
CHAPTER 15

Vector Calculus

Chapter14 introduced double and triple integrals. We went from
r
dx to

rr
dx dy

and
rrr

dx dy dz. All those integrals add up small pieces, and the limit gives area or
volume or mass. What could be more natural than that? I regret to say, after the success
of those multiple integrals, that something is missing. It is even more regrettable that
we didn’t notice it. The missing piece is nothing less than the Fundamental Theorem
of Calculus.

The double integral
rrr

dx dy equals the area. To compute it, we did not use an
antiderivative of1: At least not consciously. The method was almost trial and error,
and the hard part was to find the limits of integration. This chapter goes deeper, to
show how the step from a double integral to a single integral is really a new form of
the Fundamental Theorem—when it is done right.

Two new ideas are needed early, one pleasant and one not. You will likevector
fields. You may not think so highly ofline integrals. Those are ordinary single
integrals like

r
v.x/dx; but they go along curves instead of straight lines. The nice

stepdx becomes the confusing stepds:Where
r
dx equals the length of the interval,r

ds is the length of the curve. The point is that regions are enclosed by curves, and
we have to integrate along them. The Fundamental Theorem in its two-dimensional
form (Green’s Theorem) connectsa double integral over the regionto a single
integral along its boundary curve.

The great applications are in science and engineering, where vector fields are so
natural. But there are changes in the language. Instead of an antiderivative, we speak
about apotential function. Instead of the derivative, we take the “divergence” and
“curl.” Instead of area, we computeflux andcirculation andwork. Examples come
first.
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630 15 Vector Calculus

15.1 Vector Fields

For an ordinary scalar function, the input is a numberx and the output is a number
f .x/: For a vector field (or vector function), the input is a point.x;y/ and the output
is a two-dimensional vectorF.x;y/: There is a “field” of vectors, one at every point.
In three dimensions the input point is.x;y;z/ and the output vectorF has three
components.

DEFINITION LetR be a region in thexy plane. Avector fieldF assigns to every
point.x;y/ in R a vectorF.x;y/ with two components:

F.x;y/DM.x;y/i CN.x;y/j: (1)

This plane vector field involvestwo functions of two variables. They are the
componentsM and N; which vary from point to point. A vector has fixed
components, a vector field has varying components.

A three-dimensional vector field has componentsM.x;y;z/ andN.x;y;z/ and
P.x;y;z/: Then the vectors areF DM i CN j CP k:

EXAMPLE 1 The position vectorat .x;y/ is R D xi Cyj: Its components are
M D x andN D y: The vectors grow larger as we leave the origin (Figure 15.1a).
Their direction is outward and their length is|R|Dax2 Cy2 D r: The vectorR
is boldface, the numberr is lightface.

EXAMPLE 2 The vector fieldR=r consists ofunit vectorsur ; pointing outward.
We divideR D xi Cyj by its length, at every point except the origin. The components
of R=r areM D x=r andN D y=r: Figure 15.1 shows a third fieldR=r2; whose
length is1=r:

Fig. 15.1 The vector fieldsR andR=r andR=r2 are radial. Lengthsr and1 and1=r:

EXAMPLE 3 Thespin fieldor rotation field or turning field goes around the origin
instead of away from it. The field isS: Its components areM D�y andN D x:

SD�yi Cxj also has length|S|Da.�y/2 Cx2 D r: (2)

S is perpendicular toR—their dot product is zero:S�R D .�y/.x/C .x/.y/D 0:
The spin fieldsS=r andS=r2 have lengths1 and1=r :

S
r

D�y
r

i C
x

r
j has

�����Sr �����D 1
S
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D� y

x2 Cy2
i C

x

x2 Cy2
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����� S
r2

�����D 1

r
:

The unit vectorS=r is u� : Notice the blank at.0;0/; where this field is not defined.
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Fig. 15.2 The spin fieldsSandS=r andS=r2 go around the origin. Lengthsr and1 and1=r:

EXAMPLE 4 A gradient field starts with an ordinary functionf .x;y/: The
componentsM andN are the partial derivativesBf=Bx andBf=By: Then the fieldF
is the gradient off :

F D gradf D rf D Bf=Bx i CBf=By j: (3)

This vector fieldgradf is everywhere perpendicular to the level curvesf .x;y/D
c:
The length|gradf | tells how fastf is changing (in the direction it changes fastest).
Invent a function likef D x2y; and you immediately have its gradient field
F D 2xyi Cx2j: To repeat,M is Bf=Bx andN is Bf=By:

For every vector field you should ask two questions:Is it a gradient field? If so,
what isf ? Here are answers for the radial fields and spin fields:

15A The radial fieldsR andR=r andR=r2 are all gradient fields.
The spin fieldsSandS=r are not gradients of anyf .x;y/:
The spin fieldS=r2 is the gradient of the polar angle� D tan�1.y=x/:

The derivatives off D 1
2
.x2 Cy2/ are x andy: Thus R is a gradient field. The

gradient of f D r is the unit vectorR=r pointing outwards. Both fields are
perpendicular to circles around the origin. Those are the level curves off D 1

2
r2

and f D r:

Question Is everyR=rn a gradient field?
Answer Yes. But among the spin fields, the only gradient isS=r2:

A major goal of this chapter is to recognize gradient fields by a simple test. The
rejection ofS andS=r will be interesting. For some reason�yi Cxj is rejected and
yi Cxj is accepted. (It is the gradient of :) The acceptance ofS=r2 as the
gradient off D � contains a surprise at the origin (Section 15.3).

Gradient fields are calledconservative. The functionf is thepotential function.
These words, and the next examples, come from physics and engineering.

EXAMPLE 5 Thevelocity fieldisV and theflow field is �V:

Suppose fluid moves steadily down a pipe. Or a river flows smoothly (no waterfall).
Or the air circulates in a fixed pattern. The velocity can be different at different points,
but there is no change with time. The velocity vectorV gives thedirection of flow
andspeed of flowat every point.



632 15 Vector Calculus

In reality the velocity field isV.x;y;z/; with three componentsM;N;P: Those
are the velocitiesv1;v2;v3 in the x;y;z directions. The speed|V| is the length:|V|2 D v2

1 Cv2
2 Cv2

3 : In a “plane flow” thek component is zero, and the velocity
field isv1i Cv2j DM i CN j:

Fig. 15.3 A steady velocity fieldV andtwo force fieldsF:

For a compact disc or a turning wheel,V is a spin field (V D!S, !D angular ve-
locity). A tornado might be closer toV D S=r2 (except for a dead spot at the center).
An explosion could haveV D R=r2: A quieter example is flow in and out of a lake
with steady rain as a source term.

Theflow field�V is the density� times the velocity field. WhileV gives the rate
of movement,�V gives therate of movement of mass. A greater density means a
greater rate|�V| of “mass transport.” It is like the number of passengers on a bus
times the speed of the bus.

EXAMPLE 6 Force fields from gravity:F is downward in the classroom,F is radial
in space.

When gravity pulls downward, it has only one nonzero component:F D�mgk:
This assumes that vectors to the center of the Earth are parallel—almost true in a
classroom. ThenF is the gradient of�mgz (noteBf=BzD�mg).
In physics the usual potential is not�mgz but Cmgz: The force field ismi-
nusgradf also in electrical engineering. Electrons flow from high potential to low
potential. The mathematics is the same, but the sign is reversed.

In space, the force is radial inwards:F D�mMGR=r3: Its magnitude is
proportional to1=r2 (Newton’s inverse square law). The masses arem andM; and the
gravitational constant isGD 6:672�10�11—with distance in meters, mass in kilo-
grams, and time in seconds. The dimensions ofG are.force/.distance/2=.mass/2:
This is different from the accelerationgD 9:8m=sec2; which already accounts
for the mass and radius of the Earth.

Like all radial fields,gravity is a gradient field. It comes from a potentialf :

f D
mMG

r
and

BfBx D�mMGx
r3

and
BfBy D�mMGy

r3
and

BfBz D�mMGz
r3

:

(4)

EXAMPLE 7 (a short example) Current in a wire produces amagnetic fieldB: It
is the spin fieldS=r2 around the wire, times the strength of the current.

STREAMLINES AND LINES OF FORCE

Drawing a vector field is not always easy. Even the spin field looksmessy when the
vectors are too long (they go in circles and fall across each other).The circles give
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a clearer picture than the vectors. In any field, the vectors are tangent to “field
lines”— which in the spin case are circles.

DEFINITION C is afield line or integral curveif the vectorsF.x;y/ are tangent
to C: The slopedy=dx of the curveC equals the slopeN=M of the vectorF D
M i CN j:

dy

dx
D
N.x;y/

M.x;y/

 

D�x
y

for the spin field

!

: (6)

We are still drawing the field of vectors, but now they are infinitesimally short.
They are connected into curves! What is lost is their length, becauseS andS=r and
S=r2 all have the same field lines (circles). For the position fieldR and gravity field
R=r3; the field lines are rays from the origin. In this case the “curves” are actually
straight.

EXAMPLE 8 Show that the field lines for the velocity fieldV D yi Cxj are
hyperbolas.

dy

dx
D
N

M
D
x

y
ñ y dyD x dx ñ 1

2
y2� 1

2
x2 D constant:

Fig. 15.4 Velocity fields are tangent to streamlines. Gradient fields alsohave equipotentials.

At every point these hyperbolas line up with the velocityV: Each particle of fluid
travels on a field line. In fluid flow those hyperbolas are calledstreamlines. Drop a
leaf into a river, and it follows a streamline. Figure 15.4 shows the streamlines for a
river going around a bend.

Don’t forget the essential question about each vector field. Is it a gradient field?
ForV D yi Cxj the answer isyes, and the potential isf D xy:

the gradient ofxy is .Bf=Bx/i C .Bf=By/j D yi Cxj: (7)

When there is a potential, it has level curves. They connect points of equal potential,
so the curvesf .x;y/D c are calledequipotentials. Here they are the curvesxyD
c— also hyperbolas. Since gradients are perpendicular to level curves,the stream-
lines are perpendicular to the equipotentials. Figure 15.4 is sliced one way by
streamlines and the other way by equipotentials.

A gradient fieldF D Bf=Bx i CBf=By j is tangent to the field lines (stream-
lines) and perpendicular to the equipotentials (level curves off ).
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In the gradient directionf changes fastest. In the level directionf doesn’t change at
all. The chain rule alongf .x;y/D c proves these directions to be perpendicular:BfBx dxdt C

BfBy dydt D 0 or .gradf / � .tangent to level curve/D 0:

EXAMPLE 9 The streamlines ofS=r2 are circles around (0;0). The equipotentials
are rays� D c: Add rays to Figure 15.2 for the gradient fieldS=r2:

For the gravity field those are reversed. A body is pulled in along the field lines (rays).
The equipotentials are the circles wheref D 1=r is constant. The plane is crisscrossed
by “orthogonal trajectories”—curves that meet everywhere at right angles.

If you bring a magnet near a pile of iron filings, a little shake will display the field
lines. In a force field, they are “lines of force.”Here are the other new words.

Vector fieldF.x;y;z/DM i CN j CP k Plane fieldF DM.x;y/i CN.x;y/j

Radial field: multiple ofR D xi Cyj Czk Spin field: multiple ofSD�yi Cxj

Gradient fieldD conservative field:M D Bf=Bx;N D Bf=By;P D Bf=Bz
Potentialf .x;y/ (not a vector) Equipotential curvesf .x;y/D c

StreamlineD field line D integral curve: a curve that hasF.x;y/ as its tangent
vectors.

15.1 EXERCISES

Read-through questions

A vector field assigns a a to each point.x;y/ or .x;y;z/:
In two dimensionsF.x;y/D b iC c j : An example is
the position field R D d . Its magnitude is |R|D e
and its direction is f . It is the gradient field forf =

g . The level curves are h , and they are i to
the vectorsR:

Reversing this picture, the spin field isSD j . Its mag-
nitude is |S|D k and its direction is l . It is not a
gradient field, because no function hasBf=BxD m andBf=ByD n . S is the velocity field for flow going o .
The streamlines or p lines or integral q are r .
The flow field �V gives the rate at which s is moved
by the flow.

A gravity field from the origin is proportional toF D t
which has |F|D u . This is Newton’s v square law. It
is a gradient field, with potentialf D w . The equipotential
curves f .x;y/D c are x . They are y to the field lines
which are z . This illustrates that the A of a function
f .x;y/ is B to its level curves.

The velocity field yi Cxj is the gradient off D C . Its
streamlines are D . The slopedy=dx of a streamline equals
the ratio E of velocity components. The field is F to
the streamlines. Drop a leaf onto the flow, and it goes along

G .

Find a potential f .x;y/ for the gradient fields 1–8: Draw the
streamlines perpendicular to the equipotentialsf .x;y/D c:

1 F D i C2j (constant field)

3 F D cos.xCy/i Ccos.xCy/j

2 F D xi C j

4 F D .1=y/i�.x=y2/j

5 F D .2xi C2yj /=.x2 Cy2/

7 F D xyi C j

6 F D x2i Cy2j

8 F D
?
yi C j

9 Draw the shear fieldF D xj : Check that it is not a gradient
field: If Bf=BxD 0 then Bf=ByD x is impossible. What are the
streamlines (field lines) in the direction ofF?

10 Find all functions that satisfyBf=BxD�y and show that
none of them satisfyBf=ByD x: Then the spin fieldSD�yi Cxj
is not a gradient field.
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Compute Bf=Bx and Bf=By in 11–18: Draw the gradient field
F D grad f and the equipotentialsf .x;y/D c:

11 f D 3xCy

13 f D xCy2

15 f D x2�y2

17 f D ex�y

12 f D x�3y
14 f D .x�1/2 Cy2

16 f D ex cosy

18 f D y=x

Find equations for the streamlines in 19–24 by solvingdy=dxD

N=M (including a constantC ). Draw the streamlines.

19 F D i� j

21 F D S (spin field)

23 F D grad.x=y/

20 F D i Cxj

22 F D S=r (spin field)

24 F D grad.2xCy/:

25 The Earth’s gravity field is radial, but in a room the field
lines seem to go straight down into the floor. This is because
nearby field lines always look :

26 A line of charges produces the electrostatic force fieldF D

R=r2 D .xi Cyj /=.x2 Cy2/: Find the potentialf .x;y/: (F is also
the gravity field for a line of masses.)

In 27–32 write down the vector fieldsM i CN j :

27 F points radially away from the origin with magnitude5:

28 The velocity is perpendicular to the curvesx3 Cy3 D c andthe
speed is1:

29 The gravitational forceF comes from two unit masses at
.0;0/ and.1;0/:

30 The streamlines are in the45� direction and the speed is4:

31 The streamlines are circles clockwise around the origin and
thespeed is1:

32 The equipotentials are the parabolasyD x2 Cc and F is a
gradient field.

33 Show directly that the hyperbolasxyD 2 and x2�y2 D 3

are perpendicular at the point.2;1/; by computing both slopes
dy=dx and multiplying to get�1:
34 The derivative off .x;y/D c is fx Cfy.dy=dx/D 0: Show
that the slope of this level curve isdy=dxD�M=N: It is
perpendicular to streamlines because (�M=N )(N=M/D :

35 The x and y derivatives of f .r/ are Bf=BxD andBf=ByD by the chain rule. (Testf D r2:) The equipoten-
tials are :

36 F D .axCby/i C.bxCcy/j is a gradient field. Find the
potentialf and describe the equipotentials.

37 True or false:

1. The constant fieldi C2k is a gradient field.

2. For non-gradient fields, equipotentials meet streamlines
at non-right angles.
3. In three dimensions the equipotentials are surfaces instead
of curves.
4. F D x2i Cy2j Cz2k points outward from .0;0;0/—
a radial field.

38 Create and drawf and F and your own equipotentials and
streamlines.

39 How can different vector fields have the same streamlines?
Can they have the same equipotentials? Can they have the
samef ?

40 Draw arrows at six or eight points to show the direction and
magnitude of each field:

(a) RCS (b) R=r�S=r (c) x2i Cx2j (d) yi:
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15.2 Line Integrals

A line integral isan integral along a curve. It can equal an area, but that is a special
case and not typical. Instead of area, here are two important line integrals in physics
and engineering:

Work along a curveD
»

c

F �T ds Flow across a curveD
»

c

F �n ds.
In the first integral,F is a force field. In the second integral,F is aflow field. Work
is done in the direction of movement, so we integrateF �T. Flow is measured through
the curveC , so we integrateF �n. HereT is the unittangentvector, andF �T is the
force component along the curve. Similarlyn is the unitnormalvector, at right angles
with T. ThenF �n is the component of flow perpendicular to the curve.

We will write those integrals in several forms. They may never be as comfortable
as

r
y.x/dx, but eventually we get them under control. I mention these applications

early, so you can see where we are going. This section concentrates on work, and flow
comes later. (It is also calledflux—the Latin word for flow.) You recognizeds as the
step along the curve, corresponding todx on thex axis. Where

r
dx gives the length

of an interval (it equalsb�a),
r
ds is the length of the curve.

EXAMPLE 1 Flight from Atlanta to Los Angeles on a straight line and a semicircle.

According to Delta Airlines, the distance straight west is2000 miles. Atlanta is at
.1000;0/ and Los Angeles is at.�1000;0/, with the origin halfway between. The
semicircle routeC has radius1000. This is not a great circle route. It is more of a
“flat circle,” which goes north past Chicago. No plane could fly it (it probably goes
into space).

The equation for the semicircle isx2 Cy2 D 10002. Parametrically this path is
xD 1000cost;yD 1000sin t . For a line integral the parameter is better. The plane
leaves Atlanta att D 0 and reaches L.A. att D� , more than three hours later. On
the straight2000-mile path, Delta could almost do it. Around the semicircleC , the
distance is1000� miles and the speed has to be1000miles per hour. Remember that
speed is distanceds divided by timedt :

ds=dt D
a
.dx=dt/2 C .dy=dt/2 D 1000

a
.�sin t/2 C .�cost/2 D 1000:

(1)
The tangent vector toC is proportional to (dx=dt;dy=dt/D .�1000sint;1000cost ).
But T is a unit vector, so we divide by1000—which is the speed.

Suppose the wind blows due east with forceF DM i. The components areM and
zero. ForM =constant, compute the dot productF �T and the work –2000M :

F �T DM i � .�sin t i Ccost j DM.�sin t/C0.cost/D�M sin t»
c

F �T dsD

» �

tD0

.�M sin t/

 

ds

dt
dt

!

D

» �

0

�1000M sin t dt D�2000M:
Work is force times distance moved. It is negative, because thewind actsagainstthe
movement. You may point out that the work could have been found more simply—go
2000 miles and multiply by –M . I would object thatthis straight route is a different
path. But you claim thatthe path doesn’t matter—the work of the wind is –2000M
on every path. I concede that this time you are right (but not always).

Most line integrals depend on the path. Those that don’t are crucially important.
For agradient field, we only need to know the starting pointP and the finishQ.
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15B WhenF is the gradient of a potential functionf .x;y/, the work
r

c
F �T ds

depends only on the endpointsP andQ. The work is the change inf :

If F D Bf=Bx i CBf=By j then

»
c

F �T dsD f .Q/�f .P /: (2)

WhenF DM i, its componentsM and zero are the partial derivatives off DMx.
To compute the line integral, just evaluatef at the endpoints. Atlanta hasxD 1000,
Los Angeles hasxD�1000, and the potential function f DMx is like an
antiderivative:

workD f .Q/�f .P /DM.�1000/�M.1000/D�2000M: (3)

Fig. 15.5 ForceM i, work –2000M on all paths. ForceMyi, no work on straight path.

May I give a rough explanation of the work integral
r

F �T ds? It becomes clearer
when the small movementT ds is written asdx i Cdy j. The work is the dot product
with F:

F �T dsD

 BfBx i C
BfBy j

! � .dx i Cdy j/ D
BfBx dxC

BfBy dyD df: (4)

The infinitesimal work isdf . The total work is
r
df D f .Q/�f .P /. This is the

Fundamental Theorem for a line integral. Only one warning: WhenF is not the
gradient of anyf (Example2), the Theorem does not apply.

EXAMPLE 2 Fly these paths against the non-constant force fieldF DMyi.
Compute the work.

There is no force on the straight path whereyD 0. Along thex axis the wind does
no work. But the semicircle goes up whereyD 1000sin t and the wind is strong:

F �T .Myi/ � .�sin t i Ccost j/ D�My sin t D�1000M sin2 t»
c

F �T dsD

» �

0

.�1000M sin2 t/
ds

dt
dt D

» �

0

�106M sin2 t dt D��
2
106M:

This work is enormous (and unrealistic). But the calculations make an important point—
everything is converted to the parametert . The second point is thatF DMyi is not
a gradient field.First reason: The work was zero on the straight path and nonzero
on the semicircle.Second reason: No function hasBf=BxDMy andBf=ByD 0.
(The first makesf depend ony and the second forbids it. ThisF is called ashear
force.) Without a potential we cannot substituteP andQ—and the work depends on
the path.
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THE DEFINITION OF LINE INTEGRALS

We go back to the start, to define
r

F �T ds. We can think ofF �T as a function
g.x;y/ along the path, and define its integral as a limit of sums:»

c

g.x;y/ dsD limit of
N
X

iD1

g.xi ;yi /�si as .�s/maxÑ 0: (5)

The points.xi ;yi / lie on the curveC . The last pointQ is (xN ;yN ); the first point
P is .x0;y0/. The step�si is the distance to (xi ;yi ) from the previous point. As the
steps get small.�sÑ 0/ the straight pieces follow the curve. Exactly as in Section
8:2, the special casegD 1 gives the arc length. As long asg.x;y/ is piecewise con-
tinuous (jumps allowed) and the path is piecewise smooth (corners allowed), the limit
exists and defines the line integral.

Wheng is the density of a wire, the line integral is the total mass. Wheng is F �T,
the integral is the work. But nobody does the calculation by formula (5). We now
introduce a parametert—which could be the time, or the arc lengths, or the distance
x along the base.

The differentialds becomes.ds=dt/dt . Everything changes over tot :»
g.x;y/dsD

» tDb

tDa

g.x.t/; y.t//
a
.dx=dt/2 C .dy=dt/2 dt: (6)

The curve starts whent D a, runs through the points.x.t/;y.t//, and ends when
t D b. The square root in the integral is the speedds=dt . In three dimensions the
points onC are.x.t/;y.t/;z.t// and.dz=dt/2 is in the square root.

EXAMPLE 3 The points on a coil spring are.x;y;z/D .cost;sin t; t/. Find the
mass of two complete turns (fromt D 0 to t D 4�) if the density is�D 4.

Solution The key is.dx=dt/2 C .dy=dt/2 C .dz=dt/2 D sin2 tCcos2 tC1D
2.
Thusds=dt D

?
2. To find the mass, integrate the mass per unit length which is

gD �D 4:

massD

» 4�

0

�
ds

dt
dt D

» 4�

0

4
?
2 dt D 16

?
2� .

That is a line integral in three-dimensional space. It shows how to introducet . But
it misses the main point of this section, because it contains no vector fieldF. This
section is aboutwork, not just mass.

DIFFERENT FORMS OF THE WORK INTEGRAL

The work integral
r

F �T ds can be written in a better way. The force isF DM i C
N j. A small step along the curve isdx i Cdy j. Work is force times distance, but it is
only the force componentalong the paththat counts. The dot productF �T ds finds
that component automatically.
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15C The vector to a point onC isR D xi Cyj. ThendR D T dsD dx i Cdy j W

workD

»
c

F �dR D

»
c

M dxCN dy: (7)

Along a space curve the work is
r

F �T dsD
r

F �dR D
r
M dxCN dyCP dz.

The productM dx is (force inx direction)(movement inx direction). This is zero if
either factor is zero. When the only force is gravity, pushing a piano takes no work.
It is friction that hurts. Carrying the piano up the stairs brings inPdz, and the total
work is the piano weightP times the change inz.

To connect the new
r

F �dR with the old
r

F �T ds, remember the tangent vector
T. It is dR=ds. ThereforeT ds isdR. The best for computations isdR, because the
unit vectorT has a division byds=dt D

a
.dx=dt/2 C .dy=dt/2. Later we multiply

by this square root, in convertingds to .ds=dt/dt . It makes no sense to compute the
square root, divide by it, and then multiply by it. That is avoided in the improved formr
M dxCN dy.

EXAMPLE 4 Vector fieldF D�yi Cxj, path from (1;0) to (0;1): Find the work.

Note 1 This F is the spin fieldS. It goesaround the origin, whileR D xi Cyj
goes outward. Their dot product isF �R D�yxCxyD 0. This does not mean that
F �dR D 0. The force is perpendicular toR, but not to thechangein R. The work to
move from.1;0/ to .0;1/, x axis toy axis, is not zero.

Note 2 We have not described the pathC . That must be done. The spin field is
not a gradient field, and the work along a straight line does not equal the work on a
quarter-circle:

straight linexD 1� t;yD t quarter-circlexD cost;yD sin t .

Calculation of work ChangeF �dR DM dxCN dy to the parametert :

Straight line:

» �y dxCx dyD

» 1

0

� t.�dt/C .1� t/dtD 1

Quarter-circle:

» �y dxCx dyD

» �=2

0

�sin t.�sin t dt/Ccost.cost dt/D
�

2
.

General method The path is given byx.t/ andy.t/. Substitute those intoM.x;y/
andN.x;y/—then F is a function oft . Also find dx=dt and dy=dt . Integrate
M dx=dtCN dy=dt from the starting timet to the finish.

Fig. 15.6 Three paths for
r

F �dR D
r �y dxCx dyD 1;�=2;0.
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For practice, take the path down thex axis to the origin.xD 1� t;yD 0/. Then
go up they axis .xD 0;yD t�1/. The starting time at.1;0/ is t D 0. The turning
time at the origin ist D 1. The finishing time at.0;1/ is t D 2. The integral has two
parts because this new path has two parts:

Bent path:
w �y dxCx dyD 0C0.yD 0 on one part, thenxD 0/:

Note 3 The answer depended on the path, for this spin fieldF D S. The answer did
notdepend on the choice of parameter. If we follow the same path at a different speed,
the work is the same. We can choose another parameter� , since.ds=dt/dt and
.ds=d�/d� both equalds. Traveling twice as fast on the straight path.xD 1�2�;
yD 2�/ we finish at� D 1

2
instead oft D 1. The work is still1:» �y dxCx dyD

» 1=2

0

.�2�/.�2d�/C .1�2�/.2d�/D

» 1=2

0

2 d� D 1.

CONSERVATION OF TOTAL ENERGY (KINETIC C POTENTIAL)

When a force field does work on a massm, it normally gives that mass a new
velocity. Newton’s Law isF DmaDmdv=dt . (It is a vector law. Why write out
three components?) The work

r
F �dR is»

.m dv=dt/ � .v dt/D 1
2
mv �viQ

P
D 1

2
m|v.Q/|2� 1

2
m|v.P /|2: (8)

The work equals the change in the kinetic energy1
2
m|v|2. But for a gradient field

the work is also thechange in potential—with a minus sign from physics:

workD

»
F �dR D�» df D f .P /�f .Q/: (9)

Comparing.8/ with .9/, the combination1
2
m|v|2 Cf is the same atP andQ. The

total energy, kinetic plus potential, is conserved.

INDEPENDENCE OF PATH: GRADIENT FIELDS

The work of the spin fieldS depends on the path. Example4 took three paths—
straight line, quarter-circle, bent line. The work was1, �=2, and0, different on each
path. This happens for more than99:99% of all vector fields. It does not happen
for the most important fields. Mathematics and physics concentrate on very special
fields—for which the work depends only on the endpoints. We now explain what
happens,when the integral is independent of the path.

Suppose you integrate fromP toQ on one path, and back toP on another path.
Combined, that is aclosed pathfromP toP (Figure15:7). But a backward integral
is the negative of a forward integral, sincedR switches sign.If the integrals from
P toQ are equal, the integral around the closed path is zero:¾ P

P

F �dR D

» Q

P

F �dRC

» P

Q

F �dR D

» Q

P

F �dR�» Q

P

F �dR D 0: (10)

closed path 1 back path 2 path 1 path 2

The circle on the first integral indicates a closed path. Later we will drop theP 1s.
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Not all closed path integrals are zero! For most fieldsF, different paths yield
different work. For “conservative” fields, all paths yield the same work. Then zerowork around a closed path conserves energy. The big question is:How to decide
which fields are conservative, without trying all paths? Here is the crucial
information about conservative fields, in a plane regionR with no holes:

15D F DM.x;y/i CN.x;y/j is a conservative field if it has these properties:

A. The work
r

F �dR around every closed path is zero.

B. The work
r Q

P
F �dR depends only onP andQ, not on the path.

C. F is agradient field:M D Bf=Bx andN D Bf=By for some potentialf .x;y/.

D. The components satisfyBM=ByD BN=Bx.

A field with one of these properties has them all.D is the quick test.

These statementsA�D bring everything together for conservative fields (alias
gradient fields). A closed path goes one way toQ and back the other way toP .
The work cancels, and statementsA andB are equivalent. We now connect them to
C. Note: TestD says that the “curl” of F is zero. That can wait for Green’s Theorem
in the next section—the full discussion of the curl comes in15:6.

First,a gradient fieldF = gradf is conservative. The work isf .Q/�f .P /, by
the fundamental theorem for line integrals. It depends only on the endpoints and not
the path. Therefore statementC leads back toB.

Our job is in the other direction, to show that conservative fieldsM i CN j are
gradients. Assume that the work integral depends only on the endpoints. We must
construct a potentialf , so thatF is its gradient. In other words,Bf=Bx must beM
andBf=By must beN .

Fix the pointP:Definef .Q/as the work to reachQ:ThenF equals gradf:

Check the reasoning. At the starting pointP;f is zero. At every other pointQ;f is
the work

r
M dxCN dy to reach that point.All paths fromP toQ give the same

f .Q/, because the field is assumed conservative. After two examples we prove that
gradf agrees withF—the construction succeeds.

Fig. 15.7 Conservative fields:
¶
F �dR D 0 and

r Q
P

F �dR D f .Q/�f .P /: Heref .P /D 0.

EXAMPLE 5 Find f .x;y/ when F DM i CN j D 2xyi Cx2j. We wantBf=BxD 2xy andBf=ByD x2:

Solution 1 ChooseP D .0;0/. IntegrateMdxCNdy along to.x;0/ and up to
.x;y/:» .x;0/

.0;0/

2xy dyD 0 .sinceyD 0/

» .x;y/

.x;0/

x2dyD x2y .which isf /:
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Certainlyf D x2y meets the requirements:fx D 2xy andfy D x2. ThusF = grad
f . Note thatdyD 0 in the first integral (on thex axis). ThendxD 0 in the second
integral (x is fixed). The integrals add tof D x2y.

Solution 2 Integrate2xy dxCx2dy on the straight line.xt;yt/ from t D 0 to
t D 1:» 1

0

2.xt/.yt/.x dt/C .xt/2.y dt/D

» 1

0

3x2yt2dt D x2yt3�10 D x2y:

Most authors use Solution 1. I use Solution2. Most students use Solution 3:

Solution 3 Directly solveBf=BxDM D 2xy and then fix updf=dyDN D x2:Bf=BxD 2xy gives f D x2y .plus any function of y/:

In this examplex2y already has the correct derivativeBf=ByD x2. No additional
function of y is necessary. When we integrate with respect tox, the constant of
integration(usuallyC ) becomes a functionC.y/.

You will get practice in findingf . This is only possible for conservative fields! I
testedM D 2xy andN D x2 in advance (usingD) to be sure thatBM=ByD BN=Bx.

EXAMPLE 6 Look for f .x;y/ whenM i CN j is the spin field�yi Cxj.

Attempted solution 1 Integrate�ydxCxdy from .0;0/ to .x;0/ to .x;y/:» .x;0/

.0;0/

�y dxD 0 and

» .x;y/

.x;0/

x dyD xy .which seems likef /:

Attempted solution 2 Integrate�ydxCxdy on the line.xt;yt/ from t D 0 to 1:» 1

0

� .yt/.x dt/C .xt/.ydt/D 0 .a differentf;also wrong/:

Attempted solution 3 Directly solveBf=BxD�y and try to fix upBf=ByD x:Bf=BxD�y givesf D�xy .plus any functionC.y//:

They derivative of thisf is �xCdC=dy. That does not agree with the requiredBf=ByD x. Conclusion: The spin field�yi Cxj is not conservative. There is no
f . TestD givesBM=ByD�1 andBN=BxD C1.

To finish this section, we move from examples to a proof. The potentialf .Q/ is
defined as the work to reachQ. We must show that its partial derivatives areM and
N . This seems reasonable from the formulaf .Q/D

r
M dxCN dy, but we have

to think it through.
Remember statementA, that all paths give the samef .Q/. Take a path that goes

fromP to the left ofQ. It comes in toQ on a liney = constant (sodyD 0). As the
path reachesQ, we are only integratingM dx. The derivative of this integral, atQ,
is Bf=BxDM . That is the Fundamental Theorem of Calculus.

To show thatBf=ByDN , take a different path. Go fromP to a point belowQ.
The path comes up toQ on a vertical line (sodxD 0). NearQwe are only integrating
Ndy, soBf=ByDN .

The requirement that the region must have no holes will be critical for testD.
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EXAMPLE 7 Findf .x;y/D
r .x;0/

.0;0/
xdxCydy: TestD is passed:BN=BxD 0DBM=By:

Solution 1
r .x;0/

.0;0/
xdxD 1

2
x2 is added to

r .x;0/

.0;0/
ydyD 1

2
y2.

Solution 2
r 1

0
.xt/.x dt/C .yt/.ydt/D

r 1

0
.x2 Cy2/t dt D 1

2
.x2 Cy2/.

Solution 3 Bf=BxD x givesf D 1
2
x2 CC.y/. ThenBf=ByD y needsC.y/D

1
2
y2.

15.2 EXERCISES

Read-through questions

Work is the a of F �dR. Here F is the b and R is
the c . The d product finds the component of e
in the direction of movementdR D dxi Cdyj . The straight path
.x;y/=.t;2t/ goes from f at t D 0 to g at t D 1 with
dR D dt i C h . The work of F D 3i C j is

r
F �dR Dr

i dt D j .

Another form ofdR is T ds, whereT is the k vector to the
path anddsD

a
l . For the path.t;2t/, the unit vectorT is

m anddsD n dt . ForF D 3i C j ;F �Tds is still o dt .
This F is the gradient off D p . The change inf D 3xCy

from .0;0/ to .1;2/ is q .

When F = grad f , the dot productF �dR is (Bf=Bx/dxC

r D df . The work integral fromP to Q is
³
df D s . In

this case the work depends on the t but not on the u .
Around a closed path the work is v . The field is called w .
F D .1Cy/i Cxj is the gradient off D x . The work from
.0;0/ to .1;2/ is y , the change in potential.

For the spin field SD z , the work (does)(does not)
depend on the path. The path.x;y/D .3cost;3sin t/ is a
circle with S�dR D A . The work is B around the
complete circle. Formally

r
g.x;y/ds is the limit of the sum C .

The four equivalent properties of a conservative field
F DM i CN j are A W D , B: E ,C W F , and D: G .
Test D is (passed)(not passed) byF D .yC1/i Cxj . The workr

F �dR around the circle (cost;sin t) is H . The work on
the upper semicircle equals the work on I . This field is the
gradient off D J , so the work to.�1;0/ is K .

Compute the line integrals in 1–6.

1
r
c ds and

r
c dy: xD t , yD 2t , 0¤ t ¤ 1.

2
r
c xds and

r
c xy ds: xD cost , yD sin t , 0¤ t ¤�=2.

3
r
c xy ds: bent line from.0;0/ to .1;1/ to .1;0/.

4
r
c ydx�xdy: any square path, sides of length 3.

5
r
c dx and

r
c ydx: any closed circle of radius 3.

6
r
c.ds=dt/dt : any path of length 5.

7 Does
r Q

P
xy dy equal12xy

2�
Q
P

?

8 Does
r Q

P
x dx equal12x

2�
Q
P

?

9 Does.
r
c ds/

2 D .
r
c dx/

2 C.
r
c dy/

2?

10 Does
r
c.ds/

2 make sense?

In 11–16 find the work in moving from (1, 0) to (0, 1). When F is
conservative, constructf . choose your own path when F is not
conservative.

11 F D i Cyj

13 F D xy2i Cyx2j

15 F D .x=r/i C.y=r/j

12 F D yi C j

14 F D ey i Cxey j

16 F D�y2i Cx2j

17 For which powersn is S=rn agradient by testD?

18 For which powersn is R=rn a gradient by testD?

19 A wire hoop around a vertical circlex2 Cz2 D a2 hasdensity
�D aCz. Find its massM D

r
�ds.

20 A wire of constant density� lies on the semicirclex2 Cy2 D

a2;y¡ 0. Find its massM and also its momentMx D
r
�y ds.

Where is its center of massNxDMy=M , NyDMx=M?

21 If the density around the circlex2 Cy2 D a2 is �D x2, what is
the mass and where is the center of mass?

22 Find
r

F �dR along the space curvexD t;yD t2;zD t3;

0¤ t ¤ 1.
(a) F D grad.xyCxz/ (b) F D yi�xj Czk

23 (a) Find the unit tangent vectorT andthe speedds=dt along
the pathR D 2t i C t2 j .
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(b) For F D 3xi C4j , find F �Tds using (a) and F �dR
directly.
(c) What is the work from.2;1/ to .4;4/?

24 If M.x;y;z/i CN.x;y;z/j is the gradient off .x;y;z/, show
that none of these functions can depend onz.

25 Find all gradient fields of the formM.y/i CN.x/j .

26 Compute the workW.x;y/D
r
M dxCN dy on the straight

line path.xt;yt/ from t D 0 to t D 1. Test to see ifBW=BxDM

andBW=By DN .

(a) M D y3;N D 3xy2

(c) M D x=y;N D y=x

(b) M D x3;N D 3yx2

(d) M D exCy ;N D exCy

27 Find a fieldF whose work around the unit square.yD 0 then
xD 1 thenyD 1 thenxD 0) equals4.

28 Find a nonconservativeF whose work around the unit circle
x2 Cy2 D 1 is zero.

In 29–34 compute
r

F �dR along the straight line RD t i C t j
and the parabola RD t i C t2 j, from (0,0) to (1,1). When F is a
gradient field, use its potentialf .x;y/.

29 F D i�2j
31 F D 2xy2i C2yx2j

30 F D x2j

32 F D x2yi Cxy2j

33 F D yi�xj 34 F D .xi Cyj /=.x2 Cy2 C1/

35 For which numbersa and b is F D axyi C.x2 Cby/j a
gradient field?

36 Compute
r �ydxCxdy from .1;0/ to .0;1/ on the line

xD 1� t2;yD t2 and the quarter-circlexD cos2t , yD sin2t .
Example4 found1 and�=2 with different parameters.

Apply the testNx DMy to 37–42. Findf when test D is passed.

37 F D y2e�x i�2ye�x j

39 F D
xi Cyj|xi Cyj | 38 F D yex i�2yex j

40 F D
gradxy|gradxy|

41 F D RCS 42 F D .axCby/i C.cxCdy/j

43 Around the unit circle find
¶
ds and

¶
dx and

¶
xds.

44 True or false, with reason:

(a) WhenF D yi the line integral
r

F �dR along a curve from
P toQ equals the usual area under the curve.
(b) That line integral depends only onP andQ, not on the
curve.

(c) That line integral around the unit circle equals�.
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15.3 Green’s Theorem

This section contains the Fundamental Theorem of Calculus, extended to two
dimensions. That sounds important and it is. The formula was discovered150 years
after Newton and Leibniz, by an ordinary mortal named George Green. His theorem
connects adouble integral over a regionR to a line integral along its boundary
C:

The integral ofdf=dx equalsf .b/�f .a/: This connects a one-dimensional
integral to a zero-dimensional integral. The boundary only contains two pointsa and
b! The answerf .b/�f .a/ is some kind of a “point integral.” It is this absolutely
crucial idea—to integrate a derivative from informationat the boundary—that
Green’s Theorem extends into two dimensions.

There are two important integrals aroundC: Thework is
r

F �T dsD
r
M dxC

N dy: The flux is
r

F �n dsD
r
M dy�N dx (notice the switch). The first is for

a force field, the second is for a flow field. The tangent vectorT turns90� clockwise
to become the normal vectorn: Green’s Theorem handles both, in two dimensions.
In three dimensions they split into the Divergence Theorem (15.5) and Stokes’
Theorem (15.6).

Green’s Theorem applies to “smooth” functionsM.x;y/ andN.x;y/; with con-
tinuous first derivatives in a region slightly bigger thanR: Then all integrals are well
defined.M andN will have a definite and specific meaning in each application—to
electricity or magnetism or fluid flow or mechanics. The purpose of atheoremis to
capture the central ideas once and for all. We do that now, and the applications follow.

15E Green’s TheoremSuppose the regionR is bounded by the simple closed
piecewise smooth curveC: Then an integral overR equals a line integral around
C : ¾

C

M dxCN dyD

»»
R

�BNBx � BMBy �dx dy: (1)

A curve is “simple” if it doesn’t cross itself (figure8’s are excluded). It is “closed” if
its endpointQ is the same as its starting pointP: This is indicated by the closed circle
on the integral sign. The curve is “smooth” if its tangentT changes continuously—
the word “piecewise” allows a finite number of corners. Fractals are not allowed,
but all reasonable curves are acceptable (later we discuss figure8’s and rings). First
comes an understanding of the formula, by testing it on special cases.

Fig. 15.8 Area ofR adds up strips:
u
x dyD

rr
dx dy and

u
y dxD�rr

dy dx:



646 15 Vector Calculus

Special case 1: M D 0 andN D x: Green’s Theorem withBN=BxD 1 becomes¾
C

x dyD

»»
R

1 dx dy (which is the area ofR): (2)

The integrals look equal, because the inner integral ofdx is x: Then both integrals
havex dy—but we need to go carefully. The area of a layer ofR is dy times the
difference inx (the length of the strip). The line integral in Figure 15.8 agrees. It has
an upwarddy timesx (at the right) plus a downward�dy timesx (at the left). The
integrals add up the strips, to give the total area.

Special case 2: M D y andN D 0 and
u

C
y dxD

rr
R
.�1/dx dyD�.area ofR/:

Now Green’s formula has a minus sign, because the line integral iscounterclock-
wise. The top of each slice hasdx  0 (going left) and the bottom hasdx¡ 0 (going
right). Theny dx at the top and bottom combine to giveminusthe area of the slice in
Figure 15.8b.

Special case 3:
u
1 dxD 0: Thedx’s to the right cancel thedx’s to the left (the

curve is closed). WithM D 1 andN D 0; Green’s Theorem is0D 0:

Most important case: M i CN j isagradient field. It has a potential functionf .x;y/:
Green’s Theorem is0D 0; becauseBM=ByD BN=Bx: This is testD:BMBy D

BBy �BfBx � is the same as
BNBx D

BBx �BfBy � : (3)

The cross derivatives always satisfyfyxDfxy : That is why gradient fields pass
testD:

When the double integral is zero, the line integral is also zero:
u

C
M dxCN dyD

0: The work is zero.The field is conservative! This last step inAñBñCñDñ
A will be complete when Green’s Theorem is proved.

Conservative examples are
u
x dxD 0 and

u
y dyD 0: Area is not involved.

Remark The special cases
u
x dy and�u

y dx led to the area ofR: As long as
1D BN=Bx�BM=By; the double integral becomes

rr
1 dx dy: This gives a way to

compute area by a line integral.

The area ofR is
¾

C

x dyD�¾
C

y dxD
1

2

¾
C

.x dy�y dx/: (4)

EXAMPLE 1 The area of the triangle in Figure 15.9 is2: Check Green’s Theorem.

The last area formula in(4) uses1
2
S; half the spin field.N D 1

2
x and M D�1

2
y

yieldNx�My D 1
2

C 1
2

D 1:On one side of Green’s Theorem is
rr
1 dx dyD area

of triangle. On the other side, the line integral has three pieces.

Fig. 15.9 Green’s Theorem: Line integral around triangle, area integralfor ellipse.
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Two pieces are zero:x dy�y dxD 0 on the sides wherexD 0 andyD 0: The
sloping sidexD 2�y has dxD�dy: The line integral agrees with the area,
confirming Green’s Theorem:

1

2

¾
C

x dy�y dxD
1

2

» 2

yD0

.2�y/dyCy dyD
1

2

» 2

0

2dyD 2:

EXAMPLE 2 The area of an ellipse is�ab when the semiaxes have lengths
a andb.

This is a classical example, which all authors like. The points on the ellipse are
xD acost;yD b sin t; ast goes from0 to 2�: (The ellipse has.x=a/2 C .y=b/2 D
1:/ By computing the boundary integral, we discover the area inside. Note that the
differentialx dy�y dx is justab dt :

.a cost/.b cost dt/� .b sin t/.�a sin t dt/D ab.cos2 tCsin2 t/dt D ab dt:

The line integral is1
2

r 2�

0
ab dt D�ab: This area�ab is �r2; for a circle with

aD bD r:

Proof of Green’s Theorem: In our special cases, the two sides of the formula
were equal. We now show that they are always equal. The proof uses the Funda-
mental Theorem to integrate.BN=Bx/dx and.BM=By/dy: Frankly speaking, this
one-dimensional theorem is all we have to work with—since we don’t knowM and
N:

The proof is a step up in mathematics, to work with symbolsM andN instead of
specific functions. The integral in(6) below has no numbers. The idea is to deal with
M andN in two separate parts, which added together give Green’s Theorem:¾

C

M dxD

»»
R

�BMBy dx dy and separately

¾
C

N dyD

»»
R

BNBx dx dy:
(5)

Start with a “very simple” region (Figure 15.10a). Its top is given byyD f .x/ and
its bottom byyD g.x/: In the double integral, integrate�BM=By first with respect
to y: The inner integral is» f .x/

g.x/

�BMBy dyD�M.x;y/if .x/

g.x/
D�M.x;f .x//CM.x;g.x//: (6)

The Fundamental Theorem (in they variable) gives this answer that depends onx:
If we knewM andf andg; we could do the outer integral—fromxD a to xD b:
But we have to leave it and go to the other side of Green’s Theorem—the line integral:¾

M dxD

»
top
M.x;y/dxC

»
bottom

M.x;y/dxD

» a

b

M.x;f .x//dxC

» b

a

M.x;g.x//dx:

(7)
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Fig. 15.10 Very simple region (a�b). Simple region (c) is a union of very simple regions.

Compare(7) with (6). The integral ofM.x;g.x// is the same for both. The integral
of M.x;f .x// has a minus sign from(6). In .7/ it has a plus sign but the integral is
from b to a: So life is good.

The part forN uses the same idea. Now thex integral comes first, because
.BN=Bx/dx is practically asking to be integrated—fromxDG.y/ at the left toxD
F.y/ at the right. We reachN.F.y/;y/�N.G.y/;y/:Then they integral matchesu
N dy and completes(5). Adding the two parts of(5) proves Green’s Theorem.

Finally we discuss the shape ofR: The broken ring in Figure 15.10 is not “very
simple,” because horizontal lines go in and out and in and out. Vertical lines do the
same. Thex andy strips break into pieces. Our reasoning assumed no break between
yD f .x/ at the top andyD g.x/ at the bottom.

There is a nice idea that saves Green’s Theorem. Separate the broken ring into
three very simple regionsR1; R2; R3: The three double integrals equal the three
line integrals around theR’s. Now add these separate results, to produce the double
integral over all ofR:When we add the line integrals,the crosscutsCC are covered
twice and they cancel. The cut betweenR1 andR2 is covered upward (aroundR1)
and downward (aroundR2). That leaves the integral around the boundary equal to the
double integral inside—which is Green’s Theorem.

WhenR is a complete ring, including the pieceR4; the theorem is still true. The
integral around the outside is still counterclockwise. But the integral isclockwise
around the inner circle.Keep the regionR to your left as you go aroundC: The
complete ring is “doubly” connected, not “simply” connected. Green’s Theorem
allows any finite number of regionsRi and crosscutsCC and holes.

EXAMPLE 3 The area under a curve is
r b

a
y dx; as we always believed.

In computing area we never noticed the whole boundary. The true area is a line
integral�u

y dx around theclosed curvein Figure 15.11a. ButyD 0 on thex axis.
Also dxD 0 on the vertical lines (up and down atb anda). Those parts contribute
zero to the integral ofy dx: The only nonzero part is back along the curve—which is

the area�r a

b
y dx or

r b

a
y dx that we know well.

What about signs, when the curve dips below thex axis? That area has been
counted as negative since Chapter 1. I saved the proof for Chapter 15. The reason
lies in the arrows onC:

The line integral around that partgoes the other way. The arrows are clockwise,
the region is on theright, and the area counts as negative. With the correct rules, a
figure 8 is allowed after all.
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Fig. 15.11 Closed path gives the sign of the area. Nonconservative field because of hole.

CONSERVATIVE FIELDS

We never leave gradients alone! They give conservative fields—the work around a
closed path isf .P /�f .P /D 0: But a potential functionf .x;y/ is only available
when testD is passed:If Bf=BxDM and Bf=ByDN then BM=ByD BN=Bx.
The reason is thatfxy D fyx :

Some applications prefer the language of “differentials.” Instead of looking for
f .x;y/; we look fordf :

DEFINITION The expressionM.x;y/dxCN.x;y/dy is adifferential form. When
it agrees with the differentialdf D .Bf=Bx/dxC .Bf=By/dy of some function, the
form is calledexact. The test for an exact differential isD: BN=BxD BM=By:
Nothing is new but the language. Isy dx an exact differential?No, becauseMy D 1
andNx D 0: Is y dxCx dy an exact differential?Yes, it is the differential off D
xy: That is the product rule! Now comes an important example, to show whyR
should besimply connected(a region with no holes).

EXAMPLE 4 The spin fieldS=r2 D .�yi Cxj/=.x 2Cy2/ almostpasses testD:

Nx D
BBx � x

x2 Cy2

�

D
x2 Cy2�x.2x/
.x2 Cy2/2

DMy D
BBy � �y

x2 Cy2

�

D
�.x2 Cy2/Cy.2y/

.x2 Cy2/2
:

(8)
Both numerators arey2�x2: TestD looks good. To findf; integrateM D Bf=Bx:

f .x;y/D

» �y dx=.x2 Cy2/D tan�1.y=x/CC.y/:

The extra partC.y/ can be zero—they derivative oftan�1.y=x/ givesN with no
help fromC.y/: The potentialf is the angle� in the usualx;y;r right triangle.

Test D is passed andF is grad �: What am I worried about? It is only this,
that Green’s Theorem on a circle seems to give2� D 0: The double integral isrr
.Nx�My/dx dy:According to(8) this is the integral of zero. But the line integral

is 2� :¾
F �dR D

¾
.�ydxCxdy/=.x2 Cy2/D 2.area of circle/=a2D2�a2=a2D2�:

(9)
With xD a cost andyD a sin t we would find the same answer.The work is2�
(not zero!)when the path goes around the origin.

We have a paradox. If Green’s Theorem is wrong, calculus is in deep trouble. Some
requirement must be violated to reach2�D 0: Looking atS=r2; the problem is at
the origin. The field is not defined whenr D 0 (it blows up). The derivatives in(8)
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are not continuous. TestD does not apply at the origin, and was not passed.We could
remove.0;0/; but then the region where testD is passed would have a hole.

It is amazing how one point can change everything. When the path circles the
origin, the line integral is not zero.The potential functionf D � increases by2� .
That agrees with

r
F �dR D 2� from (9). It disagrees with

rr
0 dx dy: The 2� is

right, the zero is wrong.Nx�My must be a “delta function of strength2�:”

The double integral is2� from an infinite spike over the origin—even though
Nx DMy everywhere else. In fluid flow the delta function is a “vortex.”

FLOW ACROSS A CURVE: GREEN’S THEOREM TURNED BY 90�
A flow field is easier to visualize than a force field, because something is really there
and it moves. Instead of gravity in empty space, water has velocityM.x;y/i CN.x;y/j:
At the boundaryC it can flow in or out. The new form of Green’s Theorem is a
fundamental “balance equation” of applied mathematics:

Flow throughC (out minus in)D replacement inR (source minus sink).

The flow issteady. Whatever goes out throughC must be replaced inR:When there
are no sources or sinks (negative sources), the total flow throughC must be zero.
This balance law is Green’s Theorem in its “normal form” (forn) instead of its
“tangential form” (forT):

15F For a steady flow fieldF DM.x;y/i CN.x;y/j; the flux
r

F �n ds through
the boundaryC balances the replacement of fluid insideR:¾

C

M dy�N dxD

»»
R

�BMBx C
BNBy �dx dy: (10)

Figure 15.12 shows the90� turn. T becomesn and “circulation” alongC becomes
flux throughC: In the original form of Green’s Theorem, changeN andM toM and�N to obtain the flux form:¾

M dxCN dyÑ ¾ �N dxCM dy

»»
.Nx�My/dx dyÑ »»

.Mx CNy/dx dy:

(11)

Playing with letters has proved a new theorem! The two left sides in(11) are equal,
so the right sides are equal—which is Green’s Theorem(10) for the flux. The
componentsM andN can be chosen freely and named freely.

The change takesM i CN j into its perpendicular field�N i CM j: The field is
turned at every point (we are not just turning the plane by90�). The spin fieldSD�yi Cxj changes to the position fieldR D xi Cyj: The position fieldR changes to�S: Streamlines of one field are equipotentials of the other field. The new form(10)
of Green’s Theorem is just as important as the old one—in fact I like it better. It is
easier to visualize flow across a curve than circulation along it.
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Fig. 15.12 The perpendicular componentF �n flows throughC: Noten dsD dy i�dx j :

The change of letters was just for the proof. From now onF DM i CN j:

EXAMPLE 5 Compute both sides of the new form(10) for F D 2xi C3yj: The
regionR is a rectangle with sidesa andb:

Solution This field hasBM=BxCBN=ByD 2C3: The integral overR isrr
R
5 dx dyD 5ab: The line integral has four parts, becauseR has four sides.

Between the left and right sides,M D 2x increases by2a: Down the left and up
the right,

r
M dyD 2ab (those sides have lengthb). SimilarlyN D 3y changes by

3b between the bottom and top. Those sides have lengtha; so they contribute3ab to
a total line integral of5ab:

Important:The “divergence” of a flow field isBM=BxCBN=By: The example
has divergenceD 5: To maintain this flow we must replace5 units continually—not
just at the origin but everywhere. (A one-point source is in example 7.) The diver-
gence is the source strength, because it equals the outflow.To understand Green’s
Theorem for any vector fieldM i CN j; look at a tiny rectangle(sidesdx and
dy):

Flow out the right side minus flow in the left sideD .change inM/ timesdy

Flow out the top minus flow in the bottomD .change inN/ timesdx

Total flow out of rectangle:dM dyCdN dxD .BM=BxCBN=By/dx dy:
The divergence times the areadxdy equals the total flow out. Section15:5 gives
more detail with more care in three dimensions. The divergence isMx CNy CPz :

Fig. 15.13 Mx CNy D 2C3D 5 yields flux D 5.area/D 5ab: The flux is dM dyC

dN dxD .Mx CNy /dx dy: The spin field has no flux.

EXAMPLE 6 Find the flux through a closed curveC of the spin fieldSD�yi C
xj:

Solution The field hasM D�y andN D x andMx CNy D 0: The double inte-
gral is zero. Therefore the total flow (out minus in) is also zero—through any closed
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curve. Figure 15.13 shows flow entering and leaving a square. No fluid is added or
removed. There is no rain and no evaporation.When the divergenceMx CNy is
zero, there is no source or sink.

FLOW FIELDS WITHOUT SOURCES

This is really quite important. Remember that conservative fields do no work
aroundC; they have a potentialf; and they have “zero curl.” Now turn those
statements through90�; to find their twins. Source-free fields have no flux
through C; they have stream functionsg; and they have“zero divergence.”
The new statementsE–F–G–Hdescribe fields without sources.

15G The fieldF DM.x;y/i CN.x;y/j is source-free if it has these properties:

E The total flux
u

F �n ds through every closed curve is zero.

F Across all curves fromP toQ; the flux
r Q

P
F �n ds is the same.

G There is astream functiong.x;y/; for whichM D Bg=By andN D�Bg=Bx:
H The components satisfyBM=BxCBN=ByD 0 (the divergence is zero).

A field with one of these properties has them all.H is the quick test.

The spin field�yi Cxj passed this test (Example 6 was source-free). The field
2xi C3yj does not pass (Example 5 hadMx CNy D 5). Example7 almost passes.

EXAMPLE 7 The radial fieldR=r2 D .xi Cyj/=.x2Cy2/ has apoint source
at .0;0/:

The new testH is divergenceD BM=BxCBN=ByD 0: Those two derivatives areBBx � x

x2 Cy2

�

D
x2 Cy2�x.2x/
.x2 Cy2/2

and
BBy � y

x2 Cy2

�

D
x2 Cy2�y.2y/
.x2 Cy2/2

: (12)

They add to zero. There seems to be no source (if the calculation is correct). The flow
through a circlex2 Cy2 D a2 should be zero. But it’s not:¾

M dy�N dxD

¾
.x dy�y dx/=.x2 Cy2/D 2.area of circle/=a2 D 2�:

(13)
A source is hidden somewhere. Looking atR=r2; the problem is at.0;0/: The field
is not defined whenr D 0 (it blows up). The derivatives in(12) are not continuous.
TestH does not apply, and was not passed. The divergenceMx CNy must be a “delta
function” of strength2�: There is apoint sourcesending flow out through all circles.

I hope you see the analogy with Example 4. The fieldS=r2 is curl-free except at
r D 0: The fieldR=r2 is divergence-free except atr D 0: The mathematics is parallel
and the fields are perpendicular. A potentialf and a stream functiong require a
region without holes.



15.3 Green’s Theorem 653

THE BEST FIELDS: CONSERVATIVE AND SOURCE-FREE

What if F is conservative and also source-free?Those are outstandingly important
fields. The curl is zero and the divergence is zero. Because the field is conservative, it
comes from a potential. Because it is source-free, there is a stream function:

M D
BfBx D

BgBy and N D
BfBy D�BgBx : (14)

Those are theCauchy-Riemann equations, named after a great mathematician of
his time and one of the greatest of all time. I can’t end without an example.

EXAMPLE 8 Show thatyi Cxj is both conservative and source-free. Findf andg:

Solution WithM D y andN D x; check first thatBM=ByD 1D BN=Bx: There
must be a potential function. It isfDxy; which achievesBf=BxDy andBf=ByD
x: Note thatfxx Cfyy D 0:

Check next thatBM=BxCBN=ByD 0C0: There must be a stream function. It
is gD1

2
.y2�x2/; which achievesBg=ByDy andBg=BxD�x: Note thatgxx C

gyy D0:

The curvesf D constant are the equipotentials. The curvesgD constant are
the streamlines (Figure 15.4). These are the twin properties—a conservative field with
a potential and a source-free field with a stream function. They come together into
the fundamental partial differential equation of equilibrium—Laplace’s equation
fxx Cfyy D 0:

15H There is a potential and stream function whenMy DNx andMx D�Ny:
They satisfyLaplace’s equation:

fxx Cfyy DMx CNy D 0 and gxx Cgyy D�Nx CMy D 0: (15)

If we havef withoutg; as inf D x2 Cy2 andM D 2x andN D 2y;we don’t have
Laplace’s equation:fxx Cfyy D 4: This is a gradient field that needs a source. If
we haveg withoutf; as ingD x2 Cy2 andM D 2y andN D�2x; we don’t have
Laplace’s equation. The field is source-free but it has spin. The first field is2R and
the second field is2S:

With no source and no spin, we are with Laplace at the center of mathematics and
science.

Green’s Theorem: Tangential form
u

F �T ds and normal form
u

F �n ds¾
C

M dxCN dyD

»»
R

.Nx�My/dx dy

¾
C

M dy�N dxD

»»
R

.Mx CNy/dx dy

work curl flux divergence

Conservative: workDzero,Nx DMy ; gradient of a potential:MDfx andNDfy

Source-free: fluxDzero,Mx D�Ny ; has a stream function:MDgy andND�gx

ConservativeC source-free: Cauchy-RiemannC Laplace equations forf andg:
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15.3 EXERCISES

Read-through questions

The work integral
u
M dxCN dy equals the double integral a

by b ’s Theorem. ForF D 3i C4j the work is c . For
F D d and e , the work equals the area ofR: When
M D Bf=Bx andN D Bf=By; the double integral is zero because

f . The line integral is zero because g . An example is
F D h . The direction onC is i around the outside and

j around the boundary of a hole. IfR is broken into very
simple pieces with crosscuts between them, the integrals ofk
cancel along the crosscuts.

Test D for gradient fields is l . A field that passes this
test has

u
F �dR D m . There is a solution tofx D n and

fy D o . Then df DM dxCN dy is an p differential.
The spin fieldS=r2 passes testD except at q . Its potential
f D r increases by s going around the origin. The
integral

rr
.Nx�My/dx dy is not zero but t .

The flow form of Green’s Theorem is u D v . The nor-
mal vector in F �n ds points w and |n|D x and n ds
equalsdy i�dx j : The divergence ofM i CN j is y . For F D

xi the double integral is z . There (is)(is not) a source. For
F D yi the divergence is A . The divergence ofR=r2 is zero
except at B . This field has a C source.

A field with no source has propertiesE D D , F D E ,
G D F , H D zero divergence. The stream functiong
satisfies the equations G . Then BM=BxCBN=By D 0

because B2g=BxByD H . The example F D yi has gD
I . There (is)(is not) a potential function. The example

F D xi�yj hasgD J and alsof D K . This f satisfies
Laplace’s equation L , because the fieldF is both M
and N . The functionsf and g are connected by the O
equationsBf=BxD Bg=By and P .

Compute the line integrals 1–6 and (separately) the double in-
tegrals in Green’s Theorem (1). The circle hasxD acost; yD

asin t: The triangle has sidesxD 0; yD 0; xCy D 1:

1
u
x dy along the circle

3
u
x dx along the triangle

5
u
x2y dx along the circle

2
u
x2y dy along the circle

4
u
y dx along the triangle

6
u
x2y dx along the triangle

7 Compute both sides of Green’s Theorem in the form (10):

(a) F D xi Cyj ; RD upper half of the diskx2 Cy2¤ 1:
(b) F D x2i Cxyj ; C D square with sidesyD0; xD1; yD1;

xD 0:

8 Show that
u

C .x
2yC2x/dyCxy2dx depends only on the area

of R: Does it equal the area?

9 Find the area inside the hypocycloidxD cos3 t; yD sin3 t from
1
2

u
x dy�y dx:

10 For constantsb and c; how is
u
by dxCcx dy related to the

area insideC? If bD 7; which c makes the integral zero?

11 For F D grad
a
x2 Cy2; show in three ways that

u
F �dR D 0

aroundxD cost; yD sin t:

(a) F is a gradient field so :

(b) ComputeF and directly integrateF �dR:
(c) Compute the double integral in Green’s Theorem.

12 Devise a way to find the one-dimensional theorem
r b

a .df =dx/dxDf .b/�f .a/ as a special case of Green’s
Theorem whenR is a square.

13 (a) Choosex.t/ and y.t/ so that the path goes from.1;0/
to .1;0/ after circling the origintwice.

(b) Compute
u
y dx and compare with the area inside your

path.
(c) Compute

u
.y dx�x dy/=.x2 Cy2/ and compare with2�

in Example 7.

14 In Example 4 of the previous section, the work
r

S�dR
between.1;0/ and .0;1/ was 1 for the straight path and�=2
for the quarter-circle path. Show that the work is always twice
the area between the path and the axes.

Compute both sides of
u

F �n dsD
rr
.Mx CNy /dx dy in

15–20.

15 F D yi Cxj in the unit circle

16 F D xyi in the unit square0¤x; y¤ 1
17 F D R=r in the unit circle

18 F D S=r in the unit square

19 F D x2yj in the unit triangle (sidesxD 0; yD 0; xCyD 1)

20 F D gradr in the top half of the unit circle.

21 Suppose div F D 0 except at the origin. Then the fluxu
F �n ds is the same through any two circles around the origin,

because : (What is
rr
.Mx CNy /dx dy between the

circles?)

22 Example 7 has divF D 0 except at the origin. The flux
through every circlex2 Cy2 D a2 is 2�: The flux through a
square around the origin is also2� because : (Compare
Problem21:)

23 Evaluate
u
a.x;y/dxCb.x;y/dy by both forms of Green’s

Theorem. The choiceM D a; N D b in the work form gives the dou-
ble integral : The choiceM D b; N D�a in the flux form
gives the double integral : There was only one Green.

24 Evaluate
u

cos3y dy�sin3x dx by Green’s Theorem.

25 The fieldR=r2 in Example 7 has zero divergence except atr D

0: SolveBg=ByD x=.x2 Cy2/ to find an attempted stream function
g: Doesg have trouble at the origin?
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26 Show that S=r2 has zero divergence (except atr D 0). Find
a stream function by solvingBg=ByDy=.x2 Cy2/: Doesg have
trouble at the origin?

27 Which differentials are exact:y dx�x dy; x2dxCy2dy;

y2dxCx2dy?

28 If Mx CNy D 0 then the equationsBg=ByD andBg=BxD yield a stream function. If alsoNx DMy ; show
thatg satisfies Laplace’s equation.

Compute the divergence of each field in 29–36 and solve
gy DM and gx D�N for a stream function (if possible).

29 2xyi�y2j

31 x2i Cy2j

33 ex cosyi�ex sinyj

35 2yi=xCy2 j=x2

30 3xy2i�y3j

32 y2i Cx2j

34 exCy.i� j /

36 xyi�xyj

37 Compute Nx�My for each field in 29–36 and find a
potential functionf when possible.

38 The potentialf .Q/ is the work
r Q

P
F �T ds to reachQ from

a fixed point P (Section 15:2). In the same way, the stream
function g.Q/ can be constructed from the integral :

Theng.Q/�g.P / representsthe flux across the path fromP to
Q: Why do all paths give the same answer?

39 The real part of.xC iy/3 D x3 C3ix2y�3xy2� iy3 is f D

x3�3xy2: Its gradient field isF D gradf D : The di-
vergence of F is : Therefore f satisfies Laplace’s
equationfxx Cfyy D 0 (check that it does).

40 Since div F D 0 in Problem 39; we can solveBg=ByD

andBg=BxD : The stream function isgD :

It is the imaginary part of the same.xC iy/3: Check thatf andg
satisfy the Cauchy–Riemann equations.

41 The real partf and imaginary partg of .xC iy/n satisfy
the Laplace and Cauchy-Riemann equations fornD 1; 2; :::: (They
give all the polynomial solutions.) Computef and g for
nD 4:

42 When isM dy�N dx an exact differentialdg?

43 The potential f D ex cosy satisfies Laplace’s equation.
There must be ag: Find the field F D gradf and the stream
functiong.x;y/:

44 Show that the spin fieldSdoes work around every simple closed
curve.

45 For F D f .x/j and RD unit square0¤x¤ 1; 0¤ y¤ 1;
integrate both sides of Green’s Theorem.1/: What formula is
required from one-variable calculus?

46 A regionR is “simply connected” when every closed curve in-
sideR can be squeezed to a point without leavingR: Test these
regions:

1. xy plane without.0;0/

3. spherex2 Cy2 Cz2 D 1

5. a sweater

2. xyz space without.0;0;0/

4. a torus (or doughnut)

6. a human body
7. the region between two spheres

8. xyz space with circle removed.



656 15 Vector Calculus

15.4 Surface Integrals

The double integral in Green’s Theorem is over a flat surfaceR. Now the region
moves out of the plane. It becomes acurved surfaceS , part of a sphere or cylinder
or cone. When the surface has only onez for each (x;y), it is the graph of a function
z.x;y/. In other casesS can twist and close up—a sphere has an upperz and a lower
z. In all cases we want to compute area and flux. This is a necessary step (it is our last
step) before moving Green’s Theorem to three dimensions.

First a quick review. The basic integrals are
r
dx and

rr
dx dy and

rrr
dx dy dz.

The one that didn’t fit was
r
ds—the length of a curve. When we go from curves

to surfaces,ds becomesdS . Area is
rr
dS and flux is

rr
F �n dS , with double

integrals because the surfaces are two-dimensional. The main difficulty is indS .
All formulas are summarized in a table at the end of the section.

There are two ways to deal withds (along curves). The same methods apply todS
(on surfaces). The first is inxyz coordinates; the second uses parameters. Before this
subject gets complicated, I will explain those two methods.

Method1 is for the graph of a function: curvey.x/ or surfacez.x;y/.

A small piece of the curve is almost straight. It goes across bydx and up bydy:

lengthds D
a
.dx/2 C .dy/2 D

a
1C .dy=dx/2 dx: (1)

A small piece of the surface is practically flat. Think of a tiny sloping rectangle. One
side goes across bydx and up by.Bz=Bx/dx. The neighboring side goes along by
dy and up by.Bz=By/dy. Computing the area is a linear problem (from Chapter11),
because the flat piece is in a plane.

Two vectorsA andB form a parallelogram.The length of their cross product is
the area. In the present case, the vectors areA D i C .Bz=Bx/k andB D j C .Bz=By/k.
ThenAdx andBdy are the sides of the small piece, and we computeA�B:

A�B D

�������i j k

1 0 Bz=Bx
0 1 Bz=By �������D�Bz=Bx i�Bz=By j C k: (2)

This is exactly thenormal vectorN to the tangent plane and the surface, from
Chapter 13. Please note: The small flat piece is actually a parallelogram (not always
a rectangle). Its areadS is much likeds, but the length ofN D A�B involves two
derivatives:

areadS D |Adx�Bdy|D |N|dxdyD
a
1C .Bz=Bx/2 C .Bz=By/2 dx dy: (3)

EXAMPLE 1 Find the area on the planezD xC2y above a base areaA.

This is the example to visualize. The area down in thexy plane isA. The area up
on the sloping plane is greater thanA. A roof has more area than the room underneath
it. If the roof goes up at a45� angle, the ratio is

?
2. Formula(3) yields the correct

ratio for any surface—including our planezD xC2y.
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Fig. 15.14 Roof area = base area times |N|. Cone and cylinder with parametersu andv.

The derivatives areBz=BxD 1 andBz=ByD 2. They are constant (planes are easy).
The square root in(3) contains1C12 C22 D 6. ThereforedS D

?
6 dx dy. An area

in thexy plane is multiplied by
?
6 up in the surface (Figure 15.14a). The vectorsA

andB are no longer needed—their work was done when we reached formula(3)—but
here they are:

A D i C .Bz=Bx/k D i Ck B D j C .Bz=By/k D j C2k N D�i�2j Ck:

The length ofN D A�B is
?
6. The angle betweenk and N hascos� D 1=

?
6.

That is the angle between base plane and sloping plane. Therefore the sloping
area is

?
6 times the base area. For curved surfaces the idea is the same, except that

the square root in|N|D 1=cos� changes as we move around the surface.

Method2 is for curvesx.t/; y.t/ and surfacesx.u;v/; y.u;v/; z.u;v/ with
parameters.

A curve has one parametert . A surface has two parametersu and v (it is two-
dimensional). One advantage of parameters is thatx;y;z get equal treatment, instead
of picking outz asf .x;y/. Here are the first two examples:

conexDucosv; yDusinv; zDu cylinderxD cosv; yD sinv; zDu: (4)

Each choice ofu andv gives a point on the surface. By making all choices, we get
the complete surface. Notice that a parameter can equal a coordinate, as inzDu.
Sometimes both parameters are coordinates, as inxDu andyD v andzD f .u;v/.
That is justzD f .x;y/ in disguise—the surface without parameters. In other cases
we find thexyz equation by eliminatingu andv:

cone .ucosv/2 C .usinv/2 Du2 or x2 Cy2 D z2 or zD
a
x2 Cy2

cylinder .cosv/2 C .sinv/2 D 1 or x2 Cy2 D 1:

The cone is the graph off D
a
x2 Cy2. The cylinder isnot the graph of any func-

tion. There is a line ofz1s through each point on the circlex2 Cy2 D 1. That is what
zDu tells us: Giveu all values, and you get the whole line. Giveu andv all values,
and you get the whole cylinder. Parameters allow a surface to close up and even go
through itself—which the graph off .x;y/ can never do.

Actually zD
a
x2 Cy2 gives only the top half of the cone. (A function produces

only onez.) The parametric form gives the bottom half also. SimilarlyyD
?
1�x2

gives only the top of a circle, whilexD cost; yD sint goes all the way around.
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Now we finddS , using parameters. Small movements give a piece of the surface,
practically flat. One side comes from the changedu, the neighboring side comes from
dv. The two sides are given by small vectorsAdu andBdv:

A D
BxBu i C

ByBu j C
BzBuk and B D

BxBv i C
ByBv j C

BzBv k: (5)

To find the areadS of the parallelogram, start with the cross productN D A�B:

N D

����� i j k
xu yu zu

xv yv zv

�����D ByBu BzBv � BzBu ByBv!i C

 BzBu BxBv � BxBu BzBv!j C

 BxBu ByBv � ByBu BxBv!k:

(6)
Admittedly this looks complicated—actual examples are often fairly simple. The area
dS of the small piece of surface is|N|du dv. The length|N| is a square root:

dS D

gffe ByBu BzBv � BzBu ByBv!2

C

 BzBu BxBv � BxBu BzBv!2

C

 BxBu ByBv � ByBu BxBv!2

dudv:

(7)

EXAMPLE 2 FindA andB and N D A�B anddS for the cone and cylinder.

The cone hasxDucosv, yDusinv, zDu. Theu derivatives produceA D BR=BuD
cosv i Csinv j Ck. Thev derivatives produce the other tangent vectorB D BR=BvD�usinv i Cucosv j. The normal vector isA�B D�ucosv i�usinv j Cu k. Its
length givesdS :

dS D |A�B|du dvD
a
.ucosv/2 C .usinv/2 Cu2 du dvD

?
2 u du dv:

The cylinder is even simpler:dS D dudv. In these and many other examples,A is
perpendicular toB. The small piece is a rectangle. Its sides have length|A|du
and |B|dv. (The cone has|A|Du and |B|D?2, the cylinder has|A|D |B|D 1).
The cross product is hardly needed for area, when we can just multiply|A|du times|B|dv.

Remark on the two methodsMethod1 also used parameters, but a very special
choice—uis x andv is y. The parametric equations arexD x, yD y, zD f .x;y/.
If you go through the long square root in(7), changingu to x andv to y, it simplifies
to the square root in(3). (The termsBy=Bx andBx=By are zero;Bx=Bx andBy=By
are1.) Still it pays to remember the shorter formula from Method1.

Don’t forget that after computingdS , you have to integrate it. Many times the
good is with polar coordinates. Surfaces are often symmetric around an axis or a
point. Those are thesurfaces of revolution—which we saw in Chapter 8 and will
come back to.

Strictly speaking, the integral starts with�S (not dS ). A flat piece has area|A�B|�x�y or |A�B|�u�v. The area of a curved surface is properly defined
as a limit. The key step of calculus, from sums of�S to the integral ofdS , is safe for
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smooth surfaces. In examples, the hard part is computing the double integral and
substituting the limits onx;y oru;v.

EXAMPLE 3 Find the surface area of the conezD
a
x2 Cy2 up to the height

zD a.
We use Method 1 (no parameters). The derivatives ofz are computed, squared, and
added:BzBx D

xa
x2 Cy2

BzBy D
ya

x2 Cy2
|N|2 D 1C

x2

x2 Cy2
C

y2

x2 Cy2
D 2:

Conclusion:|N|D?2 anddS D
?
2dx dy. The cone is on a45� slope, so the area

dx dy in the base is multiplied by
?
2 in the surface above it (Figure 15.15). The

square root indS accounts for the extra area due to slope. A horizontal surface has
dS D

?
1dx dy, as we have known all year.

Now for a key point.The integration is down in the base plane. The limits
on x andy are given by the “shadow” of the cone. To locate that shadow setzDa
x2 Cy2 equal tozD a. The plane cuts the cone at the circlex2 Cy2 D a2. We

integrate over the inside of that circle (where the shadow is):

surface area of coneD
rr

shadow

?
2 dx dyD

?
2�a2:

EXAMPLE 4 Find the same area usingdS D
?
2 u du dv from Example2.

With parameters,dS looks different and the shadow in the base looks different. The
circlex2 Cy2 D a2 becomesu2 cos2vCu2 sin2 vD a2. In other wordsuD a. (The
cone haszDu, the plane haszD a, they meet whenuD a.) The angle parameterv
goes from0 to 2� . The effect of these parameters is to switch us “automatically” to
polar coordinates, where area isr dr d� :

surface area of coneD
ww

dS D

2�w

0

aw

0

?
2 u du dvD

?
2�a2:

Fig. 15.15 Cone cut by plane leaves shadow in the base. Integrate over the shadow.

EXAMPLE 5 Find the area of the same cone up to the sloping planezD 1� 1
2
x.

Solution The cone still hasdS D
?
2 dx dy, but the limits of integration are changed.

The plane cuts the cone in an ellipse. Its shadow down in thexy plane is another



660 15 Vector Calculus

ellipse (Figure 15.15c).To find the edge of the shadow, setzD
a
x2 Cy2 equal

to zD 1� 1
2
x. We square both sides:

x2 Cy2 D 1�xC
1

4
x2 or

3

4
.xC 2

3
/2 Cy2 D 4

3
:

This is the ellipse in the base—where height makes no difference andz is gone. The
area of an ellipse is�ab, when the equation is in the form.x=a/2 C .y=b/2 D 1.
After multiplying by 3=4 we find aD 4=3 andbD

?
4=3. Then

’
?
2 dx dyD?

2�ab is the surface area of the cone.
The hard part was finding the shadow ellipse (I went quickly). Its area�ab came

from Example15:3:2. The new part is
?
2 from the slope.

EXAMPLE 6 Find the surface area of a sphere of radiusa (known to be4�a2).

This is a good example, because both methods almost work. The equation of the
sphere isx2 Cy2 Cz2 D a2. Method 1 writes zD

a
a2�x2�y2. The x and

y derivatives are�x=z and�y=z:
1C

 B zBx !2

C

 BzBy!2

D
z2

z2
C
x2

z2
C
y2

z2
D
a2

z2
D

a2

a2�x2�y2
:

The square root givesdS D a dx dy=
a
a2�x2�y2. Notice thatz is gone (as it

should be). Now integratedS over the shadow of the sphere, which is a circle.
Instead ofdx dy, switch to polar coordinates andr dr d� :

rr
shadow

dS D

» 2�

0

» a

0

ar dr d�?
a2�r2

D�2�aaa2�r2
�a

0
D 2�a2: (8)

This calculation is successful but wrong.2�a2 is the area of thehalf-sphereabove
thexy plane. The lower half takes the negative square root ofz2 D a2�x2�y2.
This shows the danger of Method1, when the surface is not the graph of a function.

EXAMPLE 7 (same sphere by Method2: useparameters) The natural choice is
spherical coordinates. Every point has an angleuD � down from the North Pole and
an anglevD � around the equator. Thexyz coordinates from Section 14.4 are
xD asin� cos� , yD asin� sin� , zD acos�. The radius�D a is fixed (not
a parameter). Compute the first term in equation(6), notingBz=B� D 0:

.By=B�/.Bz=B�/� .Bz=B�/.By=B�/D�.�asin�/.asin� cos�/D a2 sin2� cos�:

The other terms in(6) area2 sin2� sin� anda2 sin� cos�. ThendS in equation
(7) squares these three components and adds. We factor outa4 and simplify:

a4.sin4� cos2 �Csin4� sin2 �Csin2� cos2�/D a4.sin4�Csin2� cos2�/D a4 sin2�:

Conclusion: dS D a2 sin� d� d� . A spherical person will recognize this immedi-
ately. It is the volume elementdV D �2 sin� d� d� d� , exceptd� is missing. The
small box has areadS and thicknessd� and volumedV . Here we only wantdS :

area of sphereD

»»
dS D

» 2�

0

» �

0

a2 sin� d� d� D 4�a2: (9)

Figure 15.16a shows a small surface with sidesa d� anda sin� d� . Their prod-
uct is dS . Figure 15.16b goes back to Method1, where equation(8) gavedS D
.a=z/ dx dy.
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I doubt that you will like Figure 15.16c—and you don’t need it. With parameters
� and� , the shadow of the sphere is a rectangle. The equator is the line down the
middle, where�D�=2. The height iszD acos�. The aread� d� in the base is the
shadow ofdS D a2 sin� d� d� up in the sphere. Maybe this figure shows what we
don’t halve to know about parameters.

Fig. 15.16 Surface area on a sphere: (a) spherical coordinates (b)xyz coordinates (c)��
space.

EXAMPLE 8 RotateyDx2 around thex axis. Find the surface area using parame-
ters.
The first parameter isx (from a to b). The second parameter is the rotation angle�
(from 0 to 2�). The points on the surface in Figure 15.17 arexD x, yD x2 cos� ,
zD x2 sin� . Equation(7) leads after much calculation todS D x2

?
1C4x2 dx d� .

Main point: dS agrees with Section 8.3, where the area was
r
2�ya

1C .dy=dx/2 dx. The 2� comes from the� integral andy is x2. Parameters
give this formula automatically.

VECTOR FIELDS AND THE INTEGRAL OF F �n
Formulas for surface area are dominated by square roots. There is a square root in
dS , as there was inds. Areas are like arc lengths, one dimension up. The good point
about line integrals

r
F �nds is that the square root disappears. It is in the denominator

of n, whereds cancels it:F �ndsDM dy�N dx. The same good thing will now
happen for surface integrals

rr
F �ndS .

15I Through the surfacezD f .x;y/, the vector fieldF.x;y;z/DM i CN j C
P k has

flux D
rr

surface

F �ndS D
rr

shadow

 �M BfBx �N BfBy CP

!

dx dy: (10)

This formula tells what to integrate, given the surface and the vector field (f and F).
The xy limits come from the shadow. Formula(10) takes the normal vector from
Method 1:

N D�Bf=Bx i�Bf=By j Ck and|N|Da1C .Bf=Bx/2 C .Bf=By/2:
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For theunit normal vectorn, divideN by its length:n D N=|N|. The square root is
in the denominator, and the same square root is indS . See equation(3):

F �ndS D
F �N? ?

dx dyD

 �M BfBx �N BfBy CP

!

dx dy: (11)

That is formula(10), with cancellation of square roots. The expressionF �ndS is
often written asF �dS, again relying on boldface to makedS a vector. ThendS
equalsndS , with directionn and magnitudedS .

Fig. 15.17 Surface of revolution: parametersx;� . Fig. 15.18 F �n dS gives flow throughdS .

EXAMPLE 9 FindndS for the planezD xC2y. Then findF �ndS for F D k.
This plane produced

?
6 in Example1 (for area). For flux the

?
6 disappears:

ndS D
N|N|dS D

�i�2j Ck?
6

?
6 dx dyD .�i�2j Ck/ dx dy:

For the flow fieldF D k, the dot productk �ndS reduces to1dx dy. The slope of
the plane makes no difference!The flow through the base also flows through the
plane. The areas are different, but flux is like rain. Whether it hits a tent or the ground
below, it is the same rain (Figure 15.18). In this case

’

F �ndS D
’

dx dyD shadow
area in the base.

EXAMPLE 10 Find the flux ofF D xi Cyj Czk through the conezD
a
x2 Cy2.

Solution F �ndS D

��x� xa
x2 Cy2

��y� ya
x2 Cy2

�

C
a
x2 Cy2

�

dx dyD

0:

The zero comes as a surprise, but it shouldn’t. The cone goes straight out
from the origin, and so doesF. The vectorn that is perpendicular to the cone is
also perpendicular toF. There is no flowthroughthe cone, becauseF �n D 0. The
flow travels out along rays.rr

F �ndS FOR A SURFACE WITH PARAMETERS

In Example10 the cone waszD f .x;y/D
a
x2 Cy2. We founddS by Method1.

Parameters were not needed (more exactly, they werex andy). For surfaces that fold
and twist, the formulas withu andv look complicated but the actual calculations can
be simpler. This was certainly the case fordS D du dv on the cylinder.

A small piece of surface has areadS D |A�B|du dv. The vectors along the sides
areA D xui Cyuj Czuk andB D xvi Cyv j Czvk. They are tangent to the surface.
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Now we put their cross productN D A�B to another use, becauseF �ndS involves
not only area butdirection. We need the unit vectorn to see how much flow goes
through.

The direction vector isn D N=|N|. Equation(7) is dS D |N|du dv, so the square
root |N| cancels inndS . This leaves a nice formula for the “normal component” of
flow:

15J Through a surface with parametersu and v, the fieldF DM i CN j CP k
has

flux D

»»
F �ndS D

»»
F �N du dvD

»»
F � .A�B/ du dv: (12)

EXAMPLE 11 Find the flux ofF D xi Cyj Czk through the cylinderx2 Cy2 D
1, 0¤ z¤ b.

Solution The surface of the cylinder isxD cosu, yD sinu, zD v. The tangent
vectors from(5) are A D .�sinu/i C .cosu/j and B D k. The normal vector in
Figure 15.19 goes straight out through the cylinder:

N D A�B D cosu i Csinu j (checkA �N D 0 andB �N D 0/:

To findF �N, switchF D xi Cyj Czk to the parametersu andv. ThenF �N D 1:

F �N D .cosu i Csinu j Cv k/ � .cosu i Csinu j/ D cos2uCsin2u:

For the flux, integrateF �N D 1 and apply the limits onuD � andvD z:

flux D

» b

0

» 2�

0

1 du dvD 2�bD surface area of the cylinder:

Note that the top and bottom were not included! We can find those fluxes too. The
outward direction isn D k at the top andn D�k down through the bottom. Then
F �n is CzD b at the top and�zD 0 at the bottom. The bottom flux is zero, the top
flux is b times the area (or�b). The total flux is2�bC�bD 3�b. Hold that answer
for the next section.

Apology: I madeu the angle andv the height. ThenN goes outward not inward.

EXAMPLE 12 Find the flux ofF D k out the top half of the spherex2 Cy2 Cz2 D
a2.

Solution Use spherical coordinates. Example7 haduD � andvD � . We found

N D A�B D a2sin2� cos� i Ca2 sin2� sin� j Ca2 sin2� cos� k:

The dot product withF D k is F �N D a2 sin� cos�. The integral goes from the pole
to the equator,�D 0 to �D�=2, and around from� D 0 to � D 2� :

flux D

» 2�

0

» �=2

0

a2 sin� cos� d� d� D 2�a2 sin2�

2

��=2

0

D�a2:

The next section will show that the flux remains at�a2 throughany surface(!) that
is bounded by the equator. A special case is a flat surface—the disk of radiusa at the



664 15 Vector Calculus

equator. Figure 15.18 showsn D k pointing directly up, soF �n D k �k D 1. The flux
is
’

1 dS= area of disk =�a2. All fluid goes past the equator and out through
the sphere.

Fig. 15.19 Flow through cylinder. Fig. 15.20 M Robius strip (no way to choosen).

I have to mention one more problem. It might not occur to a reasonable person, but
sometimes a surface has onlyone side. The famous example is theM Robius strip, for
which you take a strip of paper, twist it once, and tape the ends together. Its
special property appears when you run a pen along the “inside.” The pen in
Figure 15.20 suddenly goes “outside.” After another round trip it goes back “inside.”
Those words are in quotation marks, because on a MRobius strip they have no meaning.

Suppose the pen represents the normal vector. On a spheren points outward.
Alternativelyn could point inward; we are free to choose. But the MRobius strip makes
the choice impossible. After moving the pen continuously, it comes back in the
opposite direction.This surface is not orientable. We cannot integrateF �n to
compute the flux, because we cannot decide the direction ofn.

A surface isorientedwhen we can and do choosen. This uses the final property
of cross products, that they have length and direction and also aright-hand rule. We
can tellA�B from B�A. Those give the two orientations ofn. For an open surface
(like a wastebasket) you can select either one. For a closed surface (like a sphere) it is
conventional forn to be outward. By making that decision once and for all, the sign
of the flux is established:outward flux is positive.

FORMULAS
FOR
SURFACE
INTEGRALS

Method1: Parametersx;y Method2: Parametersu;v

Coordinatesx;y;z.x;y/ x.u;v/;y.u;v/;z.u;v/ on surface

A D i CBz=Bxk N D A�B A D Bx=Bu i CBy=Bu j CBz=Bu k

B D j CBz=Byk n D N=|N| B D Bx=Bv i CBy=Bv j CBz=Bv k

dS D |N|dxdyD
b
1Cz2

x Cz2
y dxdy dS D |N|dudv

ndS D NdxdyD .�Bz=Bx i�Bz=By j Ck/dxdy ndS D N dudv
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15.4 EXERCISES

Read-through questions

A small piece of the surfacezD f .x;y/ is nearly a . When
we go across bydx, we go up by b . That movement isAdx,
where the vectorA is iC c . The other side of the piece isBdy,
whereB D jC d . The cross productA�B is N D e . The
area of the piece isdS D |N|dxdy. For the surfacezD xy, the vec-
tors areA D f andB D g andN D h . The area integral
is
’

dS D i dxdy.

With parametersu and v, a typical point on a45� cone is
xDucosv, yD j , zD k . A change inu moves that point
by AduD .cosv iC l )du. A change inv moves the point by
BdvD m . The normal vector isN D A�B D n . The area
is dS D o dudv. In this exampleA �B D p so the small
piece is a q anddS D |A||B|dudv.

For flux we needndS . The r vector n is N D A�B
divided by s . For a surfacezD f .x;y/, the productndS
is the vector t (to memorize from table). The particular sur-
facezD xy hasndS D u dx dy. For F Dxi Cyj Czk the flux
throughzDxy is F �ndS D v dx dy.

On a 30� cone the points arexD 2ucosv, yD 2usinv, zDu.
The tangent vectors areA D w and B D x . This cone
has ndS D A�B dudvD y . For F D xi Cyj Czk, the flux
element through the cone isF �ndS D z . The reason for this an-
swer is A . The reason we don’t compute flux through a MRobius
strip is B .

In 1�14 find N and dS D |N|dxdy and the surface area
rr
dS .

Integrate over thexy shadow which ends where thez’s are equal
(x2 Cy2 D 4 in Problem 1).

1 ParaboloidzD x2 Cy2 below the planezD 4.

2 ParaboloidzD x2 Cy2 betweenzD 4 andzD 8.

3 PlanezD x�y inside the cylinderx2 Cy2 D 1.

4 PlanezD 3xC4y above the square0¤x¤ 1, 0¤y¤ 1.
5 Spherical capx2 Cy2 Cz2 D 1 above zD 1=

?
2.

6 Spherical bandx2 Cy2 Cz2 D 1 betweenzD 0 and1=
?
2.

7 PlanezD 7y above a triangle of areaA.

8 Conez2 D x2 Cy2 between planeszD a andzD b.

9 The monkey saddlezD 1
3x

3�xy2 insidex2 Cy2 D 1.

10 zD xCy above triangle with vertices.0;0/, .2;2/, .0;2/.

11 PlanezD 1�2x�2y insidex¥ 0, y¥ 0, z¥ 0.
12 Cylinderx2 Cz2 D a2 insidex2 Cy2 D a2. Only set up

’

dS .

13 Right circular cone of radiusa and height h. Choose
zD f .x;y/ or parametersu andv.

14 GutterzD x2 below zD 9 and betweenyD�2.

In 15�18 compute the surface integrals
’

g.x;y;z/dS .

15 gD xy over the trianglexCyCzD 1; x; y; z¥ 0.
16 gD x2 Cy2 over the top half ofx2 Cy2 Cz2 D 1 (use�;�/.

17 gD xyz onx2 Cy2 Cz2 D 1 abovez2 D x2 Cy2 (use�;�/.

18 gD x on the cylinderx2 Cy2 D 4 betweenzD 0 andzD 3.

In 19�22 calculate A, B, N, anddS .

19 xDu, yD vCu, zD vC2uC1.

20 xDuv, yDuCv, zDu�v.

21 xD .3Ccosu/cosv, yD .3Ccosu/sinv, zD sinu.

22 xDucosv, yDusinv, zD v (not zDu/.

23�26 In Problems1�4 respectively find the flux
rr

F �ndS for
F D xi Cyj Czk.

27�28 In Problems19�20 respectively compute
rr

F �ndS for
F D yi�xj through the regionu2 Cv2¤ 1.
29 A unit circle is rotated around thez axis to give a torus (see fig-
ure). The center of the circle stays a distance3 from thez axis. Show
that Problem21 gives a typical point.x; y; z/ on the torus and find
the surface area

rr
dS D

rr |N|dudv.

30 The surfacexD r cos� , yD r sin� , zD a2�r2 is bounded by
the equator.r D a/. Find N and the flux

rr
k �ndS , and compare

with Example12.

31 Make a “double MRobius strip” from a strip of paper by twisting
it twice and taping the ends. Does a normal vector (use a pen) have
the same direction after a round trip?

32 Make a “triple MRobius strip” with three twists. Is it
orientable—does the normal vector come back in the same or
opposite direction?

33 If a very wavy surface stays close to a smooth surface, are their
areas close?

34 Give the equation of a plane with roof areadS D 3 times base
areadxdy.

35 The points .x;f .x/cos� , f .x/sin�/ are on the surface of
revolution:yD f .x/ revolved around thex axis, parametersuD x

andvD � . FindN and comparedS D |N|dx d� with Example8 and
Section8:3.
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15.5 The Divergence Theorem

This section returns to the fundamental law.flow out/� .flow in/D .source/. In
two dimensions, the flow was in and out through a closed curveC . The plane region
inside wasR. In three dimensions, the flow enters and leaves through a closed surface
S: The solid region inside isV: Green’s Theorem in its normal form (for the flux of
a smooth vector field) now becomes the great three-dimensional balance equation—
theDivergence Theorem:

15K The flux ofF DM i CN j CP k through the boundary surfaceS equals
the integral of the divergence ofF insideV: The Divergence Theorem is»»

F �ndS D

»»»
div F dV D

»»» �BMBx C
BNBy C

BPBz �dx dy dz: (1)

In Green’s Theorem the divergence wasBM=BxCBN=By: The new termBP=Bz
accounts for upward flow. Notice that a constant upward componentP adds nothing
to the divergence (its derivative is zero). It also adds nothing to the flux (flow up
through the top equals flow up through the bottom). When the whole fieldF is
constant, the theorem becomes0D 0:

There are other vector fields with divF D 0: They are of the greatest importance.
The Divergence Theorem for those fields is again0D 0; and there is conservation of
fluid. When div F D 0; flow in equals flow out. We begin with examples of these
“divergence-free” fields.

EXAMPLE 1 The spin fields�yi Cxj C0k and0i�zj Cyk have zero divergence.

The first is an old friend, spinning around thez axis. The second is new, spinning
around thex axis. Three-dimensional flow has a great variety of spin fields. The
separate termsBM=Bx, BN=By, BP=Bz are all zero, so divF D 0: The flow goes
around in circles, and whatever goes out throughS comes back in. (We might have
put a circle on

rr
s

as we did on
u

c
; to emphasize thatS is closed.)

EXAMPLE 2 The position fieldR D xi Cyj Czk hasdiv R D 1C1C1D 3:

This is radial flow, straight out from the origin. Mass has to be addedat every point
to keep the flow going. On the right side of the divergence theorem is

rrr
3 dV:

Therefore the flux is three times the volume.
Example 11 in Section 15.4 found the flux ofR through a cylinder. The answer

was3�b: Now we also get3�b from the Divergence Theorem, since the volume is
�b: This is one of many cases in which the triple integral is easier than the double
integral.

EXAMPLE 3 An electrostatic fieldR=�3 or gravity field�R=�3 almost has div
F D 0:

The vectorR D xi Cyj Czk has length
a
x2 Cy2 Cz2 D �: Then F has length

�=�3 (inverse square law). Gravity from a point mass pullsinward (minus sign). The
electric field from a point charge repelsoutward. The three steps almost show that
div F D 0:

Step 1.B�=BxD x=�;B�=ByD y=�;B�=BzD z=�—but do not add those three.F
is not� or1=�2 (these are scalars). The vector field isR=�3:We needBM=Bx;BN=By;BP=Bz:
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Step 2.BM=BxD B=Bx.x=�3/ is equal to1=�3� .3x B�=Bx/=�4 D 1=�3�3x2=�5:
ForBN=By andBP=Bz; replace3x2 by 3y2 and3z2: Now add those three.

Step 3. divF D 3=�3�3.x2 Cy2 Cz2/=�5 D 3=�3�3=�3 D 0:

The calculation divF D 0 leaves a puzzle. One side of the Divergence Theorem seems
to give

rrr
0dV D 0: Then the other side should be

rr
F �ndS D 0: But the flux is

notzero when all flow is outward:

The unit normal vector to the sphere�D constant isn D R=�:
The outward flowF �n D .R=�3/ � .R=�/D �2=�4 is always positive.
Then

rrr
F �ndS D

rr
dS=�2 D 4��2=�2 D 4�:We have reached4�D

0:

This paradox in three dimensions is the same as forR=r2 in two dimensions.
Section 15.3 reached2� D 0; and the explanation was a point source at the origin.
Same explanation here:M;N;P are infinite when�D 0: The divergence is a “delta
function” times4�; from the point source. The Divergence Theorem does not apply
(unless we allow delta functions). That single point makes all the difference.

Every surface enclosing the origin hasfluxD 4�: Our calculation was for a
sphere. The surface integral is much harder whenS is twisted (Figure 15.21a). But the
Divergence Theorem takes care of everything, because divF D 0 in the volumeV be-
tween these surfaces. Therefore

rr
F �ndS D 0 for the two surfaces together. The

flux
rr

F �ndS D�4� into the sphere must be balanced by
rr

F �ndS D 4� out of
the twisted surface.

Fig. 15.21 Point source: flux 4� through all enclosing surfaces. Net flux upward
D

rrr
.BP=Bz/dV:

Instead of a paradox4� D 0; this example leads to Gauss’s Law. A massM at the
origin produces a gravity fieldF D�GMR=�3: A chargeq at the origin produces
an electric fieldE D .q=4�"0/R=�3: The physical constants areG and"0; the math-
ematical constant is the relation between divergence and flux. Equation(1) yields
equation(2), in which the mass densitiesM.x;y;z/ and charge densitiesq.x;y;z/
need not be concentrated at the origin:

15L Gauss’s law in differential form: divF D�4�GM and divE D q="0:
Gauss’s law in integral form: Flux is proportional to total mass or charge:»»

F �ndS D�»»» 4�GMdV and

»»
E �ndS D

»»»
q dV="0: (2)
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THE REASONING BEHIND THE DIVERGENCE THEOREM

The general principle is clear: Flow out minus flow in equals source. Our goal is to see
why the divergence ofF measures the source. In a small box around each point,
we show that divFdV balancesF �ndS through the six sides.

So consider a small box. Its center is at.x;y;z/: Its edges have length�x;�y;�z:
Out of the top and bottom, the normal vectors arek and�k: The dot product with
F DM i CN j CP k is CP or �P: The area�S is �x�y: So the two fluxes are
close toP.x;y;zC 1

2
�z/�x�y and�P.x;y;z� 1

2
�z/�x�y: When the top is

combined with the bottom, the difference of thoseP ’s is�P :

net flux upward��P�x�yD .�P=�z/�x�y�z� .BP=Bz/�V: (3)

Similarly, the combined flux on two side faces is approximately (BN=By/�V:On the
front and back it is (BM=Bx/�V: Adding the six faces, we reach the key point:

flux out of the box� .BM=BxCBN=ByCBP=Bz/�V: (4)

This is (div F)�V: For a constant field both sides are zero—the flow goes straight
through. ForF D xi Cyj Czk; a little more goes out than comes in. The divergence
is 3; so3�V is created inside the box. By the balance equation the flux is also3�V:

The approximation symbol� means that the leading term is correct (probably not
the next term). The ratio�P=�z is not exactlyBP=Bz: The difference is of order
�z; so the error in(3) is of higher order�V�z: Added over many boxes (about
1=�V boxes), this error disappears as�zÑ 0:

The sum of (divF)�V over all the boxes approaches
rrr

.div F/dV: On the other
side of the equation is a sum of fluxes. There isF �n�S out of the top of one box, plus
F �n�S out of the bottom of the box above. The first hasn D k and the second has
n D�k: They cancel each other—the flow goes from box to box. This happens
every time two boxes meet. The only fluxes that survive (because nothing cancels
them) are at the outer surfaceS: The final step, as�x;�y;�zÑ 0; is that those
outside terms approach

rr
F �ndS: Then the local divergence theorem(4) becomes

the global Divergence Theorem(1).

Remark on the proof That “final step” is not easy, because the box surfaces don’t
line up with the outer surfaceS:A formal proof of the Divergence Theorem would im-
itate the proof of Green’s Theorem. On a very simple region

rrr
.BP=Bz/dx dy dz

equals
rr
P dx dy over the top minus

rr
P dx dy over the bottom. After checking

the orientation this is
rr
P k �ndS: Similarly the volume integrals ofBM=Bx andBN=By are the surface integrals

rr
M i �ndS and

rr
N j �ndS: Adding the three in-

tegrals gives the Divergence Theorem. Since Green’s Theorem was already proved in
this way, the reasoning behind(4) is more helpful than repeating a detailed proof.

The discoverer of the Divergence Theorem was probably Gauss. His notebooks
only contain the outline of a proof—but after all, this is Gauss. Green and Ostro-
gradsky both published proofs in1828; one in England and the other in St. Peters-
burg (now Leningrad). As the theorem was studied, the requirements came to light
(smoothness ofF andS; avoidance of one-sided Möbius strips).

New applications are discovered all the time—when a scientist writes down a bal-
ance equation in a small box. The source is known. The equation is divF Dsource.
After Example 5 we explainF:

EXAMPLE 4 If the temperature inside the sun isT D ln1=�; find the heat flow
F D�gradT and the source divF and the flux

rr
F �ndS: The sun is a ball of radius

�0:
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Solution F is�grad ln1=�D Cgrad ln�: Derivatives ofln� bring division by�:

F D .B�=Bx i CB�=By j CB�=Bz k/=�D .xi Cyj Czk/=�2:

This flow is radially outward, of magnitude1=�: The normal vectorn is also radially
outward, of magnitude1: The dot product on the sun’s surface is1=�0:»»

F �ndS D

»»
dS=�0 D .surface area/=�0 D 4��2

0=�0 D 4��0: (5)

Check that answer by the Divergence Theorem. Example 5 will find divF D 1=�2:
Integrate over the sun. In spherical coordinates we integrated�, sin�d�; andd� :

rrr
sun

div F dV D

» 2�

0

» �

0

» �0

0

�2 sin� d� d� d�=�2 D .�0/.2/.2�/ as in.5/:

This example illustratesthe basic framework of equilibrium. The pattern ap-
pears everywhere in applied mathematics—electromagnetism, heat flow, elasticity,
even
relativity. There is usually a constantc that depends on the material (the example
hascD 1). The names change, but we always takethe divergence of the gradient:

potentialf Ñ force field�c gradf: Then div.�c gradf /D electric charge

temperatureTÑ flow field�c gradT: Then div.�c gradT /D heat source

displacementuÑstress fieldCc gradu: Then div.�c gradu/D outside force:

You are studying calculus, not physics or thermodynamics or elasticity. But please
notice the main point. The equation to solve is div.�c gradf /D known source. The
divergence and gradient are exactly what the applications need. Calculus teaches the
right things.

This framework is developed in many books, including my own textIntroduc-
tion to Applied Mathematics(Wellesley-Cambridge Press). It governs equilibrium,
in matrix equations and differential equations.

PRODUCT RULE FOR VECTORS: INTEGRATION BY PARTS

May I go back to basic facts about the divergence? First the definition:

F.x;y;z/DM i CN j CP k has divF D r �F D BM=BxCBN=ByCBP=Bz:
The divergence is a scalar (not a vector). At each point divF is a number. In fluid
flow, it is the rate at which mass leaves—the “flux per unit volume” or “flux density.”

The symbolr stands for a vector whose components areoperations not numbers:

r D “del” D i B=BxC j B=ByCk B=Bz: (6)

This vector is illegal but very useful. First, apply it to an ordinary functionf .x;y;z/:

rf D “del f ” D i Bf=BxC j Bf=ByCk Bf=BzD gradient of f: (7)

Second, take the dot productr �F with a vector functionF.x;y;z/DM i CN j C
P k:

r �F D “del dot F” D BM=BxCBN=ByCBP=BzD divergence ofF: (8)
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Third, take the cross productr�F: This produces the vector curlF (next section):

r�F D “del cross F” D : : : (to be defined): : :D curl of F: (9)

The gradient and divergence and curl arer and r� and r� : The three great
operations of vector calculus use a single notation! You are free to writer or not—to
make equations shorter or to help the memory. Notice that Laplace’s equation
shrinks to

r �rf D
BBx �BfBx �C

BBy �BfBy �C
BBz �BfBz �D 0: (10)

Equation(10)gives the potential when the source is zero (very common).F D gradf
combines with divF D 0 into Laplace’s equation div gradf D 0: This equation
is so important that it shrinks further tor2f D 0 and even to�f D 0: Of course
�f D fxx Cfyy Cfzz has nothing to do with�f D f .xC�x/�f .x/: Above
all, remember thatf is a scalar andF is a vector:gradient of scalar is vectorand
divergence of vector is scalar.

Underlying this chapter is the idea of extending calculus to vectors. So far we have
emphasized the Fundamental Theorem. The integral ofdf=dx is now the integral
of div F: Instead of endpointsa andb; we have a curveC or surfaceS: But it is the
rulesfor derivatives and integrals that make calculus work, and we need them now for
vectors. Remember the derivative ofu timesv and the integral (by parts) ofudv=dx:

15M Scalar functionsu.x;y;z/ and vector fieldsV.x;y;z/ obey theproduct
rule:

div.uV/Du divV CV � .gradu/: (11)

The reverse of the product rule is integration by parts (Gauss’s Formula):»»»
u div V dx dy dzD�»»» V � .gradu/ dx dy dzC

»»»
uV �n dS:

(12)

For a plane field this isGreen’s Formula(anduD 1 gives Green’s Theorem):»»
u

�BMBx C
BNBy �dxdyD�»»�M BuBx CN

BuBy�dxdyC

»
u.M i CN j/ �nds:

(13)

Those look like heavy formulas. They are too much to memorize, unless you use
them often. The important point is to connect vector calculus with “scalar calculus,”
which is not heavy. Every product rule yields two terms:

.uM/x DuBM=BxCM Bu=Bx .uN /y DuBN=ByCN Bu=By .uP /z DuBP=BzCP Bu=Bz:
Add those ordinary rules and you have the vector rule(11) for the divergence ofuV:

Integrating the two parts of div.uV/ gives
rr
uV �ndS by the Divergence Theo-

rem. Then one part moves to the other side, producing the minus signs in(12)and(13).
Integration by parts leaves a boundary term, in three and two dimensions as it did
in one dimension:

r
uv1dxD�r

u1vdxC Œuv�ba:

EXAMPLE 5 Find the divergence ofF D R=�2; starting from grad�D R=�:
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Solution TakeV D R anduD 1=�2 in the product rule(11). Then divF D .div R/=
�2 CR � .grad1=�2). The divergence ofR D xi Cyj Czk is 3: For grad1=�2 apply
the chain rule:

R � .grad1=�2/D�2R � .grad�/=�3 D�2R �R=�4 D�2=�2:

The two parts of divF combine into3=�2�2=�2 D 1=�2—as claimed in Example 4.

EXAMPLE 6 Find the balance equation for flow with velocityV andfluid density
�:

V is the rate of movement of fluid, while�V is the rate of movement ofmass.
Comparing the ocean to the atmosphere shows the difference. Air has a greater
velocity than water, but a much lower density. So normallyF D �V is larger for the
ocean. (Don’t confuse the density� with the radial distance�: The Greeks only used
24 letters.)

There is another difference between water and air. Water is virtually incompress-
ible (meaning� D constant). Air is certainly compressible (its density varies). The
balance equation is a fundamental law—the conservation of mass or the “continuity
equation” for fluids. This is a mathematical statement about a physical flow without
sources or sinks:

Continuity Equation: div.�V/CB�=Bt D 0: (14)

Explanation: The mass in a region is
rrr

� dV: Its rate of decrease is�rrr Bp=Bt dV:
The decrease comes from flow out through the surface (normal vectorn). The dot
productF �n D �V �n is the rate of mass flow through the surface. So the integralrr

F �ndS is the total rate that mass goes out. By the Divergence Theorem this isrrr
div F dV:

To balance�rrr B�=Bt dV in every region, divF must equal�B�=Bt at every
point. The figure shows this continuity equation(14) for flow in thex direction.

mass in

�VdS dt
Ñ mass�dS dx Ñ extra mass out

d.�V/dS dt
D

mass loss�d�dS dx
Fig. 15.22 Conservation of mass during timedt W d.�V/=dx C d�=dt D 0:

15.5 EXERCISES

Read-through questions

In words, the basic balance law is a . The flux of F
through a closed surfaceS is the double integral b . The
divergence ofM i CN j CP k is c , and it measures d .
The total source is the triple integral e . That equals the
flux by the f Theorem.

For F D 5zk the divergence is g . If V is a cube of side
a then the triple integral equals h . The top surface where
zD a has n D i andF �n D j . The bottom and sides have
F �n D k . The integral

rr
F �ndS equals l .

The field F D R=�3 has div F D 0 except m .
rr

F �ndS
equals n over any surface around the origin. This
illustrates Gauss’s Law o . The field F D xi Cyj �2zk has
div F D p and

rr
F �ndS D q . For this F; the flux out

through a pyramid and in through its base arer .

The symbol r stands for s . In this notation divF is
t . The gradient off is u . The divergence of gradf is
v . The equation div gradf D 0 is w ’s equation.
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The divergence of a product is div.uV/D x . Integration
by parts is

rrr
u div V dx dy dzD y C z . In two

dimensions this becomes A . In one dimension it becomes
B . For steady fluid flow the continuity equation is

div �V D C .

In 1–10 compute the flux
rr

F �ndS by the Divergence
Theorem.

1 F D xi Cxj Cxk; S : unit spherex2 Cy2 Cz2 D 1:

2 F D�yi Cxj ; V : unit cube0¤x¤ 1; 0¤y¤ 1; 0¤ z¤ 1:
3 F D x2i Cy2 j Cz2k; S : unit sphere

4 F D x2i C8y2j Cz2k; V : unit cube.

5 F D xi C2yj ; S : sidesxD 0; yD 0; zD 0; xCyCzD 1:

6 F D ur D .xi Cyj Czk/=�; S : sphere�D a:

7 F D �.xi Cyj Czk/; S : sphere�D a

8 F D x3i Cy3 j Cz3k; S : sphere�D a:

9 F D z2k; V : upper half of ball�¤ a:
10 F D grad.xey sinz/; S : sphere�D a:

11 Find
rrr

div .x2i Cyj C2k/dV in the cube0¤ x; y; z¤a:
Also computen and

rr
F �ndS for all six faces and add.

12 When a is small in problem11; the answer is close toca3:

Find the numberc: At what point does divF D c?

13 (a) Integrate the divergence ofF D �i in the ball�¤a:
(b) Compute

rr
F �ndS over the spherical surface�D a:

14 Integrate
rr

R �ndS over the faces of the box0¤x¤ 1,
0¤ y¤ 2, 0¤ z¤ 3 and check by the Divergence Theorem.

15 Evaluate
rr

F �ndS whenF Dxi Cz2j Cy2k and:

(a) S is the conez2 D x2 Cy2 bounded above by the plane
zD 1:

(b) S is the pyramid with corners.0;0;0/, .1;0;0/, .0;1;0/,
.0;0;1/:

16 Compute all integrals in the Divergence Theorem when
F D x.i C j�k/ andV is the unit cube0¤x;y;z¤ 1:
17 Following Example 5; compute the divergence of
.xi Cyj Czk/=�7:

18 .gradf / �n is the derivative of f in the direction
: It is also writtenBf=Bn: If fxx Cfyy Cfzz D 0 in V; de-

rive
rr Bf=B n dS D 0 from the Divergence Theorem.

19 Describe the closed surfaceS and outward normaln:

(a) V D hollow ball1¤x2 Cy2 Cz2¤ 9:
(b) V D solid cylinderx2 Cy2¤ 1; |z|¤ 7:
(c) V D pyramidx¥ 0; y¥ 0; z¥ 0; xC2yC3z¤ 1:
(d) V D solid conex2 Cy2¤ z2¤ 1:

20 Give an example where
rr

F �ndS is easier thanrrr
div F dV:

21 SupposeF DM.x;y/i CN.x;y/j ,R is a region in thexy plane,
and.x;y;z/ is in V if .x;y/ is inR and|z|¥ 1:

(a) Describe V and reduce
rrr

div F dV to a double
integral.

(b) Reduce
rr

F �ndS to a line integral (check top, bottom,
side).

(c) Whose theorem says that the double integral equals
the line integral?

22 Is it possible to haveF �n D 0 at all points of S and also
div F D 0 at all points inV ? F D 0 is not allowed.

23 Inside a solid ball (radius a, density1; mass M D 4�a3=3)
the gravity field isF D�GMR=a3:

(a) Check divF D�4�G in Gauss’s Law.

(b) The force at the surface is the same as if the whole
massM were :

(c) Find a gradient field with divF D 6 in the ball �¤a
and divF D 0 outside.

24 The outward field F D R=�3 has magnitude |F|D 1=�2:

Through an areaA on a sphere of radius�; the flux is : A
spherical box has faces at�1 and�2 with AD �2

1 sin�d�d� and
AD �2

2 sin�d�d�: Deduce that the flux out of the box is zero, which
confirms divF D 0:

25 In Gauss’s Law, what charge distributionq.x;y;z/ gives the unit
field E D ur? What is the flux through the unit sphere?

26 If a fluid with velocity V is incompressible (constant den-
sity �), then its continuity equation reduces to : If it
is irrotational thenF D gradf: If it is both then f satisfies

equation.

27 True or false, with a good reason.

(a) If
rr

F �ndS D 0 for every closed surface,F is constant.

(b) If F D gradf then divF D 0:

(c) If |F|¤ 1 at all points then
rrr

div F dV ¤ area of the
surfaceS:

(d) If |F|¤ 1 at all points then|div F|¤ 1 at all points.

28 Write down statementsE�F�G�H for source-free fields
F.x;y;z/ in three dimensions. In statementF; paths sharing
the same endpoint become surfaces sharing the same boundary
curve. In G; the stream function becomes avector field such
thatF D curl g:

29 Describe two different surfaces bounded by the circle
x2 Cy2 D 1, zD 0: The field F automatically has the same flux
through both if :

30 The boundary of a bounded regionR has no boundary.
Draw a plane region and explain what that means. What does
it mean for a solid ball?
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15.6 Stokes’ Theorem and the Curl of F

For the Divergence Theorem, the surface was closed.S was the boundary ofV . Now
the surface is not closed andS has its own boundary—a curve calledC . We are
back near the original setting for Green’s Theorem (region bounded by curve, double
integral equal to work integral). But Stokes’ Theorem, also called Stokes’s Theorem,
is in three-dimensional space. There is acurved surfaceS bounded by aspace curve
C . This is our first integral around a space curve.

The move to three dimensions brings a change in the vector field. The plane field
F.x;y/DM i CN j becomes a space fieldF.x;y;z/DM i CN j CP k. The work
MdxCNdy now includesPdz. The critical quantity in the double integral (it wasBN=Bx�BM=By) must change too. We called this scalar quantity “curlF,” but in
reality it is only the third component of a vector. Stokes’ Theorem needs all three
components of that vector—which is curlF.

DEFINITION The curl of a vector fieldF.x;y;z/DM i CN j CP k is the vector
field

curl F D

�BPBy � BNBz �i C
�BMBz � BPBx �j C

�BNBx � BMBy �k: (1)

Thesymbolr�F stands for a determinant that yields those six derivatives:

curl F D r�F D

�������� i j kB=Bx B=By B=Bz
M N P

�������� : (2)

The three productsi B=By P and j B=Bz M andk B=Bx N have plus signs. The
three products likek B=By M , down to the left, have minus signs. There is a cyclic
symmetry. This determinant helps the memory, even if it looks and is illegal. A
determinant is not supposed to have a row of vectors, a row of operators, and a row of
functions.

EXAMPLE 1 The plane fieldM.x;y/i CN.x;y/j hasP D 0 andBM=BzD 0
andBN=BzD 0. Only two terms survive: curlF D .BN=Bx�BM=By/k. Back to
Green.

EXAMPLE 2 The cross producta�R is aspin fieldS. Its axis is the fixed vector
aD a1i Ca2j Ca3k. The flow in Figure 15.23 turns arounda, and its components
are

SD a�R D

�������� i j k

a1 a2 a3

x y z

��������D .a2z�a3y/i C .a3x�a1z/j C .a1y�a2x/k:

(3)
Our favorite spin field�yi Cxj has.a1;a2;a3/D .0;0;1/ and its axis isaD k.

The divergence of a spin field isMx CNy CPz D 0C0C0. Note how the
divergence usesMx while the curl usesNx andPx . The curl of S is the vector
2a:
�BPBy � BNBz �i C

�BMBz � BPBx �j C

�BNBx � BMBy �k D 2a1i C2a2j C2a3k D 2a:

This example begins to reveal the meaning of the curl. It measures the spin! The
direction of curlF is theaxis of rotation—in this case alonga. The magnitude of
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curl F is twice the speed of rotation. In this case|curl F|D 2|a| and the angular
velocity is|a|.
Fig. 15.23 Spin field SD a�R, position fieldR, velocity field (shear field)VD zi, any fieldF.

EXAMPLE 3 (!!) Every gradient fieldF D Bf=Bx i CBf=By j CBf=Bz k has
curl F D 0:

curl F D

� BBy BfBz � BBz BfBy � i C
� BBz BfBx � BBx BfBz � j C

� BBx BfBy � BBy BfBx �k D 0: (4)

Alwaysfyz equalsfzy. They cancel. Alsofxz D fzx andfyx D fxy . So curl grad
f D 0.

EXAMPLE 4 (twin of Example 3) The divergence of curlF is also automatically
zero:

div curl F D
BBx �BPBy � BNBz �C

BBy �BMBz � BPBx �C
BBz �BNBx � BMBy �D 0:

(5)
Again the mixed derivatives givePxy DPyx andNxz DNzx andMzy DMyz. The
terms cancel in pairs. In “curl grad” and “div curl”, everything is arranged to give
zero.

15N The curl of the gradient of everyf .x;y;z/ is curl gradf D r�rf D 0.
The divergence of the curl of everyF.x;y;z/ is div curlF D r �r�F D 0.

The spin fieldShas no divergence. The position fieldR has no curl.R is the gradient
of f D 1

2
.x2 Cy2 Cz2/. S is the curl of a suitableF. Then divSD div curl F and

curl R D curl gradf are automatically zero.
You correctly believe that curlF measures the “spin” of the field. You may expect

that curl.FCG/ is curlFCcurlG. Also correct. Finally you may think that a field of
parallel vectors has no spin. That is wrong. Example 5 has parallel vectors, but their
different lengths produce spin.

EXAMPLE 5 The fieldV D zi in thex direction has curlV D j in they direction.

If you put a wheel in thexz plane,this field will turn it. The velocityzi at the top of
the wheel is greater thanzi at the bottom (Figure 15.23c). So the top goes faster and
the wheel rotates. The axis of rotation is curlV D j. The turning speed is1

2
, because

this curl has magnitude1.
Another velocity fieldv D�xk produces the same spin: curlv D j. The flow is in

the z direction, it varies in thex direction, and the spin is in they direction. Also
interesting isV Cv. The two “shear fields” add to a perfect spin fieldSD zi�xk,
whose curl is2j.
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THE MEANING OF CURL F

Example 5 put a paddlewheel into the flow. This is possible for anyvector fieldF,
and it gives insight into curlF. The turning of the wheel (if it turns) depends on its
location.x;y;z/. The turning also depends on theorientationof the wheel. We could
put it into a spin field, and if the wheel axisn is perpendicular to the spin axisa, the
wheel won’t turn! The general rule for turning speed is this:the angular velocity of
the wheel is1

2
.curl F/ �n. This is the “directional spin,” just as.gradf / �u was the

“directional derivative”—andn is a unit vector likeu.
There is no spin anywhere in a gradient field. It isirrotational: curl gradf D 0.
The pure spin fielda�R has curlF D 2a. The angular velocity isa�n (note that1

2
cancels2). This turning is everywhere,not just at the origin. If you put a penny on
a compact disk, it turns once when the disk rotates once. That spin is “around itself,”
and it is the same whether the penny is at the center or not.

The turning speed is greatest when the wheel axisn lines up with the spin axisa.
Thena�n is the full length|a|. The gradient gives the direction of fastest growth, and
the curl gives the direction of fastest turning:

maximum growth rate off is |gradf | in the direction of gradf

maximum rotation rate ofF is 1
2
|curl F| in the direction of curlF.

STOKES’ THEOREM

Finally we come to the big theorem. It will be like Green’s Theorem—a line integral
equals a surface integral. The line integral is still the work

¶
F �dR around a curve.

The surface integral in Green’s Theorem is
rr
.Nx�My/dx dy. The surface is flat

(in thexy plane). Its normal direction isk, and we now recognizeNx�My as the
k component of the curl. Green’s Theorem uses only this component because the
normal direction is alwaysk. For Stokes’ Theorem on a curved surface, we need all
three components of curlF.

Figure 15.24 shows a hat-shaped surfaceS and its boundaryC (a closed curve).
Walking in the positive direction aroundC , with your head pointing in the direction
of n, the surface ison your left. You may be standing straight up (n D k in Green’s
Theorem). You may even be upside down.n D�k is allowed/. In that case you must
go the other way aroundC , to keep the two sides of equation(6) equal. The surface
is still on the left. A Möbius strip is not allowed, because its normal direction cannot
be established. The unit vectorn determines the “counterclockwise direction” along
C .

15O .Stokes’ Theorem/
¾

c

F �dR D

» »
s

.curl F/ �ndS: (6)

The right side adds up small spins in the surface. The left side is the total circulation
(or work) aroundC . That is not easy to visualize—this may be the hardest theorem
in the book—but notice one simple conclusion.If curl F D 0 then

¶
F �dR D 0. This

applies above all to gradient fields—as we know.
A gradient field has no curl, by (4). A gradient field does no work, by (6). In three

dimensions as in two dimensions,gradient fields are conservative fields. They will
be the focus of this section, after we outline a proof (or two proofs) of Stokes’ Theo-
rem.
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The first proof showswhythe theorem is true. The second proof shows that it really
is true (and how to compute). You may prefer the first.

First proof Figure 15.24 has a triangleABC attached to a triangleACD. Later there
can be more triangles.S will be piecewise flat, close to a curved surface. Two trian-
gles are enough to make the point. In the plane of each triangle (they have different
n’s) Green’s Theorem is known:

u
ABCBC CCA

F �dR D
rr

ABC

curl F �ndS u
AC CCDCDA

F �dR D
rr

ACD

curl F �ndS:
Now add. The right sides give

’

curl F �ndS over the two triangles. On the left,the
integral overCA cancels the integral overAC . The “crosscut” disappears. That
leavesABCBC CCDCDA. This line integral goes around the outer boundary
C—which is the left side of Stokes’ Theorem.

Fig. 15.24 SurfacesS andboundary curvesC . Change inBÑ curl EÑ current inC .

Second proofNow the surface can be curved. A new proof may seem excessive, but
it brings formulas you could compute with. FromzD f .x;y/ we have

dzD Bf=Bx dxCBf=By dy and ndS D .�Bf=Bx i�Bf=By j Ck/dx dy:

ForndS , see equation 15.4.11. With thisdz, the line integral in Stokes’ Theorem is¶
C

F �dR D
¶

shadowof C
MdxCNdyCP.Bf=Bx dxCBf=By dy/: (7)

The dot product of curlF andndS gives the surface integral
rr

S

curlF �ndS :

ww

shadowof S

Œ.Py�Nz/.�Bf=Bx/C .Mz�Px/.�Bf=By/C .Nx�My/�dx dy: (8)

To prove(7)D (8), changeM in Green’s Theorem toM CP Bf=Bx. Also changeN
toN CP Bf=By. Then(7)D (8) is Green’s Theorem down on the shadow (Problem
47). This proves Stokes’ Theorem up onS . Notice how Green’s Theorem (flat surface)
was the key to both proofs of Stokes’ Theorem (curved surface).

EXAMPLE 6 Stokes’ Theorem in electricity and magnetism yields Faraday’sLaw.

Stokes’ Theorem is not heavily used for calculations—equation(8) shows why. But
the spin or curl orvorticity of a flow is absolutely basic in fluid mechanics. The other
important application, coming now, is to electric fields. Faraday’s Law is to Gauss’s
Law as Stokes’ Theorem is to the Divergence Theorem.
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Suppose the curveC is an actual wire. We can produce current alongC by varying
the magnetic fieldB.t/. The flux'D

’

B �ndS , passing withinC and changing in
time, creates an electric fieldE that does work:

Faraday’s Law(integral form)W workD

¾
C

E �dR D�d'=dt:
That is physics. It may be true, it may be an approximation. Now comes mathematics
(surely true), which turns this integral form into a differential equation. Information
at points is more convenient than information around curves. Stokes converts the line
integral ofE into the surface integral of curlE:

u
C

E �dR D
rr

S

curl E �ndS and also�B'=Bt D
rr

S

�.BB=Bt/ �ndS:
These are equal for any curveC , however small. So the right sides are equal for
any surfaceS . We squeeze to a point. The right hand sides give one of Maxwell’s
equations:

Faraday’s Law(differential form): curlE D�BB=Bt:
CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS

The chapter ends with our constant and important question: Which fields do no work
around closed curves? Remember testD for plane curves and plane vector fields:

if BM=ByD BN=Bx thenF is conservative andF D gradf and

¾
F �dR D 0:

Now allow a three-dimensional field likeF D 2xy i C .x2 Cz/j Cyk. Does it do
work around a space curve?Or is it a gradient field? That will requireBf=BxD 2xy
andBf=ByD x2 Cz andBf=BzD y. We have three equations for one function
f .x;y;z/. Normally they can’t be solved. When testD is passed (now it is the three-
dimensional test: curlF D 0) theycanbe solved. This example passes testD, andf
is x2yCyz.

15P F.x;y;z/DM i CN j CP k isa conservative field if it has these properties:

A. The work
¶
F �dR around every closed path in space is zero.

B. The work
³Q

P
F �dR depends onP andQ, not on the path in space.

C. F is agradient field:M D Bf=Bx andN D Bf=By andP D Bf=Bz.
D. The components satisfyMy DNx;Mz DPx , andNz DPy (curlF is zero).

A field with one of these properties has them all.D is the quick test.

A detailed proof ofAñBñCñDñA is not needed. Only notice howCñD:
curl gradF is always zero. The newest part isDñA. If curlF D 0 then

¶
F �dR D 0.

But that is not news. It is Stokes’ Theorem.
The interesting problem is to solve the three equations forf , when testD is passed.

The example above hadBf=BxD 2xyñ f D
³
2xy dxD x2y plus any functionC.y;z/Bf=ByD x2 CzD x2 CBC=ByñC D yz plus any functionc.z/Bf=BzD yD yCdc=dzñ c.z/ can be zero.
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The first step leaves an arbitraryC.y;z/ to fix the second step. The second step leaves
an arbitraryc.z/ to fix the third step (not needed here). Assembling the three steps,
f D x2yCC D x2yCyzCcD x2yCyz. Please recognize that the “fix-up” is only
possible when curlF D 0. TestD must be passed.

EXAMPLE 7 Is F D .z�y/i C .x�z/j C .y�x/k the gradient of anyf ?

TestD saysno. This F is a spin fielda�R. Its curl is2aD .2;2;2/, which is not
zero. A search forf is bound to fail, but we can try. To matchBf=BxD z�y, we
must havef D zx�yxCC.y;z/. They derivative is�xCBC=By: That never
matchesN D x�z, sof can’t exist.

EXAMPLE 8 What choice ofP makesF D yz2i Cxz2j CP k conservative? Find
f .

Solution We need curlF D 0, by testD. First checkBM=ByD z2 D BN=Bx. AlsoBP=BxD BM=BzD 2yz and BP=ByD BN=BzD 2xz:

P D 2xyz passes all tests. To findf we can solve the three equations, or notice that
f D xyz2 is successful. Its gradient isF.

A third method definesf .x;y;z/ as the work to reach.x;y;z/ from .0;0;0/.
The path doesn’t matter. For practice we integrateF �dR DMdxCNdyCPdz along
the straight line.xt;yt;zt/:

f .x;y;z/D

» 1

0

.yt/.zt/2.x dt/C .xt/.zt/2.y dt/C2.xt/.yt/.zt/.z dt/D xyz2:

EXAMPLE 9 Why is div curl gradf automatically zero (in two ways)?

Solution First, curl gradf is zero (always). Second, div curlF is zero (always).
Those are the key identities of vector calculus. We end with a review.

Green’s TheoremW

¾
F �dR D

»»
.BN=Bx�BM=By/dx dy¾

F �nds D

»»
.BM=BxCBN=By/dx dy

Divergence TheoremW
»»

F �ndS D

»»»
.BM=BxCBN=ByCBP=Bz/dx dy dz

Stokes’ TheoremW

¾
F �dR D

»»
curl F �ndS:

The first form of Green’s Theorem leads to Stokes’ Theorem. The second form
becomes the Divergence Theorem. You may ask,why not go to three dimensions
in the first place? The last two theorems contain the first two (takeP D 0 and a flat
surface). We could have reduced this chapter to two theorems, not four. I admit that,
but a fundamental principle is involved: “It is easier to generalize than to specialize.”

For the same reasondf=dx came before partial derivatives and the gradient.
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15.6 EXERCISES

Read-through questions

The curl of M i CN j CP k is the vector a . It equals the
3 by 3 determinant b . The curl of x2i Cz2k is c .
For SD yi�.xCz/j Cyk the curl is d . This S is a e
field a�R D 1

2 .curl F/�R, with axis vectoraD f . For any
gradient field fx i Cfy j Cfzk the curl is g . That is the
important identity curl gradf D h . It is based onfxy Dfyx

and i and j . The twin identity is k .

The curl measures the i of a vector field. A paddlewheel in
the field with its axis alongn has turning speed m . The spin
is greatest whenn is in the direction of n . Then the angular
velocity is o .

Stokes’ Theorem is p D q . The curveC is the r
of the s S . This is t Theorem extended to u dimen-
sions. Both sides are zero whenF is a gradient field because v .

The four properties of a conservative field areA D w ,
B D x , C D y , D D z . The field y2z2i C2xy2zk
(passes)(fails) testD. This field is the gradient off D A . The
work

r
F �dR from .0;0;0/ to .1;1;1/ is B (on which path?).

For every fieldF,
’

curl F �nds is the same out through a pyramid
and up through its base becauseC .

In Problems 1–6 find curl F.

1 F D zi Cxj Cyk 2 F D grad.xey sin z/

3 F D .xCyCz/.i C j Ck/ 4 F D .xCy/i�.xCy/k

5 F D �n.xi Cyj Czk/ 6 F D .i C j /�R

7 Find a potentialf for the field in Problem 3.

8 Find a potentialf for the field in Problem 5.

9 When do the fieldsxmi and xnj have zero curl?

10 When does.a1xCa2yCa3z/k have zero curl?

In 11–14, compute curl F and find
¶
c F �dR by Stokes’

Theorem.

11 F D x2i Cy2k;C D circlex2 Cz2 D 1;y D 0.

12 F D i�R;C D circlex2 Cz2 D 1;yD 0.

13 F D .i C j /�R;C D circley2 Cz2 D 1;xD 0.

14 F D .yi�xj /�.xi Cyj /;C D circlex2 Cy2 D 1;zD 0.

15 (important) Suppose two surfacesS andT have the same bound-
aryC , and the direction aroundC is the same.

(a) Prove
rr

S curl F �ndS D
rr

T curl F �ndS .

(b) Second proof: The difference between those integrals isrrr
div.curl F/dV . By what Theorem? What region isV ? Why

is this integral zero?

16 In 15, supposeS is the top half of the earth (n goes out) andT is
the bottom half (n comes in). What areC andV ? Show by example
that

rr
S F �ndS D

rr
T F �ndS is not generally true.

17 Explain why
rr

curl F �ndS D 0 over the closed boundary of any
solidV .

18 Suppose curlF D 0 anddiv F D 0. (a) Why isF the gradient of
a potential? (b) Why does the potential satisfy Laplace’s equation
fxx Cfyy Cfzz D 0?

In 19–22, find a potentialf if it exists.

19 F D zi C j Cxk.

21 F D ex�z i�ex�zk

20 F D 2xyzi Cx2zj Cx2yk

22 F D yzi Cxzj C.xyCz2/k

23 Find a field with curlF D .1;0;0/:

24 Find all fields with curlF D .1;0;0/:

25 SD a�R is a spin field. ComputeF D b�S (constant vectorb)
and find its curl.

26 How fast is a paddlewheel turned by the fieldF D yi�xk
(a) if its axis direction isn D j? (b) if its axis is lined up with curlF?
(c) if its axis is perpendicular to curlF?

27 How is curlF related to the angular velocity! in the spin field
F D!.�yi Cxj /? How fast does a wheel spin, if it is in the plane
xCyCzD 1?

28 Find a vector fieldF whose curl isSD yi�xj .

29 Find a vector fieldF whose curl isSD a�R.

30 True or false: when two vector fields have the same curl at all
points: (a) their difference is a constant field (b) their difference is a
gradient field (c) they have the same divergence.

In 31–34, compute
rr

curl F �ndS over the top half of the sphere
x2 Cy2 Cz2 D 1 and (separately)

¶
F �dR around the equator.

31 F D yi�xj

33 F D a�R

32 F D R=�2

34 F D .a�R/�R

35 The circleC in the planexCyCzD 6 has radiusr and center
at .1;2;3/. The fieldF is 3zj C2yk. Compute

¶
F �dR aroundC .

36 S is the top half of the unit sphere andF D zi Cxj Cxyzk. Findrr
curl F �ndS .

37 Findg.x;y/ sothat curlgk D yi Cx2j . What is the name forg
in Section 15.3? It exists becauseyi Cx2j has zero .

38 ConstructF so that curl F D 2xi C3yj�5zk (which has zero
divergence).

39 Split the field F D xyi into V CW with curl V D 0 and div
W D 0.
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40 Ampère’s law for a steady magnetic fieldB is curl B D�J
.J D current density;�D constant/. Find the work done byB around
a space curveC from the current passing through it.

Maxwell allows varying currents which brings in the electric field.

41 For F D .x2 Cy2/i, compute curl.curl F/ and grad.div F/ and
Fxx CFyy CFzz .

42 ForF D v.x;y;z/i, prove these useful identities:

(a) curl.curl F/D grad.div F/�.Fxx CFyy CFzz/.

(b) curl.f F/D f curl FC.gradf /�F.

43 If B D acost(constant directiona), find curl E from Faraday’s
Law. Then find the alternating spin fieldE.

44 With G.x;y;z/Dmi Cnj Cpk, write outF�G and take its di-
vergence. Match the answer withG �curl F�F �curl G.

45 Write down Green’s Theorem in thexz plane from Stokes’ The-
orem.

46 True or false: r�F is perpendicular toF.

47 (a) The second proof of Stokes’ Theorem tookM� D

M.x;y;f .x;y//CP.x;y;f .x;y//Bf=Bx as theM in Green’s
Theorem. ComputeBM�=By from the chain rule and product
rule (there are five terms).

(b) SimilarlyN� DN.x;y;f /CP.x;y;f /Bf=By has thex
derivativeNx CNzfx CPxfy CPzfxfy CPfyx . Check that
N�

x �M�
y matches the right side of equation (8), as needed in

the proof.

48 “The shadow of the boundary is the boundary of the shadow.”
This fact was used in the second proof of Stokes’ Theorem, going
to Green’s Theorem on the shadow. Give two examples ofS andC
and their shadows.

49 Which integrals are equal whenC D boundary of S or S D

boundary ofV ?¶
F �dR

¶
.curl F/ �dR

¶
.curl F/ �nds rr

F �ndS
rr

div F dS
rr
.curl F/ �ndS rr

.grad divF/ �ndS rrr
div F dV

50 Draw the fieldV D�xk spinning a wheel in thexz plane. What
wheels wouldnot spin?
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