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This handbook is a continuation of the Handbook of Ele-
mentary Mathematics by the same author and includes mate-
rial usually studied in mathematics courses of higher educa-
tional institutions.

The designation of this handbook is twofold.

Firstly, it is a refecrence work in which the reader can find
definitions (what is a vector product?) and factual information,
such as how to find the surface of a solid of revolution dr how
to expand a function in a trigonometric series, and so on. -
Definitions, theorems, rules and formulas (accompanied by
examples and practical hints) are readily found by reference
to the comprehensive index or table of contents.

Secondly, the handbook is intended for systematic reading.
It does not take the place of a textbook and so full proofs
are only given in exceptional cases. However, it can well
serve as material for a first acquaintance with the subject.
For this purpose, detailed explanations are given of basic
concepts, such as that of a scalar product (Sec. 104), limit
(Secs. 203-206), the differential (Secs. 228-235), or infinite
series (Secs. 270, 366-370). All rules are abundantly illustra-
ted with examples, which form an integral part of the hand-
book (see Secs. 50-62, 134, 149, 264-266, 369, 422, 498, and
others). Explanations indicate how to proceed when a rule
ceases to be valid; they also point out errors to be avoided
(see Secs. 290, 339, 340, 379, and others).

The theorems and rules are also accompanied by a wide
range of explanatory material. In some cases, emphasis is
placed on bringing out the content of a theorem to facilitate
a grasp of the ﬁroof. At other times, special examples are
illustrated and the reasoning is such as to provide a complete
proof of the theorem if applied to the general case (see Secs.
148, 149, 369, 374). Occasionally, the explanation simpl
refers the reader to the sections on which the proof is based.
Material given in small print may be omitled in a first read-
ing; however, this does not mean it is not important.

Considerable attention has been paid to the historical
background of mathematical entities, their origin and develop-
ment. This very often helps the user to place the subject
matter in its proper perspective. Of particular interest in this
respect are Secs. 270, 366 together with Secs. 271, 383, 399,
and 400, which, it is hoped, will give the reader a clearer
understanding of Taylor’s series than is usually obtainable in
a formal exposition. Also, biographical information from the
li&/e§ gfl mathematicians has been included where deemed
advisable.



PLANE ANALYTIC GEOMETRY

1. The Subject of Analytic Geometry

The school (elementary) course of geometry treats of the
-roperties of rectilinear figures and the circle. Most important
:re constructions; calculations play a subordinate role in the
-=eory, although their practical significance is great. Ordina-
-1y, the choice of a construction requires ingenuity. That is
he chief difficulty when solving problems by the methods of
zlementary geometry.

Analytic geometry grew out of the need for establishing
zniform techniques for solving geometrical problems, the aim
~eing to apply them to the study of curves, which are of
~articular importance in practical problems.

This aim was achieved in the coordinate method (see Secs.
2 to 4). In this method, calculations are fundamental, while
constructions play a subordinate role. As a result, solving
oroblems by the method of analytic geometry requires much
.ess inventiveness.

The origins of the coordinate method go back to the works
of the ancient Greek mathematicians, in particular Apollonius
3-2 century B. C.). The coordinate method was systemati-
cally elaborated in the first half of the 17th century in the
works of Fermat! and Descartes.» However, they considered
only plane curves. It was Euler  who first applied the coor-
dinate method in a systematic study of space curves and
surfaces.

1) Pierre Fermat (1601-1655), celebrated French mathematician,
one of the forerunners of Newton and Leibniz in developing the diffe-
rential calculus; made a great contribution to the theory of numbers.
Most of Fermat’s works (including those on analytic geometry) were
not published during the author’s lifetime.

*) Rene Descartes (1596-1650), celebrated French philosopher
and mathematician. The year 1637, which saw the publication of his
Geometrie, an appendix to his philosophical treatise, is taken to be
the date of birth of analytic geometry.

*) Leonhard Euler (1707-1783), born in Switzerland, wrote
over 800 scientific papers and made important discoveries in all of
the physico-mathematical sciences.
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2. Coordinates

The coordinates of a point are quantities which determine
the position of the point (in space, in a plane or on a curved
surface, on a straight or curved line). If, for instance, a point

M lies somewhere on a straight line

0 M X‘'X (Fig. 1), then its position may

X 5 be defined by a single number in the

following manner: choose on X’X some

Fig. 1 initial point O and measure the segment

OM in, say, centimetres. The result

will be a number x, either positive or negative, depending

on the direction of OM (to the right or to the left if the

straight line is horizontal). The number x is the coordinate
of the point M

The value of the coordinate x depends on the choice of
the initial point O, on the choice of the positive direction on
the straight line and also on the scale unit.

3. Rectangular Coordinate System

The position of a point in a plane is determined by two
coordinates. The simplest method is the following.

Two mutually perpendicular straight lines X'X and Y'Y
(Fig. 2) are drawn. These are termed coordinate axes. One
(usually drawn horizontally) is the axis of abscissas, or the

Fig. 2 Fig. 3

x-axis (in our case, X'X), and the other is the axis of ordi-
nates, or the y-axis (Y'Y). The point O, the point of inter-
section of the two axes, is called the origin of coordinates or
simply the origin. A unit of length (scale unit) is chosen. It
may be arbitrary but is the same for both axes.

On each axis a positive direction is chosen (indicated by
an arrow). In Fig. 2, the ray OX is the positive direction of
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-=e x-axis and the ray OY is the positive direction of the
.-2xis.

It is customary to choose the positive directions (Fig. 3)
«c that a counterclockwise rotation of the ray OX through 90°
=ill bring it to coincidence with the positive ray OY.

The coordinate axes X'X, Y'Y (with established positive
sirections and an appropriate scale unit) form a rectangular
roordinate system.

4. Rectangular Coordinates .

The position of a point M in a plane in the rectangular
coordinate system (Sec. 3) is determined as follows. Draw MP
parallel to Y'Y to intersection with the x-axis at the point P
iFig. 4) and MQ parallel to X'X
t0 its intersection with the y-axis 4
2t the point Q. The numbers x and @1 ---M
y which measure the segments OP T
and 0Q by means of the chosen scale |
unit (sometimes by means of the ]
segments themselves) are called the x* 0
rectangular coordinates (or, simply,
coordinates) of the point M. These
numbers are positive or negative
depending on the directions of the 4
segments OP and 0Q. The num-
ber x is the abscissa of the point M Fig. 4
and the number y is its ordinate.

In Fig. 4, the point M has abscissa x=2 and ordinate
y=23 (the scale unit is 0.4 cm.) This information is usually
written briefly as M (2, 3). Generally, the notation M (a, b)
means that the point M has abscissa x=a and ordinate y=b.

Examples. The points indicated in Fig. 5 are designated
as follows: A, (42, +4), A;(—2, +4), Az(+2, —49),
A, (—2, —4), B, (+5, 0), B,(0, —6), 0(0, 0).

Note. The coordinates of a given point M will be different
in a different rectangular coordinate system.

!
3

5. Quadrants

The four quadrants formed by the coordinate axes are
numbered as shown in Fig. 6. The table below shows the
signs of the coordinates of points in the different - quadrants.
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Coordinates

Abscissa + - - +

! 11 Il v

Ordinate + + - -

The point A, in Fig. 5 lies in the first quadrant, A4, in
the second, A, in the third, and the point A; lies in the
fourth quadrant.

Y If a point lies on the
I axis of abscissas (for ins-
I ; tance, B, in Fig. 5), then
0, ! X
Aﬂ
yl
Fig. 5 Fig. 6

its ordinate y is zero. If a point lies on the axis of ordinates
(point B,, for example, in Fig. 5), then its abscissa is zero.

6. Oblique Coordinate System

There are also other systems of coordinates besides the
rectangular system. The oblique system (which most resemb-
les the rectangular coordinate system) is

Y constructed as follows (Fig. 7): draw

M two nonperpendicular straight lines

b X'X and Y'Y (coordinate axes) and

z proceed as in the construction of the

,\/’/0 P ¥ rectangular coordinate system (Sec.

3). The coordinates x=OP (abscissa)
and y=PM (ordinate) are defined as
Fig. 7 in Sec. 4.
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The rectangular and oblique systems of coordinates come
_~der the generic heading of the cartesian coordinate system.

Among coordinate systems other than the cartesian type,
:cequent use is made of the polar system of coordinates (see
Sec. 73).

1. The Equation of a Line

Consider the equation x-+y=3, which relates an abscissa
r and an ordinate y. This equation is satisfied by the set of
cairs of values x, y, for example, x=1, y=2, x=2 and
=1, x=3 and y=0, x=4 and y=—1, and so on. Each

Y 4 T

0
Ay
A
a4 X g X

X'\ o 4, | X

C I s lr

Fig. 8 ()

pair of coordinales (in the given coordinate system) is asso-
ciated with a single point (Sec. 4). Fig. 8a depicts points
A (1, 2), A2, 1), A3(3, 0), A, (4, —1), all of which lie on
a single straight line UV. Any other point whose coordinates
satisfy the equation x-+y=3 will also lie on the same line.
Conversely, for any point lying on the straight line UV, the
coordinates x, y satisfy the equation x4 y=3.

Accordingly, one says that the equation x+4y=3 is the
equation of the straight line UV, or the equation x+4y=3
represents (defines) the straight line UV. Similarly, we can
say that the equation of the straight line ST (Fig. 8b) is
u=2x, the equation x2+4 y2=49 defines a circle (Fig. 9), the
radius of which contains 7 scale units and the centre of which
iies at the origin of coordinates (see Sec. 38).

Generally, the equation which relates the coordinates x
and y is called the equation of the line (curve) L provided
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the following two conditions hold: (1) the coordinates x, y of
any point M of the line L satisfy the equation, (2) the coor-
dinates x, y of any point not lying on the line L do not
satisfy the equation.
The coordinates of an arbitrary point M on the line L are
called running (moving, or current) coordinates since the line
L can be formed by mo-
Y ving the point M.
= In Fig. 10, let M,, M,,
A s» - - . be consecutive posi-
tions of a point M on a line

7 L. Drop a series of per-
pendiculars M P, M,P,,

\\

X' 0 X Y
M,M/%M‘M‘ /)

—

r ol RERARAHA X

Fig. 9 Fig. 10

MsP,, ... on the x-axis to form the segments P,M,, P.,M,,
PyM,, ... . Then, on the axis OX (x-axis) we obtain the segments
OP,, OP,, OP;, ... . These segments are abscissas. The word comes
from the Latin abscindere, meaning “to cut off*:. The term “ordinate”
comes from the Latin ordinatim ducta, meaning “conducted in an
orderly manner®.

By representing each point in the plane by its coordinates, and
each line by an equation that relates the running coordinates, we re-.
duce geometrical problems to analytical (computational) problems.
Hence, the name “analytic geometry®.

8. The Mutual Positlons of a Line and a Point

In order to state whether a point M lies on a certain line
L, it is sufficient to know the coordinates of M and the equ-
ation of the line L. If the coordinates of M satisfy the equ-
ation of L, then M lies on L; otherwise it does not lie on L.

Example. Does the point A (5, 5) lie on the circle x2+ y2 =49
(Sec. 7)?

Solution. Put the values x=5 and y=>5 into the equation
x2+y2=49, The equation is not satisfled and so the point A
does not lie on the circle.
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3. The Mutual Positions of Two Lines

In order to state whether two lines have common points
:~d if they do, how many, one has to know the equations of
-=e lines. If the equations are simultaneous, then there are
.~mmon points, otherwise there are no common points. The
-umber of common points is equal to the number of solutions
=i the system of equations.

Example 1. The straight line x+y=3 (Sec. 7) and the
sircle x2+4y2=49 have two points in common because the

svstem
x+4+y=3, x24+y2=49
-as two solutions:

3+Va9 _3-V389

n=—7p—= 6.22, y,= —=—322
and
=208 ~ 322 5,=2"80 169

Example 2. The straight line x4+y=3 and the circle
x?+y2=4 do not have any common points because the system

x+y=3, x*ty*=4

has no (real) solutions.

10. The Distance Betwéen Two Points
The distance d between the points A, (x,. y;) and
A, (x5, yg) is given by the formula

d=V (xs— %)t + (42— 91) (1

Example. The distance between the points M (—2.3, 4.0)
and N (8.5, 0.7) is

d=V (8.5+2.3)24(0.7—4)2=110.8243.32 x 11.3

(scale units).

Note 1. The order of the points M and N is immaterial;
N may be taken first and M second.

Note 2. The distance d is taken. positive and so the square
root in formula (1) has only one sign (positive).
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11, Dividing a Line-Segment In a Given Ratlo

In Fig. 11 take the points A (x;, y;), Az (xa, ys). It is
required to find the coordinates x and y of the point K which
divides the segment A;A, in the ratio

4 p A; AK:KAy=my:m,
. | The solution is given by the for-
4 v mulas
y 7  myxy+myx,
! A =—mam |
: z : ] ° (l)
: I ! y___Mﬁmnyz J
ol s P B X mrm,
Fig. 11 If the ratio m;:m, is denoted by

the letter A, then (l) assumes the
nonsymmetrical form

X =

T+A Yy 1+A

Example 1. Given the point B (6, —4) and the point O
coincident with the origin. Find the point K which divides
BO in the ratio 2:3.

Solution. In formula (1) substitute

my=2, my=3, x=6, yy=—4, x,=0, y,=0

This yields

Xy +Ax, __Ys+ Ay, (2)

18 12
x_—s-—3.6, y_—?-_—2.4
which are the coordinates of the desired point K.

Note 1. The expression "the point K divides the segment
A;A; in the ratio m;:m,” means that the ratio my:my is
equal to the ratio of the segments A,K:KA, taken in this
order and not in the reverse order. In Example 1, the point
K (3.6 —2.4) divides the segment BO in the ratio 2:3 and
the segment OB in the ratio 3:2.

Note 2. Let the point K divide the segment A,A, exter-
nally; that is, let the point lie on a continuation of the seg-
ment A,A,;. Then formulas (1) and (2) hold true if we aifix
a minus sign to the quantity m,:my=A.

Example 2. Given the points A, (1, 2) and A, (3, 3). Find
the point, on the continuation of the segment A,A,, that is
twice as far from A, as from A,.

Solution. We have A=m,:my=—2 (so that we can put
my=—2, mg=1, or my=2, my=—1). By formula (1) we
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i=d

1 14(=2)-3 _ _1.24(-2)-3__
=gy =0 Yy=——/py =4

11a. Midpoint of a Line-Segment

The coordinates of the midpoint of a line-segment A;A,
ire equal to the half-sums of the corresponding coordinates
:f its end-points:

__ Xt X Nty
r==h, y=Tg

These formulas are obtained from (1) and (2), Sec. 11, by
cutting my=my=1 or A=1.

12. Second-Order Detorminant

The notation ig g ‘ denotes the very same thing as ad —bc.

Examples.
2 7
3 5 =2.5—3.7=—11,
3 —
le 2|—_—3~2—6~(——4)=30

The expression ‘z 21 is called a determinant of the se-
cond order.

13. The Area of a Triangle

Let the points A, (x5, y1), Az (%s, Ya), Az (X3, ys) be the
vertices of a triangle. Then the area of the triangle is given

by the formula
V| *¥1—X3 Y1—Ys
S= 4 — 1
3 Xg—X3 Y2—Ys M
On the right side we have a second-order determinant (Sec. 12).

We assume the area of a triangle to be positive and take
the positive sign in front of the determinant if the value of

') Determinants are explained in detail in Secs. 182 to 185.
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‘the determinant is positive; we take the minus sign if it is
negative.

Example. Find the area of a triangle with vertices A (1, 3),
B (2, —5) and C (-8, 4).

Solution. Taking A as the first vertex, B as the second
and C as the third, we find

X, —X3 Y1—ys|_|1+8 3—4 _' 9 —1|
Xo—X3 Ys—Ys| |2+8 —5—4| |10 —9|
=—814+10=—71

In formula (1) we take the minus sign and get
{
‘ S=——7-(—71)=35.5
However, if we take A for the first vertex, C for the se-
cond and B for the third, then
X;—X3 Y1—Ys 1—2 345 _| —1 8
Xg—X3 Ys—VYs —8—2 445" |—10 9

In formula (1) we have to take the plus sign, which again
yields $=35.5.

Note. 1f the vertex A; coincides with the origin of coor-
dinates, then the area of the triangle is given by the formula

X1 W 9
X3 Yo @
This is a special case of formula (1) for x3=y;=0.

|=71

S=4t 4+

14. The Stralght Line. An Equation Solved
for the Ordinate (Slope-Intercept Form)

Any straight line not parallel to the axis of ordinates
may be represented by an equation of the form

y=ax+b (1)

Here, a is the tangent of the angle o (Fig. 12) formed by
a straight line and the positive direction of the axis of abs-
cissas V) (a=tana=tan / XLS), and the number b is equal

1) The initial side of the angle o is the ray OX. On the straight
line SS’ we can take any one of the rays LS, LS’. The angle XLS
Is considered positive if a rotation which brings to coincidence the
rays LX and LS is performed in the same direction as the rotation
through 90° that brings to coincidence the axis OX and the axis OY
(that is, counterclockwise in the customary arrangement).



PLANE ANALYTIC GEOMETRY 29

7 magnitude to the length of the segment OK intercepted
=y the straight line on the axis of ordinates; the number &
s positive or negative depending on the direction of the seg-
—ent OK. If the straight line passes through the origin, b6=0.

The quantity a is called the slope and the quantity b,
the initial ordinate.

-4 0 . X A
0

X

Fig. 12 Fig. 13 Fig. 14

Example 1. Write the equation of a straight line (Fig. 13)
which forms an angle a=-—45° with the x-axis and inter-
cepts an initial ordinate b=—3.

Solution. The slope a=tan (—45°)=—1. The desired
equation is y—=—x—3.

Example 2. What line does the equation 3x=7V 3 y rep-
resent?

Solution. Solving for y we find y=V3x. From the slope
a=V3 we find the angle a: since tan a=V3, it follows
that @=60° (or & =240°). The initial ordinate 6=0, and so
this equation represents the straight line UV (Fig. 14) which
passes through the origin and forms with the x-axis an angle
of 60° (or 240°).

Note 1. Unlike the other types of equations of a straight
iine (see Secs. 30 and 33), Eq. (1) is solved for the ordinate
and (s termed the slope-intercept form of the equation of a
straight line.

Note 2. A straight line parallel to the axis of ordinates
cannot be represented by an equation solved for the ordinate.
Compare Sec. 15.
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15, A Straight Line Parallel to an Axls

A straight line parallel to the axis of abscissas (Fig. 15)
is given by the equation?

y=>b (1

where b is equal, in absolute value, to the distance from the
axis of abscissas to the straight line. If b > 0, then the
strairht line lies above the axis of abscissas (see Fig. 15);
if b <0, then it is below the axis.

Y The axis of abscissas itself is given by
— the equation
b/ y=0 (1a)
\| . A straight line parallel to the axis
ol ~  x of ordinates (Fig. 16) is given by the
equation
tig. 15 x.:/ (2)

The absolute value of f gives the distance from the axis of
ordinates to the straight line. If f > 0, the straight line lies
to the right of the axis of ordinates (see Fig. 16); if f <0,

Y Y y
“lm
y=3 1
— 1l
7
ol ~rf X 0 X | 0| X
Fig. 16 Fig. 17 Fig. 18

it lies to the left of the axis. The axis of ordinates itself is
given by the equation

x=0 (2a)

Example 1. Write the equation of the straight line that
intercepts the initial ordinate b=3 and is parallel to the
x-axis (Fig. 17).

Answer. y=3.

') Eq. (1) is a special case of the equation y=ax+b solved for the
ordinate (Sec. 14). The slope a=0.

" Eq. (2) is a special case of x=da’y+0’ solved for the abscissa.
The slope a’=0.
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Example 2. What kind of line is given by the equation
‘x—5=0?

Solution. Solving the equation for x, we get x=———§-.
The equation represents a straight line which is parallel to
‘ne y-axis and lies to the left of it at a distance of —‘;’-

~ig. 18). The quantity f=—% may be called the initial
=hscissa.

16. The General Eq-atlon of the Straight Line

The equation
Ax+By+C=0 (N

ahere A, B, C can take on any values, provided that the
zefficients A and B are not simultaneously zero 1) describes
: straight line (cf. Secs. 14, 15). This equation represents
:nv straight line, and so it is called the general equation
* the straight line.

If A=0, i.e. Eq. (I) does not contain x, then it repre-
w2nts a straight line parallel 2 to the x-axis (Sec. 15).

If B=0, i.e. Eq. (1) does not contain y, then it describes
: straight line parallel  to the y-axis.

When B is not equal to zero, Eq. (1) may be solved for
:-e ordinate y; then it is reduced to the form

y=ax+b (where a=———3—. bz—%) 2)

Thus, the equation 2x—4y+4+5=0 (A=2, B=—4, C=5)
-=duces to the form
y=0.5x+1.25

'a=—_—i-=0.S. b=:—45=1.25) solved for the ordinate

initial ordinate b=1.25, slope a=0.5, so that a ~ 26°34';
wee Sec. 14).

Similarly, for A # 0 Eq. (1) may be solved for x.

If C=0, i.e. Eq. (1) does not contain the absolute term,
‘t describes a straight line passing through the origin (Sec. 8).

1) For A=B=0 we have either the identity 0=0 (if C=0) or
->mething senseless like 5=0 (for C = 0).

?) The x-axis is included in the group of straight lines parallel
0 the x-axis. The same goes for lines parallel to the y-axis (the y-axis
<self is included).
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17. Constructing a Stralght Line on the Basis of Its Equation

To construct a straight line, it suffices to fix two of its
points. For example, one can take the points of intersection
with the axes (if the straight line is not parallel to any axis
and does not pass through the origin); when the line is pa-
rallel to one of the axes or pas-
ses through the origin, we have only
one point of intersection). For
greater precision, it is advisable to
find one or two check points.

Example. Construct the straight
line 4x-}3y=1. Putting y=0, we
find (Fig. 19) the point of interse-
ction of the straight line with the

-2 axis of abscissas: A, %, 0). Put-
-3 s ting x=0, we get the point of
- intersection with the axis of ordina-

tes: A, (0, — ). These points are

Fig. 19 3

too close to one another and so let

us specify another two values of the abscissa, say, x=

=—3 and x= +3, which yield the points Aa<—3. 1—33) ,
11

A (3, —T) . Draw the straight line A,A;A,A,.

18. The Parallelism Condition of Straight Lines

The condition that two straight lines given by the equa-
tions

y=ax+b;, (1)

y=ax+b, )
be parallel is the equality of the slopes

a,=a, 3)

The straight lines (1) and (2) are parallel if the slopes are
not equal.

Example 1. The straight lines y=3x—5 and y=3x+4
are parallel since their slopes are equal (a,=a,=23).

') Here, and henceforward, two coincident straight lines are conm-
sidered parallel.
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Example 2. The straight lines y=3x—5 and y=6x—8
are not parallel since their slopes are not equal (a,=3,

=6).
- Example 3. The straight lines 2y=3x—5 and 4%=6§—8

. . 3
are parallel since their slopes are equal ( @; = — , gg=—F=-5) .
P 1 2 274 2

Note 1. If the equation of one of two straight lines does
aot contain an ordinate (i.e. the straight line is parallel to
the y-axis), then it is parallel to the other straight line,
provided that the equation of the latter does not contain y
either. For example, the straight lines 2x4+3=0 and x=5
are parallel, but the straight lines x—3=0 and x—y=0 are
not parallel.

Note 2. If two straight lines are given by the equations

Ayx+By+Ci=0,

Apx+Boy+Co=0 | 4
then the condition of parallelism is
A,B;— A,B,=0 ®)
or, in the notation of Sec. 12,
a Bl-o
Example 4. The straight lines
2% —Ty+12=0

and
x—3.5y4+10=0
are parallel since

A By| |2 —7 | _ .
4 B =1 Zas|=2 39— 1(=1=0
Example 5. The straight lines
2x—Ty+12=0
and
3x+42y—6=0

are not parallel since
2 —
I3 2 ‘=25 #0

Note 3. Equality (5) may be written as

A, _B,
2, "B, (6)



34 HIGHER MATHEMATICS

which states that the condition for the straight lines (4) being
parallel is the proportionality of the coefficients of the runn-
ing coordinates. V) Compare Examples 4 and 5. If the absolute
terms are proportional as well, i.e. if

4=E~G @

then the straight lines (4) are not only parallel but are also
coincident. Thus, the equations

3x+4+2y—6=0
and
6x+4y—12=0

describe one and the same straight line.

19. The Intersection of Stralght Lines

To find the point of intersection of the straight lines
Apx+Byy+Cy=0 O

Agx+ Boy+Cy=0 0]
it is necessary to solve the system of equations (1) and (2).
As a rule, this system yields a unique solution and we obtain
the desired point (Sec. 9). The only possible exception is the

equality of the ratios % and %, i.e. when the straight

lines are parallel (see Sec. 18, Notes 2 and 3).

Note. If the given straight lines are parallel and do not
coincide, then the system (1)-(2) has no solution; if they
coincide, there is an infinity of solutions.

Example 1. Find the points of intersection of the straight
lines y=2x—3 and y=—3x+2. Solving the system of
equations, we find x=1, y=—1. The straight lines inter-
sect at the point (1, —1).

Example 2. The straight lines

2x—7y+12=0, x—3.5y+10=0

are parallel and do not coincide since the ratios 2:1 and
(—7):(—3.5) are equal, but they are not equal to the ratio

and

Y) It may turn out that one of the quantities A, o1 B, (but not
both together, see Sec, 16) is equal to zero. Then the proportion (6)
may be understood in the meaning that the corresponding numerator
is also zero. The proportion (7) has the same meaning for C;=0
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2:10 (cf. Example 4, Sec. 18). The given system of equati-
:as has no solution.

Example 3. The straight lines 3x4-2y—6=0 and
‘x—4y—12=0 coincide since the ratios 3:6, 2:4 and
—6):(—12) are equal. The second equation is obtained from
1e first by multiplying by 2. This system has an infinity
:f solutions.

28. The Perpendicularity Condition of Two Stralght Lines
The condition that two straight lines given by the

=quations
y=ax+b, m
y=azx+b, 2
e perpendicular is the relation
a,a9 =— 1 (3)

ahich states that two straight lines are perpendicular if the
xoduct of their slopes is equal to —I1, and they are not
cerpendicular if the product is not equal to —I.

Example 1. The straight lines y=3x and y=——% x are

cerpendicular since g;a,=3: (— %) =—1.

Example 2. The straight lines y=3x and y=%x are not
serpendicular since a,a, =3-% =1.

Note 1. If the equation of one of the two straight lines
does not contain an ordinate (i. e. the straight line is parallel
o the y-axis), then it is perpendicular to the other straight
.ine provided that the equation of the latter does not contain
2n abscissa (then the second straight line is parallel to the
axis of abscissas), otherwise the straight lines are not per-
pendicular. For example, the straight lines x=>5 and 3y 4-2=0
are perpendicular and the straight lines x=5, and y=2x are
aot perpendicular.

Note 2. If two straight lines are given by the equations

Ayx+Byy+Cy=0, Apx+Byy+Cy=0 @
then the condition for their being perpendicular is
A1A;+B1B3 =0 ®)
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Example 3. The straight lines 2x+5y =8 and 5x—2y=3
are perpendicular; indeed, A;,=2, A;=5, B;=5, By=—2,
and so A1A2+Ble=10—lo~_—0.

Example 4. The straight lines %x—%y:O and 2x—3y=0
are not perpendicular since A;A;-+} B;By=2.

21. The Angle Between Two Straight Lines

Let two nonperpendicular straight lines L,, L, (taken in
a specific order) be given by the equations

y=a;x+b,, (1)
y=asx+ bs. 2
Then the formula
tan 6=]“L£L 3)
+a;a,

yields the angle through which the first straight line must
be rotated in order to make it parallel to the second line.
Example 1. Find the angle between the straight lines
y=2x—3 and y=—3x+42 (Fig. 20.)

D 8 Here, a,=2, a,=—3. By formula
\ 3), we find
-3-2
2 tan e'—_m:]

whence ©=+ 45°. This means that
when the straight line y=2x—3 (AB
X in Fig. 20) is turned through the ang-
le4-45° about the point of intersection
M (1, —1) of the given straight lines

-1

-2 (Example 1, Sec. 19), it will coincide
-3 with the straight line y=—3x42
(CD in Fig. 20). It is also possible to

A ¢ take ©=180°1 45°=225°, 8 =—180°
Fig. 20 +45°=--135°, and so on. (These

angles are denoted by 8,, 8, in Fig. 20).

Example 2. Find the angle between the straight lines
y=—3x+2 and y=2x—3. Here, the lines are the same as
in Example 1, but the straight line CD (see Fig. 20) is the
first one and AB is the second. Formula (3) yields tan 8 =—1,

!) On its applicability when the straight lines L,, L, are perpen-
dicular, see Note 1 below.
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2. 8=—45° (or 8=135° or ©=—225° etc.). This is the
i~gle through which the straight line CD must be rotated to
:=.ng it into coincidence with AB.

Example 3. Find the straight line that passes through
=2 origin and intersects the straight line y=2x—3 at an
:=gle of 45°.

Sofution. The sought-for straight line is given by the
=;uation y=ax (Sec. 14). The slope a may be found from (3)
:+ taking the slope of the given straight line in place of a,

.e. by putting a@;=2); in place

: a, we take the slope a of the de- 14

:ed straight line, and in place of 8

*. an angle of 4 45° or —45°. We

tzen get
a-2 1 "
— =4 — —
1+2a )

7 X

The problem has two solutions:
+=—23x (the straight line AB in
Fig. 21) and y= 3 x (the straight
.ine CD).

Note I. If the straight lines (1) Fig. 21
ind (2) are perpendicular (8=
==90°), then the expression 1+a,a, in the denominator
s (3) vanishes (Sec. 20) and the quotxent —%1 ceases to
exist. V At the same time, tan @ ceases to exnst (becomes
=finite). Taken literally, formula (3) is meaningless; in this
case it has a conventional meaning, namely that each time
<he denominator of (3) vanishes the angle © is to be consi-
Zered + 90° (both a rotation through -+-90° and one through
—90° brings either of the perpendicular straight lines to
coincidence with the other).

Example 4. Find the angle between the straight lines
§=2x—3 and y=— %x+7 (a1=2, a,=——;-). If we first

:sk whether these straight lines are perpendicular, the answer
= yes by the characteristic (3) of Sec. 20 so that we obtain
9=+ 90° even without formula (3). Formula (3) yields the

v

") The numerator a,-a, is not zero since the slopes a,, a4 (Sec. 18)
ace equal only in the case of parallel straight lines.
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same resull. We get

1 1
—-2——-2 —2—5
tan 8= ="

1)

In accordance with Note 1, this equality is to be understood
in the meaning that 8 = + 90°.

Note 2. If even one of the straight lines L;, L, (or both)
is parallel to the y-axis, then formula (3) cannot be applied
because then one of the straight lines (or both) cannot be
represented (Sec. 15) by an equation of the form (1). Then
the angle © is determined in the following manner:

(a) when the straight line L, is parallel to the y-axis and
L, is not parallel, use the formula

1
tan 6=a—,

(b) when the straight line L, is parallel to the y-axis and
L, is not parallel, use the formula .
tan 6 =— s
(c) when both straight lines are parallel to the y-axis, they
are mutually parallel, so that tan 6 =0.
Note 3. The angle between the straight lines given by the

equations
Apx+By+C;=0 “)
and
Apx+ Boy+Co=0 (5)
may be found from the formula
fan 8= %:i:—_*_gfg—‘ (6)

When 4,4+ B,B,=0, formula (6) is given a conventional
meaning (see Note 1) and 6= 4 90°. Compare Sec. 20,
formula (5).

22. The Conditlon for Three Polnts Lying on One Straight Line
The three points A, (x;, v;), Az (X2, Y2), As(xs, ys) lie on
one straight line if and only if ¥
Xo—X; Y2— U1 =0 (l)
X3—X1 Ys—Wh

1) The left side of (1) is written in the form of a determinant
(see Sec. 12)
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This formula also states (Sec. 13) that the area of the “tri-
ingle” ApA3A, is zero.

Example 1. The points A4, (—2, 5), A3 (4, 3), A;(16, —1)
e on one straight line since
Xo—X; Yo—Y1| | 4+2 3—5| | 6 —2!___
X3—x, Yys—y,| (1642 —1—5|" |18 —6|

=6.(—6)—(—2)-18=0

Example 2. The points A, (—2, 6), A;(2, 5), A;3(5. 3) do
sot lie on one straight line since
__l2+2 5—6'_|4 —1 ——5
“|5+2 3—6| |7 —3|

Xg—Xy Y2—UYs
X3—X1 Ys—h

23. The Equation of a Stralght Line
Through Two Points (Two-Point Form)

A straight line passing through two points Ay (x,, y;) and

Ag (x5, Yp) is given by the equation

Xg—X1 Y2—W| _, )

X —% Y —Hh

It states that the given Xoints A,, A,

and the variable point A (x, y) lie on

one straight line (Sec. 22). .

Eq. (1) may be represented (see
aote below) in the form

XX __ V=¥ (2)
Xy — Xy Y2 — Y

Fig. 22

This equation expresses the proportionality of the sides of
the right triangles A;RA and A,;SA, depicted in Fig. 22,
where

x,=0P,, x,=0P,, x=O0P,
x —x;=AR, x3—x,=A,S;
y1=P14,, y2=P,A;, y=PA,
y —y=RA, Y2— 1 =S4,
Example 1. Form the equation of the straight line passing
through the points (1, 5) and (3, 9).

') The left side of (1) Is written in the form of a determinant
(see Sec. 12).
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Solution. Formula (1) gives

3—1 9-5 2 4
a1 y—5|=% O |1 ,_5/70
that is, 2(y—5)—4 (x—1)=0 or 2x—y+3=0.
Formula (2) yields %:y—:f’- Whence we again get
2x —y+3=0.

Note. When x,=x; (or y,=y,), one of the denominators
of (2) is zero; then Eq. (2) should be taken to mean that the
corresponding numerator is zero. See Example 2 below (also
the footnote on page 34).

Example 2. Form the equatlon of a straight line that pas-
ses through the points A; (4, —2) and A, (4, 5). Eq. (1)
yields °- 0

x—4 y+2|=0 ®)-

i.e. 0(y+2)—7(x—4)=0, or x—4=0.
Eq. (2) is written as

x—4 +2

o =7 @
Here, the denominator of the left member is zero. Taking
Eq. (4) in the above meaning, we put the numerator of the

left member equal to zero and we obtain the same result:
x—4=0.

24, A Pencil of Straight Lines
The collection of lines passing through one point A, (x,, y;)

(Fig. 23) is termed a (central) pencil of lines through a point.
The point A, is called the vertex of

Y the pencil. Each one of the lines of
the pencil (with the exception of
~ that which is parallel to the axis

of ordinates; see Note 1) may be
represented by the equation

—
Yy—y1=k(x—x,) (1)
@ Here, k is the slope of the line under

0 | X consideration (¢=tan a). Eq. (1) is
called the equation of the pencil
The quantity k (the parameter of
Fig. 23 the pencil) characterizes the dire-
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i~ of the line; it varies from one line of the pencil
“= next.
T-e value of the parameler k may be found if some other
-z.tion is given which (together with the condition that
e .:ne belong to the pencil) defines the position of the line;
« Example 2.
Example 1. Form the equation of a pencil with vertex at
= point A;(—4, —8).
lution. By (1) we have

y+8=~k(x+44)

Example 2. Find the equation of a straight line that pas-
< through the point A, (1, 4) and is perpendicular to the
-z ght line 3x —2y =12.

Solution. The desired line belongs to a pencil with vertex

. 4). The equation of the pencil is y—4==k (x—1). To find
-z value of the parameter £, note that the desired limre is
:erpendicular to the straight line 3x—2y=12; the slope of

= latter is -2— We have (Sec. 20) —3-k=—- 1, i. e.k=—72 .

~=e desired line is given by the equation y—4=—72 (x—1)
2 2

x y=——3—x+4—3—.

Note 1. A straight line belonging to a pencil with vertex
22 A, (x;, yy) and parallel to the y-axis is given by the equa-
-on x—x; =0. This equation is not obtainable from (1), no
—stter what the value of k. All lines of the pencil (without
-z;eption) may be represented by the equation

Hy—y)=m(x—x,) @)
~aere | and m are arbitrary numbers (not equal to zero si-
—ultaneously). When [ # 0, we can divide Eq. (2) by [
~nen, denoting lﬂ in terms of k£, we get (1). But if we put
. =0, then Eq. (2) takes the form x—x; =0.

Note 2. The cquation of a pencil containing two intersecting
-iraight lines L,, L, given by the equations
Ayx+By+Cy=0, A;x+B,y+C,=0
.: of the form
my (Ayx+ By+Cy)+m, (A,x+By+C,)=0 (3)
Here, m,, m, are arbitrary numbers (not simultaneously zero). In

particular, for m;=0 we get the line L,, for m,=0 we have the line
;. In place of (3) we can write the equation

A, x+By+C+M (A;x+B,y+C,;)=0 (4)
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1n which all possible values are given to only one letter A, but it is
not possible to obtain the equation of the line L, from (4).

Eq. (1) is a special case of Eq. (4) when the straight lines L, and
L, are given by the equations y=y,, x=x, (they are then parallel to
the axes of coordinates).

Example 3. Form the equation of a straight line which passes
through the point of intersection of the lines 2x-3y—-1=0,3x-y-2=0
and is perpendicular to the straight line y=x.

Solution. The desired line (which definitely does not coincide with
the line 3x-y-2=0) belongs to the pencil

2x-3y—-1+A (3x~-y-2)=0 (5)

The slope of the line (5) is k='1}‘:32 . Since the desired line is per-

pendicular to the line y=x, it follows (Sec. 20) that k2=-1. Hence,
3A'+32=-l. i. e. A=~— . Substituting 7~=-i into (5), we get (af-

. 4 4
ter simplifications)

Tx+7y-6=0

Note 3. lf the lines L,, L, are parallel (but noncoincident),
Eq. (3) represents, for all possible values of m,, m,, all straight lines
parallel to the two glven lines. A set of mutually parallel straight
lines is termed a pencil of parallel lines (parallel pencil). Thus, Eq. (3)
represents elther a central pencil or a parallel pencil.

25. The Equation of a Stralght Line Through a Given Polnt
and Parallel to a Clven Stralght Line (Polnt-Slope Form)

1. A straight linie passing through a point M, (x, y,) pa-
rallel to a straight line y=ax+b is given by the equation

y—yr=alx—x) (1)
Cf. Sec. 24.

Example 1. Form the equation of a straight line which
passes through the point (—2, 5) and is parallel to the
straight line

5x—T7y—4=0

Solution. The given line may be represented by the equa-
tion y——--?—x—% <here a=-§—> . The equation of the line is

y—5=[x—(—2)]or 7 (y—5)=5 (x+2) or 5x—7y+ 45=0.
2. A straight line which passes through a point M, (x,, y;)

and is parallel to the straight line Ax+ By+C=0 is given
by the equation

A(x—x)+B(y—y,)=0 2)

Example 2. Solving Example | (A=5, B=—7) by for-
.mula (2), we find 5(x4+2)—7(y—5)=0.
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Example 3. Form the equation of a straight line which
szsses through the point (—2, 5) and is parallel to the
straight line 7x+10=0.

Solution. Here A=7, B=0. Formula (2) yields 7 (x4+2)=0,
% x4+2=0. Formula (1) is not applicable since the given
zquation cannot be solved for y (the given straight line is
carallel to the y-axis, cf. Sec. 15).

26. The Equatlon of a Stralght Line
Through a Given Point and Perpendicular
to a Given Stralght Line

1. A straight line which passes through a point M, (x,. y,)
and is perpendicular to a straight line y=ax--b is given by
the equation

y—y1=—;—(X—xl) (1)

Cf. Sec. 24, Example 2.

Example 1. Form the equation of a straight line which
passes through the point (2, —1) and is perpendicular to the
straight line

4x—9y=3

Solution. The given line may be represented by the equa-

tion y=—§-x—% (a=%) . The equation of the desired line

is y+1=—%(x—2) or 9x+4y—14=0.

2. A straight line that passes through a point M, (x,, y,)
and is perpendicular to the straight line Ax+4By+C=0 is
given by the equation

A(y—y)—B(x—x)=0 @
Example 2. Solving Example | (A=4, B=—9) by for-
mula (2), we find 4(y+1)4+9(x—2)=0 or 9x+4y—14=0.

Example 3. Form the equation of a straight line passing
through the point (— 3, — 2) perpendicular to the straight line

2y+1=0

Solution. Here, A=0, B=2 Formula (2) yields
—2(x+3)=0 or x+3=0. Formula (1) cannot be used be-
cause a=0 (cf. Sec. 20, Note 1).
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27. The Mutual Positions of a Straight Line
and a Pair of Polints

The mutual positions of points M, (xy, y;), M, (x;, y,) and a
straight line

Ax+By+C=0 (1)

may be determined from the following characteristics:

(a) points M, and M, lie on one side of the line (1) when the
numbers Ax,+By,+C,, Ax,+By,+C, have the same sign;

(b) M, and M, are on different sides of line (1) when these num-
bers have op{)osite signs;

(c) one of the points M,, M, (or both) lies on the line (1) if one
of these numbers is zero or if both are zero.

Example 1. The points (2, —6), (-4, —2) lie on the same side of
the straight line

* 3x+5y-1=0

since the numbers 3.2+5.(-6)-1=-25 and 3-(-4)+5.(=-2)-1=-23
are both negative.

Example 2. The origin of coordinates (0, 0) and the point (5, 5)
lie on different sides of the straight line x+y—-8=0 since the numbers
0+0-8=-8 and 5+5-8=+2 have different signs.

28. The Distance From a Point to a Stralght Line

The distance d from a point M, (x;, y;) to a straight line
Ax+By+C=0 1)
is equal to the absolute value of
'6=Ax.+By,+C

VAt+ B @)
that is, V
_ _ | Axy+By,+C
d=18=| s @)

Example. Find the distance from the point (—1, +1) to
the straight line

3x—4y+5=0
Solution.
5= 3x,—4y.+5_3~(-l)-4~l+5___2_
V3tiar  V3ir4a: 5
2 2
d=[8|=|—%|=%

!) Formula (3) is ordinarily derived by means of an artificial con-
struction. Below (See Note 2) is given a purely analytical derivation.
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Note 1. Suppose the line (1) does not pass through the origin 0
1nd, hence, C 5= 0 (Sec. 16). Then, if the signs of 8 and C are the
:ame, the points M, and O lie to one side of the line (1); if the signs
:re opposite, then t‘hey lie on different sides (cf. Sec. 27). But if 6=0
this is only possible if Ax;+By,+C=0),
hen M, lies on the given straight line
Sec. 8).

The quantity 6 is called the oriented dis-
:ance from the point M, to the line (1). In the
>xample above, the oriented distance 8 is equal

H -?2. and C=5. The quantities 6 and C have

-pposite signs, hence, the points M, (=1, +1)
ind O lie on different sides of the straight line
3x-4y+5=0.

Note 2. The simplest way to derive formula Fig. 24
.3) is as follows.

Let M, (x,, y,) (Fig. 24) be the foot
of a Eerpendicular dropped from the point M, (x,, y;) onto the
straight line (1). Then

d=V =%+ (42 - Y1) . 4

e
’

The coordinates x,, y, are found as the solution of the following sys-
tem of equations:

Ax+By+C=0, (1)

A(Yy-y)-B (x-x,)=0 . (5)

where the latter equation defines a straight line M, M, (Sec. 26). To
simpflify computations, transform the first equation of the system to
the form

A (x-x4)+B (y-y,)+ Ax;+ By, +C=0 (6)
Solving (5) and (6) for (x-x,), (y-y,), we find

A
x—x‘=—ﬂB—z(Ax,+By,+C). (7)

B
Y=41= - g (Ant But O) )]
Putting (7) and (8) into (4), we get
Axy+By,+C |

d= —
VAL B?

29. The Polar Parameters (Coordinates)
of a Stralght Line V

The position of a straight line in a plane may be given

by two numbers called the parameters (coordinates) of the
line. For example, the numbers b (initial ordinate) and a

1) This section serves as an introduction to Secs. 30 and 31.
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(slope) are (cf. Sec. 14) the parameters of the straight line.
However, the parameters b and a are not suitable for all
straight lines; they do not specify a straight line parallel
to OY (Sec. 15). In contrast, polar parameters (see below)
can be used to specify the position of any straight line.

The polar distance (or radius vector) of a straight line UV
(Fig. 25) is the distance p of the perpendicular OK drawn
from the origin O to the straight line.
The polar distance is positive or zero
(p=0).

The polar angle of the straight
line UV is the angle a=/XO0K
between the rays OX and OK (taken
in that order; cf. Sec. 21). If the line
UV does not pass through the origin
(as in Fig. 25), then the direction of
th- second ray is quite definite (from

Fig. 25 0 to K); but if UV passes through O

(then O and K coincide), the ray

perpendicular to UV is drawn in any one of two pos-
sible directions.

The polar distance and the polar angle are termed the
polar parameters (or polar coordinates) of a straight line.

If the straight line UV is given by the equation

then its polar distance is defined by the formula
__ic
P=Vin M
and the polar angle @ by the formulas
o A N B
cosa= F Vo sin a_:F——V;WB_z 2)

where the upper signs are taken for C > 0, and the lower
signs for C < 0; but if C=0, then either only the upper
signs or only the lower signs 1 are taken at will.

1) Formula (1) is obtained from (3), Sec. 28 (for x,=y,=0). For-
mulas (2) are obtained as follows: from Fig. 25

_OL_ «x . _LK_y
cos a—a’?._—,; , sin a_OK = 3)
According to (7), (8),.Sec. 28 (for x;=y,=0). we have

AC

BC
*=-—— g Y=-giggi(cont'donp.47) (4)
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Example 1. Find the polar parameters of the straight line
3x—4y+10=0

10
=2.F
T ormulas (2),

v-ere the upper signs are taken (because C= +-10), yield
s a= ——e— = — >, sing=——"2_— 4 4
T V3erat 5’ Viiza: | 5

Sence, a =~ 127° (or a ~ 487°, etc.).
Example 2. Find the polar parameters of the straight line

3x—4y=0

Formula (1) yields p=0; in formulas (2) we can take
+:ther only the upper or only the lower signs. In the former

Solution. Formula (1) yields p=

. 4 .

ase, cosa=——, sina=— and, hence, a =~ 127°; in the
3 . 4

aiter case, cosa=-, sina=—— and, hence, a~ —53°.

39. The Normal Equation of a Stralght Line

A straight line with polar distance p (Sec. 29) and polar
i=gle a is given by the equation

xcosa—+ysina—p=0 (1)

This is the normal form of the equation of a straight line.
Example. Let a straight line UV be distant from the origin

OK=V2

Fig. 26) and let the ray OK make an angle a=225° with
*se ray OX. Then the normal equation of UV is

x cos 225° + y sin 225° — ¥ 2=0

that is,
Ve Ve -
— S x——y—V2=0
From (1), (3) and (4), it follows that
s = L _4 sin a=— ¢ B 5
CCEE-TCT Vanm L T vane O
Formulas (5) coincide with (2) because lgl =+1 for C > 0 and

C

o =-1for C<0.
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Multiplying by — V/2, we get the equation of UV in the
form x4+ y+2=0, but this equation is no longer in the nor-
mal form.

Y
U
K
Y2
a
0| z, L }X
Fig. 26 Fig. 27

Deri;:&tion of equation (1). Denote the coordinates of the point K
(Fig. 27) by x,, y,. Then x,=0L=pcosa, y,=LK=psina. The straight
line OK that passes through the points O (0, 0) and K (x3, y;) is given

(Sec. 23) by the equationl‘:' z' |=0, that is, (sin @) x—(cosa) y=0.

The line UV passes through K (x;, y,) and is perpendicular to the
straight line OK. Hence, (Sec. 26, Item 2), it isgiven by the equation
sin & (y—y,)—-(—cosa) (x—x;)=0. Substituting x,=pcosa and y,=
=p sina, we get x cos a+y sin a—p=0.

31. Reducing the Equation of a Stralght Line
to the Normal Form

In order to find the normal equation of a straight line
given by the equation Ax-+ By-+4C=0, it is sufficient to
divide the given equation by F V/ A®+ BZ, the upper sign
being taken when C > 0 and the lower sign when C < 0; but
if C=0, any sign is valid. We get the equation

A B 1c1
TVas T vaae Y vane 0
It will be normal. V

Example 1. Reduce the equation 3x—4y+410=0 to the
normal form.

Here, A=3, B=—4 and C=10 > 0. Therefore, divide
by —V33+4’=—5 to get

3 4
—?x+—5—y—2=0

) Because the coefficients of x and y are, respectively, cosa and
sin @ by virtue of (2), Sec. 29, and the constant term is equal to
(=p) by (1), Sec. 29.
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-z is an equation of the form x cosa<ysina—p=0.
.etely, p=2, cosa= ——, sin a=+% (hence, a =~ 127°).

5

Example 2. Reduce the equation 3x—4y=0 to the nor-

-z form.

Since C=0 here, it is possible to divide either by 5 or —5.

- the former case we get

3
5

- =0, a =~ 307°), in the latter case,

3 4
—5*+5y=0

—x—%y=0

:=0, @ = 127°). To the two values of a there correspond
»= methods of choosing the positive direction on the ray OK

<= Sec. 29).

2. Intercepts

To find the line segment OL=a (Fig. 28) intercepted on
== x-axis by the straight line UV, it is sufficient to put
. =0 in the equation of the straight line and solve the equa-

e for x. In similar fashion we
i=3 the line segment ON=b on the
.-zxis. The values of a and b can
= cither positive or negative. If the
-zight line is parallel to one of the
ix=3, the corresponding line segment
cxes not exist (becomes infinite).
¢ the straight line passes through
‘=< origin, each line segment dege-
-erztes into a point (a=b=0).

Example 1. Find the line seg-
—e<nts a, b intercepted by the straight
-2 3x—2y+12=0 on the axes.

Fig. 28

Solution. Set y=0 and from the equation 3x+ 12=0 find
:= —4. Putting x=0, we get y=6 from —2y412=0.

T=us, a= —4, b=6.

Example 2. Find the line segments a and b intercepted on

-2 axes by the straight line
5y+15=0

Solution. This line is parallel to the axis of abscissas
>c. 15). The line segment a is nonexistent (putting y=0,
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we get a contradictory relation: 15=0). The segment b is
equal to —3.

Example 3. Find the line segments a and & intercepted
on the axes by the straight line

3y—2x=0

Solution. Using the method given here, we find a=0,
b=0. The end of each of the “segments” coincides with its
beginning, which means the line segment has degenerated
into a point. The straight line passes through the origin
(cf. Sec. 14).

Sec. 33. Intercept Form of the Equation
of a Stralght Line

If a straight line intercepts, on the coordinate axes, line
segments a, b (not equal to zero), then it may be given by
the equation

T+5=1 M

Conversely, Eq. (1) describes a straight line intercepting
on the axes the line segments a, b (reckoning from the
origin 0).

Equation (1) is the intercept [orm of the equation of a
straight line.

Example. Find the intercept form of the equation of the
straight line

3x—2y+12=0 2)

Solution. We find a= —4, b==6 (see Sec. 32, Example 1).
The intercept form of the equation is

Ste=! @)

It is equivalent to Eq. (2).

Note 1. A straight line that intercepts on the axes line
segments equal to zero (that is, such that passes through the
origin: see Example 3 in Sec. 32) cannot be represented by
the intercept form of the equation of a straight line.

Note 2. A straight line parallel to the x-axis (Example 2, Sec. 82)
can be represented by the equation 2 =1, where b is the y-intercept.
Similarly, a straight line parallel to the y-axis may be given by the



PLANE ANALYTIC GEOMETRY 51

~z:-ation %:l. There is no generally accepted opinion in the litera-
e as to whether to regard these equations as intercept forms or not. 1)

4. Transformation of Coordinates
Statement of the Problem)

One and the same line is described by different equations
r different coordinate systems. Frequently, if we know the
=zuation of some line in one (“old”) coordinate system, it is

Yy &' A
]
]
]
]
]
]
i

i}

Fig. 29 Fig. 30

-2quired to find the equation of the line in another (“new”) sys-
sm. Formulas for the transformation of coordinates serve this
szrpose. They establish a relationship between the old and
-ew coordinates of some point M.

Any new system of rectangular coordinates X’O’Y’ may
2 obtained from any old system XOY (Fig. 29) by means
£ two motions: (1) first bring the origin O to coincidence
sith 0’, holding the directions of the axes unchanged; this

+ields an auxiliary system XO'Y (shown dashed); (2) then
--tate the auxiliary system about the point O’ to coincidence
u:th the new system X'O'Y’.

These two motions .may be executed in reverse order (first
2 rotation about O yielding the auxiliary system XOY and
woen a translation of the origin to the point O’, which gives
e new system X'O’Y’; Fig. 30).

1) The essential thing is that the equation —:-=1 or % =1 may
e obtained from the equation L+i= 1; however not as a particular
case but by passing to the limit as b or @ go to infinity.
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Thus, it is sufficient to know the formulas of coordinate
transformation in translation of the origin (Sec. 35) and ro-
tation of the axes (Sec. 36).

35. Translation of the Origin

Notation (Fig. 31): .
old coordinates of point M:x=0P, y=PM;
new coordinates of point M:x'=0'P’, y'=P'M,
coordinates of new origin O’ in old
LA Y system XOY:

E x=O0R, yo=RO’
! Translation formulas:

o X x=x"+xn Y=Y+ )

' or
o R rox x'=x—Xxo Y =y—yo @)
Fig. 31 In words, the old coordinate is equal

to the new one combined with the coor-
dinate of the new origin (in the old system).D
Example 1. The coordinate origin is translated to the point
(2, —5). Find the new coordinates of the point M (—3, 4).
Solution. We have

Xo=2, Yo=—5 x=-3, y=4
From formulas (2) we find
x'=—3—2=-5, '=4+45=9
Example 2. The equation of some line is
x4+ y?—4x 46y =36
What will the equation of the line be after a translation of

the origin to the point 0’ (2, —3)?
Solution. According to formulas (1) we have

x=x'+2 and y=y' —3
Putting these expressions in the given equation, we get
422+ (4 —3)2—4 (¢ +2)+6(y'—3) =36

') When memorizing the rule, leave out the words in brackets;
they are essential but can readily be restored.
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x, after simplifications,
x12+y/2=49
This is the new equation of the line. It will be recalled

Seg) 38) that this line is a circle of radius R=7 with centre
1 0.

3. Rotation of the Axes

Notation (Fig. 32):
:.d coordinates of point M:x=0P, y=PM;
-ew coordinates of point M:x'=0P’, y'=P’'M;
1ngle of rotation of axesV a=/ X0X'=/ YOY’
“ormulas of rotation: »

x=x'cosa—y’ sina, 1
y=x'sin a+y’ cosa M
x
x'=x cosa-tysina, @
y'=—xsina+ycosa

Example 1. The equation 2xy=49 is a curve consisting of
—ao branches: LAN and L’A’N’ (Fig. 33). It is called an
s;uilateral (equiangular) hyperbola. Find the equation of the
-arve after a rotation of the axes through an angle of 45°

Solution. For a=45° the formulas (1) take the form

V2, V3
X=X =¥ 5

, V72 , V2
y=x"5+y 5

Scbstitute these expressions into the given equation. This
+ields

V— V—- ’ ’ ’ ’
2 X X (' — ') (¢ +4') =49
=, after simplifications,
xrl__y12= 49

1) See Sec. 14 for the sign of the angle a (first footnote).

*) When memorizing formulas (1) note the lack of order in the
expression for x (cosine in front of sine, minus sign between terms
:= the right). On the contrary, there is complete ‘‘order’’ in the
expression for y (first the sine, then the cosine, and a plus sign bet-
ween them).

Formulas (2) are obtained from (1) if one replaces @ by —a and
z, y by x’, y’ and vice versa.
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Example 2. Prior to a rotation of the axes through an
angle of —20°, the point M had an abscissa x=6 and an
o‘l;dlnate y= =0. Find the coordinates of M after a rotation of
the axes.

=
X

Q- A\-----n

Fig. 32 Fig. 33

Solution. The new coordinates x’, y’ of the point M may
be found from formulas (2), where we have to put x=6,
y=0, x=0, «a=—20° This yields

x’ =6 cos (—20°) = 5.64,
y' =— 6 sin (—20°) =~ 2.05

317. Algebraic Curves and Thelr Order

An equation of the form
Ax+By+C=0 1)

where at least one of the quantities A and B is not zero is
an algebraic equation of the first degree (in two unknowns x, y).
It always represents a straight line.

An algebraic equation of the second degree is any equatxon
of the form

Ax2+ Bxy+Cy?+ Dx+ Ey+ F=0 2)

where at least one of the quantities A, B, C is nonzero.

An equation that is equivalent to Egq. (2) is also called
algebraic.

Example 1. The equation y=>5x2, which is equivalent to

the equation 5x2—y =0, is an algebraic equation of the second
aegree (A=5, B=0, C=0, D=0, E==1, F=0).
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Example 2. The equation xy=1, which is equivalent to
:o—1=0, is an algebraic equation of the second degree
4{=0, B=1, C=0, D=0, E=0, F=—1).

Example 3. The equation (x+y+2)2—(x+y+1)2=0 is
:= equation of the first degree since it is equivalent to
2 —2y+3=0. ,

In similar fashion we define algebraic equations of the
-ird, fourth, fifth, etc. degrees. The quantities A, B, C, D
:=d so forth (including the absolute term) are called the
.wificients of the algebraic equation.

If some curve L is described in a cartesian coordinate
-.stem by an algebraic equation of the nth degree, then in
.~y other cartesian system it will be given by an algebraic
::uation of the same degree. However, the coefficients (some
;- all) of the equation will then change their values; in a
::rticular case, some of them can vanish.

A curve L given-(in a cartesian system) by an nth degree
+zzation is termed an algebraic curve of the nth order (or of
:zree n).

Example 4. In a rectangular coordinate system, a straight
= is described by an algebraic equation of the first degree
:{ the form Ax+4By-+C=0 (Sec. 16). Therefore, a straight
-e is a first-order algebraic curve. In different coordinate
.:tems, the coefficients A, B, C have different values for
ez and the same straight line. For instance, in an “old”
_.stem, let a straight line be given by the equation 2x 43y —
—5=0(A=2, B=3, C=-—5). If we rotate the axes through
3%, then (Sec. 36) the same line will, in the “new” system,
= described by the equation

2 (v Emy ) (g ) s
t=et s,

5V2 V2

. B==", C=_5>

Example 5. If the coordinate origin coincides with the
~xrtre of a circle of radius R =3, the circle is described by
-2 equation (Sec. 38)x24-y2—9=0. This is an algebraic
+;zation of the second degree (A=1, B=0, C=1, D=0,
=0, F=—9). Hence, a circle is a second-order (quadric)
czrve. If the origin is translated to the point (—5, —2), then
- the new system the same circle will be given (Sec. 35) by
--¢ equation (x'—5)24(y'—2)2—9=0, or x*4+y*—10x’ —
— 4y'—20=0. This is also a second-degree equation; the
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coefficients A, B and C remain the same, but D, E and F
have changed.

Example 6. The curve given by the equation y=sinx
(sine curve) is not algebraic.

38. The Circle

A circle of radius R with centre at the origin of coordi-
nates is given by the equation

X2 y2=R?

It states that the square of the distance OA (see Fig. 9, p. 24)
from the origin to any pomt A ly-
ing on the circle is equal to R2.

A circle of radius R with centre
at the point C (a, b) is described by
the equation

(x—a)*+(y—bi=R? ()
It states. that the square of the dis-
tance MC (Fig. 34) between the
Fig. 84 points M (x, y) and C (a, b) (Sec.
10) is equal to R2.
Eq. (1) may be rewritten as

x2+4y*—2ax—2by +a®+b2— R2=0 P))
Eq. (2) may be multiplied by any number A to give
Ax2+4 Ay*—2Aax—2Aby+ A (a2 +b2— R3)=0 3)
Example 1. A circle of radius R =7 with centre at C (4, —6)
is described by the equation
(x—4)2+4+(y+6)2=49 or x24y?—8x+12y+4+3=0C
or (after being multiplied by 3)
3x243y2—24x+ 36y +9=0
Note. A circle is a second-order (or quadric) curve (Sec. 37)
since it is described by a second-degree equation. However,
an equation of the second degree does not always represent
a circle. For this, it is necessary that
(1) it should not have a term with the product xy;

(2) the coefficients of x2 and y2 should be equal [cf. Eq. (3)].
These conditions however are not quite sufficient (see Sec. 39).
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Example 2. The second-degree equation x2+43xy+y2=1
s not a circle because it has the term 3xy.

Example 3. The second-degree equation 9x2+44y2=49 is
-ot a circle because the coefficients of x2 and y2? are not equal.

Example 4. The equation

5x? — 10x + 542 4 20y —20=0

saétisfies the conditions (1) and (2). In Sec. 39 it is shown
hat this is a circle.

39. Finding the Centre and Radlus of a Circle

The equation
Ax2+ Bx+ Ay*+Cy+ D=0 )

“ahich satisfies the conditions (1) and (2), Sec. 38] is a circle
crovided that the coefficients A, B, C, D satisfy the inequality

B*4C*—4AD > 0 @)

~=en the centre (a, b) and the radius R of the circle may be
-zund from the formulas (which need not be remembered:
s«e Example 1, second method)

B C B24-C*—4AD
-_—— = — e

sa° b=—34 R 24T ©)

Note. The inequality (2) states that the square of the
-adius must be a positive number; cf. the last formula of (3).
i inequality (2) is not fulfilled, then Eq. (1) does not rep-
-esent any curve at all (see Example 2, below).

Example 1. The equation

5x2— 10x + 52+ 20y —20=0 4)

a=

i (1); here,
A=5, B=-—10, C=20, D=-—20

‘~equality (2) is fulfilled. Hence, Eq. (4) is a circle. Using
“ztmulas (3), we find

a=1, b=-—2, R2=9

Thus the centre is (1, —2) and the radius R=3.
Alternative method. Divide Eq (4) by the coefficient of
:=e second-degree terms (i. e., 5):

x2—2x+y2+4y—4=0
Zomplete the squares in x2—2x and y24-4y by adding | to
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the first sum and 4 to the second. Add the same number

to the right side of the equation by way of compensatior
We then have

(P20 + )+ (2 + 4y +4)—d=1+4

(e— 1+ +2?2=9
Example 2. The equation
x2—2x+4y*+2=0 (6!
fits the case (1), but inequality (2) is not fulfilled. Whict
means that Eq. (5) does not describe any curve.

The same conclusion may be arrived at in the following
manner ‘(]cf. Example 1):

Complete the square in x2—2x by adding 1; also add |
to the right side. This yields (x—1)2+4y2+-2=1 or (x—1)2+
+y2=—1. But the sum of the squares of (real) numbers
cannot be equal to a negative number. For this reason there
is no point whose coordinates can satisfy this equation.

or

R SN

40. The Ellipse as a Compressed Circle

Through the centre O of a circle of radius a (Fig. 35)
draw two mutually perpendicular diameters A’A, D'D. On the
radii OD, OD’ lay off from O equal line-segments OB, OB’
of length b (less than a). From
each point N of the circle drop a
perpendicular NP onto the diameter
A’A and on this perpendicular lay
off a segment PM from the foot P
so that

PM:PN=b:a (1)

- This construction transforms
B every point N into a corresponding
Y] point M lying on the same perpen-

e, 35 dicular NP; PM is obtained from
Flg. 3 PN by reduction in the same ratio
k-——-%. A transformation of this kind is termed wuniform
compression. The straight line A’A is called the axis of com-
pression.

The line ABA’B’ into which the circle has been transfor-

med by uniform compression is called an ellipse (see Sec. 41
for an alternative definition).
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The line segment A’A=2a (and frequently the straight
line A’A, i. e. the axis of compression) is called the major
axis of the ellipse.

The line segment B’B=2b (and often also the straight line
B’B) is called the minor axis of the ellipse (2a > 2b, by
construction). The point O is the centre of the ellipse. The
»oints A, A’, B, B’ are termed the wvertices of the ellipse.

The ratio k=b:u is called the coefficient of compression of
the ellipse. The quantity 1—k="2" (the ratio BD:0D) is
called the compression of the ellipse and is denoted by a.

An ellipse is symmetric about the major and minor axes
and, hence, about the centre.

A circle may be regarded as an ellipse with a coefficient
of compression k=1.

Standard form of the equation of the ellipse. 1f the axes
of the ellipse are taken as the coordinate axes, then the
ellipse is described by the equation ’

x? y? .
"a‘f""_bz‘:l @)

This is the standard (canonical) form of the equation of
the ellipse.

Example 1. A circle of radius a=10 cm is subject to
zniform compression with coefficient of compression 3:5.
This produces an ellipse with major axis 2a=20 cm and

minor axis 2b=12 cm (semi-axes a=10 cm, b=6 cm). The
ompression of the ellipse a=l—k=”+(_)—6=0.4. The stan-

) We have
OP% + PN?2=0ON*=a? 3)
2y (1) we get
PN:-‘b‘- PM (4)
Putting this into (3) yields .
OP'*'GF PMi=a? (5)
iaat is,
2 a’ 2—q?2 6
X +?y =a (6)

Dividing by a* yields the equivalent equation (2). Thus, if
¥ (x, y) lies on the ellipse ABA’B’, then x, y satisfy Eq. (2). But
{ M does not lie on the ellipse, then equality (4) and, hence,
£3. (6) are not satisfied (cf. Sec. 7).
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dard form of the equation is then
x? 'yz -1
T00 T 36

Example 2. In projecting a circle on some plane P, the

diameter A;A, (Fig. 36) parallel to the plane is projected
full size and all the chords per-
pendicular to the diameter are
reduced in a ratio equal to cos @,
where ¢ is the angle between
the plane P, of the circle and
the plane P. For this reason,
the projection of a circle is an
ellipse with major axis 2a=A'A
and coefficient of compression
k=cos . g
Example 3. A terrestrial
meridian is more accurately
taken as an ellipse and not a
Fig. 36 circle. The axis of the earth is
the minor axis of the ellipse. It
has an approximate length of 12,712 km. The length of the
maijor axis is roughly 12,754 km. Find the coefficient of
compression k and the compression a of this ellipse.
Solution.

a-b 2a-2b 12,754-12,712 ~
"6 T "2a 12,754 = 0.003,

k=1—a = 0.997.

a=

41. An Alternative Definition of the Ellipse

Definition. An ellipse is the locus of points (M), the sum
of the distances of which from two given points F’, F
(Fig. 37) is a constant, 2a:
FFM+FM=2a (1)
The points F’ and F are called the foci ¥ of the ellipse, the
distance F’F is the focal length, denoted by 2c:

F'F=2 @

Y If a light source is placed at F (or F’), the rays of light are
;eﬂected from the ellipse and come together at £’ (or F) (the other
ocus).
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Snce F'F < F’M+FM, it follows that 2¢ < 2a, or
c<a @3)

The definition given in this section is equivalent to that
i Sec. 40 [cf. Eq. (7) with Eq. (2), Sec. 40].

Standard form of the equation of the ellipse. Take the
:raight line F'F (Fig. 38) as the axis of abscissas and the

S

Fig. 37 Fig. 38

—idpoind O of the line segment F'F as the origin of coordi-
-ates. According to the definition of an ellipse and to (1),
. 10, we have F'(—¢, 0), F(c, 0). By Sec. 10

VETOFi+ Y G—orty=2a )

n elimination of the radicals,? we obtain an equivalent
+suation:

(a? —c?) x2 4 a?y? = a? (a2 —c?) 5)
x
Lt =1 (®)

Because of (3), the quantity a®—c? is positive. Therefore
se can write (6) as

S+E=1 4]
% Dere
b2=aq3—c? (8)

Eq. (7) coincides with Eq. (2) of Sec. 40, and so the
:zrve, called an ellipse in this section, is indeed identical
»:th the curve described as an ellipse in Sec. 40. It then
szrns out that the centre O of the ellipse (Fig. 39) coincides
» th the midpoint of the line segment F’F, that is, OF =c.
3. equality (1), the major axis 2a=A’A of the ellipse turns

1) Transpose one of the radicals to the right side and square.

T=ere will be only one radical in the new equation, Separating it
1=2 again squaring, we simplify to (5).
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out equal to the constant sum of the distances FP/M+FM
(Fig. 38). The semiminor axis b=0B (Fig. 39) and the line
segment ¢=OF are sides of the right triangle BOF; the
hypotenuse BF of this triangle is a. This is evident from (8)
and also from the fact that the

Y equal segments F'B and FB add to
Bl 2a (by the definition of an ellipse).
7 \ Thus, the distance from a focus to
4 A_ the end of the minor axis is equal
£ 0 F ] X to the length of the semimajor axis.
The ratio %— of the focal

length to the major axis, i.e. the
quantity % is called the eccent-

ricity of the ellipse. The eccentricity is denoted by the Greek
letter & (epsilon):

Flig. 39

¢
e=— (©)
Because of (3), the eccentricity of an ellipse is less than
unity. By virtue of (8). the eccentricity € and the coefficient
of compression & of an ellipse (Sec. 40) are connected by the
relation
k2=1—eg2 (10)

Example. Let the focal length of the ellipse 2c=8cm
and the sum of the distances of an arbitrary point from the
foci be 10 cm. Then the major axis 2a=10 cm, the eccentri-

city s=7c = 0.8. The coefficient of compression & =
= ¥ T—€2=0.6. The minor axis 2= 2ak =2 VaE—cE=6cm.
The standard form of the equation of the ellipse is

x2 yl
T =!
Note. 1f the circle is regarded as a special kind of ellipse,

b=a, then ¢=0, and the foci F’ and F must be taken to
coincide. The eccentricity of the circle is zero.

42, Construction of an Ellipse from the Axes

First method. On the perpendicular straight lines X'X
and Y'Y (Fig. 40) lay off the line segments OA’=0A=a
and OB’=0B=b [halves of the given axes 2a, 2b (a > b)].
The points A’, A, B’, B will be the vertices of the ellipse.
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From point B, strike an arc uv with radius a; it will
atersect the line segment A’A at the points F’, F; these
+ill be the foci of the ellipse [by (8), Sec. 41]. Divide
{"A=2a into two parts in arbitrary fashion: A’K=r’ and
¥A=r, so that 7’4 r=2a. From the point F draw a circle
:f radius r and from F’ a circle of radius r’. These circles
~tersect at two points M and M’; by construction, we have
M4+FM=2a and F'M’'L+FM’'=2a. By the definition
Zven in Sec. 41 the points M and M’ lie on the ellipse.
3y varying r we obtain new points of the ellipse.

\y b
M N
.ﬂ/
u ’.A/ \ v
A - /4 . A
X F O\\K | F X X 0| DJ/P X
\B’
M B’
¢4 Id
Fig. 40 Fig. 41

Second method. Draw two concentric circles of radius
-A=a and OB=b (Fig. 41). Through the centre O draw
11 arbitrary ray ON. Through the points K and M,, at which
JN meets the two circles, draw straight lines that are
—2spectively- parallel to the axes X’X, Y'Y. These straight
~es will intersect at the point M. Its ordinate PM (= KD)
s shorter than the ordinate PM, of the point M; which
2s on the circle of radius a; we have PM:PM,=b:a.
“herefore (Sec. 40) the point M lies on the desired ellipse.
.arying the direction of the ray ON, we get new points of
=e ellipse. .

43. The Hyperbola

Definition. The hyperbola (Fig. 42) is the locus of points
M) whose distances from two fixed points F’, F have a
wwastant difference (cf. definition of the ellipse in Sec. 41):

\F'M—FM|=2a )
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The points F’ and F are called the foci® of the hyper-
bola, and the distance F'F is the focal length denoted by 2c:

F'F=2 ©

Since F'F >|F'M—FM|, it follows that [cf. formula (3),
Sec. 41]
c>a (&)

If Mis clos.er to the focus F’ than to the focus F, i. e. if
M M
AN AN

Fig. 42 Fig. 48

F'M < FM (Fig. 43), then in place of (1) we can write

FM—F'M=2a (la)
But if M is closer to F than F', i. e. F'M > FM (Fig. 42),
then we have

FFM—FM=2a (1b)

tion of the hyperbola. In Fig.

Those points for which F'M—FM=2a form one branch of
44, for the x-axis we take the
line F'F and for the origin,

the hyperbola (usually the right
Y branch); those points” for which
FM—F'M=2a form the other
Mi,y)  branch (the left branch).
/ p

the midpoint O of F'F. By (2)

Fig. 44 we have F(c, 0), F'(—c, 0).

By (1b) and Sec. 10 the right

branch is given by the equation

c Standard form of the equa-
Vit +yi—V a—cP+yi=2 (4a)

/-

Y If a light source is placed at one of the foci, the light rays
reflected from the hyperbola will form a divergent beam with the
centre in the other focus. Cf. footnote on p. 60.
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For the left branch, by (la) and Sec. 10, we have the
zquation

VE—a'+ =V &t o' fy*=2 (4b)
In elimination of the radicals we get, in both cases,
(a® —c?) x2+ a2y = a? (a%— c?) (5)
x
x? y? _
i taa=1 (©)

This equation is equivalent to the pair (4a), (4b) and
-epresents the two branches of the hyperbola at once. V
Equation (6) is outwardly the same as the equation of
:5e ellipse [cf. (6), Sec. 41] but this similarity is deceptive,
iz _now, due to (3), the quantity a®—c? is negative, so that
) a*—c? is imaginary. Therefore, denote by b the quantity
-V ®—a® so that?
b2 =c2—q? )
Then from (6) we get the standard (canonical) equation
:f the hyperbola
=1 ®
Example. If the magnitude of the difference FFM—FM
s 20=20 cm and the focal length is 2c=25 cm, then
s ]'cﬂ—az:-l,zE (cm). The standard form of the equation

:¢ the hyperbola is %—-%:l.
S

64. The Shape of the Hyperbola, Its Vertices
=d Axes

The hyperbola is symmetric about .the point O—the
—=.dpoint of the segment F'F (Fig. 45); it is symmetric about
"ze straight line F'F and about the straight line Y'Y drawn
‘=-ough O perpendicular to F’F. The point O is called the

' The two branches of the hyperbola might be taken as two
i~ves and not one. But then neither of the curves, separately,
w=:ld be a second-degree algebraic equation. .

N See Sec. 46 on the geometrical meaning of the quantity b.
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centre of the hyperbola. The straight line F'F intersects the
hyperbola at two points A(+4a, 0) and A’(—a, 0). These
points are the wvertices of the hyperbola. The segment
A’A=2a (and also frequently the straight line A’A4) is called
the real (transverse) axis of the hy-
N (A perbola

The straight line Y'Y does not
intersect the hyperbola. Nevertheless,
1 it is customary to lay off on this
ol 6 line the segments B’‘O=O0B=b and
call B'B=2b (and also Y'Y) the ima-
X'F'Al O|JeWFf X girlzary (conjugate) axis of the hyper-

ola.

o

. e Since AB2=0A%+O0B*=aq?-+b?,

it follows from (7), Sec. 43, that

2 I lp AB=c, i.e. the distance from a vertex

of the hyperbola to the end of the con-

Fig. 45 jugate axis is equal to half the focal
length.

The conjugate axis 26 may be greater than (Fig. 45), less
than (Fig. 46), or equal to (Fig. 47) the transverse axis 2a.
If the transverse and conjugate axes are equal (a=»5), then
the hyperbola is termed equiangular, equilateral, or rectangular.

s M 1l

x'%n’ o AW X i
5" \
iy e ROy lp

Y
1ig. 4o Figt 47
The ratio ;-',2 = % of the focal length to the transverse

axis is called the eccentricity of the hyperbola and is denoted
by e [cf. (9), Sec. 41)]. Because of (3), Sec. 43, the eccentri-
city of the hyperbola is greater than unity. The eccentricity

of an equilateral hyperbola is ¥V 2.
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The hyperbola lies completely outside the strip bounded
v the straight lines PQ and RS parallel toY’Y and distant
rom Y'Y by OA=A'O=a (Figs. 45, 46, 47). To the right
ind left of this strip the hyperbola goes off without bound.

45, Construction of a Hyperbola from Its Axes

On the perpendicular straight lines X‘X and Y'Y (Fig. 48)
iy off segments OA=0A'=a and OB=0B’=b (semitrans-
»erse axes and semiconjugate axes). Then lay off the segments

OF and OF' equal to AB. The
=zints F' and F are foci [according
22 (7), Sec. 43]. Take an arbitrary
coint K on the extension of the
segment A’A. From F draw a circle
i radius r=AK. From F’ describe
: circle of radius r'= A’K=2a+r.
These circles will intersect in two
soints M, M’; note that by constru-
ion FFM—FM=2a and F'M’'—
—FM’ =2a. By the definition given
= Sec. 43, the points M and M’ lie

XF A 0

Fig. 48

:=. the hyperbola. By varying r we get other points on the
~right” branch. Similarly, we can obtain points on the “left”

zcanch.

46. The Asymptotes of a Hyperbola

For | k| <%, the straight line y=+kx (it passes through
<-e centre O of the hyperbola) intersects the hyperbola in
two points D’, D (Fig. 49) which

Y are symmetric about O. But if

D |k|>%, then the straight line

y=kx (E'E

xX FL-0 X common points with the hyperbola.
The straight lines y= % x and

in Fig. 50) has no

v ~ —L 4 (U'U and V'V in Fig. 51),

Fig. 49

for which |k|= %, have the fol-

cwing unique property: each line when extended indefini-
e.y approaches indefinitely near to the hyperbola.
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L

More precisely: if the straight line Q’Q, parallel to the
axis of ordinates, is made to recede to an infinite distance
from the centre O (to the right or to the left), the line
segments QS, Q'S’ between the hyperbola and each of the
straight lines U'U, V'V hecome small without bound.

Y r

U Y
\ / N
X F o & x X JADINA X
TR U4
- v S’

£ Y Y'
rig. 50 Fig. 51

B_LK

The straight lines y= %x and y=—-%x are called the

asymptotes of the hyperbola. V

The asymptotes to an equilateral hyperbola are mutually
perpendicular.

The geometrical meaning of the conjugate axis. Through
the vertex A of a hyperbola (Fig. 51) draw a straight line
L’L perpendicular to the transverse axis. Then the segment

L'L (of this straight line) bet-

1/ Y v ween the asymptotes to the
o hyperbola is equal to the con-
3 jugate axis B'B=2b of the
I hyperbola.
A | g4 X
I 47. Conjugate Hyperbolas
Vv 4 Two hyperbolas are called
Fig. 52 conjugate (Fig. 52) if they have

a common centre O and com-

mon axes, but the transverse
axis of one is the conjugate axis of the other. In Fig. 52,
A’A is the transverse axis of hyperbola / and the conjugate
axis of hyperbola //, B'B is the transverse axis of hyperbola
Il and the conjugate axis of hyperbola /.

') Asymptote is from the Greek meaning “not meeting.”
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If

FERT

=1

= the equation of one of the conjugate hyperbolas, then the
:zer one is given by the equation

x? 91__1

at ~ bt T

Conjugate hyperbolas have common asymptotes (U’U and
+"V in Fig. 52).

8. The Parabola

Definition. The parabola (Fig. 53) is the locus of points
o) quidistant from a given point F and a given straight
e PQ:

FM=KM m

The point F is called the focus,!) and the straight line
=Q the directrix of the parabola. The distance FC=p from
~x focus to the directrix is the para-

(¥ \ 4
nezer of the parabola.
For the coordinate origin, take P M/
~=¢ midpoint O of the line FC so that
CO=0F= % )
~=e straight line CF will be the axis €|\ d
;¢ abscissas and the positive direction
v . be from O to F.
We then have: F (-Z—. 0). KM= ,
Py
= KD+DM= £ +x and (Sec. 10) Fig. 53

: sf:l/‘<%—x )’—}-y’. Because of (1), we have

V (=) +r=%+s @)

: After reflection from a parabola, a parallel beam of rays per-
ser.z.cular to the directrix will become a central beam with centre
+ :=e focus. See footnote on p. 60.



This handbook is a continuation of the Handbook of Ele-
mentary Mathematics by the same author and includes mate-
rial usually studied in mathematics courses of higher educa-
tional institutions.

The designation of this handbook is twofold.

Firstly, it is a reference work in which the reader can find
definitions (what is a veclor product?) and factual information,
such as how to find the surface of a solid of revolution dr how
to- expand a function in a trigonometric series, and so on.
Definitions, theorems, rules and formulas (accompanied by
examples and practical hints) are readily found by reference
to the comprehensive index or table of contents.

Secondly, the handbook is intended for systematic readin%.
It does not take the place of a textbook and so full proo
are only given in exceptional cases. However, it can well
serve as material for a first acquaintance with the subject.
For this purpose, detailed explanations are given of basic
concepts, such as that of a scalar product (Sec. 104), limit
(Secs. 203-206), the differential (Secs. 228-235), or infinite
series (Secs. 270, 366-370). All rules are abundantly illustra-
ted with examples, which form an integral part of the hand-
book (see Secs. 50-62, 134, 149, 264-266, 369, 422, 498, and
others). Explanations indicate how to proceed when a rule
ceases to be valid; they also point out errors to be avoided
(see Secs. 290, 339, 340, 379, and others).

The theorems and rules are also accompanied by a wide
range of explanatory material. In some cases, emphasis is
placed on bringing out the content of a theorem to facilitate
a grasp of the groof. At other times, special examples are
illustrated and the reasoning is such as to provide a complete
proof of the theorem if applied to the general case (see Secs.
148, 149, 369, 374). Occasionally, the explanation simply
refers the reader to the sections on which the proof is based.
Material given in small print may be omitted in a first read-
ing, however, this does not mean it is not important.

Considerable attention has been paid to the historical
background of mathematical entities, their origin and develop-
ment. This very often helps the user to place the subject
matter in its proper perspective. Of particular interest in this
respect are Secs. 270, 366 together with Secs. 271, 383, 399,
and 400, which, it is hoped, will give the reader a clearer
understanding of Taylor’s series than is usually obtainable in
a formal exposition. Also, biographical information from the
li(;/es ‘t))fl mathematicians has been included where deemed
advisable.
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ym Subject of Analytic Geometry

The school (elementary) course of geometry treats of the
properties of rectilinear figures and the circle. Most important
are constructions; calculations play a subordinate role in the
theory, although their practical significance is great. Ordina-
rily, the choice of a construction requires ingenuity. That is
the chief difficulty when solving problems by the methods of
elementary geometry.

Analytic geometry grew out of the need for establishing
uniform techniques for solving geometrical problems, the aim
being to apply them to the study of curves, which are of
particular importance in practical problems.

This aim was achieved in the coordinate method (see Secs.
2 to 4). In this method, calculations are fundamental, while
constructions play a subordinate role. As a result, solving
problems by the method of analytic geometry requires much
less inventiveness.

The origins of the coordinate method go back to the works
of the ancient Greek mathematicians, in particular Apollonius
(3-2 century B. C.). The coordinate method was systemati-
cally elaborated in the first half of the 17th century in the
worf‘(’s of Fermat! and Descartes.? However, they considered
only plane curves. It was Euler  who first applied the coor-
dinfate method in a systematic study of space curves and
surfaces.

1) Pierre Fermat (1601-1655), celebrated French mathematician,
one of the forerunners of Newton and Leibniz in developing the diffe-
rential calculus; made a great contribution to the theory ol numbers.
Most of Fermat's works (including those on analytic geometry) were
not published during the author’s lifetime.

?) Rene Descartes (1596-1650), celebrated French philosopher
and mathematician. The year 1637, which saw the publication of his
Geometrie, an appendix to his philosophical treatise, is taken to be
the date of birth of analytic geometry.

3) Leonhard Euler (1707-1783), born in Switzerland, wrote
over 800 scientific papers and made important discoveries in all of
the physico-mathematical sciences.
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%oordlnates

The coordinates of a point are quantities which determine
the position of the point (in space, in a plane or on a curved
surface, on a straight or curved line). If, for instance, a point

M lies somewhere on a straight line

0 M X’'X (Fig. 1), then its position may

X 3 be defined by a single number in the

following manner: choose on X'X some

Flg. 1 initial point O and measure the segment

OM in, say, centimetres. The result

will be a number x, either positive or negative, depending

on the direction of OM (to the right or to the left if the

straight line is horizontal). The number x is the coordinate
of the point M. ’

The value of the coordinate x depends on the choice of
the initial point O, on the choice of the positive direction on
the straight line and also on the scale unit.

3/ Rectangular Coordinate System

The position of a point in a plane is determined by two
coordinates. The simplest method is the following.

Two mutually perpendicular straight lines X’X and Y'Y
(Fig. 2) are drawn. These are termed coordinate axes. One
(usually drawn horizontally) is the axis of abscissas, or the

Fig. 2 Fig. 3

x-axis (in our case, X'X), and the other is the axis of ordi-
nates, or the y-axis (Y'Y). The point O, the point of inter-
section of the two axes, is called the origin of coordinates or
simply the origin. A unit of length (scale unit) is chosen. It
may be arbitrary but is the same for both axes.

On each axis a positive direction is chosen (indicated by
an arrow). In Fig. 2, the ray OX is the positive direction of
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the x-axis and the ray OY is the positive direction of the
-axis.
Y It is customary to choose the positive directions (Fig. 3)
so that a counterclockwise rotation of the ray OX through 90°
wiil bring it to coincidence with the positive ray OY,

The coordinate axes X'X, Y'Y (with established positive
directions and an appropriate scale unit) form a rectangular
coordinate system.

f/nochnqular Coordinates

The position of a point M in a plane in the rectangular
coordinate system (Sec. 3) is determined as follows. Draw MP
parallel to Y'Y to intersection with the x-axis at the point P
(Fig. 4) and MQ parallel to X'X
to its intersection with the y-axis
at the point Q. The numbers x and
y which measure the segments OP
and 0Q by means of the chosen scale
unit (sometimes by means of the
segments themselves) are called the X7 0
rectangular coordinates (or, simply,
coordinates) of the point M. These
numbers are positive or negative
depending on the directions of the y'
segments OP and 0Q. The num-
ber x is the abscissa of the point M Fig. 4
and the number y is its ordinate.

In Fig. 4, the point M has abscissa x=2 and ordinate
y=23 (the scale unit is 0.4 cm.) This information is usually
written briefly as M (2, 3). Generally, the notation M (a, b)
means that the point M has abscissa x=a and ordinate y="b.

Examples. The points indicated in Fig. 5 are designated
as follows: A;(+2, +4), A,(—2, +4), A;(+2, —19),
Ay (—2, —4), By (+5, 0), B3(0, —6), 0(0, 0).

Note. The coordinates of a given point M will be different
in a different rectangular coordinate system.

'4
a L---'QM

-
5¢

5, Quadrants

The four quadrants formed by the coordinate axes are
numbered as shown in Fig. 6. The table below shows the
'signs of the coordinates of points in the different quadrants.
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Quadrant
\ [ I I v
Coordinates
Abcscissa + - - +
Ordinate + + - -

The point A, in Fig. 5 lies in the first quadrant, A4, in
the second, A, in the third, and the point A; lies in the

Y

fourth quadrant.
If a point lies on the

axis of abscissas (for ins-

tance, B, in Fig. 5), then

Y
Fig. §

Fig. 6

its ordinate y is zero. If a point lies on the axis of ordinates
(point B,, for example, in Fig. 5), then its abscissa is zero.

i( Oblique Coordinate System

There are also other systems of coordinates besides the
rectangular system. The oblique system (which most resemb-

les the rectangular coordinate system) is
constructed as follows (Fig. 7): draw
two nonperpendicular straight lines
X’'X and Y'Y (coordinate axes) and
proceed as in the construction of the
reclangular coordinate system (Sec.
3). The coordinates x=OP (abscissa)
and y=PM (ordinate) are defined as
in Sec. 4.
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The rectangular and oblique sysiems of coordinates come
under the generic heading of the cartesian coordinate system.

Among coordinate systems other than the cartesian type,
frequent use is made of the polar system of coordinates (see
Sec. 73).

l/‘l'ho Equation of a Line

Consider the equation x4 y=3, which relates an abscissa
x and an ordinate y. This equation is satisfied by the set of
pairs of values x, y, for example, x=1, y=2, x=2 and
y=1, x=3 and y=0, x=4 and y=—1, and so on. Each

Y Y T

U
Ay
Ay
Ay
X 4 X

X' 0 4, | X

Yo@ v I

Fig. 8 ()

pair of coordinales (in the given coordinate system) is asso-
ciated with a single point (Sec. 4). Fig. 8a depicts points
A (1, 2), A (2, 1), A3(3, 0), Ay (4, —1), all of which lie on
a single straight line UV. Any other point whose coordinates |
satisfy the equation x+y=3 will also lie on the same line.
Conversely, for any point lying on the straight line UV, the
coordinates x, y satisfy the equation x+y=3.

Accordingly, one says that the equation x+y=3 is the
equation of the straight line UV, or the equation x+y=3
represents (defines) the straight line UV. Similarly, we can
say that the equation of the straight line ST (Fig. 8b) is
y=2x, the equation x2+4 y2—=49 defines a circle (Fig. 9), the
radius of which contains 7 scale units and the centre of which
lies at the origin of coordinates (see Sec. 38).

Generally, the equation which relates the coordinates x
and y is called the equation of the line (curve) L provided
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the following two conditions hold: (1) the coordinates x, y of
any point M of the line L satisfy the equation, (2) the coor-
dinates x, y of any point not lying on the line L do not
satisfy the equation.

The coordinates of an arbitrary point M on the line L are
called running (moving, or current) coordinates since the line
L can be formed by mo-

Y ving the point M.
= S In Fig. 10, let M,, M,,
74 M,, ... be consecutive posi-
tions of a point M on a line
y, 4 L. Drop a series of per-
/ . \ pendiculars M,P,., M,P,,
X 0| X
\
”
Y RBARAP X
Fig. 9 Fig. 10
MyPs, ... on the x-axis to form the segments P,M,, P,M,,
PsM,, ... . Then, on the axis OX (x-axis) we obtain the segments
OPy, OPg, OP,, ... . These segments are abscissas. The word comes}

from the Latin abscindere, meaning “to cut off*. The term *ordinate®
comes from the Latin ordinatim ducta, meaning °conducted in an
orderly ‘manner”.

Bf' representing each point in the plane by its coordinates, and
each line by an equation that relates the running coordinates, we re-
duce geometrical problems to analytical (computational) problems.
Hence, the name *analytic geometry®.

8/ The Mutual Positions of a Line and a Point

In order to state whether a point M lies on a certain line
L, it is sufficient to know the coordinates of M and the equ-
ation of the line L. If the coordinates of M satisfy the equ-
ation of L, then M lies on L; otherwise it does not lie on L.

Example. Does the point A (5, 5) lie on the circle x2+ y2=49
(Sec. 7)?

Solution. Put the values x=>5 and y=>5 into the equation
x2+y2=49. The equation is not satisfied and so the point A
does not lie on the circle.
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?/The Mutual Positions of Two Lines

In order to state whether two lines have common points
and if they do, how many, one has to know the equations of
the lines. If the equations are simultaneous, then there are
common points, otherwise there are no common points. The
number of common points is equal to the number of solutions
of the system of equations.

Example 1. The straight line x+y=3 (Sec. 7) and the
circle x24y2=49 have two points in common because the

system
x+y=3, x24y?=49
has two solutions:

_3+V89 _3-Vay

Hn=—F—=622, y="F—=-322
.and
x2=3_1;89 ~—3.22, y2=3+12/89 ~6.22

Example 2. The straight line x4+y=3 and the circle
x?*+y2=4 do not have any common points because the system

x+y=3, x*t+y*=4
has no (real) solutions.

Lll}/?ha Distance Betwéen Two Points

The distance d between the points A4, (x,, y,) and
A, (X3, Y2) is given by the formula

d=V (xg—x1)* + (Y2 — 1) ()

Example. The distance between the points M (—2.3, 4.0)
and N (8.5, 0.7) is

d=V 8.5+ 2.3)‘2—{-(0.7—4)’: V10824332 %~ 11.3

(scale units).

Note 1. The order of the points M and N is immaterial;
N may be taken first and M second.

Note 2. The distance d is taken positive and so the square
root in formula (1) has only one sign (positive).
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Ll/DIvldlng a Line-Segment In a Glven Ratlo

In Fig. 11 take the points A (x;, y;), Az (x5, yp). It is
required to find the coordinates x and y of the point K which
divides the segment A,;A; in the ratio

Y Al AK:KAg=my:m,

) . ' The solution is given by the for-
4 ' X mulas
/) y ! g Mt Mt
H ! ' my+m, ' )
—z H _ My, +myy,
oA P BX Y="mm,
Flg. 11 If the ratio m;:m, is denoted by

the letter A, then (1) assumes the
nonsymmetrical form

_X1thx, __ Y1t Aus
== = 17 @

Example 1. Given the point B(6, —4) and the point O
coincident with the origin. Find the point K which divides

BO in the ratio 2:3.
Solution. In formula (1) substitute

m1=2. m’=3, x|=6, yl=—4' x2=0, y2:=0
This yields
x=%=3.6, y-_—_———_——24

which are the coordinates of the desired point K.

Note 1. The expression “the point K divides the segment
A;Ay in the ratio m,;:m,” means that the ratio m;:m, is
equal to the ratio of the segments A;K:KA, taken in this
order and not in the reverse order. In Example 1, the point
K (3.6 —2.4) divides the segment BO in the ratio 2:3 and
the segment OB in the ratio 3:2.

Note 2. Let the point K divide the segment A;A, exter-
nally; that is, let the point lie on a continuation of the seg-
ment A;A;. Then formulas (1) and (2) hold true if we affix
a minus sign to the quantity m;:m;=A.

Example 2. Given the points A, (1, 2) and A, (3, 3). Find
the point, on the continuation of the segment A;A,, that is
twice as far from A4, as from A,.

Solution. We have A=m;:my=—2 (so that we can put
my=—2, mg=1, or m;=2, my=—1). By formula (1) we
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find
L1423 ¢ y__l~2+(-2)-3

T -2+1 -2+1 =4

11a, Midpoint of a Line-Segment

The coordinates of the midpoint of a line-segment A;A,
are equal to the half-sums of the corresponding coordlnates
of its end-points:

__X1t+Xxs __Y1tY.
=== Y=

These formulas are obtained from (1) and (2), Sec. 11, by
putting my=m,=1 or A=1.

I\Z/Socond-Order Determinant V)

The notation lg 3 I denotes the very same thing as ad — bc.

Examples.
|3 i|=25-3.7=—11,

|6 2]:3-2—6~(—4)=30

The expression l? gl is called a determinant of the se-
cond order.

Ij/l’he Area of a Triangle

Let the points A, (x5, ¥,), As (X3, ¥a), As(xs, ys) be the
vertices of a triangle. Then the area of the triangle is given

by the formula
1 | X1—X3 Y1—Ys
S=4 |71 73 1
3 Xg—X3 Y3—Ys3 M
On the right side we have a second-order determinant (Sec. 12).

We assume the area of a triangle to be positive and take
the positive sign in front of the determinant if the value of

1) Determinants are explained in detail in Secs. 182 to 185.
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the determinant is positive; we take the minus sign if it is
negative.

Example. Find the area of a triangle with vertices A (1, 3),
B (2, —5) and C(—S8, 4).

Solution. Taking A as the first vertex, B as the second
and C as the third, we find

X1 —X3 Y1— Y3 _ l+8 3—4 _‘ 9 —1 .
Xg—Xy Ya—Yys| |2+8 —5—4| |10 —9|
=—814+10=-—71
In formula (1) we take the minus sign and get
T S=—t—m=35

However, if we take A for the first vertex, C for the se-
cond and B for the third, then
X—xs Yy1—yYs|_| 1—2 3+5 _I —1 8
X3—X3 Ys—yz| |—8—2 445| |—10 9
In formula (1) we have to take the plus sign, which again
yields $=35.5.

Note. 1f the vertex Aj coincides with the origin of coor-
dinates, then the area of the triangle is given by the formula

Xy N P
X3 Y @
This is a special case of formula (1) for x3=y;=0.

‘:71

S=:}:%

IQ/ The Stralght Line. An Equation Solved
for the Ordinate (Slope-Intercept Form)

Any straight line not parallel to the axis of ordinates
may be represented by an equation of the form

y=ax+b (1)

Here, a is the tangent of the angle a (Fig. 12) formed by
a straight line and the positive direction of the axis of abs-
cissas ! (a=tana=tan / XLS), and the number b is equal

') The initial side of the angle o is the ray O0X. On the straight
line SS’ we can take any one of the rays LS, LS’. The angle XLS
Is considered positive if a rotation which brings to coincidence the
rays LX and LS is performed in the same direction as the rotation
through 90° that brings to coincidence the axis OX and the axis OY
(that s, counterclockwise in the customary arrangement).
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in magnitude to the length of the segn:nent OK intercepted
by the straight line on the axis of ordinates; the number b
is positive or negative depending on the direction of the seg-
ment OK. If the straight line passes through the origin, b=0.

The quantity a is called the slope and the quantity b,
the initial ordinate.

ol X A
0

./
3 [

Flg. 12 Fig. 13 Fig. 14

X

Example 1. Write the equation of a straight line (Fig. 13)
which forms an angle a=—45° with the x-axis and inter-
cepts an initial ordinate b=—3.

Solution. The slope a=tan(—45°)=—1. The desired
equation is y=—x—3.

Example 2. What line does the equation x=V3y rep-
resent?

Solution. Solving for y we find y=1'3 x. From the slope
a=V3 we find the angle a: since tana=V3, it follows
that «=60° (or & =240°). The initial ordinate b=0, and so
this equation represents the straight line UV (Fig. 14) which
passes through the origin and forms with the x-axis an angle
of 60° (or 240°).

Note I. Unlike the other types of equations of a straight
line (see Secs. 30 and 33), Eq. (1) is solved for the ordinate
and is termed the slope-intercept form of the equation of a
straight line.

Note 2. A straight line parallel to the axis of ordinates

cannot be represented by an equation solved for the ordinate.
Compare Sec. 15.
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IS/A Stralght Line Parallel to an Axls

A straight line parallel to the axis of abscissas (Fig. 15)
is given by the equationV
y=>b (1),

where b is equal, in absolute value, to the distance from the
axis of abscissas to the straight line. If 5> 0, then the
straight line lies above the axis of abscissas (see Fig. 15);
if 6 <0, then it is below the axis.

y The axis of abscissas itself is given by

. the equation
T - y=0 (12),
\ A straight line parallel to the axis
0 X of ordinates (Fig. 16) is given by the

equation 2
Flg. 15 x=f (2)
The absolute value of f gives the distance from the axis of

ordinates to the straight line. If f > 0, the siraight line lies
to the right of the axis of ordinates (see Fig. 16); if f < 0,

Fig. 16 Fig. 17 Fig. 18

it lies to the left of the axis. The axis of ordinates itself is
given by the equation

x=0 (2a)

Example 1. Write the equation of the straight line that
intercepts the initial ordinate b=3 and is parallel to the
x-axis (Fig. 17).

Answer. y=3.

') Eq. (1) is a special case of the equation y=ax+b solved for the
ordinate (Sec. 14). The slope a=0.

) Eq. (2) is a special case of x=a’y+0b’ solved for the abscissa.
The slope a’=0.
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Example 2. What kind of line is given by the equation
3x+5=0?

Solution. Solving the equation for x, we get x=—%.
The equation represents a straight line which is parallel to
the y-axis and lies to the left of it at a distance of —g-

(Fig. 18). The quantity f=—% may be called the initial
abscissa.

16/ The General Eq atlon of the Stralght Line

The equation
Ax+By+C=0 0}

(where A, B, C can take on any values, provided that the
coefficients A and B are not simultaneously zero1) describes
a straight line (cf. Secs. 14, 15). This equation represents
-any straight line, and so it is called the general equation
of the straight line.

If A=0, i.e. Eq. (1) does not contain x, then it repre-
sents a straight line parallel 2 to the x-axis (Sec. 15).

If B=0, i.e. Eq. (1) does not contain y, then it describes
a straight line parallel » to the y-axis.

When B is not equal to zero, Eq. (1) may be solved for
the ordinate y; then it is reduced to the form

y=ax+b (where a=—-%—. bz—%) 2)

Thus, the equation 2x—4y+4+5=0 (A=2, B=—4, C=5)
reduces to the torm
y=0.5x+1.25

<a=—_—2—4=0.5. b=:—f=1.25> solved for the ordinate

(initial ordinate b=1.25, slope a=0.5, so that a =~ 26°34';
see Sec. 14).

Similarly, for A # 0 Eq. (1) may be solved for x.

If C=0, i.e. Eq. (1) does not contain the absolute term,
it describes a straight line passing through the origin (Sec. 8).

1) For A=B=0 we have either the identity 0=0 (if C=0) or
something senseless like 5=0 (for C s 0).

3) The x-axis Is included in the group of straight lines parallel
to the x-axis. The same goes for lines parallel to the y-axis (the y-axis
itself is included).
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l}/ Constructing a Straight Line on the Basls of Its Equation

To construct a straight line, it suffices to fix two of its
points. For example, one can take the points of intersection
with the axes (if the straight line is not parallel to any axis
and does not pass through the origin); when the line is pa-
rallel to one of the axes or pas-
ses through the origin, we have only
one point of intersection). For
%reater precision, it is advisable to

nd one or two check points.

Example. Construct the straight
line 4x+43y=1. Putting y=0, we
find (Fig. 19) the point of interse-
ction of the straight line with the

-2 axis of abscissas: A, %, 0). Put-

-3 A ting x=0, we get the point of

- intersection with the axis of ordina-
. 1 ;

Plg. 19 tes: A; (0, 3 ) . These points are

too close to one another and so let
us specify another two values of the abscissa, say, x=

—=—3 and x= 43, which yield the points A,(—s, ‘—33) ,

A (3, —'—3‘) Draw the straight line A,A,A,4,.

1§ The Parallellsm Condition of Straight Lines

The condition that two straight lines given by the equa-
tions

y=a,x+by, (1)

y=0ayx+b, @
be parallel is the equality of the slopes

a,=a, ®)

The straight lines (1) and (2) are parallel if the slopes are
not equal. P

Example 1. The straight lines y=3x—5 and y=3x+4
are parallel since their slopes are equal (a,=a;=3).

1) Here, and henceforward, two coincident straight lines are com-
sidered parallel.
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Example 2, The straight lines y=23x—5 i/ 6x—38
are réot parallel since their slopes are not equa (a;=3,
a,=6)

? Example 3/ "The straight lines 2y=3x—5 and 4y 6x—8

are parallel since their slopes are equal ( @, = —3- , a,_—=—)

Note 1. 1f the equation of one of two stralght lines does
not contain an ordinate (i.e. the straight line is parallel to
the y-axis), then it is parallel to the other straight line,
provided that the equation of the latter does not contain y
either. For example, the straight lines 2x+4+3=0 and x= 5
are parallel, but the straight lines x—3=0 and x—y=0 are
not parallel.

ote 2. If two straight lines are given by the equations

Ayx+Byy+Cy =0,

Agx+ By +Cy=0 | 4
then the condition of parallelism is
AIB,-—A.Bl—:O (5)
or, in the notation of Sec. 12,
A By|_
3 Bal—o
Example 4, The straight lines
~
2x—Ty+12=0
and
x—3.5y+4+10=0
are parallel since
A, B, — 2 —7 _
2 5= 51_2.(_3.5)—1.(-—7)_0_
Example 5/ The stralght lines
N 2% —Ty+12=0
and
3x42y—6=0
are not parallel since
2 —
3 2|=25 #0

Note 3. Equality (5) may be written as

A, __ B,
2,75, ©
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which states that the condition for the straight lines (4) being
parallel is the proportionality of the coefficients of the runn-
ing coordinates. V) Compare Examples 4 and 5. If the absolute
terms are proportional as well, i.e. if

A=5~C @

then the straight lines (4) are not only parallel but are also
coincident. Thus, the equations

3x+2y—6=0
6x+4y—12=0
describe one and the same straight line.

and

I‘!y The Intersection of Stralght Lines

To find the point of intersection of the straight lines
Ayx+Byy+Cy=0 )

Agx+ By +C, =0 @
it is necessary to solve the system of equations (1) and (2).
As a rule, this system yields a unique solution and we obtain
the desired point (Sec. 9). The only possible exception is the

equality of the ratios % and 3, i.e. when the straight
]

2
lines are parallel (see Sec. 18, Notes 2 and 3).

Note. If the given straight lines are parallel and do not
coincide, then the system (1)-(2) has no solution; if they
coincide, there is an infinity of solutions.

«Example 1. Find the points of intersection of the straight
lines y=2x—3 and y=—3x+2. Solving the system of
equations, we find x=1, y=—1. The straight lines inter-
sect at the point (1, —1).

\/Example 2. The straight lines

2—T7y+12=0, x—3.5y+10=0

are parallel and do not coincide since the ratios 2:1 and
(—7):(—3.5) are equal, but they are not equal to the ratio

and

1) 1t may turn out that one of the quantities A, o1 B, (but not
both together, see Sec, 16) is equal to zero. Then the proportion (6)
may be understood in the meaning that the corresponding numerator
is also zero. The proportion (7) has the same meaning for Cy=0
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12:10 (cf. Example 4, Sec. 18). The given system of equati-
ons, has no solution.

~Example 3. The straight lines 3x+2y—6=0 and
6x+4y—12=0 coincide since the ratios 3:6, 2:4 and
(—6):(—12) are equal. The second equation is obtained from
the first by multiplying by 2. This system has an infinity
of solutions.

20, The Perpendicularity Condition of Two Straight Lines

The condition that two straight lines given by the
equations

y=a,x+by, 1)
y=ayx+b, 2

be perpendicular is the relation
a,a3=—1 3

which states that two straight lines are perpendicular if the
product of their slopes is equal to —I1, and they are not
perpendicular if the product is not equal to —1.

Example L The straight lines y=3x and y=-—-—;j x are
cerpendicular since g;a3=3- (— %) =—1.

Example g, The straight lines y=3x and y=%x are not
perpendicular since ala,=3-%= 1.

Note 1/1f the equation of one of the two straight lines
does not contain an ordinate (i. e. the straight line is parallel
to the y-axis), then it is perpendicular to the other straight
line provided that the equation of the latter does not contain
an abscissa (then the second straight line is parallel to the
axis of abscissas), otherwise the straight lines are not per-
pendicular. For example, the straight lines x=>5 and 3y +2=0
are perpendicular and the straight lines x=35, and y==2x are
not perpendicular.

Note 2/ 1f two straight lines are given by the equations

A+ By+Cy=0, Agx+Bay+Cy=0 4y
then the condition for their being perpendicular is
A)Ay+B1B3=0 (5)
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Example :’/The straight lines 2x45y=8 and 5x—2y=3
are perpendicular; indeed, A;=2, A;=5, B;=5, By=—2,
and so A;A;+ B;B;=10—10=0.

Example 4/ The straight lines -;— x—% y=0 and 2x—3y=0
are not perpendicular since 4,4, B;By=2.

21/' The Anglo Between Two Straight Lines

Let two nonperpendicular straight lines L,, L, (taken in
a specific order) be given by the equations

. y=ax+by, (M
y=asx+by. t))

Then the formula?
tan 6=—1°—:_3% 3)

yields the angle through which the first straight line must
be rotated in order to make it parallel to the second line.
Example 1,/ Find the angle between the straight lines

i y=2x—3 and y=—3x+42 (Fig. 20.)

Here, a,=2, ag=—3. By formula
(3), we find
-3-2
tan 0=1+2—(_3)=l

whence O =+ 45°. This means that
when the straight line y=2x—3 (AB
in Fig. 20) is turned through the ang-
le-+-45° about the point of intersection
M (1, —1) of the given straight lines
(Example 1, Sec. 19), it will coincide
with the straight line y=—3x42
(CD in Fig. 20). It is also possible to
take ©=180°--45°=225°, 8 =—180°
Fig. 20 +45°=—135°, and so on. (These
angles are denoted by 8,, 8, in Fig. 20).

Example 2/ Find the angle between the straight lines
y=—23x+2 and y=2x—3. Here, the lines are the same as
in Example 1, but the straight line CD (see Fig. 20) is the
first one and AB is the second. Formula (3) yields tan 8 =—1,

1) On its applicability when the straight lines L,, L, are perpen-
dicular, see Note ] below.
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i.e. 6=—45° (or 8=135° or 8 =—225° etc.). This is the
angle through which the straight line CD must be rotated to
bring it into coipcidence with AB.

Example 3/ Find the straight line that passes through
the origin and intersects the straight line y=2x—3 at an
angle of 45°.

Solution. The sought-for straight line is given by the
equation y=ax (Sec. 14). The slope a may be found from (3)
by taking the slope of the given straight line in place of a,
(i.e. by putting a,==2); in place
of a; we take the slope a of the de-
sired straight line, and in place of
8, an angle of 4 45° or —45°. We
then get

a-2
Trza—t |

The problem has two solutions:
y=—3x (the straight line AB in
Fig. 21) and y= % x (the straight
line CD).

Note 1, If the straight lines (1) Fig. 21
and (2) "are perpendicular (8=
=490°), then the expression 1-a,a; in the denominator

of (3) vanishes (Sec. 20) and the quotient l";;au" ceases to

exist. ? At the same time, tan ® ceases to exist (becomes
infinite). Taken literally, formula (3) is meaningless; in this
case it has a conventional meaning, namely that each time
the denominator of (3) vanishes the angle © is to be consi-
dered + 90° (both a rotation through --90° and one through
—90° brings either of the perpendicular straight lines to
coincidence with the other).

Example 4}/ Find the angle between the straight lines
y=2x—3 and y=— %x+7 (a1=2, dg=— -%) If we first

ask whether these straight i:nes are perpendicular, the answer
is yes by the characteristic (3) of Sec. 20 so that we obtain
0= 4 90° even without formula (3). Formula (3) yields the

1) The numerator a,~a, is 1ot zero since the slopes a,, g, (Sec. 18)
are equal only in the case of parallel straight lines.
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same result. We get

tan 8= 1 =

(1)
In accordance with Note 1, this equality is to be understood
in the meaning that 8= 4 90°.

Note 2. 1f even one of the straight lines L,, L, (or both)
is parallel to the y-axis, then formula (3) cannot be applied
because then one of the straight lines (or both) cannot be
represented (Sec. 15) by an equation of the form (1). Then
the angle ® is determined in the following manner:

(@) when the straight line L, is parallel to the y-axis and
L, is not parallel, use the formula

1
tan 9=-a—'
,/(b) when the straight line L, is parallel to the y-axis and
Ly is not parallel, use the formula

1
tan 6 =— a
(c) when both straight lines are parallel to the y-axis, they
are mutually parallel, so that tan 8 =0.
Note 3 The angle between the straight lines given by the

equations
Ax+Byy+Cy=0 “)
and '
Ayx+ Boy +Cp=0 )
may be found from the formula
ABy— A; B,
{an 6=—Am (62

When A;A,+4 B;B;=0, formula (6) is given a conventional
meaning (see Note 1) and 6= 4 90°. Compare Sec. 20,
formula (5).

2_2/‘ The Conditlon for Three Polnts Lying on One Stralght Line
The three points A, (x,, y,) A, (%2, Ya), As(xs, ys) lie on
one straight line if and only if
xﬁ:xl yﬁ— =0 (l)
X3—Xy Ys—H

1) The left side of (1) is written in the form of a determinant
(see Sec. 12).
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This formula also states (Sec. 13) that the area of the “tri-
angle” A;A3A, is zero.
Example L The points A4, (—2, 5), A; (4, 3), A3(16, —1)
lie on one straight line since
Xg—Xx; Yo—y1|_| 442 3—5|_| 6 —2|_
X3—X; Ys—y,| |164+2 —1—5[ |18 —6]|
=6-(—6)—(—2)-18=0
Example 3¢ The points A, (—2, 6), 4, (2, 5), A;3(5. 3) do
not lie on offe straight line since

‘x,—-xl y,—-yl_l2+2 5—-6|_|4 —1
Xg—X; Ys—yi|l |5+2 3—6| [7 =3

23/The Equation of a Stralght Line
Through Two Points (Two-Point Form)

A straight line passing through two points Ay (x,, ;) and
Aj (x5, Yo) is given by the equation 1
Xg—X; Y2—U1
=0 1
X —X Yy —Hh ()
It states that the given points A,, A,
and the variable point A (x, y) lie on
one straight line (Sec. 22).
Eq. (1) may be represented (see
note below) in the form

X—X% __ 4= (2)
Xy — Xy Yr— ¥

Flg. 22

This equation expresses the proportionality of the sides of
thg right triangles A;RA and A;SA, depicted in Fig. 22,
where

x3=0P,, x,=0P,, x=OP,
x —x;=AR, x—x=A,S;
Yy1=P1A,, y3="Py4,;, y=PA,
Yy —yi=RA, Ya—y1=S54,
Example 1. Form the equation of the straight line passing
through the points (1, 5) and (3, 9).

. 1) The left. side of (1) Is written in the form of a determinant
(see Sec. 12).
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Solution. Formula (1) gives
3—1 2 4 —0
x—1 x—1 y—5

that is, 2(y—5)—4(x—1)=0 or 2x—y+3=0.

Formula (2) yields "—;—l=y—:i. Whence we again get
2x —y+3=0. .

Note. When x,=ux, (or y;=y,;), one of the denominators
of (2) is zero; then Eq. (2) should be taken to mean that the
corresponding numerator is zero. See Example 2 below (also
the footnote on page 34).

Examplé 2. Form the equation of a straight line that pas-
ses through- the points A, (4, —2) and A, (4, 5). Eq. (1)
yields 0

B 1

x—4 y+2

i.e. 0(y+2)—7(x—4)=0, or x—4=0.
Eq. (2) is written as

9—5
y—5 I—O, or

=0 Gy

o =7 @),
Here, the denominator of the left member is zero. Taking
Eq. (4) in the above meaning, we put the numerator of the

left member equal to zero and we obtain the same result:
x—4=0.

24, A Pencll of Straight Lines

The collection of lines passing through one point A, (x;, y,)
(Fig. 23) is termed a (central) pencil of lines through a point.
The point A; is called the vertex of
Y the pencil. Each one of the lines of
the pencil (with the exception of
that which is parallel to the axis
of ordinates; see Note 1) may be

represented by the equation

\ Yy—ph=k(x—x) ()
@\ Here, k is the slope of the line under
1

X  consideration (k=tan a). Eq. (1) is

called the equation of the pencil

The quantity k (the parameter of

Fig. 23 the pencil) characterizes the dire-

NEIAN \
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ction of the line; it varies from one line of the pencil
to the next.

The value of the parameter k& may be found if some other
condition is given which (together with the condition that
the line belong to the pencil) defines the position of the line;
see Example 2.

Example 1/ Form the equation of a pencil with vertex at
the point A, (—4, —8).

Solution. By (1) we have

y+8=k(x+4)

Example 2, Find the equation of a straight line that pas-
ses through fhe point A, (1, 4) and is perpendicular to the
straight line 3x —2y=12.

Solution. The desired line belongs to a pencil with vertex
(1, 4). The equation of the pencil is y—4=~k (x—1). To find
the value of the parameter %, note that the desired lire is
perpendicular to the straight line 3x —2y=12; the slope of

the latter is % We have (Sec. 20) —g-kz— 1, i. e.k=——;— .
The desired line is given by the equation y—4=——-§ (x—1)
or y=-——',j-x+4—§—.

Note 1. A straight line belonging to a pencil with vertex
at A, (x,, y,) and parallel to the y-axis is given by the equa-
tion x—x, =0. This equation is not obtainable from (1), no
matter what the value of k.. All lines of the pencil (without
exception) may be represented by the equation

Ly—y)=m(x—x) 0]
where | and m are arbitrary numbers (not equal to zero si-
multaneously). When [ #£ 0, we can divide Eq. (2) by .
Then, denoting ’ﬂ in terms of &, we get (1). But if we put
1 =0, then Eq. (2) takes the form x—x, =0.

Note 2. The cquation of a pencil containiné two intersecting
straight lines L,, L, given by the cquations
Ayx+B,y+Cy=0, A;x+B,y+C,=0
is of the form
my (A x+Byy+Cy)+m, (Ayx+Byy+Cy)=0 3)
Here, m,, m, are arbitrary numbers (not simultaneously zero). In

particular, for m,=0 we get the line L,, for m;=0 we have the line
L,. In place of (3) we can write the equation

Ax+By+Ci+A (Ax+B,y+Cy)=0 4)
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1n which all possible values are given to only one letter A, but it is
not possible to obtain the equation of the line L, from (4).

Eq. (1) is a special case of Eq. (4) when the straight lines L, and
L, are given by the equations y=y,, x=x, (they are then parallel to
the axes of coordinates).

Example 3. Form the equation of a straight line which passes
through the point of intersection of the lines 2x-3y—-1=0,3x-y-2=0
and is perpendicular to the straight line y=x.

Solution. The desired line (which definitely does not coincide with
the line 3x—y-2=0) belongs to the pencil

2x-3y—-1+A (3x-y-2)=0 (5)
3A+2

The slope of the line (5) is k== . Since the desired line is per-
pendicular tg the line y=x, it follows (Sec. 20) that k=-1. Hence,
5= ke A=-—i—. Substitdting >.=~% into (5), we get (af-
ter simplifications)

Tx+7y-6=0

Note 3. If the lines L,, L, are parallel (but noncoincident),
Eq. (3‘ represents, for all possible values of m,, m,, all straight lines
‘mralle to the two given lines. A set of mutually parallel straight
ines is termed a pencil of parallel lines (parallel pencil). Thus, Eq. (3)
represents elther a central pencil or a parallel pencil.

2§1Tho Equation of a Stralght Line Through a Given Polnt
and Parallel to a Clven Stralght Line (Point-Slope Form)

1/ A straight line passing through a point M, (x,, y,) pa-
rallel to a straight line y=ax-+b is given by the equation
y—p1=a(x—x) (N

Cf. Sec. 24.
Example l/Form the equation of a straight line which

passes through the point (—2, 5) and is parallel to the
straight line

5x—T7y—4=0
Solution. The given line may be represented by the equa-
tion y=—§—x—-—;- (here a:-—%) . The equation of the line is

y—5= [x—(—2)]or 7 (y—5) =5 (x+2) or 5x—7y + 45=0.
2. A straight line which passes through a point M, (x,, y,)

and is parallel to the straight line Ax4+ By+C=0 is given
by the equation

A(x—x)+B(y—y)=0 @)

Example Z/Solving Example 1 (A=5, B=—7) by for-
mula (2), we find 5(x+2)—7 (y—5)=0.
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Example 3« Form the equation of a straight line which
passes through the point (—2, 5) and is parallel to the
straight line 7x410=0.

Solution. Here A=7, B=0. Formula (2) yields 7 (x42)=0,
or x4+2=0. Formula (1) is not applicable since the given
equation cannot be solved for y (the given straight line is
parallel to the y-axis, cf. Sec. 15).

26/ The Equation of a Straight Line
Through a Glven Point and Perpendicular
to a Given Straight Line

VA straight line which passes through a point M, (x,, y,)
and is perpendicular to a straight line y=ax+-b is given by
the equation

9—5’1=—‘%'(X—x1) (L)

Cf. Sec. 24, Example 2.

Example 1, Form the equation of a straight line which
passes through the point (2, —1) and is perpendicular to the
straight line

4x—9y=3

Solution. The given line may be represented by the equa-
tion y=%x—%— (a=%) . The equation of the desired line

is y+l=-—-—%(x——2) or 9x+4y—14=0.

2. A straight line that passes through a point M, (x;, y;)
and is perpendicular to the straight line Ax+By+C=0 is
given by the equation

A Y—y)—B (x—x,)=0 @
Example 2/ Solving Example 1 (A=4, B=—9) by for-
mula (2), we find 4(y+1)+9(x—2)=0 or 9x+4y—14=0.

Example 3. Form the equation of a straight line passing
through the point (— 3, — 2) perpendicular to the straight line

2y+4-1=0
Solution. Here, A=0, B=2 Formula (2) yields

—2(x+3)=0 or x4+3=0. Formula (1) cannot be used be-
cause a=0 (cf. Sec. 20, Note 1).
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27,/ The Mutual Positions of a Straight Line
and a Palr of Points

The mutual positions of points M, (x4, y4). M, (x;, y;) and a

straight line
Ax+By+C=0 (N

may be determined from the following characteristics:

(ay points M; and M, lie on one side of the line (1) when the
numbers Ax,+By,+C,, Ax,+By,+C, have the same sign;

(by M, and hf, are on different sides of line (1) when these num-
bers have opposite signs;

(cy’one of the points M,, M, (or both) lies on the line (1) if one
of these numbers is zero or if both are zero.

Example z The points (2, —6), (-4, —2) lie on the same side of
the straight line

3x+5y-1=0

since the numbers 3-2+5.(-6)-1=-25 and 3-(-4)+5-(-2)-1=-23
are both negative. .

Example 2, The origin of coordinates (0, 0) and the point (5, 5)
lie on different sides of the straight line x+y—-8=0 since the numbers
0+0-8=-8 and 5+5-8=+2 have different signs.

28/“ The Distance From a Point to a Stralght Line

The distance d from a point M, (x;, y;) to a straight line
Ax+By+C=0 ()
is equal to the absolute value of
__Ax,+By,+C
8= VA*+B? (?)
that is,V
Axy+By,+C
d= =L " T
= 5=F @)

Example. Find the distance from the point (—1, 4 1) to
the straight line

3x—4y+5=0
Solution.
5= 3:,—4y,+5=3~(-l)-4-l+5____£
V3tias V3ty4a: 8
2 2
d=|‘5'=l’“'5'l=?

1) Formula (3) is ordinarily derived by means of an artificial con-
struction. Below (See Note 2) is given a purely analytical derivation.
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Note I. Suppose the line (1) does not pass through the origin 0
and, hence, C == 0 (Sec. 16). Then, if the signs of 8 and C are the
same, the points M, and O lie to one side of the line (1); if the signs
are opposite, then the¥ lie on different sides (cf. Sec. 27). But if 6=0
(this is only possible if Ax,+By,+C=0),
then M, lies on the given straight line
(Sec. 8).

The quantity 8 is called the oriented dis-
tance from the point M, to the line (1). In the
cxample above, the oriented distance 8 is equal
to -5 and C=5. The quantities 8 and C have
opposite signs, hence, the points M, (-1, +1)
and O lie on different sides of the straight line
3x-4y+5=0.

Note 2. The simplest way to derive formula Fig. 24
(3) is as follows.

Let M, (x,, y;) (Fig. 24) be the foot
of a perpendicular dropped from the point M, (x,, y,) onto the
straight line (1). Then

d=V (X = %)+ (Y1 - 41)* 4

The coordinates x,, y, are found as the solution of the following sys-
tem of equations:

Ax+By+C=0, (|)
A(y-y)-B (x-x,)=0 (5)

where the latter equation defines a straight line M, M, (Sec. 26). To
:;‘mpilify computations, transform the first equation of the system to
e form

A(x=-x)+B (y~-yy)+ Axy+ By, +C=0 (6)
Solving (5) and (6) for (x-x,), (y-y,), we find
x-x,:-—A—’%E (Ax, + By, C), (7)
B
y—yl='Az+Bz (Ax,+ By +C) (8)
Putting (7) and (8) into (4), we get
d= Ax,+By,+C
Vaib

29/ The Polar Parameters (Coordinates)
of a Straight Line ¥

The position of a straight line in a plane may be given

by two numbers called the parameters (coordinates) of the
line. For example, the numbers b (initial ordinate) and a

1) This section serves as an introduction to Secs. 30 and 31.
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(slope) are (cf. Sec. 14) the parameters of the straight line.
However, the parameters b and a are not suitable for all
straight lines; they do not specify a straight line parallel
to OY (Sec. 15). In contrast, polar parameters (see below)
can be used to specify the position of any straight line.

The polar distance (or radius vector) of a straight line UV
(Fig. 25) is the distance p of the perpendicular OK drawn
from the origin O to the straight line.
The polar distance is positive or zero
(p=0).

The polar angle of the straight
line UV is the angle a=/X0K
between the rays OX and OK (taken
in that order; cf. Sec. 21). If the line

% UV does not pass through the origin
} (as in Fig. 25), then the direction of

the second ray is ﬂuite definite (from

Flg. 25 0 to K); but if UV passes through O

(then O and K coincide), the ray

perpendicular to UV is drawn in any one of two pos-
sible directions.

The polar distance and the polar angle are termed the
polar parameters (or polar coordinates) of a straight line.

If the straight line UV is given by the equation

[
]
1
1
o| L

Ax+By+C=0
then its polar distance is defined by the formula
e
P=vVas 1)
and the polar angle @ by the formulas
. A . _ B
cosa= F _—VA'+B’ , sina=7F V——m (?)

where the upper signs are taken for C > 0, and the lower
signs for C < 0; but if C=0, then either only the upper
signs or only the lower signsV are taken at will.

1) Formula (1) is obtained from (3), Sec. 28 (for x,=y,=0). For-
mulas (2) are obtained as follows: from Fig. 25

_OL «x _LK_y :
cos G—W(——-? , sina= 0K~ (31

According to (7), (8), Sec. 28 (for x;=y,=0). we have

AC BC
*=-——mr g Y=-Ziggi(cont'donp. 47) 4)
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Example 1. Find the polar parameters of the straight line
3x—4y+10=0

10
s =2. Formulas (2),

where the upper signs are taken (because C= +10), yield

3 3 oo (=4 4
cosa= —pm—r =, sina V=t
Hence, a =~ 127° (or a =~ 487°, etc.).
Example 2. Find the polar parameters of the straight line
3x—4y=0

Formula (1) yields p=0; in formulas (2) we can take
either only the upper or only the lower signs. In the former

Solution. Formula (1) yie\lds p=

. 4 .

case, cos=——, sina=— and, hence, a =~ 127° in the
3 . 4

latter case, cos a=-, sina=—+ and, hence, a~x —53°.

39‘ The Normal Equation of a Stralght Line

A straight line with polar distance p (Sec. 29) and polar
angle a is given by the equation

xcosa+ysina—p=0 (1)

This is the normal form of the equation of a straight line.
Example. Let a straight line UV be distant from the origin

0K=V2

(Fig. 26) and let the ray OK make an angle a=225° with
the ray OX. Then the normal equation of UV is

x cos 225°+ y sin 225° — Y 2=0

that is, _
-—gx—lf— y—V2=0
From (1), (3) and (4), it follows that
cos a=——|—g—|- -VAL;_+—B'_ , sin z:c=--|g—I ‘7A—*B;+_B: (5)‘73
Formulas (5) coincide with (2) because Igl =+1 for C >0 and
C

=:-l for C < 0.

1C
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Multiplying by — V2, we get the equation of UV in the

form x4 y+42=0, but this equation is no longer in the nor-
mal form.

v

0].2‘,1, "X

Fig. 27

e

Derivation of equation (1). Denote the coordinates of the point K
(Fig. 27) by x,. ¥;. Then x,=0L=pcosa, y,=LK=psina. The straight
line OK that passes through the points O (0, 0) and K (x5, y,) is given

(Sec. 23) by the equation I ‘:’ z' |=0, that is, (sina) x-(cosa) y=0.

The line UV passes through K (x,, y;) and is perpendicular to the
straight line OK. Hence, (Sec. 26, Item 2), it is given by the equation
sin @ (y-y,)-(—cos @) (x—x,)=0. Substituting x,=pcosa and y,=
=p sin @, we get x cos a+y sin a-p=0.

3}{ Reducing the Equation of a Straight Line
to the Normal Form

In order to find the normal equation of a straight line
given by the equation Ax+By+C=0, it is sufficient to
divide the given equation by F V A3+ BZ, the upper sign
being taken when C > 0 and the lower sign when C < 0; but
if. C=0, any sign is valid. We get the equation

A B | C |
i V AT+ B? *F Varis | Vaiib
It will be normal. V

Example 1, Reduce the equation 3x—4y+10=0 to the
normal form.

Here, A=3, B=—4 and C=10 > 0. Therefore, divide

by —V ¥+ =—5 to get
3 4

) Because the coefficients of x and y are, respectively, cosa and
sin @ by virtue of (2), Sec. 29, and the constant ferm is equal to
(=p) by (1), Sec. 29.



PLANE ANALYTIC GEOMETRY 49

This is an equation of the form x cosa+ysina—p=-0.
Namely, p=2, cos a=—=, sina= +-;— (hence, a ~ 127°).

Example 2, Reduce the equation 3x—4y=0 to the nor-
mal form.
Since C=0 here, it is possible to divide either by 5 or —5.
In the former case we get
3

4
Tix—5y=0

(p=0, a =~ 307°), in the latter case,
3 4
—5*tgy=0

(p=0, a =~ 127°). To the two values of a there correspond
two methods of choosing the positive direction on the ray OK
(see Sec. 29). -

Q?/' Intercepts

To find the line segment OL=a (Fig. 28) intercepted on
the x-axis by the straight line UV, it is sufficient to put
y=0 in the equation of the straight line and solve the equa-
tion for x. In similar fashion we
find the line segment ON =b on the y
y-axis. The values of @ and b can
be either positive or negative. If the
straight line is parallel to one of the
axes, the corresponding line segment b
does not exist (becomes infinite).

If the straight line passes through
the origin, each line segment dege- 0| a LNAX
nerates into a point (a=b=0). 4

Example .)%ind the line seg-
ments a, b intercepted by the straight Fig. 28
line 3x—2y+-12=0 on the axes.

Solution. Set y=0 and from the equation 3x+ 12=0 find
x=—4. Putting x=0, we get y=6 from —2y+412=0.
Thus, a=—4, b=6.

Example 2/ Find the line segments a and b intercepted on
the axes by the straight line

5y+15=0

Solution. This line is parallel to the axis of abscissas
(Sec. 15). The line segment a is nonexistent (putting y=0,

<
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we get a contradictory relation: 15=0). The segment b is
equal to —3. |

Example 3/ Find the line segments a and b intercepted
on the axes Dy the straight line

Sy—2x=0

Solution. Using the method given here, we find a=0,
b=0. The end of each of the “segments” coincides with its
beginning, which means the line segment has degenerated
into a point. The straight line passes through the origin
(cf. Sec. 14).

Sec. 33 Into:cept Form of the Equatlon
of a Stralght Line

If a straight line intercepts, on the coordinate axes, line
segments a, b (not equal to zero), then it may be given by
the equation

++5=1 )

Conversely, Eq. (1) describes a straight line intercepting
on the axes the line segments a, b (reckoning from the
origin 0).

Equation (1) is the intercept Jorm of the equation of a
straight line.

Example, Find the intercept form of the equation of the
straight line

3x—2y+412=0 2)

Solution. We find a= —4, b=26 (see Sec. 32, Example ).
The intercept form of the equation is

Site=! @

It is equivalent to Eq. (2).

Note | A straight line that intercepts on the axes line
segments equal to zero (that is, such that passes through the
origin: see Example 3 in Sec. 32) cannot be represented by
the intercept form of the equation of a straight line.

Note ?, A straight line parallel to the x-axis (Example 2, Sec. 82)
can be represented by the equation i=l. where b is the y-intercept.
Similarly, a straight line parallel to the y-axis may be given by the
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equation %:l. There is no generally accepted opinion in the litera-
ture as to whether to regard these equations as intercept forms or not. 1)

34, /Transformation of Coordinates
(Statement of the Problem)

One and the same line is described by different equations
in different coordinate systems. Frequently, if we know the
equation of some line in one (“old”) coordinate system, it is

Yy ' W

py
|
]
1
]
1
]

[
] -

Fig. 29 Fig. 30

required to find the equation of the line in another (“new”) sys-
tem. Formulas for the transformation of coordinates serve this
purpose. They establish a relationship between the old and
new coordinates of some point M.

Any new system of rectangular coordinates X‘O’Y’ may
be obtained from any old system XOY (Fig. 29) by means
of two motions: (1) first bring the origin O to coincidence
with O’, holding the directions of the axes unchanged; this

yields an auxiliary system XO’Y (shown dashed); (2) then
rotate the auxiliary system about the point O’ to coincidence
with the new system X'O'Y’.

- These two motions may be executed in reverse order (first
a rotation about O yielding the auxiliary system XQY and
then a translation of the origin to the point O’, which gives
the new system X’0O‘Y’; Fig. 30).

1) The essential thing is that the equation 4;-=1 or —Z— =1 may

be obtained from the equation I 1; however not as a particular
case but by passing to the limit as b or a go to infinity.
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Thus, it is sufficient to know the formulas of coordinate
transformation in translation of the origin (Sec. 35) and ro-
tation of the axes (Sec. 36).

Q!/Trmslatlon of the Origin

Notation (Fig. 31):
¢cld coordinates of point M: x_OP =PM,
new coordinates of point M:x"=0’ P’ y'=P'M;
coordinates of new origin O’ in old

Y W oam system XOY:
~. xo=O0R, y,=RO’
! Translation formulas:
7 P X x=x"+x, Yy=y"+yo ),
, or
of & P x K=x—xo ¥'=y—y (@
Fig. 31 In words, the old coordinate is equal

to the new one combined wilh the coor-
dinate of the new origin (in the old system).l)
Example he coordinate origin is translated to the point
(2, —5). Find the new coordinates of the point M (—3, 4).
Solution. We have

X=2, Yo=—5 x=-3, y=4
Fiom formulas (2) we find
x'=—3—-2=-5, y' =4+5=9
Example g/The equation of some line is
x2+4y?—dx+6y=
What will the equation of the line be after a translation of

the origin to the point 0’ (2, —3)?
Solution. According to formulas (1) we have

x=x'+2 and y=y'—3
Putting these expressions in the given equation, we get
(224 -2 —4 (' +2)+6(y'—3)=36

') When meniorizing the rule, leave out the words in brackets;
they are essentlal but can readily be restored.
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or, after simplifications,
x/2+y/2 ___49

This is the new equation of the line. It will be recalied
(Sec. 38) that this line is a circle of radius R =7 with centre
at 0.

36/ Rotation of the Axes

Notation (Fig. 32):

old coordinates of point M:x=0P, y=PM;
new coordinates of point M:x'=O0P’, y'=P'M;-
angle of rotation of axesV a=/ X0X'=/ YOY"’
Formulas of rotation: 2

x=x'cosa—y’ sina,

y=x'sin a4y’ cosa} ay
or
'=x cosa+ysina, }

'=—xsina-+ycosa (2)/
Example 1, The equation 2xy=49 is a curve consisting of
two branches: LAN and L’A’N’ (Fig. 33). It is called an
equilateral (equiangular) hyperbola. Find the equation of the
curve after a rotation of the axes through an angle of 45°
Solution. For a=45° the formulas (1) take the form
Y3 V3
=X
V2 V2
y=x'5"+V'~5
Substitute these expressions into the given equation. This
yields
V_ V— r ’ ’
IXTE X (¢ —y) () =49

or, after simplifications,
xl! ___yr! — 49

1) See Sec. 14 for the sign of the angle a (first footnote).

t) When memorizing formulas (1) note the lack of order in the
expression for x (cosine in front of sine, minus sign between terms
on the right). On the contrary, there is complete ‘‘order’’ in the
expression for y (first the sine, then the cosine, and a plus sign bet-
ween them).

Formulas (2) are obtained from (1) if one replaces & by —a and
x, y by x’, y’ and vice versa. :
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Example / Prior to a rotation of the axes through an
angle of —20°, the point M had an abscissa x=6 and an
?‘l;dinate y=0. Find the coordinates of M after a rotation of

e axes.

Flg. 82 Fig. 33

Solution. The new coordinates x’, y’ of the point M may
be found from formulas (2), where we have to put x=®6,
y=0, x=0, a=—20° This yields

x’ =6 cos (—20°) = 5.64,
y' =—6 sin (—20°) = 2.05

81 Algebraic Curves and Thelr Order

An equation of the form
Ax+By+C=0 )

where at least one of the quantities A and B is not zero is
an algebraic equation of the first degree (in two unknowns x, y).
It always represents a straight line.

An algebraic equation of the second degree is any equation
of the form

Ax*+ Bxy+Cy?+ Dx+Ey+F=0 @)

where at least one of the quantities A, B, C is nonzero.

An equation that is equivalent to Eq. (2) is also called
algebraic.

Example 1/ The equation y=>5x2, which is equivalent to
the equation 5x2—y =0, is an algebraic equation of the second
degree (A=5, B=0, C=0, D=0, E==1, F=0).



PLANE ANALYTIC GEOMETRY 55

Example 2 The equation xy=1, which is equivalent to
xy—1=0, is an algebraic equation of the second degree
(A=0, B=1, C=0, D=0, E=0, F=—1).

Example 3¢ The equation (x+y+2)2—(x4-y+41)2=0 is
an equation of the first degree since it is equivalent to
2x 4+2y+3=0.

In similar fashion we define algebraic equations of the
third, fourth, fifth, etc. degrees. The quantities A, B, C, D
and so forth (including the absolute term) are called the
coefficients of the algebraic equation.

f some curve L is described in a cartesian coordinate
system by an algebraic equation of the nth degree, then in
any other cartesian system it will be given by an algebraic
equation of the same degree. However, the coefficients (some
or all) of the equation will then change their values; in a
particular case, some of them can vanish.

A curve L given (in a cartesian system) by an nth degree
equation is termed an algebraic curve of the nth order (or of
degree n).

Example 4¢ In a rectangular coordinate system, a straight
line is described by an algebraic equation of the first degree
of the form Ax+4+By+C=0 (Sec. 16). Therefore, a straight
line is a first-order algebraic curve. In different coordinate
systems, the coefficients A, B, C have different values for
one and the same straight line. For instance, in an “old”
system, let a straight line be given by the equation 2x4 3y —
—5=0(A=2, B=3, C=—5). If we rotate the axes through
45°, then (Sec. 36) the same line will, in the “new” system,
be described by the equation

2 (s V) 3 (x oy L) =m0
that is,

sV

V2o, e 5V v
Iy o (4

2
. B==", C=—-5)
Example ?/ If the coordinate origin coincides with the
centre of a circle of radius R =3, the circle is described by
the equation (Sec. 38)x24-y2—9=0. This is an algebraic
equation of the second degree (A=1, B=0, C=1, D=0,
E=0, F=-—9). Hence, a circle is a second-order (quadric)
curve. If the origin is translated to the point (—5, —2), then
in the new system the same circle will be given (Sec. 35) by
the equation (x'—5)24(y’'—2)2—9=0, or x*4y'*—10x’' —
—4y’'—20=0. This is also a second-degree equation; the
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coefficients A, B and C remain the same, but D, E and F
have changed.

Example 6. The curve given by the equation y=sinx
(sine curve) is not algebraic.

38. The Circle

A circle of radius R with centre at the origin of coordi-
nates is given by the equation

x24y?=R?
It states that the square of the distance OA (see Fig. 9, p. 24)
: from the origin to any point A ly-
ing on the circle is equal to R3.
A circle of radius R with centre

at the point C (a, b) is described by
the equation

(x—a)*+(@—b=R* (1)
It states_that the square of the dis-
tance MC (Fig. 34) between the

Fig. 34 points M (x, y) and C(a, b) (Sec.

10) is equal to R2.

Eq. (1) may be rewritten as

x4 y3—2ax—2by + a4+ b2 — R?=0 2)
Eq. (2) may be multiplied by any number A to give
Ax34 Ay®—2Aax—2Aby+ A (a®+b*—R3) =0 3)
Example 1. A circle of radius R =7 with centre at C (4, —6)
is described by the equation
(x—4)2+(y+6)2=49 or x3+y*—8x+412y+43=0C
or (after being multiplied by 3)
3x2 4 3y?—24x+ 36y +9=0
Note. A circle is a second-order (or quadric) curve (Sec. 37)
since it is described by a second-degree equation. However,
an equation of the second degree does not always represent
a circle. For this, it is necessary that
(1) it should not have a term with the product xy;

(2) the coefficients of x2 and 42 should be equal [cf. Eq. (3)).
These conditions however are not quite sufficient (see Sec. 39).
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Example 2. The second-degree equation x2+43xy-4y2=1
is not a circle because it has the term 3xy.

Example 3. The second-degree equation 9x2+44y2=49 is
not a circle because the coefficients of x* and y2 are not equal.

Example 4. The equation

5x2— 10x 4542 4 20y —20 =0

satisfies the conditions (1) and (2). In Sec. 39 it is shown
that this is a circle.

39. Finding the Centre and Radlus of a Clrcle

The equation
Ax*4 Bx+ Ay +Cy+ D=0 )

[which satisfies the conditions (1) and (2), Sec. 38] is a circle
provided that the coefficients A, B, C, D satisfy the inequality

B*4C*—4AD > 0 @

Then the centre (a, b) and the radius R of the circle may be
found from the formulas (which need not be remembered:
see Example 1, second method)
B C B*4C*—4AD
—_— —_—— b P S it
54 b=—a7 R 1AT @
Note. The inequality (2) states that the square of the
radius must be a positive number; cf. the last formula of (3).
If inequality (2) is not fulfilled, then Eq. (1) does not rep-
resent any curve at all (see Example 2, below).
Example 1. The equation

5x2— 10x 4 5y%2+ 20y —20=0 4)

a=

fits (1); here,
A=5 B=-—10, C=20, D=—20

Inequality (2) is fulfilled. Hence, Eq. (4) is a circle. Using
formulas (3), we find

a=1, b=-—2, R2?=9

Thus the centre is (1, —2) and the radius R=3.
Alternative method. Divide Eq (4) by the coefficient of
the second-degree terms (i. e., 5):

x2—2x+y?+4y—4=0
Complete the squares in x2—2x and y%4-4y by adding 1 to
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the first sum and 4 to the second. Add the same numbers
to the right side of the equation by way of compensation.
We then have

#E—2x+ D+ +4y+49)—4=1+4

(x—1)2+(y+2?=9
Example 2. The equation
x2—2x+4y2+42=0 )
fits the case (1), but inequality (2) is not fulfilled. Which
means that Eq. (5) does not describe any curve.

The same conclusion may be arrived at in the following
manner (ck. Example 1):

Complete the square in x2—2x by adding 1; also add 1
to the right side. This yields (x—1)2+42+2=1 or (x—1)2+
+y*=—1. But the sum of the squares of (real) numbers
cannot be equal to a negative number. For this reason there
is no point whose coordinates can satisfy this equation.

or

40. The Ellipse as a Compressed Circls

Through the centre O of a circle of radius a (Fig. 35)
draw two mutually perpendicular diameters A’A, D'D. On the
radii OD, OD’ lay off from O equal line-segments OB, OB’
of length & (less than a). From
each point N of the circle drop a
perpendicular NP onto the diameter
A’A and on this perpendicular lay
off a segment PM from the foot P
so that

PM:PN=b:a (1)

This construction transforms
every point N into a corresponding
point M lying on the same perpen-
dicular NP; PM is obtained from
PN by reduction in the same ratio

_—_%. A transformation of this kind is termed wuniform
compression. The straight line A’A is called the axis of com-
pression.

The line ABA’B’ into which the circle has been transfor-

med by uniform compression is called an ellipse (see Sec. 41
for an alternative definition).

Fig. 35



PLANE ANALYTIC GEOMETRY 59

The line segment A’A=2a (and frequently the straight
line A’A, i. e. the axis of compression) is called the major
axis of the ellipse.

The line segment B’B=2b (and often also the straight line
B’B) is called the minor axis of the ellipse (2a > 2b, by
construction). The point O is the centre of the ellipse. The
points A, A’, B, B’ are termed the verfices of the ellipse.

The ratio k=b:a is called the coefficient of compression of
the ellipse. The quantity l—k=“—;£’ (the ratio BD:0D) is
called the compression of the ellipse and is denoted by a.

An ellipse is symmetric about the major and minor axes
and, hence, about the centre.

A circle may be regarded as an ellipse with a coefficient
of compression k=1.

Standard form of the equation of the ellipse. 1f the axes
of the ellipse are taken as the coordinate axes, then the
ellipse is described by the equation®

x? yt '
=1 (b))

This is the standard (canonical) form of the equation of
the ellipse.

Example 1. A circle of radius a=10 cm is’ subject to
uniform compression with coefficient of compression 3:5.
This produces an ellipse with major axis 2a=20 cm and
minor axis 26=12 cm (semi-axes a=10 cm, b=6 cm). The

compression of the ellipse a=1—k=12"%_0.4. The stan-

10
1 We have
OP* + PN?*=0N?=a? 3)
By (1) we get
PN=—:— PM (4)
Putting this into (3) yields .
op=+-§-,- PMi=at (5)
that is,
PP 6
x +F y*=a (6)

Dividing by a? yields the equivalent equation (2). Thus, if
M (x, ‘2 lies on the ‘ellipse ABA’B’, then x, y satisfy Eq. (2). But
if M does not lie on the ellipse, then equality (4) and, hence,
Eq. (6) are not satisfied (cf. Sec. 7)
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dard form of the equation is then
x2 yi _
oo+ 36 =1
Example 2. In projecting a circle on some plane P, the

diameter A;A, (Fig. 36) parallel to the plane is projected
full size and all the chords per-
pendicular to the diameter are
reduced in a ratio equal to cos @,
where ¢ is the angle between
the plane P, of the circle and
the plane P. For this reason,
the projection of a circle is an
ellipse with major axis 2a=A’'A
and coefficient of compression
k=cos .

Example 3. A terrestrial
meridian is more accurately
taken as an ellipse and not a

Fig. 36 circle. The axis of the earth is

the minor axis of the ellipse. It

has an approximate length of 12,712 km. The length of the

major axis is roughly 12,754 km. Find the coefficient of
compression k£ and the compression a of this ellipse.

Solution.

a-b _2a-2b_ 12,754-12,712 _ (003
= = ~ 0.003,

a 2a 12,754
k=1—a =~ 0.997.

A=

41. An Alternative Definltlon of the Ellipse

Definition. An ellipse is the locus of points (M), the sum
of the distances of which from two given points F’, F
(Fig. 37) is a constant, 2a:
FFM+FM=2 M)
The points F’ and F are called the foci 1 of the ellipse, the
distance F’F is the focal length, denoted by 2c:

FFF=2 @

V) If a light source is placed at F (or F’), the rays of light are
;eﬂected from the ellipse and come together at £’ (or F) (the other
ocus).
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Since F'F < F'M+FM, it follows that 2¢ < 2a, or

c<a 3)
The definition given in this section is equivalent to that

of Sec. 40 [cf. Eq. (7) with Eq. (2), Sec. 40].
Standard form of the equation of the ellipse. Take the
straight line F’F (Fig. 38) as the axis of abscissas and the

Y
M Miz.y)

c
F! o Fj X

Fig. 87 Fig. 38

midpoind O of the line segment F'F as the origin of coordi-
nates. According to the definition of an ellipse and to (1),
Sec. 10, we have F’ (—c¢, 0), F(c, 0). By Sec. 10

VE+eoi+y*+V (c—c)+y2=2a (4)

On elimination of the radicals,? we obtain an equivalent
equation:

(@*—0") B4 alyr=a* (@*—0¥) (®)
or
‘l yl _
sta—a=1 (6)
Because of (3), the quantity a®—c3 is positive. Therefore
we can write (6) as

xl yl
Ste=! @)
where
bd=ad—c? (8)

Eq. (7) coincides with Eq. (2) of Sec. 40, and so the
curve, called an ellipse in this section, is indeed identical
with the curve described as an ellipse in Sec. 40. It then
turns out that the centre O of the ellipse (Fig. 39) coincides
with the midpoint of the line segment F’F, that is, OF =c.
By equality (1), the major axis 2a=A’A of the ellipse turns

1) Transpose one of the radicals to the right side and square.

There will be only one radical in the new ‘equation, Separating it
and again squaring, we simplify to (5).
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out equal to the constant sum of the distances F'"M+4FM
(Fig. 38). The semiminor axis b=0B (Fig. 39) and the line
segment ¢=OF are sides of the right triangle BOF; the
hypotenuse BF of this triangle is a. This is evident from (8)
and also from the fact that the
equal segments F'B and FB add to

Y
2a (by the definition of an ellipse).
7 \ Thus, the distance from a focus to
A ' A_ the end of the minor axis is equal
Fo0 F ] X to the length of the semimajor axis.
: The ratio % of the focal
‘ length to the major axis, i.e. the

Fig-39 quantity %, is called the eccent-

ricity of the ellipse. The eccentricity is denoted by the Greek
letter £ (epsilon):

c
e=— ©)
Because of (3), the eccentricity of an ellipse is less than
unity. By virtue of (8). the eccentricity &€ and the coefficient
of compression & of an ellipse (Sec. 40) are connected by the
relation
k2=1—¢g? (10)

Example. Let the focal length of the ellipse 2c=8cm
and the sum of the distances of an arbitrary point from the
foci be 10 cm. Then the major axis 2a= 10 cm, the eccentri-

city 8=7£ = 0.8. The coefficient of compression % =
= ¥ T—e?=0.6. The minor axis 2b=2ak=2V a®*—c:=6cm.
The standard form of the equation of the ellipse is

xl yl _
w o=
Note. If the circle is regarded as a special kind of ellipse,

b=a, then ¢=0, and the foci F’ and F must be taken to
coincide. The eccentricity of the circle is zero.

42. Construction of an Ellipse from the Axes

First method. On the perpendicular straight lines X'X
and Y'Y (Fig. 40) lay off the line segments O0A'=0A=a
and OB’'=0B=b [halves of the given axes 2a, 2b (a > b)].
The points A’, A, B’, B will be the vertices of the ellipse.
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From point B, strike an arc uv with radius a; it will
intersect the line segment A’A at the points F’, F; these
will be the foci of the ellipse [by (8), Sec. 41]. Divide
A’A=2a into two parts in arbitrary fashion: A’K=r’ and
KA=r, so that r'4r=2a. From the point F draw a circle
of radius r and from F’ a circle of radius r’. These circles
intersect at two points M and M’; by construction, we have
F'M+FM=2a and F'M’'--FM’'=2a. By the definition
given in Sec. 41 the points M and M’ lie on the ellipse.
By varying r we obtain new points of the ellipse.

» Y
M N
u ,:€ \ v o
A\ .-~ N4 A 4
X N K IF X X o ojPf X
B’ M’ Bl
Y Y’
Fig. 40 Fig. 41

Second method. Draw two concentric circles of radius
OA=a and OB=b (Fig. 4l). Through the centre O draw
an arbitrary ray ON. Through the points K and M,, at which
ON meets the two circles, draw straight lines that are
respectively parallel to the axes X’'X, Y'Y. These straight
lines will intersect at the point M. Its ordinate PM (= KD)
is shorter than the ordinate PM, of the point M; which
lies on the circle of radius a; we have PM:PM,=b:a.
Therefore (Sec. 40) the point M lies on the desired ellipse.
Varying the direction of the ray ON, we get new points of
the e llipse.

43. The Hyperbola

Definition. The hyperbola (Fig. 42) is the locus of points
(M) whose distances from two fixed points F’, F have a
constant difference (cf. definition of the ellipse in Sec. 41):

\FFM—FM |=2a (1)
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The points F’ and F are called the foci® of the hyper-
bola, and the distance F'F is the focal length denoted by 2c:
F'F=2 @

Since F'F > |F'M—FM|, it follows that [cf. formula (3),
Sec. 41}
c>a 3)

If M is closer to the focus F’ than to the focus F, i. e. if

Fig. 42 Flg. 43

F'M < FM (Fig. 43), then in place of (1) we can write

FM—F'M=2a (la)
But if M is closer to F than F’, i. e. F'M > FM (Fig. 42),
then we have

FFM—FM=2a (1b)

Those points for which F’M—FM=2a form one branch of
the hyperbola (usually the right
Y branch); those points™ for which
FM—F'M=2a form the other

Mix,y)  branch (the left branch).
c Standard form of the equa-
Fl 0 F X tion of the hyperbola. In Fig.
/ line F'F and for the origin,
the midpoint O of F'F. By (2)
Fig. 44 we have F(c, 0), F'(—¢, 0).
By (1b) and Sec. 10 the right
branch is given by the equation

44, for the x-axis we take the
Virt o+ =V = +4=2 (42)

M 1o light source is placed at onc of the foci, the light rays
reflected from the hyperbola will form a divergent beam with the
centre in the other focus. Cf. footnote on p. 60.
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For the left branch, by (la) and Sec. 10, we have the
equation

VE—'+@ —Vitorfyi=2 (4b)
On elimination of the radicals we get, in both cases,
(a®—c?) x2+a%y?=a? (a*—c?) ®)
or
2 2
Ftasa=! ©

This equation is equivalent to the pair (4a), (4b) and
represents the two branches of the hyperbola at once.
Equation (6) is outwardly the same as the equation of
the ellipse [cf. (6), Sec. 41] but this similarity is deceptive,
for now, due to (3), the quantity a?—c3 is negative, so that
V a*—c? is imaginary. Therefore, denote by b the quantity
+ ¥V c3=a? so that?
b =c3—a? @

Then from (6) we get the standard (canonical) equation
of the hyperbola ’

Gy ol ®

Example. If the magnitude of the difference F'M—FM

is 2a=20 cm and the focal length is 2c=25 cm, then

bl/c’—a’=l2—5 (cm). The standard form of the equation

.oxt y*
of the hyperbola is To6— 225 = I-
T

44. The Shape of the Hyperbola, Its Vertices
and Axes

The hyperbola is symmetric about the point O—the
midpoint of the segment F'F (Fig. 45); it is symmetric about
the straight line F'F and about the straight line Y'Y drawn
through O perpendicular to F’F. The point O is called the

1 The two branches of the hyperbola might be taken as two
curves and not one. But then neither of the curves, separately,
would be a second-degree algebraic equation.

%) See S&c. 46 on the geometrical meaning of the quantity b.
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centre of the hyperbola. The straight line F’F intersects the
hyperbola at two points A(-+a, 0) and A’(—a, 0). These
points are the vertices of the hyperbola. The segment
A’A=2a (and also frequently the straight line A’A) is called
the real (transverse) axis of the hy-
s i je perbola
The straight line Y'Y does not
intersect the hyperbola. Nevertheless,
; it is customary to lay off on this
b line the segments B'O=0B=0b and
call B B=2b (and also Y'Y) the ima-
X olslWr X g:‘)rlzary (conjugate) axis of the hyper-
a.
Since AB®=0A?40B®*=a%+}-b?,
it follows from (7), Sec. 43, that

[3)

rRYar AB=c, i.e. the distance from a vertex

of the hyperbola to the end of the con-

Flig. 45 jugate axis is equal to half the focal
length.

The conjugate axis 2b ma¥ be greater than (Fig. 45), less
than (Fig. 46), or equal to (Fig. 47) the transverse axis 2a.
If the transverse and conjugate axes are equal (a=»5), then
the hyperbola is termed equiangular, equilateral, or rectangular.

s ¥ o

s e 18
Ba X F M o ANF X
8

X7 FJA ol A X
5’ \
Rl lp Ry P
Fig. 46 Flg. 47

The ratio % = — of the focal length to the transverse

axis is called the eccentricity of the hyperbola and is denoted
by e [cf. (9), Sec. 41)). Because of (3), Sec. 43, the eccentri-
city of the hyperbola is greater than unity. The eccentricity

of an equilateral hyperbolais ¥V 2.
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The hyperbola lies completely outside the strip bounded
by the straight lines PQ and RS parallel toY’Y and distant
from Y'Y by OA=A'O=a (Figs. 45, 46, 47). To the right
and left of this strip the hyperbola goes off without bound.

45, Constructlon of a Hyperbola from Its Axes

On the perpendicular straight lines X’X and Y'Y (Fig. 48)
lay off segments 0OA=0A'=a and OB=0B’'=b (semitrans-
verse axes and semiconjugate axes). Then lay off the segments
OF and OF’ equal to AB. The

points F’ and F are foci [according Y y
to (7), Sec. 43]. Take an arbitrary B
point K on the extension of the

segment A’A. From F draw a circle
of radius r=AK. From F’ describe 77 2 ol A IF A X
a circle of radius r'=A'K=2a+r.
These circles will intersect in two

points M, M’; note that by constru- B
ction FFM—FM=2a and F'M'— Y
—FM’=2a. By the definition given Flg. 48

in Sec. 43, the points M and M’ lie )

on the hyperbola. By varying r we get other points on the
“right” branch. Similarly, we can obtain points on the “left”
branch.

46. The Asymptotes of a Hyperbola

For | £} <%, the straight line y=~Fkx (it passes through
the centre O of the hyperbola) intersects the hyperbola in
two points D’, D (Fig. 49) which

Y are symmetric about 0. But if
\ D [k]=-2, then the straight line
» y=kx (E'E in Fig. 50) has no
X' FL-0 X common points with the hyperbola.
' The straight lines y= % x and
Y = —2 x(U'U and V'V in Fig. 51),

Fig. 49

for which |k|= —f—:—, have the fol-

lowing unique property: each line when extended indefini-
tely approaches indefinitely near to the hyperbola.
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More precisely: if the straight line Q’'Q, parallel to the
axis of ordinates, is made to recede to an infinite distance
from the centre O (to the right or to the left), the line
segments QS, Q'S' between the hyperbola and each of the
straight lines U'U, V'V become small without bound.

The straight lines y= -:—x and y=—%x are called the

asymptotes of the hyperbola.

The asymptotes to an equilateral hyperbola are mutually
perpendicular.

The geometrical meaning of the conjugate axis. Through
the vertex A of a hyperbola (Fig. 51) draw a straight line
L’L perpendicular to the transverse axis. Then the segment

L'L (of this straight line) bet-

U Y v ween the asymptotes to the
\ !/ hyperbola is equal to the con-
i jugate axis B’‘B=2b of the

I hyperbola.
A 7 A X
N 47. Conjugate Hyperbolas
% v Two hyperbolas are called

conjugate (Fig. 52) if they have
a common centre O and com-
mon axes, but the transverse
axis of one is the conjugate axis of the other. In Fig. 52,
A’A is the transverse axis of hyperbola / and the conjugate
axis of hyperbola //, B'B is the transverse axis of hyperbola
11 and the conjugate axis of hyperbola /.

Fig. 52

1) Asymptote is from the Greek meaning “not meeting.”
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=1

2%
s

is the equation of one of the conjugate hyperbolas, then the
other one is given by the equation
2 2
=1
Conjugate hyperbolas have common asymptotes (U’U and
V'V in Fig. 52).

48. The Parabola

Definition. The parabola (Fig. 53) is the locus of points
(M) equidistant from a given point F and a given straight

line PQ:
FM=KM 1)

The point F is called the focus,!) and the straight line
PQ the directrix of the parabola. The distance FC=p from
the focus to the directrix is the para- ol
meter of the parabola.

For the coordinate origin, take D M /
the midpoint O of the line FC so that X

CO=0F= % P)

The straight line CF will be the axis
of abscissas and the positive direction
will be from O to F.

We then have: F (%. 0), KM=

P ly"
= KD+DM= £ +x and (Sec. 10) Fig. 63

FM=‘/I(%—x )’—i—-y’. Because of (1), we have

V(%—x)’+y==%+x @

1) After reflection from a parabola, a parallel beam of rays per-
pendicular to the directrix will become a central beam with centre
in the focus. Sce footnote on p. 60.
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On elimination of the radical sign, we get the equivalent

equation
y*=2px 4)

This is the standard canonical equation of the parabola.
The equation of the directrix PQ (in the same system of

coordinates) is x + 5 =0.

The parabola is symmetric about the straight line FC
(the x-axis in our coordinate system). This line is termed
the axis of the parabola. The parabola passes through the
midpoint O of the segment FC. The point O is called the
vertex of the parabola (which we took for the coordinate
origin). .

The parabola lies entirely on one side of the straight
]Lne Y':]’ (tangent at the vertex) and goes off to infinity on
that side.

49, Construction of a Parabola from a Glven Parameter p

In Fig. 54, draw a straight line PQ (the directrix) and

at a given distance p=CF from it take a point F (the focus).
The midpoint O of CF will be the

a S vertex and the straight line CF will
be the axis of the parabola. On the ray

K M OF take an arbitrary point R and
through it draw a straight line RS
perpendicular to the axis. From the
focus F as centre describe a circle of

cloF y radius CR. It will intersect RS in two
M

points M and M’. M and M’ belong
to the sought-for parabola, since it is

A given (see definition, Sec. 48) that
p FM=CR=KM. By varying the posi-
tion of the point R we obtain other

Fig. 54 points of the parabola.

50. The Parabola as the Graph of the Equation
y=axt4bx+c
' The equation
x2=2py (0))

represents the same parabola as the equation y% = 2px (cf. Sec. 48),
only in this case the axis of the parabola coincides with the
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axis of ordinates; the origin, as before, coincides with the
vertex of the parabola (Fig. 55). The focus lies in the point

F(O. %) The directrix PQ is given by the equation
y+ 5 =0.

\4

/71

Fig. 65 Fig. 56

Q

If for the positive direction of the y-axis we take the
direction FO (Fig. 56) instead ot OF, then the equation of
the parabola wili be v

—x2=2py (2)

3
(see Fig. 56, where the \ \ [ /
coordinate axes dhave \ N
the customary direc- F] o
tions). Accordingly, the \ \ ~‘Ia'/ 4’/ /
graphs of the functions \

y=ax @) N ' 4'1]2
are parabolas which \ 7 }
are concave up when 3 = 7
a > 0 and concave down /]
when a < 0. The smal-
ler the absolute value

of a (in Fig. 57 we Z N _‘—\\
have a=2, a=4+ 1, / \
a=% ¢, a=g )the | | \
closer the focus to the /
vertex and the more

spread out the para-
bola is. Flg. 57

N
Nt

-3
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Graphically, any equation

y=axt+bxtc @

is depicted by the same parabola as the equation y=ax?

(for both parabolas the distance % from the vertex to the
y focus is equal to ﬁ)

Both are concave in the same

\

—— 1 b X

Fig. 68 Fig. 59

direction. But the vertex of parabola (4) lies in point A (Fig. 58)
with coordinates

xp=0P=— 3, ys=PA= 222 6)
and not at the origin.
Example. The equation
y=—%x’+ %—x— % (4a)

——1 p—_3 | ;
(a— ik b - c _2_) (Fig. 59) represents the same

parabola as the equation y=-—-i—x’. The vertex lies in
point A with coordinates
b 3 4ac- bt 1
i e e (5a)
The focus is located below the vertex at a distance
p___1. _
T=Ta !
Consequently, the coordinates of the focus are
3 15

1
F=g.dr=1—l=—15



PLANE ANALYTIC GEOMETRY 73

Note 1. The formulas (5) need not be memorized. The
following device may be used to compute x4, y,4. Rewrite
equation (4a) as

1 1
y+ 5 =— (@3 ®)
Complete the square in the brackets by adding %. To
compensate, add —-—:—- -—3- =—l—96 to the left-hand side.
This yields
1 1 3\8
y—ﬁ=—7("—‘z‘) ™
Eq. (7) takes the form
’ l ’
y=—7x1 ®)
if we perform a translation of the axes Y
(Sec. 35):
V=y—15. ¥ =r—7 ©
The vertex of the parabola (i. e., -
the point x' =0, y’' =0) has the coordi- A\F
3 1 i
nates x= —, y= 1z . 0 X
Note 2. The general formulas (5) may

be derived from (4) b{ the same technique as
was used in Note | with respect to Eq. (4a). Fig. 60
Note 3. The equation x=ay’+by+c s o b
4ac~

a parabola (Fig. 60) with vertex at the point (T © = 3

its axis is parallel to the x-axis; it is concave to the right if a > 0
and to the left if a < 0.

51. The Directrices of the Ellipse
and of the Hyperbola

(a) Directrices of the ellipse. Let there Le given an ellipse
g;ig. 61) with major axis A’A=2a and eccentricity (Sec. 41)
A== =¢ Let e#0 (i. e, the ellipse is not a circle).
On the major axis, lay off from the centre O of the ellipse
the segments OD=0D’ equal to % (i.e. OD:0A=0A:OF).

The straight lines PQ, P’Q’, which pass through D and D',
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respectively, and are parallel to the minor axis, are called
the directrices of the ellipse.

With each of the directrices we associate the focus of the
ellipse which lies on that side of the centre; for example,
focus F is associated with directrix PQ, focus F’ with di-
rectrix P’'Q’. Then, for any point M of the ellipse the ratio
of its distance from the focus to the distance from the cor-
responding directrix is equal to the eccentricity e:

MF:MK=MF':MK'=¢ 1)

Since for the ellipse € < 1, any point of the ellipse is closer
to a focus than to the corresponding directrix.

N 1 a a

K K
f /\ ) //

P’ P D’
Fig. 61 Fig. 62

bS] X
S
/&
b3

If the major axis of an ellipse remains the same and the
eccentricity tends to zero (i. e. the ellipse differs from a circle
less and less), the directrices move off an infinite distance
from the centre.

The circle has no directrices.

(b) Directrices of the hyperbola. Let A’A (Fig. 62) be the

transverse (real) axis of a hyperbola and let 8=-(T’;=Z—be
its eccentricity (Sec. 44). Lay off

,__a
0OD=0D ==

(i.e. OD:0A=0A:0F). The straight lines’ PQ, P’Q’ that
pass through D and D’ respectively and are parallel to the
conjugate axis are called directrices of the hyperbola. For any
point M of a hyperbola the ratio of the distance of M to a
focus to the distance to the corresponding directrix [see
Item (a)] is equal to the eccentricity, or
MF:MK=MF':MK'=¢e )

Since £ > 1 for a hyperbola, any point of a hyperbola is clo-
ser to a directrix than to the associated focus.



PLANE ANALYTIC GEOMETRY 75

82. A General Definition of ths Ellipse, Hyperbola and Parabola

All ellipses (except circles), hyperbolas and parabolas have the
property that for each of them the following ratio is invariant

(Fig. 63):
FM:MK (1)

where FM is the distance from an arbitrary point M to a given point
F (focus), and MK is the distance of M to a given straight line PQ
(directrix).

Q
X M
c A\IFJA"
—] R
cp F p
Fig. 63 Fig. 64

For the ellipse (Fig. 64) this ratio is less than unity (it is equal
to the eccentricity of the ellipse £ . cf. Secs. 41, 51) For the hyper-
bola (Fig. 65) it is greater than uanity (it is equal to the eccentricity
of the hyperbola %; cf. Secs. 43, 51);

for the parabola (Fig. 66) it'is unity
(Sec. 48.). X
2 R
K—%% _
R cl A\ |F
A
F/A CI\F
/ ;\ ’
P P
Fig. 65 Fig. 66

Conversely, every line having the indicated property is either an
ellipse (if FM:MK <'1), or a hyperbola (if FM:MK > 1), or a para-
bola (if FM:MK=1). Therefore, this property may be taken as the
general definition of an ellipse, hyperbola, and parabola, and the
invariant ratio FM:MK=e is called the eccentricity. The eccentricity
of the parabola is equal to unity, that of the ellipse e <1, that of
the hyperbola e > 1.

By specifying the eccentricity e and the distance FC=d from a
focus to its directrix we full( define the size and shape of an ellipse,
hyperbola and parabola. If for a given & we vary d, then all the cur-
ves will be similar.



76 HIGHER MATHEMATICS

The chord RR’ of an ellipse, hyperbola or parabola (Figs. 64,
65, 66) passing through a focus F Eerpendlcular to the axis FC is
called a latus rectum and is denoted by 2p:

RR'=2p 2)

The c\uantny p=FR=FR’ %i.e. half the length of the latus rectum)
is called the parameter of the ellipse, hyperbola or parabola. It is
connected with d by the relation

p=de (3)

so that for the parabola (e=1)
p=d (33)
The vertices of ellipse, hyperbola and parabola (A in Figs. 64,
65, 66) divide the segment FC in the ratio FA:AC=e. The second

vertex of the ellipse and hyperbola (A’ in Figs. 64, 65) divides FC
in the same ratio externally (Sec. 11).

ky
-

xelal r X
X

Fig. 67 Fig. 68

In accordance with this new definition, the ellipse, hyperbola and
parabola are represented by a single equation. Taking the vertex A
(Fig. 67) for the origin and letting the ray AF be the axis, this
equation takes the form

y*=2px—(1-g?) x? 4)

where p is the parameter and e the eccentricity.

Near a vertex, the parabola even in shape differs but little from
an ellipse and a hyperbola with eccentricity close to unity. Fig. 68
depicts an ellipse with eccentricity e=0.9, a hyperbola?!) with eccen-
tricity e=1.1 and a Xarabola (e=1) all having a common focus F
and a common vertex A.

The semiaxes a, b and the semifocal length ¢ of the ellipse and
hyperbola are expressed in terms of e as follows:

1) The closer & is to unity, the farther the second vertex of the
ellipse and hyperbola (and also the entire second branch of the hyper-
bola) is from the first vertex.
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p P e
Ellipse a=1"5 szl—ez c=ae=p 1
P __» ey &
Hyperbola a=g_7 b_l7e'_-l' c=ae=p Ty

In all three cases, the distance §=AF from focus F to vertex 4
is expressed by the formula

de p
b= e=T+e ©)

53. Conlc Sectlons
The ellipse, hyperbola and parabola are called conic sections (co-
nics) since they are obtainable on the surface of a circular cone (also

on the surface of a noncircular
cone) at the Intersection with a

plane P that does not pass thro-
ugh the vertex of the cone. The
Q

Fig. 69

2

Fig. 70
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surface of the cone is visualized as extending indefinitely from the
vertex in both directions.

If the Elane P is not parallel to any generatrix of the cone
(Fig. 69), the conic section is an ellipse. 1)

If the plane P is parallel to only one of the generatrices of the
cone (KK’ in Fig. 70), then the conic section is a parabola.

If the plane P is parallel to two generatrices of the cone ( KK’ and
LL’ in Fig. 71), then the conic section is a hyperbola.

Fig. 72 Fig. 73

If P passes through the vertex of the cone, then in place of an
ellipse we get a point, in place of a hyperbola we have a pair of
intersecting straight lines (Fig. 72), and in place of a parabola, the
straight line of tangency of plane P to the cone (Fig. 73). This line
may be regarded as two lines merged into one.

64. The Diameters of a Conic Sectlon

The midpoints of parallel chords of any conic section lie on a
single straight line called the diameter of the conic. To every di-
rection of the parallel chords there corresponds a diameter (corzluﬁatc
to the given direction). Fig. 74 depicts one of the diameters U’U of

D The ellipse can also be a circle. On a circular cone, circular
sections are formed only by planes parallel to the base, whereas a
noncircular cone has in addition a famlly of circular sections.
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an ellipse. On it lie the midpoints K,, K4, ... of the parallel chords
M,M:.' M,M;. ... . The locus of these midpoints is the segment L‘L
of the diameter U’U.

Fig. 75 shows a diameter U’U of a hyperbola corresponding to
parallel chords M.M:. M,M;. etc. It contains the midpoints K, K,, ...

of these chords The locus of the points Ky, K;, ... is a pair of rays
L'U’ and LU. P v P Y

Fig. 74 Fig. 75

Note. In elementary geometry the diameter of a circle is a line

segment (the largest chord). In analytic geometry, the term “diame-
ter” is also sometimes used to denote the segment LL’ (Figs. 74, 75).

lllt Isurgore usual, however, to use this term to denote the entire
ne ‘.

85. The Diameters of an Elllpse

All the diameters of an ellipse pass through its centre.

The diameter corresponding to chords parallel to the mingr axis is
the major axis (Fig. 76). The diameter corresponding to chords pa-
rallel to the major axis is the minor axis.

To chords with slope k(k =0) there corresponds a diameter
y=hkyx, where k, is determined from the relation

kky=et=~1 (1)
i.e be
kky= -5 (1a)
Example 1. The diameter U’U of the ellipse
xt
I

(Fig. 77), which corresponds to chords with slope A= -%. is glven
by the equation y=*k,x; the value of &, is found from the relation

r k1=~ 50 that the equation of the diameter U'U is
1
y-_-?x
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Example 2. The dlameter V'V (Fig. 77) of the same ellipse, which

corresponds to chords with slope k=-;—. is given by the equation

=——X.

If the diameter U’U of the ellipse bisects the chords which are
parallel to the diameter V’V, then the diameter V'V always blisects the
chords parallel to the diameter U’U.

g

Ly
NILTINZ

Fig. 76

X

E 8 . x* Yy
xample 3. The diameter y=—?x of the ellipse —9—+T=l

(cf. Examples 1 and 2) bisects the chords parallel to the diameter

!
y=-7;- x. In turn, the diameter y=—5x bisects the chords parallel to

the diameter y=—% x.

Diameters such that each one bisects the chords parallel to the
other one are called conjugate diameters.

Two diameters conjugate to one another and mutually perpendicu-
lar are termed principal diameters. In the circle, any dlameter is the
principal diameter. The ellipse which differs from a circle has only
one pair of principal diameters: the major axis and minor axis.

The slopes of the nonprincipal conjugate directions have [in accor-
dance with .(la)] opposite signs; i.e. two conjugate diameters of an
ellipse belong to different pairs of vertical angles formed by the axes
(in Fig. 77, the diameter V’V lies in the second and fourth quadrants,
while U’U lies in the first and third quadrants). The diameter U’U
and the conjugate diameter V'V rotate in the same sense.

56. The Dlameters of a Hyperbola

All the diameters of a hyperbola pass through its centre.

The diameter corresponding to chords parallel to the conjugate
axis (Fig. 78) is the transverse axis (the locus of midpoints of chords
is the pair of rays A’X’ and AX); the diameter corresponding to
chords parallel to the transverse axis (Fig. 79) is the conjugate axis
(the midpoints of chords fill the Y'Y axis completely),
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\Y
Y \ 7/
X’ Al 0 A X X —0—/4 X
Y’ s Y »
Fig. 78 Fig. 79

As in the case of the ellipse, in the case of the hyperbola the
slope k of parallel chords (k = 0) and the slope k, of the corresponding
diameter are connected by the relation

kky=e'—1 1)
However, the relation (1a), Sec. 55, is replaced by the relation
bl
kky= +a—. (lb)
x? y!
Example 1. The diameter U’U of the hyperbola T_T=l

(Fig. 80), which corresponds to chords with slope k=lg—°. is given by

the equation y=k,x; the value of
ky is determined from the rela-

tion kk.:%, so that the equa-
tlon2 of the diameter U’U s
Se—X.

Example 2. The diameter V'V
(Fig. 80) of the same hyperbola,
corresponding to chords with slope

k=T' is given by the equa-

tion y=l—9 X.

If the diameter U’U bisects
chords parallel to the diameter V'V, then V'V will always bisect
chords parallel to U’U. Two such diameters are termed conjugate.

Each hyperbola has only one pair of principal (i.e. conjugate and
mtituallly perpendicular) diameters: the transverse axis and the conju-
gate axis.

1f the slope of the parallel chords is greater in absolute value than
the slope of the asymptote, i.e.

Fig. 80

llzl>£
a
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see Example |, where %:% , then the locus of the midpoints

of the chords is a pair of rays (L'U’ and LU). But if

b
k<

(see Example 2), then the midpoints of the chords fill the diameter
(V’V in Fig. 80) completeln. Ol two conjugate diameters, one always
belongs to the first type, the other to the second.

Note 1. The slope of parallel chords cannot be equal, in absolute
value, to = for the stralght lines y=+ ;—x(asymptotes)do not in-
tersect the hyperbola, and the straight lines parallel to the asymptote
intersect the hyperbola at only one point.

According to (1b), the slopes of the nonprincipal conjugate direc-
tions have the same signs; i. e. fwo conjugate diameters of a hyper-
bola belong to one and the same pair of vertical angles formed by the
axes.

Contrariwise, with respect to asymptotes, two conjugate diame-
ters belong to different pairs of vertical angles.

Note 2. When the diameter U’U of a hyperbola is rotated, the
conjugate diameter V’V rotates in the opposite sense. When, in the
process, U’U approaches one of the asymptotes without bound, V'V
unboundedly approaches the same asymptote. We therefore say that
an asymptote is a diameter conjugate to itself. This statement is,
strictly speaking, not true because an asymptote is not a diameter
(cf. Note 1). Aside from  the asymptotes, any straight line passing
through the centre of the hyperbola is one of its diameters.

67. The Diameters of a Parabola

All the diameters of a parabola are parallel to its axis; see Figs.
81 and 82 (the locus of midpoints of parallel chords af the parabola is
the ray LU).

Fig. 81 Flg. 82

The diameter corresponding to chords perpendicular to the axis of
the parabola is the axis itself (Fig. 83).
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The diameter of the parabola y*=2px, which corresponds to chords
with slope & (k 5= 0), is given by the equation

p

(the greater the inclination of the chord to the axis, the farther is the
diameter from the axis). !)

Example. The diameter of the parabola y*=2px, which corresponds
to chords inclined to the axis at an angle of +45° (k=1) is given by
the equation y=p; in other words, its distance from the axis AX

%

Fig. 83 Flg. 84

(Fig. 84) is equal to half the latus rectum FR (Sec. 52). This means
the diameter cuts the parabola at the point R above the focus F.

All straight lines parallel to some diameter of a parabola cut the
parabola at only one point. That is why the parabola does not have
conjugate diameters.

88. Second-Order Curves (Quadric Curves)

The ellipse- (the circle, as a special case), the hyperbola,
and the parabola are second-order (or quadric) curves; i. e.
in any system of cartesian coordinates they are defined by
second-degree equations. However, not every second-degree
equation represents one of these curves. It may happen that an
(]equation of the second degree represents a pair of straight
ines.

Example 1. The equation

4x3 — 92 =0 )

!) The slope of any diameter of a parabola is zero, i. e. it satis-
fies the equation kk,=ge?~1, which holds (Secs. 55, 56) for the ellipse
and the hyperbola (}or the parabola e=1).
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which decomposes into twa equations 2x — 3y=0 and 2x + 3y=0,
represents a pair of straight lines which intersect at the origin.
Example 2. The equation

x2— 2xy+y*—9=0 2)
which decomposes into the equations x—y+43=0 and x —

— y—3=0, represents a pair of parallel straight lines.

Example 8. The equation

X} — 2xy+y2=0 (3)

or (x—y)*=0, represents a single straight line x—y=0; but
since the binomial x—y enters into the left-hand side of (3)
twice as a factor, we can take it that (3) represents two co-
incident straight lines.

An equation of the second degree can also represent a
single point.

Example 4. The equation

x’+—i—y’=0 @)

has only one real solution, namely x=0, y=0, which repre-
sents the point (0, 0). Incidentally, (4) can be decomposed
into two equations x+%¢‘y=0, x—%iy:O with imaginary
coefficients. For this reason, (4) is said to represent a pair
of imaginary straight lines intersecting in a real point.

Finally, it can happen that an equation of the second
degree does not represent any locus at all.

Example 5. The equation

x3 vy
=t =! ()
does not represent either a line or a point because the qu-

1]
antity :—"%—}--_—”,—6- cannot have a positive value. However, be-

cause of the external similarity between (5) and the equation
of the ellipse, equation (5) is said to represent an imaginary
ellipse.

Example 6. The equation

x¥—2xy+y*+9=0 (6)
likewise fails to represent either a curveor a point. But since
it decomposes into the equations x —y+3i =0 and x—y— 3i=0,

we say (cf. Example 2) that (6) represents a pair of imagi-
nary parallel straight lines.
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Conic sections and pairs of straight lines exhaust all the
curves that can be defined by second-degree equations in a
cartesign system of ccordinates. Thus, the following theorem
is valid.

Theorem. Any curve of the second order (quadric curve) is
either an ellipse, a hyperbola, a parabola or a pair of straight
lines (intersecting, parallel or coincident).

Plan of proof. By means of a transformation of coordina-
tes, the given second-degree equation is reduced to a simpler
form. We then either obtain one of the canonical (standard)
equations

: ] 2
‘5—,—+§7=il (ellipse, real or imaginary),
x!
at
or we find that the second-degree equation may be decompo-
sed into two first-degree equations. At the same time we find
the dimensions of the second-order curve and its position
relative to the original system of coordinates (for example,
fot an ellipse, the lengths of the axes, their equations, the
position of the centre, etc.).
These transformations are given in full in Secs. 61 and 62.

—g—:=l (hyperbola), y*=2px (parabola)

59. General Second-Degree Equation

The general equation of the second degree is usually writ-
ten as
Ax3+2Bxy -+ Cy*+2Dx+2Ey+ F=0 )

The designations 2B, 2D, 2E (instead of B, D, E) are intro-

duced because many formulas employ half-coefficients of xy, of

x and of y. This notation dispenses with fractional expressions.
Example 1. For the equation

2+ xy—2y2+2x+4y+4=0
we have

A=1, B=y, C=—2, D=1, E=2, F=¢
Example 2. For the equation 2xy+4-x-45=0 we have
A=0, B=l, C=0, D=, E=0, F=5
Note. The quantities A, B, C, D, E, F may take on any

values so long as A, B, C are not all equal to zero at once,
for then (1) would be an equation of the first degree.
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60. Simplifying a Second-Degree Equation,
General Remarks

Transformation of the second-degree equation
Ax2+ 2Bxy+Cy%+2Dx+2Ey+ F=0 (1))

to one of the elementary forms (see Sec. 58) will be done as
follows 1):

(a) Preliminary transformation. In this way we eliminate
the term containing a product of the coordinates (this is
achieved by rotating the axes; see Sec. 61).

(b) Final transformation. Here we get rid of terms contai-
ning first degrees of the coordinates (this is attained by a
translation of the origin; see Sec. 62).

61. Preliminary Transformation
of a Second-Degree Equation

(If B=0, this transformation becomes unnecessary.)
Turn the coordinate axis through an angle @ which satis-
fies the condition

2B
tan 2a=7Z3_"¢ 2)

The transformation formulas will be (Sec. 36)
x=x'cosa—y’'sina, y=x'sina+y cosa (&)

The terms involving x’y’ cancel out, ® and the new equation
takes the form

Alxll+clyl’+2Dlxl+2Elyl+Fl=0 (4)
Example 1. Given the equation
2x2 —4xy 4 5y2—x+5y—4 =0 (1a)

1) The method presented here is not the fastest, but it has the
advantage of not requiring any auxiliary theorems. A faster method
is given in Secs. 69 and 70

2b
t) If A=C ( the quantity ﬂbecomes lnfmlte). then (see

Sec. 21, Note) 2a=4 90°, or a=+45°.
%) The coefficient of x’y’ is of the form

2B'=(C-A) 2 sina cosx+2B (cos* a-sin? @)=
=(C—- A) sin 2a+ 2B cos 2
This coefficient is equal to zero by virtue of (2).
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Here, A=2, B=—-2, C=5, D-——"—‘;—. E=‘%', F=—4
From Condition (2) we find
tan 2a=-:—;=% (2a)

If the angle 2a is taken in the first quadrant (2o = 53°8',
a ~ 26°34’), we obtain

cos 2o = !

Vi+tan® 2a

Formulas (3) take the form

2 , 1,
x-——sx ?y,

2, (3a)
Y=y Xty

Putting this into (la), we get a new equation:

2 2 i ’ L el —
x'* 46y +V5_x +V5— 4 =0 (4a)
where
i i i __3 s 11 i
A'=1, B'=0, C'=6, D e’ E Pk F'=—4

If an angle 2a is taken in the third quadrant (2a ~ 233°8’,
a ~ 116°34’) then we: get in similar fashion the equation

where
' ' . 0 11 3 v
A’'=6, B'=0, C'=1, D _21’5"'5 _—QVE"F 4
Example 2. Given the equation
B+ 20y +y34-2x+y=0 (1b)
Here

A=\, B=1,C=1,D=1, E=+, F=0
Since A=C, it follows (see footnote No. 2 on page 86) that
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we can take a=45°. Substituting into (1b) the expressions

x=2x’ cos 45°— y’ sin 45° = 7'2__ x'—y"),

! o3 Cl ’ o l ’ ’ (3b)
y=1x'sin 45° 4y’ cos 45 =ﬁ(" +vy') -
we find
2x”+—x ——y '=0 (4b)
Here
A'=2 B'=0, C'=0, D'= JE=——1_ F=0
V2 2V2
If we take o= —45°, then we get
2y"+——x +——y =0 (4b")
Here
A'=0, B'=0,.C’'=2, D'= V—'E 2V_,F_0
Example 3. Given the equation
2x2 —4xy+2y2 4 8x—8y—17=0 (Ic)

Since A=C, it follows that we can take a=45°. Substitu-
ting into (Ic) the expressions (3b), we find

4y 8y 2y’ —17=0 (4c)
Taking o= —45°, we get
4x248Y 2x' —17=0 (4c’)

62. Final Transformation
of a Second-Degree Equation

One has to distinguish two cases:
(1) not one of the coefficients A’, C’ in the equation
A'x'34+C'y'34-2D'x'+2E'y’'+ F' =0 4)
is zero (as the case in Example 1

(2) one of the coefficients A) C’ is zero (as in Examp-
les 2 and 3).V

1) The coefficilents A’ and C’ cannot both be zero, otherwise Eq.
(4) would be of degree one.
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Case 1. The equation
A'x'2+C'y'2+4+2D'x'+2E'y' + F'=0 4)

is transformed as follows: adjoin the term % to the sum
o 1o ’ ’e D, . ’ ’ D
A'x?42D'x' = A (x2+27,x ) to yield A (x +W)’;
adjoin the term -Ea.,—’ to the sum C'y’?242E’y’ to yield
c’ (y'+%)’. To compensate, add D—';:-—}-E?','- to the right-
hand side of (4). The result is an equation of the form

a(2+5) +0 (v+5) =K 5)
where ) ,
K=Gr s

Carry the origin to the point (—2—/,-. —FC—', , which amounts

to transforming the coordinates (Sec. 35) by the formulas
' D - E

x'=x_—7. y’=y—? (6)
This yields the equation
A4 C'y?=K (A’ #0, C’' £0) )
If K’ #0, then we divide the equation by K’ to get
Ft =1 ®)
a c
(a) If both quantities l—;—: , IC—(— are positive, we have an
ellipse. o
(b) 1f both quantities %. 'CL are negative, we have an

imaginary ellipse (cf. Example 5, Sec. 58).
(c) If one of the quantities (which one is immaterial) is
positive and the other negative, then we have a hyperbola.
But if K’=0, then equation (7) is of the form

Ax24C'y2=0 7

Two cases are possible:
(d) 1f A’ :nd C’ have different signs, then A’x24C’y?
may be decomposed into first-degree (linear) factors as a di-
flerence of squares. The coefficients of both factors are real
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and we have a pair of intersecting straight lines (cf. Examp-
le 1, Sec. 58).

(e) If A’ and C’ have the same sign, then A'x24-C’y?
also decomposes into linear factors, but both factors contain
terms involving imaginary coefficients and we have a pair of
imaginary intersecting straight lines, i.e. a single real point
(cf. Example 4, Sec. 58).

Example 1. After rotation of the axes, Eq. (1a) of Examp-
le 1, Sec. 61, was brought to the form

"+6y"+——-x +—=y'—4=0 (4a)

Vs—

This equatidn can be written as

() o () =)

1 \2
6
+6 (o7 )+ (5a)
or i
, 3 \2 2__131
(x+2V5_) +6 (y+12V5 ) T2
Going over to the new system with origin at the point
3 11 .
( = 12V5_) , via the formulas
. 3 P |
x s YTV T s (62)
we have
= | fg_ 131
2+ 6yt = (7a)
or '
xt 7
NETRRAF TRl (8a)
2% 144

The equation under study represents an ellipse with semiaxes
a_]/l"“ ~ 2.3, b=]/-:T-3: ~ 1.0. In Fig. 85 (where OE is
the scale unit) a=0’A, b=0’'B

The centre of the elllpse is at the point 0’ with coordi-

nates x=0, y=0. Using formulas (6a) we find the coordi-
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Fig. 85

nates of the centre in the intermediate system X'OY’:
'—-— — 3 N
x'= e~ 0.7,
, 11

=——L ~_ 04

12V5

x"——-OP’, yl=PIOI

Using formulas (3a), Sec. 61, we find the coordinates of the
centre of the original system XOY:

2 3 1 n \__5
en=p5 (~wr) v (Tww) = e 04
1 3 2 n_oN\N__ 2
v =35 (— w7 ) tve (—Twve) = —F 207
In Fig. 85, Xcen=O0P, Ycen=PO’.
Let us find the equations of the axes of the ellipse in the
original system. In the system XO'Y the major axis is rep-

resented by the equation y=0, in the system X’OY’ the
same axis [by virtue of the second equation in (6a)] is given

by the equation y'= —

In Fig. 85,

12Vs
Solving the system (3a) for x’, y’, we find
=2 x4
¥=ygrrtyE
=2 4L
VY=ys ¥ v *
We only need the latter of these equations; putting y’'=—
l;}:? in it we get the equation of the major axis in the
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system XOY; namely,
2yl M
M T
or
12x—24y —11=0
In the same way we find the equation of the minor axis:
4x+2y+3=0
Case 2. One of the coefficients A’, C’ is zero. Eq. (4) is
of the form
A'x'*4-2D'x' +2E'y’'+ F'=0 )
C'y'*+2D'x' +2E'y'+ F'=0 )
Let us consider an equation of the type (9) [for equations
of type (9’) the calculations are the same but x’ and y’ are
interchanged].

(a) If E'#0, then Eq. (9) may be solved for y’; this
yields

or S

A

D’ , F’
V==

Iz__ — ——
Yi—FX T

(10)

We have a parabola. The coordinates of the vertex are de-
fined by the formula (5), Sec. 50, for

A D P
@=—gF V=—F C=73F
(b) If E’=0, then Eq. (9) is of the form
A'x'?4-2D'x' 4+ F' =0 (11)

Factoring the left-hand side of (11) into linear factors, we get!)

2 II ’, ’
A,(x, VD —AF" F D)( VD=-AF+D) o

Al
(12)
For D'*—A’'F’ > 0, Eq. (12 [and hence, (11)] represents a
pair of parallel lines, for D’*—A’F’ < 0, a pair of imaginary

parallel lines, and for D"*— A’ F'——O two coincident straight
lines (Sec. 58, Examples 2, 6, 3).

VD -A'F’ - and 'VD”-A’F‘—D’

!) The quantities VY Yy

are
roots of Eq. (11).
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Example 2. After a rotation of the axes through an angle
of 45°, Eq. (Ib), Example 2, Sec. 61 was transformed to

U —— ' ———y' =0 4b
+V2 V Yy (4b)

Solving for y’, we get
y =2V 2¢+43x' (10b)

Equation (10b) [and, hence, (lb) as well] represents a parabola
(Fig. 86); the coordinates x’,

y' of its vertex A are found \)\{ Y
from formulas (5), Sec. 50: AN VA
\ * / *

, 3 N\ /
xA = — m ~—0 5, \ N \
, 9 \ \\ o 4 2
Y S
The coordinates of the / ™

vertex may be found without

resorting to formulas (5), Sec. Flg. 86

50 (see Sec. 50, Note 1).
sing formulas (3b), Sec. 61, we find the coordinates of
the vertex in the original system:

2 2 3 9 3
xA'=K2—(x'—yl)=VT<— § 8V2>=l—6z0.2,
Ve, ,_V‘2( 3 9 )
Yya=—5— ¥ +y)="5— T3 8V =
15

Let us find the equation of the axis AU of the parabola. In
the new system, this axis is given by the equation

i 3
X -——m-

Solving Eq. (3b) for x’, y’, we find
x’=£2(x+y).

y =Q( —x)
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Substituting x’=-—ﬁ- into the first equation (the second

one is not needed), we obtain

3__V?
or
4x+4y+3=0

This is the equation of the axis of the parabola in the ori-
ginal system.
Example 3. After a rotation of the axes through —45°, Eq.
(1c) of Example 3, Sec. 61, was transformed to
T 448V 2x—17=0 (4c’)
Factoring the left-hand side of Eq. (4c’), we get

4(::'—5’;2:)1/—5) (x’-{—ii—z—]/—?):O (12¢)

2
That is, we have a pair of parallel lines (UV and U'V’ in
Fig. 87):
P82V

5+2V 2
—her s (13)

Let us find the equations of the-
se lines in the XOY system.
Since the XOY system is obtai-
ned from X‘OY’ by a rotation
through - 45°, it follows that

—5 (=), w=zfu+w (14)

Substituting, into the first of these equations, first one and
then the other value of (13), we find

5— 2V2_V2
_5+2V2_Z}
22

(x—y)

*x—y)
or



PLANE ANALYTIC GEOMETRY 95

V 2x—V 2y—54+2V 2=0,
Vox—V 2y+5+2V 2=0

These are equations of the straight lines UV, U’V’ in the
original system.

63. Techniques to Facllitate Simplification
of a Second-Degree Equation

The method of simplifying second-degree equations given
in Secs. 61 and 62 has two advantages over other methods: (1)
it provides a complete classification of second-order curves
(Theorem, Sec. 58); (2) it is simple in conception and uniform
in structure. However, this method requires rather tiresome
computations.

In many cases the computations may be simplified.

1. For second-order curves that can be decomposed into a
pair of straight lines (Sec. 58, Examples 2, 3, 4, 6) it is easy
to find equations of both lines without resorting to a trans-
formation of coordinates. This method is presented in Sec. 65.
Sec. 64 gives a decomposition test.

2. A nondecomposable curve of second order may be either
an ellipse, a hyperbola or a parabola. Theellipse and hyper-
bola have centres, while the parabola does not. It is therefore
convenient to start simplifying the equations of the ellipse
and hyperbola by translating the origin to the centre. We can
find out, beforehand, to which of these three types the second-
order curve belongs. The appropriate test is given in Sec. 67;
the concept of centre is specified in Sec. 68; Sec. 69 explains
how to find the coordinates of the centre. A device is explained
in Sec. 70 for simplifying the equations of the ellipse and
the hyxerbola.

3. As for the parabola, the method of simplification given
in Sec. 61 remains the best. Incidentally, the dimensions of
a parabola (i.e. the magnitude of the parameter p) are readily
found by means of so-called invariants (see Sec. 66).

64. Test for Decomposition of Second-Order Curves

If a second-order curve
Ax?+2Bxy+Cy?+2Dx+2Ey+ F=0 )

can be decomposed into two (different or coincident) straight
lines (which can be imaginary as well), then the third-order
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determinant (Sec. 118)

A B D
B C E
D E F

(the major discriminant 1)) vanishes. Conversely, if A =0, then
line (1) decomposes into two straight lines.

For the proof see Note 2, Sec. 65.

Exgmple 1. In Sec. 61 (Example 3) we considered the

second-order curve
. 2 —4xy+2y*+8x—8y—17=0
(A=2, B=-—2, C=2, D=4, E=—4, F=-—17)

In Sec. 62 (Example 3) it was established that this curve may
be decomposed into two parallel lines:

A= @

V2x—V 2y—5+2V 2=0 3)
and
V2x—V2y+54+2V 2=0 @
Accordingly, the major discriminant A is zero. Indeed,
| 2 -2 4 2 — ¢4 —2 — 4
A=|—2 2 —4 [=2|—4 —17(4+2] 4 —17|+
4 —4 —17
-2 2
+4 4 —4|=2-(—50)+2-50+0=0

Example 2. The second-order curve
2x2 —4xy + 5y —x+ 5y —4=0
does not decompose, since the major discriminant

2 -2 -5
5 131
1 5
-7 7

') The discriminant A is called major in contrast to the minor
discriminant descrited in Sec. 66.
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is not equal to zero. In Secs. 61, 62 (Example 1) it was shown
that this curve is an ellipse.

Rule for memorizing expression (2). The first row contains
the letters followed by x in Eq. (1), the second row, the let-
ters followed by y (either directly or after x), the third row,
the last three letters.

65. Finding Stralght Lines that Constitute
a Decomposable Second-Order Curve

In order to find the equations of two straight lines which
together form a decomposable second-order curve

Ax*+2Bxy+Cy?+2Dx+2Ey+ F=0 (1)

(see Sec. 64 for the condition of decomposition), it is sufficient

to expand the left-hand side of (1) into linear factors. When

at least one of the coefficients A, C is nonzero, it is best to

solve Eq. (1) directly for the square of x or y. The two so-

lutions (they may coincide) are the two desired straight lines.
Example 1. The second-order curve

2x3 —4xy+ 2y + 8x—8y—17=0 2)
is a decomposable line, since the major discriminant
2 —2 4
A=|—2 2 — 4
4 —4 —17

is zero. Eq. (2) may be solved for either of the letters x, y
(both enter as squares). Representing (2) as

yr—2(x+2)y+ (x’+ 4x—1,21> =0

we solve for y and obtain

y=x+2 4 1/(x+2)'*‘—<x’+ 4x-—'—27-)

One of the straight lines is given by the equation y=x+42+4
+7%. the other, by the equation y=x+2—%. These
lines are parallel (cf. Example 3, Secs. 61, 62).
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Example 2. The second-order curve
2x3+ Txy — 15y%2— 10x 4 54y — 48 =0 3)
decomposes, since

2 4 —5
A=l I _15 o7 |=0
—5 27 —48

Representing (3) as

1543 — (7x + 54) y — (2x* — 10x — 48) =0
we find

;*__ Tx+54=V(Tx+54)7+4-15 (2x°— 10x=48)
= 30

The radicand is equal to 169x2- 156x+ 36=(13x+ 6)2.

Consequently, y=%‘—‘3x—+63. One of the straight lines

is given by the equation y=

2x+6
3

-x+8 . . . . 6 22
yz:—sf—. These lines intersect in the point ('_'1—3' —13)

, the other by the equation

Example 3. The curve
10xy — 14x+ 15y —21=0 (4)
decomposes, since

0 5 —7
15

15
-7 & =2l

Both x and y are linear in Eq. (4), and so we factor the
left-hand side of (4) and group terms:

10xy — 14x + 15y —21 =2x (5y —7) + 3 (by —7) =
=(2x+3) (5y—7)
The curve (4) decomposes into the straight lines 2x+4+3=0
and 5y—7=0.
Note 1. If A=C=0 we can also solve the equation for x
or y; in Example 3 we get (10x+15) y=14x+421; but it is
possible to further divide both sides by 10x+ 15 only when

10x+ 15 is not equal to zero. We then get y=::’+:%=
7(2x+3) 7

=5Exi) - F and the equation of one of the straight lines
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is y=—, i.e. 5y—7=0. When 10x+15=0, or x=—-,

the equation (10x+ 15) y=14x+21 is satisfied for any value
of y; we thus get the other straight line x=—% or 2x-+4
+3=0.

Note 2. The calculations carried out in Examples 1 and 2
may be performed for any equation of type (1), provided

C # 0. Performing these computations in the general form,
we get as the radicand the quadratic trinomial

(B2— AC) x242 (BE—CD) x+ E*—CF (5)
It will be a perfect square if and only if
(BE—CD)?*— (B2— AC) (E2—CF)=0 (6)

After simple transformations we see that the left-hand side of
(6) is equal to CA where A is the major discriminant. Since,
by hypothesis, C # 0, the criterion for decomposition is
A=0. When C=0, but A #0, we arrive at the same con-
clusion by interchanging x and y. Such is the proof of the
criterion (test) in Sec. 64 for the general case. In the excep-
tional case of A=C =0 (and, hence, B # 0), the left-hand side
of Eq. (1) is in the form

2Bxy+2Dx+2Ey+ F

We can give this polynomial in the form 2x(By--D)+
+ (2Ey+ F). This expression may be factored into linear
terms only when the appropriate coefficients of the binomials
By+ D and 2Ey + F are equal or proportional (see Example 3);
i.e. when 2DE— BF =0. However, in the case at hand the

0 B D
B 0 E
D E F
it follows that 2DE—BF=% Such is the proof of the cri-
terion (test) of Sec. 64 for the exceptional case.

major discriminant A is of the form . whence

66. Invarlants of a Second-Degree Equation

When passing from one system of rectangular coordinates
to another we replace the equation

Ax*+2Bxy+Cy*+2Dx+2Ey+ F=0 )
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of a second-order curve by the equation

A'x'*+2B'x'y' +C'y'*+2D'x' +2E'y'+ F' =0 2
which is obtained from (1) by the formulas of transformation
of coordinates (see examples in Secs. 61 and 62). The values
of A’, B, C’, D', E’, F' (all or some) differ from the values
of the like quantities A, B, C, D, E, F.

However, the three expressions given below which consist
of the quantities A’, B’, C’, D', E’, F’ always remain equal
to the like expressions composed of the quantities A, B, C,
D, E, F. These three expressions are called the invariants
(meaning that they do not change) of a second-degree equation.

(a) First invariant A+4C

(b) Second invariant 6=

(c) Third invariant

A B D
B C E
D E F

Example 1. In Sec. 61 (Example 1) we transformed the
equation

AB : e
B CI (minor discriminant)

A= (major discriminant)

2x3—4xy + 5y? —x+ 5y —4=0
1 5

(A=2. B=—2,C=5 D=—~, E=+, F=-—4)

to the form
. 2] 173 _3_ ’ L A —
x'24-6y +V_5x+v_5y 4=0

. , ' s 3 . 11 —
(A~1.B—0.C—6,D_——2V_5,E == F 4)
in accordance with the rotation of axes through the angle
arcsin —l_;- ~ 26°34’.

(a) The expression A+ C in the old system was equal to
2+4-5=7; in the new system, the like expression A’+4-C’ is
146=7, so that

A+C=A"+C
(b) The minor discriminant in the old system was

-2 =2
6=]_2 5|=2.5—(—2).(—2)=6
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in the new system we have

|1 0]_
a_h J_s
so that
§=0"
(c) The major discriminant in the old system was
1
2 —2 -
5 131
A=| —2 5 z|I=— 7
1 5
- 7T 4
in the new system it is
3
TS
, 11 131
A'=| O 6 TIl=—
3 11
ovs v °
so that
A=A’

Example 2. In Sec. 62 (Example 1) we transformed the
equation
11

2 ” 3 ’ —_— Yy —4—
x"* 46y +;/:5x+v_5y 4=0

to the form ;’—}—6!/_’—%:0 in accordance with a transla-

. . . i3 f__ 1
tion of the origin to the point x'= YA y Ve
The major discriminant is now
10 0
x_]10 6 0 131
A= _=— —
131 4
00 —=
so that
A=A'=A

The two other invariants have obviously also retained
their earlier values.
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To prove the invariance of each of the quantities (a), (b),
and (c), it is sufficient to form expressions of the quantities
A’, B, C’, ... in terms of A, B, C, ... (these expressions
will also contain the angle of rotation a and the coordinates
of the new origin). Substituting them, for example, into the
expression A’4C’, we get (after simplifications) A+4-C and
so forth. However, these computations are very cumbersome. ¥

Note. 1f both sides-of Eq. (1) are multiplied (or divided)
by some number &, the new equation will represent the same
second-order curve. However, the quantities (a), (b), (c) will
be changed: the first will be multiplied by &, the second by
k% and the third by k3. That is why the quantities (a), (b),
and (c) are-termed invariants of a quadratic (second-degree
equation and not invariants of a quadric (second-order) curve.

87. Three Types of Second-Order Curves

The minor discriminant § (Sec. 66) for the ellipse is posi-
tive (see Example 1, Sec. 66), for the hyperbola it is nega-
tive, and for the parabola it is zero.

Proof. The ellipse is given by the equation —:,l+:—:—

—1=0. The minor discriminant of this equation 6=
=a—l,-;—, > 0. In a transformation of coordinates, § retains
its magnitude, but in multiplication of both sides of the
equation by some number & the discriminant is multiplied by
k% (Sec. 66, note). Hence, the discriminant of the ellipse is
positive in any system of coordinates. The proof is similar for
the hyperbola and the parabola.

We accordingly distinguish three types of second-order
curves (and quadratic equations):

(a) Elliptic type characterized by the condition

§=AC—B2>0
This type includes (in addition to the real ellipse) the ima-
ginary ellipse (Sec. 58, Example 5) and a pair of imaginary
straight lines intersecting in a real point (Sec. 58, Example 4).
(b) Hyperbolic type characterized by the condition

§=AC—B2<0
This type includes a pair of real intersecting straight lines
(Sec. 58, Example 1) in addition to the hyperbola.

1) There are artificial techniques which facilitate the proof.
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(c) Parabolic type characterized by the condition
6§=AC—B2=0
This type includes, besides the parabola, a pair of parallel

(real or imaginary) straight lines, which are possibly coincident.
Example 1. The equation

2242y +y:+2x+y=0 (1)
is of the parabolic type because
6=AC—B*=1-1—12=0
Since the major discriminant
11

is nonzero, Eq. (1) represents a nondecomposable curve, i.e.
a parabola (cf. Secs. 61, 62, Example 2).
Example 2. The equation
8x2 4 24xy 4 y2 —56x + 18y —55=0 2)
is of the hyperbolic type because
§=AC—B2=8-1—122=—136 <0

Since
8 12 —28
A= 12 1 9{=0
—28 9 —55

Eq. (2) represents a pair of intersecting straight lines. Their
equations may be found by the method given in Sec. 65
Example 3. The equation

2x2—4vy+5y* —x+5y—4=0
is of the elliptic type because
6=AC—B2=5.2—22=6 >0

Since
1
2 —2 —
A=|—2 5 % #0
1 [
-5 7 4

the curve does not decompose and, hence, is an ellipse.
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Note. Curves of the same type are geometrically related

as follows: a pair of intersecting imaginary straight lines
(i.e. one real point) is the li-

Y miting case of an ellipse shrin-
king to a point (Fig. 88); a pair

of intersecting real straight lines

is the limiting case of a hy-

perbola approaching its asymp-

X totes (Fig. 89); a pair of paral-

lel lines is the limiting case

of a parabola in which the

axis and one pair of points M,

M’, symmetric about the axis

Fig. 88 (Fig. 90), are fixed while the
vertex recedes to infinity.
Y
M
Y
/ = (o0 X
(0 X
M
Fig. 89 Fig. 90

68. Central and Noncentral Second-Order Curves (Conlcs)

Definition. The points A and B (Fig. 91) are termed sym-
metric about a point C if C bisects the segment AB. The
point C is called the centre of symmetry (or, simply, the
centre) of the figure if the figure
has, in addition to each point M, c B
another point N symmetric with
respect to M about C

The point which we called the Fig. 91
centre of an ellipse (Sec. 40) and also
the point called the centre of a hyperbola (Sec. 44) obvio-
usly fit this definition. The centre of a second-order
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curve (conic) that decomposes into two Intersecting straight
lines (Sec. 58) is, by the definition given in this section, the
point of intersection of these straight lines (L in Fig. 92).

Each of the above-considered conics has a unique centre.

But if the conic consists of two parallel straight lines (AB
and CD in Fig. 93), then any point of MN equidistant from

AB and CD will be suitable as centre.
Y
)
/7
X

The parabola has no centre.
o 7
"4
N, >

Fig. 92 Fig. 93

Conics having a unique centre (ellipse, hyperbola, a pair
of intersecting straight lines) are termed central conics; conics
having a multiplicity of centres or none at all (parabola, a
pair of parallel lines) are called noncentral conics.

Note. Imaginary ellipses and pairs of imaginary straight
lines intersecting at a real point (see Sec. 58) are included
in the group of central conics. This inclusion is symbolic as
regards the imaginary ellipse, while a figure consisting of one
real point fits the definition of a central “conic” (this point
is itself the centre). Pairs of imaginary parallel lines (Sec. 58)
are included in the group of noncentral conics.

Thus, conics belonging to the elliptic and hyperbolic types
(for them AC —B? # 0, see Sec. 67) are central conics; conics
of the parabolic type (AC—B2=0) are noncentral conics.

69. Finding the Centre of a Central Conic
.To find the coordinates x,, yo of the centre of the central
conic
Ax?+2Bxy+Cy?+2Dx+2Ey+ F=0 1
we have to solve the system of equations

Axo+ By, + D=0, }

Bxo+Cyo+E=0 @
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This is a simultaneous system and it has a unique solu-
tion (Sec. 187)
|2 ¢ |5 2|
T 1AaB| 'Y=" 7B ®)
IB c |B C

Xo=

since Ig gl # 0 (this is the condition of centrality; Sec. 68).

Example 1. The centre of the conic (Example 2, Sec. 67)
8x34-24xy 4 y3 —56x 4 18y —55=0 4)
is found by so;lving the system of equations
’ 8o+ 129y — 28 =0,
120+ yo+ 9=0

We obtain
-4 P
o=—7T"7g12, - " y°=—'s—w|=3
12 1 |l2 1

Since (4) is a decomposable conic of the hyperbolic type, the
point (—1, 3) is the point of intersection of the straight
lines forming the conic (4).

Example 2. The centre of the conic (Example 1, Sec. 61)

2x2 —4xy 4 5y —x+4-5y—4=0 (5)
is found by solving the system
2‘0—2!10——;-=0,
—2xo+5yo+'%'=0
We obtain
%o = _% Yo=—3

The conic (5) is an ellipse (since 8 > 0 and A # 0).

Derivation of equations (2). If the origin is translated to
the desired centre C (x4, o), then Eq. (1) is transformed by
means of the formulas of translation

x=xo+x', y=yo+y ()
to
Ax*+2Bx'y’ +Cy" +2 (Axo+ Byo+ D) x' +
+2(Bxo+Cyo+E)y'+F' =0 )
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where, for brevity, we put

F' = Axt+2Bxoyo +Cys +2Dxo +2Ey + F
If xo, yo satisfy Eqs. (2), then (7) will take the form
Ax"*4+2Bx'y’ +Cy"*+F' =0 ®)
This equation may be rewritten in the form
A(—=x")P2+2B(—x')(—y)+C(—y)2+F =0
For this reason, this curve contains point N (—x’, —y'),
symmetric with M about the new origin C, in addition to

every point M (x’, y’) belonging to the curve (8). Hence
(Sec. 68), C is the centre of the curve (8).

70, Simplifylng the Equation of a Central Conlc

The equation of a central conic can be simplified faster
than by the general method (Sec. 60) if we first translate the
origin to the centre (thus eliminating linear terms; see Sec. 69)
and then rotate the axes (thus eliminating the term in xy).
The angle a of this rotation is known beforehand (Sec. 61)
and is found from the equation

28
tan 200 = —« (1)

Note. This method is applicable to any central conic, but
for a decomposable curve it is better to use the method given
in Sec. 65.

Example. Given the equation (Example 1, Secs. 61, 62)

2x2—4xy +5y2—x +5y—4=0 2)

Translate the origin to the centre x,=— -15—2 , yo=—%
(Sec. 69, Example 2).
Using the translation formulas
x=xo+x", y=yo+y’ @
we get [cf. (8), Sec. 69]
2x12_4x/y: _+_5y'!_ %=0 (4)

From (1) we find tan 2¢=-, and if we take an angle a in
the first quadrant (cf. Sec. 61), we obtain the rotation
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formulas
= 2 ; 1 ;
_—— —T_- »
Vls ~ 125 i 5)
y=vy=*ty=Y
Substituting into (4) yields
eyt =p ®)
or
x! ;: _
13T T 1ar = | @
24 144

This curve is an ellipse with semiaxes a—]/lﬂ ~ 2.3 and

b= :—i—: ~1.0. In the original system, its centre has the
coordinates xo=-—%. yo=—%. the major axis (it is the

x-axis in the x, y system) is given by the equation y—y, =
= tana (x—x,) or y+3-=—l— ( +% ; e 12x—24y —
— 11=0 (cf. Sec. 62, Example 1).

Note. The dimensions of the ellipse may be found without

erforming a transformation of coordinates. We know before-
ﬁand that a_transformation has to yield an equation of the

type Ax?*+CyPp+F=0. The quantities A, C and F may be
found with the aid of invariants (Sec. 66). In the original
_equation they are

A4+C=2+45=7, §=AC—B*=2-5—(— 2)*=6,
ABD
=|B C E
DEF

They must have the same values in the simplified equation.
Hence,

=B
=77

o O X
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whence
3 = - 131
A=1, C=6, F:_W

and we again get Eq. (6).

71. The Equllateral Hyperbola as the Graph of the Equation
R
VY=

The equation
k
y=— (1

(k # 0) represents an equilateral hyperbola (Sec. 44); its
asymptotes coincide with the coordinate axes. The semiaxes
are

a=b=V2[k[ @

If &> 0, the branches of the hyperbola are arranged as
follows: one in the first quadrant, the other in the third
quadrant. But if k2 <0, then
they lie in the second and
fourth quadrants (Fig. 94). In
the first case, the real axis of
the hyperbola makes an angle
of 45° with the axis of abscis-
sas, in the second case, an angle
of —45°

This is obtained by the
method of Sec. 61 if Eq. (1)
is written as

xy=~k (©)
Note. When k=0, Eq. (3) repre- 4
sents a pair of straight lines y=0 Fig. 9

(axis of abscissas) and x=0 (axis of

ordinates). When | k| decreases without bound, the hyperbolas 13)

come closer and closer to these lines (so that a pair of perpendicular

straight lines may be regarded as a degenerate equilateral hyperbola).
For k=0, Eq. (1) represents onlg one straight line y=0 (axis of

abscissas), and not in its entirety but without the origin of coordi-

nates because for k=0 and x=0 the expression y=% becomes inde-

terminate. But if we give this indeterminate quantity all possible
values, we get the “lost” axis of ordinates.
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72. The Equllateral Hyperbola as the Graph of the Equation
—_ mx 4+ n

Y=px+3

Consider the equation

mx+n
= pxvq M

for p#£0 (ior p=0 we have the straight line y=% x+-%—)

If the dgterminant

_|m ny_
R
is nonzero, then Eq. (1) represents the same equilateral
hyperbola as Eq. (1) of Sec. 71:

k
y=
where Iz=—‘%, with the sole difference that the centre
is displaced from the origin to the point C(-——"—. ﬂ)
P’ P
r y
l 1
I
" [
TN A
T c =
TN X y .
1 1
I
Fig. 95 Fig. 96

(Figs. 95, 96). This means that (Sec. 71) the semiaxes
2|D]
are a=b= -
When D < 0 (then & > 0), the real axis makes an angle
of +45° with the axis of abscissas (Fig. 95), but if D > 0,
then the angle is —45° (Fig. 96).
Example 1. The equation
_ 4x-9
Y=12z-8




PLANE ANALYTIC GEOMETRY 111

(here m=4, n=—9, p=2, g=—6, D= lg :2 =—6)
represents an equilateral hyperbola (Fig. 95) with centre
C(3, 2) and with semiaxes a=b= 1/"’2,—:3 =V 3~ 173

The axis A’A forms a 45° angle with OX since D < 0. The
coordinates of the vertex A will then be

xa=xc+a cos 45"—3+V3-—~ 4.2,
Ya=yc+asin 45°_2+V ~ 3.2
Similarly, we find
1p=3-V32~18 y,=2-V3~08
Example 2. The equation

x=1

V=1
(here, m=1, n=—1, p=1, ¢=1, D=2) re resents an_
equilateral hyperbola (Flg 96) with centre C(— , 1) and
with semiaxes a= b—-‘/———=2 The axis A’A makes an

angle of —45° with OX since D > 0.

Note 1. If the determinant D=|Z' :' is zero, then the quanti-
ties m, n and p, ¢ are proportional (%:—:—) so that mx+n is
divisible by px+q; the quotient is -’;—' Eq. (1) then represents the
straight line y=— T devold of the point x=—— [lor x-——g- expre-
ssion (1) is indeterminate; see Sec. 71, Note].

For example, the equation y== ‘"6

(m=3 n=6, p=1, ¢=2,

_|l3 s
D"II 2
x=-2. If the indeterminate quantity y is given all possible values,
we then gef anotlier straight line x=-2 (in addition to the straight

=0) represents a straight line y=3 devoid of the point

line
lgofc 2. We can visualize the “deletion” of point x=-2 from

the straight line y=3 as follows. Consider the equation U"axigﬁ ’
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here D=I? gsl=6 (1-B) so that for B+ 1 we have a hyperbola

with asymptotes x=—-2 and y=3. But when the quantity B is close
to 1, the hyperbola (Fig. 97, where B=1.1) comes very close to its
asymptotes U’U and V'’V which intersect at the point K (-2, 3).
We might expect that for =1 we would

v Y get a pair of straiﬁht lines U’'U (y=3)
and V'V (x=-2). However, the line V'V

“falls out” since it is parallel to the
y-axis and, hence (Sec. 14, Note 2),
cannot be represented by an equation
' solved for the ordinate. The point K is
w i - also omitted since it lies on the line V'V.

vio X In a plane (Fig. 98) take an arbi-
Fig. 97 trary point O (pole) and draw a ray

0X (polar axis). Take some seg-

ment OA for the unit of length and some angle (it is cus-
tomary to take the radian) for the unit of angular measu-
rement. Then the position of any point M in the plane may
be specified by two numbers: (1) a positive number p exp-
ressing the length of the line segment OM (radius vector),

13. Polar Coordinates

M --.
Pt RN
’ A Y
L Mé \
of 4 X .
™ ;x
\ ’
N s
Fig. 98 Flig. 99

(2) a number @ expressing the magnitude of the angle XOM
(polar angle). The numbers p and ¢ are termed the polar
coordinates of the point M.

Example 1. The polar coordinates p=3, p=— ; define
a point N (Fig. 98), the polar coordinates p=3, q>=3%t define

the same point N, the polar coordinates p=1, ¢=0
{and also p=1, ¢=2nor p=1, ¢=—2mn, etc.) define the
point A.

Each pair of values p, @ is associated with a unique
point; but one and the same point M is associated with an
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infinity of values of the polar angle which differ by a multiple
of 2rn (cf. Example 1). But if the point M coincides with
the pole, the value of the polar angle is completely arbitrary.

We can agree to take only one of the values of the polar
angle, say we take (@) within the limits

—n<<Pp<n (1)

This value of the polar angle is called the principal value.
Example 2. The point N (Fig. 98) is associated with the

polar coordinates p=3, (p=—%+2k:t; the principal value

of the polar angle is —:2!-

The point L is associated with the polar coordinates
p=2, ¢=n-+2kn; the principal value of ¢ is, according to
Condition (1), = (not — ).

When dealing with principal values, every point (except
the {Jole) is associated with one pair of polar coordinates.
For the pole, p=0, and @ is arbitrary.

Note |. When point M describes a circle centred at the pole O
(Fig. 99) and intersects, at point K, the extension of the polar axis,
the principal value of the polar angle changes abruptly experiencing

P M
M,
0 A X
ol A X
a 4
Fig. 100 Fig. 101

a jump (at the point M, it is close to m, at M,, it is close to —m).
In many cases, it Is not advisable. therefore, to confine oneself to the
principal values of @.

Note 2. When the goint M describes a straight line PQ (Fig. 100)
and passes through the pole O, the value of @ changes abruptly
(a jump). For Instance, {f Z XOP =%.
the ray OP) ¢=%+ 2kn, and for the point M, (on the ray 0Q)

then for the point M, (on

o=—3—n + 2nx (k and n are integers). To avoid this situation, we can

ascribe to all points of the straight line PQ one and the same value
of ¢. for example, 9=/ XOP and consider the radius vectors as
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positive on the OP ray and negative on 0Q. For example, the polz-
coordinates

bl =
W-Tﬁ =

| —

define the point M,, and the polar coordinates

= __1
=7 ===

define the point M,.
The same points may be specified by the coordinates

(point M,) and

~.

=-3 =-L
P=-7n p=--
(point M,). We thus ascribe to all points of the straight line PQ the

vahgpcp:é X0Q, so that p is positive on the ray 0Q and negative
on

Ex;mple 3. Construct a point M with polar coordinates

b1
p=-3, @-“"2—

The polar angle q;=—i;- is associated with the ray OC (Fig. 101).
Lay off OM=30A on its extension OD. This yields the desired
point M. To the same point there correspond the polar coordinates

_n
=3, cp—2 .

74. Relationship Between Polar and Rectangular Coordinates

Let the pole O (Fig. 102) of the polar system coincide

with the origin of a rectangular system of coordinates and

v let the polar axis OX coincide with the

positive direction of the axis of abscissas.

M Let M be an arbitrary point in the plane,

P y x and y its rectangular coordinates, and
p, @ its polar coordinates. Then

0 z p X X:==p COos @, y:pSln(P (l)
Flg. 102 Conversely, 1)
o=V ty* @

1) It is assumed in formulas (2) and (3) that the radius vector p is
always positive. 1f, however, we consider the negative values of p as
well (Sec. 73, Note 2), then in place of (2) and (3) we will have to
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sin p= ——— 3)

Cos = —
¢ Vi ys

-
Viey: '

and

tan = £ )

However, alone, formula (4) [likewise, only one of the formu-
las (3)] is not sufficient for a determination of the angle ¢
(see Example 1).

Example 1. The rectangular coordinates of a point are
x=2, y=—2. Find its polar coordinates (for the above-
indicated mutual arrangement of the two systems).

Solution. By formula (2),

p=VZF(—22=2V2

By formula (4), tan ¢ = l2-2- =—1. Hence, either p=— 3+
3n

+2kn or @ = = + 2kn. Since the point lies in the fourth

quadrant, only the first value is correct. The principal value
of ¢ is—-:l.

If we take advantage of the formula cos ¢ = —=

Virg '
2 VY . _ =

we get cos p= Ve S Hence, either @ = - +2kx or
@=— -2 +2kn. Only the second value is correct.

3

Example 2. In the rectangular system XOY, the circle
depicted in Fig. 103 is given by the equation (Sec. 38)
(x—R)*+y*=R?2 Formulas (1) and (2) permit finding its
equation in the polar system (O is the pole and OX is the
polar axis). We get p?—2Rp cos ¢=0. This equation may be
decomposed into two: (1) p=0.2, (2) p—2R cos p=0. The
first (for any value of @) represents the pole O. The second
yields all points of the circle including the pole (for

o= -;l and p=— 12'- . Therefore, the first equation may be

discarded. We then have
- p=2R cos @ ()
write p=+Vxt+y3, cos p=

, sin o¢= (the

X
+ Vxigys +Voiyt
signs either all upper or all lower). The formulas (1) and (4) remain
unchanged.
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This equation is obtained directly from the triangle OMK
with right angle at the vertex M (OK = 2R,OM = p,
. KOM=0).

(4
N
7 0 X

Fig. 103 Fig. 104

Note. 1f negative values of p are not introduced, then in Eq. (5)
we can take the angle @ in the fourth and first quadrants, but not

in the second and third quadrants. Thus, for ¢ = %n Eq. (5) gives
p=-RV 2. Indeed, the ray ON (Fig. 103) does not have any points
in common with the circle, with the exception of the pole. Now if
we introduce negative values of p (Sec. 73, Note 2), then the coor-
dinates p=-RV' 2, ¢ = %:‘! yield the point L on the extension of
the straight line ON.

Example 3. Determine which curve is defined by the
equation

p=2asin ¢ (6)
Solution, Passing to the rectangular system, we find
- Yy
2 2 — s
Vx +y*=2a Vi g
or
x2+4y?—2ay=0
or

2+ (y—a)=a®
Eq. (6) is a circle of radius a (Fig. 104) passing through
the pole O and tangent to the polar axis OX.
75. The Spiral of Archimedes !)

1. Definition. Let the straight line UV (Fig. 105) emanate
from an initial position X’X and uniformly rotate about a
fixed point O and let the point M emanate from an initial

1) This curve is discussed in detail in Sec. 511.
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position O and uniformly move along UV. The curve described
by the point M is called the spiral of Archimedes in honour
oty the great Greek scholar Archimedes (third century B. C.)
who first studied that eurve.

Note. The kinematic concepts that enter into this defini-
tion may be removed by replacing them by the condition
that the distance p=OM be proportional to the angle of
rotation ¢ of the straight line UV.

The rotation of the line UV from any position through
the given angle is associated with the same increment in the

v

Flg. 105 Fig. 106

distance p. For instance, a complete revolution is associated
with the same displacement MM;—=a. The segment a is cal-
led the lead of the spiral of Archimedes.

To a given lead a there correspond two Archimedean
spirals which differ in the direction of rotation of the line UV.
Counterclockwise rotation generates a right-handed spiral
(Fig. 106, solid line); clockwise rotation generates a2 left-
handed spiral (Fig. 106, dashed line).

Right and left spirals with the same lead may be brought
to coincidence. To do this, one of them has to be turned
over (reverse up).

From Fig. 106, it will be seen that right and left spirals
of one and the same lead may be regarded as two branches
of a curve described by a point M when the point traverses
the entire straight line UV, passing through point O in so
doing.

2. The polar equation (O is the pole, the directionof the
polar axis OX coincides with the direction of motion of M
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when it passes through the point O; a is the lead of the
spiral):

L=
a

)

The right branch corresponds to positive values of ¢, the
left to negative values.
Eq. (1) may be written as
p=ko
where k£ (the parameter of the spiral of Archimedes) is the
displacement = of the point M along the straight line UV

2n
when the line is rotated through an angle of one radian.

Sle

76. The Polar Equation of a Stralght Line

A straight line AB (Fig. 107) not passing through the
pole is given in polar coordinates by the equation

P
P= o5 (o-ai M

where p=0K and a=/ XOK are the polar parameters of
the straight line AB (Sec. 29).

0

Fig. 107 Fig. 108

Eq. (1) 1s obtained from the triangle OKM (where OM=p
and / KOM=¢—a). )

The straight line CD (Fig. 108) passm% through the pole
cannot be represented by an equation of the type (1) [for
such a line p=0and p—a=+ 3, sothat cos (cp-—a)=0]
Its ray OD is represented by the equation ¢=¢, (where
@o=/Z XOD), and ray OC, by the equation @=¢, (where
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1=/ XO0C). Each of these equations can represent the
entire straight line if negative values of p are introduced
(Sec. 73 Note 2).

77. The Polar Equation of a Conic Section

Put the pole in the focus F (Fig. 109) of a conic section
(ellipse, hyperbola or parabola) and bring the polar axis to
coincidence with the axis FX of the conic section in the
direction opposite to that in which the
corresponding directrix PQ lies. Then
the conic section is represented .by the
equation

— P
P= s 0

where p is a parameter and e is the

eccentricity of the conic section (Sec. 52).
Note. If only positive values of p are

considered, then in the case of the hy-

perbola (e > 1) Eq. (1) represents only Fig. 109

one branch, that enclosing the focus.

Also, for @ the inequality 1—ecos @ >0 must hold. Now

if negative values of p are considered, then @ may have

any value, and for 1 —e cos ¢ < 0 we get the second branch.
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78/ Vectors and Scalars. Fundamentals

A vector quantity, or a vector (in the broad sense of the
word), is any quantity possessing direction. A scalar quantity
(or scalar) is a quantity that does not possess direction.

Example 1. A force acting on a mass point is a vector
because it has direction. The velocity of a mass point is
also a vector.

Example 2. The temperature of a body is a scalar since
there is no direction involved. The mass of a body and its
density are also scalar quantities.

If one disregards the direction of a vector, then it may
be measured (like a scalar) by choosing an appropriate unit
of measurement. However, the number ob-
tained from the measurement characterizes A
the scalar quantity entirely, whereas the vector
quantity is described only partially. B

A vector quantity is fully specified by
giving the direction of a line segment and Ilhwr%
indicating a linear scale unit. Mr—

Example 3. The directed segment AB in Fig. 110
Fig. 110 with scale unit MN depicting unit
force (1 Newton) characterizes a force of 3.5 Newtons, the
direction of which coincides with the direction of the segment
AB (indicated by the arrow).

19./Tho Vector In Geometry

In geometry, a vecfor (in the narrow sense) is any directed
line-seg ment.
A vector with initial point A and terminal point B is

denoted as /TE(Fig. 110).
A vector can also be denoted by a single

letter as in Fig. 111. In printing this letter
g isgiven in boldface type (a), in writing it is
given with a bar (a).
Fig. 111 The length of a vector is also called

the absolute value (or modulus) of the
vector. The absolute value of a vector is a scalar
quantity.
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The absolute value of a vector is denoted by two vertical
lines: | AB| or |a]| or [a|.

In the two-letter notation of a vector, its absolute value
is sometimes denoted by the same letters without an arrow

(AB is the absolute value of the vector ;X_B’). in the single-
letter notation, the absolute value is denoted by a normal
weight letter (b is the absolute value of the vector b).

BO/Vocior Algebra

Operations involving vectors are called the addition, sub-
traction and multiplication of vectors (see below). These
operations have much in common with the properties of the
algebraic operations of addition, subtraction and multiplication.
Therefore, the study of vector operations is called vector
algebra.

181,/ Collinear Vectors

Vectors lying on parallel straight lines (or on one and
the same straight line) are termed collinear. The vectors a,

b, and ¢ in Fig. 112 are collinear. The vectors 7&. BD
and _C_E in Fig. 113 are collinear.

A
= 8
/ C
<l D
Fig. 112 Fig. 113

Collinear vectors can have the same direction or they can
have opposite directions. Thus, the vectors a and ¢ (Fig. 112)
are in the same direction, vectors @ and b (and also & and c)

are in opposite directions. The vectors AC and BD in Fig. 113

are in the same direction, vectors AC and CB are in oppo-
site directions.
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82/ The Null Vector

If the origin A and the terminus B of a segment AB
coincide, then the segment AB becomes a point and loses
direction. However, for the purpose of generality of the rules
of vector algebra it is agreed that a pair of coincident points
is to be regarded as a vector, the null vector. 1t is considered
collinear_with any vector.

The null vector is symbolized by 0, the number zero.

83/ Equality of Vectors

Definitiom. Two (nonzero) vectors a and & are equal if
they are in the same direction and have one and the same
absolute value. All zero vectors are taken to be equal. In all
other cases, the vectors are not equal.

Sy
B 2 /L

,,//' 0
£
Fig. 114 Fig. 115

Example 1. The vectors AB and CD (Fig. 114) are equal.

Example 2. The vectors O—M and (W (Fig. 115) are not
equal (although they are of the same length) because thex

have different directions. The vectors W and 1—(_1? are likewise

—_— —_—
not equal, while the vectors OM and KL are equal.
Warning. Do not confuse the concept of “equality of vec-
tors” with that of “equality of line segments”. When we say
that the line segments ON and KL are equal, we assert that
one of them can be brought to coincidence with the other.
But this may require a rotation of the segment being brought

to coincidence (as in Fig. 115). In that case, the vectors ON

and 7(—1: are, by definition, not equal. The two vectors will
be equal only when they can be brought to coincidence without
a rotation,
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Notation. The notation @=>8 expresses the fact that the
vectors @ and b are equal. The notation a # b expresses the
fact that the vectors @ and b are not equal. The notation
|@a|=|b| expresses the fact that the absolute values (lengths)
of the vectors @ and b are equal; here, the vectors @ and b
may (or may not) be equal to one another.

Example 3. IE=ED’(FI’E.1‘4): / a
ON # KL (Fig. 115), | ON |=| KL |

(Fig. 115), OM=KL (Fig. 115).

c b
aQ &
“/ﬂoductlon of Vectors to a Common a0
orlgin d

Two vectors (or any number
of vectors) can be reduced to a com-
mon origin; i.e. it is possible to construct vectors that are
equal to the given ones and have a common origin at some
point O. This reduction is shown in Fig. 116.

Fig. 116

/
85, Opposite Vectors
N

Definition. Two vectors having the same absolute values
and opposite directions are called opposite vectors.
™ A vector which is in the direction oppo-

/ site to a vector a is denoted by —a.
L N - -, .
Example 1. The vectors LM and NK in

Fig. 117 are in opposite directions.
Fig. 117 Example 2. [f the vector LM (Fig. 117)

— / —_
is denoted by a, then lﬁ: —a, ML=—a, KN=a.
From the definition it follows that —(—a)=a, |—a|=|a|.

86, Addition of Vectors
Definition. The sum of the vectors @ and b is a third
vector ¢ obtained by the following construction: from an

arbitrary origin O (Fig. 118) construct a vector oL equal
to a (Sec. 83); from the point L, as origin, construct the
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— —
vector LM equal to . The vector c=0M is the sum of the
vectors @ and b (triangle rule).

Notation: a+4+b=c.

Warning. Do not confuse the concept of a “sum of line
segments” with that of a “sum of vectors”. The sum of the
line segments OL and LM is
obtained by the following
construction: extend the stra-
ight line OL (Fig. 119), lay
off a segment LN equal to
LM. The segment ON is the
sum of the segments OL and
Fig. 118 Fig. 119 LM. The sum of the vectors

OL and DT4 is constructed differently (see definition).
In the addition of vectors we have the following inequa-
lities:

la+b|<l|al|+|b] )]
la+b|=llal—lbl @
which state that the side OM of the triangle OM ig. 118)

is less than the sum and greater than the difference of the
other two sides, In formula (I) the
equality sign is valid only for vectors in
the same direction (Fig. 120); in formula
(2), only for vectors in opposite directions
(Fig. 121).

b
a /L a
ﬁ-b;ﬁé ?
7 [
Fig. 120 Fig. 121 Flg. 122

The sum of, opposite vectors. From the definition it follows
that the sum of opposite vectors is equal to the null vector:
14 a+(—a)=0
~ Commutative property. The order in which vectors may
be added is immaterial:
at+b=b+a
Parallelogram rule. 1f the summands @ and b are not
collinear, then the sum a+b may be found by the following
construction: from any origin O (Fig. 122) construct the
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vectors 5?1‘=a and O—§=b; on the segments OA, OB construct
a parallelogram OACB. The vector of the diagonal OC=c is
the sum of the vectors @ and & (since AC=0B=25 and

0C=0A+ AC).

This construction is not applicable to collinear vectors
(Figs. 120, 121).

Note. The definition of addition of vectors is established
in accord with the physical laws of adding vector quantities
(for example, forces applied to a mass point).

81/ The Sum of Several Vectors

Definition. The sum of the vectors a,, a,;, as, ..., a, is
a vector obtained as the result of a sequence of additions: to
the vector a, add the vector a,, to the resultant veator add
the vector aj, etc.

Fig. 123 Fig. 124

From the definition there follows the following construction
(rule of the polygon, or chain rule).
Starting from an arbitrary origin O (Fig. 123) construct a

vector 671=a1, from the point A, (as origin) construct a
—

vector A;A;,=a,, from the point A, construct a vector

—_—— —

A;A3=a3, and so forth. The vector OA, (Fig. 123, n=4) is

the sum of the vectors a,, a,, ..., a,.

The sum of the vectors a,, a, ag a, is denoted
y"f‘az‘t‘aa‘f‘aq- "

Associative property. In the addition of vectors, the terms

may be grouped in any way whatsoever. For example, if one
first finds the sum of the vectors a,+ay+a, (it is equal to
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the vector Z',';L, not depicted in Fig. 123), and then adds
the vector a1(=5,'4’1), we get the same vector a,+a, +
+aa+ac(=aza)3

a,+(a;+as+a,)=a,+a;+as+a,

QRule of the parallelepiped. If three vectors a, &, ¢ are
reduced to a common origin (Sec.-84) and do not lie in the
same plane, .then the sum a-+b+c¢ may be found by the
following constructlon From any origin O (Fig. 124) construct

the vectors OA—a, 0B= b, 0C=c. On the segments OA,
0B, OC (as edges) construct a parallelepiped. The vector of

the dlagonal OD is the sum of the vectors a, b and de (smce

0A—a, AK =0B=b, KD=0C=c and OD—OA+AK+KD).
This construction is not applicable to vectors which (after
reduction to a common origin) lie in the same plane.

BG/Squactlon of Vectors

Definition. To subtract a vector a, (subtrahend) from a
vector @, (minuend) means to find a new vector x (diffe-
rence) which together with the
vector @, yields the vector a,.

e B
A A
0
Fig. 125 Fig. 126

Briefly, subtraction of vectors is the inverse operation of
addition.

Notation: a;—a,.

From the definition follows the construction: from an
arbitrary origin O (Figs. 125, 126) construct the vectors

O_A»-—al. O_/a,—-a, The vector A,A, (drawn from the ter-
minus of the subtrahend vector to the terminus of the minu-
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end) is the difference a;—ay:
—_ - P d
AA;=0A,—0A,
P — —
Indeed, the sum OA; 4 A;A; is equal to OA,.

Note. The absolute value of the difference (the length of the vector

Z,'.i,) may be less than the absolute value of the “minuend® but may
also be greater than or equal to .
it. These three cases are shown in
Figs. 125, 126, 127.

Alternative construction. To
construct the difference a;—a,
of the vectors a; and a, we can
take the sum of the vectors a4
and —ay, i.e.

a;—a;=a; +(—a,)
Example. Let it be required Fig. 127 Fig 128
to find the difference a;—a,

(Fig. 128). By the first construction a,—a1=m,. Now
construct the vector A_,2.= —a; and add the vectors 0—Z,=a,
and ;:lt:—al. We get (Sec. 86, definition) the vector 6[_:
From the figure it is seen that 6Z=/D’l,.

ss/ Multiplication and Divislon of a Vector by a Number

Definition 1./To multiply a vector a (multiplicand) by a
number x (multiplier) means to construct a new vector (pro-
duct) the absolute value of which is obtained by multiplyin
the absolute value of the vector a by the absolute value o
the number x, the direction coinciding with the direction of
the vector a@ or being in the opposite sense, depending on
whether the number x is positive or negative. If x=0, the
product is the null vector.

Notation: ax or xa.

Examples. 0B=0A-40r 0B=140A4 (Fig. 129),

— —_— — —>
OD= —20A, OE= —1.50A (Fig. 130).

Definition 2. To divide a vector @ by a number x means
to find a vector such that when it is multiplied by the num-
ber x it yields the vector @ as a product.

6—’ 1 —

=31 04,
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Notation: a:x or -%

Instead of the division % we can perform the multipli-
cation a-%.

The multiplication of a vector by a number obeys the
same laws as the multiplication of numbers:

/ AG
7 k0

[ D
“Fig. 129 Fig. 130

1. (x+y)a=xa+ya (distributive properly with respect to
the numerical factor)

2. x(a4+b)=xa+xb (distribulive property with respect to
the vector factor)

3. x(ya)=(xy)a (associative properly).

By virtue of these properties it is possible to construct
vector expressions having the same external aspect as polyno-
mials of the first degree in algebra; these expressions can be
manipulated in the same fashion as the corresponding algebraic
expressions (collect like termss, remove parentheses, take out-
side of parentheses, transpose terms from one side of an
equality to the other with opposite sign, etc.).

Examples. 2a +3a=>5a (by Property 1),
2(a+-b)==2a+2b (by Property 2),
5-12¢=60c (by Property 3);

4(2a—3b)=4[2a 1+ (—3b)|=4[2a+(—3)b] = 4-2a + 4(—3)b=

=8a-}-(—12) b=8a—12b,
2(3a—4b+c)—3(2a+b—3c)=6a—8b-+2c—6a—3b-+

+9c=—11b+4llc=11(c—¥b)

SQ/ Mutual Relationshlp of Collinear Vectors (Division of a Vector
by a Vector)

If a vector a is nonzero, then any vector b collinear with
it may be represented in the form xa, where x is a number
obtained as follows: it has an adsolute value |b|:{a| (ratio
of absolute values); it is positive if the vector b is in the
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same direction as the vector a, it is negative if b and a are
oppositely directed, and is zero if & is a null vector.

Examples. For the vectors @ and & in Fig. 131 we have
b=2a (x=2), in Fig. 132 we have b= —2a.

/ /
o e

Note. Finding the number x is termed the division of a
vector b by a vector a. Noncollinear vectors cannot be divided
by _each other. - -

QyTho Projection of a Polnt on an Axls

An axis is any straight line on which one of its directions
(no matter which) has been selected. This direction is called
positive (indicated by an arrow in drawings); the opposite
direction is the negative direc-
tion.

Fig. 133 Fig. 134

Each axis may be specified by any vector lying on it and
having that direction. The axis in Fig. 133 may be specified

by the vector AB or AC (but not by the vector BA).

Let there be given an axis OX (Fig. 134) and some
point M (exterior to the axis or lying on it). Draw through
M a plane perpendicular to the axis; it will intersect the
axis at some point M’. The point M’ is termed the projec-
tion of the point M on the axis 0X (if M lies on the axis,
then it is its own projection).

Note. In other words, the projection of the point M on
the axis OX is the foot of a perpendicular drawn from M
to 0X. The above definition stresses the fact that the con-
struction is perfornied in space.
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92/Tho Projectlon of a Vector on an Axls

The expression “the projection of a vector AB on an
axis 0X" is used in two different meanings: geometrical and
algebraic (arithmetical).

1. The projection (geometric) of a vector AB on an axis
OX is the vector A’B’ (Fig. 135), the origin of which A’ is
the projection of the origin A on the axis OX, and the

terminus of which B’ is the projection of the terminus B on
the same axis.

Notation:, Prox/—lE or, briefly, Pr 4B.

Fig. 135 Fig. 136

If the axis OX is given by a vector ¢, then the vector
A'B’ is also called the projection of the vector AB on the
direction of the vector ¢ and is denoted by Prc AB.

The geometric projection of a vector on_an axis 0X is
also called the component of the vecfor along the OX-axis.

2. The projection (algebraic) of the vector Té on the
O X-axis (or on the direction of the vector ¢) is the length

of the vector /Féf taken with the 4+ or — sign depending

on whether the vector ATB” is in the same direction as the
0X-axis (vector ¢) or in the opposite direction.
Notation:

P —
prox AB or prc AB
Note. The geometric projection (component) of a vector is
a vector, while the algebraic projection of a vector is a number,
Example 1. The geometric projection of the vector —6-k=a

(Fig. 136) on the OX-axis is the vector OL. Its direction is
opposite to that of the axis, and the length (with scale unit
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OE) is equal to 2. Hence, the algebraic projection of the
vector OK on the 0X-axis is a negative number, —2:

Pr OK =OL, pr57€=—2

If the vectors 4B and E-b (Fig. 137) are equal, then their
algebraic projections along the same axis are also equal

(pr ;4_5=pr Ch= —%) . The same holds for geometric pro-

jections.
]

TINFT
a7
, N

—y

Fig. 137 Flg. 138

Algebraic projections of the same vector on two like di-
rected axes (0;X, and 0,X, in Fig. 138) are the same?

(pro,x, NM=prg,x, VM= —2). The same holds for geometric
projections.

y 3. The relationship between a component (geometric projec-
tion) and the algebraic projection of a vector. Let ¢, be a
vector in the same direction as the OX-axis and of length 1.
Then the geometric projection (component) of some vector a
along the OX-axis is equal to the product of the vector ¢,
by the algebraic projection of the vector @ along the same axis:

Pra=pra-c,
Example 2. In the notation of Fig. 136 we have c‘=(ﬁ5’.

The geometric projection of the vector 0K =a on the 0X-axis

is the vector U[ and the algebraic projection of the same
vector is the number —2 (see Example 1). We have

OL= —20F.

1) If the axes are parallel but in opposite directions, the algebraic
projeetions are not equal; they differ in sign.
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93,/ Principal Theorems on Projectlons of Vectors

Theorem 1, The projection of a sum of vectors on some
axis is equal'to the sum of the projections of those vectors
on the same axis.

The theorem holds true for both meanings of the term
“projection of a vector” and for any number of terms; thus,
for three terms

Pr (a, +a,+as)=Pra,+Pra,+Prag 1)
and
pr(a,+a:+as)=pra,+pras+pras 2)

Formula (1) follows from the detinition of the addition of vectors,
formula (2) from the rule for adding positive and negative numbers.

Example 1, The vector —A_E (Fig. 139) is the sum of the
vectors AB and BC. The geometric projection of the vector
AC on the OX-axis is the vector
Z—é' and the geomietric projections
of the vectors AB and BC are AB'
and B'C. Here,

TéI=A l+Bl ’

Fig. 139 so that

_— — —_— —_—
Pr (AB+ BC)=Pr AB+Pr BC
Example 2, Let OF (Fig. 139) be the scale unit; then the

algebraic projection of the vector AB on the 0X-axis is equal
to 4 (the length of AB' taken with the plus sign); i. e.

pr AB=4. Further, pr BC=—2 (the length of B'C’ taken
—

with the minus sign) and pr AC=+2 (the length of AC’
taken with the plus sign). We have

pr ﬁ-l—pr BC=4—2=2
On the other hand,

_— - g

pr (AB+ BC)=pr AC=2

so that

pr (A_I§+FC’)=pr A_l;-i-prEC"
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Theorem 2/ The algebraic projection of a vector on some
axis is equal to the product of the length of the vector by
the cosine of the angle between the axis and the vector:

pr,b=|b| cos (a, B) @)
Example 3¢ The vector b=MN (Fig. 140) forms with the

OX-axis (it is specified by the vector a) an angle of 60°.
If OF is the scale unit, then |b|=4, so that

5 1
prob=4-cos 60°=4. ;=2

N
1% :
m/ | I
e HIN -
0E M N X 3 17 X
Fig. 140 Fig. 141

Indeed, the length of the vector M_'):" (geometric projection of the
vector b) is equal to 2, and the direction coincides with that of the
O X-axis (cf. Sec. 92, Item 2).

Example 4, The vector b=0V in Fig. 141 forms with the

OX-axis (with the vector a) an angle (;.\b)=120°. The length
|b] of the vector b is 4. Therefore, pr, b=4-cos 120°= —2.

Indeed, the length of the vector (7!7” is 2 and the direction is
opposite to that of the axis.

94/ The Rectangular Coordinate System In Space

Base vectors. The three mutually perpendicular axes OX,
OY, OZ (Fig. 142) which pass through a certain point O form
a rectangular system of coordinates. The point O is the origin,
the straight lines OX, OY, OZ are the axes of coordinates
(OX is the axis of abscissas, or x-axis, OY is the axis of
ordinates, or y-axis, and OZ is the z-axis), and the planes
XO0Y, YOZ, ZOX are the coordinate planes. Some line seg-
ment UV is taken as the scale unit for all three axes.

Laying off on the x, y, z-axes in the positive direction
the segments OA, OB, OC equal to the scale unit, we obtain
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—_— —> —
three vectors OA, OB, OC, which are called base vectors and
are designated by ¢, j, B, respectively.
It is customary to choose the positive directions on the
axes so that a rotation through 90°, which brings the positive
ray OX to coincidence

z with the ray OY (Fig.
. 142) would appear to be
c ¢  counterclockwise when vie-

wed from the ray OZ.
—) This is the right-handed
py <X ryo8d coordinate system. The

1 A left-handed system of coor-
x X dinates is sometimes also

used, in which case the
rotation is clockwise (Fig.

Fig. 142 Fig. 143

143).
Note 1. The trihedral angles formed by)the rays 0X, OY, OZ in
the right-handed system and in the left-handed system cannot be
made to coincide so that the corresponding axes coincide.

Flg. 144 Fig. 145

Note 2. The names “left-handed” and “right-handed” stem from
the fact that the right-handed system is generated if one places his
thumb, index and middle fingers of the right hand as the axes O0X,
0Y, 0Z shown in Fig. 144. The same arrangement for the left hand
(Fig. 145) produces the left-handed system.

95./ The Coordinates of a Point

The position of any point M in space may be determined
by three coordinates in the following manner. Through M
draw planes MP, MQ, MR (Fig. 146) parallel, respectively,
to the planes YOZ, ZOX, XOY. At the intersections with the
axes we obtain the points P, Q, R. The numbers x (abscissa),
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y (ordinate), and z (z-coordinate), which measure the line
segments OP, 0Q, OR to a given scale are called the (rec-
tangular) coordinates of the point M. They are positive or

negative according as the vectors ﬁ, Fd 0_15 are in the

same directions as the base vectors I, j, &, or in oppo-
site directions.

Example. The coordinates z
of the point M in Fig. 146
are: abscissa
x=2
ordinate
y=-—3
z-coordinate
2=2
Notation:
M2, =3, 2).

The vector OM from the
origin O to some point M is
called the radius vector of M and is denoted by the letter r;
it is customary to use subscripts to distinguish the various
radius vectors of different points: rj for the radius vector
of the point M. The radius vectors of the points A,,
Ay, ..., A, are denoted

ry Py oo, Py

96/ The Coordinates of a Vector

Definition. The rectangular coordinates of a vector m are
the algebraic projections (Sec. 92) of the vector m on the coor-
dinate axes. The coordinates of a vector are denoted by capi-
tal letters X, Y, Z (the coordinates of a point, by lower-case
letters).

Notation:

mi{X, Y,.Z} oo m={X,Y, Z}

Instead of projecting the vector m on the x, y, z-axes,
one can project it on the axes M,A, M,B. M,C (Fig. 147)
drawn through the-origin AM; of the vector m and having the
same directions as the coordinate axes (Sec. 92, Item 2).



136 HIGHER MATHEMATICS
——
Example 1./Find the coordinates of the vector M;M,
(Fig. 147) with respect to the coordinate system OXY Z.
Through the point M; draw axes M;A, M;B, M,C in the
same directions, respectively, as the x, y, z-axes.
Through the point M, draw the planes MyP, M,Q, MR
parallel to the coordinate planes.
M The planes M,P, M,Q, MR will
4 intersect the axes M;A, M,B, M,C
22 /N C in the points P, Q, R, respectively.
v Th_: abscissa X of the vector
F— -{F--7P M;M, is the length of the vector
' M, P taken with the minus sign (Sec.
K B 92, Item 2); the ordinate Y of the
e % M, vector m is the length of the vector

J / v M,Q taken with the minus sign;
4 the z-coordinate is the length of the

—_——
Fig. 147 vector M;R taken with the plus
sign. Given the scale of Fig. 147,
X=—4, Y=-—3, Z=2.
Notation:

MM, {—4, —3, 2}
or
—_—
MM, ={—4, —3, 2}
If two vectors m, and m, are equal, then their coordina-
tes are respectively the same:
X1=X,, Y1=Y,, 2,=12,
(cf. Sec. 92, Item 2).
The coordinates of a vecfor are invariant under a_parallel
translati f f coordinates. This is not true of
e coordinates of a point under the same translation (see
below, Sec. 166, Item 1). —
If the origin O of a vector OM coincides with the origin
—_
of coordinates, then the coordinates of the vector OM are
equal, respectively, to the coordinates of the terminus M
(Sec. 95). —_— -
Example 2, In Fig. 146, the vector OM has abscissa X =2,
ordinate Y = —3, and z-coordinate Z=2. The point M has
the same coordinates.

Notation: OM {2, =38, 2} o 631={2. -3, 2}
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9'!/Expresslng a Vector in Terms of Components
and in Terms of Coordinates

. Every vector is equal to the sum of its components
(geometric projections) on the three coordinate axes:
m=Proxm+Proym+Prozm (1)
Example 1. In the notation of Fig. 147, we have

—— o —_— e
M M;=M,P+M,Q+ MR

2. Every vector m is equal to the sum of the products

of the three base vectors by the corresponding coordinates of

the vector m:
m=Xi+Yj+Zk 2
Example 2. In the notation of Fig. 147, we have

—_—
M My= —4i—3]+2k

98 / Operations Involving Vectors Specified
by’ Thelr Coordinates

Y. When vectors are added, their coordinates are also added;
i.e.ifa=a,+a, then X=X+ X,, Y=Y +VY,,2=2,+2,.

& A similar rule holds for the subtraction of vectors: if
a=a,—a,, then X=X,—X,, Y=Y,—Y,, Z=2,—2,.

o When multzplymg a vector by a number, multtply all
the coordinates by that number; i. e. if my=»Am,, then X, =AX,,
Y,=AMAY,, Z,=AZ,.

4/ A similar rule holds for the division of a vector by a
number: if mz—*ﬂ}". then X,—-—— =%, Zz=£}“—.

'99/ Expressing a Vector In Terms
of the Radius Vectors of Its Origin and Terminus

Note an important formula:

. A A2=r2—'r1 @
where ry=0A, (Fig. 148) is the radius vector (Sec. 95) of

the origin A, of the vector A, Az, and ra:OA, is the radius
vector of its terminus A,.
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From (1), by virtue of Sec. 98, Item 2, we gel the follo-
wing formulas:
X=xy—x, Y=y—y1, Z=2,—2 )]

Here, X, Y, Z are the -coordinates of the vector ;ITAZ; x:
Y1, 2, are the coordinates of the point A, (they are equal
respectively to the coordinates of the

radius vector r;=0A4,) and x,, y,, 2,
are the coordinates of the point A,
(they are equal respectively to the
coordinates of the radius vector

r2=O—A>2).
In words: o find the x-coordinate
(abscissa) of- a vector, subtract the ab-

scissa of the origin of the vector Jrom.

the abscissa of ¢ erminus.
Fig. 148 - imilar rules hold for the y-coordi-

nate (ordinate) and the z-coordinate.

Example. Find the coordinates of the vector A—Izz if
A, (1, —2, 5) and A, (—2, 4, 0).
lution. X=—2—1=—-3, Y=4—(—2)=6, Z=0—

—5=—5 so that A;A,={—3, 6, —5}.

IOQ/ The Length of a Vector.
The Distance Between Two Points

The length of a vector @ {X, Y, Z} is expressed in terms
of its coordinates by the formula

la|=V X2 Y2F2Z2 ()
Example 1. The length of the vector @ {—4, —3, 2} is
equal (cf. Fig. 147) to

la|=V (=4t (—3)°F2¢= V29 ~ 54

The distance d between the points A; (x;, y1, z,),
Aq (%3, Y2, 2p) is given by the formula

d= V(x2 — %12+ (2 — 1)+ (22— 21)? (2)’
which is obtained from (1) by virtue of formulas (2), Sec. 99
(cf. Sec. 10).

Example 2. The distance between points A4, (8, —3, 8),
A6, —1,9) is d=V &8+ (—1+3*+O—8=3.
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IOI/The Angle Between a Coordinate Axls and a Vector
s
The angles o, B, y (Fig. 149) formed by the positive direc-

tions of OX, OY, OZ with the vector @{X, Y, Z} may be
found from the formulasV

C08a=m%- (='—§—-’) , (l,)/
03 b=y (=7e1) - @

oz _z
osv=gmmm=(=1a1) @) »

If the vector a has length egual to “X
the scale unit, i.e. if |@a|=1, then Fig. 149

cosa=X, cosB=Y, cosy=2Z
From (1), (2), (3), it follows that
cos?a -+ cos? 4 cosZ y=1 4

Example. Find the angles formed by the coordinate axes
with the vector {2, —2, —I}.
i 2 =2 -2 =
Solution. cos a—nz—;—(——____T):T—— T cos f= T » COs Y=
1

5 whence a ~ 48°11’, f ~ 131°49’, -y ~ 109°28’.

102. Criterion of Collinearity (Parallelism) of Vectors

If the vectors @, {X;, Yy, Z;}, @3 {Xs, Y, Z5} are colli-
near, then their respective coordinates are proportional:

Xqy: X =YY, =242, (3
and vice versa. —
If the coefficient of ploportionality k=x7‘-=)y7£=-zz-i is
1 1

positive, then the vectors a, and a, are in the same direc-
tion; if it is negative, the directions are opposite. The abso-
lute value of A expresses the ratio of the lengths |a;|:|a,|.

1) From the right-angle triangle OMR we have

cos y= OR .2 . ____Z
|om| '¢' VXt+visZd

Formulas (1) and (2) are obtained in similar lashion.
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Note. 1f one of the coordinates of the vector a, is zero,
then the proportion (1) is to be understood in the meaning
that the corresponding coordinate of the vector a; is also zero.

Example 1. The vectors {—2, I, 3} and {4, —2, —6}
are collinear and oppositely directed (A=—2). The second
vector is twice the length of the first.

Example 2. The vectors {4, 0, 10} and {6, 0, 15} are

collinear and in the same direction (A =%) The second vec-

tor is one and a half times longer than the first.
Example 3, The vectors {2, 0, 4} and {4, 0, 2} are not
collinear. v

103. Division of a Segment in a Given Ratlo

The radius vector r of a point A, which divides the seg-
ment A,A, in the ratio A;A:AA,=m,:m,, is determined by
the formula

__ mary+myr,

my+m, (l\)/

where r, and r, are the radius vectors of the points A, and A,.
The coordinates of the point A are found from the for-
mulas
L MaXyAmyx, My MY, _my2+m,z,
T T my+m, y= my+m, ' z= my+m, @
(cf. Sec. I1).

In particular, the coordinates of the midpoint of the seg-
ment A,;A, are

x=1|:+‘xz , y:.lh:!lz . Z=2|+22 (3)
2 2 2 )

Note. The point A may also be taken on the prolonga-
tion of the segment A;A, in either direction; then one of
the numbers m,, m, must be taken with the minus sign.

Example. Find the coordinates of the point A which
divides the segment A;A, in the ratio A;A:AA,=2:3 if
A (2, 4, —1), Ay (=3, —I, 6).

Using formulas (2), we find

_32+24-8) g _34+2(-D_go

=—=0, =—=2,

2+3 2+3

3.(-1 2.6_ 9
g d=h+26_ 9 ./

2+3 5
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104. Scalar Product of Two Vectors

Definition. The scalar product of a vector @ by a vector
b is the product of their absolute values by the cosine of
the angle between them.

Notation: a-b or ab

By definition, -

~
ab=|a|-|b|cos(a, b) (I

By virtue of Theorem 2, Sec. 93

T~
| 0] cos (a, b)= prab
so that instead of (1) we car, write
ab=|a|prab 2
Analogously v
ab=|b|pr,a
In words, the scalar product of two vectors is equal to

the lute value of one of them multiplied by the algebraic
projection 0, other _vecior on rst.

If the angle between the vectors a and & is acute, then
ab > 0; if it is obtuse, then ab < 0; if it is a right angle,
then ab=0.

This follows from formula (1).

Example. The lengths of the vectors @ and b are respec-
tively equal to 2 metres and 1 metre, and the angle between
them is 120°. Find the scalar product
ab.

Using formula (1), we have ab=
=2-1-cos 120°=—1 (metre squared).

Let us compute the same quantity
using formula (2). The algebraic proje-
ction of the vector b (Fig. 150) on the Flg. 150
direction of the vector a is equal to

|O§T cos l20°==—--,~1)—(the length of the vector OB’ taken with
the minus sign). We have

ab=|a|prab=2- (— %) =—1 (metre squared)

Note I. Let us examine the term “scalar product”. The
first word states that the result of the operation is a scalar
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and not a vector (in contrast to a vector product; see Sec. 111).
The second word stresses the fact that for this operation the
basic properties of ordinary multiplication hold (Sec. 105).

Note 2. Scalar multiplication cannot be extended to the
case of three factors.

Indeed, the scalar product of two vectors @ and b is
a number; if this number is multiplied by a vector ¢ (Sec. 89),
then the product will be a vector:

P
(ab)c=|a|-|b]cos (a, b)c
collinear with_ the vector c.

104a. The Phyaiénl Meaning of a Scalar Product

If the vector a=0A (Fig. 151) depicts a displacement
—

of a mass point, and the vector F=OF depicts the force ac-
ting on that point, then the scalar product
aF is numerically equal to the work of the
force F.

Indeed, only the component O—i'-"’ performs work.
This mieans that in absolute value the work is
Fig. 151 equal to the product of the lengths of the vectors

a and 5;". It is considered positive Iif the vec-

tors EI-?' and a are in the same direction, and negative if they are
in opposite directions. Hence, the work is equal to the absolute
value of the vector @ multiplied by the algebraic projection of the
vector F along thee direction of the vector a; i.e. the work Is equal
to the scalar product aF.

Example. The vector of a force F has an absolute value
equal to 5 kg. The length of the displacement vector a is
4 metres. Let the force F act at an angle a=45° to the
displacement a. Then the work of the force F is

1-‘a=|F|-]a|cosa=5-4VT2=10 V2 = 14.1 kg-m

l%opertlos of a Scalar Product

L The scalar product ab vanishes if one of the factors
is a null vector or if the vectors @ and b are perpendicular.

This follows from (1), Sec. 104.

Example. 31.27=0, since the base vectors /, j and, hence,
also the vectors 34, 2j are perpendicular.



4 SOLID ANALYTIC GEOMETRY 143

Note. In ordinary algebra, the equality ab=0 states that
either a=0 or b=0. For a scalar product this property does
not hold true.

2/ ab=ba (commutative property).

This follows from (1), Sec. 104.

¥ (a,+a;) b=a,b+ a,b (distributive property).

This property holds for any number of terms; for example,
for three terms

(@1+a,+as) b=a,b+ab-+-asb

This follows from (2), Sec. 104, and from (3), Sec. 93.

~5/(ma)b=m(ab) (associative property with respect to
a scalar factor). 1

Examples.

(2a) b=2ab, (—3a)b=—3ab, p(—6q)=—6pq
Property 4 is derived from (1), Sec. 104 (it is convenient to con-
sider separately the cases m > 0 and m < 0).
4#. (ma) (nb) = (mn) ab.
Examples.

(2a) (—3b) = —6ab, (—5p) (— 5 q) =4 pq

This property follows from Property 4.

Properties 2, 3, and 4a permit applying to scalar products
the same operations as are performed in algebra on the pro-
ducts of polynomials.

Example 1.

7/ 2ab43ac=a (2b+3c)
(by virtue of Properties 3 and 4).
Example ?/

(2a—3b) (¢ + 5d) =2ac + 10ad — 3bc — 15bd

(by virtue of Properties 3 and 4a).

Example 3. Compute the expression ({-+R)(j—R), where
i, J, k are base vectors.

Solution. Since the vectors #, j, & are mutually perpen-
dicular, it follows that ij=ik=jk=0; besides,

P
kk=|k||k|cos (%, k)=|k|?cos0=1

1) The associative property does not hold with respect to a vector
factor: the expression (cb)a is a vector collinear with a (Sec 104,
Note 2) whereas ¢ (ba) is a vector collinear with ¢ so that

(cd) a 5= ¢ (ba)
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(the absolute value of the base vector is equal to unity).

Therefore
+kR)(J—R)=1j—ik+ kj— kk==—1

5. If the vectors @ and b are collinear, then ab= 1 |a|-| b |;
(the plus sign if @, b have the same direction; and the mi-
nus sign if opposite directions).

5a. In particular, aa=|a|?

The scalar product aa is denoted a? (scalar square of the
vector a), so that

at=|a|? (]).

(the scalar square of a vector is the square of its absolute
value)
NoteJ/lndJector algebra there is no scalar cube (higher
powers are all the more so absent, cf. Sec. 104, Note 2).
Note J/ a® is a positive number (the square of ‘the length
of the vector); we can extract any nth root, for example,

the square root V @ (the length o_f_ the vector a). However,
one cannqﬁ_write a in place of V' at, since a is a vector,
while Va2 is a number. The proper result is

Va=|a| (?}

I_ll}.’ The Scalar Products of Base Vectors

From the definition given in Sec. 104 it follows that
li=02=1, Jj=j*=1, Rk=R=1,
j=ji=0, jh=~Rj=0, ki=1k=0

(cf. Sec. 105, Example 3).

These relations may be presented in the form of a table
of scalar multiplication:

Multiplicand

Multiplier

-
o
o
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1107. Expressing a Scalar Product in Terms
of the Coordinates of the Factors

If a1={X1, yl' Zl} and ag-:ng, Yg. 22}, then Y

a,a,=X,Xo+Y Yo+ 2,7, )
In particular, if m={X, Y, Z}; then
mi=X2+4Yi4 28 @
whence v
Vmi=|m|=V X +Y? 12 (2a)
(cf. Sec. 105, Note 2, and Sec. 100).
Example |/Find the lengths of the vectors a, {3, 2, 1},
a, {2, —3, 0} and the scalar product of these vectors.

Solution. The desired lengths are

Va=Vatoirie=V1,
Vai=V 2y (—apro=V13
The scalar product is
a,a;,=3-2+4+2(—3)+1-0=0

Hence (Sec. 105, Item 1), the vectors a, and a, are per-
pendicular.
Example 2, Find the angle between the vectors

a,{—2, 1,2} and a{—2, —2, 1}
Solution. The lengths of the vectors are
|ay |=V P F TP =3,
las|=V 2P F (—D°F =3
The scalar product altﬁ\:(—Q) (—2)+1(—2)+2-1=4. Since
a,a;=|a, || az| cos (a;, as), it follows that

N . _
C0s (@1, Q)=Tz 1T —33—79

(ay, @5) ~ 63°37"

1) We have a,=Xi+Y J+Zk, ay=X,i+Y,/+Zs;k. Multiply to-
%etg:r tzlalé%ng into account Properties 3, 4. Sec. 105 and the table
n
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108. The Perpendicularity Condition of Vectors
If the vectors @, {X,, Yy, Z,}. @, {X,, Yy, Z,} are mutu-
ally perpendicular, then
XXy +Y\Yo+2,2,-=0
Conversely, if X,X,4VY,Y,+2,Z,-=0, then the vectors

a, and a4, are perpendicular or one of them (say, a,) is a null
vector V) (then X, =Y ,==Z, =0).

This is derived from Sec. 105, {tem 1, and (1) of Sec. 107.

109. The Angfe-Between Vectors

The angle @ between the vectors a,}X,. Y, Z,},
a,{Xz. Y2 22} may be found from the formmula (cf. Example
, Sec. 107)
cos (p=1a.T-I|a::,| _ X Xe+Y, V12,2,

Tl xtave. L x2avisgt (l)/
V x2ev2ez2 ) x24v2ez2 >

This is derived from (1) and (2a) of Sec. 107.
Example 1/ Find the angle between the vectors {1, 1, 1}

and {2, 0, 3}.
Solution.
1-2+1-0+1-3 5
0s @ = =——— = 0.8006
cose Vitxtz¢12-V22132  V3-¥]

whence ¢ ~ 36°50".
Example g/The vertices of a triangle ABC are
A(l, 2, =3); B0, 1, 2); C(2, 1

Find the lengths of the sides AB and AC and the angle A.
Solution. .

={0—1), (1—-2), 2+3)}={—1, —1, 5},
={@2—1), (1—=2), 1+3)}={1, —1, 4},

| AB|=V (=P (- +5:=3V3,

|AC 1=V TR I =373,

1) The null vector may be regarded as perpendicular to any vector;
cf. Sec. 82.
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AB. AC -1 1)+5
cos A= —AB AC_ DD D54 20
|AB| - | AC | 9Ve 9V

Note. The formulas (1) to (3), Sec. 101, are special cases
of formula (1) of this section.

110. Right-handed and Left-handed Systems
of Three Vectors

Let a, b, c be three (nonzero) vectors that are not parallel
to one plane and are taken in the indicated order (i.e. a is
the first vector, b the second and c the third). Bringing them
to the common origin O (Fig. 152), we get three vectors

5;1, 0B, OC not lying in one plane.

c c
[ B ¢
0,
aQ
e A 5 q
Fig. 152 Fig. 153

The system of three vectors a, b, ¢, is called right-handed
(Fig. 152) if a rotation of the vector OA which brings it to

coincidence (by the shortest route) with the vector OB is
perfom&ed in a counterclockwise sense for an observer at
oint C.

P If the rotation is clockwise (Fig. 153), then the system of
three vectors a, b, ¢ is called left-handed. v

Example 1. The base vectors i, j, # in a right-handed
coordinate system (Sec. 94) form a right-handed system.
However, the system J, , B (the vectors are the same, but
the order is difterent) is left-handed.

If we have two systems of three vectors and each of them
is right-handed or each is left-handed, then we say that these
systems have the same orientation; if one of the systems is
right-handed and the other is left-handed, then we say that
the systems have opposite orientations.

1) On the origin of the names “right-handed” and -left-handed”
see Sec. 94, Note 2.



148  HIGHER MATHEMATICS

A system changes its orientation in a single mterchange
of two vectors (cf. Example 1).

A system maintains its orientation in the case of a cir-
cular permutatton of the vectors as indicated in Fig. 154
(the second vector becomes the first, the third
the second, and the first becomes the third,
i.e. in place of the system a, b, ¢ we have
the system b, ¢, a).

Example 2. A circular permutation carries
the right-handed system 4, j, k into the right-
b handed system j, &, i, and from this system
Flg. 154 to the right-handed system &, i, j.

) Example 3. If the vectors a, b, ¢ form

a right-handed system, then the following three systems are
right-handed:

a b,c, bc.a, c,a, b
and the remaining three systems
b,a,c, a,¢c, b, ¢, b,a

composed of the same vectors are left-handed.
right-handed system of three vectors cannot be brought
to coincidence with any left-handed system.
The mirror image of a right-handed system is a left-handed
system, and vice versa.

111. The Vector Product of Two Vectors

Definition. The vector product of a vector a (multiplicand)
by a noncollinear vector b (multiplier) is a third vector ¢
(product), which is constructed as follows:

(1Y/its absolute value is numerically equal to the area of
a parallelogram (AOBL in Fig. 155) constructed on the vectors

TN
a and b; i.e. it is equal to |a|-|b] sin (a, b);
its direction is perpendicular to the plane of the indi-
cated parallelogram;

Mhe direction of the vector ¢ is chosen (from two pos-
sible directions) so that the vectors a, b, ¢ form a right-
handed system (Sec. 110).

Notation: ¢c=aXxb or c=[ab)

Supplement to definition. If the vectors @ and b are col-
linear, then it is natural to assign a zero area to the figure
AOBL (conditionally we continue to consider it a parallelo-
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gram). ‘Therefore the vector product of collinear vectors is
considered equal to the null vector.

Since any direction can be attributed to a null vectlor, this agree-
ment does not contradict Items 2 and 3 of the definition.

Note 1. In the term “vector product” the first word indi-
cates that the result of the operation is a vector (in contrast
to a scalar product; cf. Sec. 104, Note 1).

Fig. 165 Fig. 156

Example \l/Find the vector product ¢Xxj, where ¢, j are
base vectors of a right-handed coordinate system (Fig. 156).

Solution. (1) Since the lengths of the base vectors are
equal to the scale unit, the area of the parallelogram (square)
AOBL is numerically equal to unity. Hence, the absolute
value of the vector product is unity.

(2) Since the perpendicular to the plane AOBL is the
axis OZ, the desired vector product is a vector collinear with
the vector k; and since both of them have absolute value 1,
the desired vector product is equal either to 2 or to —&.

(3) Of these two possible vectors we have to choose the
first, since the vectors #, j, R form a right-handed system
(and the vectors {, /, —& form a left-handed system).

Thus,
IXj=k

Example 2/ Find the vector product jxi.

Solution. "As in Example 1, we conclude that the vector
JXi is equal either to & or to —k. But this time we have
to choose —&, since the vectors f, {, —k form a right-handed
syst]e_m (and the vectors j, I, & form a left-handed system).

hus
Jxi=—k

Example 15/ The vectors a and b have lengths equal to
80 cm and 50 cm, respectively, and form an angle of 30°.



150 HIGHER MATHEMATICS

Taking the metre as the unit of length, find the length of
the vector product axb.

Solution. The area of the parallelogram constructed on the
vectors @ and b is 80-50sin 30°==2,000 (cm2?) or 0.2 m2.
The length of the desired vector product is 0.2 metre.

Example 4/Find the length of the vector product of the
same vectors, taking the centimetre as the unit of length.

Solution. Since the area of the parallelogram constructed
on the vectors @ and b is 2,000 cm?, the length of the vector
product is 2,000 cm or 20 metres.

A compdrison of Examples 3 and 4 shows that the length
of the vector axb not only depends on the lengths of the

factors @ and b but also on the choice of the
/‘.L unit of length.
]
1

.
,
s

Physical meaning of a vector product. Out

P of a multitude of physical quantities depicted by

0 4 F ? vector product we consider only the moment of a
orce.

K Let A be the point of application of a force F.

¥ The momemt of the force F relative to the point O

—

is the vector product OAXF. Since the absolute

A value of this vector product is numerically equal

to the area of the parallelogram AFLO (Fig. 157),

Fig. 157 the absolute value of the moment is equal to the

product of the base AF by the altitude OK,

i.e. to the force multiplied b{ the distance from the point O to the
straight line along which the force acts.

In mechanics, proof is given to show that for equilibrium of a rigid
body it is necessary that not only the sum of the vectors Fy, F,, F,,.. .,
representing the forces applied to the body be equal to zero, but
the sum of the moments of the forces as well. When all forces are
parallel to a single plane, the addition of the vectors representing
the moments may be replaced by the addition and subtraction of their
absolute values. This substitution is impossible in the case of arbitrary
directions of the forces. Accordingly, the vector product is determined
as a vector and not as a number.

112. The Propertles of a Vector Product

1./The vector product ax b vanishes only when the vectors
a and b are collinear (in particular, if one or both of them
are null vectors).

This follows from the first item of the definition of Sec. 111.
la. aXa=0.

The equality axXa=0 makes it unnecessary to introduce
the concept of a “vector square” (cf. Sec. 105, Item 5a).
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%./If the factors are interchanged, the vector product is
multiplied by —1 (reverses sign):

bxa—=— (axb)

(cf. Examples 1 and 2 of Sec. 111).

Thus, a vector product does not possess the commutative
property (cf. Sec. 105, Item 2).

3,/(a+ b)xl=axl+bxl (distributive property).

Fig. 1568

This property holds for any number of terms; for example,
for three terms we have

@t+b+c)xl=axl+bxl+ecxl!

~ 4/(ma)xb=m (axb) (associative property relative to a
scalar multiplier).

4a. (ma) X (nb) =mn (aXb).

Examples: (1) —3axb= —3(axb).

(Y 0.3ax4b=1.2 (axb).

3y (2a—3b)x(c+5d)=2(axec)+ 10 (axd)—3 (bXc)—
—15@®xd)=2(a X ¢)+10(a X d)+3(c X b)+4 15 (dXb) =
=2(axc)—10(dxa)+3 (cxb)+15(dXxDb).
@y (@a+b)x(@a—b)=axa—axb4-bxa—bxb. The first
and fourth terms are equal to zero (Item 1). Besides, bxa=
= —axb (Item 2). Hence

(at+b)x(@a—b)=—2(@axb)=2(bXa)
Thus, the area OCKD (Fig. 158) is twice that of OACB.
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1" g/‘rhe Vector Products of the Base Vectors

From the definition given in Sec. 111 it follows that
ixi=0, IXj=k, IXk=—},
Jxi=—~k, jxj=0, IXk=l,
kxi=], kXj=—1, kxXk=0

The following mnemonic scheme will help you to avoid
making mistakes in the signs (Fig. 159).
If the direction of the shortest distance from the first
vector (multiplicand) to the second (multiplier) coincides
with the direction of the arrow, the product
J "\\ is equal to the third vector; if it does not
coincide, then the third vector is taken with
t the minus sign,
Example 1/Find kXx{. See diagram, the
direction of the shortest distance from & to
k coincides with the direction of the arrow.
Therefore RX1=].
Fig. 189/ Example 2, Find &Xj. Here, the direction
of the shortest distance is opposite to that
of the arrow. Therefore 2Xj= —1. -
Example 3, Simplify the expression (2{—3j+6k)X
X (41 —6j+ 12k). Removing the parentheses and taking ad-
vantage of the table or of the scheme, we find

(20 —3j+6R) X (41 —6j+ 12R) =8 (IX ) —12 (IX )+
+24 (IXR)— 12 (JX )+ 18 (JXJ)—36 (/< R)+
+24 (RX1)—36 (RXJ)+T72 (kX k)= — 12k —24j+ 12—
—361 424+ 361=0
Since a vector product vanishes only in the case of col-
linearity of the factors (Sec. 112, Item 1), the vectors

2{—3j+4-6k and 4{—6j+ 12k are collinear. This is also
indicated by the criterion of Sec. 102.

Il%xpreulng a Vector Product In Terms
of the Coordinates of the Factors

If a‘={X1, yl' Zl} and az={X’, y’, 22}, then l)
a1X01={ YaZs Z.X, |, XaYs S—I/

1) We find the vector product (X 8+ VY ,/+ZR)X(Xsi+ Y J+2Z4R)
using the table in Sec. 113 and the Properties 2, 3, 4, Sec. 112 (cf.
Example 3, Sec. 113).
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The expressions given between the vertical bars are second-
order determinants (Sec. 12).

Practical rule./To obtain the coordinates of the vector
a, X a, form the “array

X1Y1Z,
XsY¥aZy @
Covering the first column, we find the first coordinate:
Y.z,
YeZ,
Covering the second column and {taking the remaining
determinant with opposite sign (-— i‘g" or, what is the
YA
same thing, Z.X, , we find the second coordinate.
Z:Xs

Covering the third column (the remaining determinant is
again taken with its own sign), we find the third cootdinate.
Example 1,/ Find the vector product of the vectors

a,{3, —4. =8} and ay {—5, 2, —1}.
Solution. Form the array
3 —4 -8
-5 2 —1

Covering the first column, we obtain the first coordinate
—4 —8
2 —1

Covering the second column, we find the determinant
3 —8

—5 -1

Interchanging columns (this reverses the sign), we obtain the

—8§ 3
- _51_43_

Covering the third column, we obtain the third coordinate
3 —4
-5 2
Thus, @,xay=1{20, 43, —14}.

=(—4)(—1)—2-(—8) =20

second coordinate

=—14.
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Note. To avoid mistakes in the sign when computing the
second coordinate, use the following table instead of array (2):

X, Yy 2y X, Yy
Xs Y2 Zy Xo Yo 3y

This array is obtained from (2) by adjoining the first two
columns. Covering the first column in (3), we take the next
two in succession. Then, covering the second column as well,
we take the next two in succession. Finally, covering the
third column too, we take the last two. The columns do not
have to be.interchanged in any one of the three determinants
obtained.

Example ™~ 2/Fmd the area S of a triangle with specified
vertices A, (3, 4, —1), A, (2, 0, 4), A;(—3, 5, 4).

Solution. The desired area is equal to half the area of a

parallelogram constructed on the vectors 7117; and 74;1’3
We find (Sec. 99) A Ay ={(2—3), (0—4), (4+D}={—1,

—4, 5} and A A3=!—6 5}. The area of the, parallelo-
gram is equal to the absolute value of the vector product

AlAzxA1A3, and the vector product is equal to {—25,
—25, —25). Hence

s=1|44,%x4 Aaf—{,- V(=B (=B (—»)E=

=+ V1875 x 21.7
llgA)lanar Vectors

Three or more vectors are called coplanar if, when brought
to a common origin, they all lie in one plane.

If at least one of the three vectors is a null vector, all
three are still considered coplanar.

The criterion of coplanarity is given in Secs. 116, 120.

118 l/ Scalar Triple Product

The scalar trtple product of three vectors a, b, ¢ (taken
in that order) is the scalar product of the vector a by the
vector product bXc, i.e. the number a(bXe) or, what is
the same thing. (bXc¢)a.

Notation: abc.
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'{éterion of coglanarit?. If the system a, b, ¢ is right-
handed, then c > it is left-handed, then abe < 0.
But if the vectors a, b. ¢ are coplanar (Sec. 115), then
abc=0. In other words, the vanishing of the tripl
abc is a criterion he_coplanarity
— Geometrical interpretation of a A tnple
product abc of three noncoplanar vectors a, b, c is equal
to the volume of a parallelepi-
ped constructed on the vectors o
a, b, c with the plus sign if the
system a, b, ¢ is right-han-
ded and with the minus sign if
the system is left-handed.

Explanation. Construct (Figs. 160,
161) the vector

— v
oD=axb (1)

Then the area of the base OAKB is
equal to
P ——
S =l oD I Qy
The altitude H (length of the vector

'o_/ﬁ) with plus or minus sign is
(Sec. 92, Item 2) the algebraic pro-
jection of the vector ¢ along the dire-

—-—
ction OD,

H=4 pr > OD (ay D

—_—
The pl i i d when OM and s g
_f plus sign is used when n Fig. 18+

O are in the same direction (Fig.

160); this is the case for a right-handed system of a, b, c. The
minus sign corresponds to a left-handed system (Fig. 161). From (2)
and (3) we get

V=SH=4+ |‘O—B|pr - ¢
oD

but Iﬁ]pr OD ¢ is the scalar product OD ¢ (Sec. 104), 1. e
(axb) c. Hence

V=4(axb)c ;
117. Propertles of a Scalar Triple Product

L/A triple product does not change in a circular permu-
tation of the factors (Sec. 110); an interchange of two vectors
reverses the sign:

abc =bca=cab= — (bac)= —(cba)= —(acb)
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This follows from the geometrical interpretation (Sec. 116) and
from Sec. 110. -

/ (@a+b) cd=acd +bcd (distributive property). It ex-
tends to any number of terms.

This follows from the definition of a triple product and from
Sec. 112, Item 3

(ma) bc=m (abc) (associative property relative to the
scalar factor).

This follows from the definition of a triple product and from
Sec. 112, Item 4.

These properties make it possible to applg algebraic pro-
cedure to triple products, with the sole difference that the
order of the factors may be changed only if allowance is made
for the sign of the product (Item 1).

& A triple product having at least two equal factors is

Zero:

aab=0
Example / .

ab (3a+2b —5¢)=3aba +2abb —5abc = — Sabc

Example y

(@a+b)(b+c)(ct+a)=(@xb+axe+bxb+bxc)(c+a)=
=(@aXx b+a X c+b X c)(c+a)=abc+ acc+aca-+ aba-+
+bcc+ bea

All the terms, except the two extreme ones, are equal to
zero. Besides, bca=abc (Property 1). Therefore

(a+0b) (b+c) (c +a)=2abc

1 13/ Third-Order Determinant 1)

In many cases, in particular when computing triple pro-
ducts, it is convenient to employ notation like
aq b ¢
az by c,
a; by c3

®

) Determinants are fully discussed in ‘Secs. 182 to 185.
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This is an abbreviation of the expression

by ¢
by 5

a; C3
a (4
1 P +a

— 4

ay bsl

ag by £2)

Expression (1) is called a determinant of the third order.
The determinants of the second order which enter into
‘(}/ are constructed as follows. Delete from array (1) the row
nd column containing a,, as shown in the following scheme:

@b -6
[}

;‘2 bz 6'2
@G by ¢

The remaining determinant enters into (2) as a factor with
a, deleted. In similar fashion we obtain the other two de-
terminants of formula (2):

@ — G 4 --h--g
% 92 % ognd % b f
ay pﬂ 03 aj b3 fa

Remember that the middle term in formula (2) has a mi-
nus sign! )
Example\l//Evaluate the determinant

—2 —1 =3
—1 4 6
1 5 9
We have
—2 —1 -3
4 6 —1 6 —1 4
-1 4 6 =—2| |+1| |—3| -
1 5 9 59 19 156

=—2.64+1-(—15—3.(—9)=0

C3 ag
Cy as

a C3
s C3

Note 1. Since

, the third-order
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determinant may be represented as

a b ¢

by ¢, c; a, a, b
a; by cy|=a +b +c 2 3)
a: b: c: Y]bs c5 Yeg ag Yay by (J

Here, all second-order determinants have a plus sign.

Note 2. Computation by formula (3) may be mechanized in the
following manner. Adjoin the first two columns to array (1); this
ylelds the array

ay by ¢ ay b

ay by ¢4 a, b, (4)

as by ¢y a, b, o

Take the “letter a, in the first row and descend diagonally to the

right, as shown by the arrow in array (6):

a b ¢ a b

(5)

a, Ib, c,l a, b, /
ay |lby | a; b,

The second-order determlrl\,ant indicated by the arrow is multiplied
by a,. This yields a, |,* Ce

ol -

Then cover the first colu‘mn.’ take b, from the first row (the first
of the remaining letters) and proceed as before [as indicated in array
(6) ’

] by ¢ a b

N ),

¢y ay| by
¢y ag| by

b,
b,

This ylelds
¢, a

|
' ey ay

Finally cover the second column and obtain ¢, ,:’ :’l
1] 3

Example 2. Evaluate the determinant

1 2 3
D=|-1 3 4
2 6 2
Form array (4
1 23 1 2
-1 3 4 -1 3
2 5 2 2
which yields
3 -1 -1 3
D=1. +2 +3 =-14+20-33=-27
5 2 5
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119/ Expressing a Triple Product
In Terms of the Coordinates of the Factors

If the vectors a,, a;, a; are defined by their coordinates
a,={Xy, Yy, Z,}, as={Xs, Y, Z}, as’—'{xav Ys Zs}
then the triple product a,a,a; is computed by the formula

X, Y, Z,
a,a,a; =X, Y, Z, (1)
Xs Y3 Zs ~

This is a consequence of formulas (1), Sec. 107, and (1), Sec. 114.

Example J/The triple product @,@,a; of the vectors a, {—2,
—1, =3}, az; {—1, 4, 6}, ag{1. 5, 9} is equal to

—2 —1-3
—1 4 6|=0
1 59

(cf. Sec. 118, Example 1). Hence (Sec. 116), the vectors a, b,
¢ are coplanar.

Example g/The vectors {1, 2, 3}, {—1, 3, 4}, {2, 5, 2}
form a left-handed system because their triple product (Sec.
118, Example 2)

1 2 3
—1 3 4
2 5 2

is negative (see Sec. 116).

=27

120/ Coplanarity Criterion in Coordinate Form

A (necessary and sufficient) condition for coplanarity of the
vectors ay {Xy, Y1, Z1}, @ {Xa, Yo Za}, @5{Xs, Y5, Zs} s
(see Sec. 119, Example 1)

Xl Yl Zl
Xy Yy Z,
X3 Y3 Zg

This follows from Sec. 116.

=0
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121/ Volume of a Parallelepiped
The volume of a parallelepiped constructed on the vectors

@ {X1, Y1, Z,}, ax{Xa Vi, Zo}, az{Xs Y, Zs}
is
X, Yy Z,
Xy Yy 2,
x3 Y:l 23
where the plus sign is taken when the third-order determinant

is positive, and the minus sign when the determinant is ne-
gative (cf. Sec. 13).

This is a consequence of Secs. 116, 119,

V=4

Example 1,/Find the volume of a parallelepiped construc-
ted on the vectors {1, 2, 3}, {—1, 3, 4}, {2, 5, 2}.

Solution. We have

1 2 3
—1 3 4

2 5 2
Since the determinant is negative, we take the minus sign.
This yields V=27.

Example 2/ Find the volume V of a triangular pyramid
ABCD with vertices A (2, —1, 1), B(5, 5, 4), C(3, 2, —1),
D4, 1, 3).

Solution. We find (Sec. 99)

V=1 = (—27)

AB={(—2), 6+1), (4—1)}={3, 6, 3)

—_— —_—
In the same manner, AC={l1, 3, —2}, AD={2, 2, 2}.The
desired volume is equal to % of the volume of a parallele-

piped constructed on the edges 7173, XE, AD. Therefore

36 3
V=i_:5.13—2
2 2 2

Whence we get V=3.
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I2§/Ve¢tor Triple Product

A wvector triple product is an expression of the form
ax(bxe)

A vector triple product is a vector that is coplanar with
vectors & and c; it is expressed in terms of the vectors b
and ¢ as follows:

axX(bxc)="b (ac)—c (ab) )

/

l2<3/The Equation of a Plane

A. A plane (Fig. 162) which passes through a point M, (x,,
Yo, 2) and is perpendicular to a vector N{A, B, C} is rep-
resented by the first-degree equation?)
A (x—xo)+B (4—yo) +C (2—20)=0 (Iy

or

Ax+By+Cz4+D=0 @/
where D stands for the quantity v

— (Axo+ Byo+Czo)

The vector N {A, B, C} is called the
normal vector to the plane P.

Note Mhe expression “the plane Fig. 162
P is represented by Eq.(l)” means
that: (1) the coordinates x, y, z of any point M of plane P
satisfy Eq. (1); (2) the coordinates x, y, z of any point exte-
rior to plane P do not satisfy this equation (cf. Sec. 8).

B. Any equation of the first degree Ax+ By+Cz+ D=0
(A, B and C are not all simultaneously zero) represents a
plane.

In vector form, Egs. (1) and (2) are of the form

N (r—r¢)=0, (ta),
Nr+D=0 (2g),
(ro and r are the radius vectors of the points M, and M;

=— Nr,).

1) Eq. (1) is a condition for the perpendicularity of the vectors
N={A. B, C} and M,M:{x—x.- Y=Yo» 2-2.}. See Secs. 108 and 99.
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Examplg/A plane passing through a point (2,1, —1) per-
pendicular to a vector { —2, 4, 3} is defined by the equation

—2(x—2)+4@y—D+3@E+1H=0
—2x+44y+324+3=0

Note 2. One and the same Flane may be represented by a multi-
plicity of equations, all the coefficients and the constant term of which
are, respectively, proportional (see below. Sec. 125. Note).

or

.lZ}./Speclnl Cases ot the Position of a Plane
Relative to .a Coordinate System

1/The equation Ax+ By+Cz=0 (constant term D=0)
represents a plane passing through the origin.

2/ The equation Ax+ By+ D=0 (coefficient C=0) is a
plane parallel to the z-axis OZ, the equation Ax+Cz+ D=0

« is a plane parallel to the y-axis
OY, and the equation By+4Cz--
+ D=0 is a plane parallel to the
x-axis O0X.

It is useful to remember that
if the letter z is absent from the
equation, the plane is parallel to
the z-axis OZ, etc.

Example. The equation

x+y—1=0

represents a plane P (Fig. 163) pa-
rallel to the z-axis OZ.

Note. In plane analytic geometry, the equation x+y—-1=0 depicts
a straight line (KL in Fig. 163). We shall now explain why the same
equation in space represents a plane.

On the straight line KL take some point M. Since M lies in the
xy-plane XOY, 2=0. In the xy-plane, let the point M have the coor-

dinates x=—2- ) y=—l- (they satisfy the equation x+y-1=0). Then in

2
the three-dimensional system O0XYZ, the coordinates of the point M
will be =3, y=-2— , 2=0. These coordinates satisfy the equation

x+y~-1=0 (for greater clarity we shall write it in the form 1x+1ly+
+0:2-1=0).

Let us now consider the points for which x=-;—. y=% but 250,
R 1 1 1 1 1 1
for example, the points M, (-5- I ——2—>. M,<-§-. 5 7)
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M, -;—. % 1), etc. (see. Fig. 163). Their coordinates also sa-

tisfy the equation x+y+ 0-2—1=0. These points fill the «vertical®® stra-
ight line UV that passes through M. Such vertical straight lines may
be constructed for all points of the straight line KL. Together, they
will fill the plane P.

The representation of the straight line KL in a spatial coordinate
system will be given in Sec. 140, Example 4.

3/ The equation Ax+D==0 (B=0, C=0) is a plane pa-
rallel both to the y-axis OY and to the z-axis OZ (see Item 2),
i.e. it is parallel to the coordinate plane YOZ.

Similarly, the equation By+ D=0 is a glane parallel to
the plane X0Z, and the equation Cz+ D=0 is a plane pa-
rallel to XOY (cf. Sec. 15).

.2/ The equations X =0, Y =0, Z=0 represent the planes
YO0Z, X0Z, XOY, respectively.

tsz/condmm of Paralleiism of Planes

If the planes

Ayx+By+Cyz+Dy=0 and Ayx+ Bay+Coz+ Dy=0
are parallel, then the normal vectors N, {A,, B,, C,} and
N,{A,. B,, C,} are collinear (and conversely). Therefore
(Sec. 102) the condition (necessary and sufficient) that the
planes be parallel is

Ar_Bi_Cij
[Z=5=c]
Example 1. The planes
2x—3y—4z+4+11=0 and —4x+46y+8z+436=0
. -4 6 8
are parallel since w=—3=—3.

Example 2/ The planes 2x—3z—12=0 (4,=2, B, =0,
Cy,=-—3) and 4x+44y—6247=0 (A;=4, B3=4, C;=—6)
are not parallel since B;=0, but B,#0 (Sec. 102, Note).

Note. If not only the coefficients of the coordinates, but
also the constant terms are proportional; i. e. if

Ar_By_Ci_ D,
A, B, Ci Dl
then the planes coincide. Thus, the equations
3x+7y—524+4=0 and 6x+414y—10z248=0

represent one and the same plane. Cf. Sec. 18, Note 3.
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lEVCondltlon of Perpendicularity of Planes

If the planes
Ax+Byw+Ciz2+ D=0 and Aypx+ Byy+Coz+Dy;=0

are perpendicular, then their normal vectors N, {4,, B,, Ci},

N; {A;, B,, C,} are also perpendicular (and conversely). The-
refore (Sec. 108), the condition (necessary and sufficient) that
the planes be perpendicular is

AjAy+ BB, 4-CCy=0 \l‘/
Example‘;\l/ The planes
3x—2y—22+7=0 and 2x+2y+2z+4=0
are perpendicular since 3.2+ (—2)-2+4(—2)-1=0.
Example \2/The planes
3x—2y=0 (A,=3, B;=—2. C,=0)

and
2=4 (Agzo. Bz=0. C2=l)

are perpendicular.

12:/ Angle Between Two Planes

The two planes
A‘x+81y+Clz+Dl=0 (l)/
and - v
Agx+ Boy+Caz2+ D=0 (3)

form four dihedral angles that are pairwise equal. One of them
is equal to the angle between the normal vectors N, {4, By, C,}
and Ny {Ay, By, Cy}. Denoting any one of the dihedral angles
by @, we have

cosp=+ A A+B,B;+C,C,

3)
V at+Bis i) ai+ BE+Cl ¥
Choosing the upper sign, we get cos (Nﬁ,), choosing the

lower sign, we get cos [180°—(N,;, N,)].
Example. The angle between the planes

x—y+V2z+2=0 and x+y+¥ 2z2—3=0
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is determined from the equality
cosp=+ Ll 1) 14V 2- V2
Via«(22 Ve« (Vo)
We get g=60° or @=120°.
If the vector N, forms with the x-, y-, z-axes the angles
d;, P1, v, and the vector N,, the angles a,, B,, v,, then
cos @= £ (cos a, cos &, -+ cos B, cos B, cos y, cos y,) (3)/
This follows from (3) and formulas (1) to (3), Sec. 101.

|2e/ A Plane Passing Through a Given Point
Parallel to a Glven Plane

A plane passing through a point M, (x,, y,, 2z,) parallel
to a plane Ax+ By+Cz+ D=0 is given by the equation
A@x—x)+B(y—y)+C(z—2z)=0
This follows from Secs. 123 and 125.
Example. A plane passing through a point (2, —1, 6)

parallel to the plane x4 y—22+5=0 is given by the equa-
tion (x—2)+(y+1)—2(z—6)=0, i.e. x+y—2z+411=0.

lzyk Plane Passing Through Three Points

If the points Mg (xo, Yo, 20), My (x1, 41, 21), Ma(xs, by,
2,) do not lie on a straight line, then the plane passing through
them (Fig. 164) is given by the equa-

tion M,
X —X Y=Y 22 Mey2)
£H1—X Y1—Yo 2a—2% [=0 (1)
X3—Xo Ys—Yo 23—2 M M,

It expresses coplanarity of the vectors
— T 5
MoM, MyM,, M M, (see Secs. 120 and 99).

Example. The points My (1, 2, 3), M; (2, |, 2), M3, 3, 1)

‘do not lie on one straight line since the vectors M M,
—_—

{1, —1, —1} and MM, {2, 1, —2} are not collinear. The

Fig. 164
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plane MqM;M, is defined by the equation
x—1 y—2 z—-3
I -1 -1
2 1 -2

=0

i.e.
x+4+2—4=0

Note. If the points My, My, M, lie on one straight line,
then Eq. (1) becomes an identity.

l%torcopﬁ" on the Axes

" If the plane Ax+4-By+Cz+D=0 is not parallel to the
x-axis (i. e. if A # 0; Sec. 124), then it intercepts on this axis a

segment a—= —-g- . Similarly, the intercepts on the y-axis and

on the zaxis will be b=—2- (if B # 0) and c=—2 (if
C # 0) (cf. Sec. 32).
Example. The plane 3x+5y—4z—3=0 interceptas on the

. 3
axes the line segments a=—=1, b=—, ¢=—. /

lz‘ll/lntoreopt Form
of The Equation of a Plane

If a plane intercepts on the axes the (nonzero) segments
a, b, ¢, then it may be represented by the equation

=1 ay

which is called the “intercept form of the equation of a plane”.
Eq. (1) may be obtained as an equation of a plane passing through

three points (a, 0, 0), (0, b, 0) and (0, 0, ¢) (see Sec. 129).
Example. Write the equation of the plane

3x—6y+2z2—12=0

in the intercept form.
We find (Sec. 130) a=4, b= —2, ¢=6. The intercept form
of the equation is

x Y 2
Tt tE=l
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Note ./A plane passing through the coordinate origin cannot be
represented by an intercept-form equation (cf. Sec. 33, Note I).

Note g/A plane parallel to the x-axis but not parallel to the other
two axes may be represented by the equation %+-:— =1, where b and
¢ are the y-intercept and z-intercept, respectively. A plane parallel to
the x-axis and y-axis may be given by the equation %:1. Planes pa-

rallel to either one or two of the other axes may be represented simi-
larly (cf. Sec. 33, Note 2).

132/A Plane Passing Through Two Polnts
Perpendicular to a Glven Plane

A plane P (Fig. 165) which passes through two points
Mg (xo, Yo, 20) and M, (xy, y;, 2;) and is perpendicular to a
plane Q specified by the equation

Ax+ By+Cz+ D=0 is represented by My K 2
the equation /M?A.
N (1]

,

X —Xo Y —Yo 2 —2
Xy—Xo Y1—Yo 21—

=0 : e
oy G—

Filg. 185

It expresses (Sec. 120) coplanarity of
the vectors MM, MM, and N{A, B, C} = M.K.

Example. A plane passing through the two points
My(1, 2, 3) and, M, (2, |, 1) perpendicular to the plane
3x+4y+2—6=0 is represented by the equation
x—1 y—2 z—3
2—1 1—2 1-3

3 4 1
i.e. x—y+2z—2=0.
Note. When the straight line MM, is perpendicular to

plane Q, plane P is indeterminate. Accordingly, Eq. (I) be-
comes an identity.

=0

13§/A Plane Passing Through a Glven Point
Perpendicular to Two Planes

A plane P which passes through the point Mg (xo, yo, 20)
and is perpendicular to two (nonparallel) planes Q;, Qj:

Ax+Bwy+Ci2+ D=0, Agx+Byy+Coz+Dy3=0
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is given by the equalion

X—Xo Y—Yo Z2—2p

A, B, c, |=0 (1\)/
Ag Bg Cz

It expresses (Fig. 166) coplanarity of the vectors
P H
Moy, N {4, B, .}, N {4, B, C.}

Example. A plane that passes through the point (1, 3, 2)
and is perpendicular to the planes x+2y+2z—4=0 and
2x+y+32+5=0 is given by the
equation

x—1 y—3 z-—-2
1 2 1 |=0
2 1 3
or
Fig. 168 5x—y—32+4+4=0

Note. 1f the planes Q, and Q, are parallel, then the P
plane is indeterminate and Eq. (1) becomes an identity.

13_4/ The Point of Intersection of Three Planes

Three planes may not have a single point in common (if
at least two of them are parallel and also if their straight
lines of intersection are parallel), may have an infinity of
common points (if they all pass through the same straight
line) or may have only one common point. In the first case,
the system of equations

Ayx+Byw+Cyz2+ Dy =0,

Apx+ Byy+Cpz+ D, =0,

Agx+ Byy+Csz+Dy=0
has no solutions, in the second case it has an infinity of
solutions, and in the third, only one solution. The investi-

gation is most conveniently carried out by means of deter-
minants (Secs. 183, 190), but elementary algebra will suffice.

') The vector product N,XN, (Fig. 166) serves as the normal vee-
tor to the P plane. Thus [Sec. 123, (1a)] the equation of the P plane
is (NyXN,) (r-rg)=0, which again yields Eq. (1).
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Bxample\l/ The planes

7x—3y+ z2—6=0, (1)
14x —6y +22—5=0, @)
x+ y—5z2=0 (&)

have no common points since the planes (1) and (2) are pa-
rallel (Sec. 125). The system of equations is not consistent
[Egs. (1) and (2) are contradictory].

Example\2/ Investigate the following three planes for com-

mon points:
x+ y+ z=1, )
x—2y—3z2=5, (5)
2x— y—2z=38 ©)

We seek the solution of the system (4)-(6). Eliminating
z from (4) and (5), we get 4x+y=8; eliminating z from
(4) and (6), we get 4x+y=10. These two equations are
inconsistent. Hence, the three planes do not have any points
in common. Since there are no parallel planes among them,
the three straight lines along which the planes intersect pair-
wise are parallel.
Example ii/ Investigate the following planes for common
points:

x+y+z=1, x—2y—32=5, 2x—y—22=6

Operating as in Example 2, we both times get 4x+y=38,
which is actually one equation, not two. It has an infinity
of solutions. Hence, the three planes have an infinity of com-
mon points, i.e. they pass through one straight line.

Example yThe planes

x—y+2=0, x+2y—1=0, x+y—z+4+2=0

bave one common point (—1, 1, 2) because the system of
equations has the unique solution x=—1, y=1, z2=2.

laj/ The Mutual Positions of a Plane and a Palr
of Points

The mutual arrangement of points M, (x,, ¥y, 24), M; (Xg, Y3, 24)
and a plane

Ax+By+Cz+D=0 (1)
may be determined by the following criteria (cf. Sec. 27):
(a) The points M, and M, lie to one side of the plane (1) when

the numbers Ax,+By,+Cz,+D and Axy+By,+Cz,+D have the same
signs.
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(b) M, and M, lie on different sides of the plane (1) when these
numbers have opposite signs.

"~ (c) One of the points M,, M, (or both) lies on the plane if one
of the numbers (or both) is equal to zero.

Example The points g 3, 3) and (1, 2, —1) lie to one side of
the plane 6x+3y+22-6=0 because the numbers 6-2+3-3+2.3-6=21
and 6-1+3-2+2 (~1)-6=4 are both positive.

Example 2/ The origin (0, 0, 0) and the point (2, 1, 1) lie on
different sidés of the plane 5x43y—22-5=0 since the numbers
5:0+3.0-2:0-5=-5 and 5-2+4+3-1-2-1-5=6 have opposite signs.

13‘8/ The Distance from a Point to a Plane

The distan&g d from a point M, (x;, ¥, 2z,) to a plane

Ax+By+4-Cz24-D=0 (H/
is equal (cf. Sec. 28) to the absolute value of the quantity
=Ax,+By‘+Cz.+D

8 VA xBi+C? (gy
i.e
_ | Ax,+By,+C2,+D |
d=|8|="" s — @/

Example. Find the distance from the point (3, 9, 1) to
the plane x—2y+2z—3=0.

Solution.
S X1=201+22,-3 _ 1.3-2:9+21-3 1
Vits(-2)%+2¢ 3 3’

d=|8]|=5+

Note 1. The sign of 8 indicates the mutual positions of the point
M, and the origin O relative to the plane (1) (cf. Sec. 28, Note 1).

Note 2. Formula (3) may be derived analytically by reasoning as
in Note 2 of Sec. 28. The equation of a straight line which passes
through a point M, and is perpendicular to the plane (1) is conve-
niently taken in parametric form (see Secs. 153, 156).

l.’:‘lj/‘l’he Polar Parameters (Coordinates) of a Plane !’

The polar distance (or radius vector) of a plane UVW
(Fig. 167) is the length p of the perpendicular OK drawn to
the plane from the origin O. The polar distance is positive
or zero.

) CI. Sec. 29.
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If the plane UVW does not pass through the origin, then
for the positive direction on the perpendicular OK we take

the direction of the vector OK. But if UVW goes through
the origin, then the positive direction on the perpendicular
is taken in arbitrary fashion.

The polar angles of the plane
UVW are the angles

a=/X0K, B=/YOK,
between the positive direction of
the straight line OK and the coor-
dinate axes (these angles are con-
sidered to be positive and not to

exceed 180°). The angles =, B, y are
connected (Sec. 101) by the relation

cos? a 4 cos? B+ cos? y=l_/

The polar distance p and the polar angles @, B, y are
termed the polar parameters (or polar coordinates) of the
.plane UVW

If the plane UVW is given by the equation Ax+ By +
+ Cz+4- D=0, then its polar parameters are determined by
the formulas

Fig. 167

1D}
= e— l
P VAT+ BT+ O3 (J
A
cosa=F W.
B
Co = hy——————————
b q:VAr+ﬂ'+c' (g}
_ C
V=T Vrmee

where the upper signs hold true when D > 0, and the lower
signs when D < 0. But if D=0, then arbitrarily we take
only the upper oi only the lower signs.

Example 1. Find the polar parameters of the plane
x—2y+22—3=0 (A=1, B=—2, C=2, D=-3).
Solution. Formula (1) yields
1-3]

3
P= Vs 3 /
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Formulas (2), where we have to take the lower signs (becau-
se D= —3 < 0) yield

S A == —,
Vite(-2)+oe 3!

2 2
Rl A7 e e s N
Hence
a =~ 70°32, P =~ 131°49", y =~ 48°11’ /
Example 2/ Find the polar parameters of the plane
E x—2y+22=0

Formula (1) gives p=0 (the plane passes through the
origin); in formulas (2) we can take either the upper signs
alone or the lower signs alone. In the former case,

' 2 2
cosa=——, cosPp=+—+, cos?=—-€/
hence

a ~ 109°28’, B ~ 48°11', y = 131°49’ J
in the latter case,

a ~ 70°32', B =~ 131°49", y= 48°11' /
138/ The Normal Equation of a Plane

A plane with polar distance p (Sec. 137) and polar angles
a, B, v (cos*a+cos?P+cos? y=1; Sec. 10l) is given by
the equation :

xcosa-+ycos f+zcos y—p=0 (l‘)/
This is the normal form of the equation of a plane. '

Example y Set up the normal form of the equation of a
plane in which the polar distance is VLa_ and all the polar
angles are obtuse and equal.

Solution. For a=Pf=+y the condition cos®a -} cos?f +
+ cos?y=1 yields cosa=cosf=cos y=+ V;a_ and since
the angles @, B, y are obtuse, we have to take the minus
- . L 1 1 1 1
sign. The desired equation is — 73_—1:—‘/—3_ y—V_a_ z——V—-a_._O.

QNole. The same plane can be represented by the equation
x+y+z+1=0
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iboth members of the preceding equation have been multips
lied by — V¥ 3), but this is not the normal form of the equa-
tion because the coefficients of the coordinates are not cosines
of the polar angles (the sum of their squares is not equal
to unity) and, what is more, the constant term is positive.

Example 2/ The equation %—x-{—% y—% 2+45=0 is not the

normal form, since even though (;—)’-{- (%-)’-{- ( —%)’= 1,
the constant term is positive.

Example ‘3}/The equation — —;—x—i— %‘ y—% z2—5=0 isof
the normal form; cos a=— % , cos P = 2 , Ccos v=——g- s

3 3
p=>5 (a~109°28', B=48°11’, y=131°49").

Derivation of Eq. (1). The plane under consideration (UVW In
Fig. 167) goes through the point K (pcosa, pcosf, pcosvy) perpen-
— —
dicular to the vector OK. Instead of OK we can take the vector a in
the same direction with length equal to the scale unit. The coordi-
nates of the vector @ are cosa, cosf, cosy (Sec. 101). Applying Eq.
(1), Sec. 101, we get the normal form of Eq. (1).

Iag/neduclng the Equation of a Plane
to the Normal Form

To find the normal form of the equation of a plane spe-
cified by the equation Ax+ By+4Cz+ D=0, it is sufficient
to divide both members of the given equation by
T V A*F B2+ C3, the upper sign is taken when D > 0, the
lower when D < 0; if D=0, any sign may be taken. This
yields the equation

A - B 4
VArrbirci . | Varrpact! ¥ VaisBiaci .
Dl _
Vai¥Bi+C?

It is in the normal form because the coefficients of x, y, z, by
virtue of (2), Sec. 137, are equal to cosa, cos 3, cosy, respectively,
and the constant term is equal to —p by virtue of (1), Sec. 137.
Example_l/ Reduce the following equation to the normal
form:

x—2y+22—6=0 (1)
Divide both  members  of the equation by
+ V124 (—2)2F+22=3 (the sign before the radical is plus
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since the constant term, —6, is negative). We get

! 2 2 _
?X—T y+-3—2—2——0

mlw

Hence, p=2, cosa=%, cos B=~—-§, cosy =
(@=70°32", f=131°49', y=<48°11’).
Example.2/ Reduce the following equation to the normal

form: :
x—2y+224+6=0 (_2)'
The constant term is positive. We therefore divide by
— VP (—=2)T+22=—3 and get

1 2 2

2

Consequently, p=2, cos a=—-i, cos P = 5 cos y=—-§

3
(2~ 109°28", Bx48°11", yx131°49").

Example y Reduce to normal form the equation
x—2y+22=0

Since D=0 (the plane goes through the origin), we can
divide either by +3 or by —3. This yields 4 x——y+

+-§-z=00r—%x+—§-y-—%z=0. In both cases, p=0.
The quantities a, f, y in the -first case are the same as in
Example 1, in the second case, the same as in Example 2.

Note. If in the equation Ax+4By+Cz+ D=0 the con-
stant term is negative and A%+ B24C%?=1, then the equa-
tion is in the normal form (Sec. 138, Example 3) and it
does not need to be transformed.

140/ Equations of a Stralght Line In Space

Any straight line UV (Fig. 168) may be represented by a
system of two equations:

A+ Byy+Crz+ Dy =0, (1),
Agx+ Boy+Coz + Dy =0 2),
which represent (if they are considered separately) any two
(distinct) planes P, and P, passing through UV. Egs. (1)

and (2) (taken fogether) are termed the equations of the
straight line UV.
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Note. The expression “the straight line UV is represented
by the system (1)-(2)” means that (1) the coordinates x, y,
z of any point M of the line UV satisfy both equations (1)
and (2); (2) the coordinates of any point not lying on UV do
not simultaneously satisfy both Egs. (1), (2), though they
may satisfy one of them.

Fig. 168 Fig. 169

Example 1. Write the equations of the straight line OK
(Fig. 169) that passes through the origin O and the point
K 4, 3, 2).

Solution. The straight line OK is the intersection of the
planes KOZ and KOX. Taking some point on the z-axis OZ,
say L(0, 0, 1), form the equation of the plane KOZ (the

plane passing through three points O, K, L; Sec. 129). This
gives us

=0, that is, 3x—4y=0 ®)

(=2
-— N N

-

In the same way

£ o wWww

e find the equation
2y—3z=0 )

of the plane KOX. The straight line OK is given by the
system of equations (3)-(4).

Indeed, anr point M of line OK lies both in the KOZ plane and
in the KOX plane; hence, its coordinates satisfy both Egs. (3) and (4)
at the same time. On the other hand, the point N, which does not
lie on OK, cannot belong to both planes KOZ and KOX at the same
time; hence, its coordinates cannot satisfy both Egs. (3) and (4) at
the same time.
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Example 2 The straight line OK of Example 1 may also
be given by the system of equations

3x—4y=0, (£)Z
{ 2x—42=0 ©y

The first describes the KOZ plane, the second, the KOY plane.
The same line OK can be represented by the system

2y—32=0, 2x—4z=0

Example Gg./ Do the points My (2, 2, 3), M, (—4, —3, —3),
M,{_——S. —6, —4) lie on the straight line OK of Example 1?

he coordinates of point M, do not satisfy either Eq. (3)
or Eq. (4); point M; does not lie on the straight line UV.
The coordinates of point M, satisfy (3) but do not satisfy 84);
point M, lies in the KOZ plane, but does not lie in the KOX
glane. Hence, M, does not lie on OK. M; lies on OK since
oth Eqs. (3) and (4) are satisfied.

Example 4/ Equation z=0 describes the xy-plane. The
equation x+y—1=0 describes the plane P parallel to the
z-axis (Sec. 124, Example). The straight line along which
the planes XOY and P intersect (KL in Fig. 163) is repre-
sented by the system

x+y—1=0, z=0

14J< Condition Under Which
Two First-Degree Equations Represent
a Stralght Line

The system

{ Ayx+ By +Cyz+ D, =0, (1),
Agx+Byy+Caz+Dy=0 ),
represents a straight line if the coefficients A,, B,, C, are
not proportional to the coefficients A,, By, C; [in this case
the planes (1) and (2) are not parallel (Sec. 125)].

If the coefficients A,, B,, C, are proportional to the coef-
ficients A,, Ba, Cy, but the constant terms do not obey the
same proportion

A,:AI=B’:Bl=Cg:Cl F 3 Dz:Dl
then the system is not consistent and does not present any

geometric image [planes (1) and (2) are parallel and noncoin-
cident].
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If all four quantities A,, B;, Cy, D, are proportional to
the quantities A;, Bj, Cz, Dy:
Ay:A;=B3:B;=C,:Cy=D,:D,
then one of the equations (1), (2) is a consequence of the other

and the system describes a plane {the planes (1) and (2) arc
coincident].

Example L/ The system
2x—Ty+12z—4=0, 4x—14y436z2—8=0
describes a straight line (in the second equation the coeffici-

ents A and B are twice those in the first, and the coefficient C
is three times as large).

Example 2/ The system
2x—Ty+122—4=0, 4x—14y+242—8=0
describes a plane (all four quantities A, B, C, D are propor-

tional).
Example g/ The system

2x—Ty+122—4=0, 4x—14y+242—12=0

does not represent any geometric image (the quantities A, B, C
are proportional and D does not obey that proportion; the
system is inconsistent).

1412/1110 Intersection of a Straight Line

and a Plane
The straight line L
{ Ayx+By+Cyz+ Dy =0, (0]
\ Agx+ Bay+Coz+ Dy =0 @

and the plane P
Ax+By+Cz+D=0 3)

may not have a single common point (if L || P), may have an
infinity of common points (if L lies on P) or may only have
one common point. The problem reduces 1) to seeking common
points of three planes (1), (2), (3), (see Sec. 134).

Example 1. The straight line

x+y+2z2—1=0, x—2—32—5=0

) The computations are simplified when the equations of the
straight line are taken in parametricform (Sec.152 and Note in Sec. 153).
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does not have common points with the plane
2x—y—2z—8=0

(they are parallel) (see Example 2, Sec. 134).
Example "Z/The straight line

x—2y—3z—5=0, 2x—y—2z="6

lies in the plane x+y+2z=1 (see Example 3, Sec. 134).
Exampleg/The straight line x4+ y—2+4-2=0 x—y+4+2=0
intersects the plane x+42y—1=0 in the point (—1, 1, 2)
(see Example 4, Sec. 134).
Example 4/ Determine the coordinates of some point on
the straight Tine L:

2x—3y—2z+43=0,
5x-—y+z—8=0

Assign some value, say x=3, to the x-coordinate. We then
have the system —3y—2z+9=0, —y+2+7=0. Solving it,
we find y=4, z=—3. The point (3, 4, —3) lies on the stra-
ight line L (at its intersection with the plane x=3 parallel
to Y0Z). In the same way, taking x=0, we find the point

(0, —% , -24—7) at the intersection of L and the plane YOZ,

etc. It is also possible to assign various values to the y- or
2-coordinate.

Example 5/ Determine the coordinates of some point on
the straight line L:

5x—3y+22—4=0,
8x—6y+42—3=0

Unlike the preceding example, arbitrary values cannot
be assigned to the x-coordinate. For instance, for x=0 we
et the inconsistent system —3y+ 2z —4=0, —6y+-42—3=0.
%‘he straight line L is parallel to the plane ZOY. We can
assign arbitrary values to the y- or z-coordinate; for in-

stance, putting z=0, we get the point (-%—. %, 0). For x

we will always obtain the same value x=% so that the stra-

ight line L lies in the plane x=—g— parallel to ZOY,
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I43./ The Direction Vector

A. Any (nonzero) vector a {1. m, nﬁ lying on a straight
line UV (or parallel to it) is called the direction vector of
that line. The coordinates [, m, n of the direction vector are
called the direction numbers of the line.

Note. By multiplying the direction numbers [, m, n by
one and the same number & (not equal to zero), we get num-
bers Ik, mk, nk, which will also be
direction numbers (these are the co-
ordinates of the vector ak, which is
collinear with a).

B. For the direction vector of
the straight line UV

Ayx +Byy+Cy2+ Dy =0, (1)

Agx + Boy+Cyz+Dy=0 (2)

we can take the vector product N, X

X Na, where Ny={A4,, B,, C;} and

N,={A,, B,, Cy} are normal vectors to the planes P, and P,

(Fig. 170) described by Egs. (1) and (2). Indeed the straight
line UV is perpendicular to the normal vectors N;, Nj.

Example. Find the direction numbers of the straight line

2x—2y—2+4+8=0, x+2y—22+4+1=0

Solution. We have N,={2, —2, —1}, N,={1, 2, —2}.
Taking a=N;XN; for the direction vector of the given
straight line, we find

_Jl|—2 —=1 —1 2 2 — _
a={|73 33| | 3| |} 73| }=te 20
The direction numbers will be {=6, m=3, n=6.

Note. Multiplying these numbers by —;— , we find the direc-

tion numbers ['=2, m’'=1, a’=2. One can also take the
numbers —2, —1, —2 and so forth for the direction numbers.

Fig. 170

144/ Angles Between a Stralght Line
and the Coordinate Axes

The angles a, B, y formed by a straight line L (in one of
its two directions) with the coordinate axes are found from
the relations

!

COS A = —————e—
Vigmitns '
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0§ Pz o
T Virmirat '
Y= Virmiza

where I, m, n are the direction numbers of L.
This is a consequence of Sec. 101.
The quantities cos @, cos B, cos y are called the direction

cosines of the straight line L.
Example\./f-'ind the angles formed by the straight line

2% —2% —2+4+8=0, x+2—2z+41=0

with the axed of coordinates.

Solution. For the direction numbers of the given straight
line (Sec. 143, Example) we can take [=2, m=1, n=2.
Hence cos a = ———2——=2, cos ﬁ:-‘L , COS y:i; whence

Varyiigoe 3 3 3
ax 48°1l°, B = 70°32’, y =~ 48°11".

145/ Angle Between Two Straight Lines

The angle ¢ between the straight lines L and L’ (more
exactly, one of the angles between them) is found from the
formula

W+mm’+nn’

cos =
ose Vitemz+nt VI't4m't+n'? (]-)/
where !, m, n and ', m’, n’ are the direction numbers of the
straight lines L and L’, or from the formula

cos @=cos & cos &’ -} cos f cos f’+ cos y cos y’ (2&
This follows from Sec. 109.
Examp‘lej/Find the angle between the straight lines

2x—2y—2+4+8=0, 4x+ y+32—21=0,
{x+2y—22+1=0. 2x+4-2y—3z+415=0

Solution. The direction numbers of the first line (Sec. 143,
Example) are [=2, m=1, n=2. If for the direction vector
of the second line we take the vector product {4, 1, 3}x
x{2, 2, —3}, then th(le direction numbers will be —9, 18, 6.

Multiplying them by -3—(to obtain smaller numbers, Sec. 143,
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Note), we get |=—3, m=6, n=2. We thus have
2:(—3)+1:6+2-2 =i
Vargrert V(—3p+6t+2¢ 21

cos p=

whence ¢ =~ 79°01".

146/ Angle Between a Straight Line and a Plane

The angle ¢ between the straight line L (with direction
numbers [, m, n) and the plane Ax+ By+ Cz+ D=0 is found
from the formula

| Al+Bm+Cn |
VA By C* Vitgm®+n?
This follows from Sec. 145 (if @ is the angle between the straight
line L and the normal vector { A, B, C}. then @=90° 4+ ¢).
Exam;:lj/ Find the angle between the straight line
3x—2=24, 3x—z=—4

and the plane 6x+4 15y —10z431=0. We have [=2, m=3,
n=6 (Sec. 143) and find

sin p=

16:2+15-3+(—10)-6| 3

sin o= —_—
¢ Vétri5t+(—10)* V2r+3746%F 133

whence ¢ = 1°18’.

1 Conditions of Parallelism and Perpendicularity
of a Straight Line and a Plane

The condition for a straight line with direction numbers
I, m, n to be parallel to a plane Ax+By+Cz+ D=0 is

Al+Bm+Cn=0 1)

It expresses the perpendicularity of the straight line and the
normal vector {4, B, C}.

The condition for perpendicularity of a straight line and
a plane (same notation) is

{ m n
_—mme— 2
A B> C (‘l

This expresses the parallelism of a straight line and a normal
vector.
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148. A Pencll of Planes !

The collection of planes passing through one and the same
straight line UV is called a pencil of planes The line UV
is the axis of the pencil.

If we know the equations of two distinct planes P, and P,

Ayx+ Byy+Cyz+ D, =0, (0]
Agx+ Bay+Coz+ Dy =0 (V)]
belonging to a pencil, (i.e. the equations of the axis of the

pencil: see Sec. 140), then every plane of the pencil may be
represented’ by an equation of the form

my (Ayx+ Biy+Cyz+ Dy)+ my (Agx+ Bay+Caz+ D) =0 (3)
Conversely, for any values of m,;, m, (not all zero simul-
taneously) Eq. (3) represents a plane belonging to the pencil
with axis UV.? In particular, for m;=0 we get the plane
P, and for my=0, the plane P,. Eq. (3) is called the equa-
tion of the pencil of planes.®
When m; # 0, we can divide Eq. (3) by m,;. Denoting
mg:m, in terms of A we get the equation
Ayx+Byy+Cyz+ Dy + A (Agx+ By +Coz+D3) =0 (4)
Here, all possible values are given to the single letter A; but
from (4) we cannot obtain the equation of the plane P,.
Example 1. Let there be given the equations
5x—3y=0, )
32—4x=0 ©)
of two planes of a pencil, i.e. the equations of the axis of
the pencil. The equation of the pencil is

my (5x —3y) + mg (32 —4x)=0 7
For example, taking m; =2, my=—3 we will have
2 (5x—3y)+ (—3) (32— 4x) =0 ®)
Eq. (8) or
22x —6y—92=0 (8a)

represents one of the planes of the pencil.

1) Cf. Sec. 24.

?) See below: explanation of Example 1|.

3) If planes (1) and (2) are parallel (but not coincident), then
Eq. (3) represents (for all possible values of m,, m,) all the planes pa-
rallel to the two given planes {parallel pencil of planes).
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Explanation. On the straight line UV take an arbitrary point
M (x, y, 2). Its coordinates x, y, z satisfy the Eqs. (5) and (6), and,
hence, Eq. (8). This means that plane (8) passes through any point M
of the line UV, i.e. it belongs to the pencil.

Example 2. Find the equation of a plane passing through
the straight line UV of Example 1 and through the point
(1, 0, 0). :

Solution. The desired plane is given by an equation of
the form (7). This equation must be satisfied for x=1, y=0,
2 =0. Substituting these values into (7), we get 5m, —4my=0,
or my:mg=4:5. We get the equation

4 (5x—3y)+5 (3z—4x)=0

52—4y=0

Example 3. Find the equations of
the projection of the straight line L:
2x+3y+424-5=0, ©
%—6y+432—7=0 )

on the plane P

242y +24+15=0 (10) Flg. 171

Solution. The desired projection
L’ (Fig. 171) is a straight line along which plane P is cut by
plane Q (drawn through L perpendicular to P). Plane Q be-

longs to the pencil with axis L and is given by an equation
of the form

(2x+3y+42+5)+A (x—6y+32—7)=0 (11)
In order to find A give (11) in the form
2+M)x+B3—6A) y+ (4430 z4+5—7A=0 (11a)

and write the condition of perpendicularity of the planes (10)
and (lla):

or

22+ +2B—6M)+1(4+30)=0

From this we have A=2. Putting it into (11a), we obtain
the equation of the plane Q. The sought-for projection is gi-
ven by the equations
4x—9y+102—9=0,
{ 2x+2y+2z+415=0
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149. Projections of a Straight Line
on the Coordinate Planes

Let a straight line be represented by the equations

{. Ayx+ By +Cyz4-Dy =0, 1))
Agx+ Boy+Cyz+Dy=0 2
where C, and C, are not simultaneously zero (case C; =C3=0
is considered below in Example 3). To find the projection of
the straight line on the xy-plane, it suffices to eliminate 2
from Egs. (1)-(2). The resulting equation (together with
2=0) will represent the desired projection.? The projections
on the yz-“and 2x-planes are found in similar fashion.
Example 1. Find the projection of the straight line L
2x+4y—3z2—12=0, 3)
x—2y+42—10=0 4)
on the xy-plane.
Solution. To eliminate 2z, multiply the first equation by 4
and the second by 3 and add. This yields

4(2x+4y—32—12)+3 (x—2y+42—10)=0 (%)
or
11x+410y—78=0 ©6)
This equation together with the equation
z2=0 ©)
is the projection L’ of the straight line L on the xy-plane.

Explanation. Plane (5) passes through the straight line L
(Sec. 148). On the other hand, as will be seen from (6) (which does
not contain 2), this plane (Sec. 124, Item 2& is perpendicular to the
xy-plane. Hence, the straight line along which plane (6) intersects
p}ane (7) is the projection of L-on the plane (7) (ci. Sec. 148, Exam-
ple 3).

Example 2. The projection of the straight line L
3x—5y+42—12=0, 8)
2x—5y—4=0 o)
on the plane z=0 is represented (in the plane coordinate

system XOY) by Eq. (9). There is no need to eliminate the
z-coordinate since it is already absent from Eq. (9). The

1) See Example 1, Explanation.
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plane (9) is perpendicular to the xy-plane; it projects the
straight line L on XOY.

Example 3. Find the projections of the straight line L

{ 2x—3y=0, (10)
x+y—4=0 (1)
on the coordinate planes.

Solution. In both equations z is absent, so that both pla-
nes P, and P, (Fig. 172) are perpendicular to the xy-plane.
The straight line L is perpendicular
to XOY and is projected on the xy-
plane in the point N with z-coor-
dinate zy=0. From the system
(10-(11) we find xy="1%2, yn=

8
= -g- .

The equation of the projection
L’ on the yz-plane may be found in
the usual way by eliminating x from
(10) and (11).We get y=--, which Fig. 172
is the same equality found above for yy (from the figure it
is evident that the straight line L’ is at a distance OB from
0Z, equal to yy = AN). The equation of the projection L” on

the xz-plane is x==.

150. Symmetric Form of the Equation
ot a Straight Line

The straight line L passing through a point M, (x,, yo. 2,)
and having the direction vector a {l, m, n} (Sec. 143) is gi-
ven by the equations

T = e O
which express the collinearity of the vectors a {l, m, n} and

MM {x—xo, y—yo, 2—2o} (Fig. 173). They are called the
symmetric (standard) form of the equation of a straight line.

Note 1. Since for the point M, we can take any point
on L, and the direction vector a may be replaced by a di-
rection vector ka (Sec. 143), an arbitrary value can be assig-
ned separately to each of the quantities xq, yo, 2o, I, m, n.
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Example 1. Write the symmetric equations of a straight
line passing through the.points A (5, —3, 2) and B (3, 1, —2)
For M, we can take the point A, for the vector @ we can

take A_§={—2, 4, —4}. The symmetric equations will then be

— =7 =7 2
But if we take B for M, and the vector -—% ﬁ:{l, —2,2!
for a, then the symmetric equations

\Z will be
| My 13_yml_z2 g
- / 1 -2 2
/Maﬁb'yo'zo) a Note 2. Of the three cquations

0 x-5_y+3 x=5_2-2 y+3_2-2

Y TmTT T i
7% 4)
contained in (2), only two (no matter
Fig. 173 which) are independent, while the third

is a consequence of them; for instance,

subtracting the second from the first,

we get the third. Each of the Egs. (4) represents a plane passing

through the straight line AB perpendicular to one of the coordina-

te planes. At the same time, it represents the projection of the straight
line ABon the respective coordinate plane (Sec. 149).

Example 2. The symmetric equations of the straight line

passing through the points M, (5, 0, 1), M; (5, 6, 5) will be

x=5 _ y-0__2-1
=% ®)

The expression 5—75 is conventional, signifying (Sec. 102,
Note) that x—5=0, so that in place of (5) we have to write

. y _2-1
x=5 == ©)
The straight line MM, is perpendicular to the x-axis
(since [=0).

Example 3. The symmetric equations of the straight line
passing through the points A (2, 4, 3) and B (2, 4, 5) will be

x=-2 y-4
0

—y-4__2-3
0 o0 2

This notation means that x=2 and y=4.
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The quantity z assumes various (any) values for distinct
points of the straight line AB. AB is parallel to the z-axis
(since |=m=0).

151, Reducing the Equations of a Straight Line
to Symmetric Form

In order to reduce the straight-line equations

Ayx+Byy+Cy2+ D, =0, ()
Asx+-Bay+4Coz+ Dy =0 2

to symmetric form (Sec. 150), one has to determine the coor-
dinates x4, Yo, 2o of some point lying on the straight line
(Examples 4 and 5, Sec. 142) and the direction numbers [,
m, n (Sec. 143).

Example 1. Reduce the straight-line equations

2x—3y—2z+3=0, b5x—y+2z—8=0

to symmetric form.

Solution. As in Sec. 142 (Example 4) we find on the given
straight line the point M, (3, 4, —3), x,=3, yo=4, z,=—3.
Computing the direction numbers

—3 —1

—1 2
l=|__l l|=—4, m_-| ) =17,

2 =3
n=,5 1 =13

we get the equations in symmetric form
x=-3 __y-4_ z2+3

-4 -7 713

Example 2. Reduce to symmetric form the equations
x+2y—32—2=0, —3x44y—62421=0

Assign some value to the y-coordinate or z-coordinate
(an arbitrary value cannot be assigned to the x-coordinate;
cf. Sec. 142, Example 5); for example, put y=0. This gives
the point My (5, 0, 1). The direction numbers will be /=0,

m=15, n=10 or (multiplying by %) [=0, m=3, n=2.
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The symmetric equations are

(cf. Sec. 150, Example %).
Example 3. The same for the straight line
x+y—6=0, x—y+2=0 3)

The values x, and y, are fully determined by equations (3):
x9=2, yo=4. To the zy-coordinate we can assign any value,
say 2o=3."We then find the direction numbers {=0, m=0,
n=2. This yields the symmetric form of the equation (cf.
Sec. 150, Example 3):

152. Parametric Equations of a Straight Line

Each of the ratios 2%, £=Fe, 222 (Sec. 150) is equal

to the quotient (Sec. 90) obtained by dividing the vector

A—'{o_h? {x——xo, Y—UYo»r 2—10}

by the (collinear) vector a{l, m, n}. Denote this quotient
by ¢. Then

x=xo+lt,
Yy=Yyot+mt, } M)
z2=2zy+nt

These are the parametric equations of a straight line.
When the quantity ¢ (parameter) takes on various values,
the point M (x, y, z) moves along a straight line. When
t=0 it coincides with M,; positive and negative values of
t correspond to points located on the straight line on either
side of M,.

In vector form, the three Egs. (1) are replaced by one:

r=rytat 2
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153. The Intersection of a Plane with
a Stralght Line Represented Parametrically

A common point (if such exists) of the plane P

Ax+By+Cz+D=0 (1)
and the straight line L
x=xy+1lt, y=y,+mt, z=2y+nt (2)

is found from formulas (2) if into (2) is substituted the value
of ¢ as defined from the equation !
(Al4Bm+Cn)t+ Axg+ By, +Czy+ D=0 3)
This is obtained if expressions (2) are substituted into (I).
Example 1. Find the point of intersection of the plane
2x+3y+32—8=0
with the straight line

X+b __y-3 __2+3

3 -1 2

Solution. In parametric form, the equations of the straight
line will be

x=—5+3t, y=3—t, z=—3+2 4)

Substituting into the equation 2x4-3y+-3z—8=0, we get
9t —18=0, whence {=2. Putting this value into (4) we ob-
tain x=1, y=1, z=1. The desired point is (1, 1, 1).

Example 2. Find the point of intersection of the plane
3x+y—4z—7=0 with the straight line of Example 1.

Solution. In the same manner we get 0.-f{—7=0; this
equation has no solution. There is no point of intersection
(the straight line is parallel to the plane).

Example 3. Find the point of intersection of the plane
3x+y—4z=0 with the straight line of Example 1

Solution. In the same manner, we get 0-{4+0=0; this
equation has an infinity of solutions (the straight line lies
in the plane).

Note. Taking advantage of the parametric equations (4),
we introduced a fourth unknown ¢ and obtaineg four equa-

') In exceptional cases, Eq. (3) may not have any solution (see

Example 2 below) or it may have an infinity of solutions (see Examp-
le 3 below).
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tions (in place of the three that are given). This complica-
tion is compensated for by the greater facility of solving the
system.

154. The Two-Point Form of the Equations
of a Stralght Line

A straight line passing through the points M, (x;, vy, 2)
and M, (x3, ya, 2,) is given by the equations

X=Xy __ Y=Y _.2=2% (l)
X3—= Xy Y2— Y ;-2

For examples see Sec. 150.

165. The Equation of a Plane Passing Through
a Glven Point Perpendicular
to a Glven Stralght Line

A plane passing through the point M, (x,, y,, 2,) perpen-
dicular to the straight line

X=Xy __Y-Y__2-2

N my ny

has a normal vector {l;, m,, n,} and, hence, is represented
by the equation

by (x—x0) +my (y—Yyo) + ny (2—20)=0

or, in vector form,
a, (r—rg)=0

Example. A plane passing through the point (—1, —5, 8)

x y _ 2-

perpendicular to the straight line - =--==%- is represen-
ted by the equation 2 (y+45)+5(2—8)=0,.0r
2y 45z —30=0

166. The Equations of a Straight Line
Passing Through a Given Point Perpendicular
to a Glven Plane

The straight line passing through the point Mg (x,, v, 2,)
perpendicular to the plane Ax-+ By+Cz+ D=0 has the
direction vector {A, B, C} and, hence, is given by the sym-
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metric (Sec. 150) equations

X=Xy Y=Yy __2=2,

A T B C M

Example. The straight line passing through the origin
perpendicular to the plane 3x+45z—5=0 is given by the
symmetric equations = =-2 =2 or the parametric (Sec. 152)

3
equations x=3¢, y=0, 2

157. The Equatlon of a Plane Passing Through
a Glven Point and a Given Straight Line

A plane passing through the point M, (x,, yo. 2,) and the
straight line L

X=X _ Y-y _2-2%
l_‘_—m—— n M)
which does not pass through M, is represented by the equ-
ation
X—Xg Y—Y 2—2
X1—Xp Y1—Y% 21—2
l m n

=0 2)

or, in vector form,
(r—ro) (ry—ro)a=0 (2a)

The equation (2), or (2a), exp-
resses coplanarity of the vectors

(Fig. 174) HJ; F,—M’, and
all, m n}.
Example. A plane passing Fig. 174
through the point M, (5, 2, 3) and the straight line
41 y+1

2 |
is given by the equation

2-5
3

x—5 y—2 2z—3
—6 -3 2
2 1 3

=0

x—2y—1=0
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Note. 1f straight line (1) passes through the point M,,
then Eq. (2) becomes an identity and the problem has an
infinity of solutions (we get a pencil of planes with axis L;
Sec. 148).

168. The Equation of a Plane Passing
Through a Given Point Parallel
to Two Glven Straight Lines

A plane passing through a point M, (x,, Yo, 2o) parallel
to given (mutually nonparallel) straight lines L, and L, (or
to vectors @, and a,) is represented by the equation

X—Xo Y—Yo Z—2
11 my ny =0 (l)
13 mg ny
where Iy, my, n, and l3, my, ny; are the direction numbers

of the given straight lines (or the coordinates of the given
vectors). In vector form

(r—ro) ala,=0 (la)

Eq. (1) or (la) expresses the coplanarity of the vectors M,,;f,
ay, @y (M is an arbitrary point in the desired plane).

Note. If the straight lines L, and L, are parallel, i.e.
if @, and ay are collinear, then Eq. (1) becomes an identity,
and the problem has an infinity of solutions (we get a pen-
cil of ﬁlanes with axis passing through the point M, paral-
lel to the given straight lines).

169. The Equation of a Plane Passing
Through a Glven Stralight Line and Parallel
to Another Glven Straight Line

Let L, and L, be nonparallel straight lines. Then a plane
passing through L; and parallel to the straight line L is_
given by the equation

X—x3 Y—4h z2—2
ll my ny =0 (l)
lg mg ng
where x;, y;, 2, are coordinates of some point M, of L,.

Here we have a particular case of Sec. 158 (M, playing the
role of Mg). The note in Sec. 158 remains valid.
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160. The Equatlon of a Plane Passing
Through a Glven Stralght Line and Perpendicular
to a Given Plane

A plane P passing through a given straight line L,

= = m a M
and perpendicular to a given plane Q
Ax+By+Cz+4+D=0 2)

(not perpendicular to L,) is represented by the equation

X—X% Y—4h z—z

L om n  |=0 3)
A B C
In vector form
(r—ry)a,N=0 (3a)

Explanation. The plane P passes through the straight line L, and
is parallel to the normal N{A, B, C} to plane Q (cf. Sec. 159).

Note. 1f the plane (2) is perpendicular to the straight
line (1), Eq. (3) becomes an identity and the problem has
an infinity 'of solutions (see Sec. 158, Note).

The projection of a straight line on any plane. Plane (3)
projects the straight line L, on the plane Q. Hence the
straight line L’, which is the projection of L, on the plane
Q, is given by the system of equations (2)-(3) (cf. Sec. 149).

161. The Equations of a Perpendicular Dropped
from a Given Point onto a Given Stralght Line

A perpendicular dropped from a point M, (x,, Yo, o) Onto
a straight line L,,

T m o m M
that does not pass through M, is given by the equations

Ly (x—xo) +my (y—yo) + ny (2—2,) =0, (2)
X—Xp Y—Yo 2—2
X\ —Xo Y1—Yo 2—2, |=0 3)

L m, m
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or, in vector form, by the equations

’ a, (r—ro) =0, (2a)
] (r—ro) (ri—ro) a,=0 (3a)

Taken separately, Eq. (2) represents a plane Q (Fig. 175)
drawn through M, perpendicular to L; (Sec. 155), while
. Eq. (3) represents plane R drawn
through the point M, and the
| straight line L, (Sec. 157).
) 7 Note. If the straight line L,
i

passes through the point M,, Eq.
? (3) becomes an indentity (Sec. 120)

\

M,

WV

a,

(an infinity of perpendiculars to L
can be drawn through a point taken
on the straight line L).

Example. Find the equation of
the perpendicuiar dropped from the
point (I, 0, 1) onto the straight line

x=3242, y=22 (1a)

Fig. 175 Also find the foot of the perpendi-
cular.
Solution. Egs. (la) may be written in symmetric form
(Sec. 151) as

A

x-2 1} 2
3 271 (1b)
The desired perpendicular is then given by the equations
(3Gx—DH+2—0+1(—1)=0, (2b)
x—1 y z2—1
i 2—1 0 0—1} =0 (3b)
3 2 1
or, after simplifications,
3x+4+2y+2—4=0, (2c)
x—2y+2—2=0 (3c)

The coordinates of the foot K of the perpendicular may be
found by solving the system of three equations (Ib),
(2c). Eq. (3c) should be satisfied by itself. We obtain

K(7 =7 1)
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Note. The system of three equations (1b)-(3c) has an infinity of
solutions because the plane R passes through the straight line L, and
does not intersect it.

162. The Length of a Perpendicular Dropped
from a Glven Point onto a Glven Straight Line

Given: point M, (%o, Yo, 2o) and straight line L, represen-
ted by Eq. (1), Sec. 161. It is required to find the distance
from M, to L;, i.e. the length of the perpendicular MK
(Fig. 175) dropped from M, onto L;.

One can first find the foot K of the perpendicular (Sec.
161, Example) and then the length of the segment M K.
A sirlnﬁpll)er way is to apply the formula (in the notation of
Sec.

‘/ Yo— 1 zo’—zlz+ 20 =2 Xp—X 2+xu—x| Yo— it

d= m_ M 1M _{1 L m
B+ mi+ni
)
or, in vector form,
(r-—r)xa.l?
d= V[("o rl)xal] (la)

Va}

The numerator of expression (1a) is (Sec. 111) the area of a paral-

lelogram M,M,BA (Fig. 176, where M,A=a,)

and the denominator is the length of the

base M,A. Hence, the fraction is equal to the
altitude MK of the parallelogram.

Example. Find the length of the
perpendicular dropped  from  point
My (1, 0, 1) onto the straight line x=

= 3242, y=2a.
Solution. In the example in Sec. 161
we found " \ |
k ('7"' T __1') Fig. 176
Consequently,

d=|M°K|=

=V Y




196 HIGHER MATHEMATICS

Now apply formula (1). According to (I1b), Sec. 161, we have
=2, =0, =0, [,=3, m;=2, n,=1, so that

—h 20—2Z =0 1 — 9
my ny 2 1 ’
2p—2, Xo—Xx|_ |1 —1 4
n, L |t 31"
Xo—%1 Yo— °=_2
L, m, 2

We obtain
ey d V(_ )[+4t+(_2): 2]/_.
T Viteoisir

163. The Condition for Two Stralght Lines intersecting
or Lylng In a Single Plane

If the straight lines

X=Xy  Y—t4h __2—-2
L my, n° M
X=Xs U~y __2-25
1, ~ m,  n, @

lie in a single plane, then

Xo—Xy Ya—UYy 2—Z
L, m, n, |=0 3)
ly my na

or, in vector form,
(ro—ry) a,a;=0 (3a)

Conversely, if Condition (3) is fulfilled, then the straight lines
lie in a single plane.

Explanation. 1f the straight lines (1) and
(2) lie in a single plane, then the straight line
M, M, (Fig. 177) also lies in that plane, i.e.

—_—

the vectors M M,, a,, a, are coplanar (and

conversely) This is what Eq. (3) expresses (see
Sec. 120).

Note. 1f "=”L 2 [here, (3) will de-

me

Fig. 177 finitely be satlsﬂcd] *then the straight
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lines are parallel, otherwise the straight lines satisfying
Condition (3) intersect.

Example. Determine whether the straight lines

F-4-%. o
== @

intersect, and if they do, at what point.
Solution. The straight lines (1) amdl (2) lie in one plane
—1 1 —1

since the determinant (3) equal to ; L" 3 | vanishes.
4

These lines are not parallel (the direction numbers are not
proportional). In order to find the point of intersection, we
have to solve a system of four equations (1), (2) in three
unknowns. As a rule, such a system does not have any solu-
tions, but in the given case [because Condition (3) is fulfilled]
there is a solution. Solving a system of any three equations,
we get x=1, y=2, z=3. The fourth equation is satisfied.
The point of intersection is (1, 2, 3).

184. The Equations of a Line Perpendicular
to Two Given Straight Lines

The straight line UV intersecting two nonparallel straight
lines (L, and L, in Fig. 178)

X=X _Y=h__2=2%

N m, n, °
X=Xs__Y~—Ys__2-2
Iy ms ny

and perpendicular to them is represented (in vector form) by
the equations
(r—ry) a,a=0, (1)
(r—rs) asa=0 2

where a,={l;, m,, nlh}, ay={ls, my, ny} and a=a,Xa,.
Taken separately, Eq. (1) is the plane P, drawn throu

the straight line L, parallel to the vector a=a, X a, (Sec. 159).

Similarly, (2) is plane P, drawn through L, parallel to a.
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Point K,, where UV intersects L,, is found at the inter-
section of L, with the plane P,. Similarly, we find, the point
K, and then the length of the common perpendicular K,Ks,.

Note. 1f L, and L, are parallel [then a=0 and Egs. (1),
(2) become identities], there is an infinity of straight lines

Fig. 178 Fig. 179

UV. To obtain the equation of one of them, take on L,
(Fig. 179) an arbitrary point K, and form the equation of
the straight line passing through K, in the direction of the
vector a, X b, where b=a, X (r,—r,).

Example 1. Find the equations of the perpendicular to the
straight lines

x=2-42t, y=1-4t, 2=—1—1, 3)
x=—3143t, y=64+2t', z=346t 4)
Solution. We have a;={2, 4, —1}, a,={3, 2, 6},
a=a1><az={26- —15, _18}{ } ? { }
The desired perpendicular is given by the equations

x—2 y—1 z+41

2 4 —1 |=0,
26 —15 —8
x431 y—6 2z2—3

3 2 6 |=0
2% —15 —8

or, after simplifying,

47x+ 10y + 1342430 =0, )
{74x+180y—97z +1505=0 (6)
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The point K, of intersection of the common perpendicular
with the straight line (3) is found from the system (33-(6).
We get Ky (—2, —7, 1). Similarly, we find Kg(—28, 8, 9).
The length d of the common perpendicular is

d=V (=24 8)+(—7—8)p + (1—9*=V %5
Example 2. Find the equations of the line perpendicular
to the straight lines
x=2+42t, y=3+4+2t, z=t, 7)
x=5+42t', y=4+42t', z=1+4¢ ®)
The lines are parallel: @y =a,={2, 2, 1}, ro—r;={3, 1, 1},
b=a,X(rs—ry)={1, 1, —4}. The direction vector of the
common perpendicular @, xXb={—9, 9, 0} or, multiplying
by 4, {—1, 1, 0}. For the initial point we take an arbit-
rary point K, (2+2¢; 3+2¢ ¢) of the line (7). We obtain
the equation of the common perpendicular

x—(2+2¢) y—-(3+21) z2-1
o 1 =70 ®)

where ¢ is an arbitrary number. To find the point K; of
intersection of the common perpendicular (9) with the straight
line (8), substitute expression (8) into Eq. (9). This yields
3+2(=1) _142('=t) __ 1% ('=8)
-1 = 1 0
Any one of these equations yields ¢'=¢—1; substituting into
(8), we get Ky (3+2¢, 24 2¢, ¢), so that
d=|K,Ka|=

=ViB+2H— 2P +[R+2)—B+2P+ I —*=V 2

165. The Shortest Distance
Between Two Straight Lines

The shortest distance between the straight lines Ly and L,
is the length d of their common perpendicular. It can be found
by forming the equations of the common perpendicular (Sec.
164, Examples 1 and 2). A simpler way, however, is to find
d directly.

(1) If L; and L, are not parallel (Fig. 180), then

d____l(’z-’:)“-“ﬂ __lrs=-ry)a,a,| )

|asXay | Via,xa,)?
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(ry, ry are the radius vectors of the points M;, M,; a,, a,
are the direction vectors of the straight lines L, L,).

The numerator of the fraction (1) is (Sec. 121) the volume of a
parallelepiped constructed on the vectors m,. a,, a,. The denomi-

nator is the area of its base (Sec. 111). Consequently, the whole frac-
tion is the altitude K,K,=d.

D
4 M
) 5
L% 3 M
Flg. 180 Flg. 181

For intersecting straight lines (the vectors IF,R, a,, a, are cop-
lanar), formula (1) yields d=0. For parallel straight lines (the vectors

a,, a, are collinear) it fails (yielding -0—)

(2) If the straight lines L,, L, are parallel (Fig. 18l),
then

d=lirs=rioxa, | __Vire=ryxa,l?
la, - -
! V a4
(in place of a, we can take a,).
The numerator of the fraction (2) is the area of the parallelogram
M M,DC, the denominator is the length of the base M,C. The whole
fraction is the altitude K,K,=d.

Example 1. Find the shortest distance between the straight
lines of Example 1, Sec. 164 [ry={2, I, —1}, rp={-31,
6, 3}, a;={2, 4, —1}, a;={3. 2, 6}].

Solution. The lines are not parallel. We have
a,xa,={; _é|’|"é 3 ’ g ; }:{26, —15, —8},
(ro—ry) @1a;= —33-264+5-(—15)+4-(—8) = —965

Formula (1) yields

d== 965 Cee 985 Y965

V36t+(= 15)7+(-8)¢ V965

@)
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Example 2. Find the shortest distance between the straight
Iim{es of Example 2, Sec. 164 [a;=a,={2, 2, 1}, r;—r,=
={3, 1, 1}].

Solution. The lines are parallel, and formula (2) yields

LY BB,

V2iy2i]

Note. A sign can be prefixed to the shortest distance bet-
ween straight lines (if they are not perpendicular and not
parallel) (see Sec. 165a).

165a. Right-Handed and Left-Handed Palrs
of Stralght Lines

Deflnition. A pair of nonperpendicular skew lines L;, Ly
(Fig. 180) is called right-handed if for an observer standing
on the extension of some transversal K,;K, beyond L, the
shortest rotation of L, to a position parallet to Ly is perfor-
med counterclockwise. Otherwise the pair L,, L, is left-
handed.

Note 1. A right-handed pair remains right-handed and a
left-handed pair left-handed irrespective either of the choice
of points K;, K5 on the lines L,, Ly or of the labelling of
the straight lines (the first may be labelled Ly and the se-
cond L,). Indeed, although the rotation will be reversed,
the observer will now be on the continuation of the trans-
versal beyond the straight line L,, so that for him the di-
rection of the rotation remains unchanged.

Note 2. The concepts of a left-handed and right-handed
pair are meaningless with respect to the straight lines L,,
Ly lying in a single plane and also with respect to perpen-
dicular lines.

Example. If in going in or out, the handle of the cork-
screw turns through 60°, then the initial and terminal fpositions
of the axis of the handle form a right-handed pair of straight
lines (if for the straight line L; we take the axis of the
handle in the upper position, then the observer mentioned
in the definition must look upwards; otherwise, downwards).
In a rotation of the handle through 120° the initial and
terminal positions of the axis form a left-handed pair.

Test for right-handedness and left-handedness. Let a,,a,
be some (nonzero) vectors collinear with the straight lines
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Ly, Lg. If the triple scalar product K_;Kzala2 is of the same
sign as the scalar product a,a,, then the pair L,, L, is
right-handed; if the signs are opposite, then it is left-handed.

When K,K.a,a,=0, the lines L,, L, lie in one plane;
when @,a,=0, the lines L,, Ly are perpendicular. In neither
cas: 12s the pair L,, L; right-handed or left-handed (see
Note 2). '

The sign of the shortest distance between two straight
lines. To the shortest distance between nonperpendicular
intersecting lines we can prefix a sign: positive if the pair
is right-handed, and negative if it is left-handed.

Using the letter 6 to denote the shortest distance between
straight lines (with sign taken into consideration) we have
the following formula in place of (1), Sec. 165:

__aay  (ri—ry) ay6, )
T laya,| | ayxa, |

It also holds true for intersecting (but not perpendicular)
lines and then yields §=0. For perpendicular lines, for-

mula (1) does not hold true because the first factor l:‘:’l

becomes indeterminate, % (if the straight lines are not per-
pendicular, then the first factor is equal either to 41 or

to —1). Neijther is (1) valid for parallel lines, since the se-
cond factor becomes indeterminate. See Note 2.

166. Transformation of Coordinates

1. Translation of the origin. When a system of coordinates 0XYZ
is replaced by a new system 0’X’Y’Z’ having axes in the same di-
rections, the old coordinates (x, y, z) of a point are expressed in terms
of the new coordinates (x’, y’, z’) by the formulas

x=a+x’, y=b+y, z=c+2’ (1)

where a, b, ¢ are the coordinates of the new origin O’ in the old
system (cf. Sec. 35).

In this replacement, the coordinates of any wvector remain
unchanged.

2. Rotation of axes. When replacing a system OXYZ by a new
system 0’X’Y’Z’ with the same origin, the old coordinates of a point
are expressed by new formulas:

NN P N
x=x'cos (I, f)+y’ cos (J’, {)+2" cos (R, 1),
—~ —~ A~
y=x'cos (, J)+y cos (S, J)+2' cos (R, J), )

P P P
z=x"cos (I’, R)+y’ cos (J', R)+2’cos(R’, k)
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P
where (2, 1) is the angle between the vectors ¢’ and /, l.e. between

N
the new and old axis of abscissas, (y* ,f) Is the angle between the
new axls of ordinates and the old axis of abscissas and so forth. ')
In this substitution, the coordinates of any vector are transfor-
med in accordance with the same formulas.

P P
Note. Of the nine quantities cos (I, {), cos (/*, J), etc., amy three
{rllay be specified in arbitrary fashion, the other six satisfy the rela-
ons

P N A~
cos? (2, 1’)+cos? (I, J')+cos? (I, R')=1,
N P N
cos? (f, I)+cos? (J, /') +cos? (J, R)=1, (&)
P LTS Py
cos? (R, {’)+cos? (R, J')+cos? (R, R')=1
and
A A A A A
cos (£, #’) cos (f, #')+cos (I, J°) cos (f, J')+cos (lf\k') cos (/, #)=0,
A A A A A A
cos (1, 4’) cos (k, 1’)+cos (1, J') cos (R, J’)+ccs (4, R’) cos (R, R')=0, (4)
A A ~ A A A
cos (/, I’) cos (R, 3’)+cos ([, J’) cos (R, J')+cos (J, R’)cos (R, k’)=0

Relations (3) follow from (4), Sec. 101, and relations (4) follow
from (2), Sec. 145

167. The Equatlon of a Surface

An equation relating the coordinates x, y, z is called the
equation of a surface S if the following two conditions hold:
(1) the coordinates x, y, z of any point of the surface S sa-
tisfy this equation, (2) the coordinates x, y, z of any point
not lying on the surface S do not satisfy this equation
(cf. Sec. 7).

Note. If we change the system of coordinates, then the
equation of the surface will change (the new equation will
follow from the old equation by means of the formulas for
transforming coordinates, Sec. 166).

Example 1. The equation x+y+2z—1=0 is an equation
of a plane surface. Given a properly chosen rectangular coor-
dinate system, the same surface may be represented by any
other first-degree equation.

Example 2. The surface of a sphere of radius R with
centre at the origin is given by the equation

Ayt B=R M
because (1) if the point M (x, y, 2) lies on this surface, the
1) Each of the coefficients of the new coordinates is the cosine of

the angle between the corresponding new axis and the old axis asso-
ciated with the coordinate written on the left side.
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distance OM=V) X3+ y® + 22 is equal to the radius R and,
hence, Eq. (1) is satisfied; (2) if M does not lie on the sur-
face, then OM # R, and Eq. (1) is not satisfied.

Example 3. A sphere of radius R with centre at the
point C (a, b, c) is given by the equation

(x—a)+(@y—b2+(z—c)*=R? @

An equation relatlnf the coordinates x, y, z is capable of repre-
senting other geometric images or none at all (cf. Sec. 58).

Example 4. The equation x*+y*+2z*+1=0 does not represent any
geometric image at all because it has no (real) solutions.

Example 5.. The equation x*+y*+2*=0 which has a unique real
solution x=0, y=0, 2=0 represents a point.

Example 6.-The equation (x-y)*+ (z—y)*=0 is satisfied only when
x-y=0 and z-y=0 simultaneously; it represents the straight line
x=y=2,

168. Cylindrical Surfaces Whose Generatrices Are Parallel
to One of the Coordinate Axes

A surface generated by the motion of a straight line (ge-
neratrix) which is parallel to some fixed line is called a cy-
lindrical surface. Xﬂy line intersected by the generatrix in
any of its positions is called a

Lz\ directrix.
<l

Fig. 182 Flg. 183

Any equation which does not have the z-coordinate and
represents some line L in the xy-plane represents in space
a cylindrical surface whose generatrix is parallel to the
z-axis and the line L is the directrix.

Example 1. The equation

x! 2
+a =1 )

at
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is, in the xy-plane, an ellipse ABA’B’ (Fig. 182) with se-
miaxes a=0A, b—=O0B. In space it is a cylindrical surface S
whose generatrices are parallel to the z-axis and whose di-
rectrix is the ellipse ABA'B’ (elliptic cylinder).

Example 2. The equation :—,-:—,—:1 represents a cylind-
rical surface (Fig. 183) whose generatrices are parallel to the
z-axis and whose directrix is the
hyperbola CDC’'D’  (hyperbolic
cylinder)

Y

; -
X
e
X y
Flg. 184 Fig. 185

Example 3. The equation y2=2px is a parabolic cylinder
(Fig. 184).

An equation not containing the x (or y) coordinate is a
cylindrical surface whose generatrix is parallel to the x-axis
(or y-axis).

Example 4. The equation y3=2pz is a parabolic cylinder
located as shown in Fig. 185.

Note. If the directrix is a straight line, then the cylind-
rical surface is flat. Accordingly, the equation Ax+ By+ D=
=0 represents a plane in space parallel to the z-axis (cf.
Sec. 124, Note).

169. The Equations of a Line

A line may be regarded as the intersection of two sur-
faces and, accordingly, may be represented by a system of
two equations.

Two equations (taken together) relating the coordinates
x, Y, z are called the equations of the line L if the following
two conditions are fulfilled: (1) the coordinates of any point
M of the line L satisfy both equations; (2) the coordinates
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of any point not lying on the line L do not satisfy both
equations at once (although they may satisfy one of them;
cf. Sec. 140).

Example 1. The two equations y—2z=0, x—2z=0 repre-
sent a straight line as an intersection of two planes (cf.
Example 1, Sec. 140).

Example 2. The two equations
12ty 22=a?, y=2

represent separately (the first) a sphere of radius a (Fig. 186)
with centre at the point O and (the second) a plane LOX
) (the straight line OL bisects the
angle YOZ). Together, these equa-
tions represent the circumference of
a great circle ALK.

Note 1. One and the same line
can be represented by different
(equivalent) systems of equations
because it may be obtained as the
2ntersection of various pairs of sur-
aces.

Note 2. A system of two equations
can rerresent geometric images other
than a line or no geometric image at all.

Example 3. The system of equations x*+y®*+2*=25, 2=5 repre-
sents a point (0, 0, 5) at which the plane 2=5 touches the sphere
x4+ yt+22=25. .

Example 4. The system of equations x?+y*+2*=0, x+y+2z=1 does
not represent any geometric image at all because the first equation
is satisfied only by thz values x=0, y=0, but these fail to satisfy
the second equation.

170. The Projection of a Line on a Coordinate Plane

1. Let a line L be given by two equations, orie of which
contains z and the other does not.! Then the second repre-
sents a “vertical” cylindrical surface and, on the xy-plane,
the directrix L; of this surface (Sec. 168); the projection of
the line L on the xy-plane lies on the L, line (covering it enti-
rely or in part).

9 If neither equation contains 2, then L is a vertical straight
line (or several such lines); it is projected on XOY as a point (cf.
Seq. 149, Example 3).
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Example 1. The equations
t=y+—, Byr=I

represent (Fig. 187) the line ABA,B, (ellipse) along which
the plane z=y+%~ (plane P in Fig. 187) and the circular

cylindrical surface x2+4y2?=1 intersect. In the xy-plane, the
equation x34y2=1 represents the circle A’B’A’g. The pro-
jection of the line ABA,B, coin-
cides with the line A’B’A [B;.
Example 2. The equations
Btyttt=a?, y=mx
represent (Fig. 188) a great circle
(“meridian”) APA’P’ of the sphere
O as the intersection of this sphere
with the plane y=mx (the plane R
in Fig. 188). The equation y=mx
represents the straight line UV in
the xy-plane. The projection of X
the meridian APA’P’ on the xy-
plane lies on UV, but covers only
a part of it, the segment AA’.

2. Let both equations representing L contain z; then 2
has to be eliminated from the given equations in order to
find the projection of the line L on the xy-plane.? The
equation obtained by this elimination represents, in the xy-
plane, a line L’ on which the desired projection lies (cove-
ring it completely or partially). Similarly, we find the pro-
jections of the line on the xz-plane and yz-plane.

A

\/
L)
2

\
\
\
=)

‘
\
Ly
YA
7’ 1]
\
/ 1
P VA

Flg. 187

This follows from Item 1.
Example 3. Let us consider a circle (ALK in Fig. 189)
represented (cf. Sec. 169, Example 2) by the equations
B+yrt2t=ad, )]
y=2 @
5 To eliminate 2 from the two eq}uatlons means to find a third

equation not containing z and satisfied for ail those values of x and y
which satisfy the system of the two given equations.
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To find its projection on the xy-plane, eliminate z from
(1) and (2). This yields the equation

42yt =a? @

which, in the xy-plane, represents the ellipse AL’K’ with se-

miaxes 0A=a, OL'=—=. The projection of thecircle ALK

V2

covers the ellipse AL’K’ enti-
rely.

To find the projection of the
circle ALK on the xz-plane,
eliminate y from (1) and (2).
This yields

x24 222 =q? 4)

which, in the xz-plane, repre-
sents an ellipse of the same di-

Fig. 188 Fig. 189

mensions as AL'K’. The projection of the circle covers this
ellipse completely.

There is no need to eliminate x in order to find the pro-
jection of the circle ALK on the yz-plane because one of the
equations (y=2z) does not contain x anyway. In the yz-plane,
the equation y=2z represents the entire line UV, but the de-
.;.\illfd projection only covers a portion of it (the segment

).
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171. Algebralc Surfaces and Thelr Order

An algebraic equation of the second degree (in three un-
knowns x, y, 2) is any equation of the form

Ax34 By3+C22+ Dxy+ Eyz+ Fax+Gx+Hy+ Kz+L=0

where at least one of the six quantities A, B, C, D, E, F is
nonzero. Algebraic equations of any degree are defined simi-
larly (cf. Sec. 37).

If a surface S is represented in some rectangular coordi-
nate system by an nth-degree equation, then in any other rec-
tangular system of coordinates it will be represented by an
equation of the same degree (cf. Sec. 37).

A surface represented by an nth-degree equation is called
an algebraic surface of the nth order. Any surface of the first
order is a plane. Surfaces of the second order (quadric surfa-
ces) are considered in the following sections.

172. The Sphere
The second-degree equation
x+y?+z2=R3 )
represents (Sec. 167, Example 2) a sphere of radius R with
centre at the coordinate origin. If the origin does not coincide

with the centre of the sphere, then the latter is also represen-
ted by a second-degree equation, namely

(x—aP+ @ —b+(z—c)=R? @
where a, b, ¢ are coordinates of the centre of the sphere (cf
Sec. 38).

The equation of the second degree
Ax2+ By +C23+Dxy+ Eyz+ Fzx+ Gx+ Hy+ Kz + L.=0(3)
represents a sphere only under the following conditions:

A=B=C, 4)
D=0, E=0, F=0, 5)
G*+H*+K?*—4AL>0 (6)
(cf. Sec. 39). Under these conditions we have
G , H K __ G*-H34-K3—4AL
a=—z7 b_'—ﬁ' c=—57 R2= Yo @)

Example. The equation
x4 yd422—2x—4y—4=0
(A=B=C=1, D=E=F=0, G=-—2, H=-—4,
K =0, =—4)
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represents a sphere. Completing the squares in the expressions
x2—2x and y®*—4y and adding the numbers 12, 22 to the right
member to compensate, we obtain the equation

(r— 1)+ (y—2)+ 22=9

or a=1, b=2, ¢c=0, R=3.
We find the same using formulas (7).

173. The Ellipsold
The surface given by the equation 1)
X2 42 22
a—’+ b—§+"cT=1 1)
is called an ellipsoid?) (Fig. 190). The line of intersection

ABA'B’ of ellipsoid (1) with the xy-plane is given (Sec. 169)
by the system

X s 22
Ftta=lh =0

.

It is equivalent to the sys-
tem of equations

x2 3
S+5=1, 2=0

so that ABA’B’ is an elli-
Fig. 190 pse with semiaxes OA=aq,
OB=b.

Sections of ellipsoid (1) by the planes YOZ and XOZ are
ellipses M'CMB with semiaxes3) OB=b, OC=c and L'CLA
with semiaxes 0A=a, OC=c.

The section of the ellipsoid by the plane z=h (LML'M’
in Fig. 190) is given by the system of equations

P I 3
atE=l—a. @
z=h @)

1) Here and in the sequel, the letters a, b, ¢ denote the lengths of
certain segments so that the numbers a, b, ¢ are positive.

t) The word ellipsoid comes from the Greek and means ‘like an
ellipse’. The ancient Greek geometers called ellipsoids of revolution
(they did not consider any others) spheroids (i. e. sphere-like). The
term is still used today.

3) Earlier (Sec. 41) the letter ¢ was used to denote half the focal

length [c=Va*—b? so that ¢ < a]. Here ¢ has a different meaning and
can assume any value.
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However, if |A] > ¢, then Eq. (2) does not represent any
locus (“imaginary elliptical cylinder”; cf. Sec. 58, Example 5).
In this case the plane does not intersect the ellipsoid. For
|h|=c, Eq. (2) is the axis OZ (x=0, y=0; cf. Sec. 58,
Example 4). This means that the plane z=c has one common
point C (0, 0, ¢) (point of tangency) with the ellipsoid; in the
same way, the plane z=— ¢ touches the ellipsoid at the po-
int C' (0, 0, —c¢) (not indicated in the figure).

But if |A]| <e¢, then the desired section is an ellipse with

semiaxes
_— i3
KL=a l/-l—ﬁ, KM==b l/l—c—, @)

proportional to a and b.

The dimensions of the sections diminish (all are similar)
as one recedes from the xy-plane.

The same holds true for sections parallel to the yz- and
2x-planes.

The point O is the centre of symmetry of the ellipsoid (1).
The planes XOY, YOZ, XOZ are planes of symmetry, the
axes 0X, OY, and OZ are axes of symmetry.

General ellipsoid. If all three quantities a, b, ¢ are different
(i. e. not one of the ellipses A’‘CA, B'CB, ABA' becomes a circle),
then the ellipsoid (1) is called general (triaxial). The ellipses
A'CA, B'CB, A’BA are called principal; their vertices [A (a,
0, 0), A’(—a, 0, 0), B (0, b, 0), B'(0, —b, 0), C(0, 0, ¢),
C’ (0, 0, —c)] are called the vertices of the general ellipsoid.
The segments AA’, BB’, CC’ (axes of the principal ellipses)
and also their lengths are termed the axes of the ellipsoid.
If a> b> ¢, then 2a is the major axis, 2bthe mean axis, and
2c the minor -axis. i

Ellipsoid of revolution. If any two of the quantities a, b,
¢ (say a and b) are equal, then the corresponding principal
ellipse A’BA and all the sections parallel to it become circles.
Any section CRS passing through the z-axis may be obtained
by rotating the ellipse CLA about the z-axis, i. e. the ellip-
soid is a surface of revolution (ellipses CLA, CRS, CMB, etc.
are meridians, the circle A’BA is the equator). An ellipsoid
of this kind is called an ellipsoid of revolution. Its equation
is of the form

Xt

y* PE
atata=! ®
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If a > ¢, the ellipsoid of revolution is called oblate (Fig.
191a), if @ <c, then prolate (Fig. 191b). In an ellipsoid of
revolution the positions of two of its axes are indeterminate.

If a=b=c the ellipsoid becomes a sphere, and the posi-
tions of all three axes become indeterminate.

(t)

Note 1. An ellipsoid of revolution may be defined as a surface ob-
tained by uniform compression of a sphere towards its equator (cf.
Sec. 40) An oblate ellipsoid of revolution is obtained when the coef-
ficient of compression ¥ < 1, prolate when 2> 1.

A general ellipsoid may be defined as a surface obtained by the
uniform com.Fression of an ellipsoid of revolution towards its meridian.

Note 2. The ellipsoid is re?resented by Eq (1) if its coordinate
axes coincide with the axes of the ellipsoid. In other cases, the ellip-
soid is described by other equations

Example 1. Determine the surface defined by the equation
16x2 4 3y2 A 1622 — 48 =0
Solution. The given equation is reduced to the form
xﬂ yﬁ 23
3t t3=!
It defines a prolate ellipsoid of revolution with semiaxes
a=c=V 3, b=4, and with axis of rotation Oy.
Example 2. Find the surface described by the equation x*-6x+
+4y*+922+362-99=0.
Solution. Bring the equation to the form
(x-3)2+4y*+9 (2+2)2=144
Translate the origin to the point (3, 0, —2); then (Sec. 166) we get
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the equation x'*4+4y’*+92'*=144 or
"! y’l z’l
T4t 36 16~
This equation is ageneral ellipsoid with semiaxes a=12, b=6,

c¢=4; its centre lies in the point (3, 0, —2) and the axes are parallel
to the coordinate axes.

174. Hyperbolold of One Sheet

A surface described by the equation

yz 23
atu—a=! M

is called a hyperboloid of one sheet (Fig. 192).

The term hyperboloid !) stéms from the fact that there are
hyperbolas among the sections of this surface. Such, for in-
stance, are sections by the planesx=0
(MNN’M’ -in Fig. 192) and y=0
(KLL'K’). In their planes, these sec-
tions are defined by the equations

yﬁ 22

Fi—c_’=l ’ (2)
x2 22
aa=

©)

The words “one sheet” stress the
fact that the surface (1), in contrast to
a hyperboloid of two sheets (see Sec.
175) is not separated into two “sheets”,
but is a single infinite tube stretching
along the z-axis.

The plane

z=h @)

for any value of & (cf. Sec. 173) yields,
in a section with the surface (1), the ellipse ?)

‘+ 1+ %)

Flg. 192

1) The term means “hyperbola-like”.
*) It is assumed here that @ 3= b. If a=b the ellipses (5) become
circles; see Eq. (6) below.
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with semiaxes a‘/-l-}—t—: , b]/l—i——;:— . All ellipses (5)

are similar, their vertices lie on the hyperbolas (2) and (3);
the dimensions of the ellipses increase as the section recedes
from the xy-plane. A section by the xy-plane is an ellipse
2 2
2= )
(gorge ellipse ABA’B’).

The hyperbolas (2) and (3), and also the ellipse (5') are
called pringipal sections, their vertices A (a, 0,0), A’ (—a, 0, 0),
B (0, b, 0§, B’ (0, —b, 0) are vertices of the hyperboloid of
one sheet.~The segments AA’=—2a, BB’=2b (real axes of
the principal hyperbolas) and, frequently, the straight lines
AA’, BB’ are called transverse axes. The segment CC’'=20C=2c
laid off on the 2-axis (the imaginary axis of each of the
principal hyperbolas) is called the longitudinal axis of the
hyperboloid of one sheet.

The point O is the centre of symmetry of the hyperboloid
of one sheet (1), the xy-, yz-, zx-planes are planes of symme-
try, and the x-, y-, and z-axes are axes of symmetry.

A hyperboloid of revolution of one sheet. If a=b, then
Eq. (1) takes the form
x! ”f z# _
==l ©)
The gc-ge ellipse ABA’B’ becomes a gorge circle of radius a.
All the sections parallel to XOY are likewise circles. The
sections KLL'K’ and MNN’M’ (and, in general, all sections
through the longitudinal axis) become equal hyperbolas, and
surface (6) may be formed by rotation of the hyperbola
KLL'K’ about the longitudinal axis. Surface (6) is called a
hyperboloid of revolution of one sheet. The positions of two
(transverse) axes become indeterminate, the third (longitudinal)
axis coincides with the imaginary axis of the rotating hyper-
bola. In contrast to the hyperboloid of revolution for a=b,
a hyperboloid of one sheet (1) for a # b is termed general
(triaxial).

Note. A hyperboloid of revolution of one sheet may be defined
as a surface generated by the revolution of a hyperbola about its ima-
ginary axis, a triaxial hyperboloid of one sheet, as the surface obtained

y uniform compression of a hyperboloid of revolution of one sheet
towards the plane of any one of the meridiars.

Example. Determine the type of surface
x2—4y2—422+16=0
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Solution. This equation is brought to the form
2 2 2
=l

It represents a hyperboloid of revolution of one sheet with
centre in the point (0, 0, 0) and axis of revolution OX (since
the coefficient of x2 is negative). The radius of the gorge
circle r=2, the longitudinal semiaxis is equal to 4.

I15. Hyperbolold of Two Sheets
The surface described by the equation

2 2 2
. 0
is called a hyperboloid of two sheets (Fig. 193).

The sections by the xz- and yz-
planes are given by the equations

2t Xt N L
w—a=h @ ;

oy : N

=l @) \‘ W 4

These are hyperbolas (KK’L’L and et <

MM’'N’N in" Fig. 193). For each of _|g'| [°
them the z-axis is a real axis (cf.
Sec. 174). 0
The planes z=h do not meet hy- o

perboloid (1) for | A] < ¢ (cf. Sec. 174). / .
For h=4 ¢, thev touch the hyper- .
boloid at the points C (0, 0, ¢) and > TN
C'(0, 0, —c¢). For |h|>c, the AL
sections are ellipses

xl 2 hf.

at %z?—] 4 Fig. 193

~f

> \b

which are similar to one another (KMK’M’, LNL’'N’, and
others). Their dimensions increase as they recede from the
xy-plane.

Thus, the surface (1) consists of two separate sheets,
whence the name: hyperboloid of two sheets.

The hyperbolas (2) and (3) are called principal sections,
their common vertices C and C’ are the vertices of the hy-

1) See footnote 2 on p. 213.
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perboloid of two sheets, their real axis CC’ is the longitu-
dinal axis of the hyperboloid of two sheets, and the imaginary
axes AA’=2a and BB’=2b are called the transverse axes
of symmetry.

A hyperboloid of two sheets has a centre O, axes of
symmetrg 0X, OY, OZ and planes of symmetry XOY, YOZ,
Z0X. The two sheets of the hyperboloid are symmetric to
each other about the xy-plane.

Hyperboloid of revolution of two sheets. Eq. (1), for
a=)b, takes the form
‘I ] Z.
. ata—==—1
and defines a surface generated by the revolution of a hyper-
bola about its real axis. It is called a hyperboloid of
revolution of two sheets. A hyperboloid of two sheets with
unequal transverse semiaxes a and b is called general
(triaxial).

Example 1. Determine the type of surface

3x3—5y*—222—30=0
Solution. Transform this equation to

Yoz

6 ' 15 10

This is a hyperboloid of two sheets (triaxial). The longitu-
dinal axis is equal to V10 and coincides with the x-axis;
one transverse axis is equal to ¥'6 and is directed along
the y-axis, and the other is V15 and directed along the
z-axis.

Example 2. The equation

B—y—3=—1

is a hyperboloid of one sheet (not two sheets). Although we
have —1 in the right-hand member, and not + 1, there are
two negative terms in the left-hand member. Representing
the equation in the form y3+423—x2=1, we see that the
hyperboloid is generated by the revolution of an equilateral
hyperbola about its imaginary axis (which coincides with
the x-axis).
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176. Quadric Conical Surface

A conical surface is any surface generated by the motion
of a straight line (generatrix) passing through a fixed point
(vertex of the conical surface). Any line (not passing through
the vertex) which intersects the generatrix in any of its
positions is called the directrix.

The surface

x? yi 22 _
wte—a=0 O

which, as shown below, is conical, is
called a quadric conical surface (Fig.
194).

A section by the xz-plane (y=0)
is given by the equation

x? 2?
7 — =0
a <

(z+e)(z—=)=" @

This is a pair of straight lines (KL and
K’L’) passing through the origin (Sec.
58). The section by the yz-plane
yields a pair of straight lines (MN and M’N’):

(5+5) (5—%)=0 &)

A section by any other plane y=kx passing through the
z-axis is given (Sec. 169) by the system of equations

Fig. 194

y=hr SHSr—H=0 @
This too is a pair of straight lines:
1 R 2
and

passing through the origin. Hence, surface (1) is conical and
point O is its vertex.
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The section of cone (1) by any plane z=h (for A # 0)
is the ellipse
2 2 hi
=g ™
It degenerates into a point 0 (0, 0, 0) for A=0. All the
ell;ps(gs; (7) are similar, their vertices lie on the sections (2)
an .

For a=#, the ellipses (7) become circles and the quadric

conical surface becomes a circular conical surface:
x! yl z!
arta— =0 ®)

A quadric conical surface may be defined as a surface
obtained by the uniform compression of a circular conical
surface towards the plane of the axial section.

Sections of cone (1) by planes parallel to the xz-plane
(or the yz-plane) are hyperbolas.

Note. Sections of any quadric conical surface by planes not passing
through the vertex are circles, !) ellipses, hyperbolas. and parabolas.
Any one of these curves may be taken for the directrix. It is therefore
advisable to call quadric conical surfaces “elliptical”.

Example 1. The equation x2+y2=22 is a circular cone;
the section by the xz-plane is a pair of straight lines x= + 2.
The generatrices form an angle of 45° with the axis.

Example 2. The equation —x2+49y2+4322=0 is a (non-
circular) quadric conical surface. A section by any plane
z=h(h #0) is the hyperbola x2—9y2=3h% for A=0 it
becomes a pair of generatrices. The same applies to sections
y==1. The sections x=d(d = 0) are ellipses.

177. Elliptic Parabolold

The surface given by the equation

g
=gt 0

(p>0, g>0)is called an elliptic paraboloid (Fig. 195).
Sections by the xz- and yz-planes (principal sections)
are parabolas (AOA’ BOB’):

x%=2pz, ()]
yi=2gz (&)

both concave “up”.

1) A circular conical surtace has one system of parallel circular
sections, a noncircular conical surface has two.
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The plane z :0 touches the paraboloid at the point O,
the plancs z==h for h >0 intersect the paraboloid along
similar ellipses

= @

with semiaxes V2ph. V2qh. For h < 0 these planes do
not meet the paraboloid.

The elliptic paraboloid does not have a centre of sym-
metry; it is symmetric with respect to the xz- and yz-planes
and the z-axis. The line OZ
is called the axis of the el-
liptic paraboloid, the point
O is its vertex, and p and ¢
are parameters.

For p=g, parabolas (2)
and (3) become equal, the
ellipses (4) turn into circles
and the paraboloid (1) beco-
mes a surface %enerated by
the revolution of a parabola
about its axis (paraboloid of
revolution). V

The elliptic paraboloid
may be defined as a sur-
face generated by uniform
compression of a paraboloid
of revolution towards one
of its meridians.

Example. The surface z==x24y? is a paraboloid of revo-
lution generated by the revolution of the parabola z=x?
about its axis (z-axis). The surface x=y?+422 is the same
paraboloid situated differently (the axis of revolution coin-
cides with 0X).

Note. A section of an_elliptic paraboloid by the plane

y=/ yields the curve z-——;—‘;—}—g(CDC’); this is a parabola

equal (Sec. 50) to the parabola AOA’ (z:—%}); its axis is

also directed “upwards”, and point D (0, f, f,—'q is the

vertex. The coordinates of point D satisfy the equations

1) Parabolic reflectors are in the shape of a ’paraboloid of revolu-
tion (they convert a beam of light emanating from the focus into
parallel rays).
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x=0, y*=2qz, i. e. D lies on the parabola BOB’. Hence,
an elliptic paraboloid is a surface generated by the parallel
translation of a parabola (A0A’) in which its vertex moves
along another parabola (BOB’). The planes of the fixed and
moving parabolas are perpendicular and the axes are in the
same direction.

178. Hyperbolic Parabolold
The surface defined by the equation

2 2
= — 1)
(p>0, ¢g>0) is called a hyperbolic paraboloid (Fig. 196).
Sections by the xz- and yz-planes (principal sections)
are the parabolas (AOA’,
BOB’)
x2=2pz, 2

y*=—2qz @

Unlike the principal secti-
ons of the elliptic para-
boloid (Sec. 177), the para-
bolas (2) and (3) are concave
in opposite directions (the
parabola AOA’ is concave
up, the parabola BOB'’ is con-
cave down). The surface (1)
is saddle-shaped.
A section of the hyperbolic paraboloid (1) by the xy-plane
(2=0) is defined by the equation
® ¥
7 2" @
This is a pair of straight linesV OD, OC (Sec. 58, Example 1).
The planes z=h, parallel to the xy-plane, intersect the
hyperbolic paraboloid along hyperbolas:

xt v _
ﬁ—ﬂ—h' z2=h (5)

For A > 0, the real axis of these hyperbolas (for example,
the hyperbola UVV'U’) is parallel to the x-axis; for A < 0

1) The hyperbolic paraboloid has an infinity of straight lines; see
Sec. 180.
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(hyperbola LNN’L’), the real axis is parallel to the y-axis.
All the hyperbolas (5) lying to one side of the xy-plane are
similar; they are pairwise conjugate (Sec. 47) to the hyperbolas
(5) lying on the other side of the xy-plane.

The hyperbolic paraboloid does not have a centre; it is
symmetric with respect to the xz- and yz-planes and about
the z-axis. The straight line OZ is called the axis of the
hyperbolic paraboloid, the point O is its vertex, and p and ¢
are parameters. )

Note 1. The hyperbolic paraboloid is not a surface of
revolution for any value of p and ¢ (unlike the quadric
surfaces discussed above).

Note 2. Like the elliptic paraboloid, the hyperbolic
paraboloid may be formed by a Parallel translation of one
of the principal sections (say BOB’) along the other (AOA’).
But then the fixed and moving parabolas become concave in
opposite directions.

Example. The surface z=x2—y?2 is a hyperbolic paraboloid;
both principal sections are parabolas equal to one another
but in opposite directions. The surface may be generated by
a parallel translation of one of these parabolas along the
other. The section by the plane z=h (h # 0) is an equilateral
hyperbola with semiaxes a=V k], b=V [k|. For h=0
it becomes a pair of perpendicular straight lines (x4 y=0,
x—y=0). If these lines are taken for the coordinate axes
(OX’, OY'), then the hyperbolic paraboloid under consideration
will be represented (Sec. 36) by the equation z=2x"y’.

Generally speaking, the equation z=%! defines the same

x? 7

hyperbolic paraboloid as the equation z=Z3-—~; only in the

former case, the x-and y-axes coincide with the rectilinear
generatrices (Sec. 180) passing through the vertex.

179. Quadric Surfaces Classifled

Any second-degree equation
Ax?*+ By*+Cz2+ Dxy+Eyz+ Fzx+Gx+ Hy+ Kz +L=0
can, with the aid of formulas for transforming coordinates

(Sec. 166), be converted into one of the 17 equations given
below called standard (canonical). Then, the equation

:—:—}-%:—-——0 (No. 14) defines a straight line (x=0, y=0) and
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No.| Standard Equation (S&T;:;?igc) Type of Surface S::n
Ellipsoid (in parti-| 173
xt yr 2% cular, ellipsoid
V) stpete=! of revolution
and sphere)
P "_’.*.2.”_2_'_-;1 Hyperboloidof one | 174
at bt: c* sheet
xt oy 2t Hyperboloid of two | 175
3| gtpi—w=-! sheets
Xt y* 2? Quadric contcal [ 176
A gm0 surface
P Elliptic paraboloid | 177
2p 29
6 _xr oy Hyperbolic parabo- | 178
=2 —’2_; loid
7 “‘: + £=| Elliptic cylinder 168
ar b
x* y Hyperbolic cylin-| 168
§ art bt =l der
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i Sec-
No.| Standard Equation (SB,rea,‘:;?lgc, Type o! Surtace tleon
9| v=2px Parabolic cylinder | 168
. >
x? y* Pair of intersecting
1o a b planes
x? i Pair ot parallel
1 a_'=' o] planes
12] <=0 Pai;laotl‘escolnclden!
Imaginary quadric
y' conical surface
13 +gr =0 with real ver-
tex (0 0. O
Pair ot imaginary
3 planes  (inter-
14 X +y____o secting  along
bt real straight
line)
2 2%
15 :, o —_=- Imaginary ellipsoid
y' Imaginary elliptic
16 b' -1 cylinder
xt Pair ol imaginary
7] —=—1 parallel planes
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not a surface. However, we say that it defines a pair of
imaginary surfaces (intersecting along a real straight line)

. Xt yr | 2
(cf. Sec. 58, Example 4). The equation 7 F+§=0(N°- 13)

defines only one point (0, 0, 0). However, (by similarity
with Eq. No. 4) we say that Eq. No. 13 defines an imaginary
quadric conical surface (with real vertex).

Equations Nos. 15, 16, 17 do not represent any geometric
image. However, we say that they correspond to an imaginary
ellipsoid (cf. No. 1), an imaginary elliptic cylinder (cf. No. 7)
and a pair of imaginary parallel planes (cf. No. 11), res-
pectively.

Taking "advantage of this symbolic terminology, we can
say that any quadric surface is one of the 17 surfaces given
in the classification.

180. Stralght-Line Generatrices of Quadric Surfaces

A surface is called ruled if it can be generated by the mo-
tion of a straight line (generatrix). Of the quadric surfaces,
the cylinder and quadric conical
surface and also the hyperboloid of
one sheet and the hyperbolic para-
boloid are ruled surfaces.

Fig. 197 Fig. 196

Both in the hyperboloid of one sheet (Fig. 197) and the
hyperbolic paraboloid (Fig. 198), two straight-line generatrices
pass through each point. In Fig. 197, through point A pass
the generatrices UU’ and VV’ through point V, the genera-
trices VA and VB.

There are no straight-line (real) generatrices in the case of
the ellipsoid, hyperboloid of two sheets and elliptic paraboloid.
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Example. A section of the hyperboloid of one sheet

x? y? 2
wte—==1 (m

by the plane x=a (plane P in Fig. 197) is defined by the
. q? y? 2* -
equation 43— =1, i.e.

2 2
bt ®

This is a pair of straight lines (UU’ and VV’). They pass
through the vertex A (a, 0, 0) of the gorge ellipse. In exactly
the same way, through the vertex B (0, b, 0) pass a pair of
straight-line generatrices

L —%=0, y=b 3

at
A hyperboloid of revolution of one sheet (a=»5) may be ge-

nerated I’ by revolution of the straight line UU’ (or VV')
about the z-axis.

Note. The ruled-surface nature of a hyperboloid of one sheet was
utilized by engineer V. Shukhov in the construction of what is called
the “Shukhov Tower® of Moscow which for years was used as the
Moscow radio and television tower. It was
constructed out of steel strips arranged along
rectilinear generatrices of a hyperboloid of one
sheet. The strips were riveted together at the
points of intersection of the two systems of ge-
neratrices. Shukhov's structure possesses high
strength, though a relatively small amount of
material was used in the construction.

181. Surfaces of Revolution

Let L be a line lying in the xz-plane.
The equation of a surface generated by
rotation of L about the z-axis is obtai-
ned from the equation of the line L by rep-
lacing x by Vit

Example 1. Let a straight line z=2x
lying in the plane y=0 (straight line Fig. 199
PP’ in Fig. 199) be rotated about OZ.

Then the equation of the conical surface generated by rota-

1) If two matches not lying in the same plane are pierced with a
pin, and if, taking the end of one of the matches, we rapidly revolve
the whole model about it, the other match will clearly sweep out a
hyperboloid of one sheet.
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tion of the straight line PP’ is of the form z=2V x® F y2.
or x’-}-y’—zT:O (cf. Sec. 176).

Similar rules hold when: L lies in another coordinate plane
and the axis of revolution is some other coordinate axis.

Example 2. Find the equation of a surface generated by
rgtation of the parabola y2=2px (LOL’ in Fig. 200) about
the x-axis.

Solution. Replacing y by VyEF2a, ie o by y2+4 23, we
get y?+2z2=2px (a paraboloid of revolution about the x-axis).

Example 3. Find the equation of a surface generated by
rotation of. the parabola
22=2px (KOK’ in Fig. 201)
about the z-axis.

Fig. 200 Fig. 201

Solution. Replacing x by ¥ X3+ y?, we obtain the equa-
tion 22=2p V' x*+ 4% or z8=4p? (x2+y?) (a quartic surface).

182. Determinants of Second and Third Order

The second-order determinant | :‘ l is (Sec. 12) given
by the expression P
a1b3—agb,
The third-order determinant
a; by ¢
A=|a; by c, 1)
as by cy
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is (Sec. 118) given by the expression

aybacs—a,b5c3 + b1Ccas— btcaaa ~+ 18363 —c1a3b, (03]
or, what is the same,
ba Cs
ba Cs

ag b,
as by

l|az C3
las ¢;

The letters a;, by, ¢;. as, by, c3, as, bs, cg are called
elements of the determinant.

&)

+Cll

by ¢y as Cz aa b,
by c3 as

formula (3) are called minors (from the Latm, less) of the
elements a,, b,, c;.

A minor of any element is the determinant obtained from
the given determinant by deleting the row and column in
which the element stands.

Examples. The minor of the element b, of determinant (1)

Minors. The determinants of

. ]
G 4 g

is the determinant a: z: : e
“a b o
The minor of element b, is l the minor of element
. lay b
cy is ay byl

Note. In the second-order determinant z :l , element

by is the minor of element a,; it may be consxdered a “first-
order determinant”. Element by is obtained from a second-
order determinant by striking out the upper row and the left
column. Similarly, element b, is the minor of element a,, etc.

Cofactor. In formula (3) e,Iements a;, by, ¢, are multiplied

by +(lb’ ::' l., :’ G +| ’I These expressions are
3
called the cofactors of the elements ay, by, ¢.

Generally, the cofactor of an element is its minor with
its sign or the opposite sign prefixed in accordance with the
following rule:

If the sum of the position numbers of the column and the
row in which the element stands is an even number, then
the minor has its own sign, if odd, then the sign is reversed.
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The cofactors of the elements a;, by, ¢;, a, and so forth
will be denoted, respectively, by A,, B,, C,, A,, etc.
Example 1. Element b; of determinant (1) lies at the inter
section of the first row and the second column. Since 14-2=3
Qay C2
as
Example. Find the cofactor of the element c,.
Solution. Striking out the second row and the third co-
b,
1
, 3 bs
ber of the row of this element is 2, the number of the column, 3.
a; b
as bs
Example 3. In determinant (1) the cofactor B, of element

b, is +| 1 a l (242 is an even number).

Theoremdl Determinant (1) is equal to the sum of the
products of the elements of some row by their cofactors, i.e.

is an odd number, B;,=—

lumn, we find the minor lz | of the element ¢,. The num-

The sum 2—i:3 i1s an odd number. Therefore Cy=—

A=a,A,+b,By+¢,Cy, (C)]
A=a,A3+b,B;+¢,C,, ®)
A =a3A5+b3Bs+csCs ©)

Formula (4) is identical to (3), formulas (5) and (6) are
verified by direct computation.

Theorem 2. Determinant (1) is equal to the sum of the
products of the elements of some column by their cofactors, i.e.

A=a,A,+a; A3+ a;34s, (7
A=b,B, +byB, + byBs, @®
A=¢,Cy+cCa+¢5Cs 9)

These two theorems facilitate computing a determinant
that has zeros as some of the elements.
Example 4. To evaluate the determinant

25 =2
=138 0
13 5

it is convenient to use (5) or (9).
Formula (5) yxelds

_ 2 —2|_ 3
A=—3 5|+sll 5|~—331+a-12_3

3
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Formula (9) yields

38/ _[25
A=—2|] 3|+5|3 8|=—2-1+5.1=3

Example 5. In evaluating the determinant

4 —3 2
A=|6 11 1
0 30

it is best to use (6):

42
A=—3l6 ll=—3-—8=24

183. Determinants of Higher Order

The fourth-order determinant

a, b, ¢, d,
a, b, ¢, d,

a= ay by, ¢ d, (l)
a, b, ¢, d,
is the expression
A=a,A,+b,B,+¢,Cy+d,D, 2)
where A,;, B;, C;, D, are cofactors (Sec. 182) of the elements a, b,,
¢, dy, i.e.
b, ¢y d, a, ¢, dy
Ay = by ¢y, dy B,=- |8y ¢; d,
by ¢y dg a, ¢4 d,
a, b, d, a, b, ¢, (3)
C,=|as by d, Dy=-[as by ¢
a, b, d, a, b, ¢,
Example 1. Evaluate the determinant
6 3 0 3
4 4 2 1
8=10 4 4 2
77 85
Solution.
4 2 1 4 2 1
Ay =|4 4 2(=8 By=-|0 4 2|=-16,
7 85 7 85
4 4 2
DI=- 0 4 4|=-72
77 8
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(since ¢;=0, it follows that C, does not need to be computed):
A=6-843 (-16)+3 (~72)=-216
Thegreml 1 and 2 (Sec. 182) hold true for fourth-order determi-
nants. These two theorems are united by the following theorem.
Theorem. A determinant is equal to the sum of the products of the
elements of any row (or any column) by their cofactors, i.e.
A=a,A;+b,B;+¢,Cy+d,Dy,
A=a3A;+b3By+¢;Cy+dyDy,
A=a,A +a;A;+a3As+a A, O
A=byB,+byBy+byB;+b,B,,

The first of formulas (4) coincides with formula (2) taken as the
definition. The remaining may be verified by direct computation,
though this is a cumbersome procedure. There are shorter ways.

Example 2. Evaluate the determinant of Exam&}e I by expanding
it in terms of the elements of the second column. We have

A=3B,+4By+4B,+7B,

where
4 21 6 0 3
B,=-|0 4 2|=-16, B,=|0 4 2\:—60,
7 85 7 85
6 0 3 6 0 3
By;=-|4 2 1]|=-66, B,={4 2 1|=48
7 85 0 4 2

so that A=3-(-16)+4-(-60)+4-(-66)+7-48=-216.
Example 3. Evaluate the same determinant by expanding it in
terms of the elements of the third row:

A=0-A;+4B;+4C3+2Dy=

6 0 3 6 3 3 6 3 0
=—4 14 2 1]|4+4]|4 4 1] _2]4 4 2|==216
7 85 7765 77 8

The fifth-order determinant
a;, by ¢y dy e
ay, by ¢; d, e
A=| 8y by ¢y dy & )
a, by ¢y dy e
8y, by ¢ dy ¢
Is the expression
A=aAy+bB,+¢,Cy+dDy+¢,E, (6)

where A,, B,,C,, D,, E, are cofactors of the elements a,, b,, ¢4, d,, ¢,,
these coractors are themselves fourth-order determinants.

Similarly, we define a sixth-order dJeterminant in terms of a de-
terminant of the fifth order, etc.

The theorem of this section holds true for determinants of any order.
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184. Properties of Determinants
I. The magnitude of a determinant does not change it

each of the rows is substituted by a column of the same
position number.

Example 1.
a; b a; G
a; by = b, b,
Example 2.
a4 b oo a, a; ag
ag by ¢y |=| by by by
ag by 3| |cp €

2. If any two rows or any two columns are interchanged,
the absolute value of a determinant remains unaltered, while
the sign is reversed.

Example 3.
a by o a b ¢; | (second and third rows inter-
ag by ¢y |=—| az by cg | changed, cf. Sec. 117, Item 1)
ag bg c3 a; by cy
Example 4.
215 5 1 2| (first and third columns
36 0|l——| 6 3| interchanged)
—4 2 1 1 2 —4

3. A determinant, the elements of one row (or column)
of which are respectively proportional to the elements of the
other row (column), is zero. In particular, a determinant
with two identical rows (columns) is equal to zero.

Example 5.

2 2 2 (second and third columns
—5 —3 —3|=¢ are the same)
0 —1 —1
Example 6.
a a a& (elements of third row are proportional

to elements of first row; cf. Sec. 117,

b b V= Items 1, 3, 4)

3a 3a’ 3a”
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4. A common factor of all the elements of one row (or
of one column) may be taken outside the sign of the deter-
minant.

Example 7.

ma ma’ ma’ aa a

b b b |=ml|b b b"| (cf. Sec. 117, Item 3)
c ¢ cc ¢

5. If every element of some column (row) is the sum of
two terms, then the determinant is equal to the sum of two
determinants;. one containing only the first term in place of
each sum, the other only the second term (the remaining
elements of both determinants are the same as in the given
determinant).

Example 8.
a b+e dy ay by dy a ¢ dy
a, bytcy dy |=|a; by dy|+[as ¢ dy
ag by+tcy dg as by dy a; cy dg

(cf. Sec. 117, Item 2).

6. If to all the elements of some column we add terms
proportional to the corresponding elements of another column,
then the new determinant is equal to the old one. The same
holds true for rows.

This follows from Items 5 and 3.

2 —1 3
Example 9. The determinant |4 1 —3] is equal to 12.
5 0 2
Let us add the elements of the second row to the elements
60 O
of the first row. We get |4 1 —3|. This determinant is
50 2

also equal to 12, but is evaluated in simpler fashion (two
terms are zero in the expansion in terms of elements of the

first row).
Example 10. To evaluate the determinant
4 2 3
—1 3 5
63 —1

add the elements of the second column multiplied by —2 to
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02 3
the elements of the first column. This yields [ —7 3 5
03 —1

This determinant is readily evaluated by expanding the first
column in terms of its elements [Sec. 182, Formula (7)]. We
have

2 3
7|3 _il=-7
Example 11. To evaluate the determinant
6 3 0 3
4 4 2 1
0 4 4 2
77 85

subtract the elements of the third column from the elements of the
second column. This yields

(=2 )
- oo

3
2
0
-1

N - W

7 8

Now subtract the elements of the fourth column multiplied by 2 from
the elements of the third column. This gives

6 3 -6 3
4 2 0 1
0 0 0 2
7 -1 =25

Expanding in terms of the elements of the third row, we get (as
in Example 1, Sec. 183):

6 3 -6
—2]4 2 o0|==216
7 -1 =2 -

185. A Practical Technique
for Computing Determinants

The device explained below is particularly convenient when
the elements of the determinant are integers.

Pick a row (or column) in terms of the elements of which
we shall carry out the expansion. It is desirable to have
zero. The device is calculated to create fresh zeros in the
chosen row. To do this, use Property 6, Sec. 184.
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Example 1. Evaluate the determinant

25 3
A=|0 6 2
73 —1

Expand it in terms of the elements of the second row (it
has a zero). We then establish another zero (in place of
Element 6). To do this, subtract tripled elements of the
third column from the elements of the second column. This
yields

2 —4 3 2 —4
A=|0 0 2|=-—2 = —80
7 6 —I1 7 6

Now expand in terms of the elements of the first column
where there is one zero. In place of Element 7 we create
another zero by subtracting from elements of the third row

elements of the first row multiplied by —;- , which gives

2 5 3 ,
a=|® 8 2 1323
= 29 3|=—75 =
0 -5 —% 0 29 23
1 6 2
=—52|y g3|=—%

Note. One could foresee that the first way would be more conve-
nient since in the second row Element 6 is a multiple of Element 2,
whereas in the first column Element 7 is not a multiple of Element
2. It is desirable for all elements in a chosen row (or column) to be
multiples of one element. If one of the elements is equal to 1 or -1,
then we should take the row or column with that element.

Example 2. Evaluate the determinant

-1 -2 4 1
2 3 0 6
8=1 9 _o 1 4
3 1 -2 -1

We choose the third column (it has a zero and a one). To create
a zero in place of Element 4, subtract quadrupled elements of the
third row (which has Element 1 of the chosen column) from elements
of the first row. The first row will become

-9 6 0 ~15
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In order to turn element —2 into a zero in the third column, add
doubled elements of the third row to elements of the foyrth. This
fourth row will then take the form

7 -3 07
Now, expanding in terms of elements of the third column, we have
-9 6 0 -15

2 30 6 -9 6 15
a=| 5 5 1=t 2 3 6
7 -3 7

7 -3 0 7

In the third-order determinant all elements of the second column
are multiples of Element —3. Therefore, we add elements of the third
row (which contains Element —3) to the elements of the second, and
then (first doubling them) add them to the elements of the first row.
This yields

5 0 -1 oo,
a=|9 o 13 =~|9 l3|.(—3)=222
7 -3 7

Example 3. Evaluate the determinant

3 7 -2 4
-3 -2 6 -4
8=l 5 5 -3 2
2 6 -5 3
There are no zeros, but in the second row it is easy to make two

zeros by adding the elements of the first row to the elements of the
second row. This yields

37 -2 4
056 40
a= 5 6 -3 2
2 6 -5 3

Another zero can be created in the second row by subtracting the ele-
ments of the second row ( multiplied by -%- from the elements of
the third column. It is more convenient to produce a one in the se-

cond row by subtracting the elements of the third column from the
elements of the second. This gives

3 9 -2 4| |3 9 -38 4
a<l0 1 40| _fo 1 00
“ls 8 -3 2|75 8 -35 2
2 11 -5 3 2 11 -49 3

(we subtracted quadrupled elements of the second column from the
elements of the third column). We now have

3 -38 4
5 -35 2
2 -49 3

A= =-303




236 HIGHER MATHEMATICS

186. Using Determinants to Investigate
and Solve Systems of Equations

Determinants were first introduced to solve systems of
equations of the first degree. In 1750, the Swiss mathematician
G. Cramer gave general formulas expressing the unknowns in
terms of determinants composed of the coefficients of the
system. About a hundred years later the theory of deter-
minants was taken far beyond the limits of algebra into all
divisions of mathematics.

In the sections which follow we give basic information
on investigating and solving systems of first-degree equations.
Geometrical facts are invoked for greater pictorialness.

187. Two Equations In Two Unknowns

Consider the system of equations
ax+by=h,, (1)
x4 byy =hy @

(each of which defines a straight line in the xy-plane; cf. Sec. 19).
Introduce the notation

a, b

A= (determinant of the system) 3)
a; by
_ hy by _ |4 hl,
Ax= hy by’ Y |ay hy @

The determinant A, is obtained from A by replacing the
elements of the first column by the constant terms of the
system; A, is obtained in similar fashion.

Three cases are possible.

Case 1. The determinant of the system is nonzero: A # 0.

Then the system has a unique solution:

(the straight lines (1) and (2) intersect, formulas (5) yield
the coordinates of the point of intersection].

Case 2. The determinant is equal to zero: A=0 (i. e. the
coefficients of the unknowns are proportional). Let one of the
determinants Ay, A, be different from zero (i. e. the constant
terms are not proportional to the coefficients of the unknowns).
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In this case the system does not have any solutions [the
straight lines (1) and (2) are parallel but not coincident].

Case 3. A=0, A,=0, A,=0 (both the coefficients and
the constant terms are proportional).

Then one of the equations (1), (2) is a consequence of the
other and the system reduces to a single equation in two
unknowns and has an infinity of solutions [the straight lines
(1) and (2) coincide].

Example 1.
22 +3y=8, Tx—5y=—3
Here
2 3 8 3
a=|; _5l=—31, Ae=|_4 _5|=—31,
12 8
by=|7 _s|=—62
The system has a unique solution:
A
x=%§= ) y=%=2

Example 2.
2¢+3y=8, 4x+6y=10

Here A=|§ 2[:0 and A,=|I3 2|=18¢o.

The coefficients are proportional but the constant terms do
not obey the same proportion. The system has no solutions.

Example 3.
2x+43y=8, 4x+46y=16
Here
23 8 3 2 8
A—|4 GI_O' A=l 16 el—o' Ay=l4 16]=°

One of the equations is a consequence of the other (for
exampie, the second is obtained from the first by multiplying
by 2). The system reduces to a single equation and has an
infinity of solutions contained in the formula

y= —%x-}-% <or x= —-,i—y+4)
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188. Two Equations In Three Unknowns

Consider the system of equations

ax+by+ciz=hy, 1)
5%+ boy +Coz =hy 2
(each of which defines a plane in space; cf. Sec. 141).
Three cases are possible.
Case 1. Of the following three determinants

a, b by o a o 3
a;, b, by ¢, Cy Qy @
at least one is nonzero, i. e. the coefficients of the unknowns
are not proportional. Then the system has an infinity of so-

lutions, and any value can be assigned to one of the unknowns.

. ela, b
For instance, if al

’ ’

b‘l;é 0, then to the unknown z we can
2 2

assign any value; the unknowns x and y are determined in
unique fashion (Sec. 187, Item 1) from the system

d1x+bly=h1—'clz,

apx+boy=hy—cy2
[the planes (1) and (2) are not parallel, the system defines
a straight line, the quantities (3) are direction numbers,
(Sec. 143)].

Case 2. All determinants (3) are equal to zero, but one
of the determinants
a; hl
a, hy

by h aq h
by hal’ lc