
Contents
Introduction

Processor Evolution and Architecture
	 -	 Multi-Core vs. Hyper-Thread
	 -	 big.LITTLE Architecture
	 -	 Intel Adopts a Hybrid Processor
		 Core Architecture
	 -	 Using Hybrid Processing Cores

Core Usage in Multi-Tasking
Operating Systems
	 -	 Intel Thread Director
	 -	 Microsoft Windows 11
	 -	 Microsoft Windows 10
	 -	 Linux

Summary

﻿

﻿

Cores and Threads:
Hybrid Processors for Today’s
Multitasking World Part-1

Trusted. Proven. Leader. curtisswrightds.com

Introduction
In our fast-paced, multitasking world, parents of school-aged children
often grapple with the homework dilemma. Today’s adolescents are
frequently seen multitasking, doing their school homework while
interacting with their friends on social media and simultaneously
flipping between television channels, watching hockey, soccer,
and basketball games. As parents, we see their thumbs fly across
smartphones while they message friends and at the same time
ceremoniously display their real homework on a laptop computer.

While our children may think they are multitasking, it has been repeatedly
shown1 through research that the human mind cannot truly multi-task.
Our inherent processing system of sensory inputs (eyes/ears/fingers),
processing engine (mind/thinking), and outputs (hands/fingers/voice)
can process only one thing at a time. Either we are watching one sports
game or the other, reading and responding to our friends on Instagram, or
doing our homework. The human mind cannot do all three simultaneously.
Instead, we continuously shift from one task to another, and then to
another, deciding which task to perform at any given time based on some
inherent priority we assign to their relative importance (and as parents,
we know that homework only sometimes makes it to the top of the list).

1.	 A good paper on human multitasking is from the National Library of Medicine, Multicosts
of Multitasking, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075496/

Cores & Threads: Hybrid Processors for Today’s Multitasking World Part 1 curtisswrightds.com

Computing and processing systems were initially
designed to operate in a similar multitasking fashion.
Early in the computing world, a CPU or processor
could only perform a single operational instruction at
a time. Operating Systems (OS) that managed these
single thread processors evolved from simple single-
tasking (aka bare metal) control programs to complex
multitasking OSs that incorporate a task scheduler
whose job is determining which task to run at a given
time based on some priority scheme. Mirroring the
human condition, these early processors still only
performed a single activity at a given time. They
created the illusion of multitasking because they were
able to context switch very quickly – executing a given
task for some number of milliseconds before switching
to a different task. While a given second of computing
time would appear to run dozens, perhaps hundreds,
of tasks simultaneously, under the hood, the brains
– the CPU or processing core - was still a single-
tasking entity.

Today, finding a processor with just a single processing
core is difficult. In 2000, IBM introduced the concept
of a dual-core processor in their Power4 processor.
AMD® followed in 2005 with the Opteron 800 and
Athlon 64 X2 processors, each with two processing
cores. Intel® gained commercial success with their
dual-core processor in 2006 with the Pentium®
Core2 processor. Today, almost two decades later,
it is not uncommon to see datacenters running tens
of thousands of processors, each with 64 or more
cores. In addition to multiple processing cores, many
architectures also support hyper-threading, which
allows a processing core to execute two independent
instruction threads simultaneously, mimicking a dual-
core. Thus, a 64-core dual-threading processor can
execute 128 different threads simultaneously. Taken
to the extreme, today’s high-end graphics processors
(GPU) can execute thousands of simultaneous
operations, which is fundamental for highly parallel 3D
visualizations and complex AI processing tasks.

The incredible growth of processing parallelism has
resulted in a corresponding explosion of performance
and capabilities, but not all cores and threads are
created equally. For mainstream computer users, such
as the vast majority of Microsoft Windows users, the
detailed usage of cores and threads is not important
for the user to understand. When done editing a
document, we hit the <SAVE> icon, and all the magic
happens under the hood. But for designers of critical
real-time processing systems, what happens under the
hood matters.

This 2-part White Paper series explores the
performance details of today’s latest multi-core and
hybrid-core processors to guide software developers
and systems designers who need to understand what
happens under the hood and exert tight control over
their processing systems. In Part 1 of the series, we
provide foundational background on the evolution
of modern processors, establishing important
characteristics of single-core, multi-core, and hyper-
threading processor architectures. We introduce the
concept of a hybrid-core processor architecture, where
not all cores are created equal. Finally, we explore how
today’s popular operating systems use hybrid-core
processors.

Part-2 of the series will dive deeper, presenting a
benchmark analysis of processor performance and
efficiency using different combinations of cores and
threads, and it will explore Intel’s new hybrid core
technology. We conclude with a discussion of the
benefits and drawbacks of using these processor
technologies for embedded software and systems
developers.

Multiple Cores Thousands of Cores

Figure 1: Processing Cores in a CPU vs. GPU

CPU GPU

Cores & Threads: Hybrid Processors for Today’s Multitasking World Part 1 curtisswrightds.com

Figure 2 illustrates a simplified view of a generic
single-core processor. Important to this discussion
is the data flow to and from a processing core. With
few exceptions, a processor is paired with external
main memory, where instructions and data are stored.
Accessing even today’s fastest DRAM memory
subsystems is considered slow compared to the speed
at which the core operates. To ensure the processing
core does not sit idle waiting for memory interactions,
most processors incorporate cache memory, which
is a region of extremely fast local memory operating
at the core speed, which mirrors regions (sometimes
referred to as pages) of the external DRAM memory.
If instructions and data are pre-loaded into the local
cache memory, the processing core can run at full
speed without waiting. Unfortunately, if the needed
instructions or data are not pre-loaded in the local
cache memory, the processing core will become
stalled while the rest of the CPU fetches the required
data from external DRAM memory into the cache. This
cache miss results in a loss of performance.

Processor Evolution and Architecture

Because cache memory is expensive in terms of silicon space, most processors have multiple levels of cache.
The cache closest to the processor, called the L1 cache, is the smallest and fastest, with progressively larger size
and slower access caches as you move further from the processing core (L2 cache, L3 cache, etc.). In a multi-
core processor, each core typically has its own L1 cache, and often, multiple cores will share L2 or L3 cache
regions. Figure 3 illustrates two generic quad-core processors. One has only two cache levels, with an L1 cache
for each core and an L2 cache shared amongst the four cores. The second example has an L1 cache for each
core, an L2 cache shared amongst each pair of cores, and an L3 cache shared across all four cores.

Core 0

L1 Cache L1 CacheL1 Cache

L2 Cache

L1 Cache

Core 1 Core 3Core 2

Bus

Memory
Controller I/O

Core

Cache

Bus

Memory
Controller I/O

Single Core Processor

Figure 2: Simplified View of a Generic Single-Core Processor

Figure 3: Multi-core Processors with Multiple and Shared Cache Levels

Multi-Core Processor

Core 0

L1 Cache L1 CacheL1 Cache L1 Cache

Core 1 Core 3Core 2

Bus

Memory
Controller I/O

L2 Cache L2 Cache

L3 Cache

Multi-Core Processor

	

curtisswrightds.com

It is important to note that for a multi-core processor, the architecture has areas where multiple cores share
common resources. It may be a shared cache memory region, a shared main interface bus, or a shared memory
controller. The implication is that two cores may not be able to fully operate independently – there will be some
interaction due to contention with shared resources. Thus, a dual-core architecture cannot provide a full doubling
of performance compared to a single-core architecture. Similarly, a quad-core processor will not provide four
times the performance. Real-world conditions reduce this performance to something less.

Multi-Core vs. Hyper-Thread
In 2002, Intel introduced the concept of hyper-threading. In a true multi-core processor, the core is duplicated,
and each core has its own L1 cache, as shown on the left of Figure 4. A hyper-threading core is just a single
core that appears to the OS as two logical cores, as shown on the right of Figure 4. A hyper-threading core is
accomplished by using an internal superscalar architecture, in which multiple instruction streams can operate on
independent instruction and data in parallel.

A hyper-threading core has more shared resources than two independent cores, and its overall performance in
real-world applications is expected to be correspondingly lower than two separate processing cores.

Whereas Intel x86 and NXP Power Architecture provide hyper-threading cores in many of their processors, the
Arm® architecture does not offer hyper-treading. An Arm core is simply a single-threaded core. A 16-core Arm
processor, such as the NXP LX2160A, provides 16 fully independent cores and can execute 16 independent
threads. In contrast, an Intel 8-core processor such as the Tiger Lake Xeon W-11865MRE provides 8 hyper-
threading cores and presents as 16 logical processing cores to the OS.

Core 1

ALU
(registers, logic, etc.)

Cache

Core 2

ALU
(registers, logic, etc.)

Cache

System Bus

Instruction Stream Instruction Stream

Core

ALU
(registers, logic, etc.)

Cache

System Bus

Instruction Stream Instruction Stream

Processor with Two Cores
Single Core Processor
with Hyper-Threading

Figure 4: Multi-Core vs. Hyper-Thread

Cores & Threads: Hybrid Processors for Today’s Multitasking World Part 1

	

curtisswrightds.com

big.LITTLE Architecture
In 2011, ARM Holdings introduced the first processor with what they called the big.LITTLE architecture. Realizing
that real-world multitasking systems have a wide range of processing and performance needs, the architecture
pairs some “big” cores optimized for high performance, with some “LITTLE” cores optimized for higher efficiency
and sacrificing some amount of performance. Systems that make use of big.LITTLE processors will direct
background and non-critical functionality to the LITTLE cores and will direct foreground and user-oriented
functionality to the big cores. The goal of a big.LITTLE processor is to ultimately save power, a critical resource
in battery-operated equipment such as laptops and cell phones, and to ensure responsiveness to users. For
example, an Apple iPhone 13 uses the Apple-designed A15 Bionic Arm processor with 2 big cores and 4 LITTLE
cores. When not actively in use, the phone will utilize only LITTLE cores, putting the big cores to sleep to reduce
power consumption.

Intel Adopts a Hybrid Processor Core Architecture
While not the first to make use of a hybrid core architecture, Intel has introduced its equivalent to the Arm big.
LITTLE architecture, offering hybrid core processors with what they call “Performance” cores (aka big or P-cores)
and “Efficient” cores (aka LITTLE or E-cores).

Intel’s rationale2 for the introduction of hybrid core processors asserts the following:

The Intel 12th Gen “Alder Lake” and 13th Gen “Raptor Lake” processor families include embedded processor
SKUs with up to 16 cores, consisting of 8 Performance P-cores and 8 Efficient E-cores. With Intel Performance
cores supporting hyper-threading, the processor presents to the OS as a 24 logical core processor (8 hyper-
threading P-cores + 8 single-thread E-cores).

Using Hybrid Processing Cores
Operating systems are now becoming aware of different application processing needs. Foreground processes,
such as those interacting with users (applications in focus, visual displays, user interaction via mouse and
keyboards, etc.), can be assigned to big/Performance cores to provide the best user experience, and background
activities (low priority tasks, utility functions, system management, etc.) can be assigned to LITTLE/Efficient cores
where high performance is not required.

2.	 https://www.intel.com/content/www/us/en/content-details/685861/

A recent Intel study, which examined the performance of various workloads from multiple segments by using an
increasing number of CPU cores, produced the following results:

�	 A majority of the workloads do not scale beyond 4 cores (many of these limited threading workloads closely
resemble actual user experience workloads).

�	 A minority of the workloads can scale to 8 cores but do not scale any further.
�	 An even smaller minority of workloads can scale higher than 10 cores and continue to scale with core count.
	
The results of this study highlighted the fact that the majority of client applications would benefit from better
scalability to 8 cores or more. To better serve this market segment, Intel has designed a System on Chip (SoC)
architecture where larger cores are unleashed to go after single-threaded and limited threading scenarios, while the
efficient multi-threaded cores can help extend scalability performance over prior generations. The result of this effort
is the development and introduction of Intel performance hybrid architecture.

Cores & Threads: Hybrid Processors for Today’s Multitasking World Part 1

﻿

curtisswrightds.com

Core Usage in Multi-Tasking Operating Systems
Intel Thread Director
To make the best use of P-cores and E-cores, Intel provides a technology called the Thread Director to the
OS. This technology allows the OS scheduler to assign tasks to P-cores and E-cores based on each task’s
characteristic needs for performance vs. efficiency.

Microsoft Windows 11
Under Windows 11, the Thread Director works closely with the Windows task scheduler, which has been
enhanced to be aware of hybrid processor architectures. In this enhancement, the Windows 11 task scheduler
considers P-cores, E-cores, and hyper-threads on P-cores when scheduling tasks. In addition, the Windows 11
task scheduler and the Intel Thread Director also monitor other processor parameters, such as clock speeds,
power consumption, and thermal conditions.

Under Windows 11, workloads are monitored and classified as follows:
�	 Class 0: Most applications
�	 Class 1: Workloads using AVX/AVX2 instructions
�	 Class 2: Workloads using AVX-VNNI instructions
�	 Class 3: Bottleneck is not in the compute, e.g., I/O or busy loops that don’t scale

Anything in Class 3 is recommended for E-cores. Anything in Class 1 or 2 is recommended for P-cores, with
Class 2 having higher priority. Everything else fits in Class 0, with frequency adjustments to optimize for IPC and
efficiency if placed on the P-cores. Even with all these conventions, the OS may still choose or be directed to
assign any thread or class of workload to any core. Windows 11 also considers the computer’s selected Power
Plan, where a high-performance power plan will perform differently than a Balanced or Battery Saver plan.

Microsoft Windows 10
While the Thread Director also works with Microsoft Windows 10, the Windows 10 task scheduler is not designed
to work optimally with the Thread Director. Under Windows 10, the scheduler assigns P-cores to the application
in focus, meaning the currently highlighted application window. If an application is taken out of focus, either by
minimizing the application or highlighting a different application window, the Thread Directory re-assigns the
application to E-cores. Some users have reported mixed feedback with these processors under Windows 10,
with the main concern being applications that are inactive or not in focus underperform when directed to E-cores.

Figure 5 shows the core usage of an Intel Alder Lake i7-12700H processor with 20 logical processor threads
(6x P-cores with hyper-threading + 8x E-cores). The first 12 graphs (from top left) show the workload of P-core
threads, and the last 8 graphs are E-core threads. The figure on the left shows that all 20 cores are in use when
the application is in focus, driving the processor to an overall utilization of 77%. The figure on the right shows that
when the application is minimized or taken out-of-focus, the application is removed from the P-cores and only
executes on the lower-performance E-cores, driving them to maximum usage. The overall processor utilization is
reduced to 53%, which reflects that the application task is likely underperforming with E-cores, while the P-cores
mostly sit mostly idle.

Cores & Threads: Hybrid Processors for Today’s Multitasking World Part 1

curtisswrightds.com

Linux
As of early 2023, apparently to address some reported performance bugs with the 12th Gen Alder Lake
processor, Intel has added some, but not all, aspects of Linux kernel interaction with its Thread Director to Linux
kernel 5.18. Officially, however, Intel has only stated publicly that Windows 11 is their priority, and they would
be upstreaming a variety of features in the Linux kernel over time. More recently, it has been reported that Linux
kernel 6.2 has added further support for Intel’s 13th Gen Raptor Lake hybrid processors, including enhancements
for the Thread Director.

Linux users have always had the ability to manually assign processes to logical processor cores using the
taskset() command. With specific knowledge of which logical processors are P-cores and which are E-cores,
it is not difficult to manually assign process affinity to specific cores. This can provide an embedded software
developer incredible flexibility using hybrid core processors.

Figure 5: Alder Lake Processor under Windows 10 showing an application in-focus and out-of-focus

Also of interest, these screen captures provide a process count and a thread count, which provides insight into
the number of total application processes and threads the OS is concurrently managing. In these examples, there
are 229 or 223 processes running, and 3345 or 3349 application threads running3. While many of these processes
and threads may be sleeping or idle, most will wake up periodically to perform a task or status check.

3. 	 These Windows 10 Task Manager screen captures were performed on a corporate Dell computer
running only three active “user” applications: Microsoft Outlook, Microsoft Word and a File Explorer window.

Cores & Threads: Hybrid Processors for Today’s Multitasking World Part 1

©2023 Curtiss-Wright - All rights reserved. Specifications are subject to change without notice. All trademarks are property of their
respective owners I W266.1023. This document was reviewed on 2023.XX.XX and does not contain technical data.

﻿

curtisswrightds.com

Summary
Approximately 70% of mobile phones are today operating with processors using the Arm big.LITTLE architecture.
Intel, one of the largest processor suppliers, has adopted a hybrid (P-core/E-core) core architecture on their
last two generations of consumer processors4 and appears to be focused on extending this architecture for
future generations. The mainstream commercial processing world has embraced the benefits of the hybrid core
architecture.

While the aerospace and defense industry has yet to widely adopt the hybrid core processor, it is hard to ignore
the potential benefits of this new technology, which promises an increase in processing efficiency. Size, weight,
and power (SWaP) remain a primary consideration for all new developments, and any opportunity to increase
processor efficiency will directly benefit a solution’s SWaP footprint.

Part-2 of this White Paper series will explore performance testing on Intel hybrid core processors, measuring the
performance and efficiency of P-cores vs. E-cores, and single-threaded cores vs. hyper-threading cores. It will
discuss how these technologies can benefit the system and software developer of embedded systems and will
summarize specific core and thread configurations of today’s popular embedded processors.

4.	 12th Generation “Alder Lake” and 13th Generation “Raptor Lake”

Aaron Frank
Senior Product Manager
Curtiss-Wright Defense Solutions

Author

Aaron Frank joined Curtiss-Wright in 2010 as a Senior Product Manager
for the C5ISR group. He is responsible for a wide range of COTS products
utilizing advanced processing, video graphics/GPU, and network switching
technologies in many industry-standard module formats. Aaron has a long
history of working with and promoting open standards, participating in IEEE
and SMPTE standards since 1990, and was personally awarded an Emmy
from the National Academy of Television Arts and Sciences for his work
to create the openGear platform (www.opengear.tv), an open equipment
standard used by over 80 of the top broadcasting corporations worldwide.
Aaron holds a Bachelor of Science in Electrical Engineering from the
University of Waterloo.

