CHAPTER 15

Vector Calculus

Chapter14 introduced double and triple integrals. We went frgndx to [[ dx dy
and [[[ dx dy dz. All those integrals add up small pieces, and the limit gives area or
volume or mass. What could be more natural than that? | regret to say, after the success
of those multiple integrals, that something is missing. It is even more regrettable that
we didn’t notice it. The missing piece is nothing less than the Fundamental Theorem
of Calculus.

The double integraf[| dx dy equals the area. To compute it, we did not use an
antiderivative ofl. At least not consciously. The method was almost trial and error,
and the hard part was to find the limits of integration. This chapter goes deeper, to
show how the step from a double integral to a single integral is really a new form of
the Fundamental Theorem—when it is done right.

Two new ideas are needed early, one pleasant and one not. You willditier
fields You may not think so highly ofine integrals Those are ordinary single
integrals Iikefv(x)dx, but they go along curves instead of straight lines. The nice
stepdx becomes the confusing stép. Wheref dx equals the length of the interval,
fds is the length of the curve. The point is that regions are enclosed by curves, and
we have to integrate along them. The Fundamental Theorem in its two-dimensional
form (Green’s Theorem) conneaisdouble integral over the regiomo a single
integral along its boundary curve

The great applications are in science and engineering, where vector fields are so
natural. But there are changes in the language. Instead of an antiderivative, we speak
about apotential function Instead of the derivative, we take thdiVergencéand
“curl” Instead of area, we compufieix andcirculation andwork. Examples come
first.
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630 15 Vector Calculus

I 15.1 Vector Fields |

For an ordinary scalar function, the input is a numbeand the output is a number
f(x). For a vector field (or vector function), the input is a pdint y) and the output
is a two-dimensional vectd¥(x, y). There is a “field” of vectors, one at every point.
In three dimensions the input point {g, y,z) and the output vectdf has three
components.

DEFINITION Let R be a region in thecy plane. Avector fieldF assigns to every
point(x,y) in R a vectorF(x, y) with two components:

F(x,y) = M(x,y)i+ N(x.y). @

This plane vector field involveswo functions of two variablesThey are the
componentsM and N, which vary from point to point. A vector has fixed
components, a vector field has varying components.

A three-dimensional vector field has componebtéx, y,z) and N(x, y,z) and
P(x,y,z). Then the vectors ate = Mi+ Nj + Pk.

EXAMPLE 1 The position vectorat (x,y) is R=xi+ yj. Its components are
M =x and N = y. The vectors grow larger as we leave the origin (Figure 15.1a).
Their direction is outward and their length [R| = 1/x2 + y2 =r. The vectorR

is boldface, the numberis lightface.

EXAMPLE 2 The vector fieldR/r consists ofunit vectorsu,, pointing outward.
We divideR = xi + yj by its length, at every point except the origin. The components
of R/r areM = x/r andN = y/r. Figure 15.1 shows a third fieR®/r2, whose

lengthisl/r.
R . u, y ] Rir? Z
M \ / \ /
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Fig. 15.1  The vector fieldR andR/r andR/r? are radial. Lengths and1 and1/r.

EXAMPLE 3 Thespin fieldor rotation field or turning field goes around the origin
instead of away from it. The field S. Its components ar® = —y andN = x:

S= —yi+xj also has lengthS| =1/ (—y)2+x2 =r. @)

S is perpendicular tdR—their dot product is zerdS-R = (—y)(x) + (x)(y) =0.
The spin fieldsS/r andS/r? have lengthd and1/r:

1

. .

has
72

S yi+x. has S_1 S y i+ x
ror rJ rl r2 x24y2 xz%—yzJ

The unit vectorS/r is ug. Notice the blank a0, 0), where this field is not defined.
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Fig. 15.2  The spin fieldsSandS/r andS/r2 go around the origin. Lengthsand1 and1/r.

EXAMPLE 4 A gradient field starts with an ordinary functionf(x,y). The
componentd/ andN are the partial derivativesf/0x andd f/0y. Then the field
is the gradient off:

F=gradf =V =0f/0xi+0f/0y]. ®3)

This vector fieldgrad f is everywhere perpendicular to the level curvééx, y) =
C.
The length|grad f'| tells how fastf is changing (in the direction it changes fastest).
Invent a function like f = x2y, and you immediately have its gradient field
F=2xyi+x?. TorepeatM isd f/dx andN is 0 f/0y.

For every vector field you should ask two questidssit a gradient field? If so,
what is f? Here are answers for the radial fields and spin fields:

15A The radial fieldR andR/r andR/r? are all gradient fields.
The spin fieldsS andS/ r are not gradients of any(x, y).
The spin fieldS/ r? is the gradient of the polar angle=tan!(y/x).

The derivatives off = %(xz-i—yz) are x and y. ThusR is a gradient field. The
gradient of f =r is the unit vectorR/r pointing outwards. Both fields are
perpendicular to circles around the origin. Those are the level curvg‘s:ef%r2
and f =r.

Question Is everyR/r" a gadient field?
Answer  Yes But among the spin fields, the only gradiengjs-2.

A major goal of this chapter is to recognize gradient fields by a simple test. The
rejection ofSandS/ r will be interesting. For some reasenyi + xj is rejected and
yi+xj is accepted. (It is the gradient of ) The acceptance d/r? as the
gradient of f = 6 contains a surprise at the origin (Section 15.3).

Gradient fields are callecbnservativeThe functionf is thepotential function
These words, and the next examples, come from physics and engineering.

EXAMPLE 5 Thevelocity fieldisV and theflow fieldis pV.

Suppose fluid moves steadily down a pipe. Or a river flows smoothly (no waterfall).
Or the air circulates in a fixed pattern. The velocity can be different at different points,
but there is no change with time. The velocity vectbgives thedirection of flow
andspeed of flovat every point.
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632 15 Vector Calculus

In reality the velocity field isV (x, y, z), with three component8?, N, P. Those
are the velocities);, v, v3 in the x, y,z directions. The speefV| is the length:
|V|?=v?+vZ+ 3. In a “plane flow” thek component is zero, and the velocity
field isvii4vy) = Mi+ Nj.

o SN\ -
I

Fig. 15.3 A steady velocity fieldV andtwo force fieldsF.

For a compact disc or a turning whe¥l,is a spin field ¥ = oS, @ = angular ve-
locity). A tornado might be closer td = S/r? (except for a dead spot at the center).
An explosion could hav® = R/r2. A quieter example is flow in and out of a lake
with steady rain as a source term.

Theflow field pV is the density times the velocity field. Whild/ gives the rate
of movementpV gives therate of movement of mas#\ greater density means a
greater ratdpV| of “mass transport.” It is like the number of passengers on a bus
times the speed of the bus.

EXAMPLE 6 Force fields from gravityl- is downward in the classroork, is radial
in space.

When gravity pulls downward, it has only one nonzero componert: —mgKk.

This assumes that vectors to the center of the Earth are parallel—almost true in a
classroom. Thef is the gradient of-mgz (noted f/0z = —mg).

In physics the usual potential is not-mgz but +mgz. The force field ismi-
nusgrad f also in electrical engineering. Electrons flow from high potential to low
potential. The mathematics is the same, but the sign is reversed.

In space, the force is radial inward&=—-mMGR/r3. Its magnitude is
proportionaltol / 2 (Newton’s inverse square law). The massesraemdM, and the
gravitational constant i = 6.672 x 10~ !!—uwith distance in meters, mass in kilo-
grams, and time in seconds. The dimension&adre (force) (distancg?/(mas$?.
This is different from the acceleratiog = 9.8m/seé, which already accounts
for the mass and radius of the Earth.

Like all radial fields,gravity is a gradient fieldIit comes from a potentiaf :

:mMG anda_f:_mMGx and@_f:_mMGy and@_f:_mMGZ
r Ox r3 0y r3 0z r3

/
(4)

EXAMPLE 7 (a short example) Current in a wire producemagnetic field B. It
is the spin fieldS/ r2 around the wire, times the strength of the current.

STREAMLINES AND LINES OF FORCE

Drawing a vector field is not always easy. Even the spin field lookssy when the
vectors are too long (they go in circles and fall across each offike€).circles give
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a clearer picture than the vectartn any field, the vectors are tangent to “field
lines— which in the spin case are circles.

DEFINITION C is afield line or integral curveif the vectorsF(x, y) are tangent
to C. The slopedy/dx of the curveC equals the slop&// M of the vectorF =

Mi+ Nij:
% = % (: —% for the spin fielta. (6)

We are still drawing the field of vectors, but now they are infinitesimally short.
They are connected into curves! What is lost is their length, becdaselS/r and
S/ r? all have the same field lines (circles). For the position fRRldnd gravity field
R/r3, the field lines are rays from the origin. In this case the “curves” are actually
straight.

EXAMPLE 8 Show that the field lines for the velocity field = yi+ xj are
hyperbolas.

dy N x
Lo =2 = ydy=xdx = 1y2_142_ constant
dx M y yay=rax 2y T2

streamlines x> -y =C

l."qLI-![}(iEL‘l'IIIL"IL\ Ly =i

Fig. 15.4  Velocity fields are tangent to streamlines. Gradient fields h&s@ equipotentials.

At every point these hyperbolas line up with the veloaityEach particle of fluid
travels on a field line In fluid flow those hyperbolas are callstteamlines Drop a
leaf into a river, and it follows a streamline. Figure 15.4 shows the streamlines for a
river going around a bend.

Don't forget the essential question about each vector field. Is it a gradient field?
ForV = yi + xj the answer iyes and the potential i = xy:

the gradientofcy is (0 f/0x)i+ (0 f/0y)j = yi+ x]. @

When there is a potential, it has level curves. They connect points of equal potential,
so the curves'(x, y) = ¢ are calledequipotentials Here they are the curvey =

¢— also hyperbolas. Since gradients are perpendicular to level ciheestream-

lines are perpendicular to the equipotential§igure 15.4 is sliced one way by
streamlines and the other way by equipotentials.

A gradientfields = 0 f/0x i+ 0 f/0y ] istangentto the field lines (stream-
lines) and perpendicular to the equipotentials (level curveg)of
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In the gradient directiorf’ changes fastest. In the level directighdoesn’t change at
all. The chain rule along'(x, y) = ¢ proves these directions to be perpendicular:
df dx 0fdy

— —-—=0 or (gradf)-(tangentto level curye=0.
Ox dt 0y dt

EXAMPLE 9 The streamlines d8/r? are circles around(,0). The equipotentials
are ray9) = c. Add rays to Figure 15.2 for the gradient fiedg 2.

For the gravity field those are reversed. A body is pulled in along the field lines (rays).
The equipotentials are the circles whefe= 1/ r is constant. The plane is crisscrossed
by “orthogonal trajectories”—curves that meet everywhere at right angles.

If you bring a magnet near a pile of iron filings, a little shake will display the field
lines. In a force field, they are “lines of forcddere are the other new words.

Vector fieldF(x, y,z) = Mi+ Nj+ Pk Plane fieldF = M(x, )i+ N(x, y)j
Radial field: multiple oR = xi+ yj + zk Spin field: multiple ofS= —yi + xj
Gradient field= conservative fieldM =0 f/0x,N =0 f/0y,P =0f/0z
Potential f(x, y) (nota vector) Equipotential curve§x,y) =c

—_

Streamline= field line = integral curve: a curve that h&fx, y) as its tangen
vectors.

15.1 EXERCISES

Read-through questions

A vector field assigns a_a _ to each point(x,y) or (x,y,z). The velocity field yi+xj is the gradient off =__ C . Its

In two dimensionsF(x,y)=_b i+_ c j. An example is streamlines are__D . The slopedy/dx of a streamline equals

the position fieldR=__d . Its magnitude is|R|=__e the ratio_ E  of velocity components. The field is F _ to

and its direction is__f . It is the gradient field forf = the streamlines. Drop a leaf onto the flow, and it goes along
g . The level curves are_h , and they are__i _ to G

the vectorsR.
Find a potential f(x,y) for the gradient fields 1-8 Draw the
streamlines perpendicular to the equipotentialsf (x,y) =c.

Reversing this picture, the spin field 8= | . Its mag-
nitude is |S|=__k and its direction is__1 . It is not a C o ' .
. ' ) 1 F=i+2j (constant field 2 F=
gradient field, because no function hay/ox= __m and 1425 ( teld) Xl

0f/0y=__n__. Sis the velocity field for flow going o . 3 F=codx+y)i+codx+y)j 4 F=(1/y)i—(x/y?)j
The streamlines or p lines or integral q are__r . o ) 5 T

The flow field pV gives the rate at which_s  is moved ° F=@xi+2y))/(x+y%) 6 F=x%i+y7]

by the flow. 7 F=xyi+ j 8 F=yi+ j

9 Draw the shear field==xj. Check that it is not a gradient
field: If 0f/0x =0 thendf/dy =x is impossible. What are the
streamlines (field lines) in the direction B?

A gravity field from the origin is proportional td=__t
which has|F|=__u . This is Newton's__v__ square law. It
is a gradient field, with potentialf =__w . The equipotential
curves f(x,y)=c are__x . They are y to the field lines 10 Find all functions that satisfyp f/0x =—y and show that
which are__z . This illustrates that the A  of a function none of them satisfy f /0y = x. Then the spin fiel 8= —yi + xj

f(x,y)is__B __toitslevel curves. is not a gradient field.
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Compute df/0x and @ f/dy in 11-18 Draw the gradient field 32 The equipotentials are the parabolas=x2+c¢ and F is a

F = grad f and the equipotentials f (x,y) =c: gradient field.
. _ 2_ .2 _
11 f=3x+y 12 f=x—3y 33 Show dlr_ectly that the hyperbolasy_z an_d x“—y==3
are perpendicular at the poiri2,1), by computing both slopes
13 f=x+y2 14 f=@x—1)%+y? dy/dx and multiplying to get-1.
15 f=x2—y? 16 f =e* cosy 34 The derivative of f(x,y)=c is fx + fy(dy/dx)=0. Show
17 f=e* Y 18 f=y/x that the slope of this level curve idy/dx=—M/N. It is
perpendicular to streamlines becausé{/N)(N/M) =
Find equations for the streamlines in 19-24 by solvingy/dx = 35 The x and y derivatives of f(r) are df/ox = and
N/M (including a constantC). Draw the streamlines of/dy = by the chain rule. (Tesf = r2.) The equipoten-
o S tials are .
19 F=i—j 20 F=i+4xj
_ — _ — 36 F=(ax+by)i+(bx+cy)j is a gradient field. Find the
21 F=S(spin field) 22 F=S/r (spin field) potential / and describe the equipotentials.
23 F=grad(x/y) 24 F=grad(2x +y).

37 True or false
25 The Earth’'s gravity field is radial, but in a room the field
lines seem to go straight down into the floor. This is because
nearby field lines always look .

1. The constant fieldl+ 2k is a gradient field.

2. For non-gradient fields, equipotentials meet streamlines
at non-right angles.

26 ‘2\ I|ne. of gharg;e S pEOduf:eS the electrostatlc forcg fiete 3. In three dimensions the equipotentials are surfaces instead
R/r* = (xi+yj)/(x*+ y*). Find the potentialf(x, y). (F is also of curves
the gravity field for a line of masses.) 2 o o )
4. F=x“i+y“j+z°k points outward from (0,0,0)—
In 27-32 write down the vector fieldsMi + Nj. a radial field.
27 F points radially away from the origin with magnitude 38 Create and drawf ard F and your own equipotentials and
28 The velocity is perpendicular to the curve$+ y3 = ¢ andthe streamlines.
speed idl. 39 How can different vector fields have the same streamlines?
29 The gravitational forceF comes from two unit masses atg;n:et;’?y have the same equipotentials? Can they have the

(0,0) and(1,0).
30 The streamlines are in this® direction and the speed ds 40 Draw arrows at six or eight points to show the direction and

. . . _ . magitude of each field:
31 The streamlines are circles clockwise around the origin and

thespeed idl. @ R+S (b) R/r=S/r (c) x*i+x? (d) yi.
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I 15.2 Line Integrals

Aline integral isan integral along a curvelt can equal an area, but that is a special
case and not typical. Instead of area, here are two important line integrals in physics
and engineering:

Work along a curve= J F-T ds Flow across a curve: J F-n ds.
c

c
In the first integral F is aforce field In the second integrak, is aflow field. Work
is done in the direction of movement, so we integfatd . Flow is measured through
the curveC, so we integrat& -n. HereT is the unittangentvector, and~-T is the
force component along the curve. Similanlys the unithormalvector, at right angles
with T. ThenF - n is the component of flow perpendicular to the curve.

We will write those integrals in several forms. They may never be as comfortable
asfy(x)dx, but eventually we get them under control. | mention these applications
early, so you can see where we are going. This section concentrates on work, and flow
comes later. (It is also call€tlix—the Latin word for flow.) You recognizés as the
step along the curve, correspondingito on thex axis. WhereJ" dx gives the length
of an interval (it equal$ — a), fds is the length of the curve.

EXAMPLE 1 Flight from Atlanta to Los Angeles on a straight line and a sermliei

According to Delta Airlines, the distance straight wes2@®0 miles. Atlanta is at
(1000,0) and Los Angeles is &at—1000,0), with the origin halfway between. The
semicircle routeC has radiud 000. This is not a great circle routdt is more of a
“flat circle,” which goes north past Chicago. No plane could fly it (it probably goes
into space).

The equation for the semicircle is? + y2 = 1000%. Parametrically this path is
x = 1000cost, y = 1000sin¢. For a line integral the parameter is better. The plane
leaves Atlanta at = 0 and reaches L.A. at= &, more than three hours later. On
the straigh2000-mile path, Delta could almost do it. Around the semicir€lethe
distance i 000r miles and the speed has to H#0 miles per hour. Remember that
speed is distancgs divided by timed't:

ds/dt =~/(dx/dt)? + (dy/dt)? = 10004/ (—sin7)2 + (— cost)2 = 1000.
@
The tangent vector t6' is proportionaltodx/dt,dy/dt) = (—1000sinz, 1000 cost).
But T is a unit vector, so we divide bh000—which is the speed.
Suppose the wind blows due east with foFee- Mi. The components ar®/ and
zero. ForM =constant, compute the dot prodéctT and the work —2000/ :

F-T=Mi-(—sinti+costj= M(—sint)+0(cost) = —M sint

J F-Tds :f (—M sint) (%dl) :J —1000M sint dt = —2000M.
c 0

t= 0

Work is force times distance moved. It is negative, becauswiihe actsagainstthe
movement. You may point out that the work could have been found more simply—go
2000 miles and multiply by M . | would object thathis straight route is a different
path. But you claim thathe path doesn’t matterthe work of the wind is 2000 M

on every path. | concede that this time you are right (but not always).

Most line integrals depend on the path. Those that don’t are crucially important.
For agradient field we only need to know the starting poiRitand the finishQ.
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15B WhenF is the gradient of a potential functigf(x, y), the workfc F-Tds
depends only on the endpointsand Q. The work is the change inf:

If F=0f/oxi+df/dyj then fF-Tds:f(Q)—f(P). )

WhenF = Mi, its componentd/ and zero are the partial derivatives f= M x.
To compute the line integral, just evaluagfeat the endpoints. Atlanta has= 1000,
Los Angeles hast = —1000, and the potential function f = M x is like an
antiderivative

work= f(Q)— f(P) = M(—1000) — M(1000) = —2000M. (3)
LAX ATL LAX ATL
- 1000 1000 - 1000 1000
J F - Tds =-2000M depends on path

Fig. 15.5 Force Mi, work —200QM on all paths. Forcé/yi, no work on straight path.

May | give a rough explanation of the work integ[hF -T ds? It becomes clearer
when the small movemeiitd's is written asdx i + dy j. The work is the dot product
with F:

F-Tds=(a—fi—l—a—fj)-(dxi—i—dyj)=a—fdx+a—fdy=df. (4)
Ox oy ox dy

The infinitesimal work isdf . The total work is[ df = f(Q)— f(P). This is the
Fundamental Theorem for a line integralOnly one warning: Whef is not the
gradient of anyf (Example2), the Theorem does not apply.

EXAMPLE 2 Fly these paths against the non-constant force fiekd Myi.
Compute the work.

There is no force on the straight path where= 0. Along thex axis the wind does
no work. But the semicircle goes up where= 1000sinz and the wind is strong:

F-T (Myi)-(—sinti+costj) = —Mysint = —1000M sir? ¢

i . ds ™ . b
f F-Tds= f (—1000M sirtt)—dt = f —10°M sirtt dt = —=10%M.

¢ 0 dt 0 2
This work is enormous (and unrealistic). But the calculations make an important point—
everything is converted to the parametelThe second point is thét = Myi is not
a gradient fieldFirst reason The work was zero on the straight path and nonzero
on the semicircleSecond reasorNo function has) f/0x = My andd f/dy = 0.
(The first makesf depend ory and the second forbids it. Thisis called ashear
force) Without a potential we cannot substitufeand Q—and the work depends on
the path.
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THE DEFINITION OF LINE INTEGRALS

We go back to the start, to defirjéF-T ds. We can think ofF-T as a function
g(x,y) along the path, and define its integral as a limit of sums:

N
Jg(x,y)ds:limitofz g(xi,yi)As; as (AS)max— 0. (5)
Cc

i=1

The points(x;, y;) lie on the curveC. The last pointQ is (xn, yn); the first point
P is (x¢,y0). The stepAs; is the distance tax;, y;) from the previous point. As the
steps get smallAs — 0) the straight pieces follow the curve. Exactly as in Section
8.2, the special casg = 1 gives the arc length. As long g<x, y) is piecewise con-
tinuous (jumps allowed) and the path is piecewise smooth (corners allowed), the limit
exists and defines the line integral.

Whenyg is the density of a wire, the line integral is the total mass. WhenF - T,
the integral is the work. But nobody does the calculation by formsija\le now
introduce a parameter—which could be the time, or the arc lengthor the distance
x along the base.

The differential ds becomes(ds/dt)dt. Everything changes over to

t=b
f g(xoy)ds = f g0, yOWx/dD2 + dy/ddi. ()

=

The curve starts when=a, runs through the pointéx(¢), y(¢)), and ends when
t =b. The square root in the integral is the spebdd¢. In three dimensions the
points onC are(x (), y(t),z(t)) and(dz/dt)? is in the square root.

EXAMPLE 3 The points on a coil spring arer, y,z) = (cost,sint,t). Find the
mass of two complete turns (from= 0 to t = 4r) if the density isp = 4.

Solution  The key is(dx/dt)? + (dy/dt)> + (dz/dt)> = sirPt +coSt + 1 =

2.
Thusds/dt = /2. To find the mass, integrate the mass per unit length which is
g=p=4

47 ds 47
mass:f pﬁd[:J 43/2dt =1612 7.
0 0

That is a line integral in three-dimensional space. It shows how to introd gt
it misses the main point of this section, because it contains no vectorHieltiis
section is aboutvork, not just mass.

DIFFERENT FORMS OF THE WORK INTEGRAL

The work integralf F-T ds can be written in a better way. The forceRs= Mi+
Nj. A small step along the curve iéx i + dy j. Work is force times distance, but it is
only the force componeralong the pathhat counts. The dot produbt- T ds finds
that component automatically.
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15C The vectorto apointoft isR = xi+ yj. ThendR=Tds=dxi+dy]j:

work=fF-dR=fde+Ndy. @)

Along a space curvethework [sF-Tds= [F-dR= [M dx+ N dy+ P dz

The productM dx is (force inx direction)(movementin direction). This is zero if
either factor is zero. When the only force is gravity, pushing a piano takes no work.
It is friction that hurts. Carrying the piano up the stairs bring®udz, and the total
work is the piano weighP times the change in.

To connect the new F-dR with the old [ F-T ds, remember the tangent vector
T.ItisdR/ds. ThereforeT ds is d R. The best for computationsd&R, because the
unit vectorT has a division byls/dt = \/(dx/dt)2 + (dy/dr)?. Later we multiply
by this square root, in convertirty to (ds/dt)dt. It makes no sense to compute the
square root, divide by it, and then multiply by it. That is avoided in the improved form
[ Mdx+Ndy.

EXAMPLE 4 Vector fieldF = —yi + xj, path from (1,0) to (0, 1): Find the work.

Note 1 This F is the spin fieldS. It goesaroundthe origin, whileR = xi+ yj
goes outward. Their dot productkis R = —yx + xy = 0. This does not mean that
F-dR = 0. The force is perpendicular &, but not to thechangen R. The work to
move from(1,0) to (0, 1), x axis toy axis, is not zero.

Note 2 We have not described the path That must be done. The spin field is
not a gradient field, and the work along a straight line does not equal the work on a
quarter-circle:

straightlinex=1—¢,y =t guarter-circlex = cost, y = sint.

Calculation of work ChangeF-dR = M dx + N dy to the parameter.
1
Straight Iine{—y dx+xdy= J —t(—dt)+(1—t)dt=1
0
/2 e
Quarter-circlef— ydx+xdy = J —sin¢(—sint dt) +cost(cost dt) = >
0
General method The path is given by (¢) andy(¢). Substitute those intd? (x, y)
and N(x,y)—thenF is a function oft. Also find dx/dt anddy/dt. Integrate
M dx/dt+ N dy/dt from the starting time to the finish.

——iy
F=S§8
F«T=0
—_— j F-dR = 1 . work m/2 ) no work

Fig. 15.6 Three paths fof F-dR= [—y dx+xdy =1,7/2,0.
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For practice, take the path down theaxis to the origin(x =1—t,y =0). Then
go up they axis(x =0,y =¢ —1). The starting time af1,0) is t = 0. The turning
time at the origin ig = 1. The finishing time at0, 1) is ¢t = 2. The integral has two
parts because this new path has two parts:

Bent pathf —ydx+xdy=0+0(y =0o0n one part, them =0).

Note 3 The answer depended on the path, for this spin field S. The answer did
notdepend on the choice of parameter. If we follow the same path at a different speed,
the work is the same. We can choose another parametsince (ds/dt)dt and
(ds/dt)dt both equalds. Traveling twice as fast on the straight pgth= 1 — 2z,

y =2t) we finish atr = % instead of = 1. The work is still1:

1/2

1/2
f—ydx—l—xdy:f (—21)(—2dr)—|—(1—2r)(2dr)=J 2dt=1.
0 0

CONSERVATION OF TOTAL ENERGY (KINETIC 4 POTENTIAL)

When a force field does work on a mass it normally gives that mass a new
velocity. Newton’s Law isF =ma=mdv/dt. (It is a vector law. Why write out
three components?) The woﬂF -dRis

J(m dv/dt)-(vdt) = %mv-v]i =1mv(Q))?—im|v(P)*. (8)

The work equals the change in the kinetic energyn |v|2. But for a gradient field
the work is also thehange in potential-with a minus sign from physics:

\mm=deR=—ﬁﬁ=fuq—ﬂQy 9)

Comparing(8) with (9), the combinatiori—m |v|2 + f is the same aP andQ. The
total energy, kinetic plus potential, is conserved

INDEPENDENCE OF PATH: GRADIENT FIELDS

The work of the spin fieldS depends on the path. Exampletook three paths—
straight line, quarter-circle, bent line. The work wiasr/2, and0, different on each
path. This happens for more th&9.99% of all vector fields. It does not happen
for the most important fields. Mathematics and physics concentrate on very special
fields—for which the work depends only on the endpoints. We now explain what
happenswhen the integral is independent of the path

Suppose you integrate frof to O on one path, and back t8 on another path.
Combined, that is alosed pattfrom P to P (Figurel5.7). But a backward integral
is the negative of a forward integral, sind® switches signlf the integrals from
P to Q are equal, the integral around the closed path is zero

P o P ) (9]
§ FdR:f FdR+J FdR:J FdR—J F-dR=0. (10)
P P o P P

closed path 1 back path 2 path 1 path 2

The circle on the first integral indicates a closed path. Later we will drop’the
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Not all closed path integrals are zero! For most fiekgsdifferent paths yield
difecenbuntkaFabsansRitmadykietdesadiratis Yield e gasxtivion: tbheedige
which fields are conservative, without trying all paths? Here is the crucial
information about conservative fields, in a plane regwith no holes

15D F= M(x,y)i+ N(x,y)j is a conservative field if it has these propertief:

"z

A. The workf F-dR around every closed path is zero.

B. The workfIQ, F-dR depends only o andQ, not on the path.
C. Fisagradientfield M =0 f/0x andN = 0 f /0y for some potentiaf (x, }f).
D. The components satisyM /0y = ON/0x.

A field with one of these properties has them Bllis the quick test.

These statementd —D bring everything together for conservative fields (alias
gradient fields). A closed path goes one wayQoand back the other way t&.
The work cancels, and statemeAtsandB are equivalent. We now connect them to
C. Note TestD says that thecurl” of F is zero. That can wait for Green’s Theorem
in the next section—the full discussion of the curl come$arb.

First,a gradient fieldF = grad f is conservativeThe work is f(Q) — f(P), by
the fundamental theorem for line integrals. It depends only on the endpoints and not
the path. Therefore statemdnteads back td.

Our job is in the other direction, to show that conservative fidlis+ Nj are
gradients. Assume that the work integral depends only on the endpoints. We must
construct a potentiaf’, so thatF is its gradient. In other words),f /0x must beM
andd f/0y must beN .

Fix the pointP.Definef(Q)as the work to reachQ.ThenF equals grad f.

Check the reasoning. At the starting pofit f/ is zero. At every other poin®, f is

the work | M dx + N dy to reach that poinfll paths from P to Q give the same
f(Q), because the field is assumed conservative. After two examples we prove that
grad f agrees withHF—the construction succeeds.

back path 2

path 1
Fig. 15.7 Conservative fields§F-dR =0 andjlg F-dR= f(Q)— f(P).Heref(P)=0.

EXAMPLE 5 Find f(x,y) when F=Mi+Nj=2xyi+x?%). We want
0f/0x =2xyanddf/dy =x2.

Solution 1  ChooseP = (0,0). IntegrateM dx + Ndy along to(x,0) and up to
(x.y):

(x,0) (x,y)
f 2xy dy =0 (sincey =0) J x2dy = x2y (whichis f).
(0,0) (x,0)
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Certainly f = x?y meds the requirementsfy = 2xy and f, = x2. ThusF = grad
f. Note thatdy = 0 in the first integral (on the axis). Thendx = 0 in the second
integral (x is fixed). The integrals add tf = x?y.

Solution 2 Integrate2xy dx + x2dy on the straight ling(xz, yt) from ¢t =0 to
t=1:

1 1
f 2(xt)(yt)(xdt)+(xt)z(ydt):J 3x2yt?dt = x*yt3]) = x2y.
0 0

Most authors use Solution 1l use Solutior2. Most students use Solution:3

Solution 3 Directly solved f/0x = M = 2xy and then fix uplf/dy = N = x*:

0f/0x =2xy gives f =ux2y (plusany function ofy

In this examplex?y already has the correct derivatigef /0y = x2. No additional
function of y is necessary. When we integrate with respect td¢he constant of
integration(usuallyC) becomes a functio@(y).

You will get practice in findingf'. This is only possible for conservative fields! |
testedW = 2xy andN = x2 in advance (usin®) to be sure tha® M /dy = ON/0x.

EXAMPLE 6 Look for f(x,y)whenMi—+ Nj is the spin field—yi + xj.
Attempted solution 1 Integrate—y dx + x dy from (0,0) to (x,0) to (x, y):

(x,0) (x,y)
f —ydx=0 and J x dy = xy (which seems likef).
(0,0) (x,0)

Attempted solution 2 Integrate—y dx + x dy on the line(x¢, yt) from¢ =0to 1:

1
J —(yt)(xdt)+ (xt)(ydt) =0 (adifferentf, also wrong.
0

Attempted solution 3 Directly solved f/0x = —y and try to fix upd /0y = x:
0f/0x=—y gives f =—xy (plus any functiorC(y)).

The y derivative of thisf is —x +dC/dy. That does not agree with the required
0 f/0y = x.Conclusion: The spin field-yi + xj is not conservativeThere is no
f. TestD givesoM /0y = —1 and0N/0x = +1.

To finish this section, we move from examples to a proof. The potefitid) is
defined as the work to reaagh. We must show that its partial derivatives & and
N. This seems reasonable from the formyleQ) = [ M dx + N dy, but we have
to think it through.

Remember stateme#, that all paths give the samg&(Q). Take a path that goes
from P to the left of Q. It comes in toQ on a liney = constant (saly = 0). As the
path reacheg), we are only integratind/ dx. The derivative of this integral, a2,
isd f/0x = M. That is the Fundamental Theorem of Calculus.

To show thatd /0y = N, take a different path. Go fron® to a point belowQ.
The path comes up @ on a vertical line (sa@/x = 0). NearQ we are only integrating
Ndy,sodf/dy=N.

The requirement that the region must have no holes will be critical fobxest
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EXAMPLE 7 Find f(x.y) = [{o.o)

oM/0y.

Solution 1 f(x’o)xdx = 1x2 isadded tof

(0,0)

643

xdx+ ydy. TestD is passeddN/ox =0 =

(x,0)
(0,0

ydy =3y>.

Solution 2 f(l)(xt)(x dt)y+ (yt)(ydt) = j"(l)(x2 +y2)ede =1 (x?+y?).

Solution 3 0f/0x = x gives f = 1x2+ C(y). Thend /0y = y needC(y) =

1.2
2y

15.2 EXERCISES

Read-through questions

of F-dR. HereF isthe_b andR is
the _c . The__d product finds the component of e
in the direction of movemend R = dxi+dyj. The straight path
(x,y)=(t,2t) goes from__f atr=0to g atr=1 with
dR=dti+__h The work of F=3i+j is [F-dR=

i di=

Another form ofdR is T ds, whereT isthe___k  vector to the
path andds =+/__| . For the path(z,2¢), the unit vectorT is
m_andds=__n_dt.ForF=3i+j,F-Tdsisstill__o dt.
This F is the gradient off = p . The change inf =3x+y

from (0,0)to (1,2)is q

Work is the _a

When F = grad f, the dot productF-dR is (0f/dx)dx +

r__=df. The work integral fromP to Q is {df =__s . In
this case the work depends on thet  but not on the _u
Around a closed path the workis v__. Thefield is called _w__.
F=(1+y)i+xj is the gradient off =__x

. The work from
(0,0)to(1,2)is y ,the change in potential.

For the spin field S=__z
depend on the path. The patlix,y)= (3cost,3sint) is a
circle with S:dR=__A . The work is_B  around the
complete circle. Formally g(x, y)ds is the limitofthesum_C .

The four equivalent properties of a conservative field ™

F=Mi+NjareA:_ D ,B._E ,C:_ F ,andD:_ G

Test D is (passed)(not passed) bBy= (y+1)i+xj. The work
JF-dR around the circle (cossinz) is __H . The work on
the upper semicircle equals the work onl . This field is the

gradientof f =_ J ,sotheworktq—1,0)is__ K .

Compute the line integrals in 1-6
1 fc dsand [, dy:x=t,y=2t,0<r<1.
2 [.xdsand [ xyds: x=cost, y=sint,0<1<m/2.
3 [, xyds: bent line from(0,0) to (1,1) to (1,0).
4 [, ydx—xdy:any square path, sides of length 3.

, the work (does)(does not)q7

5 [.dxand [, ydx:any closed circle of radius 3.
[.(ds/dt)dt: any path of length 5.

[e)]

Doesjgxy dy qual%xyz]g?

~

(o]

Doesfgx dx quaI%xz]g?
9 Does(J ds)?=(J, dx)?>+ (/. dy)®?

10 Does|,(ds)? make sense?

In 11-16 find the work in moving from (1, 0) to (0, 1). When F is
conservative, constructf. choose your own path when F is not
conservative

11

F=i+yj 12 F=yi+j

13 F=xy2i+ yx?j 14 F=eVi+xe?j

15 F=(x/r)i+(y/r)j 16 F=—y2i+x?j

For which powers: is S/r"* agradient by tesD?
18 For which powers: is R/r" agradient by tesb?

A wire hoop around a vertical circle? + z2 = a2 hasdensity
a+z. Find its mass = [ pds.

19

20 A wire of constant density lies on the semicircle:2 + y2 =
a2,y >0. Find its massM and also its momeni/y = [pyds.
Where is its center of mass= My /M, y = Mx/M?

21 If the density around the circle? 4+ y2 = a2 is p = x2, what is
the mass and where is the center of mass?

22 Find [F-dR along the space curve=t,y=12z=13,
0<r<l1.

(&) F=gradxy+xz) (b) F=yi—xj+zk

23 (a) Find the unit tangent vectdr andthe speedis/dt along
the pathR = 2ri +12j.
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(b) For F=3xi+4j, find F-Tds using (a) andF-dR 33 F=yi—xj 34 F=(xi+y)/(x2+y%+1)

directly.

(c) Whatis the work from(2, 1) to (4,4)? 35 For which numbersa ard b is F=axyi+(x2+by)j a
24 If M(x,y.2)i+ N(x,y,2)j is the gradient off(x, y,z), show gradient field?
that none of these functions can depend:on 36 Compute [ —ydx+xdy from (1,0) to (0,1) on the line
25 Find all gradient fields of the formM ()i + N(x)j. x=1-r*y=¢% and the quarter-circler =cos2z, y =sin2z.

) Example4 found 1 andx /2 with different parameters.
26 Compute the workiW(x,y) = [ M dx+ N dy on the straight

line path (xz, yt) from ¢ =010 7 = 1. Test to see iWW/ox =M Apply the test Ny = M, to 37—-42. Find f when test D is passed

andow/dy =N.
(@) M=y3 N =3xy2 (b) M =x3 N =3yx2 37 F=y2eXi—2ye¥j 38 F=y®*i—2ye%j
() M=x/y,N=y/x d M=t N=etr o o xi+yj _ radxy
|xi+ yjl lgradxy |
27 Find a fieldF whose work around the unit squafge = 0 then ) )
x =1theny = 1 thenx = 0) equalst. 41 F=R+S 42 F=(ax+by)i+ (cx+dy)j

28 Find a nonconservativé whose work around the unit circle oo )
X242 —1is zero. 43 Around the unit circle findds and§dx and§xds.
In 29-34 compute [F-dR along the straight line R=ri+7 4 Tueorfalsewith reason:

and the parabola R= ri+2j, from (0,0) to (1,1). When F is a (@ WhenF = yi the line integral[ F-dR along a curve from

gradient field, use its potential £ (x, y). P to Q equals the usual area under the curve.
(b) That line integral depends only ah and Q, not on the
29 F=i-2j 30 F=x? curve.

31 F=2xy2i+2yx?j 32 F=x2yi+xy?| (c) That line integral around the unit circle equals
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I 15.3 Green's Theorem [

This section contains the Fundamental Theorem of Calculus, extended to two
dimensions. That sounds important and it is. The formula was discotéfegears

after Newton and Leibniz, by an ordinary mortal named George Green. His theorem
connects aouble integral over a regiorR to aline integral along its boundary

C.

The integral ofdf/dx equals f(b) — f(a). This connects a one-dimensional
integral to a zero-dimensional integral. The boundary only contains two poentsl
b! The answerf(b) — f(a) is some kind of a “point integral.” It is this absolutely
crucial idea—to integrate a derivative from informatiat the boundary-that
Green’s Theorem extends into two dimensions.

There are two important integrals arou6d Theworkis [F-T ds= [ M dx +
N dy. Theflux is [F-nds= [ M dy — N dx (notice the switch). The first is for
a force field, the second is for a flow field. The tangent ve€tturns90° clockwise
to become the normal vector Green’s Theorem handles both, in two dimensions.
In three dimensions they split into the Divergence Theorem (15.5) and Stokes’
Theorem (15.6).

Green'’s Theorem applies to “smooth” functioh&x, y) and N(x, y), with con-
tinuous first derivatives in a region slightly bigger thRnThen all integrals are well
defined.M and N will have a definite and specific meaning in each application—to
electricity or magnetism or fluid flow or mechanics. The purpose thfemremis to
capture the central ideas once and for all. We do that now, and the applications follow.

15E Green’s Theorensuppose the regioR is bounded by the simple closgd
piecewise smooth curv€. Then an integral oveR equals a line integral arounjd

§de+Ndy=ff (a—N—aﬂ)dxdy. Q)
c rR\0x 0y

A curve is “simple” if it doesn't cross itself (figur&s are excluded). It is “closed” if

its endpointQ is the same as its starting poiAt This is indicated by the closed circle

on the integral sign. The curve is “smooth” if its tang@nthanges continuously—
the word “piecewise” allows a finite humber of corners. Fractals are not allowed,
but all reasonable curves are acceptable (later we discuss 8guaiad rings). First
comes an understanding of the formula, by testing it on special cases.

—_\det
dx

/%- = strip
x,dy dy Xydy arca

% dx

Fig. 15.8  Area of R adds up stripsf x dy = [[dxdy and§ y dx = — [[ dy dx.



646

15 Vector Calculus

Special case 1 M =0 andN = x. Green’s Theorem wit N/0dx = 1 becomes

§ xdy= Jf 1dxdy (whichisthe area oR). (2)
c R

The integrals look equal, because the inner integralxofs x. Then both integrals
havex dy—but we need to go carefully. The area of a layerfbfs dy times the
difference inx (the length of the strip). The line integral in Figure 15.8 agrees. It has
an upwarddy timesx (at the right) plus a downwarddy timesx (at the left). The
integrals add up the strips, to give the total area.

Specialcase2 M = y andN =0and§ . y dx = [[(—1)dx dy = —(area ofR).

Now Green’s formula has a minus sign, because the line integratsterclock-
wise The top of each slice hake < 0 (going left) and the bottom hakx > 0 (going
right). Theny dx at the top and bottom combine to gi@nusthe area of the slice in
Figure 15.8b.

Special case 3¢ 1dx =0. Thedx’s to the right cancel thex’s to the left (the
curve is closed). WitlM = 1 andN =0, Green’s Theorem i8 = 0.

Mostimportant case Mi+ Njisagradientfield It has a potential functioif (x, y).
Green’s Theorem i8 = 0, becausedM /0y = ON/0x. This is testD:

oM 0 (Of . ON 0 (0f
(ﬂ = f— ((ﬂ—f) is the same aéT = :— ((ﬂ‘f ) . (3)
dy dy \ 0x ox ox \ 0y

The cross derivatives always satisff,x=fx,. That is why gradient fields pass
testD.
When the double integralis zero, the line integral is also zﬁEoM dx+Ndy=
0. The work is zeroThe field is conservativeThis last stepiA =B=C=D=
A will be complete when Green’s Theorem is proved.
Conservative examples afex dx = 0 and§ y dy = 0. Area is not involved.

Remark The special case$ x dy and— ¢ y dx led to the area oR. As long as
1=0N/dx —0dM/dy. the double integral becomd$ 1 dx dy. This gives a way to
compute area by a line integral.
. 1
Theareaolesﬁxdy:—év ydxz—%(xdy—ydx). (4)
c c 2 Jc
EXAMPLE 1 The area of the triangle in Figure 15.QisCheck Green’s Theorem.
The last area formula i4) uses3S, half the spin field. N =1x and M = —1y
yield Ny — My, = 1 + 3 = 1. On one side of Green’s Theoremf§$ 1 dx dy = area

-2
of triangle. On the other side, the line integral has three pieces.

(0, b)

X=acos f
yv=hsinr

(a, 0)

y=0

Fig. 15.9 Green’s Theorem: Line integral around triangle, area intefgrallipse.
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Two pieces are zerot dy —y dx =0 on the sides where =0 andy =0. The
sloping sidex =2—y hasdx = —dy. The line integral agrees with the area,
confirming Green’s Theorem:

1 1 (? 1 (?
—¢ xdy—ydx== Q2—y)dy+ydy==\ 2dy=2.
2])c 2 Jy=o 2 Jo

EXAMPLE 2 The area of an ellipse istab when the semiaxes have lengths
aandb.

This is a classical example, which all authors like. The poimstee ellipse are

X =acost,y = bsint, ast goes fronD to 2. (The ellipse ha$x/a)? + (y/b)? =

1.) By computing the boundary integral, we discover the area inside. Note that the
differentialx dy — y dx is justab dt:

(a cost)(b cost dt) — (b sint)(—a sint dt) = ab(co$ ¢ +sin? t)dt = ab dr.

The line integral is%fé”ab dt = mab. This arearrab is nr?, for a circle with
a=b=r.

Proof of Green’s Theorem In our special cases, the two sides of the formula
were equal. We now show that they are always equal. The proof uses the Funda-
mental Theorem to integrat@ N/dx)dx and(dM/0dy)dy. Frankly speaking, this
one-dimensional theorem is all we have to work with—since we don’t kivbvand
N.

The proof is a step up in mathematics, to work with symbdisand N instead of
specific functions. The integral i{®) below has no numbers. The idea is to deal with
M andN in two separate parts, which added together give Green’s Theorem:

M N
§ Mdx = Jf —a—dx dy and separately § Ndy= Jf 0_ dx dy.
c R 0y c R Ox

®)
Start with a “very simple” region (Figure 15.10a). Its top is givenyby: f(x) and
its bottom byy = g(x). In the double integral, integratedM /0y first with respect
to y. The inner integral is

&g £@)
| Sty =—Me)]] =M )+ M ). 6

The Fundamental Theorem (in thyevariable) gives this answer that dependswon
If we knew M and f andg, we could do the outer integral—from=a to x = b.
But we have to leave it and go to the other side of Green’s Theorem—the line integral:

a b
M(x,y)a’x=L M(x,f(x))dx—i—f M(x,g(x))dx.
)

bottom

ffM dx =J M(x,y)dx +
top



648 15 Vector Calculus

y=2g(x) I Mdx

Fig. 15.10 Very simple region (a-b). Simple region (c) is a union of very simple regions.

Compareg(7) with (6). The integral ofM (x, g(x)) is the same for both. The integral
of M(x, f(x)) has a minus sign fror(6). In (7) it has a plus sign but the integral is
from b to a. So life is good.

The part for N uses the same idea. Now theintegral comes first, because
(ON/0x)dx is practically asking to be integrated—from= G(y) at the left tox =
F(y) atthe right. We reacV (F(v),y) — N(G(»), y). Then they integral matches
§ N dy and complete5). Adding the two parts of5) proves Green's Theorem.

Finally we discuss the shape &. The broken ring in Figure 15.10 is not “very
simple,” because horizontal lines go in and out and in and out. Vertical lines do the
same. Ther andy strips break into pieces. Our reasoning assumed no break between
y = f(x) atthe top and = g(x) at the bottom.

There is a nice idea that saves Green’s Theorem. Separate the broken ring into
three very simple region®;, R,, R3. The three double integrals equal the three
line integrals around th&’s. Now add these separate resuylts produce the double
integral over all ofR. When we add the line integratfie crosscut€ C are covered
twice and they cancelThe cut betweeR; and R, is covered upward (aroungl;)
and downward (arounfl,). That leaves the integral around the boundary equal to the
double integral inside—which is Green’s Theorem.

When R is a complete ring, including the pied&,, the theorem is still true. The
integral around the outside is still counterclockwise. But the integraldskwise
around the inner circleKeep the regionR to your left as you go around”. The
complete ring is “doubly” connected, not “simply” connected. Green’'s Theorem
allows any finite number of region®; and crosscut€ C and holes.

EXAMPLE 3 The area under a curvefsz y dx, as we always believed.

In computing area we never noticed the whole boundary. The true area is a line
integral— § y dx around theelosed curven Figure 15.11a. Bup = 0 on thex axis.

Also dx = 0 on the vertical lines (up and down Atanda). Those parts contribute
zero to the integral of dx. The only nonzero part is back along the curve—which is
the area— [, y dx or fz y dx that we know well.

What about signs, when the curve dips below thaxis? That area has been
counted as negative since Chapter 1. | saved the proof for Chapter 15. The reason
lies in the arrows oit.

The line integral around that pagbes the other wayrhe arrows are clockwise,
the region is on theight, and the area counts as negative. With the correct rules, a
figure 8 is allowed after all.
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dr:ON: Yl =J‘IJ velx Flsin?

£ b =0=0

TG O,
\jﬂh g infinite spin

at the center

Fig. 15.11 Closed path gives the sign of the area. Nonconservative fielliseoof hole.

CONSERVATIVE FIELDS

We never leave gradients alone! They give conservative fields-wtirk around a
closed path isf(P) — f(P) = 0. But a potential functionf(x, y) is only available
when testD is passedif 0f/ox =M anddf/0y = N thendM/0y = 0N/ 0x.
The reason is thafty, = fx.

Some applications prefer the language of “differentials.” Instead of looking for
f(x,y), we look fordf:

DEFINITION The expressioM (x, y)dx + N(x,y)dy is adifferential form. When
it agrees with the differentialf = (0 f/0x)dx + (0 f/0y)dy of some function, the
form is calledexact The test for an exact differential 3: 0N/0x = 0M/0y.

Nothing is new but the language. ys/x an exact differentialXo, becausé/, =1
and N, =0. Is y dx + x dy an exact differential¥es it is the differential of f =
xy. That is the product rule! Now comes an important example, to show &hy
should besimply connecteda region with no holes).

EXAMPLE 4  The spin fieldS/r? = (—yi + xj)/(x 2+ y?) almostpasses tedd.

N O (X \N_ X =xQo) 0y N =4y +yQy)
*7 ox x2+ y2 - (x2 4 y2)2 - J’_ay x2+y2 - (x2+y2)2 )

Both numerators are? — x2. TestD looks good. To findf, integrateM = 0 f/0x:
Fen = [~y /24y —tan /0 +CO.

The extra parC(y) can be zero—the derivative oftan!(y/x) gives N with no
help fromC(y). The potential f is the anglef in the usual, y, r right triangle.

TestD is passed andF is grad 8. What am | worried about? It is only this,
that Green’s Theorem on a circle seems to gi2e = 0. The double integral is
[J (Nx — M,)dx dy. According to(8) this is the integral of zero. But the line integral
is2m:

ffF {dR = ff(—y dx +xdy)/(x*>+ y?)=2areaof circle/a*=2ra®/a® =27.
9)

With x = a cost andy = a sint we would find the same answéthe work is2x
(not zero!')when the path goes around the origin
We have a paradox. If Green’s Theorem is wrong, calculus is in deep trouble. Some
requirement must be violated to reazh = 0. Looking atS/r2, the problem is at
the origin. The field is not defined when= 0 (it blows up). The derivatives i(8)
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are not continuous. TeEt does not apply at the origin, and was not pasd&@.could
remove(0,0), but then the region where teBtis passed would have a hole

It is amazing how one point can change everything. When the path circles the
origin, the line integral is not zerdhe potential function f = 6 increases by .
That agrees with| F-dR =2 from (9). It disagrees with[[ 0 dx dy. The2x is
right, the zero is wronglV,, — M, must be a telta function of strengtz.”

The double integral i27 from an infinite spike over the origin—even though
Ny = M, everywhere else. In fluid flow the delta function is a “vortex.”

FLOW ACROSS A CURVE: GREEN'S THEOREM TURNED BY 90°

A flow field is easier to visualize than a force field, because something is really there
and it moves. Instead of gravity in empty space, water has veldfity, y)i + N(x, y)j.

At the boundaryC it can flow in or out. The new form of Green’s Theorem is a
fundamental “balance equation” of applied mathematics:

Flow through C (out minus in)= replacement inR (source minus sink).

The flow issteady Whatever goes out through must be replaced iR. When there
are no sources or sinks (negative sources), the total flow thréugtust be zero.
This balance law is Green’s Theorem in its “normal form” (foy instead of its
“tangential form” (forT):

15F For a steady flow field = M (x, y)i + N(x, y)j, the flux [ F-n ds through
the boundaryC balances the replacement of fluid insille

ff Mdy— Ndx_ﬁ (aﬂ+a—N)dxdy. (10)

Figure 15.12 shows thg0° turn. T becomes and “circulation” alongC becomes
flux throughC. In the original form of Green’s Theorem, chanjeand M to M and
— N to obtain the flux form:

%M dx+ N dy — é—N dx+ M dy JJ(NX —My)dxdy — JJ(MX + Ny)dx dy.

(11)

Playing with letters has proved a new theorem! The two left sidgd I) are equal,
so the right sides are equal—which is Green’s Theo(&@) for the flux. The
componentd/ andN can be chosen freely and named freely.

The change takes/i+ Nj into its perpendicular field-Ni+ Mj. The field is
turned at every point (we are not just turning the plané®s). The spin fieldS=
—yi+ xj changes to the position fiel = xi + yj. The position fieldR changes to
—S. Streamlines of one field are equipotentials of the other field. The new(fbdn
of Green’s Theorem is just as important as the old one—in fact | like it better. It is
easier to visualize flow across a curve than circulation along it.
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circulation

FeTds = Mdx + Ndy 4~ ..
Tds C

dy
idy

—jdx  nds Fends = Mdy — Ndx ™’ flux

Fig. 15.12 The perpendicular componeftn flows throughC. Notends =dyi—dxj.

The change of letters was just for the proof. From nowea Mi+ Nj.

EXAMPLE 5 Compute both sides of the new forth0) for F = 2xi+ 3yj. The
regionR is a rectangle with sides andb.

Solution This field hasoM/0x +0N/0y =2+3. The integral overR is
ffRde dy =5ab. The line integral has four parts, becauRehas four sides.
Between the left and right sided/ = 2x increases byYa. Down the left and up
the right,fM dy =2ab (those sides have length). Similarly N = 3y changes by
3b between the bottom and top. Those sides have langib they contribut8ab to
a total line integral obab.

Important:The “divergence” of a flow field is0M/dx + ON/dy. The example
has divergence= 5. To maintain this flow we must replacgeunits continually—not
just at the origin but everywhere. (A one-point source is in example 7.) The diver-
gence is the source strength, because it equals the oufitounderstand Green’s
Theorem for any vector field/i + Nj, look at a tiny rectangle(sidesdx and

dy):
Flow out the right side minus flow in the left sigde(change inM) timesdy
Flow out the top minus flow in the bottom (change inV) timesd x
Total flow out of rectangled M dy + dN dx = (OM/0x +0N/0y)dx dy.

The divergence times the areax dy equals the total flow outSectionl 5.5 gives
more detail with more care in three dimensions. The divergenk&,is- Ny, + P;.

flux 3ab F= 2” N + dN
ball tAY e :
5 N
: flux dy M -bf =M + dM
M 2ab N
0 & = Ty

Fig. 15.13 Mx+ Ny, =2+3=5 yields flux =5(areg =5ab. The flux is dM dy +
dN dx = (Mx+ Ny)dx dy. The spin field has no flux.

EXAMPLE 6 Find the flux through a closed cunég of the spin fieldS= —yi+
Xj.

Solution  The field hasM = —y andN = x andM, + N, = 0. The double inte-
gral is zera Therefore the total flow (out minus in) is also zero—through any closed
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curve. Figure 15.13 shows flow entering and leaving a square.uibifl added or
removed. There is no rain and no evaporatifhen the divergencé/, + N, is
zero, there is no source or sink

FLOW FIELDS WITHOUT SOURCES

This is really quite important. Remember that conservatividdiedo no work
aroundC, they have a potentialf, and they have “zero curl.” Now turn those
statements throug®0°, to find their twins. Source-free fields have no flux
through C, they have stream functiong, and they have'zero divergencé.
The new statements—F—G—H describe fields without sources.

15G The fieldF = M (x, y)i + N(x, y)j is source-free if it has these propertigs:
E The total fluxgﬁ F-nds through every closed curve is zero.

F Across all curves fronP to Q, the fluxf% F-nds is the same.
G Thereis astream functiong (x, y), for whichM = dg/dy andN = —dg/dx.
H The components satisiM/0dx + dN/dy = 0 (the divergence is zejo
A field with one of these properties has them Hlllis the quick test.

The spin field—yi+ xj passed this test (Example 6 was source-free). The field
2xi+ 3yj does not pass (Example 5 hMi, + N, = 5). Example7 almost passes.

EXAMPLE 7 The radial fieldR/r? = (xi+ yj)/(x%+ y?) has apoint source
at(0,0).

The new tesH is divergence= 0M/0x + 0N/dy = 0. Those two derivatives are

( x ):x2+y2—X(ZX) g 0( y ):x2+y2—y(2Y)_ (12)

ar] —_—
x2+y2 (x2_|_y2)2 ay x2_|_y2 (x2_|_y2)2

They add to zero. There seems to be no source (if the calculation is correct). The flow
through a circlex? 4 y2 = a? should be zero. But it's not:

%M dy—Ndx = %(x dy —y dx)/(x* + y?) = 2(area of circlg/a? = 2.

(13)
A source is hidden somewhere. LookingRjtr2, the problem is af0,0). The field
is not defined whem = 0 (it blows up). The derivatives i{il2) are not continuous.
TestH does not apply, and was not passed. The divergéhce- N, must be a “delta
function” of strengtt2r. There is gpoint sourcesending flow out through all circles.

| hope you see the analogy with Example 4. The f8la-? is curl-free except at
r =0. The fieldR/r? is divergence-free exceptat= 0. The mathematics is parallel
and the fields are perpendicular. A potentjaland a stream functiog require a
region without holes.



15.3 Green’s Theorem

THE BEST FIELDS: CONSERVATIVE AND SOURCE-FREE

What if F is conservative and also source-fre€hose are outstandingly important
fields. The curl is zero and the divergence is zero. Because the field is conservative, it
comes from a potential. Because it is source-free, there is a stream function:

0 0 0
M = f:_ and N:;—fz—ﬁ—g.
X y ay ox

D]

-~

(14)

D
D

Those are theCauchy-Riemann equations, named after a great mathematician of
his time and one of the greatest of all time. | can’t end without an example.

EXAMPLE 8 Show thatyi + xj is both conservative and source-free. Fificandg.

Solution ~ With M =y andN = x, check firstthad M /0y =1 = 0N/0x. There
must be a potential function. It i§=xy, which achieve® f/0x=y andd f/dy =
x. Note thatfyx + fy, =0.

Chelck next thabM/0x + ON/0dy =0+ 0. There must be a stream function. It

is g=2(y* —x?), which achieves)g/dy=y and dg/dx=—x. Note thatg., +

gyy=0.

The curves f = constant are the equipotentials. The curges constant are
the streamlines (Figure 15.4). These are the twin properties—a conservative field with
a potential and a source-free field with a stream function. They come together into
the fundamental partial differential equation of equilibrium—Laplace’s equation

Jxx+ fyy =0.

15H There is a potential and stream function whiep = N, and M, = —N,,.
They satisfyLaplace’s equation

Jxx = foy =My - Ny =0 and 8xx+8yy=—Nx+M;,=0. (15)

If we have f withoutg, asin f = x?+ y? andM = 2x andN =2y, we don’thave
Laplace’s equationyx, + f,, =4. This is a gradient field that needs a source. If
we haveg without £, as ing = x>+ y2 andM =2y andN = —2x, we don’t have
Laplace’s equation. The field is source-free but it has spin. The first fi@R iand
the second field i2S.

With no source and no spin, we are with Laplace at the center of mathematics and
science.

Green’s TheoremTangential formf F- T ds and normal formf F-n ds

§ M dx+N dy=fj (Nx—My)dxdy § M dy—N dx=JJ (Mx+Ny)dx dy
c R c R
work curl flux divergence

Corservative: work= zero,Ny = M,,, gradient of a potentiald/ = f, andN = f;
Source-free: flux=zero,M, =—N,,, has a stream functiod? =g, andN =—gx
Conservativet source-free: Cauchy-RiemarnLaplace equations fof andg.
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15.3 EXERCISES

Read-through questions

The work integralf M dx + N dy equals the double integral a
by _ b ’'s Theorem. ForF=3i+4j the work is_c . For

F=_d and__e , the work equals the area @@. When

M =0f/ox and N =0 f/0y, the double integral is zero becausgroundx — cost

. The line integral is zero because g
F=_h . The direction onC is __i
j around the boundary of a hole. R is broken into very
simple pieces with crosscuts between them, the integrals bf
cancel along the crosscuts.

. An example is

f

Test D for gradient fields is__| . A field that passes this
test hasgS F-dR=__m . Thereis asolutiontgy=__n__and
fy=_0 .Thendf=Mdx+Ndyisan p differential.

The spin fieldS/r2 passes tesb except at q . lts potential

f=_r increases by s going around the origin. The
integral [[(Nx — My)dx dy isnot zerobut_t .

The flow form of Green’s Theoremis u =__v . The nor-
mal vector in F-nds points __ w__ and |n|=_x _ andnds
equalsdy i—dxj. The divergence oMi+Njis y .ForF=

around the outside and

10 For constantd and ¢, how is § by dx +cx dy related to the
area insideC ? If b = 7, which ¢ makes the integral zero?

A/x2+y2, show in three ways thaf F-dR =0
y =sint.

(@) Fisagradientfieldso .

(b) ComputeF and directly integraté& - dR.

(c) Compute the double integral in Green’s Theorem.

12 Devise a way to find the one-dimensional theorem
jZ (df/dx)dx = f(b)— f(a) as a special case of Green’s
Theorem wherr is a square.
13 (a) Choosex(t) and y(t) so that the path goes frorti,0)
to (1,0) after circling the origintwice
(b) Computed y dx and compare with the area inside your
path.
(c) Computef(y dx —x dy)/(x? + y?) and compare witBx
in Example 7.

11 ForF=grad

14 In Example 4 of the previous section, the woikS-dR

xi the double integral is_z . There (is)(is not) a source. Forpetween (1,0) and (0,1) was 1 for the straight path andr/2

F = yi the divergence is_A . The divergence oR/r? is zero
exceptat B . Thisfieldhasa C source.

A field with no source has properti€&s=__ D ,F=_ E

G= F_, H= zero divergence. The stream functiog
satisfies the equations__ G Then 0M/0x+0N/dy =0
because 0%g/dxdy=__H . The exampleF=yi has g=

| _. There (is)(is not) a potential function. The exampléb

F=xi—yj hasg=_J andalsof=__K . This f satisfies
Laplace’s equation L , because the fieldF is both _ M
and__ N . The functionsf and g are connected by the O
equation® f/ox =0dg/dy and_P__.

Compute the line integrals 1-6 and (separately) the double in-
tegrals in Green’s Theorem (1) The circle hasx =acost, y =
asint. The triangle has sidesx =0, y =0, x+y = 1.

1 $xdy aong the circle 2 §x2ydy dong the circle

3 ¢$xdx aong the triangle 4 ¢y dx aong the triangle

5 §x2ydx dong the circle 6 §x2ydx dong the triangle

Compute both sides of Green’s Theorem in the form (10):

(@) F=xi+yj, R= upper half of the disl¢Z + y2 < 1.
(b) F=x2%i+xyj, C = square with sidegy =0, x=1, y=1,
x=0.

for the quarter-circle path. Show that the work is always twice
the area between the path and the axes.

Compute both sides of §F-nds= [[(Mx+ Ny)dxdy in

15-20
15 F=yi+xj inthe unit circle

F=xyiinthe unitsquar® <x, y <1

17 F=R/r inthe unit circle

18 F=S/r in the unit square

19 F=x2yj in the unit triangle (sides =0, y =0, x+y =1)

20 F=gradr in the top half of the unit circle.

21 Suppose divF=0 exeept at the origin. Then the flux

$F-nds is the same through any two circles around the origin,
because . (What is [[(Mx+N,)dxdy between the

circles?)

22 Example 7 has divF=0 except at the origin. The flux
through every circlex?+y2 =42 is 27. The flux through a
square around the origin is alr because . (Compare
Problem21.)

23 Evaluate $a(x,y)dx+b(x,y)dy by both forms of Green's
Theorem. The choic® =a, N = b in the work form gives the dou-
ble integral . The choiceM =b, N = —a in the flux form
gives the double integral . There was only one Green.

8 Show thatf - (x2y +2x)dy + xy2dx depends only on the areap4 Evaluate§ cos’ y dy —sin’x dx by Green’s Theorem.

of R. Does it equal the area?

9 Find the area inside the hypocycloid= cos’ ¢, y = sin® ¢ from
% $xdy—ydx.

25 The fieldR/r? in Example 7 has zero divergence except &t
0. Solvedg/dy = x/(x% + y?) to find an attempted stream function
g. Doesg have trouble at the origin?
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26 Show that S/r2 has zero divergence (except at=0). Find
a stream function by solvingg/dy = y/(x? + y?2). Doesg have
trouble at the origin?

27 Which differentials are exacty dx —xdy, x2dx+y?dy,

y2dx +x2dy?

o

28 If Mx+ Ny =0 then the equationsdg/dy = an
0g/0x = yield a stream function. If als&/y = M, show
thatg satisfies Laplace’s equation.

Compute the divergence of each field in 29-36 and solve

gy =M and gx = —N for a stream function (if possible).

29 2xyi—y?j 30 3xyZi—yIj
31 x2i+y? 32 y2i4+x?
33 e*cosyi—e*sinyj 34 XtV (i—))
35 2yi/x+y?j/x? 36 xyi—xyj

37 Compute Ny —M, for each field in 29-36 and find aq A region R is *

potential functionf when possible.

38 The potential f(Q) is the Workfg F-Tds to reachQ from
a fixed point P (Section 15.2).
function g(Q) can be constructed from the integral
Then g(Q) — g(P) representshe flux across the path fromP to
Q. Why do all paths give the same answer?

39 The real part of(x +iy)3 = x3+3ix2y —3xy2 —iy3 is f =
x3—3xy2. Its gradient field isF=gradf = . The di-
vergence of F is . Therefore f satisfies Laplace’s
equationfxx + fyy =0 (check that it does).
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40 Since div F=0 in Problem 39, we can solvedg/dy =
anddg/ox = . The stream function ig =

Itis the i imaginary part of the sange +iy)3. Check thatf andg

satisfy the Cauchy—Riemann equations.

41 The real partf amd imaginary partg of (x+iy)" satisfy
the Laplace and Cauchy-Riemann equationsiferl, 2,.... (They
give all the polynomial solutions.) Computg® and g for
n=4.

42 WhenisM dy — N dx an exact differentialg?

43 The potential f =e*cosy satisfies Laplace’s equation.
There must be g. Find the field F=grad f and the stream
functiong(x, y).

44 Show that the spin fiel& does work around every simple closed
curve.

45 For F= f(x)] ard R= unit square0<x<1, 0<y<lI,
integrate both sides of Green's Theorgi). What formula is
required from one-variable calculus?

simply connectetiwhen every closed curve in-
side R can be squeezed to a point without leaviRg Test these
regions:

In the same way, the stream

xy plane without(0,0) 2. xyz space without0,0,0)
spherex? +y2+22=1 4. atorus (or doughnut)
a sweater 6. ahuman body

the region between two spheres
xyz space with circle removed.

© N w e
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I 15.4 Surface Integrals [ IEEEEEEEE

The double integral in Green’s Theorem is over a flat surfRcéNow the region
moves out of the plane. It becomesarved surfaceS, part of a sphere or cylinder

or cone. When the surface has only anfer each &, y), it is the graph of a function
z(x,y). Inother case§ can twist and close up—a sphere has an upzerd a lower

z. In all cases we want to compute area and flux. This is a necessary step (it is our last
step) before moving Green’s Theorem to three dimensions.

First a quick review. The basic integrals gré’x and [ dx dy and [ dx dy dz.
The one that didn't fit Wa§ ds—the length of a curve. When we go from curves
to surfaces¢ds becomesiS. Area is [[dS and flux is [[F-ndS, with double
integrals because the surfaces are two-dimensional. The main difficultyd &.in

All formulas are summarized in a table at the end of the section

There are two ways to deal witfs (along curves). The same methods apply £
(on surfaces). The first is inyz coordinates; the second uses parameters. Before this
subject gets complicated, | will explain those two methods.
Method1 is for the graph of a function: curvey(x) or surfacez(x, y).

A small piece of the curve is almost straight. It goes acrosébard up bydy:

lengthds = 1/(dx)2+ (dy)? =+/1+ (dy/dx)?dx. 1)

A small piece of the surface is practically flat. Think of a tiny sloping rectangle. One
side goes across lyx and up by(dz/0x)dx. The neighboring side goes along by
dy and up by(0z/0y)dy. Computing the area is a linear problem (from Chapigr
because the flat piece is in a plane.

Two vectorsA andB form a parallelogramThe length of their cross product is
the area In the present case, the vectors@re i + (0z/dx)k andB = + (0z/dy)kK.
ThenAdx andBdy are the sides of the small piece, and we computeB:

AxB= 0 0z/0x|=—0z/0xi—0z/0y|+ k. 2
(’\

This is exactly thenormal vectorN to the tangent plane and the surface, from
Chapter 13. Please note: The small flat piece is actually a parallelogram (not always
a rectangle). Its aredS is much likeds, but the length oN = A x B involves two
derivatives:

areadS = |Adx x Bdy| = |N|dxdy = \/1 +(0z/0x)2+(0z/0y)%2dx dy. (3)

EXAMPLE 1 Find the area on the plame= x + 2y above a base ared.

This is the example to visualiz&he area down in they plane isA. The area up
on the sloping plane is greater thdnA roof has more area than the room underneath
it. If the roof goes up at 45° angle, the ratio i3/2. Formula(3) yields the correct
ratio for any surface—including our plane=x +2y.
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X=cos U
=sinv

([
=

Fig. 15.14 Roof area = base area timeg||lone and cylinder with parametetrsandv.

The derivatives aréz/dx = 1 anddz/dy = 2. They are constant (planes are easy).
The square root i) containsl + 12 422 = 6. ThereforalS = /6 dx dy. An area
in thexy plane is multiplied by\/g up in the surface (Figure 15.14a). The vectars
andB are no longer needed—their work was done when we reached fo(8)utdbut
here they are:

A=i+(0z/ox)k=i+k B=j+(0z/dy)k=j+2k N=—i—2j+k.

The length ofN = A x B is 4/6. The angle betweek and N hascosd = 1//6.

That is the angle between base plane and sloping plane. Therefore the sloping
area is\/g times the base area. For curved surfaces the idea is the same, except that
the square root ifN| = 1/ cos) changes as we move around the surface.

Method 2 is for curvesx(t), y(¢) and surfacesx (1, v), y(u,v), z(u,v) with
parameters

A curve has one parameter A surface has two parametersand v (it is two-
dimensional). One advantage of parameters isxthatz get equal treatment, instead
of picking outz as f(x, y). Here are the first two examples:

conex =ucosv, y=usinv, z=u cylinderx =cosv, y =sinv, z=u. (4)

Ead choice ofu andv gives a point on the surface. By making all choices, we get
the complete surface. Notice that a parameter can equal a coordinatez asun
Sometimes both parameters are coordinates, &sin andy = v andz = f(u,v).

That is justz = f(x, y) in disguise—the surface without parameters. In other cases
we find thexyz equation by eliminatingu and v:

cone (ucosv)?+ (usinv)2=u? or x2+y2=z%2 or z=4/x2+y2
cylinder (cosv)?+(sinv)2=1 or x2+4+y%2=1.

The cone is the graph of = 4/x2 + y2. The cylinder isnot the graph of any func-
tion. There is a line of’s through each point on the circté + y? = 1. That is what
z = u tells us: Giveu all values, and you get the whole line. Giveandv all values,
and you get the whole cylinder. Parameters allow a surface to close up and even go
through itself—which the graph of (x, y) can never do.
Actually z = 4/x2 + y2 gives only the top half of the cone. (A function produces
only onez.) The parametric form gives the bottom half also. Similarly /1 — x2
gives only the top of a circle, while = cos, y = sint goes all the way around.
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Now we findd S, using parameters. Small movements give a piece of the surface,
practically flat. One side comes from the chadge the neighboring side comes from
dv. The two sides are given by small vectérdu andBdv:

_Ox. 0y. 0z _Ox. dy. 0z
A_auH_auH—auk and B_ﬁvH—@vH_avk' ®)

To find the areal S of the parallelogram, start with the cross prodice A x B:

(e aar\ (o ava) | (oxar avex),
“\oudv Ouodv oudv Ou 601 ouov ouov]
(6)

Admittedly this looks complicated—actual examples are often fairly simple. The area
dS of the small piece of surface |bl|du dv. The lengthN| is a square root:

ik
Xu Yu Zu
Xy Yv Zv

N =

(1)
EXAMPLE 2 FindA andB ard N = A x B anddS for the cone and cylinder.

The cone has = u cosv, y = usinv, z = u. Theu derivatives producd = 0R/du =
cosv i+ sinv j + k. Thev derivatives produce the other tangent ve&et 0R /v =
—usinvi+ucosv . The normal vector iA x B=—ucosvi—usinvj+uk. Its
length givesdS':

dS =|A xB|du dv= \/(u cosv)2 + (usinv)? +u2 du dv =2 u du dv.

The cylinder is even simpleelS = dudv. In these and many other examplésis
perpendicular tdB. The small piece is a rectangléts sides have lengtpA|du
and |B|dv. (The cone ha$A| = u and |B| = v/2, the cylinder hagA| = |B| = 1).
The cross product is hardly needed for area, when we can just mykipdu times
|B|dv.

Remark on the two methodslethod 1 also used parameters, but a very special
choice—uis x andv is y. The parametric equations are=x, y =y, z = f(x, y).
If you go through the long square root(iR), changing: to x andw to y, it simplifies
to the square root iB). (The terme)y /0x anddx/dy are zeropx/0x anddy/dy
arel.) Still it pays to remember the shorter formula from Method

Don't forget that after computing.S, you have to integrate it. Many times the
good is with polar coordinates. Surfaces are often symmetric around an axis or a
point. Those are theurfaces of revolutior-which we saw in Chapter 8 and will
come back to.

Strictly speaking, the integral starts withS (not dS). A flat piece has area
|A xB|AxAy or |A xB|AuAv. The area of a curved surface is properly defined
as a limit. The key step of calculus, from sums/a§ to the integral ofl S, is safe for
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smooth surfaces. In examples, the hard part is computing theleldtegral and
substituting the limits orx, y oru, v.

EXAMPLE 3 Find the surface area of the cone=+/x2+ y2 up to the height
zZ=d.

We use Method 1 (no parameters). The derivatives afe computed, squared, and
added:

2 2

z__x Y Npoig

x4y Oy \a2ty2

Conclusion:|N| = V2 anddS =+/2dx dy. The cone is on d5° slope, so the area
dx dy in the base is multiplied by/2 in the surface above it (Figure 15.15). The
square root ind S accounts for the extra area due to slope. A horizontal surface has
dS =+/1dx dy, as we have known all year.

Now for a key point.The integration is down in the base plan@he limits
onx andy are given by the “shaddwof the cone. To locate that shadow set
A/x2 4 y2 equal toz = a. The plane cuts the cone at the ciralé+ y? = a?. We
integrate over the inside of that circle (where the shadow is):

Yy _
x2+y2+x2+y2 -

2.

surface area of cone= [ v/2dx dy =+/2na?.

shadow

EXAMPLE 4  Find the same area usiay = v/2 u du dv from Example.

With parametersd S looks different and the shadow in the base looks different. The
circlex? + y2 = a? becomesi? co$ v + u? sir? v = a?. In other wordst = a. (The
cone hag = u, the plane has = «a, they meet whem = a.) The angle parameter
goes from0 to 2. The effect of these parameters is to switch us “automatically” to
polar coordinates, where arearidr d0:

2w a

surface area of cone- jj dS = j J\@u du dv =2 ma>.
00

, @
2+yr=a?

Fig. 15.15 Cone cut by plane leaves shadow in the base. Integrate overdldewh

EXAMPLE 5 Find the area of the same cone up to the sloping plassd — %x.

Solution The cone still hagS = v/2 dx dy, butthe limits of integration are changed.
The plane cuts the cone in an ellipse. Its shadow down incth@lane is another
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ellipse (Figure 15.15c)lo find the edge of the shadow, set=4/x2 + y2 equal
toz =1— 1x. We square both sides:

1 3
x2—|—y2:1—x—|—1x2 or Z(x+§)2+y2:§.

This is the ellipse in the base—where height makes no difference @done. The
area of an ellipse israb, when the equation is in the forx /a)? + (y/b)? = 1.
After multiplying by 3/4 we finda =4/3 andb = 1/4/3. Then [[+/2dx dy =
\/inab is the surface area of the cone.

The hard part was finding the shadow ellipse (I went quickly). Its arel came
from Examplel 5.3.2. The new part is/2 from the slope.

EXAMPLE 6 Find the surface area of a sphere of radiy&nown to bed4ra?).

This is a good example, because both methods almost work. Tieti@ug of the

sphere isx? + y? +z2 =a?. Method 1 writes z = /a? —x2—y2. The x and
y derivatives are-x/z and—y/z:

2 2
14+ 0z n 0z _22+x2+y2_a2_ a?
Ox oy ] 22 22 22 22 a2 x2—y2’
The square root givedS = a dx dy/+/a? — x% — y2. Notice thatz is gone (as it

should be). Now integratdS over the shadow of the sphere, which is a circle.
Instead ofdx dy, switch to polar coordinates amd/r d6:

2% 4 ardrdd
ds = ———— = 2nava?—r?| =2nd>. 8
sr{e{]ow JO JO \/az—rz rava ' ]0 e ()

This calculation is successful but wrorityra? is the area of thdalf-sphereabove

the xy plane. The lower half takes the negative square roat’cf a? — x2 — y2.
This shows the danger of Methddwhen the surface is not the graph of a function.

EXAMPLE 7 (same sphere by Methdd useparameters) The natural choice is
spherical coordinates. Every point has an amgte ¢ down from the North Pole and
an anglev =6 around the equator. Theyz coordinates from Section 14.4 are
x =asing cosd, y =asing sinf, z=acosp. The radiusp=a is fixed (not

a parameter). Compute the first term in equa(®) notingdz /06 = 0:

(0y/09)(0z/00) — (02 /0$)(0y]06) = —(—asing)(asing cosh) = a?sin® ¢ cosh.

The other terms in(6) area?sin’ ¢ sinf anda?sing cosp. ThendsS in equation
(7) squares these three components and adds. We factof amid simplify:

a*(sin* ¢ cog 0 + sin* ¢ sir? 6 + sir? ¢ cog ¢) = a*(sin* ¢ + sir? ¢ cos® ) = a*sir? ¢.

Conclusion dS = a?sing d¢ df. A spherical person will recognize this immedi-
ately. It is the volume elememtV = p? sing dp d¢ d6, exceptdp is missing. The
small box has aredS and thicknesgp and volumed V. Here we only want/S':

2w pm
area of sphere: JJdS :J J a’sing d¢ df = 4ma?. 9)
0 0

Figure 15.16a shows a small surface with sideg¢ anda sing d6. Their prod-
uct is dS. Figure 15.16b goes back to Methddwhere equatior{8) gavedsS =
(a/z)dxdy.
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| doubt that you will like Figure 15.16c—and you don’t need it.tki\parameters
¢ and @, the shadow of the sphere is a rectangle. The equator is the line down the
middle, wherep = /2. The height iz = a cosp. The areal¢ df in the base is the
shadow ofdS = a?sin¢g d¢ df up in the sphere. Maybe this figure shows what we
don’t halve to know about parameters.

0

South
pole

Fig. 15.16  Surface area on a sphere: (a) spherical coordinates ¥b)coordinates (cy0
space.

EXAMPLE 8 Rotatey =x? araund thex axis. Find the surface area using parame-

ters.

The first parameter is (from a to b). The second parameter is the rotation artgle

(from 0 to 27r). The points on the surface in Figure 15.17 are: x, y = x2cosf,

z = x2sinf. Equation(7) leads after much calculation &S = x2+/1 +4x2 dx d6.
Main point dS agrees with Section 8.3, where the area whmy

A/1+(dy/dx)?dx. The2r comes from the) integral andy is x2. Parameters
give this formula automatically.

VECTOR FIELDS AND THE INTEGRAL OF F-n

Formulas for surface area are dominated by square roots. Thareduare root in
dS, as there was ids. Areas are like arc lengths, one dimension up. The good point
aboutline integral§ F-nds is that the square root disappears. Itis in the denominator
of n, whereds cancels itF-nds = M dy — N dx. The same good thing will now
happen for surface integrafg F-nd.s.

151 Through the surface = f(x, y), the vector field=(x, y,z) = Mi+ Nj +
Pk has

flux= [ F-nds = [f ( Ma—f—Ng—f+P)dxdy. (10)

surface shado 0

This formula tells what to integrate, given the surface and the vector ffelh¢ F).
The xy limits come from the shadow. Formu(d0) takes the normal vector from
Method 1:

N=—0f/dxi—0f/dyj+kand|N|=~/1+(0f/0x)2+(0f/0y)2.
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For theunit normal vectorn, divide N by its length:n = N/|N|. The square root is
in the denominator, and the same square root &3nSee equatiof3):

__FN I VR
F-ndS = Fdxdy-( M@x N@y +P) dxdy. (11

That is formula(10), with cancellation of square roots. The expres$tondS is
often written asF-dS, again relying on boldface to makéS a vector. Therd S
equalsnd S, with directionn and magnitudé S..

Fon=1/6
ds = \r() dxdy

y=x2cos B, z=x*sin 0 X

Surface of revolution: parameterssf. Fig. 15.18 F-n dS gives flow throughis.

EXAMPLE 9 FindndS for the planez = x +2y. Then findF-nd S for F =k.
This plane produced/@ in Examplel (for area). For flux the/6 disappears:
N —i—=2j+k
nds = —ds = A%
N V6
For the flow fieldF =k, the dot produck -ndS reduces toldx dy. The slope of
the plane makes no differencehe flow through the base also flows through the
plane The areas are different, but flux is like rain. Whether it hits a tent or the ground
below, itis the same rain (Figure 15.18). In this c§6E - nd S = [[ dx dy = shadow
area in the base.

V6dx dy = (—i—2j +K) dxdy.

EXAMPLE 10 Find the flux ofF = xi + yj + zk through the cone = 4/x2 + y2.

Solution F-ndS = [—x(;) —y(;) +4/x2 —|—y2] dxdy =

0.

The zero comes as a surprise, but it shouldn't. The cone goes straight out
from the origin, and so doels. The vectorn that is perpendicular to the cone is
also perpendicular t&. There is no flonthroughthe cone, becaude-n=0. The
flow travels out along rays.
[ F-ndS FOR A SURFACE WITH PARAMETERS

In Examplel0 the cone wag = f(x,y) = +/x2+ y2. We foundd S by Method]1.
Parameters were not needed (more exactly, they wearaly). For surfaces that fold
and twist, the formulas withh andv look complicated but the actual calculations can
be simpler. This was certainly the case #& = du dv on the cylinder.

A small piece of surface has arédd = |A x B|du dv. The vectors along the sides
areA = xyi + yuj + zu,Kk andB = x,i + y,j + zyk. They are tangent to the surface.
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Now we put their cross produbt = A x B to another use, becauBendS involves
not only area budirection We need the unit vectar to see how much flow goes
through.

The direction vector ist = N/|N|. Equation(7) is dS = |N|du dv, so the square
root |N| cancels innd S. This leaves a nice formula for the “normal component” of
flow:

15J Through a surface with parametersand v, the fieldF = Mi+ Nj + Pk
has
flux=ffF-ndS=JfF-Ndudv=ffF-(AxB)dudv. (12)

EXAMPLE 11 Find the flux ofF = xi + yj + zk through the cylindex? + y2 =
1,0<z<bh.

Solution  The surface of the cylinder is = cosu, y =sinu, z = v. The tangent
vectors from(5) are A = (—sinu)i + (cosu)] and B =k. The normal vector in
Figure 15.19 goes straight out through the cylinder:

N=AXxB=cosui+sinuj (checkA-N=0andB-N =0).
To find F- N, switchF = xi + yj 4+ zk to the parametens andv. ThenF-N = 1:
F-N=(cosui+sinuj+vk)-(cosui+sinuj) =coSu+sintu.

For the flux, integraté& - N = 1 and apply the limits omw = 8 andv = z:

b 21
flux = j J 1 du dv =27 b = surface area of the cylinder
0 JO

Note that the top and bottom were not included! We can find those fluxes too. The
outward direction i =k at the top andh = —k down through the bottom. Then
F-nis +z =b at the top and-z = 0 at the bottom. The bottom flux is zero, the top
flux is b times the area (ot b). The total flux i27b + b = 3wb. Hold that answer
for the next section.

Apology: | madeu the angle ana the height. ThefN goes outward not inward.

EXAMPLE 12 Find the flux ofF = k out the top half of the sphere? + y2 +z2 =
2
a”.

Solution  Use spherical coordinates. Examflbadu = ¢ and v = 6. We found
N=A x B =a?sin’ ¢ cosd i +a’sir ¢ sinf j + a’sir* ¢ cosp k.

The dot product wittF =K is F-N = a? sing cosp. The integral goes from the pole

to the equatorp) = 0to ¢ = /2, and around fron# =0to 6 =2x:

,sir ¢ 1™/? .,
3 =

Ta-.

2 /2
flux = f f a’sing cosp d¢ df =2ma
o Jo 0

The next section will show that the flux remainsmat? throughany surface!) that
is bounded by the equator. A special case is a flat surface—the disk of radiuke
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equator. Figure 15.18 shows= k pointing directly up, sd=-n =k -k = 1. The flux
is [['1dS= area of disk =ra?. All fluid goes past the equator and out through
the sphere

F = bk
n=k

Fig. 15.19  Flow through cylinder. Fig. 15.20 M®bius strip (no way to choos®.

| have to mention one more problem. It might not occur to a reasonable person, but
sometimes a surface has owlye sideThe famous example is th 6bius strip, for
which you take a strip of paper, twist it once, and tape the ends together. Its
special property appears when you run a pen along the “inside.” The pen in
Figure 15.20 suddenly goes “outside.” After another round trip it goes back “inside.”
Those words are in quotation marks, because oidbit strip they have no meaning.
Suppose the pen represents the normal vector. On a sphpoints outward.
Alternativelyn could pointinward; we are free to choose. But thélis strip makes
the choice impossible. After moving the pen continuously, it comes back in the
opposite directionThis surface is not orientableWe cannot integraté&-n to
compute the flux, because we cannot decide the direction of
A surface isorientedwhen we can and do choose This uses the final property
of cross products, that they have length and direction and aigtnehand rule We
can tellA x B from B x A. Those give the two orientations of For an open surface
(like a wastebasket) you can select either one. For a closed surface (like a sphere) it is
conventional fom to be outward. By making that decision once and for all, the sign
of the flux is establishedyutward flux is positive

Methodl: Parameters,y Method2: Parameters,v
FORMULAS Coordinates:, y,z(x, y) x(u,v),y(u,v),z(u,v) on surface
FOR A=i+0z/o0xk N=AxB A=0x/0ui+0y/ouj+0z/ouk
SURFACE B=j+0dz/dyk n=N/|N| B=20x/0vi+0y/ovj+0dz/ovk
INTEGRALS dS = |N|dxdy = ,/1+z2+z3dxdy dS =|N|dudv
ndS = Ndxdy=(—0z/0xi—0z/0yj+K)dxdy ndS=Ndudv
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15.4 EXERCISES

Read-through questions

A small piece of the surface = f(x,y) is nearly__a . When In 15—18 compute the surface integralgf g(x,y.z)dS.
we go across by/x, we goup by b . That movement i®\dx,
where the vectoA isi+__c . The other side of the piece Bily,

whereB=j+ d . The cross producA xBisN=__e . The 16 g=x>+y? overthe top half ofv® + y* 4 22 = I (use¢. 6).

15 g=uxy overthetrianglec+y+z=1,x,y,z=>0.

area of the piece igS = |N|dx dy. For the surface = xy, the vec- 17 g=xyz onx2+y2+z2=1 abovez2 =x2+ y2 (uses,h).
torsarelA=__f andB= g andN=__h .Theareaintegral

s —_— — — 18 g =x on the cylinder? + y? = 4 beweenz =0 andz = 3.

is [[dS=__i dxdy. §=x Y +y : :
With parameters: and v, a typical point on a45° cone is In 1922 calculate A, B, N, and4s.

x=ucosw,y= | ,z=__k .Achange iru moves that point 19 x=u,y=v+u,z=v+2u+1L

by Adu = (cosvi+__1_)du. A change inv moves the point by 20 x=yv, y=u+v,z=u—v.

Bdv=__m .Thenormalvectori®=AxB=__n .Thearea _ _ . o

isdS=_ 0 dudv. In this exampleA-B= p  so the small 21 ¥=(3+c0su)cosy, y = (3+cosu)sinv, z = sinu.

pieceisa g anddS = |A||B|dudv. 22 x=wucosv, y=usinv, z=v (Notz =u).

For flux we needndS. The __r__ vectorn is N=AxB 23—26In Problemsl —4 respectively find the flu{[ F-nds for
divided by __s . For a surfacez = f(x,y), the productndS F=xi+yj+:zKk.
is the vector__t  (to memorize from table). The particular SUr»7_28 In Problems19—20 res

facez =xy hasndS =__u _dxdy. ForF =xi+ yj+zk the flux F=yi
throughz =xy isF-ndS=__v dxdy.

pectively compute[F-ndsS for
— xj through the regiom? +v2 < 1.

On a 30° cone the points are = 2ucosv, y =2usinv, z =u.

The tangent vectors arA=__w andB= __x . This cone
has ndS =AxBdudv= y . For F=xi+yj+zk, the flux
element through the conellsndS =__z . The reason for this an-

sweris__A . The reason we don’t compute flux through abis
stripis__B

In 1—14 find N and dS = [N|dx dy and the surface area[[ dS.
Integrate over the xy shadow which ends where the’s are equal

(x?+y% =4in Problem 1). 29 A unit circle is rotated around theaxis to give a torus (see fig-
1 Paraboloidz = x2 + y2 below the plane = 4. ure). The center of the circle stays a distaBiéem thez axis. Show
that Problen?1 gives a typical poinfx, y, z) on the torus and find

2 2 — —
Paraboloidz = x4 y~ betveenz =4 andz = 8. the surface aredf dS = [[ |N|dudv.

Planez = x — y inside the cylindex? + y> = 1. 30 The surfacer =rcosf, y =rsiné, z =a?—r? is bounded by

Planez = 3x + 4y above the square<x <1,0< y <1. the equator(r =a). Find N and the flux[[k-ndS, and compare
with Examplel2.

2

3

4

5 Spherical cap? +y2 +z2 =1 aboez =1/v2.
P Aoty V2 31 Make a “double Mdbius strip” from a strip of paper by twisting

6

7

8

9

Spherical bandc? + y2 +2z2 = 1 betveenz =0 and1/v/2. it twice and taping the ends. Does a normal vector (use a pen) have
Planez = 7y above a triangle of ared. the same direction after a round trip?
Conez2 = x2 + y2 beween planes = a andz = b. 32 Make a “triple Mobius strip” with three twists. Is it
orientable—does the normal vector come back in the same or
The monkey Saddle = %X3 —Xy2 insidex2 + y2 =1. Opposite direction?
10 z=x+y above triangle with vertice®,0), (2,2), (0,2). 33 If a very wavy surface stays close to a smooth surface, are their
11 Planez = 1—2x—2y insidex =0, y >0, z > 0. areas close?
12 Cylinderx2 122 = 42 inside x2 +y2 — a2 Only set upjde. zzrlea(zlvz the equation of a plane with roof ardd = 3 times base
L : . xdy.
13 Right circular cone of radiusa and height s. Choose . _ points (x, f(x)cost, f(x)sind) are on the surface of
z= f(x,y) or parameters andv. ) .
revolution: y = f(x) revolved around the axis, parameters = x
14 Gutterz = x? below z = 9 and betweery = +2. andv = 6. FindN and comparé S = |N|dx d6 with Example8 and

Section8.3.
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I 15.5 The Divergence Theorem [

This section returns to the fundamental léfhow out) — (flow in) = (source. In

two dimensions, the flow was in and out through a closed cGrv&he plane region
inside wasR. In three dimensions, the flow enters and leaves through a closed surface
S. The solid region inside i¥. Green’s Theorem in its normal form (for the flux of

a smooth vector field) now becomes the great three-dimensional balance equation—
theDivergence Theorem

15K  The flux ofF = Mi+ Nj + Pk through the boundary surfac® equalg
the integral of the divergence &finsideV. The Divergence Theorem is

UF-ndS:J”dideV:HJ(%—Aj+g—jj+g—§)dxdydz. 1)

In Green's Theorem the divergence wa&f/0x + 0N/0y. The new termP P /0z
accounts for upward flow. Notice that a constant upward compaPexdds nothing

to the divergence (its derivative is zero). It also adds nothing to the flux (flow up
through the top equals flow up through the bottom). When the whole Feisl
constant, the theorem becontes: 0.

There are other vector fields with div= 0. They are of the greatest importance.
The Divergence Theorem for those fields is aghin 0, and there is conservation of
fluid. Whendiv F =0, flow in equals flow out We begin with examples of these
“divergence-fretfields.

EXAMPLE 1 The spinfields-yi + xj + Ok andOi — zj + yk have zero divergence.

The first is an old friend, spinning around theaxis. The second is new, spinning
around thex axis. Three-dimensional flow has a great variety of spin fields. The
separate term8M/dx, ON/dy, 0P /0z are all zero, so dif = 0. The flow goes
around in circles, and whatever goes out throSgbomes back in. (We might have
put a circle onf] as we did onf _, to emphasize thaf is closed.)

EXAMPLE 2 The position fiel(R = xi+ yj +zkhasdivR=1+1+1=3.

This is radial flow, straight out from the origin. Mass has to be adtdesl/ery point
to keep the flow going. On the right side of the divergence theorejffﬁé% dVv.
Therefore the flux is three times the volume.

Example 11 in Section 15.4 found the flux Bfthrough a cylinder. The answer
was3wb. Now we also geBrbh from the Divergence Theorem, since the volume is
b. This is one of many cases in which the triple integral is easier than the double
integral.

EXAMPLE 3  An electrostatic fieldR/p3 or gravity field —R/p>? almost has div
F=0.

The vectorR = xi+ yj +zk has lengthy/x2+ y2+z2 = p. ThenF has length
p/p3 (inverse square law). Gravity from a point mass pirigard (minus sign). The
electric field from a point charge repadsitward The three steps almost show that
divF=0:

Step 1.0p/0x =x/p,0p/0y =y/p,0p/0z = z/ p—but do not add those threE.
is notp or 1/ p? (these are scalars). The vector fielRigo>. We need®M/dx,0N/ 0y,
OP/0z.
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Step 2.0M/0x = 0/0x(x/p3)is equaltol /p3 — (3x 0p/0x)/p* =1/p> —3x2/p>.
FordN/dy anddP/0z, replace3x? by 3y2 and3z2. Now add those three.

Step 3. divF =3/p3 —3(x2+ y% +22)/p°> =3/p*—3/p*=0.

The calculation diF = 0 leaves a puzzle. One side of the Divergence Theorem seems
to give [[[0dV = 0. Then the other side should H¢ F-nd'S = 0. But the flux is
notzero when all flow is outward:

The unit normal vector to the sphege= constantisi=R/p.

The outward flowF-n = (R/p3) - (R/p) = p?/p* is always positive.
Then[[[ F-ndS = [[dS/p* = 4np?/p* = 47. We have reachedr =
0.

This paradox in three dimensions is the same asRigr? in two dimensions.
Section 15.3 reache?ir =0, and the explanation was a point source at the origin.
Same explanation herdZ, N, P are infinite wherp = 0. The divergence is a “delta
function” times4s, from the point source. The Divergence Theorem does not apply
(unless we allow delta functions). That single point makes all the difference.

Every surface enclosing the origin haBux= 4x. Our calculation was for a
sphere. The surface integral is much harder whiéntwisted (Figure 15.21a). But the
Divergence Theorem takes care of everything, becaude € in the volumel” be-
tween these surfaces. TherequrﬁF-ndS =0 for the two surfaces together. The
flux [[ F-ndS = —4x into the sphere must be balanced [y -ndS = 4 out of
the twisted surface.

|
7 (Py— P ) dS =~ (dPidz) dV
dv :
: ‘rr (P~ Py) dS ~ (dPIdz) dV,,
> | | Py~ Py dS = SUM = INTEGRAL
d“'l t"ll 2
ds

Fig. 15.21 Point source: flux 47 through all enclosing surfaces. Net flux upward

= [[[(@P/0z)dV.

Instead of a paradokr = 0, this example leads to Gauss’s Law. A madsat the
origin produces a gravity fielf = —GMR/p3. A chargeqg at the origin produces
an electric fieldlE = (¢ /4me9)R/p3. The physical constants aé2andeg, the math-
ematical constant is the relation between divergence and flux. Equ@dfjorields
equation(2), in which the mass densitiéd (x, y,z) and charge densitiedx, y, z)
need not be concentrated at the origin:

15L  Gauss's law in differential form: di¥ = —47x GM and divE = g/ &.
Gauss's law in integral form: Flux is proportional to total mass or charge:

ﬂF-ndS = —HJMGMdV and ﬂE-ndS = fﬂq dV/eo. (2)
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THE REASONING BEHIND THE DIVERGENCE THEOREM

The general principle is clear: Flow out minus flow in equals seu®ur goal is to see
why the divergence of measures the sourcén a small box around each point,
we show that diF d V balance$-nd S through the six sides.

So consider a small box. Its centerigat y, z). Its edges have lengthx, Ay, Az.
Out of the top and bottom, the normal vectors krand —k. The dot product with
F=Mi+ Nj+ Pkis +P or —P. The areaAS is AxAy. So the two fluxes are
close toP(x,y.z+4Az)AxAy and—P(x,y.z — 2Az) AxAy. When the top is
combined with the bottom, the difference of thaBis is A P:

net flux upward ~ APAxAy = (AP/Az)AxAyAz =~ (0P/0z)AV.  (3)

Similarly, the combined flux on two side faces is approximatélyy( oy) AV. On the
front and back itis@ M /0x) AV. Adding the six faces, we reach the key point:

flux out of the box ~ (0M/0x +ON/0y + 0P /0z)AV. (4)

This is (divF)AV. For a constant field both sides are zero—the flow goes straight
through. FoF = xi + yj + zk, a little more goes out than comes in. The divergence
is 3, s03AV is created inside the box. By the balance equation the flux is3&i36

The approximation symbet means that the leading term is correct (probably not
the next term). The ratidA P/ Az is not exactlyd P/0z. The difference is of order
Az, so the error in(3) is of higher orderAVAz. Added over many boxes (about
1/ AV boxes), this error disappearsAs — 0.

The sum of (divF) AV over all the boxes approach§ff (div F)d V. On the other
side of the equation is a sum of fluxes. TherB i A S out of the top of one box, plus
F-nAS out of the bottom of the box above. The first hias- k and the second has
n = —k. They cancel each other—the flow goes from box to b@kis happens
every time two boxes meet. The only fluxes that survive (because nothing cancels
them) are at the outer surfad The final step, ad\x, Ay, Az — 0, is that those
outside terms approacffF-ndS. Then the local divergence theordd) becomes
the global Divergence Theoreft).

Remark on the proof That “final step” is not easy, because the box surfaces don'’t
line up with the outer surfacg. A formal proof of the Divergence Theorem would im-

itate the proof of Green’s Theorem. On a very simple redipf(d P /0z)dx dy dz
equals(| P dx dy over the top minuf| P dx dy over the bottom. After checking

the orientation this is[[ Pk -ndsS. Similarly the volume integrals ofM/dx and
0N/ 0y are the surface integraly Mi-ndS and [[ Nj-ndS. Adding the three in-
tegrals gives the Divergence Theorem. Since Green’s Theorem was already proved in
this way, the reasoning behiridl) is more helpful than repeating a detailed proof.

The discoverer of the Divergence Theorem was probably Gauss. His notebooks
only contain the outline of a proof—but after all, this is Gauss. Green and Ostro-
gradsky both published proofs 828, one in England and the other in St. Peters-
burg (now Leningrad). As the theorem was studied, the requirements came to light
(smoothness df andS, avoidance of one-sided M&bius strips).

New applications are discovered all the time—enla scientist writes down a bal-
ance equation in a small baxThe source is known. The equation is Eiv=source.

After Example 5 we explaifr.

EXAMPLE 4 If the temperature inside the sunT3=1In1/p, find the heat flow
F = —gradT and the source di and the flux/| F-ndS. The sun is a ball of radius

Po-
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Solution  Fis —gradIln1/p= +4gradIn p. Derivatives ofin p bring division byp:

F=(0p/0xi+0p/0yj+0p/0zK)/p= (xi+ y]j+zK)/p>.

This flow is radially outward, of magnitude/ p. The normal vecton is also radially
outward, of magnitudé. The dot product on the sun’s surfacd j50:

ffF ‘ndS = fde/po = (surface ared po = 4mpg/po = 4mpo.  (5)

Check that answer by the Divergence Theorem. Example 5 will findrdiv1 /2.
Integrate over the sun. In spherical coordinates we integiatsin ¢d¢, andd:

27 T PO
[[fdivFdV = f f f p? sing dpdg db/p* = (po)(2)(27) as in(5).
sun 0 0 Jo

This example illustratethe basic framework of equilibriumThe pattern ap-
pears everywhere in applied mathematics—electromagnetism, heat flow, elasticity,
even
relativity. There is usually a constantthat depends on the material (the example
hasc = 1). The names change, but we always tHie divergence of the gradient

potential f — force field— ¢ grad f. Then di—c grad f') = electric chafjge

temperatureT — flow field—c grad7. Then di—c gradT') = heat sourcs

14

displacementit — stress fieldt ¢ gradu. Then di—c gradu) = outside forcg

You are studying calculus, not physics or thermodynamics or elasticity. But please
notice the main point. The equation to solve is@ic grad /) = known source. The
divergence and gradient are exactly what the applications need. Calculus teaches the
right things.

This framework is developed in many books, including my own {ettoduc-
tion to Applied Mathematic@Vellesley-Cambridge Press). It governs equilibrium,
in matrix equations and differential equations.

PRODUCT RULE FOR VECTORS: INTEGRATION BY PARTS
May | go back to basic facts about the divergence? First theitlefin
F(x,y,z)=Mi+ Nj+ PkhasdivF=V-F=0M/0x+JN/dy+0P/0z.

The divergence is a scalar (not a vector). At each pointdig a number. In fluid
flow, it is the rate at which mass leaves—the “flux per unit volume” or “flux density.”
The symbolV stands for a vector whose components@perations not numbers

V="del" =id/ox+]d/dy+kd/oz. (6)
This vector is illegal but very useful. First, apply it to an ordinary functfam, y, z):
Vf="del f"=idf/ox+]df/0y+Kkdf/oz=gradient of f. @

Seond, take the dot produd® - F with a vector functiorF(x, y,z) = Mi+ Nj+
Pk:

V-F=*“deldotF" =0M/0x+0JN/0y + 0P/0z = divergence ofF.  (8)

669
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Third, take the cross produ®t x F. This produces the vector cufl(next section):
V x F="del cross P =...(to be defined).. = curl of F. 9

The gradient and divergence and curl aveand V- and V x . The three great
operations of vector calculus use a single notation! You are free to Writenot—to
make equations shorter or to help the memory. Notice that Laplace’s equation

shrinks to
of of 0 (o0f
va__(ax)+8y(0y)+ﬁ_z(0_z)=0' (10)

Equation(10)gives the potential when the source is zero (very comnfor) grad f
combines with divF =0 into Laplace’s equation div grad = 0. This equation
is so important that it shrinks further 62 / = 0 and even toA f = 0. Of course
Af = fxx+ fyy + fzz has nothing to do withA f = f(x + Ax) — f(x). Above
all, remember thaf is a scalar andF is a vectorgradient of scalar is vectoand
divergence of vector is scalar

Underlying this chapter is the idea of extending calculus to vectors. So far we have
emphasized the Fundamental Theorem. The integrdlfgt/x is now the integral
of div F. Instead of endpoints andb, we have a curv€ or surfaceS. But it is the
rulesfor derivatives and integrals that make calculus work, and we need them now for
vectors. Remember the derivativewofimesv and the integral (by parts) efdv/dx:

15M  Scalar functionst(x, y,z) and vector field¥ (x, y, z) obey theproduct
rule:
div(uV) =u divV +V - (gradu). (11)

The reverse of the product rule is integration by pa@ayss’s Formulg:

ffj” divVdxdydz=— fffv -(gradu) dx dy dz + Jff” V-nds.

(12)

For a plane field this i§Sreen’s Formula(andu = 1 gives Green'’s Theorem):

H (aﬂ+a_N)dxdy— H(M AN )dxdy+fu(Mi+Nj).n

(13)

=

S.

Those look like heavy formulas. They are too much to memorize, unless you use
them often. The important point is to connect vector calculus with “scalar calculus,”
which is not heavy. Every product rule yields two terms:

wuM)x =udM/0x+Mou/0x (uN)y,=udN/0y+Nou/dy uP),=udP/0z+ Pou/o:z.

Add those ordinary rules and you have the vector (1) for the divergence ofV.

Integrating the two parts of diuV) givesfqu-ndS by the Divergence Theo-
rem. Then one part moves to the other side, producing the minus sigk)end(13).
Integration by parts leaves a boundary term, in three and two dimensions as it did
in one dimension{ uv’'dx = — [u'vdx + [uv]s.

EXAMPLE 5 Find the divergence df = R/ p?, starting from gradp = R/ p.
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Solution  TakeV = R andu = 1/p? in the productrulg¢11). Then diF = (div R)/
0> +R-(gradl/p?). The divergence dR = xi + yj + zk is 3. For gradl / p? apply
the chain rule:

R-(gradl/p?) = —2R-(gradp)/p* = —2R-R/p* = —2/p’.
The two parts of diF combine int3/p? —2/p? = 1/ p*>—as claimed in Example 4.

EXAMPLE 6 Find the balance equation for flow with veloci¥ andfluid density

0.

V is the rate of movement of fluid, whilgV is the rate of movement ahass.
Comparing the ocean to the atmosphere shows the difference. Air has a greater
velocity than water, but a much lower density. So normE&lkg pV is larger for the
ocean. (Don't confuse the densjtywith the radial distance. The Greeks only used

24 |etters.)

There is another difference between water and air. Water is virtually incompress-
ible (meaningo = constant). Air is certainly compressible (its density varies). The
balance equation is a fundamental law—the conservation of mass acahériuity
equatiori for fluids. This is a mathematical statement about a physical flow without
sources or sinks:

Continuity Equation div(pV) + dp/0t = 0. 14)

Explanation: The massin aregionf§/ p d V. Its rate of decreaseis [[[ dp/dt d V.

The decrease comes from flow out through the surface (normal vegtdhe dot
productF-n= pV -n is the rate of mass flow through the surface. So the integral
ffF-ndS is the total rate that mass goes out. By the Divergence Theorem this is

{[fdivFav.

To balance— [[[ 0p/0t dV in every region, dif= must equal-dp/dt at every
point. The figure shows this continuity equatidmt) for flow in the x direction.

mass in extra mass out mass loss
— | masspdSdx| — =
pVdSdt d(pV)dS dt —dpdS dx

Fig. 15.22 Conservation of mass during tina& : d(oV)/dx + dp/dt =0.

15.5 EXERCISES

Read-through questions

In words, the basic balance law is a . The flux of F  The field F=R/p® has divF=0 except__ m . [[F-ndS

through a closed surfacé is the double integral b . The equals n over any surface around the origin. This

divergence ofMi+Nj+ Pk is _ ¢ , and it measures _d . illustrates Gauss’s Law_o . The field F=xi +yj —2zk has
The total source is the triple integral e . That equals thediv F= p and [[F-ndS= q . For thisF, the flux out
flux by the__f Theorem. through a pyramid and in through its base arg .

For F=5zk the divergence is g . If V is a cube of side
a then the triple integral equals _h . The top surface where The symbol V stands for__s . In this notation divF is

z=ahasn=__1i andF-n= j . The bottom and sides have t . The gradient off is__u . The divergence of grag is

F-n=__k .Theintegral[[F-ndS equals_1 . v__. The equation div gragt =0is__w__’'s equation.
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The divergence of a product is diuV)=__x
by parts is [[fudivVdxdydz=

. Integration
y +_z . In two

dimensions this becomes A . In one dimension it becomeiss21 Supposé = M(x,y)i+ N(x,y)j, Risaregioninthecy plane,

B . For steady fluid flow the continuity equation
divpv=_C

In 1-10 compute the flux [[F-ndS by the Divergence
Theorem.

1 F=xi+xj+xk, S:unitspherex2+y24+22=1.

2 F=—yi+xj, V:unitcube0<x<1,0<y<1,0<z<1.
3 F=x2i+y2j+z2k, S:unitsphere

4 F=x2i+8y2j+2z%k, V:unitcube.

5 F=xi+2yj, S:sidesx=0,y=0,z=0,x+y+z=1.
6 F=ur=(xi+yj+zk)/p, S:spherep=a.

7 F=p(xi+yj+zk), S:sphereo=a

8 F=x3i+y3j+23k, S:spherep=a.

9 F=z2k, V: upper half of ballp <a.

10 F=grad(xe¥sinz), S:sphereo=a.

11 Find [ff div (xZi+yj+2k)dV in the cube0<x, y, z <a.
Also computen and [ F-nd S for all six faces and add.

12 Whena is small in probleml1, the answer is close toa3.
Find the numbet. At what point does diF = ¢?

13 (a) Integrate the divergence Bf= pi in the ballp <a.
(b) Computef[ F-ndS over the spherical surfage=a.

14 Integrate [/ R-ndS over the faces of the boX <x <1,
0< y <2,0<z<3and check by the Divergence Theorem.

15 Evaluate[[ F-ndS whenF = xi+z2j + y2k and:
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20 Give an easier than

JfJ divFav.

example where [[F-ndS is

and(x,y,z)isinVif (x,y)isin R and|z| > 1.

(@) Describe V' and reduce [[[ divFdV to a double
integral.

(b) Reduce[[F-ndS to a line integral (check top, bottom,
side).

(c) Whose theorem says that the double integral equals
the line integral?

22 Is it possible to have=-n=0 at all points of S and also
div F =0 at all points in’? F = 0 is not allowed.

23 Inside a solid ball (radius a, density mass M = 4ra3/3)

the gravity field isF = —GMR/a3.
(&) Check diF = —47G in Gauss’s Law.
(b) The force at the surface is the same as if the whole
massM were

() Find a gradient field with divF =6 in the ball p<a
and divF = 0 outside.

24 The outward field F=R/p> has magnitude |F|=1/p?.
Through an areal on a sphere of radiug, the flux is LA
spherical box has faces at; and p, with A = pf singd¢pdé and
A= ,o% singd¢d6. Deduce that the flux out of the box is zero, which
confirms divF = 0.

25 In Gauss’s Law, what charge distributigtx, y, z) gives the unit
field E = u,? What is the flux through the unit sphere?

26 If a fluid with velocity V is incompressible (constant den-

sity p), then its continuity equation reduces to CIf it

is irrotational thenF=gradf. If it is both then f satisfies
equation.

(@) S is the conez2 = x2 + y2 bounded above by the plane?’ True or false with a good reason.

z=1.
(b) S is the pyramid with cornerg0,0,0), (1,0,0), (0,1,0),
(0,0,1).

16 Compute all integrals in the Divergence Theorem when

F=x(i+j—k) andV is the unit cub® < x,y,z < 1.
17 Following Example 5,
(xi+yj+zk)/p’.

18 (gradf)-n is the derivative of f in the direction
. Itis also writtend //on. If fxx+ fyy + fzz =0in V, de-
rive [[0f/dn dS = 0 from the Divergence Theorem.

compute the divergence

19 Describe the closed surfadeard outward normah:
(@) V = hollow ball1 <x2+y2%+22<0.
(b) V = solid cylinderx? +y2 <1, |z| < 7.
(c) V=pyramidx >0,y >0,z>0,x+2y+3z<1.
(d) V = solid conex? + y2 <z2<1.

(@) If [fF-ndS =0 for every closed surfacé, is constant.
(b) If F=grad f then divF =0.

(c) If [F|<1 at all points then[[[divFdV < area of the
surfaces.

(d) If |[F|<1 atall points thendiv F| < 1 at all points.

of 28 Write down statement& —F -G —H for source-free fields

F(x,y,z) in three dimensions. In statemeift, paths sharing

the same endpoint become surfaces sharing the same boundary
curve. In G, the stream function becomes \actor field such
thatF = curl g.

29 Describe two different surfaces bounded by the circle
x24+y2=1, z=0. The field F automatically has the same flux
through both if .

30 The boundary of a bounded regioR has no boundary.
Draw a plane region and explain what that means. What does
it mean for a solid ball?
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I (- 6 Stokes’ Theorem and the Curl of  F |

For the Divergence Theorem, the surface was cloSeslas the boundary oF’. Now
the surface is not closed arffl has its own boundary—a curve calléd We are
back near the original setting for Green’s Theorem (region bounded by curve, double
integral equal to work integral). But Stokes’ Theorem, also called Stokes’s Theorem,
is in three-dimensional space. There @mved surfaceS bounded by space curve
C. This is our first integral around a space curve.

The move to three dimensions brings a change in the vector field. The plane field
F(x,y) = Mi+ Nj becomes a space fieF(x, y,z) = Mi+ Nj + Pk. The work
Mdx + Ndy now includesPdz. The critical quantity in the double integral (it was
ON/0x —0M/0y) must change too. We called this scalar quantity “eytlbut in
reality it is only the third component of a vector. Stokes’ Theorem needs all three
components of that vector—which is cil

DEFINITION  The curl of a vector field(x, y,z) = Mi+ Nj+ Pk is the vector
field

OP ON\. OM  OP\. ON oM
curlF = (5~ i+ (-5 )i+ (553 k@
(/‘y oz oz ox oxX (/‘y
ThesymbolV x F stands for a determinant that yields those six derivatives:
i j k
culF=VxF=|0/ox 0/dy 0/0z|. (2)

M N P

Thethree products d/0y P andj 0/0z M andk d/0x N have plus signs. The
three products likék 0/0y M, down to the left, have minus signs. There is a cyclic
symmetry. This determinant helps the memory, even if it looks and is illegal. A
determinantis not supposed to have a row of vectors, a row of operators, and a row of
functions.

EXAMPLE 1 The plane fieldM(x, y)i+ N(x,y)j hasP =0 anddM/0z =0
anddN/0z = 0. Only two terms survive: cufF = (0N/0x —0M/0dy)k. Back to
Green.

EXAMPLE 2 The cross produ@ x R is aspin field S. Its axis is the fixed vector
a=ai+asj +ask. The flow in Figure 15.23 turns arourgl and its components
are

i ] k
S=axR=\a1 a» asz|=(azz—asy)i+(azx —aiz)j+(a1y —azx)k.

X y z
)

Our favorite spin field—yi + xj has(a;,a2,a3) = (0,0,1) and its axis i =k.
The divergence of a spin field 84, + N, + P, =0+0+0. Note how the
divergence used/, while the curl usesV, and P,. The curl of Sis the vector

2a:
0P ONY. oM 0P\, ON oM . .
(g—g)l + (0_2_0_)6)] + (E_E)k =2aql +2a2j +203k =2a.

This example begins to reveal the meaning of the curl. It measures the spin! The
direction of curlF is theaxis of rotation—in this case along@. The magnitude of
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curl F is twice the speed of rotatiarin this case|curl F| =2|a| and the angular

velocity is|a].
axis a
BmaxR R =xi+yj+:k
. curl K
curl § =2a curl R=0 4 J
i =3 >
divS =0 il

Fig. 15.23 Spin field S=ax R, position fieldR, velocity field (shear field)\~ zi, any fieldF.

EXAMPLE 3 (1) Every gradient fieldF=0f/oxi+0f/0y |+ 0f/0dz k has
curlF=0:

_(29f _009f\, (09f 009/, (29f 99/, _
Cur”:_(ayaz 626y)|+(626x axaz)1+( )k—O. “)

Always f,; equalsf;,. They cancel. Alsofy; = fzx and f,x = fx,. So curl grad
f=0.

EXAMPLE 4 (twin of Example 3) The divergence of cUlis dso automatically
zero:

di\,cunp_i(a_P_a_N)Jri(aﬂ_a_P)Jri(@_N_a_M)_0
ox\dy oz oy \ 0z  0Ox oz\ox oy )
()

Again the mixed derivatives givEy, = P, andNy; = N, andM;, = M,,. The
terms cancel in pairs. In “curl grad” and “div curl”, everything is arranged to give
zero.

15N The curl of the gradient of every(x, y,z) is curlgradf =V x V f =0.
The divergence of the curl of eveR(x, y,z) isdivcurlF =V -V x F=0.

The spin fieldS has no divergence. The position fidRlhas no curlR is the gradient
of f =1(x?+y?+z2). Sis the curl of a suitabl€. Then divS= div curl F and
curl R = curl grad f are automatically zero.

You correctly believe that cuFf measures the “spin” of the field. You may expect
that curl(F + G) is curl F 4 curl G. Also correct. Finally you may think that a field of
parallel vectors has no spin. That is wrong. Example 5 has parallel vectors, but their
different lengths produce spin.

EXAMPLE 5 The fieldV = zi in thex direction has cui/ =j in the y direction.

If you put a wheel in thecz plane this field will turn it. The velocityzi at the top of

the wheel is greater than at the bottom (Figure 15.23c). So the top goes faster and
the wheel rotates. The axis of rotation is cur=j. The turning speed i%, because
this curl has magnitude.

Another velocity fieldv = —xk produces the same spin: curk= j. The flow is in
the z direction, it varies in ther direction, and the spin is in the direction. Also
interesting isV + V. The two “shear fields” add to a perfect spin fi@d= zi — xk,
whose curl i9j.
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THE MEANING OF CURL F

Example 5 put a paddlewheel into the flow. This is possible forvautor fieldF,
and it gives insight into cudF. The turning of the wheel (if it turns) depends on its
location(x, y, z). The turning also depends on thgentationof the wheel. We could
put it into a spin field, and if the wheel axisis perpendicular to the spin axds the
wheel won't turn! The general rule for turning speed is tti® angular velocity of
the wheel is%(curl F)-n. This is the irectional spiny’ just as(grad /') - u was the
“directional derivativé—andn is a unit vector likeu.

There is no spin anywhere in a gradient field. liriotational: curl grad f = 0.

The pure spin fielé x R has curlF = 2a. The angular velocity ia-n (note that%
cancels2). This turning is everywhereot just at the origin If you put a penny on
a compact disk, it turns once when the disk rotates once. That spandafid itself’
and it is the same whether the penny is at the center or not.

The turning speed is greatest when the wheel axXises up with the spin axia.
Thena-nis the full length|a|. The gradient gives the direction of fastest growth, and
the curl gives the direction of fastest turning:

maximum growth rate of is |grad f'| in the direction of gradf

maximum rotation rate df is 1 |curl F| in the direction of curF.

STOKES’' THEOREM

Finally we come to the big theorem. It will be like Green’s Theps—a line integral
equals a surface integral. The line integral is still the w§)Fk-dR around a curve.
The surface integral in Green’s Theorem(if(N, — M, )dx dy. The surface is flat
(in thexy plane). Its normal direction ik, and we now recogniz&, — M, as the
k component of the curl. Green’s Theorem uses only this component because the
normal direction is alwayk. For Stokes’ Theorem on a curved surface, we need all
three components of cu.

Figure 15.24 shows a hat-shaped surfdcaend its boundary” (a closed curve).
Walking in the positive direction around, with your head pointing in the direction
of n, the surface i®n your left You may be standing straight up £ k in Green’s
Theorem). You may even be upside dofmn= —Kk is allowed. In that case you must
go the other way around, to keep the two sides of equati@®) equal. The surface
is still on the left. A Mdbius strip is not allowed, because its normal direction cannot
be established. The unit vectordetermines the “counterclockwise direction” along
C.

150 (Stokes’ Theorem \(ﬁ F-dR = ff (curlF)-ndS. (6)
C S

The right side adds up small spins in the surface. The left side is the total circulation
(or work) aroundC. That is not easy to visualize—this may be the hardest theorem
in the book—but notice one simple conclusithcurl F = 0then§F -dR =0.This
applies above all to gradient fieldsas we know.

A gradient field has no curl, by (4). A gradient field does no work, by (6). In three
dimensions as in two dimensiorgradient fields are conservative fieldEhey will
be the focus of this section, after we outline a proof (or two proofs) of Stokes’ Theo-
rem.
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The first proof showsvhythe theoremis true. The second proof shows that it really
is true (and how to compute). You may prefer the first.

First proof Figure 15.24 has a triangeB C attached to a triangldC D . Later there

can be more triangles. will be piecewise flatclose to a curved surface. Two trian-
gles are enough to make the point. In the plane of each triangle (they have different
n’'s) Green’s Theorem is known:

$ F-dR= [[ curlF-ndS § F-dR= [ curlF-ndS.
AB+BC+CA ABC AC+CD+D4 ACD

Now add. The right sides giv§f curl F-ndS over the two triangles. On the lethe
integral overCA cancels the integral ovedC. The “crosscut” disappears. That
leavesAB + BC +CD + DA. This line integral goes around the outer boundary
C—which is the left side of Stokes’ Theorem.

A .
magnetic
field B(/)

electric field E(r)

n current

/ wire C

Fig. 15.24  SurfacesS andboundary curve€’. Change irB — curl E— currentinC.

Second proofNow the surface can be curved. A new proof may seem excessive, but
it brings formulas you could compute with. Fram= f(x, y) we have

dz=0f/0xdx+0f/0ydy and ndS=(—0f/0xi—0f/0yj+Kk)dx dy.

ForndS, see equation 15.4.11. With thig, the line integral in Stokes’ Theorem is
§F-dR= § Mdx+Ndy+P(0f/0xdx+0f/dy dy). @
c

shadowof C

The dot product of cufF andnd S gives the surface integr§f curlF-nds:
s

[(Py = N:)(=0f/0x)+ (M; = Px)(—=0f/0y)+ (Nx — My)]dx dy. (8)

shadowof S

To prove(7) = (8), changeM in Green’s TheoremtM + P 0 f/0x. Also changeV
toN + P0f/0y. Then(7)= (8)is Green’'s Theorem down on the shadow (Problem
47). This proves Stokes’ Theorem up8&nNotice how Green’s Theorem (flat surface)
was the key to both proofs of Stokes’ Theorem (curved surface).

EXAMPLE 6 Stokes’ Theorem in electricity and magnetism yields Faraslzav.

Stokes’ Theorem is not heavily used for calculations—equd8yshows why. But

the spin or curl owvorticity of a flow is absolutely basic in fluid mechanics. The other
important application, coming now, is to electric fields. Faraday’s Law is to Gauss’s
Law as Stokes’ Theorem is to the Divergence Theorem.
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Suppose the curv€ is an actual wire. We can produce current aldfidpy varying
the magnetic field(z). The fluxp = ffB-ndS, passing withinC and changing in
time, creates an electric fiel that does work:

Faraday’s Law(integral form): work = fﬁ E-dR=—dy/dt.
c

That is physics. It may be true, it may be an approximation. Now comes mathematics
(surely true), which turns this integral form into a differential equation. Information
at points is more convenient than information around curves. Stokes converts the line
integral ofE into the surface integral of cul:

$E-dR=[Jcurl E-ndS and also— dgp/0t = [[—(0B/0dr) -ndS.
c s s

These are equal for any curnég, however small. So the right sides are equal for
any surfaceS. We squeeze to a point. The right hand sides give one of Maxwell's
equations:

Faraday’s Lawdifferential form): curle = —0B/0t.

CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS

The chapter ends with our constant and important question: Wiglds do no work
around closed curves? Remember f2$br plane curves and plane vector fields:

if OM /0y = 0N/0x thenF is conservative anB = grad f and fﬁF-dR =0.

Now allow a three-dimensional field likE =2xy i+ (x2+z)j + yk. Does it do
work around a space curve? is it a gradient fielc® That will required f/0x = 2xy
ando f/dy = x2+z andd f/dz = y. We have three equations for one function
f(x,y,z). Normally they can’'t be solved. When td3tis passed (now it is the three-
dimensional test: cuff = 0) theycanbe solved. This example passes @sand f
isx?y+yz.

15P F(x,y,z) = Mi+ Nj+ Pk isaconservative field if it has these propertges:
A. The work§F -dR around every closed path in space is zero.

B. The WOI’kSg F-dR depends o andQ, not on the path in space.

C. Fisagradientfield M =0 f/dx andN =0 f/dy andP =0 f/0z.

D. The components satisidy, = N, M, = Py, andN, = Py, (curlFis zerg
A field with one of these properties has them Bllis the quick test.

A detailed proof ofA = B = C = D = A is not needed. Only notice ho@ = D:
curl gradF is always zero. The newest parbis= A. If curlF =0then§F-dR =0.
But that is not news. It is Stokes’ Theorem.

The interesting problem is to solve the three equationgfavhen tesD is passed.
The example above had

0f/0x =2xy = f ={2xydx =x?y plus any functiorC(y, z)
0f/0y =x>+z=x>+0C/0y = C = yz plus any functiorr(z)
0f/0z=y=y+dc/dz= c(z) can be zero.
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The first step leaves an arbitrati(y, z) to fix the second step. The second step leaves
an arbitraryc(z) to fix the third step (not needed here). Assembling the three steps,
f=x%y+C =x%y+yz+c=x?y+yz. Please recognize that the “fix-up” is only
possible when cutff = 0. TestD must be passed.

EXAMPLE 7 IsF=(z—y)i+ (x —2z2)j + (y —x)k the gradient of any'?

TestD saysno. ThisF is a spin fielda x R. Its curl is2a= (2,2,2), which is not
zero. A search forf is bound to fail, but we can try. To matehf/0x =z —y, we
must havef = zx — yx 4+ C(y,z). The y derivative is—x + 0C/dy. That never
matchesV = x —z, so f can't exist.

EXAMPLE 8 What choice ofP makesF = yz2i + xz?j + Pk conservative? Find

f.
Solution  We need curF = 0, by testD. First checkkM /0y = z?> = ON/dx. Also
0P/0x=0M/0z=2yz and O0P/0y=0N/0z=2xz.

P =2xyz passes all tests. To finfl we can solve the three equations, or notice that
f =xyz?is successful. Its gradient s

A third method defines/(x, y,z) asthe work to reach(x, y,z) from (0,0,0).
The path doesn’t matter. For practice we integfatd R = M dx + Ndy + Pdz along
the straight lindxt, yt, zt):

1
f(x.y.2)= f (v (z0)*(x dt) + (xt)(z0)*(y o) +2(xt) (1) (z1) (z dt) = xy 2>,
0

EXAMPLE 9 Why is div curl gradf aubmatically zero (in two ways)?

Solution  First, curl gradf is zero (always). Second, div cud is zero (always).
Those are the key identities of vector calculus. We end with a review.

Green’'s Theorem 3€F-dR :J (ON/Ox —0M/0y)dx dy

ng ‘nds = JJ((?M/(?X +0N/0y)dx dy
Divergence Theorem ff F-ndS = JJJ((?M/OX +0N/0y+0P/0z)dx dy dz

Stokes’ Theorem ng-dR = churl F-ndS.

The first form of Green’s Theorem leads to Stokes’ Theorem. Tlernskform
becomes the Divergence Theorem. You may agky not go to three dimensions
in the first place? The last two theorems contain the first two (tdke= 0 and a flat
surface). We could have reduced this chapter to two theorems, not four. | admit that,
but a fundamental principle is involved: “It is easier to generalize than to specialize.”
For the same reasafy /dx came before partial derivatives and the gradient.
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15.6 EXERCISES

Read-through questions

The curl of Mi+ Nj+ Pk is the vector__a . It equals the 16 In 15, suppose isthe top half of the eartm(goes out) and” is

3 by 3 determinant__b . The curl of x2i4+z2k is __c . the bottom halft comes in). What ar€ andV? Show by example

For S=yi—(x+z)j+yk thecurlis_d .ThisSisa__ e that [[ F-ndS = [[ F-ndS is notgenerally true.
field ax R= %(curl F) x R, with axis vectora=__f . For any
gradient field fxi+ f,j+ f-k the curl is g . That is the
important identity curl gradf =__h . It is based onfxy = fyx

and__i _and j .Thetwinidentityis k . 18 Suppose curF =0 anddiv F =0. (a) Why isF the gradient of

) ) . a potential? (b) Why does the potential satisfy Laplace’s equation
The curl measures the i of a vector field. A paddlewheel in Fex + foy + faz =0?
Jxx T Jyy T Jzz !

the field with its axis alongqn has turning speed m . The spin
is greatest whem is in the direction of_n . Then the angular |n 19-22, find a potential / if it exists
velocityis__ o

17 Explainwhy [[ curl F-ndS = 0 over the closed boundary of any
solid V.

=zi4] — H 2. i 2
Stokes' Theoremis p = q . The curveC isthe_r 0 F=21Fi+xk 20 F=2xyzi+x?zj+x?yk

ofthe__s S.Thisis__t Theoremextendedto u dimen- 21 F=e*%ji—e* %k 22 F=yzi+xzj+ (xy+z2)k

sions. Both sides are zero whErns a gradient field because v__.

) ) i 23 Find a field with curlF = (1,0,0).
The four properties of a conservative field afe=__ w_,
B=_x ,C= y ,D=_2z . The field y2z2i+2xy2zk 24 Find allfields with curlF = (1,0,0).

(passes)(fails) tedd. This field is the gradient of =__A . The 25 S=ax Ris aspin field. ComputE = b x S (constant vectob)
work [F-dR from (0,0,0) to (1,1,1) is__B__ (on which path?). and find its curl.

For every fieldF, [ curl F-nds is the same out through a pyramid . ) )
and up through its base becauseC . 26 How fast is a paddlewheel turned by the fidfd= yi —xk

(a) if its axis direction is1 =j? (b) if its axis is lined up with curF?
In Problems 1-6 find curl F. (c) if its axis is perpendicular to cud?

27 How is curl F related to the angular velocity in the spin field

1 F=zi+xj+yk 2 F=grad(xe”snz) F = w(—yi+xj)? How fast does a wheel spin, if it is in the plane
=17
3 F=(x+y+2)(i+j+k) 4F=(tyio(rpk  TTyE=l
28 Find a vector field= whose curl isS= yi —xj.
5 F=p"(xi+yj+zk) 6 F=(@+]))xR 29 Find a vector field= whose curl isS=ax R.
7 Find a potentialf for the field in Problem 3. 30 True or false when two vector fields have the same curl at all
. ] o points: (a) their difference is a constant field (b) their difference is a

8 Find a potentialf’ for the field in Problem 5. gradient field (c) they have the same divergence.

9 When do the fields™i ard x"j have zero curl? In 31-34, compute[[ curl F -ndS over the top half of the sphere
10 When doega; x +a2 y +a32)k have zero curl? x2+y2+z2 =1and (separately)§F - R around the equator.
In 11-14, compute curl F and find §, F-dR by Stokes’ 31 F=yi—xj 32 F=R/p?
Theorem 33 F=axR 34 F=(axR)xR

11 F=x2i+y%k,C =circlex?+z2=1,y =0.
35 The circleC in the planex 4 y 4z = 6 has radius' and center

12 F=ixR,C =circlex?+22 =1,y =0. at(1,2,3). The fieldF is 3zj +2yk. Compute}F - dR aroundC.
18 F=(i+j)xR.C =circley? +z2 = 1.x =0. 36 S is the top half of the unit sphere afid= zi + xj + xyzk. Find
14 F=(yi—xj) x (xi+yj),C =circlex?+y2=1,z=0. JfcurlF-nds.
15 (important) Suppose two surfacésndT have the same bound-37 Findg(x,y) sothat curlgk = yi +x2j. What is the name fog
ary C, and the direction around is the same. in Section 15.3? It exists because+ x2j has zero .

(a) Provef[gcurl F-nds = [[curl F-nds. 38 ConstructF so tat curl F =2xi+3yj —5zk (which has zero

(b) Second proof: The difference between those integralsdfgergence)'

[[[ div(curl F)d V. By what Theorem? What region I5? Why 39 Split the field F=xyi into V+W with curl V=0 and div
is this integral zero? W =0.
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40 Ampere’s law for a steady magnetic fiell is curl B= uJ
(J = current densityu = constant. Find the work done b around
a space curv€ from the current passing through it.

Maxwell allows varying currents which brings in the electric field.

41 ForF = (x% + y?)i, compute curl(curl F) and graddiv F) and
Fxx + Fyy +Fzz.

42 ForF=uwv(x,y,z)i, prove these useful identities:

(@) curkcurl F) = grad(div F) — (Fxx +Fyy +Fzz).
(b) curl(fF)= fcurl F+(grad f) x F.

43 If B =acost(constant directiora), find curl E from Faraday’s
Law. Then find the alternating spin fiell

44 With G(x, y,z) = mi+nj + pk, write outF x G and take its di-
vergence. Match the answer wi curl F—F-curl G.

45 Write down Green'’s Theorem in the plane from Stokes’ The-
orem.

46 True or false V x F is perpendicular té.

Calculus

47 (a) The second proof of Stokes’ Theorem todW* =
M(x,y, f(x,y))+ P(x,y, f(x,y))0f/0x as theM in Green’s
Theorem. Computé@M * /0y from the chain rule and product
rule (there are five terms).

(b) Similarly N* = N(x,y, f)+ P(x,y, f)of/0dy has thex
derivative Ny + N; fx + Px fy + Pz fx fy + P fyx. Check that
N — My matches the right side of equation (8), as needed in
the proof.

48 “The shadow of the boundary is the boundary of the shadow.”
This fact was used in the second proof of Stokes’ Theorem, going
to Green’s Theorem on the shadow. Give two examples ahdC

and their shadows.

49 Which integrals are equal whefi = boundary of S or S =
boundary ofV’?

§F-dR §(curl F)-dR §(curl F)-nds [[F-nds
[fdivFdS [[(curlF)-ndS [f(grad divF)-ndS [f[divFdV

50 Draw the fieldV = —xk spinning a wheel in thez plane. What
wheels wouldhot spin?
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