

Shared Data in Asymmetric Multiprocessing

(AMP) Configurations

McObject LLC
33309 1st Way South

Suite A-208
Federal Way, WA 98003

Phone: 425-888-8505

E-mail: info@mcobject.com

www.mcobject.com

Copyright 2023, McObject LLC

mailto:info@mcobject.com
http://www.mcobject.com/
http://www.mcobject.com/

2

Abstract - Modern system-on-module (SoM) platforms may have heterogeneous processor

devices in asymmetric multiprocessing (AMP) configurations. Two widely accepted architectures from

NXP are the i.MX 8 QuadMax and i.MX 8 QuadPlus series that include varying counts of ARM Cortex-

A and Cortex-M CPU cores, and ST Micro’s STM32MP15x lines. These designs are frequently used in

multimedia, automotive, and industrial controller applications. The heterogeneous multicore architecture

allows the offloading of critical hard real-time tasks to the Cortex M processors for extremely low

latency processing, while using the Cortex-A cores for high-performance tasks. In addition, these SoCs

integrate shared memory and hardware modules intended to provide communication capabilities

between the Cortex-A and Cortex-M cores. Different CPUs usually run instances of different operating

systems, e.g., Linux on the A cores and bare-metal applications or real-time OS (FreeRTOS, AutoSAR,

etc.) on the M core(s).

Traditionally on-board shared memory was used for communications / message passing only.

Yet due to the high complexity and critical nature of applications utilizing the AMP hardware, and the

amount of the external memory, real-time data can often be shared between the Cortex-A and Cortex-M

cores. This article will discuss the design and challenges of a shared data implementation for AMP

configurations, explore implementation options to synchronize access to shared data, and discuss

example use cases.

Heterogeneous multicore systems

Heterogeneous multicore systems are becoming ever more popular for automotive and industrial

applications due to their high performance and energy efficiency. Heterogeneous systems have two or

more cores with different instruction set architectures with more than one operating system running on

the device. By dividing tasks between different processors, heterogeneous system designs cover multiple

requirements such as energy efficiency, performance and safety, and make them fit for real-time critical

applications.

This architecture is known as Asymmetric Multiprocessing (AMP). An AMP system has

multiple CPUs, each of which may be a different architecture (but can be the same). Each CPU has its

own address space (though some of the memory may be shared with other cores). The system is

typically equipped with a communication facility between the CPUs, normally a hardware messaging

unit, and DDR shared memory. In addition, more than one operating system runs independently on one

or more processors with different architectures. For example, NXP i.MX8x with embedded Linux on

the ARM Cortex-A and FreeRTOS or Vector’s MicroSAR on the ARM Cortex-M4.

This is in contrast to Symmetric Multi-Processing systems (SMP) that refers to systems with

multiple CPUs each of which has the same architecture. SMP designs are used when an embedded

application simply needs more CPU power to manage its workload, similar to multi-core CPUs used in

desktop computers.

Multiple vendors offer AMP hardware. Two widely accepted architectures are NXP's i.MX 8

QuadMax and i.MX 8 QuadPlus series that include varying counts of ARM Cortex-A and Cortex-M

CPU cores. Another popular alternative includes STM’s STM32MP157F devices that offer dual-core

Arm® Cortex®-A7 in combination with a Cortex® -M4 32-bit RISC core. Throughout this paper we

3

use the NXP’s i.MX8 hardware as our reference. That said, similar provisions apply to other AMP

hardware, including the above referenced STM devices.

The shared memory regions integrated with the AMP hardware are directly accessible allowing

for communications and/or message passing between the “clusters” (a cluster refers to several cores

capable of independent instruction execution and running a separate operating system). Traditionally,

shared memory was used for communications / message passing only. Yet due to the high complexity

and critical nature of applications utilizing the i.MX8 hardware, and the amount of external memory,

real-time data can be shared between the Cortex-A and Cortex-M cores.

The need for a real-time storage system in applications that utilize AMP hardware is quite wide-

spread: power grid controllers must share their sensor readings and other real-time data collected by a

FreeRTOS-based low-latency application running atop of the Cortex-M clusters with the fast yet

complex processing on the Linux side running atop of the Cortex-A clusters; an AMP-based drone

system utilizes different clusters for navigation parameters acquisition and for real-time processing

running different real-time operating systems on each cluster.

Overview

Conceptually, a database subsystem in the AMP systems can be organized in two ways:

1. A client-server methodology is used when the database is maintained within the scope of a

process running on a single cluster. This process has exclusive access to the database. The data is

then available to any other processes running within the same cluster or a different cluster

through “messages” passed to the “server” process through the shared memory. The message

passing is coordinated by the specialized hardware integrated within the SoC. The database

management system processes the “messages” through a dedicated “server” application that then

writes and reads the storage using conventional methods and sends back a reply to the “client”

process. AMP hardware/ firmware normally integrates some means of communication between

clusters.

2. An alternative method is to keep the database in the device’s shared memory and make it directly

accessible from all clusters’ processes/applications. The implementation must maintain control

over the flow of data, synchronize data access and ensure logical and perhaps temporal

consistency of the data, equipping applications with methods to write and read the data, such as a

C-call API or other means and makes use of the available hardware resources, e.g., the i.MX8

Messaging Unit.

This paper discusses the second approach. We find it attractive to data-driven applications for

several reasons: the performance is higher with direct access to storage, and the storage is better utilized

because the entire DDR memory can be used for storage. Directly managing database access from

multiple clusters presents greater flexibility to multiple threads by fine-tuning contention resolution. In

addition, the absence of a single point of failure – the server process, is essential for data driven safety-

critical systems that often make use of the AMP hardware.

4

The relevant hardware modules

As indicated, the shared data design presented in this article was originally created for the NXP

i.MX8 QuadMax device with embedded Linux running on the ARM Cortex-A and FreeRTOS running

on the ARM Cortex-M4 side. The DDR memory that is used to maintain the database is deemed

“external” from the viewpoint of the clusters’ software. The shared access to common storage from

multiple processes/threads dictates that the solution coordinates access between those threads through

some means of synchronization. When all cores are located within the same “cluster” — running the

same operating system, the operating system’s synchronization primitives can be used, or serialization

and synchronization mechanisms can be created directly through the hardware interrupts. In the AMP

scenario all cores are completely independent, so the i.MX8 design presents two hardware modules that

facilitate inter-process communication: the hardware semaphore called SEMA42 and the Messaging

Unit (MU).

The SEMA42 is a memory-mapped module that provides hardware support for implementing

semaphores and a simple mechanism to implement “lock" and “unlock" operations via a single-write,

atomic access. The hardware semaphore module provides hardware-enforced “gates” as well as other

useful system functions related to the gating mechanisms.

The Messaging Unit (MU) module enables two processors within the device to communicate and

coordinate by passing messages (e.g., data, status and control) through the MU interface. The MU also

provides the ability for one processor to signal the other processor using interrupts.

Both tools have their own benefits and disadvantages when put in practice and we will discuss

the use of them further in this article. Note that the STM analog to SEMA42 — the Hardware

semaphore (HSEM) and to the Messaging Unit — the Inter-processor communication controller (IPCC),

provide similar functionality and facilitate similar software architecture.

On heterogeneous devices, different CPU architectures and the use of multiple operating systems

on different processors presents considerable added complexity regarding synchronization concepts

relative to symmetric (SMP) systems. These challenges are analyzed in more detail in the following

sections.

Endianness and word size

 The internal data structures and the storage layout must be impartial to different endianness and

the word size (32- or 64-bit). This was uncomplicated. Both the i.MX8 Cortex-A and Cortex-M

processors use little-endian architecture and the Cortex-M is a 32-bit processor. Therefore, the data

layout is a 32-bit layout.

5

Addressing database memory

All cores from different clusters must have the ability to address the same physical memory region

(where the shared data is kept). The i.MX8 clusters run different operating systems that implement

different memory management unit (MMU) mechanisms. Thus, the shared data must be located in the

physical memory region with a contiguous addressing, and the starting address and the size of the region

must be known up-front.

Normally, AMP-based operating systems are configured so that not all shared memory is directly

utilized by their respective kernels. The memory is divided into several segments. For example, the first

segment is assigned and controlled by one OS (e.g., Linux), the second segment is used by another OS

(e.g., FreeRTOS). The third segment is not directly used by any of the operating systems, but can be

used for data exchange between the operating systems’ kernels and other software modules run on

different clusters. Therefore, this segment’s address space is a perfect fit for a shared database as it can

be managed exclusively by the database management system and is never directly “touched” by the

operating systems’ kernels.

As a rule, operating systems’ kernels provide methods for addressing physical memory to

software modules. In Linux (and other Unix-based operating systems) the/dev/mem is a character device

file that provides access to the system’s physical memory (as opposed to the virtual memory). The

pseudo-device driver must be configured in the Linux kernel:

CONFIG_DEVMEM=y
CONFIG_STRICT_DEVMEM=n

and can be used to access a physical address:

int fd = open("/dev/mem", O_RDWR|O_SYNC /* oflags */));
void *vaddr =
 mmap(hint, size, PROT_READ | PROT_WRITE,MAP_SHARED, fd, (off_t) paddr);

As trivial as it may look, let’s review these two lines. In the first line the open() function

establishes the connection between a file and a file descriptor, which is used for mapping the contents of

the file into the processes’ address space. Values for oflags are constructed by a bitwise-inclusive-OR of

flags defined in <fcntl.h>. The O_RDWR flag indicates that the file is opened for reading and writing.

The other flag that is relevant is O_SYNC. It indicates that write operations will flush data and all

associated metadata to the underlying hardware bypassing L1/L2 CPU cache. The second line creates a

memory mapping in the virtual address space of the calling process. The hint parameter specifies a

preferred starting address for the mapping (which could be NULL, in which case the OS picks the

address). The paddr is the offset from where the /dev/mem file mapping is started. Note that from this

point on, the performance of accessing a virtual address is roughly the same as accessing any other

address within the processes address space (e.g., acquired through malloc()).

Embedded operating systems (e.g., FreeRTOS, Vector’s MicroSAR and a number of others)

often don’t utilize MMUs. The OS kernel, BSPs and the application code are linked into a single

6

monolithic binary executable and address translation is neither necessary nor provided. In order to

access physical memory, it is possible to simply use the physical addresses that are routinely described

in the linkers’ .ld files. For example (note the m_data and m_data2 memory regions):

MEMORY
{
 m_interrupts (RX) : ORIGIN = 0x88000000, LENGTH = 0x00000A00
 m_text (RX) : ORIGIN = 0x88000A00, LENGTH = 0x001FF600
 m_data (RW) : ORIGIN = 0x88200000, LENGTH = 0x03000000
 m_data2 (RW) : ORIGIN = 0x8C000000, LENGTH = 0x04000000
 m_tcml (RW) : ORIGIN = 0x1FFE0020, LENGTH = 0x0001FFE0
 m_tcmu (RW) : ORIGIN = 0x20000000, LENGTH = 0x00020000
}

The same .ld file contains other attributes of the physical memory segment such as whether to bypass the

L1/L2 cache while accessing the segment.

Picture 1 illustrates the concept, emphasizing the contiguous nature of virtual and physical memory segments.

7

What is cache coherency?

Coherency means ensuring that all processors within a system have the same view of shared

memory and that changes to data held in the cache of one core are visible to the other cores, making it

impossible for cores to see stale or old copies of data. In an AMP system each task can have a different

view of memory and there is no requirement for hardware-managed cache coherency. The CPUs that

belong to different clusters are completely independent and don’t have any common cache controller

that automatically writes data from memory of a given CPU to the external memory. Thus, memory

changes made by processes running in one cluster (e.g., Cortex-A-based) are invisible to processes

running in another (Cortex-M-based) and vice versa unless some explicit action is taken create the

visibility.

Obviously, modifications made to data in shared memory (and committed to storage) by any

process must be made visible to all other processes connected to the data. This can be handled in two

ways:

- by simply not caching shared memory locations, and

- by controlling the cache state by “cleaning” and “invalidating” the cache or individual cache

lines explicitly

While perceived as a simpler and more reliable solution, disabling caching typically has a high-

performance cost. Perhaps not so strikingly noticeable on the Cortex-M / FreeRTOS side because of the

relatively slower CPU, but quite dramatic on the Cortex-A/Linux - based cluster (an order of magnitude

for an average transaction). Therefore, despite the added complexity the clean/invalidate approach is

well justified.

The ARM Developer documentation states that “...the invalidation of cache or a cache line

means clearing it of data. This is done by clearing the valid bit of one or more cache lines.” In other

words, if a cache line was invalidated, attempting to read from the address would trigger a read access to

memory. Cleaning a cache or cache line means writing the contents of dirty cache lines out to main

memory and clearing the dirty bit(s) in the cache line. This makes the contents of the cache line and

main memory coherent with each other. Note that the clean and invalidate commands can be applied to a

cache line either by its address (virtual or physical), or by the cache line “coordinates” set and way: “a

way is a subdivision of a cache,…. A set consists of the cache lines from all ways sharing a particular

index.”

Incidentally, the problem resembles a well-known headache with memory reordering

optimizations related to store buffers and invalidation queues that exist in most modern processors. The

obstacle is removed through the memory read and write barriers — a necessary evil that enables good

performance and scalability by enforcing ordering on memory operations.

8

Applications to the Database Kernel

Database transactions

Recall that the premise of this paper is that the high complexity and critical nature of applications

utilizing AMP architecture manage a significant amount of complex and real-time data that must be

shared. Complex data means that the concern is not a single integer, or a single C structure. Rather, the

concern is with multiple inter-related structures, and those relationships must be maintained. Normally,

this is the work of a database management system. One of the key database management system

(DBMS) concepts is that of database transactions, a powerful notion that differentiates database storage

from other storage paradigms (such as a file system). A database transaction is a unit of work that is

either completed as a unit or undone as a unit. Transaction processing is crucial in maintaining the

integrity of a database (meaning that data in the database was collected and stored accurately, and is

contextually accurate to the data model). DBMS transactions have two main purposes:

- to provide reliable units of work that allow correct recovery from failures and keep a database

consistent, and

- to provide isolation between programs accessing a database concurrently.

A database transaction, by definition, must be atomic (integrity of the entire database transaction,

not just a component of it), consistent, isolated and durable. These transactions’ characteristics often

referred to as ACID properties. Cache coherency discussed above is vital to enforcing transactions’

ACID properties.

If you’re going to exploit the AMP architecture manage a significant amount of related data,

you’re going to need to implement at least lightweight transactions.

Enforcing cache coherency in transactions

For the purpose of this discussion let’s assume a simple implementation that allows one “write”

transaction (a transaction that makes any modifications to the database) and multiple “read” transactions

to run concurrently. Let’s consider the following (high-level) approach to cache synchronization and note

that the description below is streamlined for clarity.

1. At the start of any transaction the local cache is invalidated prompting the transaction to read the

data from physical memory (see the read_invalidate() function below)

2. At the end of a “write” transaction the cache is cleaned, which leads to pushing all modifications

from the local cache to the physical memory (see the write_clean() function below)

This two-step, brute-force approach of dropping all cache lines at the end of each transaction

carries a high-performance penalty. The obvious optimizations are to decrease the number of cache lines

participating in the invalidate/clean operations and to minimize the number of invalidate and clean calls.

9

At the end of a “write” transaction all modified shared memory ranges (database pages, in

database vendors’ parlance) should be written to RAM. For that purpose, several internal structures need

to be maintained:

- the “write bitmap” (WBM). Each bit of the WBM corresponds to a single database page and the

bitmap is also allocated in the shared storage, which makes it accessible by all connected tasks.

- variables that keep integer numbers identifying the cluster that was last used to invalidate the

cache and the cluster that executed the last write transaction These variables are also kept in the

shared storage and are accessible by all connected tasks.

- a list of all pages modified by the current transaction.

At the end of the transaction, you need to walk through the list of modified pages and mark them

in the “bitmap”. The modified list is then released. Note that multiple transactions can mark their

modifications in the WBM, in the event that there are two or more sequential write transactions on the

same cluster. At the start of a subsequent “read-only” or “write” transaction, you need to check whether

the current transaction is running on the same cluster as the last transaction and whether the previous

invalidate was issued on the current cluster. This verification is done through the cluster identification

variables described above. If the cluster is the same, the cache was synchronized locally by the cache

controller. However, if the last transaction was run on a different cluster (the cluster_id is not this

cluster), the modified pages listed in the WBM should be invalidated. The pseudo code below illustrates

the algorithm.

read_invalidate() {
 if (wbm->reader_id != current_id && wbm->writer_id != current_id) {
 for (each page in wbm->bitmap) {
 invalidate_page(page);
 }
 wbm->reader_id = current_id;
 }
}

write_clean()
{
 if (wbm->writer_id != current_id || wbm->reader_id != INVALID_ID) {
 mco_memnull(wbm->bitmap);
 }
 for (each page in dirty_list) {
 clean_page(page);
 set_bit(wbm->bitmap, page_num)
 }
 wbm->writer_id = current_id;
 wbm->reader_id = INVALID_ID;
}

To summarize, the modified pages are invalidated (forced to be re-read from RAM), at the beginning

of each transaction if

• the last “write” transaction was from a different cluster and

• the current transaction (either read-only or write) is the first one on the current cluster.

10

The RAM is written to (cleaned) at the end of a write transaction.

Another caveat is that the WBM itself must be synchronized between clusters too, meaning that the

cache clean/invalidate operations must be applied to the bitmap once it has been modified. The bitmap

can be rather large (for a gigabyte database with 256 byte pages the bitmap size is 512K). Thus,

synchronizing the entire bitmap, especially when the transaction rate is high and the transactions are

small (i.e., modify a small number of pages) is wasteful and has a highly negative impact on

performance. To mitigate this, we can create a second-level “metamap” (see Picture 2) that bit-marks

each cache line of the WBM that needs to be synchronized, reducing the number of addresses that must

be invalidated. For example, given the same 1GB database and 256-byte pages and a 64-byte cache line,

a 1K metamap (16 cache lines) would serve the 512K bitmap. If a transaction has modified a single

database page, the cache operations would impact just 17 cache lines (16 of the metamap and 1 from the

WBM) plus the actual modified database page.

Picture 2. It is worth noticing that the transaction size (the number of objects that are modified) is an

important factor in the overall performance of the system. The larger a transaction is, the more beneficial

the effect of implementing the WBM and metamap. The diagram on Pictures 3 (for the Cortex M4 core),

Picture 4 (Cortex-A72), and Picture 5 (Cortex A-53) illustrate the trend.

11

Picture 3. Cortex M4 core

Picture 4 Cortex-A72

Picture 5 Cortex A-53

12

To further complicate things, the database kernel has internal structures that could change even

in the context of a read-only transaction. Access to these structures is protect via a synchronization

semaphore, which in the AMP environment take a form of a distributed semaphore (discussed further in

this article). Consequently, these shared structures must be synchronized across multiple AMP clusters:

when the semaphore is taken the protected area must be invalidated and when it is released the protected

memory has to be cleaned.

These optimizations are implemented only for environments with two clusters. The

implementation can be extended to support multiple clusters.

Instrumentation for Serializing Database Access and the Distributed Semaphore

Inevitably, in implementing the sharing of complex data across cluster in an AMP architecture,

you will find it necessary to maintain metadata, and that access to that data must also be synchronized.

In the symmetric multi-processing (SMP) environment, a single instance of the operating system is used

and this instance runs on all of the CPUs, dividing work between them. In this environment, serializing

access is a matter of using high-level operating system-provided synchronization primitives

(semaphores, events, barriers, etc.), utilizing hardware-provided atomic instructions, or accessing

hardware interrupts directly. In a traditional environment, our job is to exercise good judgment while

making use of those “instruments” to avoid excessive delays, while ensuring that necessary protection of

the shared resources is in place.

Unlike SMP systems, AMP clusters are controlled by different operating systems. Thus, from the

standpoint sharing of data across clusters, the AMP system can be viewed as a distributed network, in

which “nodes” communicate with each other via shared memory. Therefore, we need a mechanism to

synchronize access to metadata structures and consequently shared storage that is independent of each

node’s operating system. We call this mechanism a Distributed Semaphore.

Distributed Semaphore

The distributed semaphore is the component that controls multiple tasks’ synchronization across

the RTOS running atop of Cortex M cores and Linux running on top of the Cortex-A.

In real life, access to the shared data regions is inevitably assisted by special hardware and

perhaps low-level OS kernel components. As indicated earlier, our referenced NXP’s i.MX8 devices

present two hardware modules that assist in these communications: the SEMA42 hardware semaphore

and the Messaging Unit (MU). Prior to describing the distributed semaphore implementation let’s

review the available “instrumentation” options.

13

SEMA42 hardware semaphore

The SEMA42 module provides hardware support for implementing semaphores, and a simple

mechanism for “locking /unlocking” access to shared resources via a single write access. The semaphore

supports 16 hardware “gates”, each of which can be either locked or unlocked. If the gate is unlocked,

one and only one CPU is able to turn it into the locked state, access a shared resource and then unlock

the gate.

When multiple CPUs are making attempts to access a shared resource, one of them could lock the

gate. Other CPUs would have to wait until the gate is unlocked and repeat the attempt. This trivial logic

resembles SMP’s widely used Test-And-Set (TAS) instruction. A software module (such as an operating

system or a database kernel) would need to poll the gate in a busy loop. Busy loops when used often lead

to increased CPU and bus loads and greater latencies while accessing shared resources.

Messaging Unit

The Message Unit is a smarter device. The module integrates several 32-bit TX/RX registers and

enables two clusters within the device to communicate and coordinate by passing messages (e.g., data,

status and control) through the MU interface. Most importantly, the MU provides the ability for one

processor to signal the other processor using interrupts. A cluster’s CPU can set control bits in the MU’s

control-register that generates an interrupt on the other cluster’s CPU. Therefore, applications can avoid

polling the state of the data register. From our perspective, the high-level logic is for the sender to write

the message into the data register and generate the interrupt for the receiver. In turn, the receiver reads

the 4-byte register content in the context of an Interrupt Service Routing (ISR) and forwards the data

into the application. A user-level process that could have been waiting for the message to arrive could be

awoken as well.

The MU provides an API that includes functions to initialize the module, send and receive

messages, set MU status flags and interrupts and other miscellaneous functions. The distributed

semaphore can be implemented via the MU API.

Another higher-level alternative to implementing the distributed semaphore is to use the Remote

Processor Messaging protocol.

Remote Processor Messaging

The Remote Processor Messaging (RPMsg) is a software messaging bus that allows interprocess

communications between different instances of operating systems, whether Linux or RTOS, running on

AMP cores. The RPMsg is a part of the Open Asymmetric Multi Processing (OpenAMP) framework.

RPMsg is present in the Linux kernel, integrated with FreeRTOS, Vector’s MicroSAR and many other

RTOS, and is also available as a stand-alone component for bare metal systems. The RPMsg protocol

defines a standardized binary interface used to communicate between multiple cores in a heterogeneous

multicore system. RTOS often integrate RPMsg-Lite, which is a lightweight implementation of the

RPMsg protocol. RPMsg-Lite is an open-source component developed by NXP Semiconductors.

14

Compared to the RPMsg implementation, RPMsg-Lite offers code size reduction, a simpler API, and

improved modularity.

The RPMsg API is relatively generalized across multiple hardware. In practice, it is implemented

through similar specialized hardware: NXP implements the RPMsg protocol on top of the MU hardware

while STM utilizes IPCC. Picture 6 illustrates the NXP implementation.

Picture 6

RPMsg Use Justification

The MU provides enough functionally for the distributed semaphore implementation and so does the

RPMsg bus. The advantage of using the MU directly are that it is a lower overhead solution: RPMsg

always makes use of shared memory to pass messages around, regardless of their size. The distributed

semaphore algorithm needs to pass just a few bytes and uses the MU registers for that. The advantage of

using the RPMsg are that the MU-based implementation is hardware-dependent. MU register addressing

and overall rules of engagement could be different even across NXP devices and other vendor’s

hardware could use different means to control messaging across the shared bus. Furthermore, there

could be many software components that use the MU directly and hence it would be necessary to

coordinate that utilization with those components. For example, the Linux-based RPMsg kernel module

uses the MU, so if that module is loaded (used by some applications/drivers), it wouldn’t be possible to

use the MU directly.

As a result, we recommend implementation of the distributed semaphore via the RPMsg bus.

Note that RPMsg implementations vary from one OS to another, but functionally allows message

exchange across asymmetric hardware architectures through common DDR memory.

15

Transaction Flow and Distributed Semaphore

This section describes the implementation of the Distributed Semaphore for NXP’s i.MX8

system on chip (SoC).

As described previously, we assume that applications access the shared data in the context of

“transactions”. For the sake of simplicity to demonstrate the concept, one “write” or multiple “read”

transactions operate at a time. While a “read” transaction operates, a “write” transaction will wait for all

the read transactions to complete. When a “write” transaction operates, all other transactions (read or

write) will wait for the write transaction to complete. Picture 7 illustrates the transaction flow. In the

implementation, each task that requires access to the shared data is represented as a structure that lets us

put tasks on hold to avoid access conflicts. Specifically, there is a semaphore that allows its associated

task/transaction to wait. When a task is ready to run, the implementation lifts the semaphore. The unique

feature of this setup is the implementation of a distributed semaphore (as opposed to a “local” single

OS-based primitive). For the i.MX hardware, the distributed semaphore is implemented so that a task

located on the A-core is capable of “waking up” a transaction waiting on the M-core and vice versa.

Picture 7. The M-core starts a RO (read-only) transaction. There are no other transactions in the system, so the TM

immediately allows the current transaction to run. While the transaction is running, the A-core attempts to initiate a

“read_write” transaction. The transaction waits on the “semaphore”.

16

The implementation on each side (A/M) has a local imx_semaphore structure identified by the

semaphore ID that is kept in the shared memory. Thus, a distributed semaphore is represented by two

structures and a few functions:

typedef struct {
 unsigned short count;
 unsigned short n_w_local;
 unsigned short n_w_remote;
} imx_semaphore;

The “count” defines the number of resources that belong to a given side. This implementation makes

use of binary semaphores. That means that, in the beginning, the sum of counts on each side of the

semaphore is equal to 1.

The “n_w_local” represents the number of local tasks that wait for the semaphore.

The “n_w_remote” represents the number of remote tasks waiting for a semaphore (on the opposite

side).

If the local count is zero, i.e., the semaphore can’t be taken, the kernel sends the WAIT_INC “message”

(semaphore increment) to the opposite side and the task is put to sleep. The task is awakened when the

count becomes positive, either as a result of a local semaphore up() call, or a “reply” from the remote side.

If the WAIT_INC was sent, the WAIT_DEC (semaphore decrement) message is sent.

void down(sem)
{
 int req_sent = 0;
 if (sem->count == 0) {
 sem->n_w_local++;
 req_sent = 1;
 rpmsg_send(RPMSG_OP_WAIT_INC);
 }
 while (se->count == 0) {
 task_wait()
 }
 se->count--;
 if (req_sent) {
 sem->n_w_local--;
 rpmsg_send(RPMSG_OP_WAIT_DEC);
 }
}

When the WAIT_INC is received the n_w_remote (the number of remote tasks waiting for access) is

incremented. If at the same time the local count > 0, the ownership of the semaphore is transferred to the

opposite side through the POST message.

17

void on_WAIT_INC_msg (sem)
{
 sem->n_w_remote++;
 if (sem->count > 0) {
 sem->count--;
 rpmsg_send(RPMSG_OP_POST);
 }
}

void on_WAIT_DEC_msg(int code, int sem_id)
{
 sem->n_w_remote--;
}

When the WAIT_DEC message is received, the number of waiting remote transactions is decremented

by one.

/*..*/
void on_POST_msg(sem)
{
 if (sem->n_w_remote > 0 && sem->n_w_local == 0) {
 rpmsg_send(RPMSG_OP_POST);
 } else {
 sem->count++;
 if (sem->n_w_local > 0) {
 task_wakeup();
 }
 }
}

/*…*/
on_msg()
{
 while (1) {
 msg = get_queue();
 switch(OP(msg)) {
 case POST: on_POST_msg(msg); break;
 case WAIT_INC: on_WAIT_INC_msg(msg); break;
 case WAIT_DEC: on_WAIT_DEC_msg(msg); break;

 }
 }
}

18

/*..*/
void up(sem)
{
 if (sem->n_w_remote > 0 && sem->n_w_local == 0) {
 rpmsg_send(RPMSG_OP_POST);
 } else {
 sem->count++;
 if (sem->n_w_local > 0) {
 task_wakeup();
 }
 }
}

When a local task lifts the semaphore (calls up()) or receives the POST message from the opposite side,

the ownership of the semaphore is transferred if there are no local tasks waiting in the queue and a request

for the semaphore had been received. Otherwise, the local “count” is incremented and local tasks are

awakened (if there are any). Picture 8 illustrates the flow:

19

Picture 8 illustrates the scenario when the A-core attempts to acquire a semaphore, but its local count is zero. The

WAIT_INC is sent and the A-core task is put to sleep. M-core side’s count is equal to 1, so upon receiving the WAIT_INC, the

POST is immediately sent and the n_w_remote count is incremented. In turn, the A-side sends the WAIT_DEC and wakes up

the waiting task. Since the WAIT_DEC was received, the M-core decremented the n_w_remote. When the A-core’s task lifts

the semaphore (calls up()), its count becomes 1 and, as a result the semaphore ownership is transferred from the M- to the

A-core (until there are no other semaphore requests).

Conclusion

AMP systems and their ability to collect, share and process data in real time are the way forward

for applications that need both latency-sensitive and high-performance processing. The hardware itself

and the low-level apparatus create an excellent foundation for mission-critical applications, but real-time

software — firmware, real-time operating systems and advanced middleware adds substantial value to

any design. Real-time data management is a key component to use with AMP hardware for a number of

data-driven applications: avionics, automotive, industrial, and virtually all domains that involve

significant sensor data fusion.

