 and compute thex derivative of each function at For w = x2 + y2 + 22 those level sets are )

x = 2. Which mountain is flattest and which is steepest at that point? '
26 The surfacex?+y2—z2=—1 is in Figure 13.8. There is
empty space wher? is smaller tharl because .

4 Sety = 1 and compute the derivative of each function at = 1.
27 The level sets oF = x2 4 y2 + ¢z2 look like footballs wheny

is , like basketballs wheqis , and like frisbees when
For f5to f10 draw the level curvesf =0,1,2. Also f = —4. q1s
) 28 Let T'(x,y) be the driving time from your home af0,0) to
5 fs=x—y 6 fo=(x+y) nearby towns atx, y). Draw the level curves.
7 fr=xe=? 8 fo=sin(x—y) 29 (a) The level curves of (x,y) = S.In(x —y)are
(b) The level curves of (x, y) = sin(x2 — y2) are
9 fo=y—x2 10 fio=y/x2 (c) The level curves ok(x, y) = sin(x — y2) are

30 Prove that if x;y; =1 and x,y, =1 then their average

11 Suppose the level curves are parallel straight lines. Doesithe § = %(xl +x2), y= %(yl +y2) has xy>=1. The function
face have to be a plane? f = xy has convex level curves (hyperbolas).

) . . . . . _ . 2
12 Construct a function whose level curvg =0 is in two 31 The hours in a day are limited hy+y =24. Write x“y as
separate pieces. x2(24 —x) and maximize to find the optimal number of hours to

stay awake.
13 Construct a function for whichf =0 is acircle and f =1

is not. 32 Near x =16 draw the level curvex?y =2048 and the line

x +y =24. Show that the curve is convex and the line is tangent.
14 Find a function for whichf = 0 has infinitely many pieces.

33 The surface =4x+yisa . The surface = min(x, y)
15 Draw the contour map forf =xy with level curves is formed from two . We are willing to exchangé left and
f=-2,—-1,0,1,2. Describe the surface. 2 right shoes for2 left and 4 right shoes but better is the average

16 Find a functionf'(x, y) whose level curvef' =0 consists of a
circle andall points inside it 34 Draw a contour map of the top of your shoe.
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The central idea of differential calculus is the derivative. A change produces a
change inf. The ratioA f/ Ax approaches the derivative, or slope, or rate of change.
What to do if f depends on both andy?

The new idea is to vary andy one at a time. First, only moves. If the function
isx+xy,thenAf is Ax + yAx. TheratioAf/Ax is 1+ y. The “x derivative” of
x +xy is 1+ y. For all functions the method is the sarkeepy constant, change
x, take the limit of A f/Ax:
DEFINITION 01‘—f(x.y) = jim &L iy JEFAXD 2T 0)

ox Ax—0 Ax Ax—0 Ax

D

On the leftis a new symba? f/0x. It signals that only is allowed to vary— f/0x
is a partial derivative The different form¢ of the same letter (still sayd™) is a
reminder that is not the only variable. Another variabjeis present but not moving.

0
EXAMPLE 1 f(x,y)=x2y2+xy+y %(x,y)=2xy2+y4r0-

Do not treat y as zerd Treat it as a constant, liké. Its x derivativeis zero.
If f(x)=sin6xthendf/dx =6cos6x.If f(x,y)=sinxythendf/0x = ycosxy.
Spoken aloudg f/ox is still “dfdx.” It is a function of x and y. When more
is needed, call it “the partial of with respect tax.” The symbol f’ is no longer
available, since it gives no special indication ahouts replacementy is pronounced
“fx"or" f subx,” which is shorter tha@ / /0x and means the same thing.
We may also want to indicate the poity, yo) where the derivative is computed:

of or just (0_]’) .
X l(x0.50) 0x )

0
%(xo,)’o) or fx(xo,y0) oOr M

EXAMPLE 2 f(x,y)=sin2x cosy f,=2c0S2x cosy (COSy isconstantfor
0/0x)

The particular poini(xg, yo) is (0,0). The height of the surface ig(0,0) =0.
The slope in thec direction is f,, = 2. At a different pointxy = 7, yo = 7 we find

fr(mw,m)=—=2.
Now keepx constant and varyy. The ratioA f/ Ay approacheg f/0y:

A ’ 4,/ Y A/y _ 4,/ oy
fy(x,y)= lim A _ lim S,y +Ay) f(‘C,y)-
Ay—0 AV Ay—0 Ay

)

This is the slope in the direction. Please realize that a surface can go up incthe
direction and down in the direction. The plangf(x,y) = 3x —4y has f,, = 3 (up)
and f, = —4 (down). We will soon ask what happens in th direction.

of X x 0f y
EXAMPLE 3 X, Y)=~/x24+y2 —=— o0 = L= =
Jeey)=y/x24y2 == oy f O Jeiy
Yy
+

The x derivative ofy/x2 + y2 is really one-variable calculus, becaysis constant.
The exponent drops fror§1 to— % and there i2x from the chain ruleThis distance
function has the curious derivativé f/ox = x/f .
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The graph is a cone. Above the poit 2) the height isy/0%2 +22=2. The partial
derivatives arefy =0/2 and f, = 2/2. At that point, Figure 13.5 climbs in the
direction. It is level in thex direction. An actual stepx will increase0? + 22 to
(Ax)?+22. But this change is of ordéiA x)? and thex derivative is zero.

Figure 13.5 is rather important. It shows hévwf/dx and?d f/ 0y are the ordinary
derivatives off'(x, yo) and f (xo, ¥). Itis natural to call thespartial functions. The
first hasy fixed atyy while x varies. The second hasfixed atxy while y varies.
Their graphs areross sections down the surfacecut out by the vertical planes
y = yo andx = xo. Remember that the level curve is cut out by the horizontal plane
zZ=C.

fiv,y) = Vi + y?

f b

flO,¥)= N0+ 2

Boc——c
Sl 2) =|Nxd 4 22

¥

Fig. 13.5  Partial functionsv/x2 422 and+/02 + y2 of the distance functiorf = +/x2 + y2.

The limits of A f/ Ax andA f/ Ay are computed as always. With partial functions
we are back to a single variablEhe partial derivative is the ordinary derivative
of a partial function (constanty or constantx). For the coneg f/dy exists at all
points except0,0). The figure shows how the cross section down the middle of the
cone produces the absolute value functi(®, y) = |y|. It has one-sided derivatives
but not a two-sided derivative.

Similarly ¢ f/0x will not exist at the sharp point of the cone. We develop the idea
of acontinuous functiory'(x, y) as needed (the definition is in the exercises). Each
partial derivative involves one direction, but limits and continuity involve all direc-
tions. The distance function is continuoug@t0), where it is not differentiable.

EXAMPLE 4  f(x,y)=y%>—x% 0f/0x=-2x 0f/0y=2y

Move in thex direction from(1,3). Theny? — x? has the partial functiof — x2.

With y fixed at3, a parabola opens downward. In thelirection (alongx=1) the
partial functiony? — 1 opens upward. The surface in Figure 13.6 is callétyper-

bolic paraboloid because the level curvgg — x?=c are hyperbolas. Most people
call it a saddle, and the special point at the origin $addle pointThe origin is spe-

cial for y? — x2 because both derivatives are zeFbe bottom of they parabola at

(0,0) is the top of thex parabola The surface is momentarily flat in all directions.
Itis the top of a hill and the bottom of a mountain range at the same time. A saddle
point is neither a maximum nor a minimum, although both derivatives are zero.

Note Do not think that f(x, y) must containy? andx? to have a saddle point.
The function2xy does just as well. The level curv@sy = ¢ are still hyperbolas.
The partial function®xyy and2xyy now give straight lines—which is remarkable.
Along the 45° line x = y, the function is2x? and climbing. Along the—45° line
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f10,y) =32

flx0)y=—x?

Fig. 13.6 A saddle function, its partial functions, and its level curves.

x = —y, the function is—2x? and falling. The graph a2xy is Figure 13.6 rotated
by 45°.

EXAMPLES 5-6 f(x,y,z2)=x24+y2+z2 P(T.V)=nRT)V

Example5 shows more variables. Exampteshows that the variables may not be
namedx andy. Also, the function may not be name@! Pressure and temperature
and volume arg? andT andV. The letters change but nothing else:

OP/0T =nR/V 0P/dV =—nRT/V? (notethe derivative of/ V).

There is nad P /JR becauseR is a constant from chemistry—not a variable.

Physics produces six variables for a moving body—the coordinatesz and
the momentapy, p,, p.. Economics and the social sciences do better than that.
If there are26 products there ar26 variables—sometimes2, to show prices as
well as amounts. The profit can be a complicated function of these varidiiies.
partial derivatives are the marginal profitas one of thé2 variables is changed. A
spreadsheet shows tH& values and the effect of a change. An infinitesimal
spreadsheet shows the derivative.

SECOND DERIVATIVE

Genius is not essential, to move to second derivatives. Thedifficulty is thattwo
first derivativesf, and f, lead tofour second derivativeg , and fx, and f, and
fyy. (Two subscriptsif, is thex derivative of thex derivative. Other notations are
0% f/0x? andd? f/0xdy and0? f/dyOx andd? f/0y?.) Fortunatelyfy, equals
Jyx, as we see first by example.

EXAMPLE7 f =x/y has fx=1/y, whichhas fyx =0 and fy, =—1/y2

The functionx/y is linear inx (which explainsfsx = 0). Its y derivative is f, =
—x/y?2. This has thex derivative £,y = —1/y2. The mixed derivatives/y, and
Jfyx are equal

In the purey direction, the second derivative f§, = 2x/y3. One-variable calcu-
lus is sufficient for all these derivatives, because only one variable is moving.
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EXAMPLE 8 f =4x2+3xy+y? has fy =8x+3y and f, =3x+2y.
Both “cross derivatives fy, and fyx equal3. The second derivative in the

direction is0? f/0x?> =8 or fyx =8. Thus “f xx” is “d secondf d x squared.”
Similarly 0% /0y? = 2. The only change is frord to 0.

If f(x,y) has continuous second derivatives thef, = f, .. Problen¥3 sketches
a proof based on the Mean Value Theorem. For third derivatives almost any example

shows thatfyxy = fxyx = fyxx is differentfromf,,x = fyxy = fayy-

Question How do you plot a space curve(t), y(z), z(¢) in a plane? One way is
to look parallel to the directiofil, 1,1). On yourX Y screen, ploX = (y —x)/\/i
andY = (2z —x — y)/+/6. The linex = y = z goes to the poin(0, 0)!

How do you graph a surface = f(x, y)?Use the sam& andY . Fix x and let
y vary, for curves one way in the surface. Thenyfiand varyx, for the other partial
function. For a parametric surface like= (2 + vsingu) cosu, y = (2+vsinju)
snu, z= vcos%u, vary u and thenw. Dick Williamson showed how this draws a
one-sided “Mdbius strip.”

13.2 EXERCISES

Read-through questions

The __a  derivative 0f/dy comes from fixing__ b and 13 x2+43xy+2y? 14 (x+3y)2
moving _ ¢ . It is the limit of __d . If f=¢?*siny then 3 ax+by
0fjox=_e_ anddf/dy= 1 . I f=(2+y2)l/2 then > FFI) 16 e
fx=_9 andfy=__h .At(xo,yo) the partial derivativef, 17 1/+/x2+y? 18 (x+y)"
is the ordinary derivative of the i _function f(x, yo). Similarly .
. . 19 cosax cosh 20 1

fy comes fromf(__j ). Those functions are cut out by vertlcafL a Y /x+iy)
plalnes;i =xo and__k_, while the level curves are cut out byFind the domain and range (all inputs and outputs) for the func-
— pianes. tions 21-26. Then computefy, fy, fz, fz.

The four second derivatives arfx, m n_, o .
For f=xy they are p . For f=cos2xcos3y they are 21 1/(x—y)? 22 A/x2+y2—12

q . In those examples the derivativesr _and_s are . (y—x)/(z—1) 24 In(x +1)

the same. That is always true when the second derivatives
are__t . At the origin, co®x cos3y is curving__u__in the 25 xM Why does this equal™*? 26 cosx cos !y

x and y directions, whilexy goes__v__ in the 45° direction . _  mon _
and w inthe—45° direction. 27 Verify fxy = fyx for f=x"y". If fx, =0then f; does not

depend on and fy is independent of . The function
Find 0f/0x and é f/dy for the functions in 1-12 must have the forny'(x,y) = G(x) + )

28 Interms ofv, compute fx and fy for f(x,y) = j)ycv(t) dt. First

_ 2,2 i _
1 3x—y+xy 2 sinBx —y) +y vary x. Then varyy.
3.2 .2y x4
3 xTyfoxt—e 4 xe 29 Computed f/ox for f = [3”v(t)dt. Keepy constant.
_ /212
5 (x4+»)/(x=y) 6 1/v/x%+y 30 Whatis f(x,y)= [ dt/t and what arefy and f,?
2 21
74y 8 In(x+2y) 31 Calculate all eight third derivative§xxx, fxxy.... of f=
9 Iny/x2+y2 10 y* x3y3. How many are different?
11 tan!
@ (y/x) 12 In(xy) In 32-35, chooseg(y) so that f(x,y)=e¥g(y) satisfies the
equation.
Compute fyx, fxy = fyx, and fy, for the functions in 32 fx+/y=0 33 fx=Tfy

13-20 34 fy= frx 35 fxx=4fyy
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36 Show thatr—1/2e=*>/4t satisfies thdeat equationf; = fyxx. 44 Find f/dx anddf/dy where they exist, based on equations
This f(x,t) is the temperature at positianand timer due to a point (1) and(2).

source of heatat =0, t =0. @f =xy| (b)f=x2+y2ifx#0, f=0if x=0
37 The equation for heat flow in they plane is f; = fxx +
fyy. Show that f(x,y,t) =e 2 sinx siny is a solution. What Questions 45-52 are about limits in two dimensions.

exponent inf = e——sin2x sin3y gives a solution? . I
P f =e . v 9 45 Complete thesefour correct definitions of limit 1 The

38 Find solutionsf(x,y) =e—sinmx cosny of the heat equa- points (x,, y,) approach the pointa,b) if x, converges ta: and

tion f; = fxx + fyy. Show that —le—x>/41 ,—¥?/41 is also a solu- . 2 For any circle arounda, b), the pointdx,, y,) eventually

tion. go the circle and stay . 3 The distance frontx, ., yn)
to (a,b) is and it approaches . 4 For anye >0 there

39 The basicwawe equationis fi; = fxx. Verify that f(x.1)= 5 an N such that the distance <eforalln>
sin(x +1) and f(x,t) = sin(x —t) are solutions. Draw both graphs _ o - )
att = /4. Which wave moved to the left and which moved to thé6 Find (x2,y2) and (xs4,y4) and the limit(a,b) if it exists.

right? Start from(xg, yo) = (1,0).
40 Continuing39, the peaks of the waves moved a distafce= @) (n,yn)=1/(n+1),n/(n+1))
in the time stepA¢ = /4. The wave velocity isAx/At = (0) (xn,yn)=(xn—1,¥n-1)
. ©) (xn,yn)=n-1,%n-1)
41 Which of these satisfy the wave equatigiy = ¢ fyx? @ (n.yn) = (n—1+Yn—1.%n-1=yn—1)

sin(x —ct), cogx-+ct), e ¢, e*—e’, e*cosct. 47 (Limit of f(x,y)) 1 Informal definition: the numbers

_ > s > f(xn,yn) approachL when the pointSx,,y,) approach(a,b).
42 Suppos@f/ot =0 f/0x. Show thaw* f/ot* = o= f/0x*. 2 Epsilon-delta definition For eache >0 there is a§ >0 such

43 The proof of fx, = fyx studies f(x,y) in a small rectangle. that | f(x,y)—L| is less than when the distance from
The top-bottom difference isg(x)= f(x,B)— f(x,A). The (x,y) to (a,b) is . The value of f at (a,b) is not
difference at the corners 2, 3, 4 is: involved.

48 Write down the limitL as(x, y) — (a,b). At which points(a, b)
doesf(x,y) have no limit?

0=[fa—f3l=12— f1]
=g(b)—g(a) (definition ofg)

=(b—a)gx(c) (Mean Value Theorein @ f.y)=~x2+y2 (b)) flx.y)=x/y
= b =a)lfx(c,B)= fx(c, A)] (computegyx) © fen=1G+y) (A Oy =xy/(x2+)y?)

=(b—a)(B—A) fxy(c,C) (MVT again)

(@) The right-left difference i%(y) = f(b,y)— f(a,y). The
same Q is h(B)—h(A). Change the steps to readd =
(B—A)(b—a) fyx(c*,C*). 49 Definition of continuity f(x,y) is continuous at(a,b) if
(b) The two forms ofQ make fyy at(c,C) equal tofyx at f(a.b) is defined and f(x.y) approaches the limit_____
(c*,C*). Shrink the rectangle towar@, A). What assumption as (x,y) approaches(a,b). Construct a function that iswot
yields fxy = fyx at that typical point? continuous atl,2).

50 Show that x2y/(x*+y2)—0 along every straight line
B y =mx to the origin. But traveling down the parabofa= x2, the
ratio equals .

In (d) find the limit at(0, 0) along the liney = mx. The limit changes
with m, so L does not exist at0,0). Same forx/y.

(38

51 Can you definef(0,0) so thatf(x, y) is continuous at0,0)?

----- e ce @f =lx|+ly=1 ®)f=0+x)? (©f=x"t".

1 | 3 52 Which functions approach zero és, y) — (0,0) and why ?

a TR e
x2+y? x4+ y4 i
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I (3.3 Tangent Planes and Linear Approximations ]

Over a short range, a smooth curve= f(x) is almost straight. The curve changes
direction, but the tangent ling —yo = f'(x0)(x —xo) keeps the same slope
forever. The tangent line immediately gives the linear approximation=o f (x) :

Yy = yo+ f'(x0)(x —xo).

What happens with two variabl&sThe function is = f(x, y), and its graph is
asurface We are at a point on that surface, and we are near-sighted. We don't see
far away. The surface may curve out of sight at the horizon, or it may be a bowl or
a saddle. To our myopic vision, the surface looks flat. We believe we are on a plane
(not necessarily horizontal), and we want the equation oftémigent plane

Notation The basepoint has coordinates and yo. The height on the surface is
zo = f(x0,y0)- Other letters are possible: the point canbbgh) with heightw. The
subscriptg indicates the value of or y or z or 0 f/0x or 0 f /0y at the point

With one variable the tangent line has slafy€/dx. With two variables there are
two derivativesd f/0x andd f/0y. At the particular point, they ar@ f/0x)o and
(0f/0y)o- Those are the slopes of the tangent plangs equation is the key to
this chapter:

13A The tangent plane dtxo, yo,20) has the same slopes as the surface
f(x,y). The equation of the tangent plane (a linear equation) is

0 0
2—n=(Z) s+ (Z) o= W
x Jo oy Jo
The normal vecto to that plane has componerttsf/0x)o, (0 f/0y)o, —1.

EXAMPLE 1  Find the tangent plane to= 14 — x% — y2 at(xg, yo, Zo) = (1,2,9).

Solution  The derivativesaré f/0x = —2x andd f/dy = —2y.Whenx = 1 and
y =2those ardd f/0x)o = —2 and(df/0y)o = —4. The equation of the tangent
plane is

z—9=-2(x—1)—4(y—2) or z42x+4y=109. (2)

Thisz(x, y) has derivatives-2 and—4, just like the surface. So the plane is tangent.

The normal vectoN has components-2, —4, —1. The equation of the normal
lineis (x,y,z)=(1,2,9) +¢(—2,—4,—1). Starting from(1, 2, 9) the line goes out
alongN—perpendicular to the plane and the surface.

Figure 13.7 shows more detail about the tangent plane. The dotted lines are the
andy tangent lines. They lie in the plane. All tangent lines lie in the tangent plane!
These particular lines are tangent to the “partial functions"—whdsdfixed atyy =
2 or x is fixed atxp = 1. The plane is balancing on the surface and touching at the
tangent point.

More is true. In the surfaceyery curve through the point is tangent to the plane
Geometrically, the curve goes up to the point and “kisses” the giartee tangent
T to the curve and the normbl to the surface are perpendicul@r:N = 0.

EXAMPLE 2  Find the tangent plane to the sphefe= 14 — x2 — y? at (1,2, 3).

1A safer word is “osculate.” At saddle points the plane is kissed from both sides.
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X

Fig. 13.7 The tangent plane contains theandy tangent lines, perpendicular ka

Solution  Instead ofz = 14— x? — y2 we havez = /14 —x2—y2 At xo =1,

yo = 2 the height is nowy = 3. The surface is a sphere with radilfd 4. The only
trouble from the square root is its derivatives:

oz 0 1(—2x) 0z 1(=2y)
—=—/14—x2—y2=—2=— - and —=—""—-— (3)
Oox Ox A/14—x2—y2 0y \/14—x2—y2

At (1,2) those slopes are% and — % The equation of the tangent plane is linear:
3= —% x—1)— %(y —2). | cannot resist improving the equation, by multiplying
through by3 and moving all terms to the left side:

tangent plane to sphere 1(x —1)+2(y—2)+3(z—3)=0. (4)

If mathematics is the “science of patterns,” equaf#yis a prime candidate for study.
The numberd,2,3 appear twice. The coordinates &), yo,zo) = (1,2,3). The
normal vector isli + 2j + 3k. The tangent equation isx +2y + 3z = 14. None of
this can be an accident, but the square rootéf x2 — y2 made a simple pattern
look complicated.

This square root is not necessargalculus offers a direct way to findz /dx—
implicit differentiation Just differentiate every term as it stands:

x> +y24+22=14 leadsto 2x+2z0z/0x=0 and 2y+2z0z/0y =0.
®)

Canceling the 2's, the derivatives on a sphere-ang’z and —y/z. Those are the
same as in(3). The equation for the tangent plane has an extremely symmetric form:

X
Z—zo= —Z—O(x—xo) - ?()’ —Yo) Or Xo(x —xo) +yo(y —yo) +2o(z —z9) =0.
0 0

(6)
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Fig. 13.8 Tangent plane and normal for a sphere. Hyperboloids of 1 and 2 sheets.

Reading offN = x¢i + yoj + zok from the last equation, calculus proves something
we already knewThe normal vector to a sphere points outward along the
radius.

THE TANGENT PLANE TO F(x,y,z)=c

The sphere suggests a question that is important for otheacsstf Suppose the
equation isF(x,y,z) =c instead ofz = f(x,y). Can the partial derivatives and
tangent plane be found directly from?

The answer ig/es It is not necessary to solve first far The derivatives ofF,
computed at(xy, yo,Z0), give a second formula for the tangent plane and normal
vector.

13B The tangent plane to the surfaE&x, y,z) = c has the linear equation

(Z_i)o (x —xo) + (g—i)o (y=yo) + (g—j)ﬂ (z=29)=0.  (7)

The normal vector itN = (0_F) i+ (8_F) i+ (8_F) K.
0x J, oy Jo 0z J,

Notice how this includes the original case= f(x, y). The function F becomes
f(x,y) —z. Its partial derivatives aré f /0x and?d f /0y and—1. (The—1 is from
the derivative of—z.) Then equatior(7) is the same as our original tangent equa-
tion (2).

EXAMPLE 3 The surface” = x2 + y2? — z2 = ¢ is ahyperboloid Find its tangent
plane.

Solution  The partial derivatives ar€, =2x, F), =2y, F, = —2z. Equation(7)
is

tangent plane 2x0(x —Xx0) +2y0(y — yo) —2z0(z —z9) =0.  (8)

We can cancel the 2's. The normal vectolNs= xyi + yo] —zok. For ¢ > 0 this
hyperboloid has one sheéfigure 13.8). Forc =0 it is a cone and for <0 it
breaks into two sheets (Problem 13.1.26).
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DIFFERENTIALS

Come back to the linear equation-zo = (0z/0x)o(x — x0) + (0z/0y)o(y — yo)

for the tangent plane. That may be the most important formula in this chapter. Move
along the tangent plane instead of the curved surface. Movements in the plane are
dx anddy anddz—while Ax andAy and Az are movements in the surface. The

d’s are governed by the tangent equation—#tie are governed by = f(x, y). In
Chapter2 thed’s weredifferentials along the tangent line:

dy = (dy/dx)dx (straightline) andAy = (dy/dx)Ax (onthe curve) (9)

Now y is independent like. The dependent variable is The idea is the same. The
distancesc — xp andy — yo andz — zq (on the tangent plane) azkc anddy anddz.
The equation of the plane is

dz = (0z/0x)odx +(0z/0y)ody or df = frdx+ fydy. (10)

This is thetotal differential. All lettersdz anddf anddw can be used, butz and
0 f are not used. Differentials suggest small movements @md y; thendz is the
resulting movement in. On the tangent plane, equatiti0) holds exactly.

A “centering transform” has puty, y¢, z¢ at the center of coordinates. Then the
“zoom transform” stretches the surface into its tangent plane.

EXAMPLE 4 The area of a triangle igl = %ab sin 6. Find the total differential
dA.

Solution The base has length and the sloping side has length. The angle
between them i¥. You may preferd = %bh, where/ is the perpendicular height

asin . Either way we need the partial derivativesAlf= %ab sin 6, then

oA 1 . 0A 1 . 04 1
%—EbSHQ %—Easne %—Eabcose. (11)
These lead immediately to the total differential (like a product rule):
04 0A 0A | | 1
dA= (0_a)da + (0_b)db + (a—e)de = Ebsm Oda+ Easm 0db+ Eab cos6 do.

EXAMPLE 5 The volume of a cylinder i$/ = wr2h. Decide whethel is more
sensitive to a change from=1.0tor =1.1orfromh=1.0toh=1.1.

Solution  The partial derivatives ar@V/or = 2xrh anddV/oh = nr? . They
measure the sensitivity to changBhysically, they are the side area and base area
of the cylinder. The volume differentiall’ comes from a shell around the side plus
a layer on top:

dV =shell+layer=2nrh dr + wr?dh. (12)

Stating fromr = h = 1, that differentialis! V = 2ndr + ndh. Withdr = dh = .1,
the shell volume is2r and the layer volume is onlyiz. SoV is sensitive tair.

For a short cylinder like a penny, the layer has greater vollmis.more sensitive
to dh. In our caseV = wr2h increases fromr(1)? to 7(1.1)3. CompareAV to
dv:

AV=r(112=x(1)*=331x and dV =2x(1)+n(.1)=.3007.

The difference isAV —dV = .031x. The shell and layer missed a small volume

in Figure 13.9, just above the shell and around the layer. The mistake is of order
(dr)?+ (dh)?. ForV = r?h, the differentiad V = 2w rh dr + wr2dhis alinear
approximationto the true chang@V . We now explain that properly.
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LINEAR APPROXIMATION

Tangents lead immediately to linear approximatior&hat is true of tangent planes
as it was of tangent lines. The plane stays close to the surface, as the line stayed close
to the curve. Linear functions are simpler thAtx) or f(x,y) or F(x,y,z). All we
need are first derivativedt the point Then the approximation is goaear the point
This key idea of calculus is already present in differentials. On the pighequals
Jfxdx + f,dy. On the curved surface that is a linear approximatioA §o:

13C The linear approximation tg(x, y) near the pointxy, yo) is

1w fouyo+ () s+ (5) 0-m. @)
X Jo Y /o

In other wordsA f' ~ fxAx + f, Ay, as proved in Problem 24. The right side of
(13)is alinear functionfz (x, y). At (xo, yo), the functionsf” and fz, have the same
slopes. Thery'(x, y) curves away frony;, with an error of “second order:”

| f(x, ) = fL(x, )] < M[(x = x0)* + (¥ — y0)°]- (14)

This assumes thaf; ., fxy, andfy, are continuous and bounded b along the line
from (xo, y0) to (x, y). Example 3 of Section 13.5 shows th#}, | < 2M along that
line. Afactor% comes from equation 3.8.12, for the errpr— f;, with one variable.

For the volume of a cylinder,andh went from 1.0 to 1.1. The second derivatives of
V =nr?hareV,, =2xh andV,;, = 2xr andVy;, =0. They are below =2.27.
Then(14) gives the error bound.27 (.12 +.12) = .0447x, not far above the actual
error.031s. The main point is thahe error in linear approximation comes from
the quadratic terms-those are the first terms to be ignored fy.

layer dh
area xr?
shell dr
) area 2nrh
: : + + + q
20 40 60
Shell plus layer gives! V' = .300x. Fig. 13.10  Quantity Q andprice P move with the
Including top ring givesAV = .331x. lines.

EXAMPLE 6 Find a linear approximation to the distance functios 4/x2 + y2.
Solution  The partial derivativesare/r andy /r. ThenAr =~ (x/r)Ax + (y/r)Ay.
For (x,y.r) near(1,2,V/5):/x2 + y2 &/ 12+ 22 + (x — 1) //5+2(y —2)/ /5.

If y is fixed at2, this is a one-variable approximation{éx2 +22. If x is fixed atl,
it is a linear approximation iry. Moving both variables, you might thinkr would
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involvedx ard dy in a square root. It doesn’t. Distance involveandy in a square
root, but:change of distancis linear in Ax and A y—to a first approximation.
There is a rough point at =0,y = 0. Any movement from(0,0) gives Ar =
(Ax)2+ (Ay)2. The square root has returned. The reason is tihatpartial
derivativesy/r and y/r are not continuous at0,0). The cone has a sharp point
with no tangent pland.inear approximation breaks down

The next example shows how to approximate from Ax and Ay, when the
equation isF(x,y,z) =c. We use the implicit derivatives i§7) instead of the
explicit derivatives in(1). The idea is the same: Look at the tangent equation as a
way to find Az, instead of an equation far Here is Example 6 with new letters.

EXAMPLE 7 FromF = —x2 — y2 4 z2 = 0 find a linear approximation t\z.

Solution (implicit derivatives) Use the derivatives 6t —2xAx —2yAy+2zAzx
0. Then solve forAz, which gives Az =~ (x/z)Ax+ (y/z)Ay—the same as
Example 6.

EXAMPLE 8 How does the equilibrium price change when the supply curvegedsth

The equilibrium price is at the intersection of the supply and demand curves
(supply= demand. As the pricep rises, the demangl drops (the slope is-.2):

demand linddD : p = —.2¢g + 40. (15)
The supply (alsg) goesup with the price. The slope s positive (here = .4):
supply lineSS': p=sqg+1t =.4g +10.

Those lines are in Figure 13.10. They meet ateheilibrium price P = $30. The
guantity Q = 50 is available atP (on §S) and demanded a® (on DD). So it is
sold.

Where do partial derivatives come in? The reality is that those lInBsand S S
are not fixed for all time. Technology changes, and competition changes, and the
value of money changes. Therefore the lines move. Therefore the crossing@oih}
also moves. Please recognize that derivatives are hiding in those sentences.

Main point: The equilibrium price P is a function of s and z. Reducings by
better technology lowers the supply line po=.3¢ + 10. The demand line has not
changed. The customer is as eager or stingy as ever. But thelpacel quantityQ
are different. The new equilibrium is & = 60 and P = $28, where the new line
XX crossedD.

If the technology is expensive, the supplier will rais&hen reducing. Line Y'Y
is p = .3¢ +20. That gives a higher equilibriun® = $32 at a lower quantityQ =
40—the demand was too weak for the technology.

Calculus question  FinddP/ds andd P/ dt. The difficulty is thatP is not given as
a function ofs andz. So take implicit derivatives of the supply = demand equations:

supply= demand P=-204+40=s50+¢ (16)
s derivative: Pi=—-20=50:,+0 (notet; =0)
¢ derivative: Pr=—20;=50,+1 (notet; = 1)

Now substitute = .4, = 10, P = 30, Q = 50. That s the starting point, around which
we are finding a linear approximation. The last two equations ¢ve- 50/3 and

559
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P, =1/3 (Problem25). The linear approximation is

P =30+50(s —.4)/3+ (t—10)/3 17)

CommentThis example turned out to be subtle (so is economics) . | hesitated before
including it. The equations are linear and their derivatives are easy, but something
in the problem is hard—there is no explicit formula fBr. The functionP(s,?) is

not known. Instead of a point on a surface, we are following the intersection of two
lines.The solution changes as the equation chanfesderivative of the solution
comes from the derivative of the equation

SummaryThe foundation of this section is equati¢h) for the tangent plane.
Every thing builds on that—total differential, linear approximation, sensitivity to small
change. Later sections go on to the chain rule and “directional derivatives” and
“gradients.” The central idea of differential calculusAy =~ fxAx + f, Ay.

NEWTON’'S METHOD FOR TWO EQUATIONS

Linear approximation is usetb solve equationsTo find out where a function is
zero, look first to see where its approximation is zero. To find out where a graph
crosses the'y plane, look to see where its tangent plane crosses.

Remember Newton’s method fgf(x) = 0. The current guess is,. Around that
point, f(x) is close tof (x,) + (x — x,) f'(x,). Thisis zero at the next guesg;; =
Xn — f(xn)/f'(xn). That is where the tangent line crosses.theis.

With two variables the idea is the same—»but two unknowresd y require two
equations. We solvez(x,y) =0 and h(x,y)=0. Both functions have linear
approximations that start from the current po{n,, y,)—where derivatives are
computed:

g(x.y) = g(xp, yn) +(0g/0x)(x —xp) +(0g/0y)(y — yn)

(18)
h(x.,y) = h(xn, yn) + (0h/0x)(x — xp) + (Oh/0y)(y — yn).
The natural idea is teet these approximations to zerdhat gives linear equations
for x —x, andy — y,. Those are the stefsx andAy that take us to the next guess
in Newton’s method:

13D Newton’s method to solve(x, y) = 0 andi(x, y) = 0 has linear equatiorfs
for the stepsA x andAy that go from(x,, y,) to (Xp+1, Yn+1):

0 0 oh oh
(—g Ax+(—g Ay=—g<xn,yn)and(— Ax+(— Ay = —h(n.yn). (19)
0x oy ox oy

EXAMPLE9 g=x3—y=0andh=y3—x=0 have 3 solutiong1,1),(0,0),
(—1,=1).

| will start at different pointSxg, yo). The next guess is1 = x¢o+ Ax,y1 = yo+
Ay. Itis of extreme interest to know which solution Newton’s method will choose—if
it converges at all. | made three small experiments.
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1. Supposedxg, yo) = (2,1). Atthat pointg =23 —1=7andh =13 —-2=—1.
The derivatives arg, =3x2=12, g, = —1, hy = —1,h, =3y?=3. The steps
Ax andAy come from solvingd19).

12Ax — Ay =17 Ax=-4/7 X1 =Xxo+Ax=10/7
= =
—Ax+3Ay=+1 Ay=+1/7 yi=yo+Ay=28/7.

This new point(10/7,8/7) is closer to the solution &fl, 1). The next pointig1.1,
1.05) and convergence is clear. Soon convergence is fast.

2. Startat(xo, yo) = (.0). There we findg = 1/8 andh = —1/2:

(3/49)Ax— Ay=-1/8 Ax=-1/2 X1 =x9+Ax=0
= =
—Ax+0Ay=+1/2 Ay=+1/4 yi=yot+Ay=—-1/4

Newton has jumped fronfi . 0) on thex axis to(0, —1) onthey axis. The next step
goes to(1/32,0), back on thex axis. We are in the “basin of attraction” ¢,0).

3. Now start further out the axis &t,0), whereg =1 andh = —1:

3Ax—Ay=-1 Ax=-—1 X1=Xx9+Ax=0
= =
—Ax+0Ay =+1 Ay=-2 yi=yo+Ay=-2.

Newton moves from(1,0) to (0, —2) to (16,0). Convergence breaks down—the
method blows up. This danger is ever-present, when we start far from a solution.

Please recognize that even a small computer will uncover amazing patterns. It can
start from hundreds of pointsc, yo), and follow Newton’s method. Each solution
has abasin of attraction containing all(x¢, yo¢) leading to that solution. There is
also a basin leading to infinity. The basins in Figure 13.11 are completely mixed
together—a color figure shows themfeactals. The most extreme behavior is on the
borderline between basins, when Newton can’t decide which way to go. Frequently
we see chaos.

Chaos is irregular movement that follows a definite rule. Newton’s method
determines aiteration from each poin{x,, y,) to the next. In scientific problems
it normally converges to the solution we want. (We start close enough.) But the com-
puter makes it possible to study iterations from faraway points. This has created a new
part of mathematics—so new that any experiments you do are likely to be original.

Section 3.7 found chaos when trying to sak/e+ 1 = 0. But don’t think Newton’s
method is a failure. On the contrary, it is the best method to solve nonlinear equations.
The error is squared as the algorithm converges, because linear approximations have
errors of ordeX Ax)? + (Ay)2. Each step doubles the number of correct digiesar
the solution The example shows why it is important to be near.
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Fig. 13.11  The basins of attraction t@l, 1), (0,0), (—1,—1), and infinity.

13.3 EXERCISES

Read-through questions

The tangent line toy = f(x) is y—yo=__a . The tangent 4 z=e*t2y P =(0,0,1)
plane tow = f(x,y) is w—wo=__b . The normal vector is 2,.2..2

) . 5 =6,P=(1,2,1

N=_c . Forw=x3+y3 the tangent equation atl,1,2) is XTyTHzi=6 ( )

d . The normal vector ill=__e .For a sphere, the direction 6 x2+y2+2:2=7P =(1,2,1)

OfNis__1 . 7 z=x?,P=(1,1,1)

The surface given implicity by F(x,y,z)=c¢ has tangent 8 Venr2h P=(2.2.8
equation(9F/dx)o(x —xo0)+ g . Forxyz=6 a (1,2,3) the wreh, P =(2,2,8m).
tangent planeis_h . On that plane the differentials satisfy i 9 Show that the tangent plane te?—x?—y?=0 goes
dx+ j dy+__k dz=0. The differential ofz= f(x,y) is through the origin and makes a%4&ngle with thez axis.

dz=__1 . This holds exactly on the tangent plane, while ~ The planesz=x+4y and z=2x+3y meet at(l,1,5).

—m__holds approximately onthe n__. The height =3x+7y e \yhole line of intersection i6¢,y,2z) = (1,1,5) +vt. Findv=
is more sensitive to a change_ino _than inx, because the partial N; x Ny

derivative p islargerthan q .

11 If z=3x—2y find dz from dx and dy. If z=x3/y? find
dz from dx anddy at xo =1,y9=1. If x moves t01.02 and y
moves t01.03, find the approximate/z and exactAz for both

of order _u . For f=sinxy the linear approximation ¢, tions. The first surface is the to the second surface.
around (0,0) is f;, =__v__. We are moving along the w

instead of the_ x__. When the equation is given &(x.y.z)=c, 12 The surfaces = x2+4y amd z =2x+3y? meet at(l, 1,5).
the linear approximationis y Ax+_ z Ay+_ A Az=0. Find the normalsN; and N> and alsov= NjxN. The line
in this directionv is tangent to what curve?

The linear approximation tof(x,y) is f(xo,ye)+__r
This is the same ad\f~ _ s Ax+__t Ay. The error is

Newton’s method solvesg(x,y)=0 and h(x,y)=0 by a
B__ approximation. Starting fromx,.y, the equations are13 The normal N to the surface F(x,y,z)=0 has
replacedby C and__ D . The steps\x and Ay go to the next componentsFy, Fy, Fz. The normal line has x = xo + Fxt.y =

point__E . Each solution has a basin of F__. Those basins arevo+ Fyt,z=____. For the surfacexyz—24=0, find the
likelytobe_ G . tangent plane and normal line @t 2, 3).
In 1-8 find the tangent plane and the normal vector atP. 14 For the surfacec>y? —z =0, the normal line ai(1,2.4) has

X = ,yz JZ=

1 z=+/x2+4+y2,P=(0,1,1) . L,
_ _ 15 For the spherex~+y“+z-=9, find the equation of the
2 x+y+z=17.P=(3.4.10) tangent plane through2,1,2). Also find the equation of the

3 z=x/y,P=(6,3,2) normal line and show that it goes throu@h0,0).
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16 If the normal line at every point orF(x,y,z)=0 goes
through (0,0,0), show that Fx =cx,Fy=cy,F;=cz. The
surface must be a sphere.

17 For w=xy near (xg,yo), the linear approximation igw =
. This looks like the rule for derivatives. The

563

28 To find out how the roots ofk?2+bx +c =0 vary with b,
take partial derivatives of the equation with respectto . Com-
pare 0x /0b with 0x /dc to show that a root at = 2 is more sensitive
to b.

29 Findthe tangent planesto=xy andz =x%2—y2atx =2,y =

difference betweemAw =xy —xgyo and this approximation is 1. Find the Newton point where those planes meetdh@lane (set

18 If f =xyz (3independent variables) whatdg ?

19 You invest P = $4000 at R = 8% to makel = $320 per year.
If the numbers change byP and dR what is dI? If the rate
drops bydR =.002 (to 7.8%) what changed P keepsdl =0?
Find the exact interedt after those changes iR and P.

20 Resistance®; ard R, have parallel resistand®, wherel /R =
1/R1+1/R5. Is R more sensitive tAR; or AR, if Ry =1 and
Ry =27

21 (a) If your batting average it = (25 hits)/(100 at batg =
.250, compute the increase (t6/101) with a hit and the
decrease (t@5/101) with an out.

(b) If A=x/y then dA= dx + dy. A hit
(dx=dy=1) givesdA=(1—A)/y. An out (dy =1) gives
dA=—A/y. So at A=.250 a hit has times the

effect of an out.

22 (a) 2 hits and3 outs (dx =2,dy = 5) will raise your average
(dA > 0) providedA is less than .
(b) A player batting A =.500 with y =400 at bats needs

dx = hits to raise his average t605.

23 If x and y change by Ax and Ay, find the approximate
changeA#d in the angled =tan—!(y/x).

24 The Fundamental Lemmabehind equation (13) writes
Af =aAx+bAy. The Lemma says that — fx(xo,y9) and
b— fy(x0,y0) when Ax —0 and Ay — 0. The proof takesAx
first and therAy :

(1) f(xo+Ax,yo)— f(x0.y0) = Axfx(c,yo) wherec is be-

tween and (by which theorem?)
(2 fxo+Ax,yo+Ay)— f(xo+Ax,y0) =Ayfy(xo+
Ax,C) whereC is between and .

(3) a= fx(c.yo) = fx(x0.yo) provided f is
(4 b= fy(xo+Ax,C)— fy(xo,y0) provided fy

is

25 If the supplier reduces, Figure 13.10 shows tha® decreases
andQ .

z =0 in the tangent equations).
30 (@) To solve g(x,y)=0 and h(x,y)=0 is to find the
meeting point of three surfaces= g(x, y) andz = i(x, y) and

(b) Newton finds the meeting point of three planes: the
tangent plane to the graph gf , and .

Problems 31-36 go further with Newton's method forg =
x3—y and h=y3—x. This is Example 9 with solutions
(1,1),(0,0),(—1,—1).

31 Start fromxg=1,y9=1 and find Ax and Ay. Where arex;
andyi, and what line is Newton’s method moving on?

32 Startfrom(4, 2) and find the next point. This is in the basin of
attraction of which solution?

33 Starting from(a,—a) find Ay which is also—Ax. Newton
goes toward (0,0). But can you find the sharp point in
Figure 13.11 where the lemon meets the spade?

34 Starting from (a,0) show that Newton's method goes to
(0,—243) and find the next point(xz,y2). Which numbers a
lead to convergence? Which special numbeleads to a cycle,
in which (x3, y») is the same as the starting poiat 0)?

35 Show thate3 = y, y3 = x has exactly three solutions.
36 Locate a point from which Newton’s method diverges.

37 Apply Newton's method to a linear problem:g=
X+2y—5=0,h=3x—-3=0. From any starting point show that
(x1,y1) is the exact solution (convergenceadne step.

38 The complex equatiorix +iy)3 =1 contains two real equa-
tions,x3 —3xy?2 =1 from the real part andx?y — y3 = 0 from the
imaginary part. Search by computer for the basins of attraction of the
three solutiong1,0), (—1/2,4/3/2), and (—1/2, —/3/2)—which

give the cube roots of.

39 In Newton’s method the new guess comes from, y,) by an
iteration: x,4+1 =G(xn,yn) and y,+1 = H(x,,yn). What areG
and H for g=x?>—y =0,h=x—y =0? First find Ax and Ay;
thenx, + Ax givesG andy, + Ay givesH.

40 In Problem 39 find the basins of attraction of the solution

(@ Find Ps=50/3 and P, =1/3 in the economics equation(0,0) and(1, 1).

(17) by solving the equations above it for; and Q.
(b) What is the linear approximation t@ arounds = .4,
t=10,P =30,0 =507

26 Solve the equation® = —.20Q +40 andP =sQ +¢ for P and
Q. Then findoP /os and 0P /ot explicitly. At the sames,z, P, Q
check50/3 and1/3.

27 If the supply=denand equation (16) changes t® =
sQ+t=-—0+50,find Py andP; ats =1, ¢ = 10.

41 The matrix in Newton’s method is thiacobian:

0g/0x 0g/dy and ; Ax
Ay

Oh/0x Oh/0y
FindJ andAx andAy forg=e*—1,h=¢” +x.

=)

42 Find the Jacobian matrix atl,1) when g=x2%+y2 and
h=xy. This matrix is and Newton’s method fails. The
graphs ofg and/ have tangent planes.
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43 Solve g=x2—y%2+1=0 and h=2xy=0 by Newton’s (0,1) attracts wheryg > 0. If yo =0 you should find the chaos iter-
method from three starting point$0,2) and (—1,1) and (2,0). ationx,4; = %(xn—x,jl).
Take ten steps by computer or one by hand. The solution
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13.4 Directional Derivatives and Gradients

As x changes, we know howf(x, y) changes. The partial derivativef /0x treats

y as constant. Similarly f /0y keepsx constant, and gives the slope in thelirec-

tion. But east-west and north-south are not the only directions to move. We could go
along a45° line, whereAx = Ay. In principle, before we draw axes, no direction is
preferred. The graph is a surface with slopealirdirections.

On that surface, calculus looks for the rate of change (or the slope). There is a
directional derivative whatever the direction. In thé5° case we are inclined to
divide A f by Ax, but we would be wrong. Let me state the problem. We are given
f(x,y) around a poinf’ = (xg, yo). We are also given a directian(a unit vector).
There must be a natural definition b, f —the derivative off in the directionu.

To compute this slope a®, we need a formula. Preferably the formula is based on
0 f/0x andd f/dy, which we already know.

Note that the45°direction hasu=i/2+]j/2. The square root o is going to
enter the derivative. This shows that dividing’ by A x is wrong. We should divide
by the step lengtis.

EXAMPLE 1 Stay on the surface= xy. When(x, y) moves a distancAs in the
45° direction from(1, 1), what isAz/As?

Solution  The step isAs times the unit vectow. Starting fromx = y = 1 the step

ends atr = y = 1 + As/+/2. (The components afAs areAs/+/2.) Thenz = xy
is

z=(1+As/v2)? =1+v2As+ 1(As)?, which meansAz = v2As5 + 1 (As).
TheratioAz/As approaches/i as As — 0. That is the slope in thé5°direction.

DEFINITION The derivative off in the directionu at the pointP is D, f(P):

Duf(P)= lim 2 — i [P FUA)—F(P)
As—0 As As—0 As

)

Thestep fromP = (xy, yo) has lengthAs. It takes us tdxg +u1 As, yo + uzAs).
We compute the changk /" and divide byAs. But formula(2) below saves time.
Thex direction isu = (1,0). ThenuAs is (As,0) and we recoved f/0x:

Af _ f(xo+As.yo) — f(xo.Y0)
As As

Similarly D, f = 0f/dy, whenu= (0,1) is in they direction.WhatisD, f when
u=(0,—1)? That is the negative direction, soD, f = —0 f/0y.

0
approachesD o) f = %

CALCULATING THE DIRECTIONAL DERIVATIVE

D\ f is the slope of the surface= f(x, y) in the directioru. How do you compute
it? Fromd f/0x andd f /0y, in two special directions, there is a quick way to find
D, f in all directionsRemember that u is a unit vector.

13E Thedirectional derivativeD,, f in the directionu = (u1,u») equals

Dyf = Z—iul + Z—J;uz. 2)

565
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The reasoning goes back to the linear approximatiofs f

of of of of
Af~ =—Ax+——Ay=—=—uiAs+ —usAs.
f i x+0y y 6xu1 S+0yu2 S
Divide by As and let As approach zero. Formul@) is the limit of A f/As, as
the approximation becomes exact. A more careful argument guarantees this limit
provided f, and f, are continuous at the basepofnb, yo).
Main point:Slopes in all directions are known from slopes in two directions

EXAMPLE 1 (repeated)  f =xy and P = (1,1) andu = (1/+/2,1/4/2). Find
Dy f(P).

The derivativesf, = y and f), = x equall at P. The45°derivative is

Dyf(P)= four+ fyuz =1(1/v/2) +1(1/+/2) = /2 as before
EXAMPLE 2 The linear functionf =3x + y + 1 has slopeD f* = 3u; + u».

The x direction isu = (1,0), and D, f =3. That is0 f/0x. In the y direction
D, f =1. Two other directions are special—along the level lines ¢fx, y)
and perpendicular:

Level direction D\ f is zero becausg is constant
Steepest direction Dy f is as large as possibl@vith u? +u2 = 1).

To find those directions, look ab, f = 3u; +u,. The level direction hasu; +
u, =0. Thenu is proportional to(1, —3). Changingx by 1 andy by —3 produces
nochangeinf =3x+y+1.

In the steepest direction is proportional to(3,1). Note the partial derivatives
Jfx =3andf, = 1. The dot product of3, 1) and(1, —3) is zero—steepest direction
is perpendicular to level directiofo make(3, 1) a unit vector, divide by/10.

Steepest climb Dy f =3(3/4/10) +1(1/4/10) = 10/4/10=/10
Steepest descent Reverse tal = (—3/4/10,—1/4/10) and D, f = —+/10.
The contour lines around a mountain follo®, f = 0. The creeks are perpendic-

ular. On a plane likef =3x + y + 1, those directions stay the same at all points
(Figure 13.12). On a mountain the steepest direction changes as the slopes change.

r=3x4 vl level

D,f=0

pradient direction
w= 30, 1A )

I_Ju =10

—r 3
==
Slo

sloopesi e soenl
F=—y10
]l)u g I

level direction

S[oﬁc \’Tﬁ Iy +uy=0

Fig. 13.12 Steepest direction is along the gradient. Level direction rpgedicular.
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THE GRADIENT VECTOR

Look again atfxu + fyu», which is the directional derivativ®,, f. This is the dot
product of two vectorsOne vector isu = (u1,u5), which sets the direction. The
other vector i( fx, fy). which comes from the function. This second vector is the
gradient

of

. . 0
DEFINITION Thegradientof f(x, y)isthe vectorwhose componentsagé anda—:
X y

gradf =V f = %I + %j (add(%fk in three dimension)s.
The space-saving symb¥l is read as “grad.” In Chapter 15 it becomes “del.”

For the linear functior8x + y + 1, the gradient is the constant vect@, 1). It
is the way to climb the plane. For the nonlinear functich+ xy, the gradient is
the non-constant vect@®2x + y,x). Notice that gradf shares the two derivatives
in N = (fx. fy.—1). But the gradient is not the normal vectbt.is in three dimen-
sions, pointing away from the surface= f(x, y). The gradient vector is in thery
planéd The gradient tells which way on the surface is up, but it does that from down
in the base.

The level curve is also in they plane, perpendicular to the gradient. The contour
map is a projection on the base plane of what the hiker sees on the mountain. The
vector gradf  tells thedirectionof climb, and its lengthgrad f | gives thesteepness

13F The directional derivative isDy f = (grad f)-u. The level direction i
perpendicular to gragf, since D, f = 0. The slopeD, f is largest wheru is

parallel to grad f. That maximum slope is the lenglgrad f | = 4 / /2 + f7:

U grad f |grad f |
|grad f | |grad f |

for the slope is (gradf)-u= = |grad f|.

The examplef =3x+y+1 had gradf = (3,1). Its steepest slope was in the
directionu = (3, 1)/4/10. The maximum slope wag'10. Thatis|grad f | = /9 + 1.

Important pointThe maximum of(grad /') - u is the length|grad 1 |. In nonlin-
ear examples, the gradient and steepest direction and slope will vary. But look at one
particular point in Figure 13.13. Near that point, and near any point, the linear picture
takes over.

On the graph off, the special vectors are the level directibn= (fy,— f+.0)
and the uphill directiord = ( fx, fy, /.2 +fy2) and the normaN = (fx, fy,—1).
Problem18 checks that those are perpendicular.

EXAMPLE 3 Thegradientoff(x,y) = (14 —x2—y?)/3isV f = (—2x/3,—2y/3).

On the surface, the normal vectoNs= (—2x/3,—2y/3,—1).Atthe point(1,2,3),
this perpendicular iN = (—2/3,—4/3, —1). At the point(1,2) down in the base,
the gradienti§—2/3, —4/3). The length of gradf is the slopey/20/3.

Probably a hiker does not go straight up. A “grade” 0’@/3 is fairly steep
(almost150%). To estimate the slope in other directions, measure the distance along
the path between two contour lines. A f =1 in a distanceAs = 3 the slope is
aboutl /3. This calculation is not exact until the limit & f/ As, which is D, f.



568

13 Partial Derivatives

L z=(14=x2=yH)3

tangent
10 level curve

Fig. 13.13 N perpendicular to surface and grgdperpendicular to level line (in the base).

EXAMPLE 4 The gradient off (x,y,z) = xy + yz + xz has three components.

The pattern extends fronf(x,y) to f(x,y,z). The gradient is now the three-
dimensional vectof fx, fy. fz). For this function gradf is (y +z,x+z,x+y).
To draw the graph ofv = f(x, y, z) would require a four-dimensional picture, with
axes in thexyzw directions.

Notice the dimensions. The graph is a 3-dimensional “surface” in 4-dimensional
space. The gradient is down below in the 3-dimensional base. The level séts of
come fromxy + yz + zx = c—they are 2-dimensional. The gradient is perpendicu-
lar to that level set (still down in 3 dimensions). The gradient isMbThe normal
vector is( fx, fy, fz. —1), perpendicular to the surface up in 4-dimensional space.

EXAMPLE 5 Find gradz whenz(x, y) is given implicitly: F(x, y,z) = x% 4 y2 —
z2=0.
In this case we findz = +4/x2+ y2. The derivatives aretx/4/x2+ y? and

+y/4/x2+ y2, which go into gract. But the point is this: To find that gradient
faster, differentiate”'(x, y, z) as it stands. Then divide b¥;:

Fxdx+ Fydy + F,dz=0 or  dz=(—Fydx—Fydy)/F.. (3)

The gradient is(—Fy/ F.,—F,/F;). Those derivatives are evaluated(ap, y).
The computation does not need the explicit functica f(x, y):

F=x*4y*-z?

= Fy=2x,Fy=2y, F,=-2z = gradz = (x/z,y/z).
To go uphill on the cone, move in the directi@n/z, y/z). That gradient direction
goes radially outward. The steepness of the cone is the length of the gradient vector:

lgradz| = +/(x/z)2 4 (y/2z)? = 1 because? = x* + y?on the cone.

DERIVATIVES ALONG CURVED PATHS

On a straight path the derivative ¢gfis D, f = (grad f) - u. What is the derivative
on a curved pathPhe path directionu is the tangent vectol . So replacel by T,
which gives the “direction” of the curve.

The path is given by the position vect®(¢) = x(¢)i + y(¢)j. The velocity is
v=(dx/dt)i+ (dy/dt)j. The tangent vector i =v/|v|. Notice the choice—to
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move at any speed (with) or to go at unit speed (witi'.) There is the same choice
for the derivative off(x, y) along this curve:

df of dx 0f dy
te of ch —=(grad )V == — = — 4
rate of change —-=(gradf)-v =—=— dy dt @
df of dx 0f dy
s A df)- T =———+—-—— >
ope 75 (grad 1) Ox ds 0Oy ds ©

The first involvestime. If we move fasterdf/dt increases. The second involves
distance If we move a distancds, at any speed, the function changesdyy So

the slope in that direction idf/ds. Chapterl introduced velocity as/f/d¢ and
slope as/y/dx and mixed them up. Finally we see the difference. Uniform motion
on a straight line haR = Ro + v¢. The velocityv is constant. The directioh =u =
v/|v|is also constant. The directional derivativégsad /') - u, but the rate of change
is(grad f)-v.

Equationg4) and(5) look like chain rules. They are chain rules. The next section
extendsif/dt = (df /dx)(dx/dt) to more variables, provin@) and(5). Here we
focus on the meaninglf/ds is the derivative off in the directionu=T along
the curve.

EXAMPLE 7 Find df/dt ard df/ds for f =r. The curve isx =t2,y =t in
Figure 13.14a.

Solution  The velocity along the curveis= 2¢i + . At the typical point = 1 itis
Vv =2i+]. The unittangenti¥ = v/+/5. The gradientis a unit vectdf+/2 +j /+/2
pointing outward, whenf'(x, y) is the distance from the center. The dot product
with v is df /dt = 3/4/2. The dot product witfl isdf/ds = 3/4/10.

When we slow down to speed 1 (witf), the changes irf (x, y) slow down too.

EXAMPLE 8 Finddf/ds for f = xy along the circular path = cost, y = sint.

First take a direct approach. On the circle; equals(cost)(sint). Its derivative
comes from the product rulef /dt = co$ t — sin’ t. Normally this is different from
df/ds, because the time need not equal the arc lengthThere is a speed factor
ds/dt to divide by—but here the speedlis(A circle of lengths = 27 is completed
atrt]2= 27.) Thus the slopéf/ds along the roller-coaster in Figure 13.14i8s t —
SINcr.

T= (-3 4 grad f=(y, x) Vi

distance
10 (X, ¥y)

prad 0 | = | AVAs| = |

"+

Fig. 13.14 The distancef =r changes along the curve. The slope of the roller-coaster is
(grad f')-T. The distanceD from (xg, yo) has gradD = unit vector.

The second approach uses the vectors ¢rahdT. The gradient off = xy is
(y,x) = (sint, cost). The unit tangent vector to the pathlis= (— sinz, cost). Their



570 13 Partial Derivatives

dot product is the saméf /ds:

slope along path= (grad ) - T = —sir? t 4+ cog'¢.

GRADIENTS WITHOUT COORDINATES

This section ends with a little “philosophy.” What is theardinate-free definition

of the gradient? Up to now, grafl = ( fx, f,) depended totally on the choice of

andy axes. But the steepness of a surface is independent of the axes. Those are added
later, to help us compute.

The steepneséf/ds involves only f and the direction, nothing else. The gradient
should be a “tensor’—its meaning does not depend on the coordinate system. The
gradient has different formulas in different systems orr6 or . ..), but the direction
and length of gradf’ are determined by f /ds—without any axes:

Thedirection of grad 1 is the one in whichif/ds is largest.
Thelength |grad f'| is that largest slope.

The key equation ischange inf) = (gradient of /). (change in position. Thatis
another way to writeA ' ~ fx Ax + f, Ay. It is the multivariable form—we used
two variables—of the basic linear approximatifiy =~ (dy/dx)Ax.

EXAMPLE 9 D(x,y) =distance from(x, y) to (x¢, yo). Without derivatives prove
|gradD| = 1. The graph ofD(x, y) is a cone with slopé and sharp pointxo, yo).

First question In which direction does the distand¥(x, y) increase fastest?
Answer Goingdirectly away fronfxg, yo). Therefore thisis the direction of grdal

Second questionHow quickly doesD increase in that steepest direction?
Answer A step of lengthAs increased by As. Thereforelgrad D | = As/As =
1.

Conclusion gradD is a unit vector The derivatives ofD in Problem48 are
(x —x0)/D and(y — y¢)/D. The sum of their squares is becauséx — x¢)? +
(¥ — yo0)? equalsD?.

13.4 EXERCISES

Read-through questions

Dy f gives the rate of change of a in the direction__b . magnitude|gradf|is p . For f =x?+ y? the gradient points
It can be computed from the two derivatives ¢ in the g and the slope in that steepest direction i .
special directions__d . In terms of uy,u; the formula is

Dyf=_e . Thisis a__f product ofu with the vector
g , which is called the__h . For the linear function
f=ax+by, the gradient is gragb=__i _ and the directional The gradient of f(x,y.z) is _s . This is different
derivative isDyf=_ | -k . from the gradient on the surfacé(x,y,z)=0, which is
—(Fx/Fz)i+__t . Traveling with velocityv on a curved path,
The gradient V f =(fx,fy) is not a vector in __| the rate of change off is df/dt=__u . When the tangent
dimensions, it is a vector in the_ m . It is perpendicular to direction is T, the slope off is df/ds=__v__. In a straight

the __n __lines. It points in the direction of o climb. Its directionu,df/ds isthe sameas w__.
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Compute grad f, then Dy f = (gradf’) -u, then D f at P. () The gradient is thexy projection of and also
of . The projection oL points along the .
1 f(xy)=x2—y? u=(v3/2.1/2) P =(1,0) projection oF poinis glond
19 Compute theN,U,L vectors for f =1—x+ y and draw them
2 flx.y)=3x+4y+7 u=@/5.4/5 P=0.7/2) ¢4 point on the flat surface.
3 f(x,y)=e*cosy u=(0.1 P=0.7/2) 5 Compute theN,U,L for x2+y2 —z2 =0 and draw them at
4 f(x,y)=y10 u=(0,—1) P=(,-1) a typical point on the cone.

With gravity in the negative z direction, in what direction —U

5 f(x.y)=distance tq0.3) u=(1.0)  P=(11) will water flow down the roofs 2124

Find grad f = (fx, fy, fz) for the functions 6-8 from physics ~ 21 z =2x (flat roof) 22 z=4x -3y (flat roof)
T2 2 /22
6 1//x2+ y2 +z2 (point source at the origin) 28 z=+/1—x2—y(sphere) 24 z=—1/x*+y=(cone)

7 In(x2+ y?) (line source along axis) 25 Choose two functiong'(x, y) that depend only on +2y. Their
8 1)\ =12+ 02422 —1/x/(x + )2 + 72 122 (dipole) gradients at1, 1) are in the direction . Their level curves are

9 For f=3x2+2y? find the steepest direction and the level

I : P 26 The level curve of f =y/x through (1,1) is . The
direction at(1,2). ComputeDy, f in those directions. ) . }
(1.2) P uf direction of the gradient must be . Check gradf.

10 Example2 claimed thatf = 3x +y + 1 has steepest slopg10. 27 Grad f is perpendicular t@i+]j with length1, and grad is
Maximize Dy f = 3u1 +1us = 3u;s + /1 w2 parallel to2i +j with length5. Find grad f, gradg, f, andg.
u - - - 1°

. . 28 True or false:
11 True or false, when f(x, y) is any smooth function:

(a) If we know gradf’, we know f.

(b) The linex =y =—z is perpendicular to the plane=
xX+y.

(c) The gradient of = x + y lies along that line.

(a) Thereis adirection at P in which Dy f =0.

(b) There is a direction in which D, f = grad f.

(c) There is a direction in which Dy f = 1.

(d) The gradient off (x)g(x) equalsggrad f + f gradg.
29 Write down the level direction for 6 = tan—! (y/x) at the point

12 What is the gradient off(x)? (One component only.) What(3 4). Then compute graé and checkDy0 = 0.
are the two possible directionsand the derivatived,, f? What

is the normal vectoN to the curvey = f(x)’) (TWO ComponentS.) 30 On a circle around the Origin, distance 4ss =rA6. Then
d6/ds = 1/r. Verify by computing grad andT and(gradf)-T.

In 13-16 find the direction u in which f increases fastest at 31 Atthe point(2,1,6) on the mountain = 9— x — y2, which way
P =(1,2). How fast? is up? On the roof = x + 2y + 2, which way is down? The roof is

to the mountain.
13 f(x,y)=ax+by 14 f(x,y)= smallerof2x andy

. 2 2
32 Around the point(1,—2) the temperaturd’ =e¢~*" ~7Y" has
— pX—Yy — /5 _y2_2 . . .
15 flx.y)=e 16 fx.y) 5—x* —y* (careful) AT =~ Ax + Ay. In what directionu does it get hot

fastest?

17 (Looking ahead) At a point where(x,y) is a maximum,
what is gradf? Describe the level curve containing the maximurg8 Figure A shows level curves af= f(x,y).

point (x, y). (a) Estimate the direction and length of grficat P, Q. R.
18 (a) Check by dot products that the normal and uphill (b) Locate two points where graflis parallel toi +j.
and level directions on the graph are perpendiculbr= (c) Where islgrad f | largest? Where is it smallest?
(e Sy =D U= (fx Sy 2 +fy2)"- =(fy,=/x.0). (d) What is your estimate afmax on this figure?
(b) Nis _ tothe tangent pland) and L are (e) On the straight line fron® to R, describez and estimate

to the tangent plane. its maximum.
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34 A quadratic functionax?+by24cx+dy has the gradients 42
shown in Figure B. Estimate, b,c,d and sketch two level curves.

35 The level curves off (x, y) are circles aroundl, 1). The curve
f =c hasradiugc. What is f? What is gradf at(0,0)?

36 Suppose grad’ is tangent to the hyperbolasy = constant

in Figure C. Draw three level curves of(x,y). Is |gradf|

Partial Derivatives

| 2 S E P i
f=x X =Ce0S2t y=sin2¢
43 f=x2—y2 x=x0+2t y=yo+3t
44 f=xy x=t2+1 y=3
45 f=lInxyz x=él y=e? z=e"!
46 f=2x2+43y2+z2 x=t y=t? z=13

larger atP or Q? Is|grad f'| constant along the hyperbolas? Choose

a function that could bg': x2 + y2,x% —y2, xy,x2y2.

37 Repeat Problem36, if grad f is perpendicular to the
hyperbolas in Figure C.

38 If f=0,1,2 atthe points(0,1),(1,0),(2,1), estimate gradf
by assumingf = Ax+ By +C.
39 What functions have the following gradients?

@ 2x+y.x) (b) (e, —e*7Y) (c) (y,—x) (careful)

40 Draw level curves off (x,y) if grad f = (y, x).

In 41-46 find the velocity v and the tangent vector T Then
compute the rate of changedf/dtr=grad f-v and the slope
df/ds=gradf -T.

—2

41 f=x2+y? x=t

47 (a) Find df/ds ard df/dt for the roller-coasterf =xy
along the pathx = cos2¢, y =sin2t. (b) Change tof = x2 + y2
and explain why the slope is zero.

48 The distance D from (x,y) to (1,2) has D?=
(x —1)2+(y —2)2. Show thatoD/dx = (x —1)/D anddD/dy =
(y—2)/D and|gradD|=1. The graph ofD(x,y) is a with
its vertex at .

49 If f=1 and gradf =(2,3) at the point (4,5), find the
tangent plane a@,5). If f is a linear function, findf (x, y).

50 Define the derivative off (x, y) in the directionu = (u,u») at
the pointP = (xg, yo). WhatisA f (approximately)? What i®,, f
(exactly)?

51 The slope off along a level curve idf/ds = =0. This
says that gradf is perpendicular to the vector in the level
direction.
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I 13.5 The Chain Rule N

Calculus goes back and forth between solving problems and getting ready for
harder problems. The first isdpplication” the second looks like “theor¥yIf we
minimize f to save time or money or energy, that is an application. If we don't take
derivatives to find the minimum—maybe becaysés a function of other functions,

and we don’t have a chain rule—then it is time for more theory. The chain rule is
a fundamental working tool, becaugdg(x)) appears all the time in applications.

So do f(g(x,y)) and f(x(¢), y(¢)) and worse. We have to know their derivatives.
Otherwise calculus can’t continue with the applications.

You may instinctively say: Don’t bother with the theory, just teach me the formulas.
That is not possible. You now regard the derivativesof2x as a trivial problem,
unworthy of an answer. That was not always so. Before the chain rule, the slopes of
sin2x andsin x2 andsir? x2 were hard to compute from f/Ax. We are now at
the same point foy (x, y). We know themeaningf 0 f/0x, butif f = rtanf and
x =rcosf andy =rsinf, we need a way teomputed f/0x. A little theory is
unavoidable, if the problem-solving part of calculus is to keep going.

To repeatThe chain rule applies to a function of a functionin one variable
that wasf(g(x)). With two variables there are more possibilities:

1 f(2) withz = g(x,y) Find?d f/ox andd f /0y
2. f(x,y) withx=x(t),y=y(t) Finddf/dt
3. f(x,y) withx=x(t,u),y=y(,u) Find o f/ot and?d f/ou

All derivatives are assumed continuous. More exactly, itiut derivatives like
0g/0x anddx/dt anddx /0u are continuous. Then the output derivatives i€/ 0x
anddf/dt andd f/du will be continuous from the chain rule. We avoid points like
r =0 in polar coordinates—whei® /0x = x/r has a division by zero.

A Typical Problem Start with a function ofc andy, for examplex timesy. Thus
f(x,y)=xy.Changex torcosé andy tor siné. The function become@ cosf)
times (rsin). We want its derivatives with respect toand . First we have to
decide on itsqame
To be correct, we should not reuse the letfeThe new function can bé’:
f(x,y)=xy f(rcosé,rsing)=(rcosd)(rsinbd) = F(r,0).

Why not call it f(r, 0)? Because strictly speaking thatisimes#! If we follow the
rules, thenf(x,y) is xy and f(r,0) should ber6. The new functionF' does the
right thing—it multiplies(r cos@)(r sin8). But in many cases, the rules get bent and
the letterF is changed back tg.

This crime has already occurred. The end of the last page ought t6 54 .
Instead the printer pu f//0t. The purpose of the chain rule is to find derivatives in
the new variables andu (or r and#). In our example we warthe derivative ofF
with respect tar. Here is the chain rule:

o ﬁﬁ + io_y = (y)(cosH) + (x)(sinf) = 2r sinf cosh.

or  Ox or 0Oy or
| substitutedr sin® andr cosé for y andx. You immediately check the answer:
F(r,0) =r?cosfsinf does lead t@ F /dr = 2r cosf sinf. The derivative is cor-
rect. The only incorrect thing—but we do it anyway—is to wrffanstead ofF.
of of ox 0f Oy

Question What isﬁ_G? Answer ltis ox 00 + 30_9
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13 Partial Derivatives

THE DERIVATIVES OF f(g(x,y))

Hereg depends orx and y, and /' depends org. Supposex moves bydx, while y
stays constant. Thenmoves bylg = (0g/0x)dx.Wheng changesf also changes:
df=(df/dg)dg.Now substitute for/g to make the chainlf = (df/dg)(0g/0x)dx.
This is the first rule:

6f_df6_g and 6_f_df6_g

13G  Chain rule for f(g(x,y)): 9% = dg Ox 2y ~dg 9y’

1)

EXAMPLE 1 Every f(x + cy) satisfies the 1-way wave equation /0y = co f/0x.

The inside function ig = x + cy. The outside function can be anything, or sing
oref . The composite function iéc + cy)? orsin(x 4 cy) ore* ¢ In each separate
case we could check thatf/dy = ¢d f//0x. The chain rule produces this equation
in all cases at once, froidyg /0x =1 anddg/dy = c:

0_f=ﬁ5_g=1ﬂ and 0_f=ﬁ0_g:cd_f S0 a—fzca—f. (2

Ox dgox dg 0y dgady dg oy Ox
This is importantd f/0y = ¢0 f/0x is our first example of partial differential
equation The unknownf'(x, y) has two variables. Two partial derivatives enter the
equation.

Up to now we have worked witlly /d¢ and ordinary differential equations
The independent variable was tiroe space (and only one dimension in space). For
partial differential equations the variables are timed space (possibly several
dimensions in space). The great equations of mathematical physics—heat equation,
wave equation, Laplace’s equation—are partial differential equations.

Notice how the chain rule applies t6 =sinxy. Its x derivative isy cosxy. A
patient reader would check thétis sin g andg is xy and fx is f; gx. Probably you
are not so patient—you know the derivativesifi xy. Therefore we pass quickly to
the next chain rule. Its outside function dependswainside functions, and each of
those depends anWe wantdf/dt.

THE DERIVATIVE OF £ (x(¢), y(¢))

Before the formula, here is the idea. Suppos#anges byAt. That affectsx and
y; they change byAx and Ay. There is a domino effect oif’; it changes byA f.
Tracing backwards,

of of

dx dy
Af~=A —Ay and Axx—At and Ay=x-—At.
/ ox Xt oy Y U iy

Substitute the last two into the first, connectig’ to Az. Then letAr — 0:

df _0f dx  of dv

13H Chainrule for f(x(1),y(1): —-= = dy dt’

©)

This is close to the one-variable rude /dx = (dz/dy)(dy/dx). There we could
“cancel’dy. (We actually canceledy in (Az/Ay)(Ay/Ax), and then approached
the limit.) Now At affectsA f in two ways, throughr and througty. The chain rule
has two termsif we cancel in(d f/0x)(dx/dt) we only get one of the terms!
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We mention again that the true name fx (¢), y(¢)) is F(¢) not f(¢). For f(x,y,z)
the rule has three termgi x; + fy y: + f22¢ is f; (or betterd F/dt.)

EXAMPLE 2 How quickly does the temperature change when you drive toda8ri

Suppose the Midwest is &0°F and Florida is aB0°F. Going 1000 miles south
increases the temperatuféx, y) by 50°, or .05 degrees per mile. Driving straight
south at70 miles per hour, the rate of increase(i85)(70) = 3.5 degrees per hour.
Note how(degreegmile) times(miles/hour) equals(degreeghour). Thatis the
ordinary chainrulddf/dx)(dx/dt) = (df /dt)—thereis noy variable going south.
If the road goes southeast, the temperaturg is 30 +.05x +.01y. Now x (¢) is
distance south angl(z) is distance east. What i /dt if the speed is still0?

Solution af = 6_fd_x + 6_f dy 05B + 01— ~ 3 degreeghour.

dt  Ox dt 0Oy dt V2 NG
In reality there is another term. The temperature also depdingistly onz, because
of night and day. The factaroq2x¢/24) has a period 024 hours, and it brings an
extra term into the chain rule:
df 0fdx dfd
f_of L9 0f dy L9 of

For f(x,y.t) the chainrule is— =

. 4
di ~ ox dt Oy dt ot @)

This is thetotal derivativedf/dt, from all causes. Changes i y, ¢ all affect f.
The partial derivatived f// 0t is only one part ofdf/dt. (Note thatdt/dt =1.) If
night and day add2 cog2n¢/24) to f, the extratermi® f/0t = —w sin(2xt /24).
At nightfall that is—m degrees per hour. You have to drive faster tfi@mph to get
warm.

SECOND DERIVATIVES

What isd? f/dt?? We need the derivative ¢#), which is painful. It is like acceler-

ation in Chapter 12, with many terms. So start with movement in a straight line.
Supposer = xg +1c0s6 andy = yo+1¢sinf. We are moving at the fixed angle

6, with speed! . The derivatives are, = cosf andy, = sinf andcos’ 6 + sir’ § =

1. Thendf/dt is immediate from the chain rule:

fi = faxi+ fyyi = fx €OSO + f, sinb. (5)
For the second derivativé,, apply this rule tof;. Then f;; is
(f1)x€OSO + (f;)y SINO = (frx COSO + fyx SINO) COSO + ( fry COSH + fy SINO) SING.

Collectterms:  f;; = frx COS™ 0 +2 fy,, €OSO SING + £, Sin* 6. (6)

In polar coordinates changeto r. When we move in the direction, 9 is fixed.
Equation(6) gives f, from fxx, fxy, fyy. Second derivatives on curved paths (with
new terms from the curving) are saved for the exercises.

EXAMPLE 3 If fxx, fxy, fyy are all continuous and bounded B, find a bound
on f;;. This is the second derivative along any line.

Solution Equation(6) gives| f;;| < M co$ 6 + M sin26 + M sir* § < 2M. This
upper boun@ M was needed in equation 13.3.14, for the error in linear approxima-
tion.
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THE DERIVATIVES OF f(x(t,u), y(t,u))

Suppose there are two inside functionand y, each depending onandu. When
t moves,x andy both moveidx = x,dt anddy = y,dt. Thendx anddy force a
changeinf: df = fxdx+ f,dy. The chain rule fo© f/ 0t is no surprise:

131 Chain rule for f(x (z,u), y(t,u)) : of _9f ox + 0f 9y

ot  ox ot oy ot Q)

This rule hasd/ 0t instead ofd /dt, because of the extra variahle The symbols
remind us thaw is constant. Similarly is constant while: moves, and there is a
second chain rule fo? f/ou: fu = fxXu + fyYu.

EXAMPLE 4 In polar coordinates fingly and fyg. Startfromf(x, y) = f(r cosd,rsin@).
The chain rule uses thederivatives ofx andy:

of afox afdy (of\, of
=t oy (a) o (5 ) reosn @

The secondd derivative is harder, becaug¢8) has four terms that depend ¢h
Apply the chain rule to the first termd f//0x. It is a function ofx and y, and x
andy are functions ob:

0 (U2 (AN, 2 (AN
00 (6x) ~ Ox (ax) 00 + 2 (0x) 20 = fxx(—rsin@)+ fx,(r cosh).
The6 derivative ofd f//dy is similar. So apply the product rule ¢8):

Joo = [fxx(—r sin0) + fry(r cosh)](—r sinb) + fr(—r cosh)
+[fyx(—r sin@) + f,,(r cosh)](r costd) + f,(—r sinh). (9)

This formula is not attractive. In mathematics, a messy formula is almost always a
signal of asking the wrong question. In fact the combinaifep+ f,, is much more
special than the separate derivatives. We might hope the sanfg fer fyg, but di-
mensionally that is impossible—sineés a length and is an angle. The dimensions

of fxx andfy, are matched by, and f, /r and fye/r*. We could even hope that

1 1
fxx"’fyy :frr+}_‘fr+r_2f99- (10)

This equation is true. Adb) + (6) + (9) with ¢ changed to-. Laplaces equation
fxx + fyy = 0is now expressed in polar coordinates;, + f,/r + fee/r> =0.

A PARADOX

Before leaving polar coordinates there is one more questignds back t@r/ox,
which was practically the first example of partial derivatives:

0 0

L= 24y =x/y/2 2 =x/r. (11)
Ox Ox

My problem is this. We know that is r cosf. Sox/r on the right side i£0s6. On

the other hand is x/cos6f. Sodr/0x is alsol/cosf. How can dr/ox lead to

cosé one way andl / cos6 the other way
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I will admit that this cost me a sleepless night. There must bexatapation—
we cannot end witltosf = 1/ cosé. This paradox brings a new respect for partial
derivatives. May | tell you what | finally noticed? You could cover up the next
paragraph and think about the puzzle first.

The key to partial derivatives is to askhich variable is held constart In
equation(11), y is constant. But when = x/ cosé gavedr/0x = 1/cos@, 6§ was
constant. In both cases we changand look at the effect on. The movement is
on a horizontal line (constant) or on a radial line (consta). Figure 13.15 shows
the difference.

Remark This example shows that/0x is different from1/(dx/0r). The neat
formula (0r/0x)(0x/0r) =1 is not generally true. May | tell you what takes its
place? We have to includ@r/dy)(0dy/dr). With two variablesxy and two vari-
ablesrf, we need by 2 matrices! Section 14.4 gives the details:

or/ox or/dy || ox/or 0x/00 (1o
00/0x 00/dy ||oy/or oyoo | |0 1|

~+—

v v+ dy X Y+ dx

Fig. 13.15 dr =dx cosf wheny is constantdr = dx/cosf wheng is constant.

NON-INDEPENDENT VARIABLES

This paradox points to a serious problem. In computing partiavdtives off (x, y, z),

we assumed that, y, z were independent. Up to now,could move whiley andz

were fixed. In physics and chemistry and economics that may not be possible. If there
is a relation between, y, z, thenx can’t move by itself.

EXAMPLE 5 The gas lawPV =nRT relates pressure to volume and tempera-
ture. P,V,T are not independenWhat is the meaning ofV /0 P? Does it equal
1/(0P/0V)?

Those questions have no answers, until we say what is held constant. In the paradox,

Or/0x had one meaning for fixeg and another meaning for fixetl To indicate
what is held constant, use an extra subscrijpibt denoting a derivative):

(Or/0x), = cosé (0r/0x)g =1/ cosb. (12)

(0.f/0P)y has constantvolume arid / /0 P ) has constant temperature. The usual
0 f/0P has both andT constant. But then the gas law won't let us chafge

EXAMPLE 6 Let f =3x+2y+z. Computed f/0x onthe planeg =4x + y.
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Solution 1

13 Partial Derivatives

Think of x andy as independent. Replaceby 4x + y:

f=3x+2y+(4x+y) so (0f/ox)y="T.

Solution 2

Keepx andy independent. Deal with by the chain rule:

(0f/0x)y =0 f/0x +(0f)0z)(0z/0x) =3+ (1)(4) =T.

Solution 3

(different) Make x and z independent. Thep = z —4x:

(0f/0x)z =0f/0x+(0f/0y)(0y/0x) =3+ (2)(—4) = —5.

Without a subscript /0x means: Take the derivative the usual way. The answer
is 0 f/0x =3, wheny andz don’t move. But on the plane= 4x + y, one of them
must moveB is only part of the total answer, which(8 f /0x), =7or (0 f/0x), =

—5.

Here is the geometrical meaning. We are on the plasetx + y. The derivative
(0 f/0x), movesx but noty. To stay on the plane]z is 4dx. The change inf =
3x+2y+zisdf =3dx+0+dz="7dx.

EXAMPLE 7 Onthe world linex? + y2 +z2 = ¢2find (0 f /0y )x - for f = xyzt.

The subscriptsc, z mean thatx andz are fixed. The chain rule skip3f/dx and

of/oz:

(0f)0y)x,z=0f/0y+(0f/0t)(0t/dy)=xzt+(xyz)(y/t). Whyy/t?

EXAMPLE 8 FromthelawP V = T, compute the produ¢® P /0V ) (0V/0T)p(0T/OP)y.

Any intelligent person cancel@V'’s, 0T's, anddP’s to getl. The right answer is

(OP/OV)r =—T/V?

(OV/oT)p =1/P

(0T /OP)y = V.

The productis—T/PV. This is —1 not 41! The chain rule is tricky (Probler2).

EXAMPLE 9

If F(x,y)=0thenFy+F,y,=0s0dy/dx =—Fx/F,.

Implicit differentiation was used in Chapter 4. The chain explains it:

(13)

13.5 EXERCISES

Read-through questions

The chain rule applies to a function of a a . The x
derivative of f(g(x,y)) is df/ox=__b . The y derivative
is0f/0y=_c . The examplef =(x+y)" hasg=_d .
Because 0g/0x =0g/0y we know that__e =_f . This

g differential equation is satisfied by any functionxof y.

Along a path, the derivative of (x(¢), y(t)) isdf/dt =__h .
The derivative of f(x(¢),y(t),z(¢)) is __i_ . If f=xy then the
chainrule gives/f/dt = j .Thatisthe same asthe k _rule!

. The chain rule for
derivative Dy, f.

When x =uyt andy =u5t the path is__|

f(x,y)givesdf/dt =__m . Thatisthe n

The chain rule for f(x(t,u),y(t,u)) is 0f/ot=__o0
We don't write df/dt because p . If x=rcosf and
y=rsinf, the variables t,u change to [o} In this
case Of/or=r and 0f/00=__s That connects the
derivatives in __t and u

coordinates. The difference
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betweendr/ox = x/r and dr/0x =1/cosé is because v __is 20 If a rocket has speedx/dt =6 down range andly/dt =2t

constant in the firstand_w__is constant in the second. upward, how fast is it moving away from the launch point@0)?
With a relation likexyz =1, the three variables are x _ How fastis the anglé changing, if tarf =y /x?

independent. The derivativedf/dx)y and (0f/0x): and 21 |f a train approaches a crossing & mph and a car

(0f/ox)ymean_y and_z and__A . Forf=x*+y%+ approaches (at right angles) 4 mph, how fast are they coming

z2 withxyz = 1, we compute(d f/0x); fromthe chainrule_B . together? (a) Assume they are bai miles from the crossing.
Inthat ruledz/ox =__C __ from the relationcyz = 1. (b) Assume they are going to hit.

Find fx and f in Problems 1-4. What equation connects thefh 22 In Example 2 does the temperature increase faster if you
drive due south &t0 mph or southeast & mph?

=

S(x,y)=sin(x +cy) 2 f(x,y)=(ax+by)!0 23 On the linex =u1t,y =ust,z =u3t, what combination of
Flx,y)=e*+7y 4 flx,y)=In(x+7y) Jx. fy. [z givesdf/dt? This is thedirectional derivativein 3D.

w

. . L. 24 On the same linex =u1t,y =ust,z=ust, find a formula
3
5 Find both terms in the derivative of (g(x(7), y(¢))". ford2 f/dt?. Applyitto f = xyz.

6 If f(x,y)=xy and x=u(t) and y =v(t), what isdf/dt? _ ' _

Probably all other rules for derivatives follow from the chain ruleaidiozrért(xéi;l;i; fh:§i;frérélr?geaf/6t anddf /dt when.x =21
= 2 =z — =17

7 The step function f(x) is zero for x <0 and one for 26 If z=(x+y)* thenx = v’z —y. Does(dz/0x)(9x/0z) = 1°

x> 0. Graph f(x) and g(x) = f(x+2) andh(x)= f(x+4). If 27 Supposex; =t and y; =2¢, not constant as in (5-6).
f(x+2r) represents a wall of water (a tidal wave), which waffor f(x,y) find f; and f;;. The answer involves
is it moving and how fast? S fys fxxs fxys fyy-

8 The wave equation ig;; = c2 fxx. (@) Show that(x +ct)"” is 28 Supposer; =t andy; =12. For f = (x + )3 find f; and then
a solution. (b) FindC different fromc so that(x + Ct)" is also a f;; from the chain rule.

solution. 29 Derived f/dr = (0.f/0x)cosd + (@ f/dy)sin 8 from the chain
9 If f=sin(x—1), draw two lines in thext plane along which rule. Why do we takéx/or as co®) and notl/cosf?

f_ =0. Between t_hose lines sketch a sine wave. Skiing on top of tgée Compute fex for f(x.y)=(ax+by+c)1% If x=¢ and
sine wave, what is your speelt /dt?
y =t computef;;. True or false(0 f/0x)(0x/ot) = 0.f/ot.
31 Show tha9?r/dx? = y2/r3 in two ways:
(1) Find thex derivative ofdr/dx = x /A/x2 + y2
(2) Find thex derivative ofdr/ox = x/r by the chain rule.

10 If you float atx =0 in Problem9, do you go up first or down
first? At timer = 4 what is your height and upward velocity?

11 Laplace’s equationis fxx+ fyy =0. Show from the chain
rule that any functionf(x +iy) satisfies this equation if?> =
—1. Check that f = (x+iy)? and its real part and 32 Reversinge andy in Problen31 givesry, = x2/r3. But show
its imaginary part all satisfy Laplace’s equation. thatryy = —xy/r3.

12 Equation (10) gave the polar fornf, + f, /r + fop/r?=0 33 Ifsinz=x+y find (dz/dx)y in two ways:

of Laplace’s equation. (a) Check th#t=r2¢2¢ and its real part (1) Writez =sin~1(x + y) and compute its derivative.

r2 cos26 and its imaginary pant? sin26 all satisfy Laplace’s equa- (2) Take x derivatives of sit=x+y. Verify that these
tion. (b) Show from the chain rule that any functigiare’?) satisfies answers, explicit and implicit, are equal.

this equation if2 = —1. _ , ,
34 By direct computation find f, and fxx and fxy for

In Problems 13-18 finddf/dt from the chain rule (3). f=nx2+y2
13 f=x2+y2 x=t,y=12 35 Find a formula for 62 f/0rof in terms of thex and y

derivatives off (x, y).

14 f=A/x24y2, x=1y=1?

36 Supposez = f(x,y) is solved forx to give x =g(y,z). Is it

15 f=xy.x=1-vi,y=1+1 true thatdz /dx = 1/(dx/dz)? Test on examples.
— N 4 — t
16 f=x/y.x=e'y=2e 37 Supposez =¢*Y and thereforex = (Inz)/y. Is it true or not
17 f = In(x -|—y)7 X = et’y =e! that(az/ax) = 1/(6)6/62)9
18 f=x*x=ty=t 38 If x=x(t,u,v) and y = y(¢,u,v) andz = z(¢,u,v), find thet

19 If a cone grows in height bylh/dt =1 and in radius by derivative of f(x, y,z).

dr/dt =2, starting from zero, how fast is its volume growing a89 Thet derivative of f(x(¢,u), y(¢,u)) is in equation (7). What is
t=37? Jte?
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40 (@) For f=x2+y2+z2 compute 0f/dx (no subscript, 45 (a) Forf =r2sin?6 find fy and f,.
x,y,z allindependent).
(b) When there is a further relation=x2+ y2, use it to (b) Forf =x24y2find £, and fy.
removez and computéd f/ox) . . . ] ) )
(c) Compute (9//dx), using the chain rule(df/ox)+ 46 On the curve sin+siny =0, find dy/dx andd?y/dx” by
(0f/02)(0z/0x). implicit differentiation.

(d) Why doesn't that chain rule contaid f/0y)(dy/0x)? 47 (horrible) Supposefyx + fyy =0. If x=u+v andy =u—v
41 For f =ax+by onthe plane =3x + 5y, find (0 f/0x); and and f(x,y) = g(u,v), find g, andg,. Show thatgy, + gyy =0.

(0f/0x)y and(0f/0z)x. _ _
48 A function has corstant returns to scaleif f(cx,cy)=

42 The gas law in physics iPV =nRT or a more general Wh N )
. A ) , en x and y are doubled so aref =+/
relation F(P,V,T)=0. Show that the three derivatives mcf(x Y) N Y / Xty

. . . T and f=.,/xy. In economics , inpybutput is constant. In
5;7?5'_?_ g;%g?g;g%%f'f&l' First find (9P /9V)r from mathematicsf' is homogeneousf degree one.
43 If Problem 42 changes to four variables related by ProVe thatxdf/ox+yof/oy = f(x.y). by computing thec

F(x,y,z,t)=0, what is the corresponding product of fomdlerlvatlv.e atc = 1. Test this equation on the two examples and
derivatives? find a third example.

44 Supposex =t +u andy =tu. Find ther andu derivatives of 49 True or false The directional derivative off(r,6) in the
f(x,y). Check whenf(x,y) = x2—2y. direction ofug is 0 f/06.
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B 3.6 Maxima, Minima, and Saddle Points |

The outstanding equation of differential calculus is also the simpig§tdx = 0.

The slope is zero and the tangent line is horizontal. Most likely we are at the top or
bottom of the graph—a maximum or a minimum. This is the point that the engineer
or manager or scientist or investor is looking for—maximum stress or production
or velocity or profit. With more variables irf (x,y) and f(x, y,z), the problem
becomes more realistic. The question still isow to locate the maximum and
minimum?

The answer is in theartial derivatives When the graph is level, they are zero.
Deriving the equationg, =0 and f, =0 is pure mathematics and pure pleasure.
Applying them is the serious part. We watch out for saddle points, and also for a
minimum at a boundary point—this section takes extra time. Remember the steps for
f(x) in one-variable calculus:

1. The leading candidates astationarypoints (wherelf/dx = 0).
2. The other candidates areugh points(no derivative) ané&ndpoints(a or b).
3. Maximum vs. minimum is decided by the sign of thecond derivative

In two dimensions, a stationary point requite/dx = 0 and?d f/dy = 0. The tan-
gentline becomes a tangent plane. The endpaiatsdb are replaced by boundary
curve In practice boundaries contain abd(#6 of the minima and0% of the work.
Finally there are three second derivativBs;, fxy, and f,,. They tell how the
graph bends away from the tangent plane—up @timmum, down at anaximum,
both ways at @addle pointThis will be determined by comparindix)( fy,) with

(fey)?.

STATIONARY POINT — HORIZONTAL TANGENT — ZERO DERIVATIVES

Supposef” hasa minimum at the pointyy, yo). This may be ambsolute minimum
or only alocal minimum. In both cases(xo, y0) < f(x, y) near the point. For an
absolute minimum, this inequality holds whereyeis defined. For a local minimum,
the inequality can fail far away frortxo, yo). The bottom of your foot is an absolute
minimum, the end of your finger is a local minimum. We assume for now(thatyg)
is aninterior point of the domain of f. At a boundary point, we cannot expect a
horizontal tangent and zero derivatives.

Main conclusion: At a minimum or maximum (absolute or local) a nonzero
derivative is impossible. The tangent plane would tilt. In some direcfiowould
decrease. Note that the minimypintis (xo, yo), and the minimunvalueis f(xo, yo).

13J If derivatives exist at an interior minimum or maximum, they zeeo:
0f/ox=0 and 0f/0y=0 (togetherthisisggradf =0). (1)

Fora function f (x, y, z) of three variables, add the third equati®fi/ 0z = 0.

The reasoning goes back to the one-variable case. That is because we look along
the linesx = x¢ andy = yo. The minimum of f(x, y) is at the point where the lines
meet. So this is also the minimuahong each line separately

Moving in the x direction alongy = yg, we find ¢ f/0x = 0. Moving in the y
direction,d /0y = 0 at the same poiniThe slope in every direction is zerdn
other words gragf = 0.
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Graphically,(xg, yo) is the low point of the surface= f(x, y). Both cross sec-
tions in Figure 13.16 touch bottom. The phrase “if derivatives exist” rules out the
vertex of a cone, which is@ugh point The absolute valu¢g = |x| has a minimum
withoutdf/dx = 0, and so does the distange= r. The rough point ig0,0).

T -"-_-_--//
- = -
3 ’
f=x4xy+y"—a-y+1 [ }

™ =i NP i = -y ) _]_
- - gy L /.tﬁxud‘u 3

i r -
-\.. 1 ] #

. —1.*-‘.-‘ -
v ‘L=0uﬂf,-0
horizontal tangent plane

. I
y fixed at 3

I
)
3

X

Fig. 13.16 df/ox =0anddf/dy =0 at the minimum. Quadrati¢’ has linear derivatives.

EXAMPLE 1 Minimize the quadrati¢f(x,y) =x%2+xy+y?—x—y +1.
To locate the minimum (or maximum), s¢t = 0 and f, = 0:

Jx=2x+y—1=0 and f,=x4+2y—1=0. 2

Notice what's importantThere are two equations for two unknowns and y.
Since f is quadratic, the equations are linear. Their solutiongis= %,yo = % (the
stationary point). This is actually a minimum, but to prove that you need to read
further.

The constanil affects the minimum valugf = %—but not the minimum point.
The graph shifts up by. The linear terms-x — y affect f; and f,. They move the
minimum away from(0, 0). The quadratic pant? + xy + y2 makes the surface curve
upwards. Without that curving part, a plane has its minimum and maximum at
boundary points.

EXAMPLE 2 (Steiner’s problem Find the point that is nearest to three given
points

This example is worth your attention. We are locating an afrplosse to three cities.
Or we are choosing a house close to three jobs. The problem is to get as near as
possible to the corners of a triangle. The best point depends on the meaniregpof “

The distance to the first cornéx, y,) is di = \/(x —x1)2+(y —y1)? The
distances to the other cornets;, y») and (x3, y3) ared, andds;. Depending on
whether cost equalslistancg or (distance? or (distance?, our problem will be:

Minimize di+d>+ds or di+d;+d; oreven df +dy+di.
The second problem is the easiest, wigrand d7 and d? are quadratics:
Sy =@ =x1)?+ (= y1)? +(x =x2)° + (¥ —y2)* + (x = x3)* + (y = y3)?
0f/0x =2[x —x1+x—x2+x—x3]=0 0f/0y=2[y—y1+y—y2+y—ys]=0.

Solving 0f/0x =0 gives x = 3(x1 +x2+x3). Then 0f/dy =0 gives y = 3
(y1+ y2+ y3). The best point is theentroid of the triangle(Figure 13.17a). It is
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the nearest point to the corners when the cogdistance?. Note how squaring
makes the derivatives linedreast squaresiominates an enormous part of applied
mathematics.

¥y, ¥4}

1= (X, + Xy + 413

LR B e T T

Fig. 13.17  The centroid minimize®? + d2 + d?. The Steiner point minimizes
di+dr+ds.

The real ‘Steiner problerhis to minimize f(x, y) = d; + d»> + d3. We are laying
down roads from the corners, with cost proportional to length. The equafioas0)
and f, =0 look complicated because of square roots. But the nearest point in
Figure 13.17b has a remarkable property, which you will appreciate.

Calculus takes derivatives @f = (x —x1)? + (y — y1). Thex derivative leaves
2d,1(0d1/0x) =2(x — x1). Divide both sides b@d; :

0d1 X —X1 6d1 y—n ()C—Xl y_yl)
% _ g & ddy = (Z=5L Y20 (3
Ox d, an dy d, % grada d, d; ®)

This gradient is a unit vectorThe sum ofx — x1)2/d? and(y — y1)?/d? isd?/d} =
1. This was already in Section 13.4: Distance increases with diapeay from the
center. The gradient af; (call it u;) is a unit vector from the center poifity, y1).

Similarly the gradients af, andds are unit vectorsl, andus. They point directly
away from the other corners of the triangle. The total cogi(is, y) = d; + d> + d,
so we add the gradients. The equatigfis= 0 and f;, = 0 combine into the vector
equation

grad f = u; 4+ Uy + uz = 0 at the minimum

The three unit vectors add to zertoving away from one corner brings us closer
to another. The nearest point to the three corners is where those movements cancel.
This is the meaning of “grag’ = 0 at the minimum.”

It is unusual for three unit vectors to add to zero—this can only happen in one
way. The three directions must form angles off20°. The best point has this
property, which is repeated in Figure 13.18a. The unit vectors cancel each other. At
the “Steiner point,” the roads to the corners mak®° angles. This optimal point
solves the problem, except for one more possibility.

583
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(X3 ¥y)

Fig. 13.18 Gradientsu; +us +u3 =0 for 120° angles. Corner wins at wide angleour
corners In this case two branchpoints are better—3@i°.

The other possibility is a minimum atraugh point The graph of the distance
function d;(x,y) is a cone. It has a sharp point at the certer, y;). All three
corners of the triangle are rough points thr+ d, + d3, so all of them are possible
minimizers.

Suppose the angle at a corner exceetl¥)°. Then there is no Steiner point.
Inside the triangle, the angle would become even wider. The best point must be a
rough point—one of the corners. The winner is the corner with the wide angle. In the
figure that meand; = 0. Then the suml, + d3 comes from the two shortest edges.

Summary Thesolutionis atal20° point or a wide-angle corner. That is the theory.
The real problem is to compute the Steiner point—which | hopewidulo.

Remark1l Steiner's problem fofour pointsis surprising. We don’t minimize

dy + d, + ds5 + ds—there is a better problem. Connect the four points with roads,
minimizing their total lengthand allow the roads to branchA typical solution is

in Figure 13.18c. The angles at the branch pointsla®. There are at most two
branch points (two less than the number of corners).

Remark2 For other powerg, the cost iSd;)? + (d2)? + (d3)?. Thex derivative
is

0f/0x = p(di)?2(x —x1) + p(d2)? 2 (x —x2) + p(d1)? 2 (x —x3).  (4)

The key equations are stifl f//0x =0 and 0 f/0y = 0. Solving them requires a
computer and an algorithm. To share the work fairly, | will supply the algorithm
(Newton’s method) if you supply the computer. Seriously, this is a terrific example.
It is typical of real problems—we kno@ f/dx andd f/dy but not the point where
they are zero. You can calculate that nearest point, which changeshemnges. You

can also discover new mathematics, about how that point moves. | will collect all
replies | receive to Problen®8 and39.

MINIMUM OR MAXIMUM ON THE BOUNDARY

Steiner’s problem had no boundaries. The roads could go angwiBert most
applications have restrictions anandy, like x >0 or y <0 orx2+y2>1. The
minimum with these restrictions is probably higher than the absolute minimum. There
are three possibilities:

(1) stationary pointf, =0, f, =0 (2) rough point (3) boundary point

That third possibility requires us to maximize or minimiz&(x,y) along the
boundary.
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EXAMPLE 3 Minimize f(x,y) =x%+xy + y2 — x — y + linthehalf-planex >
0.

The minimum in Example 1 wa. It occurred ateg = 1, yo = 1. This point is still
allowed It satisfies the restrictiom > 0. So the minimum is not moved.

EXAMPLE 4  Minimize the samef(x, y) restricted to thédower half-planey < 0.

Now the absolute minimum z(%, %) is not allowed. There are no rough points. We
look for a minimum on the boundary ling= 0 in Figure 13.19a. Set =0, so f
depends only on. Then choose the best

f(x,00=x*4+0—x—0+1 and fr=2x—1=0.

The minimum is ak = 1 and y =0, where / = 2. This is up from3.

i 4 N # I
when v =10

Fig. 13.19  The boundariey = 0 andx? 4 y2 = 1 contain the minimum points.

EXAMPLE 5 Minimize the samef(x, y) on or outside the circlec? + y2 = 1.

One possibility isf; = 0 and f, = 0. But this is at(%, 1), inside the circle. The other
possibility is a minimum at a boundary poiaty the circle

To follow this boundary we can set=+/1—x2. The function /' gets compli-
cated, andif/dx is worse. There is a way to avoid square roots:Setcost and
y =sint. Thenf = x2+xy+y2—x —y + 1 is a function of the angle:

f()=1+costsint —cost —sint + 1
df/dt =cot —sir?t +sint —cost = (cost — sint)(cost +sinz — 1).

Now df/dt = 0 locates a minimum or maximum along the boundary. The first factor
(cost —sint) is zero whernx = y. The second factor is zero wheost + sint = 1,

or x + y = 1. Those pointon the circleare the candidates. Problem 24 sorts them
out, and Section 13.7 finds the minimum in a new way—uslragrange multipli-
ers” Minimization on a boundary is a serious problem—it gets difficult quickly—and
multipliers are ultimately the best solution.

MAXIMUM VS. MINIMUM VS. SADDLE POINT

How to separate the maximum from the minimum? When possilyl@jltcandidates
and decide. Computg at every stationary point and other critical point (maybe also
out at infinity), and compare. Calculus offers another approach, basse¢and
derivatives
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With one variable the second derivative test was simplg:> 0 at a minimum,
fxx = 0at aninflection pointfyx < 0 at a maximum. This is a local test, which may
not give a global answer. But it decides whether the slope is increasing (bottom of the
graph) or decreasing (top of the graph). We now find a similar test st y).

The new test involves all three second derivatives. It applies wifere 0 and
fy =0. The tangent plane is horizontale ask whether the graph off goes
above or below that planeThe testsf,x >0 and f,, > 0 guarantee a minimum
in thex andy directions, but there are other directions.

EXAMPLE 6 f(x,y) =x?+10xy 4+ y? has fxx =2, fxy = 10, f}, =2 (mini-

mum or not?)

All second derivatives are positive—but wait and see. Theostaty point is(0,0),

whered f/0x andd f/dy are both zero. Our function is the sumxsf 4 y2, which

goes upward, antxy which has a saddle. The second derivatives must decide whether
x2+ y? or 10xy is stronger.

Along thex axis, wherey = 0 and / = x2, our point is at the bottom. The mini-
mum in thex direction is at(0,0). Similarly for the y direction. But(0,0) is not a
minimum pointfor the whole function, because bix y.

Tryx=1,y=—1.Then f =1—10+ 1, which is negative. The graph gobs-
low the xy plane in that direction. The stationary pointaat= y =0 is a saddle
point.

Fig. 13.20  Minimum, maximum, saddle point based on the signs afidac —b2.

EXAMPLE 7 f(x,y) =x%+xy+y?has fyx =2, fxy = 1, fyy =2 (minimum

or not?)

The second derivative, 1,2 are again positive. The graph curves up in thand

y directions. But there is a big difference from Examplef%; is reduced froml 0

to 1. It is the size of f, (not its sigrl) that makes the differenceThe extra
terms—x — y +4 in Example 1 moved the stationary point (té, %). The second
derivatives are stil2, 1,2, and they pass the test for a minimum:

13K At (0,0) the quadratic functiorf (x, y) = ax?+2bxy +cy? has a

o a>0 _ a<0 _
minimum if maximum if saddle pointif ac < b?.
ac>b? ac>b?

For a direct proof, splitf (x, y) into two parts by “completing the square:”

2
ac—b
y2.

b 2
ax*42bxy+cy*=a (\ + —y) +
a a
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That algebra can be checked (notice 2. It is the conclusion that’s important:
if a > 0 andac > b2, both parts are positiveninimum at (0, 0)
if a <0 andac > b2, both parts are negativenaximumat (0, 0)
if ac < b?, the parts have opposite sigssiddle pointat (0,0).

Since the test involves thequareof b, its sign has no importance. Example 6

hadb =5 and a saddle point. Example 7 hag= % and a minimum. Reversing to

—x2 —xy — y? yields a maximum. So doesx? 4+ xy — y2.

Now comes the final step, fromx? +2bxy + cy? to a general functiorf (x, y).
For all functions, quadratics or not, it is tsecond order termthat we test.

EXAMPLE 8 f(x,y) =e* —x —co0Sy has a stationary pointat=0,y =0.

The first derivatives are® —1 and siny, both zero. The second derivatives are
Jxx =e*=1andfy, =cosy =1 and fy, = 0. We only use the derivativest the
stationary pointThe first derivatives are zero, so the second order terms come to the
front in the series foe* — x — cosy:

(I+x+3ix*+-)—x—(1—=3y*+---)=1x*+1y? +higher order terms
(7)
There is aninimumat the origin. The quadratic pattx? + 1y goes upward. The
x3 and y* terms are too small to protest. Eventually those terms get large, but near
a stationary point it is the quadratic that counts. We didn’t need the whole series,
because fronyyx = fy, = 1 and f, = 0 we knew it would start withf x> + 1 y2.

13L Thetestinl3K applies to the second derivatives= frx.b = fxy.c = fyy
of any f(x, y) at any stationary point. At all points the test decides whethe} the
graph is concave up, concave down, or “indefinite.”

EXAMPLE 9  f(x,y)=e"Y has fx = ye*” and f, = xe*”. The stationary point
is (0,0).

The second derivatives at that pointare= fxy =0,b = fy, =1,andc = f,, =0.
The testh? > ac makes this a saddle point. Look at the infinite series:

eV = 1+xy+%x2y2+---.
No linear term becausg, = f, = 0: The origin is astationary point No x? or y?
term (onlyxy): The stationary point is saddle point

At x =2,y =-2 we find fix fyy > (fxy)? . The graph is concave up at that
point—but it's not a minimum since the first derivatives are not zero.

The series begins with the constant term—not important. Then come the linear
terms—extremely important. Those terms are decidefirsy derivatives, and they
give the tangent plane. It is only at stationary points—when the linear part disap-
pears and the tangent plane is horizontal—that second derivatives take over. Around
any basepointhese constant-linear-quadratic terms are the start of the Taylor
series

THE TAYLOR SERIES

We now put together the whole infinite series. It is a “TayloiegF—which means
it is a power series that matches all derivatives ¢f(at the basepoint). For one
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variable, the powers were” when the basepoint wa For two variables, the pow-
ers arex” times y™ when the basepoint i€0,0). Chapter10 multiplied thenth
derivatived” f/dx" by x" /n! Now every mixed derivativ@/ox)" (0/0y)™ f(x, y)
is computed at the basepoisubscript).

We multiply those numbers hy” y™ /n!m! to match each derivative of(x, y):

13M When the basepoint i90,0), the Taylor series is a double sym
XY apmx"y™. The termay,,,x"y™ has the same mixed derivative @i,0)

as f(x,y). The series is
of of x2 (0% f ?f

10045 ) (5 ) 3 (axZ)o”y(axay)o

2 2 n.,,m n—+m

ye(o°f x"y™m (ot f

2 (ay2)0+§mz>z nim! (6x"am)o'

Ox 0y
The derivatives of this series agree with the derivatives(af, y) at the basepoinf.

The first three terms are the linear approximatioryic, y). They give the tangent
plane at the basepoint. The* term hasn =2 andm =0, son!m!=2. The xy
term has: = m = 1, andn!m! = 1. The quadratic parti (ax2+2bxy +cy?) is
in control when the linear part is zero

EXAMPLE 10 All derivatives ofe* > equal one at the origin. The Taylor series is

e =1+x+y+ 2+xy+—+ ZZ

This happens to hawec = b2, the special case that was omittedLi®M and13N. It

is the two-dimensional version of an inflection poiftte second derivatives fail to

decide the concavity. Whefi. f, = (fxy)?, the decision is passed up to the higher

derivatives. But in ordinary practice, the Taylor series is stopped after the quadratics.
If the basepoint moves 0y, o), the powers becomgr — x¢)"* (y — yo)"—and

all derivatives are computed at this new basepoint.

n'm!

Final question How would you compute a minimum numerical®yOne good
way is to solvefy =0 and f;, = 0. These are the functiong and/ of Newton’s
method (Section 13.3). At the current point,, y,), the derivatives o = f, and
h = fy give linear equations for the stepsx andAy. Then the next point,+; =

Xn + Ax,Yn+1 = yn+ Ay comes from those steps. The inpu€is, y,), the output
is the new point, and the linear equations are

(gx)Ax + (gy)Ay = _g(xn’yn) or (f;wc)AX + (.f.'ry)Ay = _.f."C("‘Cn'yl’l)
(hx)Ax+(hy)Ay = —h(xn, yn) (fxy)Ax+(fyy)Ay = _fy(xn~,\’n)(-5)

When the second derivatives ¢f are available, use Newton’s method.

When the problem is too complicated to go beyond first derivatives, here is an
alternative—steepest descefibe goal is to move down the graph ¢fx, y), like
a boulder rolling down a mountain. The steepest direction at any point is given by
the gradient with a minus sign to go down instead of up. So move in the direction
Ax=—sdf/0xandAy=—s0f/0y.

The question is: How far to move? Like a boulder, a steep start may not aim directly
toward the minimum. The stepsizds monitored, to end the step when the function
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f starts upward again (Problefd). At the end of each step, compute first derivatives
and start again in the new steepest direction.

13.6 EXERCISES

Read-through questions

A minimum occurs at a_a _ point (where fx = f, =0) or a
b __ point (no derivative) or a_c__ point. Since f =x? —

xy+2y hasfyx=_d andf,=__e , the stationary point is
x=_Ff ,y= g .Thisisnota minimum, becausé decreases
when__h

The minimum of d? = (x—x1)2+(y —y1)? occurs at the
rough point__i . The graph ofd isa | and grad/
isa__k vector that points__| . The graph of f =|xy|
touches bottom along the lines m . Those are “rough lines”
because the derivative n The maximum ofd and f
must occur on the_ o
doesn't occur

p
When the boundary curve is =x(z),y = y(t), the deriva-
tive of f(x,y) along the boundary is q (chain rule). If
f=x242y% and the boundary isx =cost,y =sinz, then
df/dt= __r . Itis zero at the points s . The maximum
isat__t and the minimum is at _u . Inside the circlef
has an absolute minimum at v__.

To separate maximum from minimum from_w_, com-
pute the _ x  derivatives at a y point. The tests for a
minimum are__z . The tests for a maximum are A . In
Caseac<_ B or fxxfyy<_C ,wehavea D . Atall
points these tests decide between concave up anfl  and
“indefinite.” For f = 8x% —6xy +y2, the originisa__F__. The
signs of f at(1,0) and(1,3) are__ G

The Taylor series forf(x,y) begins with the six terms_H .
The coefficient ofx”y™ is __ 1 . To find a stationary point
numerically, use _J _or__K

Find all stationary points (fx = fy =0) in 1-16. Separate
minimum from maximum from saddle point. Test 13K applies

toa= fxx.b= fxy,c= fyy.

1 x242xy+3y? 2 xy—x+y

3 x24dxy+3y2—6x—12y 4 x2—y244y

5 x?y?—x 6 xe¥—e*

7 —x242xy —3y? 8 (x+y)2+(x+2y—6)?
9 x24y2 4224z 10 (x+y)+(x+2y—06)

11 (x—y)? 12 (1+x2)/(1+y?)
13 (x4y)2—(x+2y)? 14 sinx —cosy
15 x34+y3—3x243y2 16 8xy —x*—y*

17 A rectangle has sides on theard y axes and a corner on
the linex + 3y = 12. Find its maximum area.

18 A box has a corner at(0,0,0) and all edges parallel
to the axes. If the opposite corndi,y,z) is on the plane
3x+2y+z=1, what position gives maximum volume? Show
first that the problem maximizesy —3x2y —2xy2.

19 (Straight line fit, Section 11.4) Find and y to minimize the
eror  F—(x+y)24+(x+2y =52+ (x+3y—4)>2.

Show that this gives a minimum not a saddle point.

of the allowed region because bo (Least squares) Wat numbersx,y come closest to sat-

isfying the three equations—y=1,2x+y=—1,x+2y=1?
Square and add the errorgx—y—1)2+_ + .
Then minimize.

21 Minimize f = x2 +xy 4+ y? —x — y restricted by
(@ x<0 (b)y y=>1 () x<Oandy=>1.

22 Minimize f = x2+ 2 42x +4y in the regions
(@) allx,y (b) y=0 () x=0,y=0

23 Maximize and minimize f =x++/3y on the circle
X = CO0St, y =Ssint.

24 Example 5 followed f =x2+xy+y2—x—y+1 around
the circle x24+y2=1. The four stationary points have =y
or x+y=1. Compute f at those points and locate the
minimum.

25 (@) Maximize f =ax +by on the circlex? +y2 =1.
(b) Minimize x2 + yZ on the lineax +by = 1.

26 For f(x,y)=$x*—xy+ £ y* what are the equationg, =0
and f, = 0? What are their solutions? What f&in?

27 Choosec >0 so thatf = x% +xy +cy? has a saddle point at
(0,0). Note thatf > 0 on the linesx =0 andy =0 andy = x and
y = —x, so checking four directions does not confirm a minimum.

Problems 28-42 minimize the Steiner distancef =d; +ds +
ds3 and related functions. A computer is needed for 33 and
36-39

28 Draw the triangle with corners &i0,0),(1,1), and (1,—1).
By symmetry the Steiner point will be on the axis. Write
down the distances/;,d>,d3 to (x,0) and find the x that
minimizesd; + d, + d3. Check thel20° angles.

29 Suppose three unit vectors add to zero. Prove that the angles be-
tween them must b&20°.
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30 In three dimensions, Steiner minimizes the total distan&énd all derivatives at (0,0). Construct the Taylor series

:f(x:y,z):_dl +dy _+d3 —_kd4 from_four points. Show that grad 43 f(x,y)=(x+y)3 44 f(x,y)=xe”
is still a unit vector (in which direction?) At what angles do four unit
vectors add to zero? 45 f(x,y)=In(1—xy)

31 With four points in a plane, the Steiner problem aIIowgln(:O{()i‘rlr]j;fti’g:;‘)‘t’c)fxf(’fyyittthh::J_:Slifoégtr'i;’;/”tﬁéteﬁusaedcrg:g_
branches (Figure 13.18c). Find the shortest network connectin p VACY) Y 9

the corners of a rectangle, if the side lengths are I(@nd 2 order terms:

(b) 1 and1 (two solutions for a square) (¢)ando.1. 46 f=e*1V at(0,0) 47 f=e*tVat(1,1)

32 Show that a Steiner pointZ0° angles) can never be outside thé® ./ =Sinx cosy at (0,0) 49 f=x*+y?at(l.-1)
triangle. 50 The Taylor series aroundx,y) is also written with steps
33 Write a program to minimizef(x,y)=di +ds+d3 by }{ agdk:f(x—{—h,y Th=fe+h_ +k__ +
Newton’s method in equation (5). Fix two corners(@t0),(3,0), 27~ +hk____ +--- Fillinthose four blanks.

vary the third from(l, 1) to (2,1) to (3,1) to (4,1), and compute 51 Find lines along whichy (x. y) is constant (these functions have
Steiner points. frx fyy = [3, orac = b2):

34 Suppose one side of the triangle goes froml,0) to (1,0). (@) f=x2—4xy+4y? (b) f=e*e?

Above that side are points from which the lines (te1,0) and i ) X .
(1,0) meet at al20° angle. Those points lie on a circular arc—22 For f(x,y,z) the first three terms aftef(0,0,0) in the Taylor

draw it and find its center and its radius. seriesare____.Thenextsixtermsare .

- . 53 (a) For the errorf — f7, in linear approximation, the Taylor
35 Continuing Problem 34, there are circular arcs for all three series at0,0) starts with the quadratic terms

sides of the triangle. On the arcs, every point sees one side of (b) The graph of f goes up from its tangent plane (and
. o . . o
the triangle at al20° angle. Where is the Steiner point? (Sketch > f)if “Then f is concave upward.

three sides with their arcs.) L

(c) For(0,0) to be a minimum we also need
O The gradient of x2+2y2 at the point (1,1) is (2,4).
Steepest descent is along the line=1—2s,y =1—4s (minus
37 Write a code to minimizg‘:d{‘+d§+d§‘ by solving f, =0 Sign to go downward). Minimizex2? +2y2 with respect to

and f;, = 0. Use Newton’s method in equation (5). the stepsizes. That locates the next point , where
steepest descent begins again.

36 Invent an algorithm to converge to the Steiner point based
Problem 35. Test it on the triangles of Problém

38 Extend the code to allow all powers> 1, not only p =4. , L. 5 5. .
Follow the minimizing point from the centroid at= 2 to the Steiner 55 Newton's meth_od minimizes:” +2y= in one step. Starting
pointatp = 1 (try p = 1.8, 1.6, 1.4,1.2). at(xp,yo) = (1,1), find Ax andAy from equation (5).

56 If fxx+ fyy =0, show that f(x,y) cannot have an interior

39 Follow the minimizing point with your code ap increases: maximum or minimum (only saddle points).

p=2,p=4,p=8,p=16. Guess the limit atp =00 and test
whether it is equally distant from the three corners. 57 The value ofx theorems andy exercises isf = x2y (maybe).

) ) The most that a student or author can deal withhist y =12.
40 At p=co we are making the largest of the distancegpgtityte y = 12—4x and maximize £, Show that the line
dy,d>,ds as small as possible. The best point forlal,v/2 4x +y = 12 is tangent to the level CUI’\IJeznymax.
right triangle is .
58 The desirability ofx houses andy yachts is f(x,y). The
41 Suppose the road from cornelr is wider than the others, constraint px +¢y =k limits the money available. The cost of
and the total cost i§f(x,y) = v2d +dz +d3. Find the gradient 3 house is , the cost of a yacht is . Substitute

of f and the angles at which the best roads meet. y=(k—px)/q into f(x,y)= F(x) and use the chain rule for
42 Solve Steiner's problem fotwo points. Where isd; +d> a dF/dx. Show that the slope-f/fy atthe best is —p/q.

minimum? Solve also for three points if only the three corneg® At the farthest point in a baseball field, explain why the
are allowed. fence is perpendicular to the line from home plate. Assume it is
not a rough point (corner) or endpoint (foul line).
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13.7 Constraints and Lagrange Multipliers

This section faces up to a practical problem. We often minimize one fungiieny)
while another functiorg (x, y) is fixed. There is &onstrainton x andy, given by
g(x,y) =k. This restricts the material available or the funds available or the energy
available. With this constraint, the problem is to do the best poséjflg or fmin)-

At the absolute minimum off (x, y), the requiremeng(x, y) =k is probably
violated. In that case the minimum point is not allowed. We cannotfyse 0 and
Jy = 0—those equations don’t account fgr

Stepl Find equations for theonstrained minimumor constrained maxi-
mum. They will involve f; and f; and alsggx andg,, which give local information
aboutf andg. To see the equations, look at two examples.

EXAMPLE 1 Minimize f = x2 + y? subject to the constraing = 2x + y = k.

Trial runs Theconstraintallows: = 0, y = k, where f = k2. Also (%k,O) satisfies
the constraint, ang’ = 1k is smaller. Alsox = y = 1k gives f = 2k? (best so
far).

Idea of solutionLook at the level curves of (x, y) in Figure 13.21. They are circles
x2 4 y2 =c. Whenc is small, the circles do not touch the lide + y = k. There
are no points that satisfy the constraint, wlaeis too smallNow increase:.
Eventually the growing circles? + y2 = ¢ will just touch the linex 42y = k.
The point where they touch is the winner. It gives the smallest valuetivdit can be
achieved on the line. The touching poin{isnin, Ymin), @and the value of is fmin.

What equation describes that point? When the circle touches the line, they are
tangent They have the same slopEhe perpendiculars to the circle and the line
go in the same directiomhat is the key fact, which you see in Figure 13.21a.The
direction perpendicular tg' = c is given by gradf = (fx. f,). The direction per-
pendicular tog = k is given by grac = (gx.gy). The key equation says that those
two vectors are parallel. One gradient vector is a multiple of the other gradient vector,
with a multiplierA (called lambda) that is unknown:

13N At the minimum of f(x,y) subject tog(x,y) =k, the gradient off is
parallel to the gradient gf—with an unknown numbet as the multiplier:

grad f = A gradg so a—fz)ta—g and a—fz)ta—g. (2)
ox ox 0y 0y

Step2 There are now three unknownsy, A. There are alsthree equations

0f/0x =MA0g/0x is 2x=2A
0f/0y =Adg/dyis 2y=2A @)
glx,y)=kis 2x+y=k.

In the third equation, substitu\ for 2x and %A for y. Then2x +y equals%k
equalsk. Knowing A = %k, go back to the first two equations far y, and fiyn:

2 1. 1 2\* (1.\* 5 1
==k = )l=- == - = k2= k2
~ sk y=3A=5k fin (sk) +(5k) 25k =3k

591
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The winning point(xmin, ymin) is (3k. £k). It minimizes the “distance squared,”
f =x%+y?= 1k, from the origin to the line.

Question What is the meaning of the Lagrange multipliex?

Mysterious answer The derivative oftk? is 2k, which equalsi. The multiplier

A is the derivative offni, with respect tdc. Move the line byAk, and fiin changes

by aboutA Ak. Thus the Lagrange multiplier measures semsitivityto k.
Pronounce his name “Lagronge” or better “Lagrongh” as if you are French.

f‘= lr!'I'\II'I

Fig. 13.21 Circles f = ¢ tangent to lineg = k and ellipseg = 4: parallel gradients

EXAMPLE 2 Maximize and minimizef = x2 + y2 onthe ellipseg = (x — 1)%+
4y2 =4,

Idea and equations The circlesx? 4 y2 = ¢ grow until they touch the ellipse. The
touching point i xXmin, Ymin) and that smallest value ofis fnin. As the circles grow
they cut through the ellipse. Finally there is a poink{x ymax) Where the last circle
touches. That largest value ofs fmax.

The minimum and maximum are described by the same rule: the circle is tangent to
the ellipse (Figure 13.21b)he perpendiculars go in the same directiohherefore
(f%. fy) isamultiple of(gx, g,), and the unknown multiplier i&:

fx=Agx: 2x=A2(x—1)
fy=Agy: 2y =A8y )
g=k: (x—1)2+4y?=4.

Solution  The second equation allows two possibilitigs= 0 or A = %. Following

upy =0, the last equation givelsc — 1)% = 4. Thusx = 3 or x = —1. Then the first
equation gives. = 3/2 or A = 1/2. The values off arex? + y?=324+02=9and
x24y?=(-1)2+0>=1.

Now follow A = 1/4. The first equation yields = —1/3. Then the last equation
requiresy? = 5/9. Sincex? = 1/9 we findx2 + y2 = 6/9=2/3. This is fmin.
Conclusion The equation$3) have four solutions, at which the circle and ellipse are
tangent. The four points ar@,0), (—1,0),(—1/3,4/5/3), and (—1/3,—+/5/3).

The four values off are9.1,2, 2.

Summary  The three equations arg, =Ag, ard f, =Ag, and g=k. The
unknowns arex, y, and A. There is no absolute system for solving the equations
(unless they are linear; then use elimination or Cramer’s Rule). Often the first two
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equations yieldr andy in terms ofA, and substituting intg = k gives an equation
for A.

At the minimum, the level curvef(x, y) = c is tangent to the constraint curve
g(x,y) =k. If that constraint curve is given parametrically byr) and y(¢), then
minimizing f(x(t), y(¢)) uses the chain rule:

df dfdx Jfdy B
U ox di + Dy di =0 or (gradf)-(tangentto curve=0.

This is the calculus proof that grafl is perpendicular to the curv&husgrad 1 is
parallel togradg. This means fy, f,) = A(gx.&y)-
We have lostfy = 0 and f, = 0. But a new function_ hasthreezero derivatives:

130 The Lagrange function it (x, y, A1) = f(x,y) —A(g(x,y) —k). Its threg
derivatives ard., = L, = L, = 0 at the solution:

oL _of dg oL _aof .dg  dL

9L _0f ;98 g 9L_9L 9% o L _,ik=0. (4
o ox o By oy oyl g kS0 @

Note thatdL /0A = 0 automatically produceg = k. The constraint isBuilt in” to
L. Lagrange has included a terth(g — k), which is destined to be zero—but its
derivatives are absolutely needed in the equations! At the solgtienk andL = f
anddL/ok = A.

Whatis importantisfy = Agx and f, = Ag,, coming fromL = L, = 0. In words:
The constraing = k forcesdg = gxdx + g,dy = 0. This restricts the movements
dx anddy. They must keep to the curve. The equations saydifiat frdx + f,dy
is equal toAdg. Thusdf is zeroin the allowed direction-which is the key point.

MAXIMUM AND MINIMUM WITH TWO CONSTRAINTS

The whole subject of min(max)imization is callegitimization. Its applications to
business decisions make aperations researciThe special case of linear functions
is always important—in this part of mathematics it is caliegar programming A
book about those subjects won't fit inside a calculus book, but we can take one more
step—to allow a second constraint.

The function to minimize or maximize is nov(x, y,z). The constraints are
g(x,y,z) =ky andh(x,y,z) =k,. The multipliers arél; andA,. We need at least
three variables, y, z because two constraints would completely deternviaady.

14

13P To minimize f'(x, y, z) subjecttog(x, y,z) = k1, andh(x, y,z) = k», solvg
five equations fow, y,z,A1,A,. Combineg = k; andh = k, with

g—flea—g+xa—h Of _3,28 4,,%0 9f
X

0g oh
- = =A==+ Ar—
Ee 250 o lﬁy 157 T4A2

20y’ 0z 0z oz’
(5)

Figure 13.22a shows the geometry behind these equations. For convelfidsce

x2 4+ y? 4+ z2, so we are minimizing distance (squared). The constraintsx + y +
z=9andh =x+2y+ 3z =20 are linear—their graphs are planes. The constraints
keep(x,y,z) on both planes—and therefore on the line where they meet. We are
findingthe squared distance fro,0,0) to a line



594

13 Partial Derivatives

What equation do we solve? The level surfacés- y2 + z2 = ¢ arespheres. They
grow asc increases. The first sphere to touch the line is tangent to it. That touching
point gives the solution (the smallest All three vectorsgrad f, gradg, gradh are
perpendicular to the line

line tangent to sphere>grad f* perpendicular to line

line in both planes= gradg and grad: perpendicular to line.

Thus gradf, gradg, gradh arein the same plane-perpendicular to the line. With
three vectors in a plane, grgdis a combination of grag and grad:

(fxs Jys J2) = A1(8x. 8y 82) + A2 (hx. by h2). (6)

This is the key equatio(b). It applies to curved surfaces as well as planes.

EXAMPLE 3 Minimize x2 + y? +z2 when x + y +z = 9andx +2y + 3z = 20.

In (Figure 13.22b), the normals to those planes are grad1,1,1) and gradi =
(1,2,3). The gradient off = x% 4 y2 +z2 is (2x,2y,2z). The equationg5)— (6)
are

2X=A1+A2, 2y=A1—|—2)Lz, 2Z=A1+3)&2.
Substitute these, y, z into the other two equationgs= x + y +z = 9 andi = 20:

AL +A A1+2A A1 +3A A1 +A A1 +2A A1 +3A
1+2+1+ 2+1+ 2_9 ad 1+2+21+ 2+31+ 2 _

20.
2 2 2 2 2 2

After multiplying by 2, these simplify t83A; + 64, = 18 and6A; 4 144, = 40. The
solutions aré.; =2 andA, = 2. Now the previous equations give, y,z) = (2, 3,4).

The Lagrange function with two constraints ix,y,z,A1,42) = f —A1(g —
k1)
—Aa(h —k»). Its five derivatives are zero—those are our five equations. Lagrange
has increased the number of unknowns frdno 5, by addingA; andA,. The best
point (2,3,4) gives fmin=29. The A’s give 0 f/0k—the sensitivity to changes
in 9 and20.

N

grad /= (4, 6,9)
=X, grad g + A, grad /

(4.6.9)

plane h =20

v

~ lime
tamgem IS RECT

ol planes

x plane g =9

1o sphere

Fig. 13.22  Perpendicular vector gragl is acombination}; gradg + A, gradh.
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INEQUALITY CONSTRAINTS

In practice, applications involvimequalities as well as equations. The constraints
might beg <k andh > 0. The first means: It is not required to use the whole re-
sourcek, but you cannot use more. The second meansieasures a quantity that
cannot be negativét the minimum point, the multipliers must satisfy the same
inequalities A; <0 and A, > 0.There are inequalities on thes when there are
inequalities in the constraints.

Brief reasoning: Withg < k the minimum can ben or insidethe constraint curve.
Inside the curve, wherg < k, we are free to move in all directions. The constraint is
not really constraining. This brings baglk = 0 and f,, = 0 andA = 0—an ordinary
minimum. On the curve, wherg= k constrains the minimum from going lower, we
haveld < 0. We don’t know in advance which to expect.

For 100 constraintg; < k;, there arel00A’s. Somel’s are zero (wherg; < k;)
and some are nonzero (when =k;). It is those2'%0 possibilities that make
optimization interesting. Ifinear programmingwith two variables, the constraints
arex >0,y = 0:

EXAMPLE 4 Minimixe f =5x+6ywithg=x+y=4andh=x > 0andH =y >
0.

The constraing = 4 is an equationk and H yield inequalities. Each has its own
Lagrange multiplie—and the inequalities require> 0 andA 3 > 0. The derivatives
of f,g,h, H are no problem to compute:

of og oh oH .
L =A== A —F A — [ds 5=1;+2A
ox 10x+ 20x+ > ox yielas 1+ 42

0 0 Oh oH .
%:,\154—/{25—%},3@ erIdS 6:)L]+/\3

()

Those equations makeé; larger thani,. Therefored; > 0, which means that the
constraint onH must be an equation. (Inequality for the multiplier means equality
for the constraint.) In other wordd = y = 0. Thenx 4+ y =4 leads tox = 4. The
solution is at &min, Ymin) = (4,0), where fmin = 20.

At this minimum, 2 =x =4 is above zero. The multiplier for the constraint
h >0 must beAd, =0. Then the first equation gives; = 5. As always, the mul-
tiplier measures sensitivity. When= 4 is increased byAk, the cost fmin =20 is
increased by Ak. In economicsl; = 5 is called ashadow price—it is the cost of
increasing the constraint

Behind this example is a nice problem in geometry. The constraint auve = 4
is a line. The inequalities = 0 andy = 0 leave a piece of that line—frorR to Q in
Figure 13.23. The level curve = 5x 4+ 6y = ¢ move out ag increases, until they
touch the line.The first touching point isQ = (4,0), which is the solution It
is always an endpoint-or a corner of the triangl® QR. It gives the smallest cost
Jfmin» Which isc = 20.
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constraint

=x+y+:z=1
x+y=4 & g

(Problem 25)

Sx+6y=c
¢ too small

Fig. 13.23 Linear programmingf andg are linear, inequalities cut off andy.

13.7 EXERCISES

Read-through questions

A restriction g(x,y)=k is called a__a . The minimizing 3 f:x—i—ywithg:l—i—l:l
Xy

equations for f(x,y) subject tog=k are__b . The number

A is the Lagrar}gfe c . Geqmetrically, ga is_d to , f=3x+ywithg=x2+9y2=1

gradg at the minimum. That is because thee curve f =

fmin'is __f __to the constraint curvg =k. The numberd turns 5 f =x2+y?withg=x%+y6=2.

out to be the derivative of g with respect to__h . The 6 f=x+y with g=x'/3,2/3_k With x= capital and

Lagrange function i.=__i__ and the three equations fat y, A y = labor, g is a Cobb-Douglas function in economics. Draw two

are j and_k and__ 1 . .
_ 1 and_X and_1 of its level curves.

To minimize f =x*—y subject tog=x—y =0, the three 7 Find the point on the circle? + y2 = 13 where f =2x —3y is
equations forx,y,A are__m . The solution is__n_. In this 5 maximum. Explain the answer.
example the curvef(x,y)= fmin=_0_isa__p whichis

g tothe lineg =0 & (xmin, yrmin). 8 Maximize ax +by +cz subject tox? +y2 +z2 =k2. Write

your answer as the Schwarz inequality for dot produgish,c) -
With two constraintsg(x,y,z) =k1 and i(x,y,z) =kz there (x y 7)< k.
are __r__ multipliers. The five unknowns are s . The five

equations are__t . The level surfacef = fmin iS __ U t0 9 Find the planez =ax+by+c that best fits the points

the curve whereg =k; and h=k,. Then gradf is _ v to (x.,)./,zl)z(0,0,1),(1,0,0),(1,1,2),(0,12,2). The angwera,b,c
this curve, and so are gradand __w . Thus _ x__is a Minimizes the sum ofz —ax —by —c)* at the four points.

combination of gradz and y . With nine variables and six
constraints, there will be_z _ multipliers and eventually A
equations. If a constraint is an B g <k, then its multiplier
must satisfyA <0 at a minimum.

10 The base of a triangle is the top of a rectangbe s{des,
combined area=1). What dimensions minimize the distance
around?

S ) 11 Draw the hyperbolaxy = —1 touching the circleg = x2 +
1 Example 1 m|n|m|zed_f:x2+y2 subject _to 2x_+y:k. y2=2. The minimum of f =xy on the circle is reached at
Sque _the cqnstraln_t equation f@rz_k_—Zx, _substltute intof, and the points . The equationsfy = Agy and f, =Agy are
minimize this function ofx. The minimum is at(x, y) = . satisfied at those points with— ’
where [ = —
Note: This direct approacheducesto one unknownr. Lagrange 12 Find the maximum off = xy onthe circleg = x? + y* =2 by

increasesto x. y,A. But Lagrange is better when the first step o§0IVing fx =Agx and f, = Agy and substitutingr and y into 1.
solving for y is difficult or impossible. Draw the level curvef = fmaxthat touches the circle.

13 Draw the level curves off = xZ + y2 with a closed curveC
across them to represepitx, y) = k. Mark a point whereC crosses
2 f=x%ywithg=x24+y%2=1 a level curve. Why is that point not a minimum gfon C? Mark a

Minimize and maximize f(x,y) in 2—6. Find x, y, and 1.
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point whereC is tangentto a level curve. Is that the minimum ¢f the planex =0 and a vector perpendicular to the plape=0.
onC? Find A; times the first vector plusi, times the second. This

14 On the circle g=x2+y2 =1, Example 5 of 13.6 mini- combination is perpendicular to the line .

mized f =xy—x—y. (a) Set up the three Lagrange equatiors Minimize f =x2+ y2 +z2 on the planeax +by +cz =d—
for x,y,A. (b) The first two equations givec=y = one constraint and one multiplier. Compafigin with the distance
(c) There is another solution for the special value- —%, when formula|d|/va2 + b2 +c2 in Section 11.2.

the equations become . This is easy to miss but it gives
fmin = —1 at the point .

23 Atthe absolute minimum of (x, y), the derivatives are
zero. If this point happens to fall on the curgdx, y) = k then the

Problems 15-18 develop the theory of Lagrange multipliets equationsfy = Agx and fy = Agy holdwithA =

15 (Sensitivity Certainly L = f —A(g —k) hasoL/dk = A. Since Problems 24-33 allow inequality constraints, optional but good

L = fmin andg =k at the minimum point, this seems to prove the, Find the minimum of f=3x+5y with the constraints

with k. We need théeotal derivative ofL(x,y,A,k): like (7). Which multiplier is zero?
dL _odLdx oJLdy  oJLdi  OLdk 25 Figure 13.23 shows the constraint plage=x+y+z=1
dk oxdk 0ydk ordk ok dk’ chopped off by the inequalitiesx >0,y >0,z >0. What are

the three “endpoints” of this triangle? Find the minimum and

Equation (1) at the minimum point should now yield th"?‘naximum of f =4x—2y+5z on the triangle, by testing’ at the
sensitivity formulad fmin/dk = A. endpoints :

16 (Theory behindl) When g(x.y) =k is solved fory. it gives ;5 \ith an inequality constraintz <k, the multiplier at the

a curve y = R(x). Then minimizing f(x,y) along this curve iimum satisfiess <0. If & is increased fmin goes down (since

yields of of dR o O¢ dR A =dfmin/dk). Explain the reasoningBy increasingk, (more)
of _f_—o g8 L8R (fewer) points satisfy the constraints. Therefore (more) (fewer)

Ox  Jydx Tox  0ydx points are available to minimizg Thereforefmin goes (up) (down).
Those come from the rule: df/dx=0 a the min-

imum and dg/dx =0 along the curve becausg = .
Multiplying the second equation by= (0 f/0dy)/(dg/dy) and sub-
tracting from the first gives =0. Also 0f/0y =10g/dy. 28 When the constraint: >k is a strict inequalitys >k at
These are the equations (1) fory, A . the minimum, the multiplier isA =0. Explain the reasoning
For a small increase i, the same minimizer is still available
(since h > k leaves room to move). Thereforénin is (changed)
(unchanged), andl = dfmin/dk is .

29 Minimize f =x2+y? sulject to the inequality constraint

27 With an inequality constraintg <k, the multiplier at a
maximunpoint satisfies\ > 0. Change the reasoning 26.

17 (Example of failurg A = fy /g, breaks down ifg, =0 at the
minimum point.

(@ g=x2—y3=0 does not allow negativey because

) _ - ) . . x+y<4. The minimum is obviously at , where fx
(b) Wheng =0 the minimum of f =x“+y is at the point and f, are zero. The multiplier isA= . A small

’ ) ~ change from4 wil leave fmn=___ so the sensitivity
(c) At that point fy, =1gy becomes which is dfpin/dk still equals..

impossible.
(d) Draw the pointed curvg =0 to see why it is not tangent
to a level curve off.

30 Minimize f =x2+y? sulject to the inequality constraint
x+y=>=4. Now the minimum is at and the multiplier
is A= and fmin= . A small change to4+dk
18 (No maximum) fd a point on the lineg=x+y=1 changesfmin by what multiple ofdk?

where f(x,y) =2x+y is greater thani00 (or 1000). Write out

. . inimi = i = = =x=
grad f = Agradg to see that there is no solution. 31 Minimize f=5x+6y with g=x+y=4 and h=x>0

and H=y<0. Now A3<0 and the sign change destroys
19 Find the minimum of f =x2+2y2+z2 if (x,y,z) is Example 4. Show that equation (7) has no solution, and
restricted to the planes=x+y+z=0andh=x—z=1. choosex, y to make5x + 6y < —1000.

20 (a) Find by Lagrange multipliers the volumé= xyz of the 32 Minimize f =2x+3y+4z subject tog=x+y+z=1 and
largest box with sides adding up o+ y +z =k. (b) Check that x,y,z>0. These constraints have multipliets, >0, A3 >0,
A =dVmax/dk. (c) United Airlines accepts baggage witht-y + 14 =0. The equations ar@ =11 + A3, ,and4=211+Aq4.
z=108". If it changes tol11”, approximately how much (by) Explain whyAz >0 andi4 > 0 and fmin =2.

and exactly how much do increase? . .
y &Snax 33 A wire 40” long is used to enclos®ne or two squares

21 The planesx =0 and y =0 intersect in the linec=y =0, (sidex and sidey). Maximize the total area? 4+ y? subject to
which is the z axis. Write down a vector perpendicular toc >0,y > 0,4x +4y = 40.
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