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Abstract - Modern system-on-module (SoM) platforms may have heterogeneous processor 

devices in asymmetric multiprocessing (AMP) configurations. Two widely accepted architectures from 

NXP are the i.MX 8 QuadMax and i.MX 8 QuadPlus series that include varying counts of ARM Cortex-

A and Cortex-M CPU cores, and ST Micro’s STM32MP15x lines. These designs are frequently used in 

multimedia, automotive, and industrial controller applications. The heterogeneous multicore architecture 

allows the offloading of critical hard real-time tasks to the Cortex M processors for extremely low 

latency processing, while using the Cortex-A cores for high-performance tasks. In addition, these SoCs 

integrate shared memory and hardware modules intended to provide communication capabilities 

between the Cortex-A and Cortex-M cores. Different CPUs usually run instances of different operating 

systems, e.g., Linux on the A cores and bare-metal applications or real-time OS (FreeRTOS, AutoSAR, 

etc.) on the M core(s). 

 

Traditionally on-board shared memory was used for communications / message passing only. 

Yet due to the high complexity and critical nature of applications utilizing the AMP hardware, and the 

amount of the external memory, real-time data can often be shared between the Cortex-A and Cortex-M 

cores. This article will discuss the design and challenges of a shared data implementation for AMP 

configurations, explore implementation options to synchronize access to shared data, and discuss 

example use cases. 

 

 

Heterogeneous multicore systems 

 
Heterogeneous multicore systems are becoming ever more popular for automotive and industrial 

applications due to their high performance and energy efficiency. Heterogeneous systems have two or 

more cores with different instruction set architectures with more than one operating system running on 

the device. By dividing tasks between different processors, heterogeneous system designs cover multiple 

requirements such as energy efficiency, performance and safety, and make them fit for real-time critical 

applications.  

 

This architecture is known as Asymmetric Multiprocessing (AMP). An AMP system has 

multiple CPUs, each of which may be a different architecture (but can be the same). Each CPU has its 

own address space (though some of the memory may be shared with other cores). The system is 

typically equipped with a communication facility between the CPUs, normally a hardware messaging 

unit, and DDR shared memory. In addition, more than one operating system runs independently on one 

or more processors with different architectures.  For example, NXP i.MX8x with embedded Linux on 

the ARM Cortex-A and FreeRTOS or Vector’s MicroSAR on the ARM Cortex-M4. 

 

This is in contrast to Symmetric Multi-Processing systems (SMP) that refers to systems with 

multiple CPUs each of which has the same architecture. SMP designs are used when an embedded 

application simply needs more CPU power to manage its workload, similar to multi-core CPUs used in 

desktop computers. 

 

Multiple vendors offer AMP hardware. Two widely accepted architectures are NXP's i.MX 8 

QuadMax and i.MX 8 QuadPlus series that include varying counts of ARM Cortex-A and Cortex-M 

CPU cores. Another popular alternative includes STM’s STM32MP157F devices that offer dual-core 

Arm® Cortex®-A7 in combination with a Cortex® -M4 32-bit RISC core.  Throughout this paper we 
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use the NXP’s i.MX8 hardware as our reference. That said, similar provisions apply to other AMP 

hardware, including the above referenced STM devices. 

 

The shared memory regions integrated with the AMP hardware are directly accessible allowing 

for communications and/or message passing between the “clusters” (a cluster refers to several cores 

capable of independent instruction execution and running a separate operating system).  Traditionally, 

shared memory was used for communications / message passing only. Yet due to the high complexity 

and critical nature of applications utilizing the i.MX8 hardware, and the amount of external memory, 

real-time data can be shared between the Cortex-A and Cortex-M cores.  

 

The need for a real-time storage system in applications that utilize AMP hardware is quite wide-

spread: power grid controllers must share their sensor readings and other real-time data collected by a 

FreeRTOS-based low-latency application running atop of the Cortex-M clusters with the fast yet 

complex processing on the Linux side running atop of the Cortex-A clusters; an AMP-based drone 

system utilizes different clusters for navigation parameters acquisition and for real-time processing 

running different real-time operating systems on each cluster. 

 

 

Overview 
 

Conceptually, a database subsystem in the AMP systems can be organized in two ways: 

 

1. A client-server methodology is used when the database is maintained within the scope of a 

process running on a single cluster. This process has exclusive access to the database. The data is 

then available to any other processes running within the same cluster or a different cluster 

through “messages” passed to the “server” process through the shared memory. The message 

passing is coordinated by the specialized hardware integrated within the SoC. The database 

management system processes the “messages” through a dedicated “server” application that then 

writes and reads the storage using conventional methods and sends back a reply to the “client” 

process.  AMP hardware/ firmware normally integrates some means of communication between 

clusters. 

 

2. An alternative method is to keep the database in the device’s shared memory and make it directly 

accessible from all clusters’ processes/applications. The implementation must maintain control 

over the flow of data, synchronize data access and ensure logical and perhaps temporal 

consistency of the data, equipping applications with methods to write and read the data, such as a 

C-call API or other means and makes use of the available hardware resources, e.g., the i.MX8 

Messaging Unit. 

 

This paper discusses the second approach. We find it attractive to data-driven applications for 

several reasons: the performance is higher with direct access to storage, and the storage is better utilized 

because the entire DDR memory can be used for storage. Directly managing database access from 

multiple clusters presents greater flexibility to multiple threads by fine-tuning contention resolution. In 

addition, the absence of a single point of failure – the server process, is essential for data driven safety-

critical systems that often make use of the AMP hardware.  
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The relevant hardware modules 

 
As indicated, the shared data design presented in this article was originally created for the NXP 

i.MX8 QuadMax device with embedded Linux running on the ARM Cortex-A and FreeRTOS running 

on the ARM Cortex-M4 side. The DDR memory that is used to maintain the database is deemed 

“external” from the viewpoint of the clusters’ software. The shared access to common storage from 

multiple processes/threads dictates that the solution coordinates access between those threads through 

some means of synchronization. When all cores are located within the same “cluster” — running the 

same operating system, the operating system’s synchronization primitives can be used, or serialization 

and synchronization mechanisms can be created directly through the hardware interrupts. In the AMP 

scenario all cores are completely independent, so the i.MX8 design presents two hardware modules that 

facilitate inter-process communication: the hardware semaphore called SEMA42 and the Messaging 

Unit (MU). 

 

The SEMA42 is a memory-mapped module that provides hardware support for implementing 

semaphores and a simple mechanism to implement “lock" and “unlock" operations via a single-write, 

atomic access. The hardware semaphore module provides hardware-enforced “gates” as well as other 

useful system functions related to the gating mechanisms. 

 

The Messaging Unit (MU) module enables two processors within the device to communicate and 

coordinate by passing messages (e.g., data, status and control) through the MU interface. The MU also 

provides the ability for one processor to signal the other processor using interrupts. 

 

Both tools have their own benefits and disadvantages when put in practice and we will discuss 

the use of them further in this article. Note that the STM analog to SEMA42 — the Hardware 

semaphore (HSEM) and to the Messaging Unit — the Inter-processor communication controller (IPCC), 

provide similar functionality and facilitate similar software architecture. 

 

On heterogeneous devices, different CPU architectures and the use of multiple operating systems 

on different processors presents considerable added complexity regarding synchronization concepts 

relative to symmetric (SMP) systems. These challenges are analyzed in more detail in the following 

sections. 

 

 

Endianness and word size 

 

  The internal data structures and the storage layout must be impartial to different endianness and 

the word size (32- or 64-bit). This was uncomplicated. Both the i.MX8 Cortex-A and Cortex-M 

processors use little-endian architecture and the Cortex-M is a 32-bit processor. Therefore, the data 

layout is a 32-bit layout. 

 

 

 



5 

 

Addressing database memory 

 

All cores from different clusters must have the ability to address the same physical memory region 

(where the shared data is kept). The i.MX8 clusters run different operating systems that implement 

different memory management unit (MMU) mechanisms. Thus, the shared data must be located in the 

physical memory region with a contiguous addressing, and the starting address and the size of the region 

must be known up-front. 

 

Normally, AMP-based operating systems are configured so that not all shared memory is directly 

utilized by their respective kernels. The memory is divided into several segments. For example, the first 

segment is assigned and controlled by one OS (e.g., Linux), the second segment is used by another OS 

(e.g., FreeRTOS). The third segment is not directly used by any of the operating systems, but can be 

used for data exchange between the operating systems’ kernels and other software modules run on 

different clusters. Therefore, this segment’s address space is a perfect fit for a shared database as it can 

be managed exclusively by the database management system and is never directly “touched” by the 

operating systems’ kernels. 

 

As a rule, operating systems’ kernels provide methods for addressing physical memory to 

software modules. In Linux (and other Unix-based operating systems) the/dev/mem is a character device 

file that provides access to the system’s physical memory (as opposed to the virtual memory). The 

pseudo-device driver must be configured in the Linux kernel: 
 

 

CONFIG_DEVMEM=y 
CONFIG_STRICT_DEVMEM=n 

 
and can be used to access a physical address: 

 
int fd = open("/dev/mem", O_RDWR|O_SYNC /* oflags */)); 
void *vaddr =  
 mmap(hint, size, PROT_READ | PROT_WRITE,MAP_SHARED, fd, (off_t) paddr); 

 

 

As trivial as it may look, let’s review these two lines. In the first line the open() function 

establishes the connection between a file and a file descriptor, which is used for mapping the contents of 

the file into the processes’ address space. Values for oflags are constructed by a bitwise-inclusive-OR of 

flags defined in <fcntl.h>. The O_RDWR flag indicates that the file is opened for reading and writing. 

The other flag that is relevant is O_SYNC. It indicates that write operations will flush data and all 

associated metadata to the underlying hardware bypassing L1/L2 CPU cache.  The second line creates a 

memory mapping in the virtual address space of the calling process. The hint parameter specifies a 

preferred starting address for the mapping (which could be NULL, in which case the OS picks the 

address). The paddr is the offset from where the /dev/mem file mapping is started. Note that from this 

point on, the performance of accessing a virtual address is roughly the same as accessing any other 

address within the processes address space (e.g., acquired through malloc()). 

 

Embedded operating systems (e.g., FreeRTOS, Vector’s MicroSAR and a number of others) 

often don’t utilize MMUs. The OS kernel, BSPs and the application code are linked into a single 
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monolithic binary executable and address translation is neither necessary nor provided. In order to 

access physical memory, it is possible to simply use the physical addresses that are routinely described 

in the linkers’ .ld files. For example (note the m_data and m_data2 memory regions): 
 

 

MEMORY 
{ 
  m_interrupts          (RX)  : ORIGIN = 0x88000000, LENGTH = 0x00000A00 
  m_text                      (RX)  : ORIGIN = 0x88000A00, LENGTH = 0x001FF600 
  m_data                     (RW)  : ORIGIN = 0x88200000, LENGTH = 0x03000000 
  m_data2                  (RW)  : ORIGIN = 0x8C000000, LENGTH = 0x04000000 
  m_tcml                     (RW)  : ORIGIN = 0x1FFE0020, LENGTH = 0x0001FFE0 
  m_tcmu                    (RW)  : ORIGIN = 0x20000000, LENGTH = 0x00020000 
} 
 

 
The same .ld file contains other attributes of the physical memory segment such as whether to bypass the 

L1/L2 cache while accessing the segment.  

 

 
 

Picture 1 illustrates the concept, emphasizing the contiguous nature of virtual and physical memory segments. 
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What is cache coherency? 
 

Coherency means ensuring that all processors within a system have the same view of shared 

memory and that changes to data held in the cache of one core are visible to the other cores, making it 

impossible for cores to see stale or old copies of data. In an AMP system each task can have a different 

view of memory and there is no requirement for hardware-managed cache coherency. The CPUs that 

belong to different clusters are completely independent and don’t have any common cache controller 

that automatically writes data from memory of a given CPU to the external memory. Thus, memory 

changes made by processes running in one cluster (e.g., Cortex-A-based) are invisible to processes 

running in another (Cortex-M-based) and vice versa unless some explicit action is taken create the 

visibility.  

 

Obviously, modifications made to data in shared memory (and committed to storage) by any 

process must be made visible to all other processes connected to the data. This can be handled in two 

ways: 

- by simply not caching shared memory locations, and 

- by controlling the cache state by “cleaning” and “invalidating” the cache or individual cache 

lines explicitly 

 

While perceived as a simpler and more reliable solution, disabling caching typically has a high-

performance cost. Perhaps not so strikingly noticeable on the Cortex-M / FreeRTOS side because of the 

relatively slower CPU, but quite dramatic on the Cortex-A/Linux - based cluster (an order of magnitude 

for an average transaction). Therefore, despite the added complexity the clean/invalidate approach is 

well justified.  

 

The ARM Developer documentation states that “...the invalidation of cache or a cache line 

means clearing it of data. This is done by clearing the valid bit of one or more cache lines.” In other 

words, if a cache line was invalidated, attempting to read from the address would trigger a read access to 

memory. Cleaning a cache or cache line means writing the contents of dirty cache lines out to main 

memory and clearing the dirty bit(s) in the cache line. This makes the contents of the cache line and 

main memory coherent with each other. Note that the clean and invalidate commands can be applied to a 

cache line either by its address (virtual or physical), or by the cache line “coordinates” set and way: “a 

way is a subdivision of a cache,…. A set consists of the cache lines from all ways sharing a particular 

index.” 

 

Incidentally, the problem resembles a well-known headache with memory reordering 

optimizations related to store buffers and invalidation queues that exist in most modern processors. The 

obstacle is removed through the memory read and write barriers — a necessary evil that enables good 

performance and scalability by enforcing ordering on memory operations.  
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Applications to the Database Kernel 

Database transactions 

 
Recall that the premise of this paper is that the high complexity and critical nature of applications 

utilizing AMP architecture manage a significant amount of complex and real-time data that must be 

shared. Complex data means that the concern is not a single integer, or a single C structure. Rather, the 

concern is with multiple inter-related structures, and those relationships must be maintained. Normally, 

this is the work of a database management system. One of the key database management system 

(DBMS) concepts is that of database transactions, a powerful notion that differentiates database storage 

from other storage paradigms (such as a file system). A database transaction is a unit of work that is 

either completed as a unit or undone as a unit. Transaction processing is crucial in maintaining the 

integrity of a database (meaning that data in the database was collected and stored accurately, and is 

contextually accurate to the data model). DBMS transactions have two main purposes:  

- to provide reliable units of work that allow correct recovery from failures and keep a database 

consistent, and 

- to provide isolation between programs accessing a database concurrently. 

 

A database transaction, by definition, must be atomic (integrity of the entire database transaction, 

not just a component of it), consistent, isolated and durable. These transactions’ characteristics often 

referred to as ACID properties. Cache coherency discussed above is vital to enforcing transactions’ 

ACID properties.  

 

If you’re going to exploit the AMP architecture manage a significant amount of related data, 

you’re going to need to implement at least lightweight transactions. 

 

 

Enforcing cache coherency in transactions 

For the purpose of this discussion let’s assume a simple implementation that allows one “write” 

transaction (a transaction that makes any modifications to the database) and multiple “read” transactions 

to run concurrently. Let’s consider the following (high-level) approach to cache synchronization and note 

that the description below is streamlined for clarity. 

 

1. At the start of any transaction the local cache is invalidated prompting the transaction to read the 

data from physical memory (see the read_invalidate() function below) 

 

2. At the end of a “write” transaction the cache is cleaned, which leads to pushing all modifications 

from the local cache to the physical memory (see the write_clean() function below) 

 

This two-step, brute-force approach of dropping all cache lines at the end of each transaction 

carries a high-performance penalty. The obvious optimizations are to decrease the number of cache lines 

participating in the invalidate/clean operations and to minimize the number of invalidate and clean calls. 
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At the end of a “write” transaction all modified shared memory ranges (database pages, in 

database vendors’ parlance) should be written to RAM. For that purpose, several internal structures need 

to be maintained: 

- the “write bitmap” (WBM). Each bit of the WBM corresponds to a single database page and the 

bitmap is also allocated in the shared storage, which makes it accessible by all connected tasks.  

- variables that keep integer numbers identifying the cluster that was last used to invalidate the 

cache and the cluster that executed the last write transaction These variables are also kept in the 

shared storage and are accessible by all connected tasks. 

- a list of all pages modified by the current transaction. 

 

At the end of the transaction, you need to walk through the list of modified pages and mark them 

in the “bitmap”. The modified list is then released. Note that multiple transactions can mark their 

modifications in the WBM, in the event that there are two or more sequential write transactions on the 

same cluster. At the start of a subsequent “read-only” or “write” transaction, you need to check whether 

the current transaction is running on the same cluster as the last transaction and whether the previous 

invalidate was issued on the current cluster. This verification is done through the cluster identification 

variables described above. If the cluster is the same, the cache was synchronized locally by the cache 

controller. However, if the last transaction was run on a different cluster (the cluster_id is not this 

cluster), the modified pages listed in the WBM should be invalidated. The pseudo code below illustrates 

the algorithm. 

 
read_invalidate() { 
    if (wbm->reader_id != current_id && wbm->writer_id != current_id) { 
        for (each page in wbm->bitmap) { 
            invalidate_page(page); 
        } 
        wbm->reader_id = current_id; 
    }  
} 

 
write_clean()  
{ 
    if (wbm->writer_id != current_id || wbm->reader_id != INVALID_ID) { 
        mco_memnull(wbm->bitmap); 
    } 
    for (each page in dirty_list) { 
        clean_page(page); 
        set_bit(wbm->bitmap, page_num) 
    } 
    wbm->writer_id = current_id; 
    wbm->reader_id = INVALID_ID; 
} 

 
To summarize, the modified pages are invalidated (forced to be re-read from RAM), at the beginning 

of each transaction if 

• the last “write” transaction was from a different cluster and  

• the current transaction (either read-only or write) is the first one on the current cluster.  
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The RAM is written to (cleaned) at the end of a write transaction.   

 
Another caveat is that the WBM itself must be synchronized between clusters too, meaning that the 

cache clean/invalidate operations must be applied to the bitmap once it has been modified. The bitmap 

can be rather large (for a gigabyte database with 256 byte pages the bitmap size is 512K). Thus, 

synchronizing the entire bitmap, especially when the transaction rate is high and the transactions are 

small (i.e., modify a small number of pages) is wasteful and has a highly negative impact on 

performance. To mitigate this, we can create a second-level “metamap” (see Picture 2) that bit-marks 

each cache line of the WBM that needs to be synchronized, reducing the number of addresses that must 

be invalidated. For example, given the same 1GB database and 256-byte pages and a 64-byte cache line, 

a 1K metamap (16 cache lines) would serve the 512K bitmap. If a transaction has modified a single 

database page, the cache operations would impact just 17 cache lines (16 of the metamap and 1 from the 

WBM) plus the actual modified database page. 

 

 

 
 

Picture 2.  It is worth noticing that the transaction size (the number of objects that are modified) is an 

important factor in the overall performance of the system. The larger a transaction is, the more beneficial 

the effect of implementing the WBM and metamap. The diagram on Pictures 3 (for the Cortex M4 core), 

Picture 4 (Cortex-A72), and Picture 5 (Cortex A-53) illustrate the trend. 
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Picture 3. Cortex M4 core 

 

 
 

Picture 4 Cortex-A72 

 

 
 

Picture 5 Cortex A-53 
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To further complicate things, the database kernel has internal structures that could change even 

in the context of a read-only transaction. Access to these structures is protect via a synchronization 

semaphore, which in the AMP environment take a form of a distributed semaphore (discussed further in 

this article). Consequently, these shared structures must be synchronized across multiple AMP clusters: 

when the semaphore is taken the protected area must be invalidated and when it is released the protected 

memory has to be cleaned.  

 

These optimizations are implemented only for environments with two clusters. The 

implementation can be extended to support multiple clusters. 

 

 

Instrumentation for Serializing Database Access and the Distributed Semaphore 
 

Inevitably, in implementing the sharing of complex data across cluster in an AMP architecture, 

you will find it necessary to maintain metadata, and that access to that data must also be synchronized. 

In the symmetric multi-processing (SMP) environment, a single instance of the operating system is used 

and this instance runs on all of the CPUs, dividing work between them. In this environment, serializing 

access is a matter of using high-level operating system-provided synchronization primitives 

(semaphores, events, barriers, etc.), utilizing hardware-provided atomic instructions, or accessing 

hardware interrupts directly. In a traditional environment, our job is to exercise good judgment while 

making use of those “instruments” to avoid excessive delays, while ensuring that necessary protection of 

the shared resources is in place. 

 

Unlike SMP systems, AMP clusters are controlled by different operating systems. Thus, from the 

standpoint sharing of data across clusters, the AMP system can be viewed as a distributed network, in 

which “nodes” communicate with each other via shared memory.  Therefore, we need a mechanism to 

synchronize access to metadata structures and consequently shared storage that is independent of each 

node’s operating system. We call this mechanism a Distributed Semaphore. 

 

 

Distributed Semaphore 

 

The distributed semaphore is the component that controls multiple tasks’ synchronization across 

the RTOS running atop of Cortex M cores and Linux running on top of the Cortex-A. 

 

In real life, access to the shared data regions is inevitably assisted by special hardware and 

perhaps low-level OS kernel components. As indicated earlier, our referenced NXP’s i.MX8 devices 

present two hardware modules that assist in these communications: the SEMA42 hardware semaphore 

and the Messaging Unit (MU). Prior to describing the distributed semaphore implementation let’s 

review the available “instrumentation” options. 
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SEMA42 hardware semaphore 

The SEMA42 module provides hardware support for implementing semaphores, and a simple 

mechanism for “locking /unlocking” access to shared resources via a single write access. The semaphore 

supports 16 hardware “gates”, each of which can be either locked or unlocked. If the gate is unlocked, 

one and only one CPU is able to turn it into the locked state, access a shared resource and then unlock 

the gate. 

 

When multiple CPUs are making attempts to access a shared resource, one of them could lock the 

gate. Other CPUs would have to wait until the gate is unlocked and repeat the attempt. This trivial logic 

resembles SMP’s widely used Test-And-Set (TAS) instruction. A software module (such as an operating 

system or a database kernel) would need to poll the gate in a busy loop. Busy loops when used often lead 

to increased CPU and bus loads and greater latencies while accessing shared resources. 
 

 

Messaging Unit 

The Message Unit is a smarter device. The module integrates several 32-bit TX/RX registers and 

enables two clusters within the device to communicate and coordinate by passing messages (e.g., data, 

status and control) through the MU interface. Most importantly, the MU provides the ability for one 

processor to signal the other processor using interrupts. A cluster’s CPU can set control bits in the MU’s 

control-register that generates an interrupt on the other cluster’s CPU. Therefore, applications can avoid 

polling the state of the data register. From our perspective, the high-level logic is for the sender to write 

the message into the data register and generate the interrupt for the receiver. In turn, the receiver reads 

the 4-byte register content in the context of an Interrupt Service Routing (ISR) and forwards the data 

into the application. A user-level process that could have been waiting for the message to arrive could be 

awoken as well. 

  

The MU provides an API that includes functions to initialize the module, send and receive 

messages, set MU status flags and interrupts and other miscellaneous functions. The distributed 

semaphore can be implemented via the MU API. 

 

Another higher-level alternative to implementing the distributed semaphore is to use the Remote 

Processor Messaging protocol.  

 

 

Remote Processor Messaging 

The Remote Processor Messaging (RPMsg) is a software messaging bus that allows interprocess 

communications between different instances of operating systems, whether Linux or RTOS, running on 

AMP cores. The RPMsg is a part of the Open Asymmetric Multi Processing (OpenAMP) framework. 

RPMsg is present in the Linux kernel, integrated with FreeRTOS, Vector’s MicroSAR and many other 

RTOS, and is also available as a stand-alone component for bare metal systems. The RPMsg protocol 

defines a standardized binary interface used to communicate between multiple cores in a heterogeneous 

multicore system. RTOS often integrate RPMsg-Lite, which is a lightweight implementation of the 

RPMsg protocol. RPMsg-Lite is an open-source component developed by NXP Semiconductors. 
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Compared to the RPMsg implementation, RPMsg-Lite offers code size reduction, a simpler API, and 

improved modularity.  

 

The RPMsg API is relatively generalized across multiple hardware. In practice, it is implemented 

through similar specialized hardware: NXP implements the RPMsg protocol on top of the MU hardware 

while STM utilizes IPCC. Picture 6 illustrates the NXP implementation. 

 

 
 

Picture 6 

 

RPMsg Use Justification 

The MU provides enough functionally for the distributed semaphore implementation and so does the 

RPMsg bus. The advantage of using the MU directly are that it is a lower overhead solution: RPMsg 

always makes use of shared memory to pass messages around, regardless of their size. The distributed 

semaphore algorithm needs to pass just a few bytes and uses the MU registers for that. The advantage of 

using the RPMsg are that the MU-based implementation is hardware-dependent. MU register addressing 

and overall rules of engagement could be different even across NXP devices and other vendor’s 

hardware could use different means to control messaging across the shared bus. Furthermore, there 

could be many software components that use the MU directly and hence it would be necessary to 

coordinate that utilization with those components. For example, the Linux-based RPMsg kernel module 

uses the MU, so if that module is loaded (used by some applications/drivers), it wouldn’t be possible to 

use the MU directly. 

 

As a result, we recommend implementation of the distributed semaphore via the RPMsg bus. 

Note that RPMsg implementations vary from one OS to another, but functionally allows message 

exchange across asymmetric hardware architectures through common DDR memory. 
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Transaction Flow and Distributed Semaphore 

 
This section describes the implementation of the Distributed Semaphore for NXP’s i.MX8 

system on chip (SoC). 

  

As described previously, we assume that applications access the shared data in the context of 

“transactions”. For the sake of simplicity to demonstrate the concept, one “write” or multiple “read” 

transactions operate at a time. While a “read” transaction operates, a “write” transaction will wait for all 

the read transactions to complete. When a “write” transaction operates, all other transactions (read or 

write) will wait for the write transaction to complete.  Picture 7 illustrates the transaction flow. In the 

implementation, each task that requires access to the shared data is represented as a structure that lets us 

put tasks on hold to avoid access conflicts. Specifically, there is a semaphore that allows its associated 

task/transaction to wait. When a task is ready to run, the implementation lifts the semaphore. The unique 

feature of this setup is the implementation of a distributed semaphore (as opposed to a “local” single 

OS-based primitive). For the i.MX hardware, the distributed semaphore is implemented so that a task 

located on the A-core is capable of “waking up” a transaction waiting on the M-core and vice versa.  

 

 
 

Picture 7. The M-core starts a RO (read-only) transaction. There are no other transactions in the system, so the TM 

immediately allows the current transaction to run. While the transaction is running, the A-core attempts to initiate a 

“read_write” transaction. The transaction waits on the “semaphore”. 
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The implementation on each side (A/M) has a local imx_semaphore structure identified by the 

semaphore ID that is kept in the shared memory. Thus, a distributed semaphore is represented by two 

structures and a few functions: 
  

 

typedef struct { 
    unsigned short          count; 
    unsigned short          n_w_local; 
    unsigned short          n_w_remote; 
} imx_semaphore; 

 

 

The “count” defines the number of resources that belong to a given side. This implementation makes 

use of binary semaphores. That means that, in the beginning, the sum of counts on each side of the 

semaphore is equal to 1. 

 

The “n_w_local” represents the number of local tasks that wait for the semaphore. 

 

The “n_w_remote” represents the number of remote tasks waiting for a semaphore (on the opposite 

side). 
 

If the local count is zero, i.e., the semaphore can’t be taken, the kernel sends the WAIT_INC “message” 

(semaphore increment) to the opposite side and the task is put to sleep. The task is awakened when the 

count becomes positive, either as a result of a local semaphore up() call, or a “reply” from the remote side.  

If the WAIT_INC was sent, the WAIT_DEC (semaphore decrement) message is sent. 
  

 

void down(sem) 
{ 
    int req_sent = 0; 
    if (sem->count == 0) { 
        sem->n_w_local++; 
        req_sent = 1; 
        rpmsg_send(RPMSG_OP_WAIT_INC); 
    } 
    while (se->count == 0) { 
        task_wait() 
    } 
    se->count--; 
    if (req_sent) { 
        sem->n_w_local--; 
        rpmsg_send(RPMSG_OP_WAIT_DEC); 
    } 
} 

 

 

When the WAIT_INC is received the n_w_remote (the number of remote tasks waiting for access) is 

incremented. If at the same time the local count > 0, the ownership of the semaphore is transferred to the 

opposite side through the POST message. 
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void on_WAIT_INC_msg ( sem ) 
{ 
    sem->n_w_remote++; 
    if (sem->count > 0) { 
        sem->count--; 
        rpmsg_send(RPMSG_OP_POST); 
    } 
} 

 
 

void on_WAIT_DEC_msg(int code, int sem_id) 
{ 
    sem->n_w_remote--; 
} 

 
 

When the WAIT_DEC message is received, the number of waiting remote transactions is decremented 

by one. 

 

 

/*..*/ 
void on_POST_msg(sem) 
{ 
    if (sem->n_w_remote > 0 && sem->n_w_local == 0) { 
        rpmsg_send(RPMSG_OP_POST); 
    } else { 
        sem->count++; 
        if (sem->n_w_local > 0) { 
             task_wakeup(); 
       } 
    } 
} 
  
/*…*/ 
on_msg() 
{ 
    while (1) { 
         msg = get_queue(); 
         switch(OP(msg)) { 
                  case POST:   on_POST_msg(msg); break; 
                  case WAIT_INC:   on_WAIT_INC_msg(msg); break; 
                  case WAIT_DEC:   on_WAIT_DEC_msg(msg); break; 
  
                 ...... 
          }  
    } 
} 
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/*..*/ 
void up(sem)  
{ 
    if (sem->n_w_remote > 0 && sem->n_w_local == 0) { 
              rpmsg_send(RPMSG_OP_POST); 
    } else { 
        sem->count++; 
        if (sem->n_w_local > 0) { 
                           task_wakeup(); 
        } 
    } 
} 

 

 

When a local task lifts the semaphore (calls up()) or receives the POST message from the opposite side, 

the ownership of the semaphore is transferred if there are no local tasks waiting in the queue and a request 

for the semaphore had been received. Otherwise, the local “count” is incremented and local tasks are 

awakened (if there are any). Picture 8 illustrates the flow: 
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Picture 8 illustrates the scenario when the A-core attempts to acquire a semaphore, but its local count is zero. The 

WAIT_INC is sent and the A-core task is put to sleep. M-core side’s count is equal to 1, so upon receiving the WAIT_INC, the 

POST is immediately sent and the n_w_remote count is incremented. In turn, the A-side sends the WAIT_DEC and wakes up 

the waiting task. Since the WAIT_DEC was received, the M-core decremented the n_w_remote. When the A-core’s task lifts 

the semaphore (calls up() ), its count becomes 1 and, as a result the semaphore ownership is transferred from the M- to the 

A-core (until there are no other semaphore requests). 

 

 

Conclusion 
 

AMP systems and their ability to collect, share and process data in real time are the way forward 

for applications that need both latency-sensitive and high-performance processing. The hardware itself 

and the low-level apparatus create an excellent foundation for mission-critical applications, but real-time 

software — firmware, real-time operating systems and advanced middleware adds substantial value to 

any design. Real-time data management is a key component to use with AMP hardware for a number of 

data-driven applications: avionics, automotive, industrial, and virtually all domains that involve 

significant sensor data fusion. 


