
CHAPTER 13

Partial Derivatives

This chapter is at the center of multidimensional calculus. Other chapters and other
topics may be optional; this chapter and these topics are required. We are back to the
basic idea of calculus—the derivative. There is a functionf; the variables move a
little bit, andf moves. The question is how muchf moves and how fast. Chapters
1–4 answered this question forf .x/; a function of one variable. Now we havef .x;y/
or f .x;y;z/—with two or three or more variables that move independently. Asx
andy change,f changes. The fundamental problem of differential calculus is to
connect�x and�y to�f: Calculus solves that problem in the limit.It connectsdx
and dy to df: In using this language I am building on the work already done. You
know thatdf=dx is the limit of�f=�x: Calculus computes the rate of change—
which is the slope of the tangent line. The goal is to extend those ideas to

f .x;y/D x2�y2 or f .x;y/D
a
x2 Cy2 or f .x;y;z/D 2xC3yC4z:

These functions have graphs, they have derivatives, and they must have tangents.
The heart of this chapter is summarized in six lines. The subject isdifferential

calculus—small changes in a short time. Still to come isintegral calculus—adding
up those small changes. We give the words and symbols forf .x;y/; matched with
the words and symbols forf .x/: Please use this summary as a guide, to know where
calculus is going.

CurveyD f .x/ vs. SurfacezD f .x;y/

df

dx
becomes two partial derivatives

BfBx and
BfBy

d2f

dx2
becomes four second derivatives

B2fBx2
;
B2fBxBy ; B2fByBx ; B2fBy2

�f � df

dx
�x becomes the linear approximation�f � BfBx �xC

BfBy �y
tangent line becomes the tangent planez�z0 D

BfBx .x�x0/C
BfBy .y�y0/

dy

dt
D
dy

dx

dx

dt
becomes the chain rule

dz

dt
D
BzBx dxdt C

BzBy dydt
df

dx
D 0 becomes two maximum-minimum equations

BfBx D 0 and
BfBy D 0:
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13.1 Surfaces and Level Curves

The graph ofyD f .x/ is a curve in thexy plane. There are two variables—x
is independent and free,y is dependent onx: Abovex on the base line is the point
.x;y/ on the curve. The curve can be displayed on a two-dimensional printed page.
The graph ofzD f .x;y/ is a surface inxyz space. There arethree variables—
x andy are independent,z is dependent. Above.x;y/ in the base plane is the point
.x;y;z/ on the surface (Figure 13.1). Since the printed page remains two-dimensional,
we shade or color or project the surface. The eyes are extremely good at converting
two-dimensional images into three-dimensional understanding—they get a lot of
practice. The mathematical part of our brain also has something new to work on—two
partial derivatives.

This section uses examples and figures to illustrate surfaces and their level curves.
The next section is also short. Then the work begins.

EXAMPLE 1 Describe thesurfaceand thelevel curvesfor zDf .x;y/D
a
x2 Cy2:

The surface is a cone. Reason:
a
x2 Cy2 is the distance in the base plane from

.0;0/ to .x;y/: When we go out a distance5 in the base plane, we go up the same
distance5 to the surface. The cone climbs with slope1: The distance out to.x;y/
equals the distance up toz (this is a45� cone).

The level curves are circles. At height5; the cone contains a circle of points—all
at the same “level” on the surface. The planezD 5meets the surfacezD

a
x2 Cy2

at those points (Figure 13.1b). The circle below them (in the base plane) is the level
curve.

DEFINITION A level curveor contour line of zD f .x;y/ contains all points.x;y/
that share thesame valuef .x;y/D c. Above those points, the surface is at the
heightzD c:

There are different level curves for differentc: To see the curve forcD 2; cut
through the surface with the horizontal planezD 2: The plane meets the surface
above the points wheref .x;y/D 2: The level curve in the base plane has the
equationf .x;y/D 2: Above it are all the points at “level2” or “level c” on the
surface.

Every curvef .x;y/D c is labeled by its constantc: This produces acontour
map (the base plane is full of curves). For the cone, the level curves are given bya
x2 Cy2 D c; and the contour map consists of circles of radiusc:

Question What are the level curves ofzD f .x;y/D x2 Cy2?
Answer Still circles. But the surface is not a cone (it bends up like a parabola). The
circle of radius3 is the level curvex2 Cy2 D 9: On the surface above, the height is
9:

EXAMPLE 2 For thelinear functionf .x;y/D 2xCy; the surface is a plane. Its
level curves are straight lines.The surfacezD 2xCy meets the planezD c in
the line 2xCyD c. That line is above the base plane whenc is positive, and below
whenc is negative. The contour lines arein the base plane. Figure 13.2b labels these
parallel lines according to their height in the surface.

Question If the level curves are all straight lines, must they be parallel?
Answer No. The surfacezD y=x has level curvesy=xD c: Those linesyD cx
swing around the origin, as the surface climbs like a spiral playground slide.
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Fig. 13.1 The surface forzD f .x;y/D
a
x2 Cy2 is a cone. The level curves are circles.

Fig. 13.2 A plane has parallel level lines. The spiral slidezD y=x has linesy=xD c:

EXAMPLE 3 The weather map shows contour lines of thetemperature function.
Each level curve connects points at a constant temperature. One line runs from Seattle
to Omaha to Cincinnati to Washington. In winter it is painful even to think about the
line through L.A. and Texas and Florida.USA Todayseparates the contours by color,
which is better. We had never seen a map of universities.
Question From a contour map, how do you find the highest point?
Answer The level curves formloopsaround the maximum point. Asc increases the
loops become tighter. Similarly the curves squeeze to the lowest point asc decreases.

EXAMPLE 4 A contour map of a mountain may be the best example of all.
Normally the level curves are separated by100 feet in height. On a steep trail those
curves are bunched together—the trail climbs quickly. In a flat region the contour
lines are far apart. Water runs perpendicular to the level curves. On my map of New
Hampshire that is true of creeks but looks doubtful for rivers.

Question Which direction in the base plane is uphill on the surface?
Answer The steepest direction is perpendicular to the level curves. This is impor-
tant. Proof to come.

EXAMPLE 5 In economicsx2y is autility functionandx2yD c is anindifference
curve.

The utility functionx2y gives the value ofx hours awake andy hours asleep. Two
hours awake and fifteen minutes asleep have the valuef D .22/.1

4
/: This is the same
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Fig. 13.3 The temperature at many U.S. and Canadian universities. Mt. Monadnock in New Hampshire is said to be the most
climbed mountain (except Fuji?) at125;000=year. Contour lines every6 meters.

as one hour of each:f D .12/.1/: Those lie on the same level curve in Figure 13.4a.
We are indifferent, and willing to exchange any two points on a level curve.

The indifference curve is “convex.” We prefer the average of any two points. The
line between two points is up on higher level curves.

Figure 13.4b shows an extreme case. The level curves are straight lines4xCyD c:
Four quarters are freely substituted for one dollar. The value isf D 4xCy dollars.

Figure 13.4c shows the other extreme. Extra left shoes or extra right shoes are
useless. The value (or utility) is thesmallerof x andy: That countspairsof shoes.

Fig. 13.4 Utility functionsx2y; 4xCy; min.x;y/: Convex, straight substitution, complements.
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13.1 EXERCISES

Read-through questions

The graph ofzD f .x;y/ is a a in b -dimensional space.
The c curvef .x;y/D 7 lies down in the base plane. Above
this level curve are all points at height d in the surface. The

e zD 7 cuts through the surface at those points. The level
curvesf .x;y/D f are drawn in thexy plane and labeled by

g . The family of labeled curves is a h map.

For zD f .x;y/D x2�y2; the equation for a level curve is
i . This curve is a j . For zD x�y the curves are
k . Level curves never cross because l . They crowd

together when the surface is m . The curves tighten to a
point when n . The steepest direction on a mountain iso
to the p .

1 Draw the surfacezDf .x;y/ for these four functions:

f1 D
a
4�x2�y2 f2 D 2�ax2 Cy2

f3 D 2� 1
2 .x

2 Cy2/ f4 D 1Ce�x2�y2

2 The level curves of all four functions are : They enclose
the maximum at : Draw the four curvesf .x;y/D 1 and rank
them by increasing radius.

3 Set yD 0 and compute thex derivative of each function at
xD 2:Which mountain is flattest and which is steepest at that point?

4 SetyD 1 and compute thex derivative of each function atxD 1:

For f5 to f10 draw the level curvesf D 0;1;2: Also f D�4:
5 f5 D x�y 6 f6 D .xCy/2

7 f7 D xe�y 8 f8 D sin.x�y/
9 f9 D y�x2 10 f10 D y=x2

11 Suppose the level curves are parallel straight lines. Does the sur-
face have to be a plane?

12 Construct a function whose level curvef D 0 is in two
separate pieces.

13 Construct a function for whichf D 0 is a circle andf D 1

is not.

14 Find a function for whichf D 0 has infinitely many pieces.

15 Draw the contour map forf D xy with level curves
f D�2;�1;0;1;2: Describe the surface.

16 Find a functionf .x;y/ whose level curvef D 0 consists of a
circle andall points inside it.

Draw two level curves in 17–20. Are they ellipses, parabolas,
or hyperbolas? Write? �2xD c as? D cC2x before
squaring both sides.

17 f D
a
4x2 Cy2 18 f D

a
4x2 Cy2�2x

19 f D
a
5x2 Cy2�2x 20 f D

a
3x2 Cy2�2x

21 The level curves off D .y�2/=.x�1/ are through the
point .1;2/ except that this point is not :

22 Sketch a map of the US with lines of constant temperature
(isotherms) based on today’s paper.

23 (a) The contour lines ofzDx2 Cy2�2x�2y are circles
around the point , wherez is a minimum.

(b) The contour lines off D are the circlesx2 Cy2 D

cC1 on whichf D c:

24 Draw a contour map of any state or country (lines of constant
height above sea level). Florida may be too flat.

25 The graph ofwDF.x;y;z/ is a -dimensional surface in
xyzw space. Its level setsF.x;y;z/D c are -dimensional
surfaces in xyz space. ForwD x�2yCz those level sets are

: ForwD x2 Cy2 Cz2 those level sets are :

26 The surfacex2 Cy2�z2 D�1 is in Figure 13.8. There is
empty space whenz2 is smaller than1 because :

27 The level sets ofF D x2 Cy2 Cqz2 look like footballs whenq
is ; like basketballs whenq is ; and like frisbees when
q is :

28 Let T .x;y/ be the driving time from your home at.0;0/ to
nearby towns at.x;y/: Draw the level curves.

29 (a) The level curves off .x;y/D sin.x�y/ are :

(b) The level curves ofg.x;y/D sin.x2�y2/ are :

(c) The level curves ofh.x;y/D sin.x�y2/ are :

30 Prove that if x1y1 D 1 and x2y2 D 1 then their average
xD 1

2 .x1 Cx2/; yD 1
2 .y1 Cy2/ has xy¥ 1: The function

f D xy has convex level curves (hyperbolas).

31 The hours in a day are limited byxCyD 24: Write x2y as
x2.24�x/ and maximize to find the optimal number of hours to
stay awake.

32 Near xD 16 draw the level curvex2yD 2048 and the line
xCyD 24: Show that the curve is convex and the line is tangent.

33 The surfacezD 4xCy is a : The surfacezD min.x;y/
is formed from two : We are willing to exchange6 left and
2 right shoes for2 left and4 right shoes but better is the average

:

34 Draw a contour map of the top of your shoe.
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13.2 Partial Derivatives

The central idea of differential calculus is the derivative. A change inx produces a
change inf . The ratio�f=�x approaches the derivative, or slope, or rate of change.
What to do iff depends on bothx andy?

The new idea is to varyx andy one at a time. First, onlyx moves. If the function
is xCxy, then�f is�xCy�x. The ratio�f=�x is 1Cy. The “x derivative” of
xCxy is 1Cy. For all functions the method is the same:Keepy constant, change
x, take the limit of�f=�x:

DEFINITION
BfBx .x;y/D lim

�xÑ0

�f

�x
D lim

�xÑ0

f .xC�x;y/�f .x;y/
�x

: (1)

On the left is a new symbolBf=Bx. It signals that onlyx is allowed to vary—Bf=Bx
is a partial derivative. The different formB of the same letter (still say “d ”) is a
reminder thatx is not the only variable. Another variabley is present but not moving.

EXAMPLE 1 f .x;y/D x2y2 CxyCy
BfBx .x;y/D 2xy2CyC0.

Do not treat y as zero! Treat it as a constant, like6. Its x derivative is zero.
If f .x/D sin6x thendf=dxD 6 cos6x. If f .x;y/D sinxy thenBf=BxD y cosxy.

Spoken aloud,Bf=Bx is still “df dx:” It is a function ofx andy. When more
is needed, call it “the partial off with respect tox.” The symbolf 1 is no longer
available, since it gives no special indication aboutx. Its replacementfx is pronounced
“f x” or “f subx,” which is shorter thanBf=Bx and means the same thing.

We may also want to indicate the point.x0;y0/ where the derivative is computed:BfBx .x0;y0/ or fx.x0;y0/ or
BfBx ����.x0;y0/

or just

�BfBx �0

:

EXAMPLE 2 f .x;y/Dsin2x cosy fx D2 cos2x cosy (cosy is constant forB=Bx)

The particular point.x0;y0/ is .0;0/. The height of the surface isf .0;0/D 0.
The slope in thex direction isfx D 2. At a different pointx0 D�; y0 D� we find
fx.�;�/D�2.

Now keepx constant and varyy. The ratio�f=�y approachesBf=By:

fy.x;y/D lim
�yÑ0

�f

�y
D lim

�yÑ0

f .x;yC�y/�f .x;y/
�y

: (2)

This is the slope in they direction. Please realize that a surface can go up in thex
direction and down in they direction. The planef .x;y/D 3x�4y hasfx D 3 (up)
andfy D�4 (down). We will soon ask what happens in the45� direction.

EXAMPLE 3 f .x;y/D
a
x2 Cy2

BfBx D
xa

x2 Cy2
D
x

f

BfBy D
ya

x2 Cy2
D

y

f
.

Thex derivative of
a
x2 Cy2 is really one-variable calculus, becausey is constant.

The exponent drops from1
2

to�1
2
, and there is2x from the chain rule.This distance

function has the curious derivativeBf=BxD x=f .
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The graph is a cone. Above the point.0;2/ the height is
?
02 C22D2. The partial

derivatives arefx D 0=2 andfy D 2=2. At that point, Figure 13.5 climbs in they
direction. It is level in thex direction. An actual step�x will increase02 C22 to
.�x/2 C22. But this change is of order.�x/2 and thex derivative is zero.

Figure 13.5 is rather important. It shows howBf=Bx andBf=By are the ordinary
derivatives off .x;y0/ andf .x0;y/. It is natural to call thesepartial functions. The
first hasy fixed aty0 while x varies. The second hasx fixed atx0 while y varies.
Their graphs arecross sections down the surface—cut out by the vertical planes
yD y0 andxD x0. Remember that the level curve is cut out by the horizontal plane
zD c.

Fig. 13.5 Partial functions
?
x2 C22 and

a
02 Cy2 of the distance functionf D

a
x2 Cy2:

The limits of�f=�x and�f=�y are computed as always. With partial functions
we are back to a single variable.The partial derivative is the ordinary derivative
of a partial function (constanty or constantx). For the cone,Bf=By exists at all
points except.0;0/. The figure shows how the cross section down the middle of the
cone produces the absolute value function:f .0;y/D |y|. It has one-sided derivatives
but not a two-sided derivative.

Similarly Bf=Bx will not exist at the sharp point of the cone. We develop the idea
of a continuous functionf .x;y/ as needed (the definition is in the exercises). Each
partial derivative involves one direction, but limits and continuity involve all direc-
tions. The distance function is continuous at.0;0/, where it is not differentiable.

EXAMPLE 4 f .x;y/D y2�x2 Bf=BxD�2x Bf=ByD 2y

Move in thex direction from.1;3/. Theny2�x2 has the partial function9�x2.
With y fixed at3, a parabola opens downward. In they direction (alongxD1) the
partial functiony2�1 opens upward. The surface in Figure 13.6 is called ahyper-
bolic paraboloid, because the level curvesy2�x2Dc are hyperbolas. Most people
call it a saddle, and the special point at the origin is asaddle point. The origin is spe-
cial fory2�x2 because both derivatives are zero.The bottom of they parabola at
.0;0/ is the top of thex parabola. The surface is momentarily flat in all directions.
It is the top of a hill and the bottom of a mountain range at the same time. A saddle
point is neither a maximum nor a minimum, although both derivatives are zero.

Note Do not think thatf .x;y/ must containy2 andx2 to have a saddle point.
The function2xy does just as well. The level curves2xyD c are still hyperbolas.
The partial functions2xy0 and2x0y now give straight lines—which is remarkable.
Along the45� line xD y, the function is2x2 and climbing. Along the�45� line
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Fig. 13.6 A saddle function, its partial functions, and its level curves.

xD�y, the function is�2x2 and falling. The graph of2xy is Figure 13.6 rotated
by 45�.
EXAMPLES 5–6 f .x;y;z/D x2 Cy2 Cz2 P.T;V /D nRT=V

Example5 shows more variables. Example6 shows that the variables may not be
namedx andy. Also, the function may not be namedf ! Pressure and temperature
and volume areP andT andV . The letters change but nothing else:BP=BT D nR=V BP=BV D�nRT=V 2 .note the derivative of1=V /:

There is noBP=BR becauseR is a constant from chemistry—not a variable.
Physics produces six variables for a moving body—the coordinatesx;y;z and

the momentapx;py ;pz . Economics and the social sciences do better than that.
If there are26 products there are26 variables—sometimes52, to show prices as
well as amounts. The profit can be a complicated function of these variables.The
partial derivatives are the marginal profits, as one of the52 variables is changed. A
spreadsheet shows the52 values and the effect of a change. An infinitesimal
spreadsheet shows the derivative.

SECOND DERIVATIVE

Genius is not essential, to move to second derivatives. The only difficulty is that two
first derivativesfx andfy lead tofour second derivativesfxx andfxy andfyx and
fyy . (Two subscripts:fxx is thex derivative of thex derivative. Other notations areB2f=Bx2 andB2f=BxBy andB2f=ByBx andB2f=By2.) Fortunatelyfxy equals
fyx , as we see first by example.

EXAMPLE 7 f D x=y has fx D 1=y, which hasfxx D 0 and fxy D�1=y2.

The functionx=y is linear inx (which explainsfxx D 0). Its y derivative isfy D�x=y2. This has thex derivativefyx D�1=y2. The mixed derivativesfxy and
fyx are equal.

In the purey direction, the second derivative isfyy D 2x=y3. One-variable calcu-
lus is sufficient for all these derivatives, because only one variable is moving.
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EXAMPLE 8 f D 4x2 C3xyCy2 has fx D 8xC3y and fy D 3xC2y.

Both “cross derivatives” fxy and fyx equal3. The second derivative in thex
direction isB2f=Bx2 D 8 or fxx D 8. Thus “f xx” is “d secondf d x squared.”
Similarly B2f=By2 D 2. The only change is fromd to B.

If f .x;y/ has continuous second derivatives thenfxy D fyx. Problem43 sketches
a proof based on the Mean Value Theorem. For third derivatives almost any example
shows thatfxxy D fxyx D fyxx is different fromfyyx D fyxy D fxyy .

Question How do you plot a space curvex.t/, y.t/, z.t/ in a plane? One way is
to look parallel to the direction.1;1;1/. On yourXY screen, plotX D .y�x/=?2
andY D .2z�x�y/=?6. The linexD yD z goes to the point.0;0/!

How do you graph a surfacezD f .x;y/?Use the sameX andY . Fix x and let
y vary, for curves one way in the surface. Then fixy and varyx, for the other partial
function. For a parametric surface likexD .2Cvsin1

2
u/cosu, yD .2Cvsin1

2
u/

sin u, zD vcos1
2
u, vary u and thenv. Dick Williamson showed how this draws a

one-sided “Möbius strip.”

13.2 EXERCISES

Read-through questions

The a derivative Bf=By comes from fixing b and
moving c . It is the limit of d . If f D e2x siny thenBf=BxD e and Bf=ByD f . If f D .x2 Cy2/1=2 then
fx D g andfy D h . At (x0;y0) the partial derivativefx

is the ordinary derivative of the i functionf .x;y0/. Similarly
fy comes fromf ( j ). Those functions are cut out by vertical
planesxD x0 and k , while the level curves are cut out by

l planes.

The four second derivatives arefxx , m , n , o .
For f D xy they are p . For f D cos2x cos3y they are

q . In those examples the derivatives r and s are
the same. That is always true when the second derivatives
are t . At the origin, cos2x cos3y is curving u in the
x and y directions, whilexy goes v in the 45� direction
and w in the�45� direction.

Find Bf=Bx and Bf=By for the functions in 1–12.

1 3x�yCx2y2

3 x3y2�x2�ey

5 .xCy/=.x�y/
7 .x2 Cy2/�1

9 ln
a
x2 Cy2

11 tan�1.y=x/

2 sin.3x�y/Cy
4 xexC4

6 1=
a
x2 Cy2

8 ln.xC2y/

10 yx

12 ln.xy/

Compute fxx ;fxy D fyx , and fyy for the functions in
13–20.

13 x2 C3xyC2y2

15 .xC iy/3

17 1=
a
x2 Cy2

19 cos ax cosby

14 .xC3y/2

16 eaxCby

18 .xCy/n

20 1=.xC iy/

Find the domain and range (all inputs and outputs) for the func-
tions 21–26. Then computefx ;fy ;fz;ft :

21 1=.x�y/2
23 .y�x/=.z� t/ 22

a
x2 Cy2� t2

24 ln.xC t/

25 x ln t Why does this equalt lnx? 26 cosx cos�1y

27 Verify fxy D fyx for f D xmyn. If fxy D 0 thenfx does not
depend on andfy is independent of . The function
must have the formf .x;y/DG.x/C .

28 In terms ofv, computefx andfy for f .x;y/D
r y

xv.t/dt . First
varyx. Then varyy.

29 ComputeBf=Bx for f D
r xy

0 v.t/dt . Keepy constant.

30 What isf .x;y/D
r y

x dt=t and what arefx andfy?

31 Calculate all eight third derivativesfxxx;fxxy ; : : : of f D

x3y3. How many are different?

In 32–35, chooseg.y/ so that f .x;y/D ecxg.y/ satisfies the
equation.

32 fx Cfy D 0

34 fy D fxx

33 fx D 7fy

35 fxx D 4fyy
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36 Show thatt�1=2e�x2=4t satisfies theheat equationft D fxx.
Thisf .x; t/ is the temperature at positionx and timet due to a point
source of heat atxD 0; t D 0.

37 The equation for heat flow in thexy plane is ft D fxx C

fyy . Show thatf .x;y; t/D e�2t sinx siny is a solution. What
exponent inf D e sin2x sin3y gives a solution?

38 Find solutionsf .x;y/D e sinmx cosny of the heat equa-

tionft D fxx Cfyy . Show thatt�1e�x2=4t e�y2=4t is also a solu-
tion.

39 The basicwave equation is ft t D fxx . Verify that f .x; t/D

sin.xC t/ andf .x; t/D sin.x� t/ are solutions. Draw both graphs
at t D�=4. Which wave moved to the left and which moved to the
right?

40 Continuing39, the peaks of the waves moved a distance�xD

in the time step�t D�=4. The wave velocity is�x=�t D

.

41 Which of these satisfy the wave equationft t D c2fxx?

sin.x�ct/; cos.xCct/; ex�ct ; ex�ect ; ex cosct:

42 SupposeBf=Bt D Bf=Bx. Show thatB2f=Bt2 D B2f=Bx2.

43 The proof offxy D fyx studiesf .x;y/ in a small rectangle.
The top-bottom difference isg.x/D f .x;B/�f .x;A/. The
difference at the corners1; 2; 3; 4 is:

QD Œf4�f3�� Œf2�f1�

Dg.b/�g.a/ .definition ofg/

D .b�a/gx.c/ .Mean Value Theorem/

D .b�a/Œfx.c;B/�fx.c;A/� .computegx/

D .b�a/.B�A/fxy.c;C / .MVT again/

(a) The right-left difference ish.y/D f .b;y/�f .a;y/. The
sameQ is h.B/�h.A/. Change the steps to reachQD

.B�A/.b�a/fyx.c
�;C�/.

(b) The two forms ofQ makefxy at .c;C / equal tofyx at
.c�;C�/. Shrink the rectangle toward.a;A/. What assumption
yieldsfxy Dfyx at that typical point?

44 Find Bf=Bx andBf=By where they exist, based on equations
.1/ and.2/.

(a)f D |xy| (b)f D x2 Cy2 if x¤ 0, f D 0 if xD 0

Questions 45–52 are about limits in two dimensions.

45 Complete thesefour correct definitions of limit: 1 The
points .xn;yn/ approach the point.a;b/ if xn converges toa and

. 2 For any circle around.a;b/, the points.xn;yn/ eventually
go the circle and stay . 3 The distance from.xn;yn/

to .a;b/ is and it approaches . 4 For any"¡ 0 there
is anN such that the distance   " for all n¡ .

46 Find .x2;y2/ and .x4;y4/ and the limit .a;b/ if it exists.
Start from.x0;y0/D .1;0/.

(a) .xn;yn/D .1=.nC1/;n=.nC1//

(b) .xn;yn/D .xn�1;yn�1/

(c) .xn;yn/D .yn�1;xn�1/

(d) .xn;yn/D .xn�1 Cyn�1;xn�1�yn�1/

47 (Limit of f .x;y// 1 Informal definition: the numbers
f .xn;yn/ approachL when the points.xn;yn/ approach.a;b/.
2 Epsilon-delta definition: For each"¡ 0 there is aı¡ 0 such
that |f .x;y/�L| is less than when the distance from
.x;y/ to .a;b/ is . The value of f at .a;b/ is not
involved.

48 Write down the limitL as.x;y/Ñ .a;b/. At which points.a;b/
doesf .x;y/ have no limit?

(a) f .x;y/D
a
x2 Cy2 (b) f .x;y/D x=y

(c) f .x;y/D 1=.xCy/ (d) f .x;y/D xy=.x2 Cy2/

In (d) find the limit at.0;0/ along the lineyDmx. The limit changes
with m, soL does not exist at.0;0/. Same forx=y.

49 Definition of continuity: f .x;y/ is continuous at.a;b/ if
f .a;b/ is defined andf .x;y/ approaches the limit
as .x;y/ approaches.a;b/. Construct a function that isnot
continuous at.1;2/.

50 Show that x2y=.x4 Cy2/Ñ 0 along every straight line
yDmx to the origin. But traveling down the parabolayDx2, the
ratio equals .

51 Can you definef .0;0/ so thatf .x;y/ is continuous at.0;0/?

(a)f D |x|C |y�1| (b)f D .1Cx/y (c)f D x1Cy :

52 Which functions approach zero as.x;y/Ñ .0;0/ and why ?

(a)
xy2

x2 Cy2
(b)

x2y2

x4 Cy4
(c)

xmyn

xm Cyn
.
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13.3 Tangent Planes and Linear Approximations

Over a short range, a smooth curveyD f .x/ is almost straight. The curve changes
direction, but the tangent liney�y0 D f 1.x0/.x�x0/ keeps the same slope
forever. The tangent line immediately gives the linear approximation toyD f .x/ W
y� y0 Cf 1.x0/.x�x0/:

What happens with two variables? The function iszD f .x;y/; and its graph is
a surface. We are at a point on that surface, and we are near-sighted. We don’t see
far away. The surface may curve out of sight at the horizon, or it may be a bowl or
a saddle. To our myopic vision, the surface looks flat. We believe we are on a plane
(not necessarily horizontal), and we want the equation of thistangent plane.

Notation The basepoint has coordinatesx0 andy0. The height on the surface is
z0 D f .x0;y0/. Other letters are possible: the point can be.a;b/ with heightw. The
subscript0 indicates the value ofx or y or z or Bf=Bx or Bf=By at the point.

With one variable the tangent line has slopedf=dx. With two variables there are
two derivativesBf=Bx andBf=By. At the particular point, they are.Bf=Bx/0 and
.Bf=By/0. Those are the slopes of the tangent plane. Its equation is the key to
this chapter:

13A The tangent plane at.x0;y0;z0/ has the same slopes as the surfacezD
f .x;y/: The equation of the tangent plane (a linear equation) is

z�z0 D

�BfBx �0

.x�x0/C

�BfBy �0

.y�y0/: (1)

The normal vectorN to that plane has components.Bf=Bx/0; .Bf=By/0;�1.
EXAMPLE 1 Find the tangent plane tozD 14�x2�y2 at.x0;y0;z0/D .1;2;9/.

Solution The derivatives areBf=BxD�2x andBf=ByD�2y. WhenxD 1 and
yD 2 those are.Bf=Bx/0 D�2 and.Bf=By/0 D�4. The equation of the tangent
plane is

z�9D�2.x�1/�4.y�2/ or zC2xC4yD 19: (2)

Thisz.x;y/ has derivatives�2 and�4; just like the surface. So the plane is tangent.
The normal vectorN has components�2;�4;�1: The equation of the normal

line is .x;y;z/D .1;2;9/C t.�2;�4;�1/:Starting from.1;2;9/ the line goes out
alongN—perpendicular to the plane and the surface.

Figure 13.7 shows more detail about the tangent plane. The dotted lines are thex
andy tangent lines. They lie in the plane. All tangent lines lie in the tangent plane!
These particular lines are tangent to the “partial functions”—wherey is fixed aty0 D
2 or x is fixed atx0 D 1. The plane is balancing on the surface and touching at the
tangent point.

More is true. In the surface,every curve through the point is tangent to the plane.
Geometrically, the curve goes up to the point and “kisses” the plane.� The tangent
T to the curve and the normalN to the surface are perpendicular:T �N D 0.

EXAMPLE 2 Find the tangent plane to the spherez2 D 14�x2�y2 at .1;2;3/:

�A safer word is “osculate.” At saddle points the plane is kissed from both sides.
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Fig. 13.7 The tangent plane contains thex andy tangent lines, perpendicular toN.

Solution Instead ofzD 14�x2�y2 we havezD
a
14�x2�y2: At x0 D 1;

y0 D 2 the height is nowz0 D 3. The surface is a sphere with radius
?
14. The only

trouble from the square root is its derivatives:BzBx D
BBxa14�x2�y2 D

1
2
.�2x/a

14�x2�y2
and

BzBy D
1
2
.�2y/a

14�x2�y2
(3)

At .1;2/ those slopes are�1
3

and�2
3
: The equation of the tangent plane is linear:z�

3D�1
3
.x�1/� 1

3
.y�2/. I cannot resist improving the equation, by multiplying

through by3 and moving all terms to the left side:

tangent plane to sphereW 1.x�1/C2.y�2/C3.z�3/D 0: (4)

If mathematics is the “science of patterns,” equation(4) is a prime candidate for study.
The numbers1;2;3 appear twice. The coordinates are.x0;y0;z0/D .1;2;3/: The
normal vector is1i C2j C3k: The tangent equation is1xC2yC3zD 14: None of
this can be an accident, but the square root of14�x2�y2 made a simple pattern
look complicated.

This square root is not necessary. Calculus offers a direct way to finddz=dx—
implicit differentiation. Just differentiate every term as it stands:

x2 Cy2 Cz2 D 14 leads to 2xC2z Bz=BxD 0 and 2yC2z Bz=ByD 0:
(5)

Canceling the 2’s, the derivatives on a sphere are�x=z and�y=z. Those are the
same as in(3). The equation for the tangent plane has an extremely symmetric form:

z�z0 D�x0

z0

.x�x0/� y0

z0

.y�y0/ or x0.x�x0/Cy0.y�y0/Cz0.z�z0/D 0:

(6)



556 13 Partial Derivatives

Fig. 13.8 Tangent plane and normalN for a sphere. Hyperboloids of 1 and 2 sheets.

Reading offN D x0i Cy0j Cz0k from the last equation, calculus proves something
we already knew:The normal vector to a sphere points outward along the
radius.

THE TANGENT PLANE TO F.x;y;z/ D c

The sphere suggests a question that is important for other surfaces. Suppose the
equation isF.x;y;z/D c instead ofzD f .x;y/: Can the partial derivatives and
tangent plane be found directly fromF ?

The answer isyes. It is not necessary to solve first forz: The derivatives ofF;
computed at.x0;y0;z0/, give a second formula for the tangent plane and normal
vector.

13B The tangent plane to the surfaceF.x;y;z/D c has the linear equation
�BFBx �0

.x�x0/C

�BFBy �0

.y�y0/C

�BFBz �0

.z�z0/D 0: (7)

The normal vector isN D

�BFBx �0

i C
�BFBy �0

j C

�BFBz �0

k:

Notice how this includes the original casezD f .x;y/. The function F becomes
f .x;y/�z: Its partial derivatives areBf=Bx andBf=By and�1: (The�1 is from
the derivative of�z:) Then equation(7) is the same as our original tangent equa-
tion (1).

EXAMPLE 3 The surfaceF D x2 Cy2�z2 D c is ahyperboloid. Find its tangent
plane.

Solution The partial derivatives areFx D 2x;Fy D 2y;Fz D�2z: Equation(7)
is

tangent planeW 2x0.x�x0/C2y0.y�y0/�2z0.z�z0/D 0: (8)

We can cancel the 2’s. The normal vector isN D x0i Cy0j�z0k. For c¡ 0 this
hyperboloid has one sheet(Figure 13.8). ForcD 0 it is a cone and forc  0 it
breaks into two sheets (Problem 13.1.26).



13.3 Tangent Planes and Linear Approximations 557

DIFFERENTIALS

Come back to the linear equationz�z0 D .Bz=Bx/0.x�x0/C .Bz=By/0.y�y0/
for the tangent plane. That may be the most important formula in this chapter. Move
along the tangent plane instead of the curved surface. Movements in the plane are
dx anddy anddz—while �x and�y and�z are movements in the surface. The
d ’s are governed by the tangent equation—the�’s are governed byzD f .x;y/. In
Chapter2 thed ’s weredifferentials along the tangent line:

dyD .dy=dx/dx (straight line) and�y� .dy=dx/�x (on the curve): (9)

Now y is independent likex. The dependent variable isz. The idea is the same. The
distancesx�x0 andy�y0 andz�z0 (on the tangent plane) aredx anddy anddz.
The equation of the plane is

dzD .Bz=Bx/0dxC .Bz=By/0dy or df D fxdxCfydy: (10)

This is thetotal differential. All lettersdz anddf anddw can be used, butBz andBf are not used. Differentials suggest small movements inx andy; thendz is the
resulting movement inz. On the tangent plane, equation(10)holds exactly.

A “centering transform” has putx0;y0;z0 at the center of coordinates. Then the
“zoom transform” stretches the surface into its tangent plane.

EXAMPLE 4 The area of a triangle isAD 1
2
ab sin � . Find the total differential

dA.

Solution The base has lengthb and the sloping side has lengtha. The angle
between them is� . You may preferAD 1

2
bh; whereh is the perpendicular height

asin� . Either way we need the partial derivatives. IfAD 1
2
ab sin � , thenBABa D

1

2
b sin �

BABb D
1

2
a sin �

BAB� D
1

2
ab cos�: (11)

These lead immediately to the total differentialdA (like a product rule):

dAD

�BABa �daC

�BABb �dbC

�BAB� �d� D
1

2
b sin � daC

1

2
asin � dbC

1

2
ab cos� d�:

EXAMPLE 5 The volume of a cylinder isV D�r2h. Decide whetherV is more
sensitive to a change fromr D 1:0 to r D 1:1 or fromhD 1:0 to hD 1:1.

Solution The partial derivatives areBV=Br D 2�rh andBV=BhD�r2 . They
measure the sensitivity to change. Physically, they are the side area and base area
of the cylinder. The volume differentialdV comes from a shell around the side plus
a layer on top:

dV D shellC layerD 2�rh drC�r2dh: (12)

Starting fromr D hD 1, that differential isdV D 2�drC�dh. Withdr D dhD :1,
the shell volume is:2� and the layer volume is only:1� . SoV is sensitive todr .

For a short cylinder like a penny, the layer has greater volume.V is more sensitive
to dh. In our caseV D�r2h increases from�.1/3 to �.1:1/3. Compare�V to
dV :

�V D�.1:1/3��.1/3 D :331� and dV D 2�.:1/C�.:1/D :300�:

The difference is�V �dV D :031�. The shell and layer missed a small volume
in Figure 13.9, just above the shell and around the layer. The mistake is of order
.dr/2 C .dh/2. ForV D�r2h, the differentialdV D 2�rh drC�r2dh is alinear
approximationto the true change�V . We now explain that properly.
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LINEAR APPROXIMATION

Tangents lead immediately to linear approximations. That is true of tangent planes
as it was of tangent lines. The plane stays close to the surface, as the line stayed close
to the curve. Linear functions are simpler thanf .x/ orf .x;y/ orF.x;y;z/. All we
need are first derivativesat the point. Then the approximation is goodnear the point.

This key idea of calculus is already present in differentials. On the plane,df equals
fxdxCfydy. On the curved surface that is a linear approximation to�f :

13C The linear approximation tof .x;y/ near the point.x0;y0/ is

f .x;y/� f .x0;y0/C

�BfBx �0

.x�x0/C

�BfBy �0

.y�y0/: (13)

In other words�f � fx�xCfy�y, as proved in Problem 24. The right side of
(13) is a linear functionfL.x;y/. At .x0;y0/, the functionsf andfL have the same
slopes. Thenf .x;y/ curves away fromfL with an error of “second order:”|f .x;y/�fL.x;y/| ¤MŒ.x�x0/

2 C .y�y0/
2�: (14)

This assumes thatfxx;fxy , andfyy are continuous and bounded byM along the line
from .x0;y0/ to .x;y/. Example 3 of Section 13.5 shows that|ft t | ¤ 2M along that
line. A factor 1

2
comes from equation 3.8.12, for the errorf �fL with one variable.

For the volume of a cylinder,r andhwent from 1.0 to 1.1. The second derivatives of
V D�r2h areVrr D 2�h andVrh D 2�r andVhh D 0. They are belowM D 2:2� .
Then(14) gives the error bound2:2�.:12 C :12/D :044�, not far above the actual
error:031�. The main point is thatthe error in linear approximation comes from
the quadratic terms—those are the first terms to be ignored byfL.

Fig. 13.9 Shell plus layer givesdV D :300�.
Including top ring gives�V D :331�.

Fig. 13.10 QuantityQ andpriceP move with the
lines.

EXAMPLE 6 Find a linear approximation to the distance functionr D
a
x2 Cy2.

Solution The partial derivatives arex=r andy=r . Then�r � .x=r/�xC .y=r/�y.

For .x;y;r/ near.1;2;
?
5/W
a
x2 Cy2�a12 C22 C .x�1/=?5C2.y�2/=?5:

If y is fixed at2, this is a one-variable approximation to
?
x2 C22. If x is fixed at1,

it is a linear approximation iny. Moving both variables, you might thinkdr would
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involvedx and dy in a square root. It doesn’t. Distance involvesx andy in a square
root, but:change of distanceis linear in�x and�y—to a first approximation.

There is a rough point atxD 0;yD 0. Any movement from.0;0/ gives�r Da
.�x/2 C .�y/2. The square root has returned. The reason is thatthe partial

derivativesx=r andy=r are not continuous at.0;0/. The cone has a sharp point
with no tangent plane.Linear approximation breaks down.

The next example shows how to approximate�z from �x and�y, when the
equation isF.x;y;z/D c. We use the implicit derivatives in(7) instead of the
explicit derivatives in(1). The idea is the same: Look at the tangent equation as a
way to find�z, instead of an equation forz. Here is Example 6 with new letters.

EXAMPLE 7 FromF D�x2�y2 Cz2 D 0 find a linear approximation to�z:

Solution (implicit derivatives) Use the derivatives ofFW�2x�x�2y�yC2z�z�
0. Then solve for�z, which gives�z� .x=z/�xC .y=z/�y—the same as
Example 6.

EXAMPLE 8 How does the equilibrium price change when the supply curve changes?

The equilibrium price is at the intersection of the supply and demand curves
(supplyD demand). As the pricep rises, the demandq drops (the slope is�:2):

demand lineDD WpD�:2qC40: (15)

The supply (alsoq) goesupwith the price. The slopes is positive (heresD :4/:

supply lineSS WpD sqC t D :4qC10:

Those lines are in Figure 13.10. They meet at theequilibrium priceP D $30. The
quantityQD 50 is available atP (on SS ) and demanded atP (onDD). So it is
sold.

Where do partial derivatives come in? The reality is that those linesDD andSS
are not fixed for all time. Technology changes, and competition changes, and the
value of money changes. Therefore the lines move. Therefore the crossing point.Q;P /
also moves. Please recognize that derivatives are hiding in those sentences.

Main point:The equilibrium priceP is a function of s and t . Reducings by
better technology lowers the supply line topD :3qC10. The demand line has not
changed. The customer is as eager or stingy as ever. But the priceP and quantityQ
are different. The new equilibrium is atQD 60 andP D $28, where the new line
XX crossesDD.

If the technology is expensive, the supplier will raiset when reducings. LineY Y
is pD :3qC20. That gives a higher equilibriumP D $32 at a lower quantityQD
40—the demand was too weak for the technology.

Calculus question FindBP=Bs andBP=Bt . The difficulty is thatP is not given as
a function ofs andt . So take implicit derivatives of the supply = demand equations:

supplyD demandW P D� :2QC40D sQC t (16)

s derivativeW Ps D�:2QsD sQs CQ .notets D 0/

t derivativeW Pt D�:2QtD sQt C1 .notett D 1/

Now substitutesD :4; t D 10;P D 30;QD 50. That is the starting point, around which
we are finding a linear approximation. The last two equations givePs D 50=3 and



560 13 Partial Derivatives

Pt D 1=3 (Problem25). The linear approximation is

P D 30C50.s� :4/=3C.t�10/=3 (17)

CommentThis example turned out to be subtle (so is economics) . I hesitated before
including it. The equations are linear and their derivatives are easy, but something
in the problem is hard—there is no explicit formula forP . The functionP.s; t/ is
not known. Instead of a point on a surface, we are following the intersection of two
lines.The solution changes as the equation changes.The derivative of the solution
comes from the derivative of the equation.

SummaryThe foundation of this section is equation(1) for the tangent plane.
Every thing builds on that—total differential, linear approximation, sensitivity to small
change. Later sections go on to the chain rule and “directional derivatives” and
“gradients.” The central idea of differential calculus is�f � fx�xCfy�y.

NEWTON’S METHOD FOR TWO EQUATIONS

Linear approximation is usedto solve equations. To find out where a function is
zero, look first to see where its approximation is zero. To find out where a graph
crosses thexy plane, look to see where its tangent plane crosses.

Remember Newton’s method forf .x/D 0. The current guess isxn. Around that
point,f .x/ is close tof .xn/C .x�xn/f

1.xn/. This is zero at the next guessxnC1 D
xn�f .xn/=f

1.xn/. That is where the tangent line crosses thex axis.

With two variables the idea is the same—but two unknownsx andy require two
equations. We solveg.x;y/D 0 and h.x;y/D 0. Both functions have linear
approximations that start from the current point.xn;yn/—where derivatives are
computed:

g.x;y/� g.xn;yn/C .Bg=Bx/.x�xn/C .Bg=By/.y�yn/

h.x;y/� h.xn;yn/C .Bh=Bx/.x�xn/C .Bh=By/.y�yn/:
(18)

The natural idea is toset these approximations to zero. That gives linear equations
for x�xn andy�yn. Those are the steps�x and�y that take us to the next guess
in Newton’s method:

13D Newton’s method to solveg.x;y/D 0 andh.x;y/D 0 has linear equations
for the steps�x and�y that go from.xn;yn/ to .xnC1; ynC1/:
�BgBx��xC

� BgBy��yD�g.xn;yn/and
� BhBx��xC

� BhBy��yD�h.xn;yn/: (19)

EXAMPLE 9 gD x3�yD 0 andhD y3�xD 0 have 3 solutions.1;1/; .0;0/;
.�1;�1/.
I will start at different points.x0;y0/. The next guess isx1 D x0 C�x;y1 D y0 C
�y. It is of extreme interest to know which solution Newton’s method will choose—if
it converges at all. I made three small experiments.
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1: Suppose.x0;y0/D .2;1/. At that pointgD 23�1D 7 andhD 13�2D�1.
The derivatives aregx D 3x2 D 12; gy D�1; hx D�1; hy D 3y2 D 3. The steps
�x and�y come from solving(19):

12�x��yD�7��xC3�yD C1
ñ �xD�4=7

�yD C1=7
ñ x1 D x0 C�xD 10=7

y1 D y0 C�yD 8=7:

This new point.10=7;8=7/ is closer to the solution at.1;1/. The next point is.1:1;
1:05/ and convergence is clear. Soon convergence is fast.

2: Start at.x0;y0/D .1
2
;0/. There we findgD 1=8 andhD�1=2:

.3=4/�x� �yD�1=8��xC0�yD C1=2
ñ �xD�1=2

�yD C1=4
ñ x1 D x0 C�xD 0

y1 D y0 C�yD�1=4:
Newton has jumped from

�

1
2
;0
�

on thex axis to
�

0;�1
4

�

on they axis. The next step
goes to.1=32;0/; back on thex axis. We are in the “basin of attraction” of.0;0/:

3: Now start further out the axis at.1;0/, wheregD 1 andhD�1:
3�x��yD�1��xC0�yD C1

ñ �xD�1
�yD�2 ñ x1 D x0 C�xD 0

y1 D y0 C�yD�2:
Newton moves from.1;0/ to .0;�2/ to .16;0/. Convergence breaks down—the

method blows up. This danger is ever-present, when we start far from a solution.

Please recognize that even a small computer will uncover amazing patterns. It can
start from hundreds of points.x0;y0/, and follow Newton’s method. Each solution
has abasin of attraction, containing all.x0;y0/ leading to that solution. There is
also a basin leading to infinity. The basins in Figure 13.11 are completely mixed
together—a color figure shows them asfractals. The most extreme behavior is on the
borderline between basins, when Newton can’t decide which way to go. Frequently
we see chaos.

Chaos is irregular movement that follows a definite rule. Newton’s method
determines aniteration from each point.xn;yn/ to the next. In scientific problems
it normally converges to the solution we want. (We start close enough.) But the com-
puter makes it possible to study iterations from faraway points. This has created a new
part of mathematics—so new that any experiments you do are likely to be original.

Section 3.7 found chaos when trying to solvex2 C1D 0:But don’t think Newton’s
method is a failure. On the contrary, it is the best method to solve nonlinear equations.
The error is squared as the algorithm converges, because linear approximations have
errors of order.�x/2 C .�y/2: Each step doubles the number of correct digits,near
the solution. The example shows why it is important to be near.
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Fig. 13.11 The basins of attraction to.1;1/; .0;0/; .�1;�1/, and infinity.

13.3 EXERCISES

Read-through questions

The tangent line toyD f .x/ is y�y0 D a . The tangent
plane towD f .x;y/ is w�w0 D b . The normal vector is
N D c . For wD x3 Cy3 the tangent equation at.1;1;2/ is

d . The normal vector isN D e .For a sphere, the direction
of N is f .

The surface given implicitly byF.x;y;z/D c has tangent
equation.BF=Bx/0.x�x0/C g . For xyzD 6 at .1;2;3/ the
tangent plane is h . On that plane the differentials satisfy i
dxC j dyC k dzD 0. The differential of zD f .x;y/ is
dzD l . This holds exactly on the tangent plane, while�z�

m holds approximately on the n . The heightzD 3xC7y

is more sensitive to a change in o than inx; because the partial
derivative p is larger than q .

The linear approximation tof .x;y/ is f .x0;y0/C r .
This is the same as�f � s �xC t �y. The error is
of order u . For f D sin xy the linear approximation
around .0;0/ is fL D v . We are moving along the w
instead of the x . When the equation is given asF.x;y;z/D c;

the linear approximation is y �xC z �yC A �zD 0.

Newton’s method solvesg.x;y/D 0 and h.x;y/D 0 by a
B approximation. Starting fromxn;yn the equations are

replaced by C and D . The steps�x and�y go to the next
point E . Each solution has a basin of F . Those basins are
likely to be G .

In 1–8 find the tangent plane and the normal vector atP:

1 zD
a
x2 Cy2;P D .0;1;1/

2 xCyCzD 17;P D .3;4;10/

3 zD x=y;P D .6;3;2/

4 zD exC2y ;P D .0;0;1/

5 x2 Cy2 Cz2 D 6;P D .1;2;1/

6 x2 Cy2 C2z2 D 7;P D .1;2;1/

7 zD xy ;P D .1;1;1/

8 V D�r2h;P D .2;2;8�/.

9 Show that the tangent plane toz2�x2�y2 D 0 goes
through the origin and makes a 45� angle with thez axis.

10 The planeszD xC4y and zD 2xC3y meet at .1;1;5/.
The whole line of intersection is.x;y;z/D .1;1;5/Cvt . Find v D

N1�N2.

11 If zD 3x�2y find dz from dx and dy. If zDx3=y2 find
dz from dx and dy at x0 D 1;y0 D 1: If x moves to1:02 and y
moves to1:03, find the approximatedz and exact�z for both
functions. The first surface is the to the second surface.

12 The surfaceszD x2 C4y and zD 2xC3y2 meet at.1;1;5/.
Find the normalsN1 and N2 and alsovDN1xN2. The line
in this directionv is tangent to what curve?

13 The normal N to the surface F.x;y;z/D 0 has
componentsFx ;Fy ;Fz : The normal line has xD x0 CFx t;yD

y0 CFy t;zD . For the surfacexyz�24D 0, find the
tangent plane and normal line at.4;2;3/.

14 For the surfacex2y2�zD 0; the normal line at.1;2;4/ has
xD ;yD ;zD :

15 For the spherex2 Cy2 Cz2 D 9; find the equation of the
tangent plane through.2;1;2/: Also find the equation of the
normal line and show that it goes through.0;0;0/:
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16 If the normal line at every point onF.x;y;z/D 0 goes
through .0;0;0/; show that Fx D cx;Fy D cy;Fz D cz: The
surface must be a sphere.

17 For wD xy near .x0;y0/; the linear approximation isdwD

: This looks like the rule for derivatives. The
difference between�wD xy�x0y0 and this approximation is

.

18 If f D xyz (3 independent variables) what isdf ?

19 You investP D $4000 at RD 8% to makeI D $320 per year.
If the numbers change bydP and dR what is dI? If the rate
drops bydRD :002 (to 7:8%) what changedP keepsdI D 0?
Find the exact interestI after those changes inR andP .

20 ResistancesR1 andR2 have parallel resistanceR, where1=RD

1=R1 C1=R2. Is R more sensitive to�R1 or �R2 if R1 D 1 and
R2 D 2?

21 (a) If your batting average isAD .25 hits/=.100 at bats/D

:250; compute the increase (to26=101) with a hit and the
decrease (to25=101) with an out.
(b) If AD x=y then dAD dxC dy: A hit
.dxD dyD 1/ gives dAD .1�A/=y. An out .dyD 1/ gives
dAD�A=y: So at AD :250 a hit has times the
effect of an out.

22 (a) 2 hits and3 outs .dxD 2;dyD 5/ will raise your average
.dA¡ 0/ providedA is less than .
(b) A player battingAD :500 with yD 400 at bats needs
dxD hits to raise his average to:505:

23 If x and y change by�x and �y, find the approximate
change�� in the angle� D tan�1.y=x/.

24 The Fundamental Lemmabehind equation (13) writes
�f D a�xCb�y. The Lemma says thataÑfx.x0;y0/ and
bÑfy.x0;y0/ when�xÑ 0 and�yÑ 0: The proof takes�x
first and then�y W

(1) f .x0 C�x;y0/�f .x0;y0/D�xfx.c;y0/wherec is be-
tween and (by which theorem?)

(2) f .x0 C�x;y0 C�y/�f .x0 C�x;y0/D�yfy.x0 C

�x;C / whereC is between and .
(3) aD fx.c;y0/Ñfx.x0;y0/ providedfx is .

(4) bD fy.x0 C�x;C /Ñfy.x0;y0/ provided fy is
.

25 If the supplier reducess, Figure 13.10 shows thatP decreases
andQ .

(a) Find Ps D 50=3 andPt D 1=3 in the economics equation
(17) by solving the equations above it forQs andQt :

(b) What is the linear approximation toQ around sD :4;

t D 10;P D 30;QD 50?

26 Solve the equationsP D�:2QC40 andP D sQC t for P and
Q. Then findBP=Bs andBP=Bt explicitly. At the sames; t;P;Q
check50=3 and1=3:

27 If the supplyDdemand equation (16) changes toP D

sQC t D�QC50, findPs andPt at sD 1; t D 10:

28 To find out how the roots ofx2 CbxCcD 0 vary with b;

take partial derivatives of the equation with respect to . Com-
pareBx=Bb with Bx=Bc to show that a root atxD 2 is more sensitive
to b:

29 Find the tangent planes tozD xy and zD x2�y2 atxD 2;yD

1: Find the Newton point where those planes meet thexy plane (set
zD 0 in the tangent equations).

30 (a) To solve g.x;y/D 0 and h.x;y/D 0 is to find the
meeting point of three surfaces:zDg.x;y/ andzD h.x;y/ and

.
(b) Newton finds the meeting point of three planes: the
tangent plane to the graph ofg; , and .

Problems 31–36 go further with Newton’s method forgD

x3�y and hD y3�x. This is Example 9 with solutions
.1;1/; .0;0/; .�1;�1/:
31 Start fromx0 D 1;y0 D 1 and find�x and�y. Where arex1

andy1; and what line is Newton’s method moving on?

32 Start from.1
2 ;

1
2 / and find the next point. This is in the basin of

attraction of which solution?

33 Starting from .a;�a/ find �y which is also��x. Newton
goes toward .0;0/: But can you find the sharp point in
Figure 13.11 where the lemon meets the spade?

34 Starting from .a;0/ show that Newton’s method goes to
.0;�2a3/ and find the next point.x2;y2/: Which numbers a
lead to convergence? Which special numbera leads to a cycle,
in which .x2;y2/ is the same as the starting point.a;0/?

35 Show thatx3 D y; y3 D x has exactly three solutions.

36 Locate a point from which Newton’s method diverges.

37 Apply Newton’s method to a linear problem:gD

xC2y�5D 0; hD 3x�3D 0: From any starting point show that
.x1;y1/ is the exact solution (convergence inone step).

38 The complex equation.xC iy/3 D 1 contains two real equa-
tions,x3�3xy2 D 1 from the real part and3x2y�y3 D 0 from the
imaginary part. Search by computer for the basins of attraction of the
three solutions.1;0/; .�1=2;?3=2/; and .�1=2;�?3=2/—which
give the cube roots of1.

39 In Newton’s method the new guess comes from.xn;yn/ by an
iteration: xnC1 DG.xn;yn/ and ynC1 DH.xn;yn/. What areG
andH for gD x2�yD 0;hD x�yD 0? First find�x and�y;
thenxn C�x givesG andyn C�y givesH:

40 In Problem 39 find the basins of attraction of the solution
.0;0/ and.1;1/.

41 The matrix in Newton’s method is theJacobian:

J D

"Bg=Bx Bg=ByBh=Bx Bh=By# and J

"

�x

�y

#

D

"�gn�hn

#

:

FindJ and�x and�y for gD ex�1; hD ey Cx:

42 Find the Jacobian matrix at.1;1/ when gD x2 Cy2 and
hD xy. This matrix is and Newton’s method fails. The
graphs ofg andh have tangent planes.
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43 Solve gD x2�y2 C1D 0 and hD 2xyD 0 by Newton’s
method from three starting points:.0;2/ and .�1;1/ and .2;0/:
Take ten steps by computer or one by hand. The solution

.0;1/ attracts wheny0¡ 0: If y0 D 0 you should find the chaos iter-
ationxnC1 D 1

2 .xn�x�1
n /:
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13.4 Directional Derivatives and Gradients

As x changes, we know howf .x;y/ changes. The partial derivativeBf=Bx treats
y as constant. SimilarlyBf=By keepsx constant, and gives the slope in they direc-
tion. But east-west and north-south are not the only directions to move. We could go
along a45� line, where�xD�y. In principle, before we draw axes, no direction is
preferred. The graph is a surface with slopes inall directions.

On that surface, calculus looks for the rate of change (or the slope). There is a
directional derivative, whatever the direction. In the45� case we are inclined to
divide�f by�x, but we would be wrong. Let me state the problem. We are given
f .x;y/ around a pointP D .x0;y0/. We are also given a directionu (a unit vector).
There must be a natural definition ofDuf—the derivative off in the directionu:
To compute this slope atP; we need a formula. Preferably the formula is based onBf=Bx andBf=By; which we already know.

Note that the45�direction hasu D i=2C j=2 . The square root of2 is going to
enter the derivative. This shows that dividing�f by�x is wrong. We should divide
by the step length�s.

EXAMPLE 1 Stay on the surfacezD xy. When.x;y/moves a distance�s in the
45� direction from.1;1/, what is�z=�s?

Solution The step is�s times the unit vectoru. Starting fromxD yD 1 the step
ends atxD yD 1C�s=

?
2. (The components ofu�s are�s=

?
2:/ ThenzD xy

is

zD .1C�s=
?
2/2 D 1C

?
2�sC 1

2
.�s/2; which means�zD

?
2�sC 1

2
.�s/2:

The ratio�z=�s approaches
?
2 as�sÑ 0: That is the slope in the45�direction.

DEFINITION The derivative off in the directionu at the pointP isDuf .P /:

Duf .P /D lim
�sÑ0

�f

�s
D lim

�sÑ0

f .P Cu�s/�f .P /
�s

: (1)

Thestep fromP D .x0;y0/ has length�s. It takes us to.x0 Cu1�s;y0 Cu2�s/.
We compute the change�f and divide by�s. But formula(2) below saves time.

Thex direction isu D .1;0/: Thenu�s is .�s;0/ and we recoverBf=Bx:

�f

�s
D
f .x0 C�s;y0/�f .x0;y0/

�s
approachesD.1;0/f D

BfBx :
SimilarlyDuf D Bf=By; whenu D .0;1/ is in they direction.What isDuf when
u D .0;�1/? That is the negativey direction, soDuf D�Bf=By.

CALCULATING THE DIRECTIONAL DERIVATIVE

Duf is the slope of the surfacezD f .x;y/ in the directionu. How do you compute
it? FromBf=Bx andBf=By; in two special directions, there is a quick way to find
Duf in all directions.Remember that u is a unit vector.

13E Thedirectional derivativeDuf in the directionu D .u1;u2/ equals

Duf D
BfBx u1 C

BfBy u2: (2)
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The reasoning goes back to the linear approximation of�f :

�f � BfBx �xC
BfBy �yD

BfBx u1�sC
BfBy u2�s:

Divide by �s and let�s approach zero. Formula(2) is the limit of �f=�s; as
the approximation becomes exact. A more careful argument guarantees this limit
providedfx andfy are continuous at the basepoint.x0;y0/:

Main point:Slopes in all directions are known from slopes in two directions.

EXAMPLE 1 (repeated) f D xy andP D .1;1/ andu D .1=
?
2;1=

?
2/: Find

Duf .P /:

The derivativesfx D y andfy D x equal1 atP . The45�derivative is

Duf .P /D fxu1 Cfyu2 D 1.1=
?
2/C1.1=

?
2/D

?
2 as before:

EXAMPLE 2 The linear functionf D 3xCyC1 has slopeDuf D 3u1 Cu2.

The x direction isuD .1;0/; andDuf D 3: That is Bf=Bx: In the y direction
Duf D 1: Two other directions are special—along the level lines off .x;y/
and perpendicular:

Level direction: Duf is zero becausef is constant

Steepest direction: Duf is as large as possible.with u2
1 Cu2

2 D 1/:

To find those directions, look atDuf D 3u1 Cu2: The level direction has3u1 C
u2 D 0: Thenu is proportional to.1;�3/: Changingx by 1 andy by�3 produces
no change inf D 3xCyC1:

In the steepest directionu is proportional to.3;1/: Note the partial derivatives
fx D 3 andfy D 1: The dot product of.3;1/ and.1;�3/ is zero—steepest direction
is perpendicular to level direction. To make.3;1/ a unit vector, divide by

?
10:

Steepest climb: Duf D 3.3=
?
10/C1.1=

?
10/D 10=

?
10D

?
10

Steepest descent: Reverse tou D .�3=?10;�1=?10/ and Duf D�?10:
The contour lines around a mountain followDuf D 0. The creeks are perpendic-
ular. On a plane likef D 3xCyC1; those directions stay the same at all points
(Figure 13.12). On a mountain the steepest direction changes as the slopes change.

Fig. 13.12 Steepest direction is along the gradient. Level direction is perpendicular.
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THE GRADIENT VECTOR

Look again atfxu1 Cfyu2; which is the directional derivativeDuf: This is the dot
product of two vectors. One vector isu D .u1;u2/; which sets the direction. The
other vector is.fx;fy/; which comes from the function. This second vector is the
gradient.

DEFINITION Thegradientof f .x;y/ is the vector whose componentsare
BfBx and

BfBy :

gradf D rf D
BfBx i C

BfBy j
�

add
BfBz k in three dimensions

�

:

The space-saving symbolr is read as “grad.” In Chapter 15 it becomes “del.”
For the linear function3xCyC1; the gradient is the constant vector.3;1/: It

is the way to climb the plane. For the nonlinear functionx2 Cxy; the gradient is
the non-constant vector.2xCy;x/: Notice that gradf shares the two derivatives
in N D .fx;fy ;�1/: But the gradient is not the normal vector.N is in three dimen-
sions, pointing away from the surfacezD f .x;y/: The gradient vector is in thexy
plane! The gradient tells which way on the surface is up, but it does that from down
in the base.

The level curve is also in thexy plane, perpendicular to the gradient. The contour
map is a projection on the base plane of what the hiker sees on the mountain. The
vector gradf tells thedirectionof climb, and its length|gradf | gives thesteepness.

13F The directional derivative isDuf D .gradf / �u: The level direction is
perpendicular to gradf; sinceDuf D 0: The slopeDuf is largest whenu is

parallel to gradf: That maximum slope is the length|gradf |Dbf 2
x Cf 2

y :

for u D
gradf|gradf | the slope is .gradf / �u D

|gradf |2|gradf | D |gradf |:
The examplef D 3xCyC1 had gradf D .3;1/: Its steepest slope was in the
directionu D .3;1/=

?
10: The maximum slope was

?
10: That is|gradf |D?9C1:

Important point:The maximum of.gradf / �u is the length|gradf |: In nonlin-
ear examples, the gradient and steepest direction and slope will vary. But look at one
particular point in Figure 13.13. Near that point, and near any point, the linear picture
takes over.

On the graph off; the special vectors are the level directionL D .fy;�fx;0/
and the uphill directionU D .fx;fy ;f

2
x Cf 2

y / and the normalN D .fx;fy ;�1/:
Problem18 checks that those are perpendicular.

EXAMPLE 3 The gradient off .x;y/D .14�x2�y2/=3 isrf D .�2x=3;�2y=3/:
On the surface, the normal vector isN D .�2x=3;�2y=3;�1/:At the point.1;2;3/;
this perpendicular isN D .�2=3;�4=3;�1/: At the point.1;2/ down in the base,
the gradient is.�2=3;�4=3/: The length of gradf is the slope

?
20=3:

Probably a hiker does not go straight up. A “grade” of
?
20=3 is fairly steep

(almost150%). To estimate the slope in other directions, measure the distance along
the path between two contour lines. If�f D 1 in a distance�sD 3 the slope is
about1=3: This calculation is not exact until the limit of�f=�s, which isDuf:
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Fig. 13.13 N perpendicular to surface and gradf perpendicular to level line (in the base).

EXAMPLE 4 The gradient off .x;y;z/D xyCyzCxz has three components.

The pattern extends fromf .x;y/ to f .x;y;z/: The gradient is now the three-
dimensional vector.fx;fy ;fz/: For this function gradf is .yCz;xCz;xCy/:
To draw the graph ofwD f .x;y;z/ would require a four-dimensional picture, with
axes in thexyzw directions.

Notice the dimensions. The graph is a 3-dimensional “surface” in 4-dimensional
space. The gradient is down below in the 3-dimensional base. The level sets off
come fromxyCyzCzxD c—they are 2-dimensional. The gradient is perpendicu-
lar to that level set (still down in 3 dimensions). The gradient is notN! The normal
vector is.fx;fy ;fz ;�1/; perpendicular to the surface up in 4-dimensional space.

EXAMPLE 5 Find gradz whenz.x;y/ is given implicitly:F.x;y;z/D x2 Cy2�
z2 D 0:

In this case we findzD�ax2 Cy2: The derivatives are�x=ax2 Cy2 and�y=ax2 Cy2, which go into gradz: But the point is this: To find that gradient
faster, differentiateF.x;y;z/ as it stands. Then divide byFz :

FxdxCFydyCFzdzD 0 or dzD .�Fxdx�Fydy/=Fz: (3)

The gradient is.�Fx=Fz;�Fy=Fz/: Those derivatives are evaluated at.x0;y0/:
The computation does not need the explicit functionzD f .x;y/:

F D x2 Cy2�z2 ñ Fx D 2x;Fy D 2y;Fz D�2z ñ gradzD .x=z;y=z/:

To go uphill on the cone, move in the direction.x=z;y=z/: That gradient direction
goes radially outward. The steepness of the cone is the length of the gradient vector:|gradz|Da.x=z/2 C .y=z/2 D 1 becausez2 D x2 Cy2on the cone.

DERIVATIVES ALONG CURVED PATHS

On a straight path the derivative off isDuf D .gradf / �u: What is the derivative
on a curved path?The path directionu is the tangent vectorT. So replaceu by T;
which gives the “direction” of the curve.

The path is given by the position vectorR.t/D x.t/i Cy.t/j: The velocity is
v D .dx=dt/i C .dy=dt/j: The tangent vector isT D v=|v|: Notice the choice—to
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move at any speed (withv) or to go at unit speed (withT:) There is the same choice
for the derivative off .x;y/ along this curve:

rate of change
df

dt
D .gradf / �v D

BfBx dxdt C
BfBy dydt (4)

slope
df

ds
D .gradf / �T D

BfBx dxds C
BfBy dyds (5)

The first involves time. If we move faster,df=dt increases. The second involves
distance. If we move a distanceds, at any speed, the function changes bydf: So
the slope in that direction isdf=ds: Chapter1 introduced velocity asdf=dt and
slope asdy=dx and mixed them up. Finally we see the difference. Uniform motion
on a straight line hasR D R0 Cvt: The velocityv is constant. The directionT D u D
v=|v| is also constant. The directional derivative is.gradf / �u, but the rate of change
is .gradf / �v:

Equations(4) and(5) look like chain rules. They are chain rules. The next section
extendsdf=dt D .df=dx/.dx=dt/ to more variables, proving(4) and(5). Here we
focus on the meaning:df=ds is the derivative off in the directionuDT along
the curve.

EXAMPLE 7 Find df=dt and df=ds for f D r: The curve isxD t2;yD t in
Figure 13.14a.

Solution The velocity along the curve isv D 2t i C j :At the typical pointt D 1 it is
v D 2i C j: The unit tangent isT D v=

?
5: The gradient is a unit vectori=

?
2C j=

?
2

pointing outward, whenf .x;y/ is the distancer from the center. The dot product
with v is df=dt D 3=

?
2: The dot product withT isdf=dsD 3=

?
10:

When we slow down to speed 1 (withT), the changes inf .x;y/ slow down too.

EXAMPLE 8 Finddf=ds for f D xy along the circular pathxD cost;yD sin t:

First take a direct approach. On the circle,xy equals.cost/.sin t/: Its derivative
comes from the product rule:df=dt D cos2 t�sin2 t:Normally this is different from
df=ds, because the timet need not equal the arc lengths: There is a speed factor
ds=dt to divide by—but here the speed is1: (A circle of lengthsD 2� is completed
at t D 2�:) Thus the slopedf=ds along the roller-coaster in Figure 13.14 iscos2 t�
sin2 t:

Fig. 13.14 The distancef D r changes along the curve. The slope of the roller-coaster is
(gradf )�T: The distanceD from .x0;y0/ has gradDD unit vector.

The second approach uses the vectors gradf andT: The gradient off D xy is
.y;x/D .sint;cost/: The unit tangent vector to the path isT D .�sin t;cost/: Their
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dot product is the samedf=ds:

slope along pathD .gradf / �T D�sin2 tCcos2 t:

GRADIENTS WITHOUT COORDINATES

This section ends with a little “philosophy.” What is thecoordinate-free definition
of the gradient? Up to now, gradf D .fx;fy/ depended totally on the choice ofx
andy axes. But the steepness of a surface is independent of the axes. Those are added
later, to help us compute.

The steepnessdf=ds involves onlyf and the direction, nothing else. The gradient
should be a “tensor”—its meaning does not depend on the coordinate system. The
gradient has different formulas in different systems (xy or r� or . . . ), but the direction
and length of gradf are determined bydf=ds—without any axes:

Thedirectionof gradf is the one in whichdf=ds is largest.
The length |gradf | is that largest slope.

The key equation is.change inf /� .gradient off /� .change in position/: That is
another way to write�f � fx�xCfy�y: It is the multivariable form—we used
two variables—of the basic linear approximation�y� .dy=dx/�x:
EXAMPLE 9 D.x;y/D distance from.x;y/ to .x0;y0/:Without derivatives prove|gradD|D 1: The graph ofD.x;y/ is a cone with slope1 and sharp point.x0;y0/:

First question In which direction does the distanceD.x;y/ increase fastest?
Answer Going directly away from.x0;y0/:Therefore this is the direction of gradD:

Second questionHow quickly doesD increase in that steepest direction?
Answer A step of length�s increasesD by�s: Therefore|gradD|D�s=�sD
1:

Conclusion gradD is a unit vector. The derivatives ofD in Problem48 are
.x�x0/=D and.y�y0/=D: The sum of their squares is1, because.x�x0/

2 C
.y�y0/

2 equalsD2:

13.4 EXERCISES

Read-through questions

Duf gives the rate of change of a in the direction b .
It can be computed from the two derivatives c in the
special directions d . In terms of u1;u2 the formula is
Duf D e : This is a f product of u with the vector

g , which is called the h . For the linear function
f DaxCby, the gradient is gradf D i and the directional
derivative isDuf D j � k .

The gradient rf D .fx;fy/ is not a vector in l
dimensions, it is a vector in the m . It is perpendicular to
the n lines. It points in the direction of o climb. Its

magnitude|gradf | is p . Forf D x2 Cy2 the gradient points
q and the slope in that steepest direction isr .

The gradient of f .x;y;z/ is s . This is different
from the gradient on the surfaceF.x;y;z/D 0, which is�.Fx=Fz/i C t : Traveling with velocityv on a curved path,
the rate of change off is df=dt D u : When the tangent
direction is T, the slope off is df=dsD v : In a straight
directionu;df =ds is the same as w .
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Compute gradf; thenDuf D .gradf / �u; thenDuf at P:

1 f .x;y/D x2�y2

2 f .x;y/D 3xC4yC7

3 f .x;y/D ex cosy

4 f .x;y/D y10

u D .
?
3=2;1=2/

u D .3=5;4=5/

u D .0;1/

u D .0;�1/ P D .1;0/

P D .0;�=2/

P D .0;�=2/

P D .1;�1/
5 f .x;y/D distance to.0;3/ u D .1;0/ P D .1;1/

Find grad f D .fx;fy ;fz/ for the functions 6–8 from physics.

6 1=
a
x2 Cy2 Cz2 (point source at the origin)

7 ln.x2 Cy2/ (line source alongz axis)

8 1=
a
.x�1/2 Cy2 Cz2�1=a.xC1/2 Cy2 Cz2 (dipole)

9 For f D 3x2 C2y2 find the steepest direction and the level
direction at.1;2/: ComputeDuf in those directions.

10 Example2 claimed thatf D 3xCyC1 has steepest slope
?
10:

MaximizeDuf D 3u1 Cu2 D 3u1 C
b
1�u2

1:

11 True or false, whenf .x;y/ is any smooth function:

(a) There is a directionu atP in whichDuf D 0:

(b) There is a directionu in whichDuf D gradf:

(c) There is a directionu in whichDuf D 1:

(d) The gradient off .x/g.x/ equalsggradf Cf gradg:

12 What is the gradient off .x/? (One component only.) What
are the two possible directionsu and the derivativesDuf ? What
is the normal vectorN to the curveyD f .x/? (Two components.)

In 13–16 find the direction u in which f increases fastest at
P D .1;2/: How fast?

13 f .x;y/D axCby

15 f .x;y/D ex�y

14 f .x;y/D smaller of2x andy

16 f .x;y/D
a
5�x2�y2 (careful)

17 (Looking ahead) At a point wheref .x;y/ is a maximum,
what is gradf ? Describe the level curve containing the maximum
point .x;y/:

18 (a) Check by dot products that the normal and uphill
and level directions on the graph are perpendicular:N D

.fx;fy ;�1/;U D .fx;fy ;f
2

x Cf 2
y /;L D .fy ;�fx;0/:

(b) N is to the tangent plane,U and L are
to the tangent plane.

(c) The gradient is thexy projection of and also
of : The projection ofL points along the :

19 Compute theN;U;L vectors forf D 1�xCy and draw them
at a point on the flat surface.

20 Compute theN;U;L for x2 Cy2�z2 D 0 and draw them at
a typical point on the cone.

With gravity in the negative z direction, in what direction �U
will water flow down the roofs 21–24?

21 zD 2x (flat roof)

23 zD
a
1�x2�y2 (sphere)

22 zD 4x�3y (flat roof)

24 zD�ax2 Cy2 (cone)

25 Choose two functionsf .x;y/ that depend only onxC2y: Their
gradients at.1;1/ are in the direction : Their level curves are

:

26 The level curve off D y=x through .1;1/ is : The
direction of the gradient must be : Check gradf:

27 Gradf is perpendicular to2i C j with length1, and gradg is
parallel to2i C j with length5: Find gradf , gradg, f , andg:

28 True or false:

(a) If we know gradf , we knowf:
(b) The line xD yD�z is perpendicular to the planezD

xCy:

(c) The gradient ofzD xCy lies along that line.

29 Write down the level directionu for � D tan�1.y=x/ at the point
.3;4/: Then compute grad� and checkDu� D 0:

30 On a circle around the origin, distance is�sD r��: Then
d�=dsD 1=r: Verify by computing grad� andT and.grad�/ �T:
31 At the point.2;1;6/ on the mountainzD 9�x�y2, which way
is up? On the roofzD xC2yC2, which way is down? The roof is

to the mountain.

32 Around the point.1;�2/ the temperatureT D e�x2�y2
has

�T � �xC �y: In what directionu does it get hot
fastest?

33 Figure A shows level curves ofzD f .x;y/:

(a) Estimate the direction and length of gradf atP;Q;R:

(b) Locate two points where gradf is parallel toi C j :
(c) Where is|gradf | largest? Where is it smallest?

(d) What is your estimate ofzmax on this figure?

(e) On the straight line fromP to R, describez and estimate
its maximum.
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34 A quadratic functionax2 Cby2 CcxCdy has the gradients
shown in Figure B. Estimatea;b;c;d and sketch two level curves.

35 The level curves off .x;y/ are circles around.1;1/: The curve
f D c has radius2c: What isf ? What is gradf at .0;0/?

36 Suppose gradf is tangent to the hyperbolasxyD constant
in Figure C. Draw three level curves off .x;y/: Is |gradf |
larger atP orQ? Is|gradf | constant along the hyperbolas? Choose
a function that could bef : x2 Cy2;x2�y2;xy;x2y2:

37 Repeat Problem36, if gradf is perpendicular to the
hyperbolas in Figure C.

38 If f D 0;1;2 at the points.0;1/; .1;0/; .2;1/, estimate gradf
by assumingf DAxCByCC:

39 What functions have the following gradients?

(a) .2xCy;x/ (b) .ex�y ;�ex�y/ (c) .y;�x/ (careful)

40 Draw level curves off .x;y/ if gradf D .y;x/:

In 41–46 find the velocity v and the tangent vector T. Then
compute the rate of changedf=dt D gradf �v and the slope
df=dsD gradf �T:
41 f D x2 Cy2 xD t yD t2

42 f D x

43 f D x2�y2

44 f D xy

45 f D ln xyz

46 f D 2x2 C3y2 Cz2

xD cos2t

xD x0 C2t

xD t2 C1

xD et

xD t

yD sin2t

yD y0 C3t

yD 3

yD e2t

yD t2

zD e�t

zD t3

47 (a) Find df=ds and df=dt for the roller-coasterf D xy

along the pathxD cos2t;yD sin2t: (b) Change tof Dx2 Cy2

and explain why the slope is zero.

48 The distance D from .x;y/ to .1;2/ has D2 D

.x�1/2 C.y�2/2: Show thatBD=BxD .x�1/=D andBD=ByD

.y�2/=D and|gradD|D 1: The graph ofD.x;y/ is a with
its vertex at :

49 If f D 1 and gradf D .2;3/ at the point .4;5/, find the
tangent plane at.4;5/: If f is a linear function, findf .x;y/:

50 Define the derivative off .x;y/ in the directionu D .u1;u2/ at
the pointP D .x0;y0/:What is�f (approximately)? What isDuf

(exactly)?

51 The slope off along a level curve isdf=dsD D 0: This
says that gradf is perpendicular to the vector in the level
direction.
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13.5 The Chain Rule

Calculus goes back and forth between solving problems and getting ready for
harder problems. The first is “application,” the second looks like “theory.” If we
minimizef to save time or money or energy, that is an application. If we don’t take
derivatives to find the minimum—maybe becausef is a function of other functions,
and we don’t have a chain rule—then it is time for more theory. The chain rule is
a fundamental working tool, becausef .g.x// appears all the time in applications.
So dof .g.x;y// andf .x.t/;y.t// and worse. We have to know their derivatives.
Otherwise calculus can’t continue with the applications.

You may instinctively say: Don’t bother with the theory, just teach me the formulas.
That is not possible. You now regard the derivative ofsin2x as a trivial problem,
unworthy of an answer. That was not always so. Before the chain rule, the slopes of
sin2x andsinx2 andsin2x2 were hard to compute from�f=�x: We are now at
the same point forf .x;y/:We know themeaningof Bf=Bx; but if f D r tan� and
xD r cos� andyD r sin�; we need a way tocomputeBf=Bx: A little theory is
unavoidable, if the problem-solving part of calculus is to keep going.

To repeat:The chain rule applies to a function of a function. In one variable
that wasf .g.x//:With two variables there are more possibilities:

1: f .z/ with zD g.x;y/ FindBf=Bx andBf=By
2: f .x;y/ with xD x.t/;yD y.t/ Finddf=dt

3: f .x;y/ with xD x.t;u/;yD y.t;u/ FindBf=Bt andBf=Bu
All derivatives are assumed continuous. More exactly, theinput derivatives likeBg=Bx anddx=dt andBx=Bu are continuous. Then the output derivatives likeBf=Bx
anddf=dt andBf=Bu will be continuous from the chain rule. We avoid points like
r D 0 in polar coordinates—whereBr=BxD x=r has a division by zero.

A Typical Problem Start with a function ofx andy; for examplex timesy: Thus
f .x;y/D xy:Changex to r cos� andy to r sin�: The function becomes.r cos�/
times .r sin�/: We want its derivatives with respect tor and�: First we have to
decide on itsname.

To be correct, we should not reuse the letterf: The new function can beF :
f .x;y/D xy f .r cos�;r sin�/D .r cos�/.r sin�/DF.r;�/:

Why not call itf .r;�/? Because strictly speaking that isr times� ! If we follow the
rules, thenf .x;y/ is xy andf .r;�/ should ber�: The new functionF does the
right thing—it multiplies.r cos�/.r sin�/: But in many cases, the rules get bent and
the letterF is changed back tof:

This crime has already occurred. The end of the last page ought to sayBF=Bt:
Instead the printer putBf=Bt: The purpose of the chain rule is to find derivatives in
the new variablest andu (or r and� ). In our example we wantthe derivative ofF
with respect tor: Here is the chain rule:BFBr D

BfBx BxBr C
BfBy ByBr D .y/.cos�/C .x/.sin�/D 2r sin� cos�:

I substitutedr sin� and r cos� for y andx: You immediately check the answer:
F.r;�/D r2 cos� sin� does lead toBF=Br D 2r cos� sin�: The derivative is cor-
rect. The only incorrect thing—but we do it anyway—is to writef instead ofF:

Question What is
BfB� ? Answer It is

BfBx BxB� C
BfBy ByB� :
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THE DERIVATIVES OF f .g.x;y//

Hereg depends onx and y; andf depends ong: Supposex moves bydx; while y
stays constant. Thengmoves bydgD .Bg=Bx/dx:Wheng changes,f also changes:
dfD.df=dg/dg:Now substitute fordg to make the chain:df D .df=dg/.Bg=Bx/dx:
This is the first rule:

13G Chain rule for f .g.x;y// W
BfBx D

df

dg

BgBx and
BfBy D

df

dg

BgBy : (1)

EXAMPLE 1 Everyf .xCcy/ satisfies the 1-way wave equationBf=ByD cBf=Bx:
The inside function isgD xCcy: The outside function can be anything,g2 or sing
oreg : The composite function is.xCcy/2 orsin.xCcy/ orexCcy : In each separate
case we could check thatBf=ByD cBf=Bx: The chain rule produces this equation
in all cases at once, fromBg=BxD 1 andBg=ByD c:BfBx D

df

dg

BgBx D 1
df

dg
and

BfBy D
df

dg

BgBy D c
df

dg
so

BfBy D c
BfBx : (2)

This is important:Bf=ByD cBf=Bx is our first example of apartial differential
equation. The unknownf .x;y/ has two variables. Two partial derivatives enter the
equation.

Up to now we have worked withdy=dt and ordinary differential equations.
The independent variable was timeor space (and only one dimension in space). For
partial differential equations the variables are timeand space (possibly several
dimensions in space). The great equations of mathematical physics—heat equation,
wave equation, Laplace’s equation—are partial differential equations.

Notice how the chain rule applies tof D sinxy: Its x derivative isy cosxy: A
patient reader would check thatf is sing andg is xy andfx is fggx : Probably you
are not so patient—you know the derivative ofsinxy: Therefore we pass quickly to
the next chain rule. Its outside function depends ontwo inside functions, and each of
those depends ont: We wantdf=dt:

THE DERIVATIVE OF f .x.t/;y.t//

Before the formula, here is the idea. Supposet changes by�t: That affectsx and
y; they change by�x and�y: There is a domino effect onf ; it changes by�f:
Tracing backwards,

�f � BfBx �xC
BfBy �y and �x� dx

dt
�t and �y� dy

dt
�t:

Substitute the last two into the first, connecting�f to�t: Then let�tÑ 0:

13H Chain rule for f .x.t/;y.t// W
df

dt
D
BfBx dxdt C

BfBy dydt : (3)

This is close to the one-variable ruledz=dxD .dz=dy/.dy=dx/: There we could
“cancel”dy: (We actually canceled�y in (�z=�y/.�y=�x), and then approached
the limit.) Now�t affects�f in two ways, throughx and throughy: The chain rule
has two terms. If we cancel in.Bf=Bx/.dx=dt/ we only get one of the terms!



13.5 The Chain Rule 575

We mention again that the true name forf .x.t/;y.t// isF.t/ notf .t/: Forf .x;y;z/
the rule has three terms:fxxt Cfyyt Cfzzt is ft (or betterdF=dt:)

EXAMPLE 2 How quickly does the temperature change when you drive to Florida?

Suppose the Midwest is at30�F and Florida is at80�F. Going1000 miles south
increases the temperaturef .x;y/ by 50�; or .05 degrees per mile. Driving straight
south at70 miles per hour, the rate of increase is.:05/.70/D 3:5 degrees per hour.
Note how.degrees=mile/ times.miles=hour/ equals.degrees=hour/. That is the
ordinary chain rule.df=dx/.dx=dt/D .df=dt/—there is noy variable going south.

If the road goes southeast, the temperature isf D 30C :05xC :01y:Now x.t/ is
distance south andy.t/ is distance east. What isdf=dt if the speed is still70?

Solution
df

dt
D
BfBx dxdt C

BfBy dydt D :05
70?
2

C :01
70?
2
� 3 degrees=hour.

In reality there is another term. The temperature also dependsdirectly ont; because
of night and day. The factorcos.2�t=24/ has a period of24 hours, and it brings an
extra term into the chain rule:

For f .x;y; t/ the chain rule is
df

dt
D
BfBx dxdt C

BfBy dydt C
BfBt : (4)

This is thetotal derivativedf=dt; from all causes. Changes inx;y; t all affectf:
The partial derivativeBf=Bt is only one part ofdf=dt: (Note thatdt=dt D 1:) If
night and day add12cos.2�t=24/ tof; the extra term isBf=Bt D�� sin.2�t=24/:
At nightfall that is�� degrees per hour. You have to drive faster than70 mph to get
warm.

SECOND DERIVATIVES

What isd2f=dt2? We need the derivative of(4), which is painful. It is like acceler-
ation in Chapter 12, with many terms. So start with movement in a straight line.

SupposexD x0 C t cos� andyD y0 C t sin�: We are moving at the fixed angle
�;with speed1: The derivatives arext D cos� andyt D sin� andcos2 �Csin2 � D
1: Thendf=dt is immediate from the chain rule:

ft D fxxt Cfyyt D fx cos�Cfy sin�: (5)

For the second derivativeft t ; apply this rule toft : Thenft t is

.ft /x cos�C .ft/y sin� D .fxx cos�Cfyx sin�/cos�C .fxy cos�Cfyy sin�/sin�:

Collect terms: ft t D fxx cos2 �C2fxy cos� sin�Cfyy sin2 �: (6)

In polar coordinates changet to r: When we move in ther direction,� is fixed.
Equation(6) givesfrr fromfxx ;fxy ;fyy : Second derivatives on curved paths (with
new terms from the curving) are saved for the exercises.

EXAMPLE 3 If fxx;fxy ;fyy are all continuous and bounded byM; find a bound
onft t : This is the second derivative along any line.

Solution Equation(6) gives|ft t | ¤M cos2 �CM sin2�CM sin2 � ¤ 2M: This
upper bound2M was needed in equation 13.3.14, for the error in linear approxima-
tion.
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THE DERIVATIVES OF f .x.t;u/;y.t;u//

Suppose there are two inside functionsx andy; each depending ont andu: When
t moves,x andy both move:dxD xtdt anddyD ytdt: Thendx anddy force a
change inf : df D fxdxCfydy: The chain rule forBf=Bt is no surprise:

13I Chain rule forf .x.t;u/;y.t;u// W
BfBt D

BfBx BxBt C
BfBy ByBt : (7)

This rule hasB=Bt instead ofd=dt; because of the extra variableu: The symbols
remind us thatu is constant. Similarlyt is constant whileu moves, and there is a
second chain rule forBf=Bu: fu D fxxu Cfyyu:

EXAMPLE 4 In polar coordinates findf� andf�� :Start fromf .x;y/D f .r cos�;r sin�/:

The chain rule uses the� derivatives ofx andy:BfB� D
BfBx BxB� C

BfBy ByB� D

�BfBx � .�r sin�/C

�BfBy �.r cos�/: (8)

The second� derivative is harder, because(8) has four terms that depend on�:
Apply the chain rule to the first termBf=Bx: It is a function ofx andy; andx
andy are functions of� :BB� �BfBx �D

BBx �BfBx � BxB� C
BBy �BfBx � ByB� D fxx.�r sin�/Cfxy.r cos�/:

The� derivative ofBf=By is similar. So apply the product rule to(8):

f�� D Œfxx.�r sin�/Cfxy.r cos�/�.�r sin�/Cfx.�r cos�/

CŒfyx.�r sin�/Cfyy.r cos�/�.r cos�/Cfy.�r sin�/: (9)

This formula is not attractive. In mathematics, a messy formula is almost always a
signal of asking the wrong question. In fact the combinationfxx Cfyy is much more
special than the separate derivatives. We might hope the same forfrr Cf�� ; but di-
mensionally that is impossible—sincer is a length and� is an angle. The dimensions
of fxx andfyy are matched byfrr andfr=r andf��=r

2: We could even hope that

fxx Cfyy D frr C
1

r
fr C

1

r2
f�� : (10)

This equation is true. Add(5) + (6) + (9) with t changed tor: Laplace’s equation
fxx Cfyy D 0 is now expressed in polar coordinates:frr Cfr=rCf��=r

2 D 0:

A PARADOX

Before leaving polar coordinates there is one more question. Itgoes back toBr=Bx;
which was practically the first example of partial derivatives:BrBx D

BBxax2 Cy2 D x=
a
x2 Cy2 D x=r: (11)

My problem is this. We know thatx is r cos�: Sox=r on the right side iscos�: On
the other handr is x=cos�: So Br=Bx is also1=cos�: How can Br=Bx lead to
cos� one way and1=cos� the other way?
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I will admit that this cost me a sleepless night. There must be an explanation—
we cannot end withcos� D 1=cos�: This paradox brings a new respect for partial
derivatives. May I tell you what I finally noticed? You could cover up the next
paragraph and think about the puzzle first.

The key to partial derivatives is to ask:Which variable is held constant? In
equation(11), y is constant. But whenr D x=cos� gaveBr=BxD 1=cos�; � was
constant. In both cases we changex and look at the effect onr . The movement is
on a horizontal line (constanty) or on a radial line (constant� ). Figure 13.15 shows
the difference.

Remark This example shows thatBr=Bx is different from1=.Bx=Br/: The neat
formula .Br=Bx/.Bx=Br/D 1 is not generally true. May I tell you what takes its
place? We have to include.Br=By/.By=Br/: With two variablesxy and two vari-
ablesr�; we need2 by 2matrices! Section 14.4 gives the details:

"Br=Bx Br=ByB�=Bx B�=By#"Bx=Br Bx=B�By=Br ByB� #D

"

1 0

0 1

#

:

Fig. 13.15 dr Ddx cos� wheny is constant,dr D dx=cos� when� is constant.

NON-INDEPENDENT VARIABLES

This paradox points to a serious problem. In computing partial derivatives off .x;y;z/;
we assumed thatx;y;z were independent. Up to now,x could move whiley andz
were fixed. In physics and chemistry and economics that may not be possible. If there
is a relation betweenx;y;z; thenx can’t move by itself.

EXAMPLE 5 The gas lawPV D nRT relates pressure to volume and tempera-
ture.P;V;T are not independent. What is the meaning ofBV=BP? Does it equal
1=.BP=BV /?
Those questions have no answers, until we say what is held constant. In the paradox,Br=Bx had one meaning for fixedy and another meaning for fixed�: To indicate
what is held constant, use an extra subscript(not denoting a derivative):

.Br=Bx/y D cos� .Br=Bx/� D 1=cos�: (12)

.Bf=BP /V has constant volume and.Bf=BP /T has constant temperature. The usualBf=BP has bothV andT constant. But then the gas law won’t let us changeP:

EXAMPLE 6 Let f D 3xC2yCz: ComputeBf=Bx on the planezD 4xCy:



578 13 Partial Derivatives

Solution 1 Think of x andy as independent. Replacez by 4xCy:

f D 3xC2yC .4xCy/ so .Bf=Bx/y D 7:

Solution 2 Keepx andy independent. Deal withz by the chain rule:

.Bf=Bx/y D Bf=BxC .Bf=Bz/.Bz=Bx/D 3C .1/.4/D 7:

Solution 3 (different) Makex andz independent. ThenyD z�4x:

.Bf=Bx/z D Bf=BxC .Bf=By/.By=Bx/D 3C .2/.�4/D�5:
Without a subscript,Bf=Bx means: Take thex derivative the usual way. The answer
is Bf=BxD 3; wheny andz don’t move. But on the planezD 4xCy; one of them
must move!3 is only part of the total answer, which is.Bf=Bx/y D 7 or .Bf=Bx/z D�5:

Here is the geometrical meaning. We are on the planezD 4xCy: The derivative
.Bf=Bx/y movesx but noty: To stay on the plane,dz is 4dx: The change inf D
3xC2yCz is df D 3dxC0CdzD 7dx:

EXAMPLE 7 On the world linex2 Cy2 Cz2 D t2 find .Bf=By/x;z forf D xyzt:

The subscriptsx;z mean thatx andz are fixed. The chain rule skipsBf=Bx andBf=Bz:
.Bf=By/x;z D Bf=ByC .Bf=Bt/.Bt=By/D xztC .xyz/.y=t/:Whyy=t‹

EXAMPLE 8 From the lawPV D T; compute the product.BP=BV /T .BV=BT /P .BT=BP /V :
Any intelligent person cancelsBV ’s, BT ’s, andBP ’s to get1: The right answer is�1:

.BP=BV /T D�T=V 2 .BV=BT /P D 1=P .BT=BP /V DV:

The product is�T=PV: This is�1 not C1! The chain rule is tricky (Problem42).

EXAMPLE 9 Implicit differentiation was used in Chapter 4. The chain ruleexplains it:

If F.x;y/D 0 thenFx CFyyx D 0 sody=dxD�Fx=Fy : (13)

13.5 EXERCISES

Read-through questions

The chain rule applies to a function of a a . The x

derivative of f .g.x;y// is Bf=BxD b . The y derivative
is Bf=ByD c . The examplef D .xCy/n has gD d .
Because Bg=BxD Bg=By we know that e D f . This

g differential equation is satisfied by any function ofxCy:

Along a path, the derivative off .x.t/;y.t// is df=dt D h .
The derivative off .x.t/;y.t/;z.t// is i . If f D xy then the
chain rule givesdf=dt D j . That is the same as the k rule!

When xDu1t andyDu2t the path is l . The chain rule for
f .x;y/ givesdf=dt D m . That is the n derivativeDuf:

The chain rule for f .x.t;u/;y.t;u// is Bf=Bt D o .
We don’t write df=dt because p . If xD r cos� and
yD r sin�; the variables t;u change to q . In this
case Bf=Br D r and Bf=B� D s . That connects the
derivatives in t and u coordinates. The difference
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betweenBr=BxD x=r and Br=BxD 1=cos� is because v is
constant in the first and w is constant in the second.

With a relation likexyzD 1; the three variables are x
independent. The derivatives.Bf=Bx/y and .Bf=Bx/z and
.Bf=Bx/ mean y and z and A . Forf D x2 Cy2 C

z2 withxyzD 1;we compute.Bf=Bx/z from the chain rule B .
In that ruleBz=BxD C from the relationxyzD 1:

Find fx and fy in Problems 1–4. What equation connects them?

1 f .x;y/D sin.xCcy/

3 f .x;y/D exC7y

2 f .x;y/D .axCby/10

4 f .x;y/D ln.xC7y/

5 Find both terms in thet derivative of .g.x.t/;y.t//3:

6 If f .x;y/D xy and xDu.t/ and yD v.t/; what is df=dt?
Probably all other rules for derivatives follow from the chain rule.

7 The step functionf .x/ is zero for x  0 and one for
x¡ 0: Graphf .x/ and g.x/D f .xC2/ and h.x/D f .xC4/: If
f .xC2t/ represents a wall of water (a tidal wave), which way
is it moving and how fast?

8 The wave equation isft t D c2fxx: (a) Show that.xCct/n is
a solution. (b) FindC different fromc so that.xCC t/n is also a
solution.

9 If f D sin.x� t/; draw two lines in thext plane along which
f D 0: Between those lines sketch a sine wave. Skiing on top of the
sine wave, what is your speeddx=dt?

10 If you float atxD 0 in Problem9; do you go up first or down
first? At timet D 4 what is your height and upward velocity?

11 Laplace’s equation is fxx Cfyy D 0: Show from the chain
rule that any functionf .xC iy/ satisfies this equation ifi2 D�1: Check that f D .xC iy/2 and its real part and
its imaginary part all satisfy Laplace’s equation.

12 Equation (10) gave the polar formfrr Cfr=rCf��=r
2 D 0

of Laplace’s equation. (a) Check thatf D r2e2i� and its real part
r2 cos2� and its imaginary partr2 sin2� all satisfy Laplace’s equa-
tion. (b) Show from the chain rule that any functionf .rei�/ satisfies
this equation ifi2 D�1:
In Problems 13–18 finddf=dt from the chain rule (3).

13 f D x2 Cy2; xD t;yD t2

14 f D
a
x2 Cy2; xD t;yD t2

15 f D xy; xD 1�?t ;yD 1C
?
t

16 f D x=y; xD et ;yD 2et

17 f D ln.xCy/; xD et ;yD et

18 f D x4; xD t;yD t

19 If a cone grows in height bydh=dt D 1 and in radius by
dr=dt D 2; starting from zero, how fast is its volume growing at
t D 3?

20 If a rocket has speeddx=dt D 6 down range anddy=dt D 2t

upward, how fast is it moving away from the launch point at.0;0/?
How fast is the angle� changing, if tan� D y=x?

21 If a train approaches a crossing at60 mph and a car
approaches (at right angles) at45 mph, how fast are they coming
together? (a) Assume they are both90 miles from the crossing.
(b) Assume they are going to hit.

22 In Example 2 does the temperature increase faster if you
drive due south at70 mph or southeast at80 mph?

23 On the line xDu1t;yDu2t;zDu3t; what combination of
fx ;fy ;fz givesdf=dt? This is thedirectional derivativein 3D.

24 On the same linexDu1t;yDu2t;zDu3t; find a formula
for d2f=dt2: Apply it to f D xyz:

25 For f .x;y; t/D xCyC t find Bf=Bt anddf=dt whenxD 2t

andyD 3t: Explain the difference.

26 If zD .xCy/2 thenxD
?
z�y: Does.Bz=Bx/.Bx=Bz/D 1?

27 Suppose xt D t and yt D 2t; not constant as in (5–6).
For f .x;y/ find ft and ft t : The answer involves
fx ;fy ;fxx;fxy ;fyy :

28 Supposext D t andyt D t2: For f D .xCy/3 find ft and then
ft t from the chain rule.

29 DeriveBf=Br D .Bf=Bx/cos�C.Bf=By/sin� from the chain
rule. Why do we takeBx=Br as cos� and not1=cos�?

30 Compute fxx for f .x;y/D .axCbyCc/10: If xD t and
yD t computeft t : True or false:.Bf=Bx/.Bx=Bt/D Bf=Bt:
31 Show thatB2r=Bx2 D y2=r3 in two ways:

(1) Find thex derivative ofBr=BxD x=
a
x2 Cy2

(2) Find thex derivative ofBr=BxD x=r by the chain rule.

32 Reversingx andy in Problem31 givesryy D x2=r3: But show
thatrxy D�xy=r3:

33 If sin zD xCy find .Bz=Bx/y in two ways:

(1) WritezD sin�1.xCy/ and compute its derivative.

(2) Take x derivatives of sinzD xCy: Verify that these
answers, explicit and implicit, are equal.

34 By direct computation findfx and fxx and fxy for
f D

a
x2 Cy2:

35 Find a formula for B2f=BrB� in terms of the x and y

derivatives off .x;y/:

36 SupposezD f .x;y/ is solved forx to give xDg.y;z/: Is it
true thatBz=BxD 1=.Bx=Bz/? Test on examples.

37 SupposezD exy and thereforexD .ln z/=y: Is it true or not
that.Bz=Bx/D 1=.Bx=Bz/?
38 If xD x.t;u;v/ and yD y.t;u;v/ andzD z.t;u;v/; find thet
derivative off .x;y;z/:

39 Thet derivative off .x.t;u/;y.t;u// is in equation (7). What is
ft t ?
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40 (a) For f Dx2 Cy2 Cz2 compute Bf=Bx (no subscript,
x;y;z all independent).
(b) When there is a further relationzD x2 Cy2; use it to
removez and compute.Bf=Bx/y :
(c) Compute .Bf=Bx/y using the chain rule.Bf=Bx/C
.Bf=Bz/.Bz=Bx/:
(d) Why doesn’t that chain rule contain.Bf=By/.By=Bx/?

41 Forf DaxCby on the planezD 3xC5y; find .Bf=Bx/z and
.Bf=Bx/y and.Bf=Bz/x:
42 The gas law in physics isPV DnRT or a more general
relation F.P;V;T /D 0: Show that the three derivatives in
Example 8 still multiply to give�1: First find .BP=BV /T fromBF=BV C.BF=BP /.BP=BV /T D 0:

43 If Problem 42 changes to four variables related by
F.x;y;z; t/D 0; what is the corresponding product of four
derivatives?

44 SupposexD tCu andyD tu: Find thet andu derivatives of
f .x;y/: Check whenf .x;y/D x2�2y:

45 (a) Forf D r2 sin2 � findfx andfy :

(b) Forf Dx2 Cy2 find fr andf� :

46 On the curve sinxCsinyD 0; find dy=dx andd2y=dx2 by
implicit differentiation.

47 (horrible) Supposefxx Cfyy D 0: If xDuCv andyDu�v
andf .x;y/Dg.u;v/; find gu andgv: Show thatguu Cgvv D 0:

48 A function has constant returns to scaleif f .cx;cy/D

cf .x;y/ When x and y are doubled so aref D
a
x2 Cy2

and f D
?
xy: In economics , input=output is constant. In

mathematicsf is homogeneousof degree one.

Prove thatx Bf=BxCy Bf=ByD f .x;y/; by computing thec
derivative atcD 1: Test this equation on the two examples and
find a third example.

49 True or false: The directional derivative off .r;�/ in the
direction ofu� is Bf=B�:
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13.6 Maxima, Minima, and Saddle Points

The outstanding equation of differential calculus is also the simplest:df=dxD 0:
The slope is zero and the tangent line is horizontal. Most likely we are at the top or
bottom of the graph—a maximum or a minimum. This is the point that the engineer
or manager or scientist or investor is looking for—maximum stress or production
or velocity or profit. With more variables inf .x;y/ andf .x;y;z/; the problem
becomes more realistic. The question still is:How to locate the maximum and
minimum?

The answer is in thepartial derivatives. When the graph is level, they are zero.
Deriving the equationsfx D 0 andfy D 0 is pure mathematics and pure pleasure.
Applying them is the serious part. We watch out for saddle points, and also for a
minimum at a boundary point—this section takes extra time. Remember the steps for
f .x/ in one-variable calculus:

1. The leading candidates arestationarypoints (wheredf=dxD 0).
2. The other candidates arerough points(no derivative) andendpoints(a or b).
3. Maximum vs. minimum is decided by the sign of thesecond derivative.

In two dimensions, a stationary point requiresBf=BxD 0 andBf=ByD 0: The tan-
gent line becomes a tangent plane. The endpointsa andb are replaced by aboundary
curve. In practice boundaries contain about40%of the minima and80%of the work.

Finally there are three second derivativesfxx;fxy ; andfyy : They tell how the
graph bends away from the tangent plane—up at aminimum, down at amaximum,
both ways at asaddle point. This will be determined by comparing.fxx/.fyy/ with
.fxy/

2:

STATIONARY POINT Ñ HORIZONTAL TANGENT Ñ ZERO DERIVATIVES

Supposef hasa minimum at the point (x0;y0). This may be anabsolute minimum
or only alocal minimum. In both casesf .x0;y0/¤ f .x;y/ near the point. For an
absolute minimum, this inequality holds whereverf is defined. For a local minimum,
the inequality can fail far away from.x0;y0/: The bottom of your foot is an absolute
minimum, the end of your finger is a local minimum. We assume for now that.x0;y0/
is an interior point of the domain off: At a boundary point, we cannot expect a
horizontal tangent and zero derivatives.

Main conclusion: At a minimum or maximum (absolute or local) a nonzero
derivative is impossible. The tangent plane would tilt. In some directionf would
decrease. Note that the minimumpoint is .x0;y0/; and the minimumvalueisf .x0;y0/:

13J If derivatives exist at an interior minimum or maximum, they arezero:Bf=BxD 0 and Bf=ByD 0 .together this isgradf D 0/: (1)

Fora functionf .x;y;z/ of three variables, add the third equationBf=BzD 0:

The reasoning goes back to the one-variable case. That is because we look along
the linesxD x0 andyD y0: The minimum off .x;y/ is at the point where the lines
meet. So this is also the minimumalong each line separately.

Moving in thex direction alongyD y0; we find Bf=BxD 0: Moving in they
direction,Bf=ByD 0 at the same point.The slope in every direction is zero. In
other words gradf D 0:
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Graphically,.x0;y0/ is the low point of the surfacezD f .x;y/: Both cross sec-
tions in Figure 13.16 touch bottom. The phrase “if derivatives exist” rules out the
vertex of a cone, which is arough point. The absolute valuef D |x| has a minimum
withoutdf=dxD 0; and so does the distancef D r: The rough point is.0;0/:

Fig. 13.16 Bf=BxD 0 andBf=ByD 0 at the minimum. Quadraticf has linear derivatives.

EXAMPLE 1 Minimize the quadraticf .x;y/D x2 CxyCy2�x�yC1:

To locate the minimum (or maximum), setfx D 0 andfy D 0:

fx D 2xCy�1D 0 and fy D xC2y�1D 0: (2)

Notice what’s important:There are two equations for two unknownsx and y.
Sincef is quadratic, the equations are linear. Their solution isx0 D 1

3
;y0 D 1

3
(the

stationary point). This is actually a minimum, but to prove that you need to read
further.

The constant1 affects the minimum valuef D 2
3
—but not the minimum point.

The graph shifts up by1: The linear terms�x�y affectfx andfy : They move the
minimum away from.0;0/:The quadratic partx2 CxyCy2 makes the surface curve
upwards. Without that curving part, a plane has its minimum and maximum at
boundary points.

EXAMPLE 2 (Steiner’s problem) Find the point that is nearest to three given
points.

This example is worth your attention. We are locating an airport close to three cities.
Or we are choosing a house close to three jobs. The problem is to get as near as
possible to the corners of a triangle. The best point depends on the meaning of “near.”

The distance to the first corner.x1;y1/ is d1 D
a
.x�x1/2 C .y�y1/2: The

distances to the other corners.x2;y2/ and .x3;y3/ ared2 andd3: Depending on
whether cost equals (distance) or .distance/2 or .distance/p, our problem will be:

Minimize d1 Cd2 Cd3 or d2
1 Cd2

2 Cd2
3 or even d

p
1 Cd

p
2 Cd

p
3 :

The second problem is the easiest, whend2
1 and d2

2 andd2
3 are quadratics:

f .x;y/D .x�x1/
2 C .y�y1/

2 C .x�x2/
2 C .y�y2/

2 C .x�x3/
2 C .y�y3/

2Bf=BxD 2Œx�x1 Cx�x2 Cx�x3�D 0 Bf=ByD 2Œy�y1 Cy�y2 Cy�y3�D 0:

Solving Bf=BxD 0 gives xD 1
3
.x1 Cx2 Cx3/: Then Bf=ByD 0 gives yD 1

3
.y1 Cy2 Cy3/: The best point is thecentroid of the triangle(Figure 13.17a). It is
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the nearest point to the corners when the cost is.distance/2: Note how squaring
makes the derivatives linear.Least squaresdominates an enormous part of applied
mathematics.

Fig. 13.17 The centroid minimizesd2
1 Cd2

2 Cd2
3 : TheSteiner point minimizes

d1 Cd2 Cd3:

The real “Steiner problem” is to minimizef .x;y/D d1 Cd2 Cd3:We are laying
down roads from the corners, with cost proportional to length. The equationsfx D 0
and fy D 0 look complicated because of square roots. But the nearest point in
Figure 13.17b has a remarkable property, which you will appreciate.

Calculus takes derivatives ofd2
1 D .x�x1/

2 C .y�y1/
2: Thex derivative leaves

2d1.Bd1=Bx/D 2.x�x1/: Divide both sides by2d1:Bd1Bx D
x�x1

d1

and
Bd1By D

y�y1

d1

so gradd1 D

�

x�x1

d1

;
y�y1

d1

�

: (3)

This gradient is a unit vector. The sum of.x�x1/
2=d2

1 and.y�y1/
2=d2

1 isd2
1 =d

2
1 D

1: This was already in Section 13.4: Distance increases with slope1 away from the
center. The gradient ofd1 (call it u1) is a unit vector from the center point.x1;y1/:

Similarly the gradients ofd2 andd3 are unit vectorsu2 andu3: They point directly
away from the other corners of the triangle. The total cost isf .x;y/D d1 Cd2 Cd3;
so we add the gradients. The equationsfx D 0 andfy D 0 combine into the vector
equation

gradf D u1 Cu2 Cu3 D 0 at the minimum:

The three unit vectors add to zero! Moving away from one corner brings us closer
to another. The nearest point to the three corners is where those movements cancel.
This is the meaning of “gradf D 0 at the minimum.”

It is unusual for three unit vectors to add to zero—this can only happen in one
way. The three directions must form angles of120�: The best point has this
property, which is repeated in Figure 13.18a. The unit vectors cancel each other. At
the “Steiner point,” the roads to the corners make120� angles. This optimal point
solves the problem, except for one more possibility.
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Fig. 13.18 Gradientsu1 Cu2 Cu3 D 0 for 120� angles. Corner wins at wide angle.Four
corners. In this case two branchpoints are better—still120�:

The other possibility is a minimum at arough point. The graph of the distance
function d1.x;y/ is a cone. It has a sharp point at the center.x1;y1/: All three
corners of the triangle are rough points ford1 Cd2 Cd3; so all of them are possible
minimizers.

Suppose the angle at a corner exceeds120�: Then there is no Steiner point.
Inside the triangle, the angle would become even wider. The best point must be a
rough point—one of the corners. The winner is the corner with the wide angle. In the
figure that meansd1 D 0: Then the sumd2 Cd3 comes from the two shortest edges.

Summary Thesolution is at a120� point or a wide-angle corner. That is the theory.
The real problem is to compute the Steiner point—which I hope youwill do.

Remark 1 Steiner’s problem forfour points is surprising. We don’t minimize
d1 Cd2 Cd3 Cd4—there is a better problem. Connect the four points with roads,
minimizing their total length,and allow the roads to branch. A typical solution is
in Figure 13.18c. The angles at the branch points are120�: There are at most two
branch points (two less than the number of corners).

Remark2 For other powersp; the cost is.d1/
p C .d2/

p C .d3/
p: Thex derivative

is Bf=BxDp.d1/
p�2.x�x1/Cp.d2/

p�2.x�x2/Cp.d1/
p�2.x�x3/: (4)

The key equations are stillBf=BxD 0 andBf=ByD 0: Solving them requires a
computer and an algorithm. To share the work fairly, I will supply the algorithm
(Newton’s method) if you supply the computer. Seriously, this is a terrific example.
It is typical of real problems—we knowBf=Bx andBf=By but not the point where
they are zero. You can calculate that nearest point, which changes asp changes. You
can also discover new mathematics, about how that point moves. I will collect all
replies I receive to Problems38 and39:

MINIMUM OR MAXIMUM ON THE BOUNDARY

Steiner’s problem had no boundaries. The roads could go anywhere. But most
applications have restrictions onx andy; like x¥ 0 or y¤ 0 or x2 Cy2¥ 1: The
minimum with these restrictions is probably higher than the absolute minimum. There
are three possibilities:

.1/ stationary pointfx D 0;fy D 0 .2/ rough point .3/ boundary point

That third possibility requires us to maximize or minimizef .x;y/ along the
boundary.
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EXAMPLE 3 Minimizef .x;y/D x2 CxyCy2�x�yC1 in thehalf-planex¥
0:

The minimum in Example 1 was2
3
: It occurred atx0 D 1

3
;y0 D 1

3
: This point is still

allowed. It satisfies the restrictionx¥ 0: So the minimum is not moved.

EXAMPLE 4 Minimize the samef .x;y/ restricted to thelower half-planey¤ 0:
Now the absolute minimum at.1

3
; 1

3
/ is not allowed. There are no rough points. We

look for a minimum on the boundary lineyD 0 in Figure 13.19a. SetyD 0; sof
depends only onx: Then choose the bestx:

f .x;0/D x2 C0�x�0C1 and fx D 2x�1D 0:

The minimum is atxD 1
2

and yD 0; wheref D 3
4
: This is up from2

3
:

Fig. 13.19 The boundariesyD 0 andx2 Cy2 D 1 contain the minimum points.

EXAMPLE 5 Minimize the samef .x;y/ on or outside the circlex2 Cy2 D 1:

One possibility isfx D 0 andfy D 0:But this is at.1
3
; 1

3
/; inside the circle. The other

possibility is a minimum at a boundary point,on the circle.
To follow this boundary we can setyD

?
1�x2: The functionf gets compli-

cated, anddf=dx is worse. There is a way to avoid square roots: SetxD cost and
yD sin t: Thenf D x2 CxyCy2�x�yC1 is a function of the anglet :

f .t/D1Ccost sin t�cost�sin tC1

df=dtDcos2 t�sin2 tCsin t�cost D .cost�sin t/.costCsin t�1/:
Nowdf=dt D 0 locates a minimum or maximum along the boundary. The first factor
.cost�sin t/ is zero whenxD y: The second factor is zero whencostCsin t D 1;
or xCyD 1: Those pointson the circleare the candidates. Problem 24 sorts them
out, and Section 13.7 finds the minimum in a new way—using “Lagrange multipli-
ers.” Minimization on a boundary is a serious problem—it gets difficult quickly—and
multipliers are ultimately the best solution.

MAXIMUM VS. MINIMUM VS. SADDLE POINT

How to separate the maximum from the minimum? When possible, try all candidates
and decide. Computef at every stationary point and other critical point (maybe also
out at infinity), and compare. Calculus offers another approach, based onsecond
derivatives.
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With one variable the second derivative test was simple:fxx ¡ 0 at a minimum,
fxx D 0 at an inflection point,fxx   0 at a maximum. This is a local test, which may
not give a global answer. But it decides whether the slope is increasing (bottom of the
graph) or decreasing (top of the graph). We now find a similar test forf .x;y/:

The new test involves all three second derivatives. It applies wherefx D 0 and
fy D 0: The tangent plane is horizontal.We ask whether the graph off goes
above or below that plane. The testsfxx ¡ 0 andfyy ¡ 0 guarantee a minimum
in thex andy directions, but there are other directions.

EXAMPLE 6 f .x;y/D x2 C10xyCy2 hasfxx D 2;fxy D 10;fyy D 2 (mini-
mum or not?)

All second derivatives are positive—but wait and see. The stationary point is.0;0/;
whereBf=Bx andBf=By are both zero. Our function is the sum ofx2 Cy2; which
goes upward, and10xy which has a saddle. The second derivatives must decide whether
x2 Cy2 or 10xy is stronger.

Along thex axis, whereyD 0 andf D x2; our point is at the bottom. The mini-
mum in thex direction is at.0;0/: Similarly for they direction. But.0;0/ is not a
minimum point for the whole function, because of10xy:

Try xD 1;yD�1: Thenf D 1�10C1; which is negative. The graph goesbe-
low the xy plane in that direction. The stationary point atxD yD 0 is a saddle
point.

Fig. 13.20 Minimum, maximum, saddle point based on the signs ofa andac�b2:

EXAMPLE 7 f .x;y/D x2 CxyCy2 hasfxx D 2;fxy D 1;fyy D 2 (minimum
or not?)

The second derivatives2;1;2 are again positive. The graph curves up in thex and
y directions. But there is a big difference from Example 6:fxy is reduced from10
to 1: It is the size offxy (not its sign!) that makes the difference. The extra
terms�x�yC4 in Example 1 moved the stationary point to.1

3
; 1

3
/: The second

derivatives are still2;1;2; and they pass the test for a minimum:

13K At .0;0/ the quadratic functionf .x;y/D ax2 C2bxyCcy2 has a

minimum if
a¡0
ac¡b2

maximum if
a 0
ac¡b2

saddle point if ac  b2:

For a direct proof, splitf .x;y/ into two parts by “completing the square:”

ax2 C2bxyCcy2 D a

�

xC
b

a
y

�2

C
ac�b2

a
y2:
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That algebra can be checked (notice the2b). It is the conclusion that’s important:

if a¡ 0 andac¡ b2; both parts are positive:minimum at .0;0/

if a  0 andac¡ b2; both parts are negative:maximumat .0;0/

if ac  b2; the parts have opposite signs:saddle pointat .0;0/:

Since the test involves thesquareof b; its sign has no importance. Example 6
hadbD 5 and a saddle point. Example 7 hadbD 1

2
and a minimum. Reversing to�x2�xy�y2 yields a maximum. So does�x2 Cxy�y2:

Now comes the final step, fromax2 C2bxyCcy2 to a general functionf .x;y/:
For all functions, quadratics or not, it is thesecond order termsthat we test.

EXAMPLE 8 f .x;y/D ex�x�cosy has a stationary point atxD 0;yD 0:

The first derivatives areex�1 and siny; both zero. The second derivatives are
fxx D ex D 1 andfyy D cosyD 1 andfxy D 0:We only use the derivativesat the
stationary point. The first derivatives are zero, so the second order terms come to the
front in the series forex�x�cosy:

.1CxC 1
2
x2 C � � �/�x� .1� 1

2
y2 C � � �/D 1

2
x2 C 1

2
y2 Chigher order terms:

(7)
There is aminimumat the origin. The quadratic part1

2
x2 C 1

2
y2 goes upward. The

x3 andy4 terms are too small to protest. Eventually those terms get large, but near
a stationary point it is the quadratic that counts. We didn’t need the whole series,
because fromfxx D fyy D 1 andfxy D 0 we knew it would start with1

2
x2 C 1

2
y2:

13L The test in13K applies to the second derivativesaD fxx;bD fxy; cD fyy

of anyf .x;y/ at any stationary point. At all points the test decides whether the
graph is concave up, concave down, or “indefinite.”

EXAMPLE 9 f .x;y/D exy hasfx D yexy andfy D xexy : The stationary point
is .0;0/:

The second derivatives at that point areaD fxx D 0;bD fxy D 1; andcD fyy D 0:
The testb2¡ ac makes this a saddle point. Look at the infinite series:

exy D 1CxyC 1
2
x2y2 C � � � :

No linear term becausefx D fy D 0: The origin is astationary point. No x2 or y2

term (onlyxy): The stationary point is asaddle point.
At xD 2;yD�2 we find fxxfyy ¡ .fxy/

2 . The graph is concave up at that
point—but it’s not a minimum since the first derivatives are not zero.

The series begins with the constant term—not important. Then come the linear
terms—extremely important. Those terms are decided byfirst derivatives, and they
give the tangent plane. It is only at stationary points—when the linear part disap-
pears and the tangent plane is horizontal—that second derivatives take over. Around
any basepoint,these constant-linear-quadratic terms are the start of the Taylor
series.

THE TAYLOR SERIES

We now put together the whole infinite series. It is a “Taylor series”—which means
it is a power series that matches all derivatives off (at the basepoint). For one



588 13 Partial Derivatives

variable, the powers werexn when the basepoint was0: For two variables, the pow-
ers arexn timesym when the basepoint is.0;0/: Chapter10 multiplied thenth
derivativednf=dxn byxn=nŠNow every mixed derivative.B=Bx/n.B=By/mf .x;y/
is computed at the basepoint(subscript0).

We multiply those numbers byxnym=nŠmŠ to match each derivative off .x;y/:

13M When the basepoint is.0;0/; the Taylor series is a double sum
††anmx

nym: The termanmx
nym has the same mixed derivative at.0;0/

asf .x;y/: The series is

f .0;0/Cx

�BfBx �0

Cy

�BfBy �0

C
x2

2

�B2fBx2

�

0

Cxy

� B2fBxBy�0

C
y2

2

�B2fBy2

�

0

C
PP

nCm¡2

xnym

nŠmŠ

�BnCmfBxnBm

�

0

:

The derivatives of this series agree with the derivatives off .x;y/ at the basepoint.

The first three terms are the linear approximation tof .x;y/: They give the tangent
plane at the basepoint. Thex2 term hasnD 2 andmD 0; so nŠmŠD 2: The xy
term hasnDmD 1; andnŠmŠD 1: The quadratic part1

2
.ax2 C2bxyCcy2/ is

in control when the linear part is zero.

EXAMPLE 10 All derivatives ofexCy equal one at the origin. The Taylor series is

exCy D 1CxCyC
x2

2
CxyC

y2

2
C � � �DXX xnym

nŠmŠ

This happens to haveacD b2; the special case that was omitted in13M and13N. It
is the two-dimensional version of an inflection point. The second derivatives fail to
decide the concavity. Whenfxxfyy D .fxy/

2; the decision is passed up to the higher
derivatives. But in ordinary practice, the Taylor series is stopped after the quadratics.

If the basepoint moves to.x0;y0/; the powers become.x�x0/
n.y�y0/

m—and
all derivatives are computed at this new basepoint.

Final questionW How would you compute a minimum numerically? One good
way is to solvefx D 0 andfy D 0: These are the functionsg andh of Newton’s
method (Section 13.3). At the current point.xn;yn/; the derivatives ofgD fx and
hD fy give linear equations for the steps�x and�y: Then the next pointxnC1 D
xn C�x;ynC1 D yn C�y comes from those steps. The input is.xn;yn/; the output
is the new point, and the linear equations are

.gx/�xC .gy/�yD�g.xn;yn/

.hx/�xC .hy/�yD�h.xn;yn/
or

.fxx/�xC .fxy/�yD�fx.xn;yn/

.fxy/�xC .fyy/�yD�fy.xn;yn/:
(5)

When the second derivatives off are available, use Newton’s method.
When the problem is too complicated to go beyond first derivatives, here is an

alternative—steepest descent. The goal is to move down the graph off .x;y/; like
a boulder rolling down a mountain. The steepest direction at any point is given by
thegradient, with a minus sign to go down instead of up. So move in the direction
�xD�s Bf=Bx and�yD�s Bf=By:

The question is: How far to move? Like a boulder, a steep start may not aim directly
toward the minimum. The stepsizes is monitored, to end the step when the function
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f starts upward again (Problem54). At the end of each step, compute first derivatives
and start again in the new steepest direction.

13.6 EXERCISES

Read-through questions

A minimum occurs at a a point (wherefx D fy D 0/ or a
b point (no derivative) or a c point. Sincef D x2�

xyC2y hasfx D d andfy D e , the stationary point is
xD f , y= g . This is not a minimum, becausef decreases
when h .

The minimum of d2 D .x�x1/
2 C.y�y1/

2 occurs at the
rough point i . The graph of d is a j and gradd
is a k vector that points l . The graph off D |xy|
touches bottom along the lines m . Those are “rough lines”
because the derivative n . The maximum of d and f

must occur on the o of the allowed region because it
doesn’t occur p .

When the boundary curve isxDx.t/;yD y.t/; the deriva-
tive of f .x;y/ along the boundary is q (chain rule). If
f Dx2 C2y2 and the boundary isxD cost;yD sin t; then
df=dt D r . It is zero at the points s . The maximum
is at t and the minimum is at u . Inside the circlef
has an absolute minimum at v .

To separate maximum from minimum from w , com-
pute the x derivatives at a y point. The tests for a
minimum are z . The tests for a maximum are A . In
case ac  B or fxxfyy   C , we have a D . At all
points these tests decide between concave up andE and
“ indefinite.” Forf D 8x2�6xyCy2; the origin is a F . The
signs off at .1;0/ and.1;3/ are G .

The Taylor series forf .x;y/ begins with the six terms H .
The coefficient of xnym is I . To find a stationary point
numerically, use J or K .

Find all stationary points .fx Dfy D 0/ in 1–16. Separate
minimum from maximum from saddle point. Test 13K applies
to aDfxx ;bD fxy ;cD fyy :

1 x2 C2xyC3y2

3 x2 C4xyC3y2�6x�12y
5 x2y2�x
7 �x2 C2xy�3y2

9 x2 Cy2 Cz2�4z
2 xy�xCy

4 x2�y2 C4y

6 xey�ex

8 .xCy/2 C.xC2y�6/2
10 .xCy/C.xC2y�6/

11 .x�y/2
13 .xCy/2�.xC2y/2

12 .1Cx2/=.1Cy2/

14 sin x�cosy

15 x3 Cy3�3x2 C3y2 16 8xy�x4�y4

17 A rectangle has sides on thex and y axes and a corner on
the linexC3yD 12: Find its maximum area.

18 A box has a corner at.0;0;0/ and all edges parallel
to the axes. If the opposite corner.x;y;z/ is on the plane
3xC2yCzD 1; what position gives maximum volume? Show
first that the problem maximizesxy�3x2y�2xy2:

19 (Straight line fit, Section 11.4) Findx andy to minimize the
error ED .xCy/2 C.xC2y�5/2 C.xC3y�4/2:
Show that this gives a minimum not a saddle point.

20 (Least squares) What numbersx;y come closest to sat-
isfying the three equationsx�yD 1; 2xCy D�1; xC2yD 1?
Square and add the errors,.x�y�1/2 C C :

Then minimize.

21 Minimize f D x2 CxyCy2�x�y restricted by

(a) x¤ 0 (b) y¥ 1 (c) x¤ 0 andy¥ 1:
22 Minimize f D x2 Cy2 C2xC4y in the regions

(a) allx;y (b) y¥ 0 (c) x¥ 0;y¥ 0
23 Maximize and minimize f D xC

?
3y on the circle

xD cost; yD sin t:

24 Example 5 followed f D x2 CxyCy2�x�yC1 around
the circle x2 Cy2 D 1: The four stationary points havexD y

or xCyD 1: Compute f at those points and locate the
minimum.

25 (a) Maximizef D axCby on the circlex2 Cy2 D 1:

(b) Minimizex2 Cy2 on the lineaxCbyD 1:

26 Forf .x;y/D 1
4x

4�xyC 1
4y

4; what are the equationsfx D 0

andfy D 0? What are their solutions? What isfmin?

27 Choosec¡ 0 so thatf D x2 CxyCcy2 has a saddle point at
.0;0/: Note thatf ¡ 0 on the linesxD 0 andyD 0 andyD x and
yD�x; so checking four directions does not confirm a minimum.

Problems 28–42 minimize the Steiner distancef D d1 Cd2 C

d3 and related functions. A computer is needed for 33 and
36–39.

28 Draw the triangle with corners at.0;0/; .1;1/; and .1;�1/:
By symmetry the Steiner point will be on thex axis. Write
down the distancesd1;d2;d3 to .x;0/ and find the x that
minimizesd1 Cd2 Cd3: Check the120� angles.

29 Suppose three unit vectors add to zero. Prove that the angles be-
tween them must be120�:
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30 In three dimensions, Steiner minimizes the total distance
f .x;y;z/D d1 Cd2 Cd3 Cd4 from four points. Show that gradd1

is still a unit vector (in which direction?) At what angles do four unit
vectors add to zero?

31 With four points in a plane, the Steiner problem allows
branches (Figure 13.18c). Find the shortest network connecting
the corners of a rectangle, if the side lengths are (a)1 and 2
(b) 1 and1 (two solutions for a square) (c)1 and0:1:

32 Show that a Steiner point (120� angles) can never be outside the
triangle.

33 Write a program to minimizef .x;y/D d1 Cd2 Cd3 by
Newton’s method in equation (5). Fix two corners at.0;0/; .3;0/;

vary the third from.1;1/ to .2;1/ to .3;1/ to .4;1/; and compute
Steiner points.

34 Suppose one side of the triangle goes from.�1;0/ to .1;0/:
Above that side are points from which the lines to.�1;0/ and
.1;0/ meet at a120� angle. Those points lie on a circular arc—
draw it and find its center and its radius.

35 Continuing Problem 34, there are circular arcs for all three
sides of the triangle. On the arcs, every point sees one side of
the triangle at a120� angle. Where is the Steiner point? (Sketch
three sides with their arcs.)

36 Invent an algorithm to converge to the Steiner point based on
Problem 35. Test it on the triangles of Problem33:

37 Write a code to minimizef D d4
1 Cd4

2 Cd4
3 by solving fx D 0

andfy D 0: Use Newton’s method in equation (5).

38 Extend the code to allow all powersp¥ 1; not only pD 4:

Follow the minimizing point from the centroid atpD 2 to the Steiner
point atpD 1 (try pD 1:8;1:6;1:4;1:2).

39 Follow the minimizing point with your code asp increases:
pD 2;pD 4;pD 8;pD 16: Guess the limit atpD8 and test
whether it is equally distant from the three corners.

40 At pD8 we are making the largest of the distances
d1;d2;d3 as small as possible. The best point for a1;1;

?
2

right triangle is :

41 Suppose the road from corner1 is wider than the others,
and the total cost isf .x;y/D

?
2d1 Cd2 Cd3: Find the gradient

of f and the angles at which the best roads meet.

42 Solve Steiner’s problem fortwo points. Where isd1 Cd2 a
minimum? Solve also for three points if only the three corners
are allowed.

Find all derivatives at .0;0/: Construct the Taylor series:

43 f .x;y/D .xCy/3

45 f .x;y/D ln.1�xy/ 44 f .x;y/D xey

Find fx ;fy ;fxx ;fxy ;fyy at the basepoint. Write the quadratic
approximation to f .x;y/—the Taylor series through second-
order terms:

46 f D exCy at .0;0/

48 f D sinx cosy at .0;0/

47 f D exCy at .1;1/

49 f D x2 Cy2 at .1;�1/
50 The Taylor series around.x;y/ is also written with steps
h andk Wf .xCh;yCk/D f .x;y/Ch Ck C
1
2h

2 Chk C � � � : Fill in those four blanks.

51 Find lines along whichf .x;y/ is constant (these functions have
fxxfyy D f 2

xy or acD b2):

(a) f D x2�4xyC4y2 (b) f D exey

52 For f .x;y;z/ the first three terms afterf .0;0;0/ in the Taylor
series are : The next six terms are :

53 (a) For the errorf �fL in linear approximation, the Taylor
series at.0;0/ starts with the quadratic terms :

(b) The graph off goes up from its tangent plane (and
f ¡fL) if : Thenf is concave upward.

(c) For.0;0/ to be a minimum we also need

54 The gradient of x2 C2y2 at the point .1;1/ is .2;4/:

Steepest descent is along the linexD 1�2s;y D 1�4s (minus
sign to go downward). Minimizex2 C2y2 with respect to
the stepsizes: That locates the next point ; where
steepest descent begins again.

55 Newton’s method minimizesx2 C2y2 in one step. Starting
at .x0;y0/D .1;1/; find�x and�y from equation (5).

56 If fxx Cfyy D 0; show thatf .x;y/ cannot have an interior
maximum or minimum (only saddle points).

57 The value ofx theorems andy exercises isf D x2y (maybe).
The most that a student or author can deal with is4xCy D 12:

Substitute yD 12�4x and maximize f: Show that the line
4xCy D 12 is tangent to the level curvex2yD fmax:

58 The desirability ofx houses andy yachts isf .x;y/: The
constraintpxCqyD k limits the money available. The cost of
a house is ; the cost of a yacht is : Substitute
yD .k�px/=q into f .x;y/DF.x/ and use the chain rule for
dF=dx: Show that the slope�fx=fy at the bestx is�p=q:
59 At the farthest point in a baseball field, explain why the
fence is perpendicular to the line from home plate. Assume it is
not a rough point (corner) or endpoint (foul line).
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13.7 Constraints and Lagrange Multipliers

This section faces up to a practical problem. We often minimize one functionf .x;y/
while another functiong.x;y/ is fixed. There is aconstraintonx andy; given by
g.x;y/D k: This restricts the material available or the funds available or the energy
available. With this constraint, the problem is to do the best possible.fmax or fmin/:

At the absolute minimum off .x;y/; the requirementg.x;y/D k is probably
violated. In that case the minimum point is not allowed. We cannot usefx D 0 and
fy D 0—those equations don’t account forg:

Step1 Find equations for theconstrained minimumor constrained maxi-
mum. They will involvefx andfy and alsogx andgy ; which give local information
aboutf andg: To see the equations, look at two examples.

EXAMPLE 1 Minimize f D x2 Cy2 subject to the constraintgD 2xCyD k:

Trial runs Theconstraint allowsxD 0; yD k;wheref D k2: Also (1
2
k;0) satisfies

the constraint, andf D 1
4
k2 is smaller. AlsoxD yD 1

3
k givesf D 2

9
k2 (best so

far).

Idea of solutionLook at the level curves off .x;y/ in Figure 13.21. They are circles
x2 Cy2 D c: Whenc is small, the circles do not touch the line2xCyD k: There
are no points that satisfy the constraint, whenc is too small.Now increasec:

Eventually the growing circlesx2 Cy2 D c will just touch the linexC2yD k:
The point where they touch is the winner. It gives the smallest value ofc that can be
achieved on the line. The touching point is.xmin;ymin/; and the value ofc is fmin:

What equation describes that point? When the circle touches the line, they are
tangent. They have the same slope.The perpendiculars to the circle and the line
go in the same direction. That is the key fact, which you see in Figure 13.21a.The
direction perpendicular tof D c is given by gradf D .fx;fy/: The direction per-
pendicular togD k is given by gradgD .gx;gy/: The key equation says that those
two vectors are parallel. One gradient vector is a multiple of the other gradient vector,
with a multiplier� (called lambda) that is unknown:

13N At the minimum off .x;y/ subject tog.x;y/D k; the gradient off is
parallel to the gradient ofg—with an unknown number� as the multiplier:

gradf D� gradg so
BfBx D�

BgBx and
BfBy D�

BgBy : (1)

Step2 There are now three unknownsx;y;�: There are alsothree equations:Bf=BxD�Bg=Bx is 2xD 2�Bf=ByD�Bg=By is 2yD� (2)

g.x;y/D k is 2xCyD k:

In the third equation, substitute2� for 2x and 1
2
� for y: Then2xCy equals5

2
�

equalsk: Knowing�D 2
5
k; go back to the first two equations forx;y; andfmin:

xD�D
2

5
k; yD

1

2
�D

1

5
k; fmin D

�

2

5
k

�2

C

�

1

5
k

�2

D
5

25
k2 D

1

5
k2:
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The winning point.xmin;ymin/ is (2
5
k; 1

5
k). It minimizes the “distance squared,”

f D x2 Cy2 D 1
5
k2; from the origin to the line.

Question What is the meaning of the Lagrange multiplier�?

Mysterious answer The derivative of1
5
k2 is 2

5
k;which equals�: The multiplier

� is the derivative offmin with respect tok. Move the line by�k; andfmin changes
by about��k: Thus the Lagrange multiplier measures thesensitivityto k:

Pronounce his name “Lagronge” or better “Lagrongh” as if you are French.

Fig. 13.21 Circlesf D c tangent to linegD k and ellipsegD 4: parallel gradients

EXAMPLE 2 Maximize and minimizef D x2 Cy2 onthe ellipsegD .x�1/2 C
4y2 D 4:

Idea and equations The circlesx2 Cy2 D c grow until they touch the ellipse. The
touching point is.xmin;ymin/ and that smallest value ofc is fmin: As the circles grow
they cut through the ellipse. Finally there is a point (xmax;ymax/ where the last circle
touches. That largest value ofc is fmax:

The minimum and maximum are described by the same rule: the circle is tangent to
the ellipse (Figure 13.21b).The perpendiculars go in the same direction. Therefore
.fx;fy/ is a multiple of.gx;gy/; and the unknown multiplier is�:

fx D�gx W 2xD�2.x�1/
fy D�gy W 2yD�8y (3)

gD k W .x�1/2 C4y2 D 4:

Solution The second equation allows two possibilities:yD 0 or�D 1
4
: Following

upyD 0; the last equation gives.x�1/2 D 4: ThusxD 3 orxD�1: Then the first
equation gives�D 3=2 or�D 1=2: The values off arex2 Cy2 D 32 C02 D 9 and
x2 Cy2 D .�1/2 C02 D 1:

Now follow �D 1=4: The first equation yieldsxD�1=3: Then the last equation
requiresy2 D 5=9: Sincex2 D 1=9 we findx2 Cy2 D 6=9D 2=3: This isfmin:

Conclusion The equations(3) have four solutions, at which the circle and ellipse are
tangent. The four points are.3;0/; .�1;0/; .�1=3;?5=3/; and .�1=3;�?5=3/:
The four values off are9;1; 2

3
; 2

3
:

Summary The three equations arefx D�gx and fy D�gy and gD k: The
unknowns arex;y; and�: There is no absolute system for solving the equations
(unless they are linear; then use elimination or Cramer’s Rule). Often the first two
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equations yieldx andy in terms of�; and substituting intogD k gives an equation
for �:

At the minimum, the level curvef .x;y/D c is tangent to the constraint curve
g.x;y/D k: If that constraint curve is given parametrically byx.t/ andy.t/; then
minimizingf .x.t/;y.t// uses the chain rule:

df

dt
D
BfBx dxdt C

BfBy dydt D 0 or .gradf / � .tangent to curve/D 0:

This is the calculus proof that gradf is perpendicular to the curve.Thusgradf is
parallel togradg: This means (fx;fy/D�.gx;gy).

We have lostfx D 0 andfy D 0: But a new functionL hasthreezero derivatives:

13O The Lagrange function isL.x;y;�/D f .x;y/��.g.x;y/�k/: Its three
derivatives areLx DLy DL� D 0 at the solution:BLBx D

BfBx ��BgBx D 0
BLBy D

BfBy ��BgBy D 0
BLB� D�gCkD 0: (4)

Note thatBL=B�D 0 automatically producesgD k: The constraint is “built in ” to
L: Lagrange has included a term�.g�k/; which is destined to be zero—but its
derivatives are absolutely needed in the equations! At the solution,gD k andLD f
andBL=BkD�:

What is important isfx D�gx andfy D�gy ; coming fromLx DLy D 0: In words:
The constraintgD k forcesdgD gxdxCgydyD 0: This restricts the movements
dx anddy: They must keep to the curve. The equations say thatdf D fxdxCfydy
is equal to�dg: Thusdf is zeroin the allowed direction—which is the key point.

MAXIMUM AND MINIMUM WITH TWO CONSTRAINTS

The whole subject of min(max)imization is calledoptimization. Its applications to
business decisions make upoperations research. The special case of linear functions
is always important—in this part of mathematics it is calledlinear programming. A
book about those subjects won’t fit inside a calculus book, but we can take one more
step—to allow a second constraint.

The function to minimize or maximize is nowf .x;y;z/: The constraints are
g.x;y;z/D k1 andh.x;y;z/D k2: The multipliers are�1 and�2:We need at least
three variablesx;y;z because two constraints would completely determinex andy:

13P To minimizef .x;y;z/ subject tog.x;y;z/D k1; andh.x;y;z/D k2; solve
five equations forx;y;z;�1;�2: CombinegD k1 andhD k2 withBfBx D�1

BgBx C�2

BhBx ; BfBy D�1

BgBy C�2

BhBy ; BfBz D�1

BgBz C�2

BhBz :
(5)

Figure 13.22a shows the geometry behind these equations. For conveniencef is
x2 Cy2 Cz2; so we are minimizing distance (squared). The constraintsgD xCyC
zD 9 andhD xC2yC3zD 20 are linear—their graphs are planes. The constraints
keep.x;y;z/ on both planes—and therefore on the line where they meet. We are
finding the squared distance from.0;0;0/ to a line.
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What equation do we solve? The level surfacesx2 Cy2 Cz2 D c arespheres. They
grow asc increases. The first sphere to touch the line is tangent to it. That touching
point gives the solution (the smallestc). All three vectorsgradf; gradg; gradh are
perpendicular to the line:

line tangent to sphereñgradf perpendicular to line

line in both planesñgradg and gradh perpendicular to line.

Thus gradf; gradg; gradh arein the same plane—perpendicular to the line. With
three vectors in a plane, gradf is a combination of gradg and gradh:

.fx;fy ;fz/D�1.gx;gy ;gz/C�2.hx;hy ;hz/: (6)

This is the key equation(5). It applies to curved surfaces as well as planes.

EXAMPLE 3 Minimizex2 Cy2 Cz2 whenxCyCzD 9 andxC2yC3zD 20:

In (Figure 13.22b), the normals to those planes are gradgD .1;1;1/ and gradhD
.1;2;3/: The gradient off D x2 Cy2 Cz2 is .2x;2y;2z/: The equations(5)– (6)
are

2xD�1 C�2; 2yD�1 C2�2; 2zD�1 C3�2:

Substitute thesex;y;z into the other two equationsgD xCyCzD 9 andhD 20:

�1 C�2

2
C
�1 C2�2

2
C
�1 C3�2

2
D 9 and

�1 C�2

2
C2

�1 C2�2

2
C3

�1 C3�2

2
D 20:

After multiplying by2; these simplify to3�1 C6�2 D 18 and6�1 C14�2 D 40: The
solutions are�1 D 2 and�2 D 2:Now the previous equations give.x;y;z/D .2;3;4/:

The Lagrange function with two constraints isL.x;y;z;�1;�2/D f ��1.g�
k1/��2.h�k2/: Its five derivatives are zero—those are our five equations. Lagrange
has increased the number of unknowns from3 to 5; by adding�1 and�2: The best
point .2;3;4/ gives fmin D 29: The �’s give Bf=Bk—the sensitivity to changes
in 9 and20:

Fig. 13.22 Perpendicular vector gradf is acombination�1 gradgC�2 gradh:
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INEQUALITY CONSTRAINTS

In practice, applications involveinequalities as well as equations. The constraints
might beg¤ k andh¥ 0: The first means: It is not required to use the whole re-
sourcek; but you cannot use more. The second means:h measures a quantity that
cannot be negative.At the minimum point, the multipliers must satisfy the same
inequalities: �1¤ 0 and�2¥ 0:There are inequalities on the�’s when there are
inequalities in the constraints.

Brief reasoning: Withg¤ k the minimum can beon or insidethe constraint curve.
Inside the curve, whereg  k; we are free to move in all directions. The constraint is
not really constraining. This brings backfx D 0 andfy D 0 and�D 0—an ordinary
minimum. On the curve, wheregD k constrains the minimum from going lower, we
have�  0:We don’t know in advance which to expect.

For 100 constraintsgi ¤ ki ; there are100�’s. Some�’s are zero (whengi   ki )
and some are nonzero (whengi D ki ). It is those2100 possibilities that make
optimization interesting. Inlinear programmingwith two variables, the constraints
arex¥ 0;y¥ 0:
EXAMPLE 4 Minimixef D5xC6ywithgD xCyD 4 andhDx¥ 0 andHDy¥
0:

The constraintgD 4 is an equation,h andH yield inequalities. Each has its own
Lagrange multiplier—and the inequalities require�2¥ 0 and�3¥ 0: The derivatives
of f;g;h;H are no problem to compute:BfBx D�1

BgBx C�2

BhBx C�3

BHBx yields 5D�1 C�2BfBy D�1

BgBy C�2

BhBy C�3

BHBy yields 6D�1 C�3:

(7)

Those equations make�3 larger than�2: Therefore�3¡ 0; which means that the
constraint onH must be an equation. (Inequality for the multiplier means equality
for the constraint.) In other wordsH D yD 0: ThenxCyD 4 leads toxD 4: The
solution is at (xmin;ymin/D .4;0/;wherefmin D 20:

At this minimum, hD xD 4 is above zero. The multiplier for the constraint
h¥ 0 must be�2 D 0: Then the first equation gives�1 D 5: As always, the mul-
tiplier measures sensitivity. WhengD 4 is increased by�k; the costfmin D 20 is
increased by5�k: In economics�1 D 5 is called ashadow price—it is the cost of
increasing the constraint.

Behind this example is a nice problem in geometry. The constraint curvexCyD 4
is a line. The inequalitiesx¥ 0 andy¥ 0 leave a piece of that line—fromP toQ in
Figure 13.23. The level curvesf D 5xC6yD c move out asc increases, until they
touch the line.The first touching point isQD .4;0/; which is the solution. It
is always an endpoint—or a corner of the trianglePQR: It gives the smallest cost
fmin; which iscD 20:
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Fig. 13.23 Linear programming:f andg are linear, inequalities cut offx andy:

13.7 EXERCISES

Read-through questions

A restriction g.x;y/D k is called a a . The minimizing
equations forf .x;y/ subject togD k are b . The number
� is the Lagrange c . Geometrically, gradf is d to
gradg at the minimum. That is because the e curve f D

fmin is f to the constraint curvegD k: The number� turns
out to be the derivative of g with respect to h . The
Lagrange function isLD i and the three equations forx;y;�
are j and k and l .

To minimize f D x2�y subject togD x�yD 0; the three
equations forx;y;� are m . The solution is n . In this
example the curvef .x;y/D fmin D o is a p which is

q to the linegD 0 at .xmin;ymin/:

With two constraintsg.x;y;z/D k1 and h.x;y;z/D k2 there
are r multipliers. The five unknowns are s . The five
equations are t . The level surfacef D fmin is u to
the curve wheregD k1 and hD k2: Then gradf is v to
this curve, and so are gradg and w . Thus x is a
combination of gradg and y . With nine variables and six
constraints, there will be z multipliers and eventually A
equations. If a constraint is an B g¤ k; then its multiplier
must satisfy�¤ 0 at a minimum.

1 Example 1 minimizedf D x2 Cy2 subject to 2xCy D k:

Solve the constraint equation foryD k�2x; substitute intof; and
minimize this function ofx: The minimum is at.x;y/D ;

wheref D :

Note: This direct approachreducesto one unknownx: Lagrange
increasesto x;y;�: But Lagrange is better when the first step of
solving fory is difficult or impossible.

Minimize and maximize f .x;y/ in 2–6: Find x; y; and �:

2 f Dx2y with gD x2 Cy2 D 1

3 f D xCy with gD
1

x
C
1

y
D 1

4 f D 3xCy with gD x2 C9y2 D 1

5 f D x2 Cy2 with gD x6 Cy6 D 2:

6 f D xCy with gD x1=3y2=3 D k: With xD capital and
yD labor,g is a Cobb-Douglas function in economics. Draw two
of its level curves.

7 Find the point on the circlex2 Cy2 D 13 wheref D 2x�3y is
a maximum. Explain the answer.

8 Maximize axCbyCcz subject tox2 Cy2 Cz2 Dk2: Write
your answer as the Schwarz inequality for dot products:.a;b;c/ �
.x;y;z/¤ k:

9 Find the plane zD axCbyCc that best fits the points
.x;y;z/D .0;0;1/; .1;0;0/; .1;1;2/; .0;1;2/: The answer a;b;c
minimizes the sum of.z�ax�by�c/2 at the four points.

10 The base of a triangle is the top of a rectangle (5 sides,
combined areaD 1). What dimensions minimize the distance
around?

11 Draw the hyperbolaxyD�1 touching the circlegD x2 C

y2 D 2: The minimum of f D xy on the circle is reached at
the points : The equationsfx D�gx and fy D�gy are
satisfied at those points with�D :

12 Find the maximum off D xy on the circlegDx2 Cy2 D 2 by
solving fx D�gx andfy D�gy and substitutingx andy into f:
Draw the level curvef D fmax that touches the circle.

13 Draw the level curves off D x2 Cy2 with a closed curveC
across them to representg.x;y/D k: Mark a point whereC crosses
a level curve. Why is that point not a minimum off onC? Mark a
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point whereC is tangentto a level curve. Is that the minimum off
onC?

14 On the circle gD x2 Cy2 D 1; Example 5 of 13.6 mini-
mized f D xy�x�y: (a) Set up the three Lagrange equations
for x;y;�: (b) The first two equations givexD yD :

(c) There is another solution for the special value�D�1
2 ; when

the equations become : This is easy to miss but it gives
fmin D�1 at the point :

Problems 15–18 develop the theory of Lagrange multipliers.

15 (Sensitivity) CertainlyLD f ��.g�k/ hasBL=BkD�: Since
LD fmin andgD k at the minimum point, this seems to prove the
key formuladfmin=dkD�: But xmin; ymin; �; andfmin all change
with k: We need thetotal derivative ofL.x;y;�;k/:

dL

dk
D
BLBx dxdk C

BLBy dydk C
BLB� d�dk C

BLBk dkdk :
Equation (1) at the minimum point should now yield the
sensitivity formuladfmin=dkD�:

16 (Theory behind�) When g.x;y/D k is solved fory; it gives
a curve yDR.x/: Then minimizing f .x;y/ along this curve
yields BfBx C

BfBy dRdx D 0;
BgBx C

BgBy dRdx D 0:

Those come from the rule: df=dxD 0 at the min-
imum and dg=dxD 0 along the curve becausegD :

Multiplying the second equation by�D .Bf=By/=.Bg=By/ and sub-
tracting from the first gives D 0: Also Bf=ByD�Bg=By:
These are the equations (1) forx;y;� .

17 (Example of failure) �D fy=gy breaks down ifgy D 0 at the
minimum point.

(a) gD x2�y3 D 0 does not allow negativey because
:

(b) WhengD 0 the minimum off D x2 Cy is at the point
:

(c) At that point fy D�gy becomes which is
impossible.

(d) Draw the pointed curvegD 0 to see why it is not tangent
to a level curve off:

18 (No maximum) Find a point on the linegD xCyD 1

wheref .x;y/D 2xCy is greater than100 (or 1000). Write out
gradf D�gradg to see that there is no solution.

19 Find the minimum of f Dx2 C2y2 Cz2 if .x;y;z/ is
restricted to the planesgD xCyCzD 0 andhD x�zD 1:

20 (a) Find by Lagrange multipliers the volumeV D xyz of the
largest box with sides adding up toxCyCzD k: (b) Check that
�D dVmax=dk: (c) United Airlines accepts baggage withxCyC

zD 1082. If it changes to1112; approximately how much (by�)
and exactly how much doesVmax increase?

21 The planesxD 0 and yD 0 intersect in the linexD yD 0;

which is the z axis. Write down a vector perpendicular to

the planexD 0 and a vector perpendicular to the planeyD 0:

Find �1 times the first vector plus�2 times the second. This
combination is perpendicular to the line :

22 Minimize f D x2 Cy2 Cz2 on the planeaxCbyCczD d—
one constraint and one multiplier. Comparefmin with the distance
formula|d |=?a2 Cb2 Cc2 in Section 11.2.

23 At the absolute minimum off .x;y/; the derivatives are
zero. If this point happens to fall on the curveg.x;y/D k then the
equationsfx D�gx andfy D�gy hold with�D :

Problems 24–33 allow inequality constraints, optional but good.

24 Find the minimum of f D 3xC5y with the constraints
gD xC2y D 4 and hD x¥ 0 and H D y¥ 0; using equations
like (7). Which multiplier is zero?

25 Figure 13.23 shows the constraint planegD xCyCzD 1

chopped off by the inequalitiesx¥ 0;y¥ 0;z¥ 0: What are
the three “endpoints” of this triangle? Find the minimum and
maximum off D 4x�2yC5z on the triangle, by testingf at the
endpoints.

26 With an inequality constraintg¤ k; the multiplier at the
minimum satisfies�¤ 0: If k is increased,fmin goes down (since
�D dfmin=dk). Explain the reasoning: By increasingk; (more)
(fewer) points satisfy the constraints. Therefore (more) (fewer)
points are available to minimizef: Thereforefmin goes (up) (down).

27 With an inequality constraintg¤ k; the multiplier at a
maximumpoint satisfies�¥ 0: Change the reasoning in26:

28 When the constrainth¥ k is a strict inequalityh¡ k at
the minimum, the multiplier is�D 0: Explain the reasoning:
For a small increase ink; the same minimizer is still available
(sinceh¡ k leaves room to move). Thereforefmin is (changed)
(unchanged), and�D dfmin=dk is :

29 Minimize f D x2 Cy2 subject to the inequality constraint
xCy¤ 4: The minimum is obviously at ; where fx

and fy are zero. The multiplier is�D : A small
change from 4 will leave fmin D so the sensitivity
dfmin=dk still equals�:

30 Minimize f D x2 Cy2 subject to the inequality constraint
xCy¥ 4: Now the minimum is at and the multiplier
is �D and fmin D : A small change to4Cdk

changesfmin by what multiple ofdk?

31 Minimize f D 5xC6y with gD xCy D 4 and hD x¥ 0
and H Dy¤ 0: Now �3¤ 0 and the sign change destroys
Example 4. Show that equation (7) has no solution, and
choosex;y to make5xC6y  �1000:
32 Minimize f D 2xC3yC4z subject togD xCyCzD 1 and
x;y;z¥ 0: These constraints have multipliers�2¥ 0; �3¥ 0;
�4¥ 0: The equations are2D�1 C�2; ; and 4D�1 C�4:

Explain why�3¡ 0 and�4¡ 0 andfmin D 2:

33 A wire 402 long is used to encloseone or two squares
(side x and sidey). Maximize the total areax2 Cy2 subject to
x¥ 0;y¥ 0;4xC4y D 40:
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