intel)

Embedded Design Handbook

'h\ Subscribe EDH | 2018.11.12
D Send Feedback Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=iga1446487888057
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/edh_ed_handbook.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/iga1446487888057.html

(intel“’

Contents
I 1 8 e e [T o o oY o 6
1.1. Document Revision History for Embedded Design HandbookK...........ccocvviiiiiiiiiiiiinnnnens 6
2. First Time Designer's GUIde....cuiciieiimiiemimmammanmie s smsssssmssssssssssasssssssssansassssssnsssnsasssnssnssnnss 8
2.1, FPGAS and SOft-COre PrOCESSOIS. .t ittt iteitttietteeteatat e ea et et taaaae e atasaaeaneaees 8
2.2. Embedded System DeSigN.....c.iciuiieiiiiii i 9
2.3. Embedded DeSign RESOUICES.uiutiuiiteitiatie it stetee e teatse e ansasaae e araneaeaaeaneansess 11
2.3.1. Intel Embedded SUP POt ...t 11
2.3.2. Intel Embedded Training....ccciiiiiiii i 11
2.3.3. Intel Embedded DocumMEeNtation.oceiriiriiiii e 12
2.3.4. Third Party Intellectual Property.o e ee e 12
2.4. Intel Embedded GlOSSarYuuiueiiiiiiie ittt st r et e e st raeaa e e e e raeaans 13
2.5. First Time Designer's Guide ReViSion HiStOry......c.oviiiiiiiiiiiii e e 14
3. Hardware System Design with Intel Quartus Prime and Platform Designer.........c.ccuaxe. 15
3.1. FPGA HardWare DeSIgN. ... ettt ee e e e e e e s e e a e et e e e a e e ee e rnenee e enenes 16
3.1.1. Connecting Your FPGA Design to Your Hardware............ocvviiiiiiiiiiiiiicneene 17
3.1.2. Connecting Signals to your Platform Designer System.......ccocevviiiiniiiiinneninnnnen 17
3.1.3. Constraining Your FPGA-Based DeSign.......cciiiiiiiiiiiiiii it ne e neaae 18
3.2. System Design with Platform Designer.......cvviiiiiiiiii e 19
3.2.1. Intel System on a Programmable Chip (Platform Designer) Solutions.............. 20
3.2.2. Platform DeSigNer DeSIGN ... cuu e et eee e e et e e e e e e e e e e e e eees 22
3.3. Interfacing an External Processor to an Intel FPGA........coiiiiiiiiiiiii e 23
3.3.1. Configuration OpPlioNS.....ciuiiiiii e 24
3.3.2. RAPIAIO INter aC. ittt e e e 27
3.3.3. PCI EXPress INTerfacl. . ittt e e 29
TN I T = B 1 01 (< o = [T PP 31
3.3.5. Serial Protocol Interface (SPI)....o.iiie it e e 31
3.3.6. Custom Bridge INterfaces. .. .ouiuii i e e ee e 33
O ANV T o B 1 =3V o I @] o [=T o T PP 35
O O = o o [=Y L= PP 35
3.4.2. Avalon-MM Interface Ordering....cucuieeiiiriieii i ne e eees 36
3.4.3. NiOS II Processor Data ACCESSES. .. uiiuiiteiitiintiiteaerarerataae et ransaneaareraneanss 40
3.4.4. Adapting Processor Masters to be Avalon-MM Compliant.........cocvviiiiiiiiiinnnnnns 42
3.4.5. System-Wide Design RecommendationsS.........cocvvuiiiiiiiiiiiiiiii e nenaas 50
3.5. MemMOry SYSteM DeSIgN. . ettt et r e e e e ans 52
G I T B 1 =T o g T N Y/ o= PP 52
T I O o B @ oY o TN 17 1T 0 T oY 20 P 52
3.5, 3. EXEENal SRA M. ittt 55
T S ol =Ty o 1< g Lo T Y P 56
35,5, S R A M. ittt e 58
3.5.6. CASE STUAY .ttt 64
3.6. Nios II Hardware Development Tutorial......ooiiiiiiiii i e aaeas 68
3.6.1. Software and Hardware RequUIir€mMeNntS.cuiiiiiiiiiiii i i i ae s 68
3.6.2. Intel FPGA IP Evaluation MOde.......cciiiiiiiiiiiiiii s et ae e e e 69
3.6.3. Nios II Design EXamiple. . ..o et e e e e 69
3.6.4. Nios II System Development FIOW.......oviiiiiiiiiiii e 71
3.6.5. Creating the Design EXample.o v 75
Embedded Design Handbook D Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

3.7. Platform Designer System Design TUtorial.......ovvviiiiiiiiiii e 89
3.7.1. Software and Hardware Requir€mMentsS.ccoiiiiiiiiiiii i e 90
3.7.2. Download and Install the Tutorial Design Files........ccooiiiiiiiiiiiiii s 91
3.7.3. Open the Tutorial ProjecCt......c.ovuiiiiiii i e 91
3.7.4. Creating Platform Designer SYyStemMS.cciviiiiiiiiiiiii e aeeeas 92
3.7.5. Assemble a Hierarchical System......ccciiiiiiiiiiii e 100
3.7.6. Viewing the Memory Tester System in Platform Designer...........ccocevvviiinnnens 107
3.7.7. Compiling and Downloading Software to a Development Board..................... 107
3.7.8. DebUgQging YOUIr DESIGNuuuie it e e e e e e e e e e e e e eeenens 109
3.7.9. Verifying Hardware in System CONSOl€.........cciviiiniiiiiiiiiii i 109
3.7.10. Simulating Custom Components......cciiiiiiiiiii e 111
3.7.11. View a Diagram of the Completed System.......c.ccoviiiiiiiiiiiiiii e 117

3.8. Hardware System Design with Intel Quartus Prime and Platform Designer Revision
[1= o Y PR 118
4. Software System Design with @ Nios II ProCesSOorcciuveimmmrararasisissasmsasasassssssssnsasasass 119
4.1. Nios IIT Command-Line TOOIS.......ciiiiiiii it raeeas 120
4.1.1. Intel Command-Line Tools for Board Bringup and Diagnostics....................... 120
4.1.2. Intel Command-Line Tools for Flash Programming.........c.ccoeviiiiiiiiiiiniininnnnns 122
4.1.3. Intel Command-Line Tools for Software Development and Debug.................. 125
4.1.4. Intel Command-Line Nios II Software Build TOOIS........ccccvviiiiiiiiiiiiieee 128
4.1.5. Rebuilding Software from the Command Line.......c.cocoviiiiiiiiiiiiiiieeeeee 129
4.1.6. GNU Command-Line TOOIS.....ccuiiiiiiiiiii i et e e e 130
4.2. Developing Nios II SoftWare. . cociii i e e e aee e 137
4.2.1. Software Development CyCle. ..t e e 138
4.2.2. Software Project MeChaniCS. . .uuiuiiiiiiiiii i ranaeas 142
4.2.3. Developing With the Hardware Abstraction Layer..........c.cooiiiiiiiiiiiiiinnnnnes 161
4.2.4. Linking AppliCations.o.iieiiiiiii e 182
L T Lo = B 1 = U =1 T 1= PPN 184
G T IO S =T 1 [=T 1=] (= S 184
N A €1 a1 =] B U= T [PP 185
4.3.3. Nios II MPU DesSign EXamPles. ...cuiiiiiiiieiiiiiieie i esaeseene e senaeneneenennans 195
4.4. Profiling NIiOS II SYSteMIS. ...ttt ittt e e e e e e e e e a e e e e a e e eeeneneeens 200
I =T U1 =1 =T 0 200
. o Yo] £ 200
4.4.3. Using the GNU Profiler to Measure Code Performance.........cccvveviviiiiiiininnnnn. 202
4.4.4. Using Performance Counter and Timer COmponents......coovvviieiiiieiieinennenenne. 209
4.4.5, TroublesShOOting. . .ciiiiii i e 215
4.5. Software System Design with a Nios II Processor Revision History.............ccovvevennnnn. 216
5. Nios II Configuration and Booting Solutions.........c.cccicveiararisimieierre e sa s nnnnnss 217
o3 AU ol o Yo [ot T o PP 217
o I A o = /T LU 1= 1 == 217
5.2. Nios II Processor Booting Methods.cououiiieiniiii e e 218
5.2.1. Introduction to Nios II Booting Methods.........ccooviiiiiiiiii e 219
5.2.2. Nios II Processor Booting from On-Chip Flash (UFM).......c.ccoiviiiiiiiiiinnnnens 224
5.2.3. Nios II Processor Booting from EPCQ Flash........coooviiiiiiiiiiiiiie s 252
5.2.4. Nios II Processor Booting from QSPI Flash........cciviiiiiiiiiiiiiiiiii e 273
5.2.5. Nios II Processor Booting from On-Chip Memory (OCRAM)......cccvvviiiiininnnnnnns 303
5.2.6. Nios II Processor Booting from CFI Flash..........cccoiiiiiiiiiii e 311
5.2.7. Summary of Nios II Processor Vector Configurations and BSP Settings.......... 346
5.3. Alternative Nios II BOOt MEthOdS.ciuiiiiiiiii e 349
D Send Feedback Embedded Design Handbook

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

5.3.1. Assumptions About the Reader.......ccciiiiiiiiiiiii i 349
5.3.2. Implementing @ Custom BoOt COPIEI.....iviriiriiriiiiiiieiiieari e 349
5.3.3. Default NioS IT BOOL COPI@I. . .uiuee et e e e e e e e ae e e neeaees 350
5.3.4. Advanced Boot Copier EXample......oouiiiiiiiiii i 352
5.3.5. Implementing the Advanced Boot Copier Example.........c.covvviiiiiiiiiiinnnen. 358
5.3.6. Small Boot Copier EXample. ..o e 366
5.3.7. Implementing the Small Boot Copier EXample.......ccoceviiiiiiiieiiiiiiiiieiennnsn 367
5.3.8. Debugging BOOt COPIerS....ciuiuiiiiiiiiini ettt e s e e s s e e aanaaeas 372
5.3.9. Externally Controlling the Nios II BOOt Process........coovvieiiiiiiiiiiiieieeenene 373
5.4. Boot Time Performance ANalySiS.o ieieeae e re s e e e e e eeneenens 379
5.4.1. Boot Time Performance Analysis Design Example.........cccoooviiiiiiiiiiiiinninnnne, 379
5.4.2. Boot Time Measurement Strategy......ccoviiiiiiiiiii i e e eeas 380
5.4.3. Reducing Nios II Boot Time in Intel MAX 10 FPGA DeSign......cccviviivinnininennns 381
5.4.4. Boot Time Performance and Estimation.........ccceviiiiiiiiiiiiiiiiice e 384
5.5. Nios II Configuration and Booting Solutions Revision History..........c.ccooiiiiiiioiiins 388
6. Nios II Debug, Verification, and Simulationccccicveiiriirirern s s s s s e s s ranas 389
6.1. Software Debugging OpPtioNS.uiuiiriiii i e 390
6.2. Debugging NiOS II DeSIgNS . uuiutiuiitiitititeitenteatieteateatrereereataaeaeeeaseanaaeaneaneanennns 392
(ST T 1= T8 [[1= o= 392
6.2.2. Run-Time Analysis Debug TeChniqUES.........cciiiiiiiiiiii e 401

6.2.3. Using the Debug Code from Intel MAX 10 On-Chip Flash - User Flash
=T 0 aTo] VA (8] o\) PP 406
6.3. Verification and Board Bring-UpP.....ccoueiiiiiiiiiii e it ae st aae s ane e aaerneenneaas 415
6.3.1. Verification Methods.......ociiiiii i s 415
6.3.2. BOArd Bring U ..ottt e 420
6.3.3. System VerifiCation.ccoeieii e 426
6.4. Additional Embedded Design Considerations.ccoevieiiieiieiiiiiiieiiie e eeeeaes 430
6.4.1. JTAG Signal INtegrity...c.ciuiieiiiiiiii e ae e eas 430
6.4.2. Memory Space For System Prototyping.....ccooiveiiiiiiiii e 430
6.5. Simulating Nios II Embedded Processor DeSIgNS.cuvviiiiiiiieiieiiiiiiineieineiiennenesneeennes 431
6.5.1. BefOre YOU BeGiN. . iuiiiiiiiiiiiiii it 431
6.5.2. Setting Up and Generating Your Simulation Environment in Platform Designer432
6.5.3. Creating the Nios IT SOftWare.vviieiiii e e ee e e 433
6.5.4. Running Simulation in the ModelSim Simulator Using Nios II SBT for Eclipse.. 435
6.5.5. Running Simulation in the ModelSim Simulator Using Command Line............ 435
6.6. Nios II Debug, Verification, and Simulation Revision HiStory........ccocvviviiiiiiiiiiiiinnnnnns 437
7. Optimizing Nios II Based Systems and Software......ccvcrierrimrrierasrersnsersasassasassasansananss 438
7.1. Hardware Acceleration and COPrOCESSING ... ciuiiuiitiitieieitiitiie ittt senreneaneanens 439
7.1.1. Hardware ACCeleration.vuviiiiiiiiii e 439
2 NP R o o] oo T o111 | o T 448
7.2. Software Application Optimization.......ccoiiiiiiiiii 455
7.2.1. Performance Tuning Background..........ccociuiiiiiiiiiii e e e aenens 455
7.2.2. Speeding Up System Processing TasksS.......cooviiiiiiiiiiiiiiii e 455
7.2.3. Accelerating Interrupt Service ROULINES........ovviiiiiiiiiiii e 459
7.2.4. ReAUCING COOB Sz, uiiitiiiiiiti i i e et it a e et rae e aneaas 460
7.3. Memory Optimization. . .cviiii i e 462
7.3.1. Isolate Critical Memory ConnNeCtioNS. .. .ciiiiiiiii i i aaeas 462
7.3.2. Match Master and Slave Data Width..........ccooiiiii e 462
7.3.3. Use Separate Memories to EXploit CONCUITENCY.....ccvviiiiiiiiiiiiiiiieieee e 462
7.3.4. Understand the Nios II Instruction Master Address Space...........cccvvvvieininnnnn. 463
Embedded Design Handbook D Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents
G 0= T =YY o 1 1= 5 o Lo Y S PP 463
7.4. Accelerating Nios II Networking Applicationsccvveiiiiiiiiii e 464
7.4.1. Downloading the Ethernet Acceleration Design Example...........ccceviiiiennnn. 464
7.4.2. The Structure of Networking AppliCationsS........ccoeveiiiiiiiiii e 464
7.4.3. The User Application. .. .coviriiiiiii e 466
7.4.4. Structure of the NicheStack Networking Stack.........ccoooviiiiiiiiiiiiiiiic e, 470
7.4.5. EThernel DeViCe. . vt 473
7.4.6. Benchmarking Setup, Results, and AnalysSis......cccciviiiiiiiiiiiiiiiiiicinieeaens 475
7.4.7. Nios II Test Hardware and Test ReSUIES.......ccvviiiiiiiiiiiieiic e 478
7.5. Using Tightly Coupled Memory with the Nios II Processor Tutorial..........cooevviviininnnnns 479
7.5.1. Reasons for Using Tightly Coupled MemoOry.......cocoiiiiiiiiiiiiiii e 479
2 T2 1 =T =T i £ S 480
7.5.3. Guidelines for Using Tightly Coupled Memory.......cocovieiiiiiiiii e 480
7.5.4. Tightly Coupled Memory Interface......coviiiiiiiii i 482
7.5.5. Building a Nios II System with Tightly Coupled Memory........c.cocoeeiiiiiiennnn. 483
7.5.6. Generate the Platform Designer System.......c.cooviiiiiiii i eeees 488
7.5.7. Run the Tightly Coupled Memories Examples from the Nios II Command....... 488
7.5.8. Program and Run the Tightly Coupled Memory Project........cccoovviiiiiiiiininnnne. 490
7.5.9. Understanding the TCl SCHPES....uiiiiiiiii i e eas 491
7.6. Optimizing Nios II Based Systems and Software Revision History...........ccoeviiiiinnnnns 495

D Send Feedback

Embedded Design Handbook

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
EDH | 2018.11.12 l n tel
D Send Feedback

1. Introduction

The Embedded Design Handbook complements the primary documentation for the
Intel tools for embedded system development. It describes how to most effectively
use the tools, and recommends design styles and practices for developing, debugging,
and optimizing embedded systems using Intel-provided tools. The handbook
introduces concepts to new users of Intel’'s embedded solutions, and helps to increase
the design efficiency of the experienced user.

1.1. Document Revision History for Embedded Design Handbook

Document Changes
Version

2018.11.12 Updated the following chapters:
e Nios® II Debug, Verification, and Simulation

2017.11.06 Updated the following chapters:
e Nios II Configuration and Booting Solutions
e Nios II Debug, Verification, and Simulation

2017.06.12 Updated the following chapters:

e Hardware System Design with Intel® Quartus® Prime and Platform Designer
e Software System Design with a Nios II Processor

e Nios II Debug, Verification, and Simulation

e Optimizing Nios II Based Systems and Software

2016.12.19 Updated the following chapters:

e First Time Designer's Guide

Added new chapter:

e Hardware System Design with Intel Quartus Prime and Platform Designer
e Software System Design with a Nios II Processor

e Nios II Configuration and Booting Solutions

e Nios II Debug, Verification, and Simulation

e Optimizing Nios II Based Systems and Software

2015.12.18 Updated the following chapters:
e First Time Designer's Guide

Refer to the individual chapter's revision history section for more details about the
changes and previous revision history.

Related Information

e First Time Designer's Guide Revision History on page 14

e Hardware System Design with Intel Quartus Prime and Platform Designer Revision
History on page 118

e Software System Design with a Nios II Processor Revision History on page 216
e Nios II Configuration and Booting Solutions Revision History on page 388

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

] ®
1. Introduction l n tel

EDH | 2018.11.12

e Nios II Debug, Verification, and Simulation Revision History on page 437

e Optimizing Nios II Based Systems and Software Revision History on page 495

D Send Feedback Embedded Design Handbook

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
EDH | 2018.11.12 lntel:

D Send Feedback

2. First Time Designer's Guide

The First Time Designer’s Guide is a basic overview of Intel embedded development
process and tools for the first time user. The chapter provides information about the
design flow and development tools, interactions, and describes the differences
between the Nios II processor flow and a typical discrete microcontroller design flow.

This guide does not replace the basic reference material for the first time designer. It
references other documents that provide detailed information about the individual
tools and procedures. It contains resources and sections to help the first-time user of
Intel’s embedded development tools for hardware and software development. For
more information, refer to the related information links.

Related Information

¢ Nios II Classic Processor Reference Guide

¢ Nios II Gen2 Processor Reference Guide

e Nios II Classic Software Developer's Handbook
e Nios II Gen2 Software Developer's Handbook
e Embedded Peripherals IP User Guide

e Nios II Flash Programmer User Guide

2.1. FPGAs and Soft-Core Processors

FPGAs can implement logic that functions as a complete microprocessor while
providing many flexibility options.

An important difference between discrete microprocessors and FPGAs is that an FPGA
contains no logic when it powers up. Before you run software on a Nios II based
system, you must configure the FPGA with a hardware design that contains a Nios II
processor. To configure an FPGA is to electronically program the FPGA with a specific
logic design. The Nios II processor is a true soft-core processor: it can be placed
anywhere on the FPGA, depending on the other requirements of the design. Two
different variants of the processor are available for Nios II Gen2, each with flexible
features.(1)

To enable your FPGA-based embedded system to behave as a discrete microprocessor-
based system, your system should include the following:

e A JTAG interface to support FPGA configuration and hardware and software
debugging

e A power-up FPGA configuration mechanism

(1) There are three different sizes of the processor that are available for Nios II Classic.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2gen2.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_nios2_flash_programmer.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

EDH | 2018.11.12

™ ®
2. First Time Designer's Guide < l n tel)

If your system has these capabilities, you can begin refining your design from a
pretested hardware design loaded in the FPGA. Using an FPGA also allows you to
modify your design quickly to address problems or to add new functionality. You can
test these new hardware designs easily by reconfiguring the FPGA using your system's
JTAG interface.

The JTAG interface supports hardware and software development. You can perform the
following tasks using the JTAG interface:

e Configure the FPGA

e Download and debug software

e Communicate with the FPGA through a UART-like interface (JTAG UART)
e Debug hardware (with the SignalTap® II embedded logic analyzer)

e Program flash memory

After you configure the FPGA with your Nios II processor-based design, the software
development flow is similar to the flow for discrete microcontroller designs.

2.2. Embedded System Design

Whether you are a hardware designer or a software designer, read the Nios I
Hardware Development Tutorial to start learning about designing embedded systems
on an Intel FPGA. The “Nios II System Development Flow” section is particularly useful
in helping you to decide how to approach system design using Intel's embedded
hardware and software development tools. Intel recommends that you read this
tutorial before starting your first design project. The tutorial teaches you the basic
hardware and software flow for developing Nios II processor-based systems.

Designing with FPGAs gives you the flexibility to implement some functionality in
discrete system components, some in software, and some in FPGA-based hardware.
This flexibility makes the design process more complex. The Platform Designer system
design tool helps to manage this complexity. Even if you decide a soft-core processor
does not meet your application's needs, Platform Designer can still play a vital role in
your system by providing mechanisms for peripheral expansion or processor offload.

The figure below illustrates the overall Nios II system design flow, including both
hardware and software development. This illustration is greatly simplified. There are
numerous correct ways to use the Intel tools to create a Nios II system.

D Send Feedback Embedded Design Handbook

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 2. First Time Designer's Guide

EDH | 2018.11.12

Figure 1. General Nios II System Design Flow

© System Concept
Nios Il Cores
and Standard —
Components ¥
Analyze System
~— Requirements
C q
Custom 3
'"5””:'“0" —»| Define and Generate System |
an : . <
. —P
Peripheral in Platform Designer
Hardware Flow: Software Flow:
Integrate and compile Develop and build Nios I ~ [«
Quartus Prime project software
Download FPGA Design
to Target Board

v

Software Flow: Test and

Debug Nios Il software

Yes

System Complete

Related Information

e Hardware System Design with Intel Quartus Prime and Platform Designer on page
15

¢ Software System Design with a Nios II Processor on page 119

Embedded Design Handbook D Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
2. First Time Designer's Guide l n tel)

EDH | 2018.11.12

2.3. Embedded Design Resources

This section contains a list of resources to help you find design help. Your resource
options include traditional Intel-based support such as online documentation, training,
and My Support, as well as web-based forums and Wikis. The best option depends on
your requirements and your current stage in the design cycle.

2.3.1. Intel Embedded Support

Intel recommends that you seek support in the following order:

1. Look for relevant literature on the Intel Documentation page, especially on the
Documentation: Nios II Processor page.

For reference, see the related design examples in the Intel FPGA Design Store.
Consult one of the following community-owned resources:

e The Nios Forum, available on the Intel FPGA Community website.

e The Intel FPGA Wiki website

e Rocketboards for Linux support

Note: Intel is not responsible for the contents of the Nios Forum and Intel FPGA
Wiki websites, which are maintained by public authors and experts outside
of Intel.

4. Contact technical support through the My Intel page of the Intel website to get
support directly from Intel.

5. Contact your local Intel sales office or sales representative, or your field
application engineer (FAE).

Related Information

e Intel FPGA Documentation

e My Intel

e Intel FPGA Community

e Intel FPGA Wiki

e Documentation: Nios II Processor

e Rocketboards

e Intel FPGA Design Store

2.3.2. Intel Embedded Training

To learn how the tools work together and how to use them in an online or instructor-
led environment, register for training. Several training options are available. For
information about general training, refer to the Training page of the Intel FPGA
website.

For detailed information about available courses and their locations, visit the
Embedded SW Designer Curriculum page of the Intel FPGA website. This page
contains information about both online and instructor-led training.

Related Information
e Intel FPGA Training

D Send Feedback Embedded Design Handbook

11

https://www.altera.com/support/literature/lit-index.html
https://www.altera.com/mal-all/mal-signin.html?resource=%2Fcontent%2Faltera-www%2Fglobal%2Fen_us%2Findex%2Fmyaltera%2Fmal-home.html&$$login$$=%24%24login%24%24
http://www.alteraforum.com/
http://www.alterawiki.com/wiki/Main_Page
https://www.altera.com/products/processors/support.html
http://rocketboards.org/
https://cloud.altera.com/devstore/
https://www.altera.com/support/training/overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 2. First Time Designer's Guide

EDH | 2018.11.12

e Embedded SW Designer Curriculum

2.3.3. Intel Embedded Documentation

You can access documentation about the Nios II processor and embedded design from
your Nios II EDS installation directory at <Nios II EDS install dir>\documents
\index.htm. To access this page directly on Windows platforms, on the Start menu,
click All Programs. On the All Programs menu, on the Intel submenu, on the Nios II
EDS <version> submenu, click Nios II<version>Documentation. This web page
contains links to the latest Nios II documentation.

The Documentation: Nios II Processor page of the Intel website includes a list and
links to available documentation. At the bottom of this page, you can find links to
various product pages that include Nios II processor online demonstrations and
embedded design information.

The other chapters in the Embedded Design Handbook are a valuable source of
information about embedded hardware and software design, verification, and
debugging. Each chapter contains links to the relevant overview documentation.
Related Information

Documentation: Nios II Processor

2.3.4. Third Party Intellectual Property

Many third parties have participated in developing solutions for embedded designs
with Intel FPGAs through the Intel DSN Program. For up-to-date information about the
third-party solutions available for the Nios II processor, visit the Nios II Processor
page of the Intel website, and select the Ecosystem tab; or run a search on the
Intellectual Property Find IP web page..

Several community forums are also available. These forums are not controlled by
Intel. The Intel FPGA Forum's Marketplace provides third-party hard and soft
embedded systems-related IP. The forum also includes an unsupported projects
repository of useful example designs. You are welcome to contribute to these forum
pages.

For Linux support, you can also refer to Rocketboards.

Traditional support is available from the Support Center or through your local Field
Application Engineer (FAE). You can obtain more informal support by visiting the Nios
Forum section of the Intel FPGA Forum or by browsing the information contained on
the Intel FPGA Wiki. Many experienced developers, from Intel and elsewhere,
contribute regularly to Wiki content and answer questions on the Nios Forum.
Related Information

e Embedded Processing Web Page

e Altera Forum

e Altera Wiki

e Intellectual Property: Find IP

e Rocketboards

Embedded Design Handbook D Send Feedback

12

https://www.altera.com/support/training/curricula.html#embedded-hardware
https://www.altera.com/products/processors/support.html
https://www.altera.com/products/processors/overview.html
https://www.altera.com/products/intellectual-property/ip.html
http://rocketboards.org/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
2. First Time Designer's Guide l n tel)

EDH | 2018.11.12

2.4. Intel Embedded Glossary

The following definitions explain some of the unique terminology for describing
Platform Designer and Nios II processor-based systems:

D Send Feedback

Component—A named module in Platform Designer that contains the hardware
and software necessary to access a corresponding hardware peripheral.

Custom instruction—Custom hardware processing integrated with the Nios II
processor's ALU. The programmable nature of the Nios II processor and Platform
Designer-based design supports this implementation of software algorithms in
custom hardware. Custom instructions accelerate common operations. (The Nios II
processor floating-point instructions are implemented as custom instructions).

Custom peripheral—An accelerator implemented in hardware. Unlike custom
instructions, custom peripherals are not connected to the CPU's ALU. They are
accessed through the system interconnect fabric. (See System interconnect
fabric). Custom peripherals offload data transfer operations from the processor in
data streaming applications.

ELF (Executable and Linking Format)—The executable format used by the Nios
IT processor. This format is arguably the most common of the available executable
formats. It is used in most of today's popular Linux/BSD operating systems.

HAL (Hardware Abstraction Layer)—A lightweight runtime environment that
provides a simple device driver interface for programs to communicate with the
underlying hardware. It provides a POSIX-like software layer and wrapper to the
newlib C library.

Nios II Command Shell-The command shell you use to access Nios II and
Platform Designer command-line utilities.

— On Windows platforms, a Nios II Command Shell is a Cygwin bash with the
environment properly configured to access command-line utilities.

— On Linux platforms, to run a properly configured bash, type <Nios 11 EDS
install path>/nios2_command_shell.sh

Nios II Embedded Development Suite (EDS)—The complete software
environment required to build and debug software applications for the Nios II
processor.

Nios II Software Build Tools (SBT)—Software that allows you to create Nios II
software projects, with detailed control over the software build process.

Nios II Software Build Tools for Eclipse—An Eclipse-based development
environment for Nios II embedded designs, using the SBT for project creation and
detailed control over the software build process. The SBT for Eclipse provides
software project management, build, and debugging capabilities.

Platform Designer—Software that provides a GUI-based system builder and
related build tools for the creation of FPGA-based subsystems, with or without a
processor.

System interconnect fabric—An interface through which the Nios II processor
communicates to on- and off-chip peripherals. This fabric provides many
convenience and performance-enhancing features.

Embedded Design Handbook

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

2. First Time Designer's Guide
EDH | 2018.11.12

2.5. First Time Designer's Guide Revision History

Document
Version

Changes

2016.12.19 .

Updated the overview section: First Time Designer's Guide.
Moved the Nios II Software Design section to Software System Design with a Nios II Processor

chapter.

2015.12.18 .

Removed mention of SOPC Builder, now Platform Designer.
Removed mention of C2H Complier.
Quartus II is now Intel Quartus Prime.
Removed mention of FS2 Console.
Removed mention of Nios II IDE.
Removed section: Nios II IDE Flow.

Date Version Changes
July 2011 2.3 e Clarified this handbook does not include information about Platform
Designer.

e Updated location of hardware design examples.
e Updated references.

March 2010 2.2 Updated for the SBT for Eclipse.

January 2009 2.1 Updated Nios Wiki hyperlink.
November 2008 2.0 Added System Console.
March 2008 1.0 Initial release.

Related Information

Document Revision History for Embedded Design Handbook on page 6

Embedded Design Handbook

14

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
EDH | 2018.11.12 l n tel
D Send Feedback

3. Hardware System Design with Intel Quartus Prime and
Platform Designer

This chapter provides information on the hardware system design flow, designing with
Platform Designer, and interfacing an external processor to an FPGA. Also included are
useful configurations available with a Nios II processor, timing constraints and
requirements, and how to customize the FPGA to your design needs.

The Platform Designer system integration tool saves significant time and effort in the
FPGA design process by automatically generating interconnect logic to connect
intellectual property (IP) functions and subsystems. The following sections explains
how to connect signals in Platform Designer.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

™ ®
< l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.1. FPGA Hardware Design
Although you develop your FPGA-based design in Platform Designer, you must
perform the following tasks in other tools:
e Connect signals from your FPGA-based design to your board level design

e Connect signals from your Platform Designer system to other signals in the FPGA
logic

e Constrain your design

Figure 2. Nios II System Hardware Design Flow

Use Platform Designer to
design a Nios Il based system

:

Generate Platform Designer Design

I

Integrate Platform Designer
System with Quartus Prime Project

:

Assign Pin Locations, Timing
Requirements, and Other
Design Constraints

I

Compile Hardware
for Target Device in Quartus Prime

Nios Il Cores
and Standard
Components

Ready to Download

Embedded Design Handbook D Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.1.1. Connecting Your FPGA Design to Your Hardware

To connect your FPGA-based design to your board-level design, perform the following
two tasks:

e Identify the top level of your FPGA design.

e Assign signals in the top level of your FPGA design to pins on your FPGA using any
of the methods mentioned in the Intel I/O Management, Board Development
Support, and Signal Integrity Analysis Resource Center page of the Intel FPGA
website.

Note: The top level of your FPGA-based design might be your Platform Designer system.
However, the FPGA can include additional design logic.

3.1.2. Connecting Signals to your Platform Designer System

You must define the clock and reset pins for your Platform Designer system. You must
also define each I/0 signal that is required for proper system operation. The figure
below shows the top-level block diagram of a Platform Designer system that includes a
Nios II processor. The large symbol in this top-level diagram, labeled std_1s40,
represents the Platform Designer system. The flag-shaped pin symbols in this diagram
represent off-chip (off-FPGA) connections.

Figure 3. Top-level Block Diagram

nios2_gen_0
clig data_master
ﬂk (43 address 2
[ble]3..0
reset] tryneena e __b'fluna
L6 i read p:
= MEsei_n i fl
R i d_m.lddnl'ld.Hl..
= PSR _neg
v reUEsT
1LY waTite
i 2 " v
ﬂ]l..{}l - ek of_writedatal 31 1
debug_mem_slave readdarawaid
dhebaig_inem_slve debugacoess 1o _romd
i fl delhugaccass
bty e slive addreds] B0} it
\ e 3
ey e _slinve bytesnable] 3.0} AP instruction_m aster
i i
ety rrveem_slinve_clebanga s o elacs acdclrass(11 g 1
wad wad =
i |
readdara readdara Hiz B I'"
PR T VLT e
wrine readdaravaid - Al
g meem_sliwve writedatal31.. 0] e
et debug_reset_request
s debuig resel_reg ucﬁ
custom_instruction_master
i du mlrr,'_il_p:ﬁ
1Merd ol Ol
D Send Feedback Embedded Design Handbook

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

For more information about connecting your FPGA design pins, refer to the Intel I/O

Management, Board Development Support, and Signal Integrity Analysis Resource
Center page of the Intel website.

3.1.3. Constraining Your FPGA-Based Design

To ensure your design meets timing and other requirements, you must constrain the
design to meet these requirements explicitly using tools provided in the Quartus Prime
software or by a third party EDA provider. The Intel Quartus Prime software uses your
constraint information during design compilation to achieve Intel’s best possible
results.

Note: Intel’s third-party EDA partners and the tools they provide are listed on Intel's Partner
Solutions page of the Intel website.

Embedded Design Handbook D Send Feedback
18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.2. System Design with Platform Designer

Platform Designer simplifies the task of building complex hardware systems on an
FPGA. Platform Designer allows you to describe the topology of your system using a
graphical user interface (GUI) and then generate the hardware description language
(HDL) files for that system. The Intel Quartus Prime software compiles the HDL files to
create an SRAM Object File (.sof). For additional information about Platform Designer,
refer to the Intel Quartus Prime Handbook.

Platform Designer allows you to choose the processor core type and the level of cache,
debugging, and custom functionality for each Nios II processor. Your design can use
on-chip resources such as memory, PLLs, DSP functions, and high-speed transceivers.
You can construct the optimal processor for your design using Platform Designer.

After you construct your system using Platform Designer, and after you add any
required custom logic to complete your top-level design, you must create pin
assignments using the Intel Quartus Prime software. The FPGA’s external pins have
flexible functionality, and a range of pins are available to connect to clocks, control
signals, and I/O signals.

For information about how to create pin assignments, refer to Intel Quartus Prime
Help and to the I/O Management chapter in Volume 2: Design Implementation and
Optimization of the Intel Quartus Prime Handbook.

Intel recommends that you start your design from a small pretested project and build
it incrementally. Start with one of the many Platform Designer example designs
available from the All Design Examples web page of the Intel website, or with an
example design from the Nios II Hardware Development Tutorial.

Platform Designer allows you to create your own custom components using the
component editor. In the component editor you can import your own source files,
assign signals to various interfaces, and set various component and parameter
properties.

Before designing a custom component, you should become familiar with the interface
and signal types that are available in Platform Designer.

You should use dynamic addressing for slave interfaces on all new components.
Dynamically addressable slave ports include byte enables to qualify which byte lanes
are accessed during read and write cycles. Dynamically addressable slave interfaces
have the added benefit of being accessible by masters of any data width without data
truncation or side effects.

To learn about the interface and signal types that you can use in Platform Designer,
refer to Avalon Interface Specifications. To learn about using the component editor,
refer to the Component Editor chapter in the Intel Quartus Prime Handbook.

As you add each hardware component to the system, test it with software. If you do
not know how to develop software to test new hardware components, Intel
recommends that you work with a software engineer to test the components.

The Nios II EDS includes several software examples, located in your Nios II EDS
installation directory (nios2eds), at <Nios Il EDS install dir>\examples
\software. After you run a simple software design—such as the simplest example,
Hello World Small—build individual systems based on this design to test the additional
interfaces or custom options that your system requires. Intel recommends that you
start with a simple system that includes a processor with a JTAG debug module, an

D Send Feedback Embedded Design Handbook

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

on-chip memory component, and a JTAG UART component, and create a new system
for each new untested component, rather than adding in nhew untested components
incrementally.

After you verify that each new hardware component functions correctly in its own
separate system, you can combine the new components incrementally in a single
Platform Designer system. Platform Designer supports this design methodology well,
by allowing you to add components and regenerate the project easily.

For detailed information about how to implement the recommended incremental
design process, refer to the Verification and Board Bring-Up chapter of the Embedded
Design Handbook.

Related Information

¢ Quartus Prime Standard Edition Handbook Volume 1: Design and Synthesis
e All Design Examples

e Nios II Hardware Development Tutorial

e Avalon Interface Specifications

e Verification and Board Bring-Up on page 415

3.2.1. Intel System on a Programmable Chip (Platform Designer)
Solutions

To understand the Nios II software development process, you must understand the
definition of a Platform Designer system. Platform Designer is a system development
tool for creating systems including processors, peripherals, and memories. The tool
enables you to define and generate a complete Platform Designer very efficiently.
Platform Designer does not require that your system contain a Nios II processor,
although it provides complete support for integrating Nios II processors with your
system.

A Platform Designer system is similar in many ways to a conventional embedded
system; however, the two kinds of system are not identical. An in-depth
understanding of the differences increases your efficiency when designing your
Platform Designer system.

In Intel Platform Designer solutions, the hardware design is implemented in an Intel
FPGA device. An Intel FPGA device is volatile—contents are lost when the power is
turned off— and reprogrammable. When an Intel FPGA is programmed, the logic cells
inside it are configured and connected to create a Platform Designer system, which
can contain Nios II processors, memories, peripherals, and other structures. The
system components are connected with Avalon® interfaces. After the FPGA is
programmed to implement a Nios II processor, you can download, run, and debug
your system software on the system.

Embedded Design Handbook D Send Feedback

20

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.altera.com/support/support-resources/design-examples/all-design-examples.html#embeddedprocessors
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_hardware_tutorial.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

Understanding the following basic characteristics of FPGAs and Nios II processors is
critical for developing your Nios II software application efficiently:

e FPGA devices and Platform Designer—basic properties:

Volatility—The FPGA is functional only after it is configured, and it can be
reconfigured at any time.

Design—Many Intel Platform Designer systems are designed using Platform
Designer and the Intel Quartus Prime software, and may include multiple
peripherals and processors.

Configuration—FPGA configuration can be performed through a programming
cable, such as the Intel FPGA Download Cable , which is also used for Nios II
software debugging operations.

Peripherals—Peripherals are created from FPGA resources and can appear
anywhere in the Avalon memory space. Most of these peripherals are
internally parameterizable.

e Nios II processor—basic properties:

D Send Feedback

Volatility—The Nios II processor is volatile and is only present after the FPGA
is configured. It must be implemented in the FPGA as a system component,
and, like the other system components, it does not exist in the FPGA unless it
is implemented explicitly.

Parameterization—Many properties of the Nios II processor are
parameterizable in Platform Designer, including core type, cache memory
support, and custom instructions, among others.

Processor Memory—The Nios II processor must boot from and run code
loaded in an internal or external memory device.

Debug support—To enable software debug support, you must configure the
Nios II processor with a debug core. Debug communication is performed
through a programming cable, such as the Intel FPGA Download Cable.

Reset vector—The reset vector address can be configured to any memory
location.

Exception vector—The exception vector address can be configured to any
memory location.

Embedded Design Handbook

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.2.2. Platform Designer Design

The recommended design flow requires that you maintain several small Platform
Designer systems, each with its Intel Quartus Prime project and the software you use
to test the new hardware. A Platform Designer design requires the following files and
folders:

e Intel Quartus Prime Project File (.qpf)
e Intel Quartus Prime Settings File (.qsf)

The .qsf file contains all of the device, pin, timing, and compilation settings for the
Intel Quartus Prime project.

e One of the following types of top-level design file:
— Block Design File (.bdf)
— Verilog Design File (.v)
— VHDL Design File (.vhd)

Platform Designer generates most of the HDL files for your system, so you do
not need to maintain them when preserving a project. You need only preserve
the HDL files that you add to the design directly.

For details about the design file types, refer to the Intel Quartus Prime Help.
e Platform Designer Design File (.qsys)
e Platform Designer Information File (.sopcinfo)

This file contains an XML description of your Platform Designer system. Platform
Designer and downstream tools, including the Nios II Software Build Tools (SBT),
derive information about your system from this file.

e Your software application source files

To replicate an entire project (both hardware and software), simply copy the required
files to a separate directory. You can create a script to automate the copying process.
After the files are copied, you can proceed to modify the new project in the
appropriate tools: the Intel Quartus Prime software, Platform Designer, the SBT for
Eclipse, the SBT in the command shell, or the Nios II Integrated Development
Environment (IDE).

For more information about all of these files, refer to the "Archiving Projects" chapter
in the Intel Quartus Prime Handbook Volume 1: Design and Synthesis.

Embedded Design Handbook D Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.3. Interfacing an External Processor to an Intel FPGA

intel)

Intel provides options to connect an external processor to an Intel FPGA. These
interface options include the PCI Express*, PCI, RapidIO™, serial peripheral interface

(SPI) interface or a simple custom bridge that you can design yourself.

By including both an FPGA and a commercially available processor in your system, you
can partition your design to optimize performance and cost in the following ways:

Offload pre- or post- processing of data to the external processor
Create dedicated FPGA resources for co-processing data

Expand the I/O capability of your external processor

Reduce design time by using IP from Intel’s library of components to implement
peripheral expansion for industry standard functionality

You can instantiate the PCI Express, PCI, and RapidIO MegaCore functions using either
the Parameter Editor or Platform Designer design flow. The PCI Lite and SPI cores are
only available in the Platform Designer design flow. Platform Designer automatically
generates the HDL design files that include all of the specified components and system
connectivity. Alternatively, you can use the IP Toolbench with the Parameter Editor to
generate a stand-alone component outside of Platform Designer. The figure below
shows the steps you take to instantiate a component in both design flows.

Figure 4.

D Send Feedback

IP Toolbench with

Platform Designer and Parameter Editor Design Flows

Select Design Flow

Parameter Editor

v

Platform Designe

v

Specify Parameters

v

v

Specify Parameters

Simulate with Testbench

Complete Platform Designer
System

v

Instantiate MegaCore

Function in Design
I

Simulate System

v

Specify Constraints

v

Compile Design

v

Program Device

Embedded Design Handbook

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

The remainder of this section provides an overview of the MegaCore functions that you
can use to interface an Intel FPGA to an external processor. It covers the following
topics:

e Configuration Options

e RapidIO Interface

e PCI Express Interface

e PCI Interface

e Serial Protocol Interface (SPI)

e Custom Bridge Interfaces

3.3.1. Configuration Options

The figure below illustrates a Platform Designer system design that includes a high-
performance external bus or switch to connect an industry-standard processor to an
external interface of an IP core inside the FPGA. This IP core also includes an Avalon-
MM master port that connects to the Platform Designer system interconnect fabric. As
the figure illustrates, Intel provides a library of components, typically Avalon-MM slave
devices, that connect seamlessly to the Platform Designer system interconnect fabric.

Figure 5. FPGA with a Bus or Switch Interface Bridge for Peripheral Expansion
Intel FPGA
Interface
. On-Chip
B Switch Component
Processor = o (PCle or RIO) DMA Memory

o) L&

\ 4 v A J Y
Avalon-MM Master Ii| = S S S

Memory
UART | |User l/Q] USB Ti
Avalon-MM Slave Eoniroller =cl bl

A

The design below includes an external processor that interfaces to a PCI Express
endpoint inside the FPGA. The system interconnect fabric inside the implements a
partial crossbar switch between the endpoint that connects to the external processor
and two additional PCI Express root ports that interface to an Ethernet card and a
marking engine. In addition, the system includes some custom logic, a memory
controller to interface to external DDR SDRAM memory, a USB interface port, and an
interface to external flash memory. Platform Designer automatically generates the
system interconnect fabric to connect the components in the system.

Embedded Design Handbook D Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel
EDH | 2018.11.12

Figure 6. FPGA with a Processor Bus or SPI for Peripheral Expansion

Stratix IV GX Device

Custom
Logic

Ethernet

System
PCle Inte’:rc:n_nect
Hard IP ot

PCle
Processor

Hard IP

H PCI Link

A 4
IE Avalon-MM Master s | BAR3 =
Memory

Avalon-MM Slave Controller usB

P

Marking
Engine

DDR
SDRAM

Alternatively, you can also implement your logic in Verilog HDL or VHDL without using
Platform Designer. Below the figure illustrates a modular design that uses the FPGA
for co-processing with a second module to implement the interface to the processor. If
you choose this option, you must write all of the HDL to connect the modules in your
system.

D Send Feedback Embedded Design Handbook

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Figure 7. FPGA Performs Co-Processing

The table below summarizes the components Intel provides to connect an Intel FPGA
device to an external processor. As this table indicates, three of the components are
also available for use in the Parameter Editor design flow in addition to Platform
Designer. Alternative implementations of these components are also available through
the Intel IP Core Partners Program (DSN) partners. The partners offer a broad
portfolio of IP cores optimized for Intel devices.

For a complete list of third-party IP for Intel FPGAs, refer to the Intellectual Property:
Find IP web page of the Intel website.

Table 1. Processor Interface Solutions Available from an Intel Device
Protocol Available in Platform Available In Third-Party Solution Intel FPGA IP
Designer Parameter Editor Evaluation Mode
Available

RapidIO Yes Yes Yes Yes

PCI Express Yes Yes Yes Yes

PCI Lite Yes — — License not required

SPI Yes — —

The table below summarizes the most popular options for peripheral expansion in
Platform Designer systems that include an industry-standard processor. All of these
are available in Platform Designer. Some are also available using the Parameter Editor.

Embedded Design Handbook C] Send Feedback
26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

Table 2. Partial list of some of the peripheral interfaces available for Platform
Designer
Protocol Available in Platform Available In Third-Party Solution Intel FPGA IP
Designer Parameter Editor Evaluation Mode
Available

CAN Yes — Yes Yes

12C Yes — Yes Yes

Ethernet Yes Yes Yes Yes

PIO Yes - - Not required
POS-PHY Level 4 (SPI | — Yes — Yes

4.2)

SPI Yes — Yes Not required

UART Yes — Yes Yes

uUsB Yes — Yes Yes

For detailed information about the components available in Platform Designer refer to
the Embedded Peripherals IP User Guide and the Intellectual Property: Find IP page.

The following sections discuss the high-performance interfaces that you can use to
interface to an external processor.

Related Information

e Intellectual Property: Reference Designs

e Embedded Peripherals IP User Guide

e Using Intel FPGA IP Evaluation Mode

3.3.2. RapidIO Interface

RapidIO is a high-performance packet-switched protocol that transports data and
control information between processors, memories, and peripheral devices. The
RapidIO MegaCore function is available in Platform Designer includes Avalon-MM ports
that translate Serial RapidIO transactions into Avalon-MM transactions. The MegaCore
function also includes an optional Avalon Streaming (Avalon-ST) interface that you can
use to send transactions directly from the transport layer to the system interconnect
fabric. When you select all optional features, the core includes the following ports:

e Avalon-MM I/O write master

e Avalon-MM I/O read master

e Avalon-MM I/O write slave

e Avalon-MM I/0 read slave

¢ Avalon-MM maintenance master

e Avalon-MM system maintenance slave
e Avalon Streaming sink pass-through TX
e Avalon-ST source pass-through RX

D Send Feedback Embedded Design Handbook

27

https://www.altera.com/products/intellectual-property/reference-designs.html
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/en_US/pdfs/literature/an/an320.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Using the Platform Designer design flow, you can integrate a RapidIO endpoint in a
Platform Designer system. You connect the ports using the Platform Designer System
Contents tab and Platform Designer automatically generates the system interconnect
fabric. The figure below illustrates a Platform Designer system that includes a
processor and a RapidIO MegaCore function.

Figure 8. Example system with RapidIO Interface

Processor

_ Serial RapidlO Switch I

Rapidi0 MegaCore Function

FPGA

Physical Layer

Transpori Layer

e bbb hh

System Interconnect Fabric

Avalon-MM Master I/F t I I I I
Avalon-MM Slave IIF

Memory %

HIBER

rc| Awvalon Streaming Source I/F

[
w
m

Controller UART User /0|
» 3 3

[47]
=2
=

Avalon Streaming Sink I/F t

Voo

Refer to the RapidIO trade association web site's product list at rapidio.org for a list of
processors that support a RapidIO interface.

-
-
-
-

Embedded Design Handbook D Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer < l n tel)

Refer to the following documents for a complete description of the RapidIO MegaCore
function: RapidIO MegaCore Function User Guide and AN513: RapidIO Interoperability
With TI 6482 DSP Reference Design.

Related Information

e RapidIO.org

e RapidIO IP Core User Guide

e RapidIO Interoperability with TI 6482 DSP Reference Design

3.3.3. PCI Express Interface

The Intel IP Compiler for PCI Express configured using the Platform Designer design
flow uses the IP Compiler for PCI Express's Avalon-MM bridge module to connect the
IP Compiler for PCI Express component to the system interconnect fabric. The bridge
facilitates the design of PCI Express systems that use the Avalon-MM interface to
access Platform Designer components. The figure below illustrates a design that links
an external processor to an Platform Designer system using the IP Compiler for PCI
Express.

You can also implement the IP Compiler for PCI Express using the Parameter Editor
design flow. The configuration options for the two design flows are different. The IP
Compiler for PCI Express is available in Intel FPGA devices as a hard IP
implementation and can be used as a root port or end point. I

D Send Feedback Embedded Design Handbook

29

http://www.rapidio.org/
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_rapidio.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an513.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Figure 9. Example System with PCI Express Interface

Processor

PCI Express Link

v

-

FPGA

System Interconnect Fabric

EIRIERIEIRIE
@ Avalon-MM Master IF ;“";’;‘D"gr Fesh | | yarr | | usB | |usertio

E Avalor-MM Slave UF 3 ! | F'y f 1

A J v 1 1

The figure shows an example system in which an external processor communicates
with an Intel FPGA through a PCI Express link.

For more information about using the IP Compiler for PCI Express refer to the
following reference documents:

Related Information
e IP Compiler for PCIe User Guide
e ANA456: PCI Express High Performance Reference Design

Embedded Design Handbook D Send Feedback

30

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_pci_express.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an456.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

e External PHY Support in PCI Express MegaCore Functions
e PCI Express to External Memory Reference Design

3.3.4. PCI Interface

Intel offers a wide range of PCI local bus solutions that you can use to connect a host
processor to an FPGA. You can implement the PCI MegaCore function using the
Parameter Editor or Platform Designer design flow.

The PCI Platform Designer flow is an easy way to implement a complete Avalon-MM
system which includes peripherals to expand system functionality without having to be
well-acquainted with the Avalon-MM protocol. The figure below illustrates a Platform
Designer system using the PCI MegaCore function. You can parameterize the PCI
MegaCore function with a 32- or 64-bit interface.

Figure 10. PCI MegaCore Function in a Platform Designer System

Altera FPGA or HardCopy Device

A
PCI MasterTarget
Component
DDR2 DDR2
SDRAM SDRAM
MegaCore Memory
Function Module
i PCI PCl-Avalon System
MegaCore |«f==p= Bridge Interconnect
Function Logic Fabric
DMA
Engine
Y

For more information refer to the PCI Compiler User Guide.

Related Information
PCI Compiler User Guide

3.3.5. Serial Protocol Interface (SPI)

The SPI Slave to Avalon Master Bridge component provides a simple connection
between processors and Platform Designer systems through a four-wire industry
standard serial interface. Host systems can initiate Avalon-MM transactions by sending
encoded streams of bytes through the core's serial interface. The core supports read
and write transactions to the Platform Designer system for memory access and
peripheral expansion.

D Send Feedback Embedded Design Handbook

31

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an443.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an431.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_pci.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

Figure 11.

EDH | 2018.11.12

The SPI Slave to Avalon Master Bridge is an Platform Designer-ready component that
integrates easily into any Platform Designer system. Processors that include an SPI
interface can easily encapsulate Avalon-MM transactions for reads and writes using the
protocols outlined in the SPI Slave/JTAG to Avalon Master Bridge Cores chapter of the
Embedded Peripherals IP User Guide.

Example System with SPI to Avalon-MM Interface Component

Altera FPGA

SPI to
MOSI r= Avalon-MM

Processor |[spiZ Ll 51 |F Component
MISO

@ Avalon-MM Master s s 5 s
Memory

UART UART uUsB User I/0)

Avalon-MM Slave Controller
A A A Y

A

Details of each protocol layer can be found in the following chapters of the Embedded
Peripherals IP User Guide:

SPI Slave/JTAG to Avalon Master Bridge Cores—Provide a connection from an external
host system to an Platform Designer system. Allow an SPI master to initiate Avalon-
MM transactions.

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores—Provide a
connection from an external host system to an Platform Designer system. Allow an
SPI master to initiate Avalon-ST transactions.

Avalon Packets to Transactions Converter Core—Receives streaming data from
upstream components and initiates Avalon-MM transactions. Returns Avalon-MM
transaction responses to requesting components.

The SPI Slave to Avalon Master Bridge Design Example demonstrates SPI transactions
between an Avalon-MM host system and a remote SPI system.

Related Information
e Embedded Peripherals IP User Guide

e SPI Slave to Avalon Master Bridge Design Example

Embedded Design Handbook D Send Feedback

32

https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-spi-bridge.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.3.6. Custom Bridge Interfaces

Many bus protocols can be mapped to the system interconnect fabric either directly or
with some custom bridge interface logic to compensate for differences between the
interface standards. The Avalon-MM interface standard, which Platform Designer
supports, is a synchronous, memory-mapped interface that is easy to create custom
bridges for.

If required, you can use the component editor available in Platform Designer to quickly
define a custom bridge component to adapt the external processor bus to the Avalon-
MM interface or any other standard interface that is defined in the Avalon Interfaces
Specifications. The Templates menu available in the component editor includes menu
items to add any of the standard Avalon interfaces to your custom bridge. You can
then use the Interfaces tab of the component editor to modify timing parameters
including: Setup, Read Wait, Write Wait, and Hold timing parameters, if required.

For more information about the component editor, refer to the Creating Platform
Designer Components chapter of the Intel Quartus Prime Handbook Volume 1: Design
and Synthesis.

The Avalon-MM protocol requires that all masters provide byte addresses.
Consequently, it may be necessary for your custom bridge component to add address
wires when translating from the external processor bus interface to the Avalon-MM
interface. For example, if your processor bus has a 16-bit word address, you must add
one additional low-order address bit. If processor bus drives 32-bit word addresses,
you must add two additional, low-order address bits. In both cases, the extra bits
should be tied to 0. The external processor accesses individual byte lanes using the
byte enable signals.

Consider the following points when designing a custom bridge to interface between an
external processor and the Avalon-MM interface:

e The processor bus signals must comply or be adapted with logic to comply with
the signals used for transactions, as described in the Avalon Interfaces
Specifications.

e The external processor must support the Avalon waitrequest signal that inserts
wait-state cycles for slave components

e The system bus must have a bus reference clock to drive Platform Designer
interface logic in the FPGA.

¢ No time-out mechanism is available if you are using the Avalon-MM interface.

e You must analyze the timing requirements of the system. You should perform a
timing analysis to guarantee that all synchronous timing requirements for the
external processor and Avalon-MM interface are met. Examine the following timing
characteristics:

— Data tgy, ty , and teo times to the bus reference clock
— fmax of the system matches the performance of the bus reference clock

— Turn-around time for a read-to-write transfer or a write-to-read transfer for
the processor is well understood

If your processor has dedicated read and write buses, you can map them to the
Avalon-MM readdata and writedata signals. If your processor uses a bidirectional data
bus, the bridge component can implement the tristate logic controlled by the
processor’s output enable signal to merge the readdata and writedata signals into a

D Send Feedback Embedded Design Handbook

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
l n tel 3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

bidirectional data bus at the pins of the FPGA. Most of the other processor signals can
pass through the bridge component if they adhere to the Avalon-MM protocol. The
figure below illustrates the use of a bridge component with a 32-bit external processor.

Figure 12. Custom Bridge to Adapt an External Processor to an Avalon-MM Slave

Interface
Custom Bridge Custom Component
Avalon-MM Slave
Wr_n & chipselect
chipselect
Rd_n|& chipselect
External
Processor
(32.[,") address[n:2] address[n:2 || 2b’00] address [n:0]
BE[3:0] byteenable[3:0]
data[31:0]

For more information about designing with the Avalon-MM interface refer to the Avalon
Interfaces Specifications.

Related Information
Avalon Interface Specifications

Embedded Design Handbook D Send Feedback

34

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.4. Avalon-MM Byte Ordering

This section describes Avalon Memory-Mapped (Avalon-MM) interface bus byte
ordering and provides recommendations for representing data in your system.
Understanding byte ordering in both hardware and software is important when using
intellectual property (IP) cores that interpret data differently.

Intel recommends understanding the following documents before proceeding:

e Platform Designer Interconnect chapter of the Intel Quartus Prime Handbook
Volume 1: Design and Synthesis

e The Avalon Interface Specifications

Related Information

Avalon Interface Specifications

3.4.1. Endianness

The term endian describes data byte ordering in both hardware and software. The two
most common forms of data byte ordering are little endian and big endian. Little
endian means that the least significant portion of a value is presented first and stored
at the lowest address in memory. Big endian means the most significant portion of a
value is presented first and stored at the lowest address in memory. For example,
consider the value 0x1234. In little endian format, the 4 is the first digit presented or
stored. In big endian format, the 1 is the first digit presented or stored.

Endianness typically refers only to byte ordering. Bit ordering within each byte is a
separate subject covered in “PowerPC Bus Byte Ordering” and "ARM BE-32 Bus Byte
Ordering”.

Related Information
e PowerPC Bus Byte Ordering on page 43
e ARM BE-32 Bus Byte Ordering on page 45

3.4.1.1. Hardware Endianness

Hardware developers can map the data bits of an interface in any order. There must
be coordination and agreement among developers so that the data bits of an interface
correctly map to address offsets for any master or slave interface connected to the
interconnect. Consistent hardware endianness or bus byte ordering is especially
important in systems that contain IP interfaces of varying data widths because the
interconnect performs the data width conversion between the master and slave
interfaces. The key to simplifying bus byte ordering is to be consistent system-wide
when connecting IP cores to the interconnect. For example, if all but one IP core in
your system use little endian bus byte ordering, modify the interface of the one big
endian IP core to conform to the rest of the system.

The way an IP core presents data to the interconnect is not dependent on the internal
representation of the data within the core. IP cores can map the data interface to
match the bus data byte ordering specification independent of the internal arithmetic
byte ordering.

D Send Feedback Embedded Design Handbook

35

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.4.1.2. Software Endianness

Example 1.

Software endianness or arithmetic byte ordering is the internal representation of data
within an IP core, software compiler, and peripheral drivers. Processors can treat byte
offset 0 of a variable as the most or least significant byte of a multibyte word. For
example, the value 0OxOAOBOCOD, which spans multiple bytes, can be represented
different ways. A little endian processor considers the byte 0x0D of the value to be
located at the lowest byte offset in memory, whereas a big endian processor considers
the byte 0x0A of the value to be located at the lowest byte offset in memory.

The example below shows a C code fragment that illustrates the difference between
the little endian and big endian arithmetic byte ordering used by most processors.

Reading Byte Offset 0 of a 32-Bit Word

long * long_ptr;

char byte value;

*long_ptr = OxOAOBOCOD; // 32-bit store to "long_ptr-

byte value = *((char *)long_ptr); // 8-bit read from "long_ptr*

In the example, the processor writes the 32-bit value 0XOAOBOCOD to memory, then
reads the first byte of the value back. A little endian processor such as the Nios II
processor, which considers memory byte offset 0 to be the least significant byte of a
word, stores byte 0x0D to byte offset 0 of pointer location long_ptr. A processor
such as a PowerPC®, which considers memory byte offset 0 to be the most significant
byte of a word, stores byte 0x0A to byte offset 0 of pointer location long_ptr. As a
result, the variable byte_ value is loaded with 0x0D if this code executes on a little
endian Nios II processor and 0xO0A if this code executes on a big endian PowerPC
processor.

Arithmetic byte ordering is not dependent on the bus byte ordering used by the
processor data master that accesses memory. However, word and halfword accesses
sometimes require byte swapping in software to correctly interpret the data internally
by the processor.

For more information, refer to “Arithmetic Byte Reordering” and “System-Wide
Arithmetic Byte Reordering in Software”.

Related Information

e Arithmetic Byte Reordering on page 47

e System-Wide Arithmetic Byte Reordering in Software on page 50

3.4.2. Avalon-MM Interface Ordering

To ensure correct data communication, the Avalon-MM interface specification requires
that each master or slave port of all components in your system pass data in
descending bit order with data bits 7 down to 0 representing byte offset 0. This bus
byte ordering is a little endian ordering. Any IP core that you add to your system must
comply with the Avalon-MM interface specification. This ordering ensures that when
any master accesses a particular byte of any slave port, the same physical byte lanes
are accessed using a consistent bit ordering. For more information, refer to the Avalon
Interface Specifications.

The interconnect handles dynamic bus sizing for narrow to wide and wide to narrow
transfers when the master and slave port widths connected together do not match.
When a wide master accesses a narrow slave, the interconnect serializes the data by

Embedded Design Handbook D Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

presenting the lower bytes to the slave first. When a narrow master accesses a wide
slave, the interconnect performs byte lane realignment to ensure that the master
accesses the appropriate byte lanes of the slave.

For more information, refer to the Platform Designer Interconnect chapter of the Intel
Quartus Prime Handbook Volume 1: Design and Synthesis

Related Information

Avalon Interface Specifications

3.4.2.1. Dynamic Bus Sizing DMA Examples

A direct memory access (DMA) engine moves memory contents from a source location
to a destination location. Because Platform Designer supports dynamic bus sizing, the
data widths of the source and destination memory in the examples do not need to
match the width of the DMA engine. The DMA engine reads data from a source base
address and sequentially increases the address until the last read completes. The DMA
engine also writes data to a destination base address and sequentially increases the
address until the last write completes.

The following three figures illustrate example DMA transfers to and from memory of
differing data widths. The source memory is populated with an increasing sequential
pattern starting with the value 0 at base address 0. The DMA engine begins
transferring data starting from the base address of the source memory to the base
address of the destination memory. The interconnect always transfers the lower bytes
first when any width adaptation takes place. The width adaptation occurs
automatically within the interconnect.

D Send Feedback Embedded Design Handbook

37

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

Figure 13. 16-Bit to 32-Bit Memory DMA Transfer

Embedded Design Handbook

38

3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

32-Bit DMA
31 0
AddressO0 | 3 [2| 1|0
Address4 | 7 [6 | 5| 4
Address8 |11 ({10 9 | 8
Address12 | 15 | 14 | 13 | 12
Y
Interconne ct

Address 0

Address 2

Address 4

Address 6

Address 8

Address 10

Address 12

Address 14

15
110
3|2
514
716
918

11]10
1312
15|14

16-Bit Source Memory

Address 0

Address 4

Address 8

Address 12

31 Y 0
3|2(1f0
716 (5|4

110918
15 (14 (13 |12

32-Bit Destination Memory

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Figure 14. 32-Bit to 64-Bit Memory DMA Transfer

Address 0
Address 4
Address 8

Address 12

D Send Feedback

32-Bit DMA
31
AddressO0 | 3 [2 [1|0
Address4 | 7 | 6 | 5| 4
Address8 |11 (10| 9 | 8
Address 12 | 15 | 14 | 13 | 12
Y
Interconne ct
31
3|12|11f0
716|154 63 0
111109 |8 AddressO | 7 [6 [5| 4| 3| 2 0
15|14 |13 |12 Address8 | 15 | 14 [13 [12 |11 | 10 8

32-Bit Source Memory

64-Bit Destination Memory

Embedded Design Handbook

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

Figure 15. 128-Bit to 16-Bit Memory DMA Transfer

32-Bit DMA
31 \ 0
Address 0 312|110 Address 0 312110
Address4 | 7 | 6 | 5| 4 Address4 | 7 | 6 | 5| 4
Address8 |11 |10 | 9 | 8 Address8 |11 |10 9 | 8
Address 12 | 15 | 14 | 13 | 12 Address12 | 15 | 14 | 13 | 12
Address 16 | 19 | 18 | 17 | 16 Address 16 | 19 | 18 | 17 | 16
Address20 |23 |22 |21 | 20 Address20 |23 [22 |21 | 20
Address24 |27 [26 | 25 | 24 Address 24 |27 |26 | 25 | 24
Address28 | 31 | 30 | 29 | 28 Address28 | 31 [30 | 29 | 28
A
Interconne ct

5 ¢ 0

Address 0 110

Address 2 312

Address 4 51| 4

Address 8 716

127 0 :

Address0 | 15|14 (13| 12|11|10| 9| 8|7 |6 |5 |43 |2 |1]0 Address28 | 29 | 28

Address16 | 31 |30 |29 |28 |27 |26 | 25| 24|23 |22 |21 |20 |19 |18 | 17 | 16 Address 30 | 31 | 30
128- Bit Source Memory 16-Bit Destination Memory

3.4.3. Nios II Processor Data Accesses

In the Nios II processor, the internal arithmetic byte ordering and the bus byte
ordering are both little endian. Internally, the processor and its compiler map the least
significant byte of a value to the lowest byte offset in memory.

For example, the figure below shows storing the 32-bit value 0x0OA0BOCOD to the
variable Y. The action maps the least significant byte 0x0D to offset 0 of the memory
used to store the variable.

Embedded Design Handbook D Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Figure 16.

Table 3.

Nios II 32-Bit Byte Mapping

Y = 0x0AOBOCOD; Memory Mapping

p — T ..

0A 3

0B 9

0C 1

Increasing Addresses ———»

Offset

The Nios II processor is a 32-bit processor. For data larger than 32 bits, the same
mapping of the least significant byte to lowest offset occurs. For example, if the value
0x0807060504030201 is stored to a 64-bit variable, the least significant byte 0x01 of
the variable is stored to byte offset 0 of the variable in memory. The most significant
byte 0x08 of the variable is stored to byte offset 7 of the variable in memory. The
processor writes the least significant four bytes 0x04030201 of the variable to
memory first, followed by the most significant four bytes 0x08070605.

The master interfaces of the Nios II processor comply with Avalon-MM bus byte
ordering by providing read and write data to the interconnect in descending bit order
with bits 7 down to 0 representing byte offset 0. Because the Nios II processor uses a
32-bit data path, the processor can access the interconnect with seven different
aligned accesses. The table below shows the seven valid write accesses that the Nios
IT processor can present to the interconnect.

Nios II Write Data Byte Mapping

Access Size
(Bits)

Offset
(Bytes)

Value

Byte Enable
(Bits 3:0)

Write Data
(Bits 31:24)

Write Data
(Bits 23:16)

Write Data
(Bits 15:8)

Write Data
(Bits 7:0)

0x0A

0001

0x0A

0x0A

0010

0x0A

0x0A

0100

@ | 0 || o

0x0A

1000

0x0A

0x0A0B

0011

0x0A

0x0B

16

0x0AOB

1100

Ox0A

0x0B

32

0x0A0BOCOD

1111

0x0A

0x0B

0x0C

0x0D

D Send Feed

back

Embedded Design Handbook

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

Example 2.

EDH | 2018.11.12

The code fragment shown in the example generates all seven of the accesses
described in the table in the order presented in the table, where BASE is a location in
memory aligned to a four-byte boundary.

Nios II Write Data Byte Mapping Code

IO0WR_8DIRECT(BASE, 0, OXOA):
I0WR_SDIRECT(BASE, 1, OXOA);
10WR_SDIRECT(BASE, 2, OXOA);
I0WR_8DIRECT(BASE, 3, OXOA):
10WR_16DIRECT(BASE, O, OXOAOB);
10WR_16DIRECT(BASE, 2, OXOAOB);
I0WR_32DIRECT(BASE, 0, OXOAOBOCOD);

3.4.4. Adapting Processor Masters to be Avalon-MM Compliant

Because the way the Nios II processor presents data to the interconnect is Avalon-MM
compliant, no extra effort is required to connect the processor to the interconnect.
This section describes how to modify non-Avalon-MM compliant processor masters to
achieve Avalon-MM compliance.

Some processors use a different arithmetic byte ordering than the Nios II processor
uses, and as a result, typically use a different bus byte ordering than the Avalon-MM
interface specification supports. When connecting one of these processors directly to
the interconnect in a system containing other masters such as a Nios II processor,
accesses to the same address result in accessing different physical byte lanes of the
slave port. Mixing masters and slaves that conform to different bus byte ordering
becomes nearly impossible to manage at a system level. These mixed bus byte
ordering systems are difficult to maintain and debug. Intel requires that the master
interfaces of any processors you add to your system are Avalon-MM compliant.

Processors that use a big endian arithmetic byte ordering, which is opposite to what
the Nios II processor implements, map the most significant byte of the variable to the
lowest byte offset of the variable in memory. For example, the figure below shows how
a PowerPC processor core stores the 32-bit value 0xOAOBOCOD to the memory
containing the variable Y. The PowerPC stores the most significant byte, 0x0A, to
offset 0 of the memory containing the variable.

Embedded Design Handbook D Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Figure 17. Power PC 32-Bit Byte Mapping

Y = 0x0AOBOCOD, Memory Mapping

ob

oc

0B

0A

Offset

intel)

Increasing Addresses ——p

This arithmetic byte ordering is the opposite of the ordering shown in “Nios II
Processor Data Accesses”. Because the arithmetic byte ordering internal to the
processor is independent of data bus byte ordering external to the processor, you can
adapt processor masters with non-Avalon-MM compliant bus byte ordering to present

Avalon-MM compliant data to the interconnect.

The following sections describe the bus byte ordering for the two most common

processors that are not Avalon-MM complaint:

e "“PowerPC Bus Byte Ordering”
e “ARM BE-32 Bus Byte Ordering”

Related Information

e Nios II Processor Data Accesses on page 40

e PowerPC Bus Byte Ordering on page 43

e ARM BE-32 Bus Byte Ordering on page 45

3.4.4.1. PowerPC Bus Byte Ordering

The byte positions of the PowerPC bus byte ordering are aligned with the byte
positions of the Avalon-MM interface specification; however, the bits within each byte
are misaligned. PowerPC processor cores use an ascending bit ordering when the
masters are connected to the interconnect. For example, a 32-bit PowerPC core labels
the bus data bits 0 up to 31. A PowerPC core considers bits 0 up to 7 as byte offset 0.
This layout differs from the Avalon-MM interface specification, which defines byte
offset 0 as data bits 7 down to 0. To connect a PowerPC processor to the interconnect,

you must rename the bits in each byte lane as shown below.

D Send Feedback

Embedded Design Handbook

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel 3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

Figure 18. PowerPC Bit-Renaming Wrapper

PowerPC Wrapper

WD[0..7] —WD[7..0]
writedata[0..31] | WD[8..15] —WD[15..8] writedata[31..0] |

"|wD[16..23]—> WD[23..16 4
WD[24 31]—»WD[31..24

RD[0.7] <— RD[7.0]

readdatal0..31] | RD[8..15] «— RD[15..8] |, readdata[31..0]
RD[16..23] «— RD[23..16]
RD[24.31]4— RD[31..24]

PowerPC Processor | byteenable[0..3

byteenable[3..0] [System Interconnect

Core BE[3..0] » BE[0..3] >
address[a..0] address[a..0]
burstcount[b..0] burstcount[b..O];
read read |
write write |

Waitrequest waitrequestr
:readatavalid readatavalid

In the figure above, bit 0 is renamed to bit 7, bit 1 is renamed to bit 6, bit 2 is
renamed to bit 5, and so on. By renaming the bits in each byte lane, byte offset 0
remains in the lower eight data bits. You must rename the bits in each byte lane
separately. Renaming the bits by reversing all 32 bits creates a result that is not
Avalon-MM compliant. For example, byte offset 0 would shift to data bits 31 down to
24, not 7 down to O as required.

Note: Because the bits are simply renamed, this additional hardware does not occupy any
additional FPGA resources nor impact the fyax of the data interface.

Embedded Design Handbook D Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

3.4.4.2. ARM BE-32 Bus Byte Ordering

intel)

Some ARM cores use a bus byte ordering commonly referred to as big endian 32
(BE-32). BE-32 processor cores use a descending bit ordering when the masters are
connected to the interconnect. For example, an ARM BE-32 processor core labels the
data bits 31 down to 0. Such a processor core considers bits 31 down to 24 as byte
offset 0. This layout differs from the Avalon-MM specification, which defines byte 0 as

data bits 7 down to O.

A BE-32 processor core accesses memory using the bus mapping shown below.

Table 4. ARM BE-32 Write Data Mapping

Access Size Offset Value Byte Enable | Write Data Write Data Write Data Write Data
(Bits) (Bytes) (Bits 3:0) (Bits 31:24) | (Bits 23:16) | (Bits 15:8) (Bits 7:0)

8 0 0x0A 1000 0x0A — — —

8 1 0x0A 0100 — 0x0A — —

8 2 0x0A 0010 — — 0x0A —

8 3 0x0A 0001 — — — 0x0A

16 0 0x0A0B 1100 0x0A 0x0B — —

16 2 0x0A0B 0011 — — 0x0A 0x0B

32 0 0x0A0B0OCOD 1111 0x0A 0x0B 0x0C 0x0D

The write access behavior of the BE-32 processor shown in the table above differs
greatly from the Nios II processor behavior shown in Table 3 on page 41. The only
consistent access is the full 32-bit write access. In all the other cases, each processor
accesses different byte lanes of the interconnect.

To connect a processor with BE-32 bus byte ordering to the interconnect, rename each
byte lane as the figure below shows.

D Send Feedback

Embedded Design Handbook

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

Figure 19. ARM BE-32 Byte-Renaming Wrapper

ARM Wrapper

WD[31..24]—» WD[7..0]
writedata[31..0] | WD[23..16]—» WD[15..8] writedata[31..0] |
WD[15..8] —» WD[23..16]
WD[7.0] —»WD[31.24

RD[31..24] «— RD[7..0]
readdata[31..0] | RD[16..23] «— RDJ[15..8]
RD[15..8] «— RD[23..16]
RD[7..0] <«— RD[31..24]

readdata[31..0]

A

BE[B] —» BE[0]

ARM BE-32 byteenable[3..0]| BE[2] ——— BE[1] byteenable[3..0] | System Interconnect
Processor Core i BE[1] ———» BE[2] d
BE[0] ——— BE[3]
address[a..0] address[a..0]
burstcount[b..0] burstcount[b..0],
read read
write write:
waitrequest waitrequest
readatavalid readatavalid
Note: As in the case of the PowerPC wrapper logic, the ARM BE-32 wrapper does not

consume any FPGA logic resources or degrade the fyax of the interface.

3.4.4.3. ARM BE-8 Bus Byte Ordering

Newer ARM processor cores offer a mode called big endian 8 (BE-8). BE-8 processor
master interfaces are Avalon-MM compliant. Internally, the BE-8 core uses a big
endian arithmetic byte ordering; however, at the bus level, the core maps the data to
the interconnect with the little endian orientation the Avalon-MM interface specification
requires.

Note: This byte reordering sometimes requires special attention. For more information, refer
to “Arithmetic Byte Reordering”.
Related Information
Arithmetic Byte Reordering on page 47

3.4.4.4. Other Processor Bit and Byte Orders

There are numerous other ways to order the data leaving or entering a processor
master interface. For those cases, the approach to achieving Avalon-MM compliance is
the same. In general, apply the following three steps to any processor core to ensure
Avalon-MM compliance:

1. Identify the bit order.
2. Identify the location of byte offset 0 of the master.

3. Create a wrapper around the processor core that renames the data signals so that
byte 0 is located on data 7 down to O, byte 1 is located on data 15 down to 8, and
SO on.

Embedded Design Handbook D Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer

intel)

EDH | 2018.11.12

3.4.4.5. Arithmetic Byte Reordering

Altering your system to conform to Avalon-MM byte ordering modifies the internal
arithmetic byte ordering of multibyte values as seen by the software. For example, an
Avalon-MM compliant big endian processor core such as an ARM BE-8 processor
accesses memory using the bus mapping shown below.

Table 5. ARM BE-8 Write Data Mapping

Access Size Offset Value Byte Enable | Write Data | Write Data | Write Data | Write Data
(Bits) (Bytes) (Bits 3:0) [(Bits 31:24) | (Bits 23:16) | (Bits 15:8) (Bits 7:0)

8 0 0x0A 0001 - - - 0x0A

8 1 0x0A 0010 - - 0x0A -

8 2 0x0A 0100 - 0x0A - -

8 3 0x0A 1000 0x0A - - -

16 0 0x0AO0B 0011 - - 0x0B 0x0A

16 2 0x0A0B 1100 0x0B 0x0A — —

32 0 0x0A0BOCOD 1111 0x0D 0x0C 0x0B 0x0A

D Send Feedback

The big endian ARM BE-8 mapping in the table ablove matches the little endian Nios II
processor mapping for all single byte accesses. If you ensure that your processor is
Avalon-MM compliant, you can easily share individual bytes of data between big and
little endian processors and peripherals.

However, making sure that the processor data master is Avalon-MM compliant only
ensures that single byte accesses map to the same physical byte lanes of a slave port.
In the case of multibyte accesses, the same byte lanes are accessed between the BE-8
and little endian processor; however, the value is not interpreted consistently. This
mismatch is only important when the internal arithmetic byte ordering of the
processor differs from other peripherals and processors in your system.

To correct the mismatch, you must perform arithmetic byte reordering in software for
multibyte accesses. Interpretation of the data by the processor can vary based on the
arithmetic byte ordering used by the processor and other processors and peripherals
in the system.

For example, consider a 32-bit ARM BE-8 processor core that reads from a 16-bit little
endian timer peripheral by performing a 16-bit read access. The ARM processor treats
byte offset 0 as the most significant byte of any word. The timer treats byte offset 0
as the least significant byte of the 16-bit value. When the processor reads a value
from the timer, the bytes of the value, as seen by software, are swapped. The figure
below shows the swapping. A timer counter value of 0x0800 (2,048 clock ticks) is
interpreted by the processor as 0x0008 (8 clock ticks) because the arithmetic byte
ordering of the processor does not match the arithmetic byte ordering of the timer
component.

Embedded Design Handbook

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
< l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

Figure 20.

ARM BE-8 Processor Accessing a Little Endian Peripheral

32-Bit ARM BE-8 Processor
16-Bit Value Read = 0x0008

31 24 23 16 15 8 7 0

0x00 0x08 X X

Ix X 008 Tox00

Interconnect

A 4

A
0x08 0x00
15 8§ 7 0

0x08 0x00

> >
Value = 0x0800
Little Endian Timer

For the values to be interpreted accurately, the processor must either read each byte
lane individually and then combine the two byte reads into a single 16-bit value in
software, or read the single 16-bit value and swap the bytes in software.

The same issue occurs when you apply a bus-level renaming wrapper to an ARM
BE-32 or PowerPC core. Both processor cores treat byte offset 0 as the most
significant byte of any value. As a result, you must handle any mismatch between
arithmetic byte ordering of data used by the processor and peripherals in your system.

On the other hand, if the timer in the figure above were to treat the most significant
byte of the 16-bit value as byte 0 (big endian ordering), the data would arrive at the
processor master in the same arithmetic byte ordering used by the processor. If the
processor and the component internally implement the same arithmetic byte ordering,
no software swapping of bytes is necessary for multibyte accesses.

Embedded Design Handbook D Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

(inteD

The figure below shows how the value 0x0800 of a big endian timer is read by the
processor. The value is retained without the need to perform any byte swapping in

software after the read completes.

Figure 21. ARM BE-8 Processor Accessing a BE-8 Peripheral

32-Bit ARM BE-8 Processor
16-Bit Value Read = 0x0800

31 24 23 16 15 8 7 0

0x08 0x00 X X
> | D > >
IE K 0x00 008
Interconnect
TOXOO TOXOS

D Send Feedback

15><0

0x08

0x00

>

>

Value = 0x0008
BE-8 Timer

Embedded Design Handbook

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.4.5. System-Wide Desigh Recommendations

In the previous sections, we discussed arithmetic and bus byte ordering from a
processor perspective. The same concepts directly apply to any component in your
system. Any component containing Avalon-MM slave ports must also adhere to the
Avalon-MM specification, which states that the data bits be defined in descending
order with byte offset 0 positioned at bits 7 down to 0. As long as the component’s
slave port is Avalon-MM compliant, you can use any arithmetic byte ordering within
the component.

3.4.5.1. System-Wide Arithmetic Byte Ordering

Typically, the most convenient arithmetic byte ordering to use throughout a system is
the ordering the processor uses, if one is present. If the processor uses a different
arithmetic byte ordering than the rest of the system, you must write software that
rearranges the ordering for all multibyte accesses.

The majority of the IP provided by Intel that contains an Avalon-MM master or slave
port uses little endian arithmetic byte ordering. If your system consists primarily of
components provided by Intel, it is much easier to make the remainder of your system
use the same little endian arithmetic byte ordering. When the entire system uses
components that use the same arithmetic byte ordering and Avalon-MM bus byte
ordering, arithmetic byte reordering within the processor or any component
performing data accesses is not necessary.

Intel recommends writing your driver code to handle both big and little endian
arithmetic byte ordering. For example, if the peripheral is little endian, write the
peripheral driver to execute on both big and little endian processors. For little endian
processors, no byte swapping is necessary. For big endian processors, all multibyte
accesses requires a byte swap. Driver code selection is controlled at compile time or
run time depending on the application and the peripheral.

3.4.5.2. System-Wide Arithmetic Byte Reordering in Software

If you cannot modify your system so that all the components use the same arithmetic
byte ordering, you must implement byte reordering in software for multibyte accesses.
Many processors today include instructions to accelerate this operation. If your
processor does not have dedicated byte-reordering instructions, the example below
shows how you can implement byte reordering in software by leveraging the macros
for 16-bit and 32-bit data.

Example 3. Software Arithmetic Byte Reordering

/* Perform 16-bit byte reordering */

#define SW_16_BIT_ARITHMETIC_REORDERING (data) (\
(((data) << 8) & OxFF0O0) | \

(((data) >> 8) & OxO00FF) \

)

/* Perform 32-bit byte reordering */

#define SW_32_BIT_ARITHMETIC_REORDERING (data) (\
(((data) << 24) & OxFF000000) | \

(((data) << 8) & OxO0FF0000) | \

(((data) >> 8) & 0x0000FF00) | \

(((data) >> 24) & 0x000000FF) \

Embedded Design Handbook D Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel >

EDH | 2018.11.12

Choose the appropriate instruction or macro to perform the byte reordering based on
the width of the value that requires arithmetic byte reordering. Because arithmetic
byte ordering only applies to individual values stored in memory or peripherals, you
must reverse the bytes of the value without disturbing the data stored in neighboring
memory locations. For example, if you load a 16-bit value from a peripheral that uses
a different arithmetic byte ordering, you must swap two bytes in software. If you
attempt to load two 16-bit values as a packed 32-bit read access, you must swap the
individual 16-bit values independently. If you attempt to swap all four bytes at once,
the two individual 16-bit values are swapped, which is not the original intent of the
software developer.

D Send Feedback Embedded Design Handbook

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.5. Memory System Design

This section describes the efficient use of memories in a Platform Designer embedded
systems. Efficient memory use increases the performance of FPGA-based embedded
systems. Embedded systems use memories for a range of tasks, such as the storage
of software code and lookup tables (LUTs) for hardware accelerators.

3.5.1. Memory Types

Your system’s memory requirements depend heavily on the nature of the applications
which you plan to run on the system. Memory performance and capacity requirements
are small for simple, low cost systems. In contrast, memory throughput can be the
most critical requirement in a complex, high performance system. The following
general types of memories can be used in embedded systems.

3.5.1.1. Volatile Memory

A primary distinction in memory types is volatility. Volatile memories only hold their
contents while power is applied to the memory device. As soon as power is removed,
the memories lose their contents; consequently, volatile memories are unacceptable if
data must be retained when the memory is switched off. Examples of volatile
memories include static RAM (SRAM), synchronous static RAM (SSRAM), synchronous
dynamic RAM (SDRAM), and FPGA on-chip memory.

3.5.1.2. Non-Volatile Memory

Non-volatile memories retain their contents when power is switched off, making them
good choices for storing information that must be retrieved after a system power-
cycle. Processor boot-code, persistent application settings, and FPGA configuration
data are typically stored in non-volatile memory. Although non-volatile memory has
the advantage of retaining its data when power is removed, it is typically much slower
to write to than volatile memory, and often has more complex writing and erasing
procedures. Non-volatile memory is also usually only guaranteed to be erasable a
given number of times, after which it may fail. Examples of non-volatile memories
include all types of flash, EPROM, and EEPROM. Most modern embedded systems use
some type of flash memory for non-volatile storage.

Many embedded applications require both volatile and non-volatile memories because
the two memory types serve unique and exclusive purposes. The following sections
discuss the use of specific types of memory in embedded systems.

3.5.2. On-Chip Memory

On-chip memory is the simplest type of memory for use in an FPGA-based embedded
system. The memory is implemented in the FPGA itself; consequently, no external
connections are necessary on the circuit board. To implement on-chip memory in your
design, simply select On-Chip Memory from the Component Library on the System
Contents tab in Platform Designer. You can then specify the size, width, and type of
on-chip memory, as well as special on-chip memory features such as dual-port access.

Embedded Design Handbook D Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.5.2.1. Advantages

On-chip memory is the highest throughput, lowest latency memory possible in an
FPGA-based embedded system. It typically has a latency of only one clock cycle.
Memory transactions can be pipelined, making a throughput of one transaction per
clock cycle typical.

Some variations of on-chip memory can be accessed in dual-port mode, with separate
ports for read and write transactions. Dual-port mode effectively doubles the potential
bandwidth of the memory, allowing the memory to be written over one port, while
simultaneously being read over the second port.

Another advantage of on-chip memory is that it requires no additional board space or
circuit-board wiring because it is implemented on the FPGA directly. Using on-chip
memory can often save development time and cost.

Finally, some variations of on-chip memory can be automatically initialized with
custom content during FPGA configuration. This memory is useful for holding small
bits of boot code or LUT data which needs to be present at reset.

3.5.2.2. Disadvantages

While on-chip memory is very fast, it is somewhat limited in capacity. The amount of
on-chip memory available on an FPGA depends solely on the particular FPGA device
being used, but capacities range from around 15 KBytes in the smallest Cyclone II
device to just under 2 MBytes in the largest Stratix III device.

Because most on-chip memory is volatile, it loses its contents when power is
disconnected. However, some types of on-chip memory can be initialized automatically
when the FPGA is configured, essentially providing a kind of non-volatile function. For
details, refer to the embedded memory chapter of the device handbook for the
particular FPGA family you are using or Intel Quartus Prime Help.

3.5.2.3. Best Applications
The following sections describe the best uses of on-chip memory.
3.5.2.3.1. Cache

Because it is low latency, on-chip memory functions very well as cache memory for
microprocessors. The Nios II processor uses on-chip memory for its instruction and
data caches. The limited capacity of on-chip memory is usually not an issue for caches
because they are typically relatively small.

3.5.2.3.2. Tightly Coupled Memory

The low latency access of on-chip memory also makes it suitable for tightly coupled
memories. Tightly coupled memories are memories which are mapped in the normal
address space, but have a dedicated interface to the microprocessor, and possess the
high speed, low latency properties of cache memory.

For more information regarding tightly-coupled memories, refer to the Using Tightly
Coupled Memory with the Nios II Processor Tutorial.

D Send Feedback Embedded Design Handbook

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.5.2.3.3. Look Up Tables

For some software programming functions, particularly mathematical functions, it is
sometimes fastest to use a LUT to store all the possible outcomes of a function, rather
than computing the function in software. On-chip memories work well for this purpose
as long as the number of possible outcomes fits reasonably in the capacity of on-chip
memory available.

3.5.2.3.4. FIFO

Embedded systems often need to regulate the flow of data from one system block to

another. FIFOs can buffer data between processing blocks that run most efficiently at
different speeds. Depending on the size of the FIFO your application requires, on-chip
memory can serve as very fast and convenient FIFO storage.

For more information regarding FIFO buffers, refer to the On-Chip FIFO Memory Core
chapter of the Embedded Peripheral IP User Guide.

3.5.2.4. Poor Applications

On-chip memory is poorly suited for applications which require large memory capacity.
Because on-chip memory is relatively limited in capacity, avoid using it to store large
amounts of data; however, some tasks can take better advantage of on-chip memory
than others. If your application utilizes multiple small blocks of data, and not all of
them fit in on-chip memory, you should carefully consider which blocks to implement
in on-chip memory. If high system performance is your goal, place the data which is
accessed most often in on-chip memory cache.

3.5.2.5. On-Chip Memory Types

Depending on the type of FPGA you are using, several types of on-chip memory are
available. For details on the different types of on-chip memory available to you, refer
to the device handbook for the particular FPGA family you are using.

3.5.2.6. Best Practices

To optimize the use of the on-chip memory in your system, follow these guidelines:

e Set the on-chip memory data width to match the data-width of its primary system
master. For example, if you are connecting the on-chip memory to the data
master of a Nios II processor, you should set the data width of the on-chip
memory to 32 bits, the same as the data-width of the Nios II data master.
Otherwise, the access latency could be longer than one cycle because the system
interconnect fabric performs width translation.

e If more than one master connects to an on-chip memory component, consider
enabling the dual-port feature of the on-chip memory. The dual-port feature
removes the need for arbitration logic when two masters access the same on-chip
memory. In addition, dual-ported memory allows concurrent access from both
ports, which can dramatically increase efficiency and performance when the
memory is accessed by two or more masters. However, writing to both slave ports
of the RAM can result in data corruption if there is not careful coordination
between the masters.

Embedded Design Handbook D Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

To minimize FPGA logic and memory utilization, follow these guidelines:

e Choose the best type of on-chip memory for your application. Some types are
larger capacity; others support wider data-widths. The embedded memory section
in the device handbook for the appropriate FPGA family provides details on the
features of on-chip memories.

e Choose on-chip memory sizes that are a power of 2 bytes. Implementing
memories with sizes that are not powers of 2 can result in inefficient memory and
logic use.

3.5.3. External SRAM

The term external SRAM refers to any static RAM (SRAM) device that you connect
externally to a FPGA. There are several varieties of external SRAM devices. The choice
of external SRAM and its type depends on the nature of the application. Designing
with SRAM memories presents both advantages and disadvantages.

3.5.3.1. Advantages

External SRAM devices provide larger storage capacities than on-chip memories, and
are still quite fast, although not as fast as on-chip memories. Typical external SRAM
devices have capacities ranging from around 128 KBytes to 10 MBytes. Specialty
SRAM devices can even be found in smaller and larger capacities. SRAMs are typically
very low latency and high throughput devices, slower than on-chip memory only
because they connect to the FPGA over a shared, bidirectional bus. The SRAM
interface is very simple, making connecting to an SRAM from an FPGA a simple design
task. You can also share external SRAM buses with other external SRAM devices, or
even with external memories of other types, such as flash or SDRAM.

3.5.3.2. Disadvantages

The primary disadvantages of external SRAM in an FPGA-based embedded system are
cost and board real estate. SRAM devices are more expensive per MByte than other
high-capacity memory types such as SDRAM. They also consume more board space
per MByte than both SDRAM and FPGA on-chip memory, which consumes none.

3.5.3.3. Best Applications

External SRAM is quite effective as a fast buffer for medium-size blocks of data. You
can use external SRAM to buffer data that does not fit in on-chip memory and requires
lower latency than SDRAM provides. You can also group multiple SRAM memories to
increase capacity.

SRAM is also optimal for accessing random data. Many SRAM devices can access data
at non-sequential addresses with the same low latency as sequential addresses, an
area where SDRAM performance suffers. SRAM is the ideal memory type for a large
LUT holding the data for a color conversion algorithm that is too large to fit in on-chip
memory, for example.

External SRAM performs relatively well when used as execution memory for a
processor with no cache. The low latency properties of external SRAM help improve
processor performance if the processor has no cache to mask the higher latency of
other types of memory.

D Send Feedback Embedded Design Handbook

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.5.3.4. Poor Applications

Poor uses for external SRAM include systems which require large amounts of storage
and systems which are cost-sensitive. If your system requires a block of memory
larger than 10 MBytes, you may want to consider a different type of memory, such as
SDRAM, which is less expensive.

3.5.3.5. External SRAM Types

There are several types of SRAM devices. The following types are the most popular:

e Asynchronous SRAM—This is the slowest type of SRAM because it is not dependent
on a clock.

e Synchronous SRAM (SSRAM)—Synchronous SRAM operates synchronously to a
clock. It is faster than asynchronous SRAM but also more expensive.

e Pseudo-SRAM—Pseudo-SRAM (PSRAM) is a type of dynamic RAM (DRAM) which
has an SSRAM interface.

e ZBT SRAM—ZBT (zero bus turnaround) SRAM can switch from read to write
transactions with zero turnaround cycles, making it very low latency. ZBT SRAM
typically requires a special controller to take advantage of its low latency features.

3.5.3.6. Best Practices

To get the best performance from your external SRAM devices, follow these
guidelines:

e Use SRAM interfaces which are the same data width as the data width of the
primary system master that accesses the memory.

e If pin utilization or board real estate is a larger concern than the performance of
your system, you can use SRAM devices with a smaller data width than the
masters that accesses them to reduce the pin count of your FPGA and possibly the
number of memory devices on the PCB. However, this change results in reduced
performance of the SRAM interface.

3.5.4. Flash Memory

Flash memory is a non-volatile memory type used frequently in embedded systems. In
FPGA-based embedded systems, flash memory is always external because FPGAs do
not contain flash memory. Because flash memory retains its contents after power is
removed, it is commonly used to hold microprocessor boot code as well as any data
which needs to be preserved in the case of a power failure. Flash memories are
available with either a parallel or a serial interface. The fundamental storage
technology for parallel and serial flash devices is the same.

Unlike SRAM, flash memory cannot be updated with a simple write transaction. Every
write to a flash device uses a write command consisting of a fixed sequence of
consecutive read and write transactions. Before flash memory can be written, it must
be erased. All flash devices are divided into some number of erase blocks, or sectors,
which vary in size, depending on the flash vendor and device size. Entire sections of
flash must be erased as a unit; individual words cannot be erased. These
requirements sometimes make flash devices difficult to use.

Embedded Design Handbook D Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.5.4.1. Advantages

The primary advantage of flash memory is that is non-volatile. Modern embedded
systems use flash memory extensively to store not only boot code and settings, but
large blocks of data such as audio or video streams. Many embedded systems use
flash memory as a low power, high reliability substitute for a hard drive.

Among other non-volatile types of memory, flash memory is the most popular for the
following four reasons:

e Itis durable.

e Itis erasable.

e It permits a large number of erase cycles.

e Itis low-cost.

You can share flash buses with other flash devices, or even with external memories of
other types, such as external SRAM or SDRAM.

3.5.4.2. Disadvantages

A major disadvantage of flash is its write speed. Because you can only write to flash
devices using special commands, multiple bus transactions are required for each flash
write. Furthermore, the actual write time, after the write command is sent, can be
several microseconds. Depending on clock speed, the actual write time can be in the
hundreds of clock cycles. Because of the sector-erase restriction, if you need to
change a data word in the flash, you must complete the following steps:

1. Copy the entire contents of the sector into a temporary buffer.
2. Erase the sector.

3. Change the single data word in the temporary buffer.

4. Write the temporary buffer back to the flash memory device.

This procedure contributes to the poor write speed of flash memory devices. Because
of its poor write speed, flash memory is typically used only for storing data which
must be preserved after power is turned off.

3.5.4.3. Typical Applications

Flash memory is effective for storing any data that you wish to preserve if power is
removed from the system. Common uses of flash memory include storage of the
following types of data:

e Microprocessor boot code
e Microprocessor application code to be copied to RAM at system startup
e Persistent system settings, including the following types of settings:
— Network MAC address
— Calibration data
— User preferences
e FPGA configuration images
e Media (audio, video)

D Send Feedback Embedded Design Handbook

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.5.4.4. Poor Applications

Because of flash memory's slow write speeds, you should not use it for anything that
does not need to be preserved after power-off. SRAM is a much better alternative if
volatile memory is an option. Systems that use flash memory usually also include
some SRAM as well.

One particularly poor use of flash is direct execution of microprocessor application
code. If any of the code's writeable sections are located in flash memory, the software
simply will not work, because flash memory cannot be written without using its special
write commands. Systems that store application code in flash memory usually copy
the application to SRAM before executing it.

3.5.4.5. Flash Types

There are several types of flash devices. The following types are the most popular:

e Serial flash - This flash has a serial interface to preserve device pins and board
space. Because many serial flash devices have their own specific interface
protocol, it is best to thoroughly read a serial flash device's datasheet before
choosing it. Intel EPCS configuration devices are a type of serial flash.

For more information about EPCS configuration devices, refer to the
Documentation: Configuration Devices page on the Intel website.

e NAND flash - NAND flash can achieve very high capacities, up to multiple GBytes
per device. The interface to NAND flash is a bit more complicated than that of CFI
flash. It requires either a special controller or intelligent low-level driver software.
You can use NAND Flash with Intel FPGAs; however, Intel does not provide any
built-in support.

3.5.5. SDRAM

SDRAM is another type of volatile memory. It is similar to SRAM, except that it is
dynamic and must be refreshed periodically to maintain its content. The dynamic
memory cells in SDRAM are much smaller than the static memory cells used in SRAM.
This difference in size translates into very high-capacity and low-cost memory devices.

In addition to the refresh requirement, SDRAM has other very specific interface
requirements which typically necessitate the use of special controller hardware. Unlike
SRAM, which has a static set of address lines, SDRAM divides up its memory space
into banks, rows, and columns. Switching between banks and rows incurs some
overhead, so that efficient use of SDRAM involves the careful ordering of accesses.
SDRAM also multiplexes the row and column addresses over the same address lines,
which reduces the pin count necessary to implement a given size of SDRAM. Higher
speed varieties of SDRAM such as DDR, DDR2, and DDR3 also have strict signal
integrity requirements which need to be carefully considered during the design of the
PCB.

SDRAM devices are among the least expensive and largest-capacity types of RAM
devices available, making them one of the most popular. Most modern embedded
systems use SDRAM. A major part of an SDRAM interface is the SDRAM controller. The
SDRAM controller manages all the address-multiplexing, refresh and row and bank
switching tasks, allowing the rest of the system to access SDRAM without knowledge
of its internal architecture.

Embedded Design Handbook D Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

For information about the SDRAM controllers available for use in Intel FPGAs, refer to
the External Memory Interface Handbook.

3.5.5.1. Advantages

SDRAM's most significant advantages are its capacity and cost. No other type of RAM
combines the low cost and large capacity of SDRAM, which makes it a very popular
choice. SDRAM also makes efficient use of pins. Because row and column addresses
are multiplexed over the same address pins, fewer pins are required to implement a
given capacity of memory. Finally, SDRAM generally consumes less power than an
equivalent SRAM device.

In some cases, you can also share SDRAM buses between multiple SDRAM devices, or
even with external memories of other types, such as external SRAM or flash memory.

3.5.5.2. Disadvantages

Along with the high capacity and low cost of SDRAM, come additional complexity and
latency. The complexity of the SDRAM interface requires that you always use an
SDRAM controller to manage SDRAM refresh cycles, address multiplexing, and
interface timing. Such a controller consumes FPGA logic elements that would normally
be available for other logic.

SDRAM suffers from a significant amount of access latency. Most SDRAM controllers
take measures to minimize the amount of latency, but SDRAM latency is always
greater than that of regular external SRAM or FPGA on-chip memory. However, while
first-access latency is high, SDRAM throughput can actually be quite high after the
initial access latency is overcome, because consecutive accesses can be pipelined.
Some types of SDRAM can achieve higher clock frequencies than SRAM, further
improving throughput. The SDRAM interface specification also employs a burst feature
to help improve overall throughput.

3.5.5.3. Best Applications

SDRAM is generally a good choice in the following circumstances:

e Storing large blocks of data—SDRAM's large capacity makes it the best choice for
buffering large blocks of data such as network packets, video frame buffers, and
audio data.

e Executing microprocessor code—SDRAM is commonly used to store instructions
and data for microprocessor software, particularly when the program being
executed is large. Instruction and data caches improve performance for large
programs. Depending on the system topography and the SDRAM controller used,
the sequential read patterns typical of cache line fills can potentially take
advantage of SDRAM's pipeline and burst capabilities.

D Send Feedback Embedded Design Handbook

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(inteD

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

3.5.5.4. Poor Applications

SDRAM may not be the best choice in the following situations:

Whenever low-latency memory access is required—Although high throughput is
possible using SDRAM, its first-access latency is quite high. If low latency access
to a particular block of data is a requirement of your application, SDRAM is
probably not a good candidate to store that block of data.

Small blocks of data—When only a small amount of storage is needed, SDRAM
may be unnecessary. An on-chip memory may be able to meet your memory
requirements without adding another memory device to the PCB.

Small, simple embedded systems—If your system uses a small FPGA in which logic
resources are scarce and your application does not require the capacity that
SDRAM provides, you may prefer to use a small external SRAM or on-chip memory
rather than devoting FPGA logic elements to an SDRAM controller.

3.5.5.5. SDRAM Types

There are a several types of SDRAM devices. The following types are the most
common:

SDR SDRAM—Single data rate (SDR) SDRAM is the original type of SDRAM. It is
referred to as SDRAM or as SDR SDRAM to distinguish it from newer, double data
rate (DDR) types. The name single data rate refers to the fact that a maximum of
one word of data can be transferred per clock cycle. SDR SDRAM is still in wide
use, although newer types of DDR SDRAM are becoming more common.

DDR SDRAM—Double data rate (DDR) SDRAM is a newer type of SDRAM that
supports higher data throughput by transferring a data word on both the rising
and falling edge of the clock. DDR SDRAM uses 2.5 V SSTL signaling. The use of
DDR SDRAM requires a custom memory controller.

DDR2 SDRAM—DDR2 SDRAM is a newer variation of standard DDR SDRAM
memory which builds on the success of DDR by implementing slightly improved
interface requirements such as lower power 1.8 V SSTL signaling and on-chip
signal termination.

DDR3 SDRAM—DDR3 is another variant of DDR SDRAM which improves the
potential bandwidth of the memory further by improving signal integrity and
increasing clock frequencies.

QDR, QDR II, and QDR II+ SRAM—Quad Data Rate (QDR) SRAM has independent
read and write ports that run concurrently at double data rate. QDR SRAM is true
dual-port (although the address bus is still shared), which gives this memory a
high bandwidth, allowing back-to-back transactions without the contention issues
that can occur when using a single bidirectional data bus. Write and read
operations share address ports.

Embedded Design Handbook D Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer < l n tel)

RLDRAM II and RLDRAM 3—Reduced latency DRAM (RLDRAM) provides DRAM-
based point-to-point memory devices designed for communications, imaging,
server systems, networking, and cache applications requiring high density, high
memory bandwidth, and low latency. The fast random access speeds in RLDRAM
devices make them a viable alternative to SRAM devices at a lower cost.

LPDDR2—LPDDR2-S is a high-speed SDRAM device internally configured as a 4- or
8-bank memory. All LPDDR2 devices use double data rate architecture on the
address and command bus to reduce the number of input pins in the system. The
10-bit address and command bus contains command, address, and bank/row
buffer information. Each command uses one clock cycle, during which command
information is transferred on both the positive and negative edges of the clock.

LPDDR3—LPDDR3-SDRAM is a high-speed synchronous DRAM device internally
configured as an 8-bank memory. All LPDDR3 devices use double data rate
architecture on the address and command bus to reduce the number of input pins
in the system. The 10-bit address and command bus contains command, address,
and bank buffer information. Each command uses one clock cycle, during which
command information is transferred on both the positive and negative edges of
the clock.

For more information about SDRAM types refer to the External Memory Interface
Handbook Volume 2: Design Guidelines.

D Send Feedback Embedded Design Handbook

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

3.5.5.6. SDRAM Controller Types Available From Intel

The table below lists the SDRAM controllers that Intel provides. These SDRAM
controllers are available without licenses.

Table 6. Memory Controller Available from Intel
Controller Name Description
SDR SDRAM Controller This controller is the only SDR SDRAM controller Intel

offers. It is a simple, easy-to-use controller that works with
most available SDR SDRAM devices.

DDR/DDR2 Controller Megacore Function This controller is a legacy component which is maintained
for existing designs only. Intel does not recommend it for
new designs.

High Performance DDR/DDR2 Controller This controller is the DDR/DDR2 controller that Intel
recommends for new designs. It supports two primary
clocking modes, full-rate and half-rate.

e Full-rate mode presents data to the Platform Designer
system at twice the width of the actual DDR SDRAM
device at the full SDRAM clock rate.

e Half-rate mode presents data to the Platform Designer
system at four times the native SDRAM device data
width at half the SDRAM clock rate.

High Performance DDR3 Controller This controller is the DDR3 controller that Intel recommends
for new designs. It is similar to the high performance DDR/
DDR2 controller. It also supports full- and half-rate clocking
modes.

Hard Memory Controller (HMC) The hard memory controller initializes, refreshes, manages,
and communicates with the external memory device. The
HMC supports all the popular and emerging memory
standards including DDR4, DDR3, and LPDDR3.

For more information about the available SDRAM controllers, refer to the External
Memory Interface Handbook Volume 3: Reference Material.

3.5.5.7. Best Practices

When using the high performance DDR or DDR2 SDRAM controller, it is important to
determine whether full-rate or half-rate clock mode is optimal for your application.

3.5.5.7.1. Half-Rate Mode

Half-rate mode is optimal in cases where you require the highest possible SDRAM
clock frequency, or when the complexity of your system logic means that you are not
able to achieve the clock frequency you need for the DDR SDRAM. In half-rate mode,
the internal Avalon interface to the SDRAM controller runs at half the external SDRAM
frequency.

In half-rate mode, the local data width (the data width inside the Platform Designer
system) of the SDRAM controller is four times the data width of the physical DDR
SDRAM device. For example, if your SDRAM device is 8 bits wide, the internal Avalon
data port of the SDRAM controller is 32 bits. This design choice facilitates bursts of
four accesses to the SDRAM device.

Embedded Design Handbook D Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.5.5.7.2. Full-Rate Mode

In full-rate mode, the internal Avalon interface to the SDRAM controller runs at the full
external DDR SDRAM clock frequency. Use full-rate mode if your system logic is simple
enough that it can easily achieve DDR SDRAM clock frequencies, or when running the
system logic at half the clock rate of the SDRAM interface is too slow for your
requirements.

When using full-rate mode, the local data width of the SDRAM controller is twice the
data width of the physical DDR SDRAM. For example, if your SDRAM device is 16 bits
wide, the internal Avalon data port of the SDRAM controller in full-rate mode is 32 bits
wide. Again, this choice facilitate bursts to the SDRAM device.

3.5.5.7.3. Sequential Access

SDRAM performance benefits from sequential accesses. When access is sequential,
data is written or read from consecutive addresses and it may be possible to increase
throughput by using bursting. In addition, the SDRAM controller can optimize the
accesses to reduce row and bank switching. Each row or bank change incurs a delay,
so that reducing switching increases throughput.

3.5.5.7.4. Bursting

SDRAM devices employ bursting to improve throughput. Bursts group a number of
transactions to sequential addresses, allowing data to be transferred back-to-back
without incurring the overhead of requests for individual transactions. If you are using
the high performance DDR/DDR2 SDRAM controller, you may be able to take
advantage of bursting in the system interconnect fabric as well. Bursting is only useful
if both the master and slave involved in the transaction are burst-enabled. Refer to the
documentation for the master in question to check whether bursting is supported.

Selecting the burst size for the high performance DDR/DDR2 SDRAM controller
depends on the mode in which you use the controller. In half-rate mode, the Avalon-
MM data port is four times the width of the actual SDRAM device; consequently, four
transactions are initiated to the SDRAM device for each single transfer in the system
interconnect fabric. A burst size of four is used for those four transactions to SDRAM.
This is the maximum size burst supported by the high performance DDR/DDR2 SDRAM
controller. Consequently, using bursts for the high performance DDR/DDR2 SDRAM
controller in half-rate mode does not increase performance because the system
interconnect fabric is already using its maximum supported burst-size to carry out
each single transaction.

However, in full-rate mode, you can use a burst size of two with the high performance
DDR/DDR2 SDRAM controller. In full-rate mode, each Avalon transaction results in two
SDRAM device transactions, so two Avalon transactions can be combined in a burst
before the maximum supported SDRAM controller burst size of four is reached.

3.5.5.7.5. SDRAM Minimum Frequency

Many SDRAM devices, particularly DDR, DDR2, and DDR3 devices have minimum clock
frequency requirements. The minimum clock rate depends on the particular SDRAM
device. Refer to the datasheet of the SDRAM device you are using to find the device's
minimum clock frequency.

D Send Feedback Embedded Design Handbook

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

] ®
< l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

3.5.5.7.6. SDRAM Device Speed

SDRAM devices, both SDR and DDR, come in several speed grades. When using
SDRAM with FPGAs, the operating frequency of the FPGA system is usually lower than
the maximum capability of the SDRAM device. Therefore, it is typically not worth the
extra cost to use fast speed-grade SDRAM devices. Before committing to a specific
SDRAM device, consider both the expected SDRAM frequency of your system, and the
maximum and minimum operating frequency of the particular SDRAM device.

3.5.6. Case Study

This section describes the optimization of memory partitioning in a video processing
application to illustrate the concepts discussed earlier.

3.5.6.1. Application Description

This video processing application employs an algorithm that operates on a full frame
of video data, line by line. Other details of the algorithm do not impact design of the
memory subsystem. The data flow includes the following steps:

1. A dedicated DMA engine copies the input data from the video source to a buffer.

2. A Nios II processor operates on that buffer, performing the video processing
algorithm and writing the result to another buffer.

3. A second dedicated DMA engine copies the output from the processor result buffer
to the video output device.

4. The two DMAs provide an element of concurrency by copying input data to the
next input buffer, and copying output data from the previous output buffer at the
same time the processor is processing the current buffer, a technique commonly
called ping-ponging.

Figure 22, Sample Application Architecture

Input
DMA g Buffer
} ping pong
Buffer
Buffer
} ping pong
Buffer
Output
DMA

3.5.6.2. Initial Memory Partitioning

As a starting point, the application uses SDRAM for all of its storage and buffering, a
commonly used memory architecture. The input DMA copies data from the video
source to an input buffer in SDRAM. The Nios II processor reads from the SDRAM

Embedded Design Handbook D Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

Figure 23.

input buffer, processes the data, and writes the result to an output buffer, also located
in SDRAM. In addition, the processor uses SDRAM for both its instruction and data
memory, as shown below.

All Memory Implemented in SDRAM

Input Input
DMA Device

SDRAM

Buffer

} ping pong

Buffer

Instr Mem

Data Mem

Buffer

} ping pong

Buffer

Output Output
DMA Device

Functionally, there is nothing wrong with this implementation. It is a frequently used,
traditional type of embedded system architecture. It is also relatively inexpensive,
because it uses only one external memory device; however, it is somewhat inefficient,
particularly regarding its use of SDRAM. As the figure above illustrates, six different
channels of data are accessed in the SDRAM.

e Processor instruction channel

e Processor data channel

e Input data from DMA

e Input data to processor

e Qutput data from processor

e Qutput data to DMA

With these many channels moving in and out of SDRAM simultaneously, especially at

the high data rates required by video applications, the SDRAM bandwidth is easily the
most significant performance bottleneck in the design.

3.5.6.3. Optimized Memory Partitioning

This design can be optimized to operate more efficiently. These optimizations are
described in the following sections.

D Send Feedback Embedded Design Handbook

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

] ®
< l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

3.5.6.3.1. Add an External SRAM for Input Buffers

The first optimization to improve efficiency is to move the input buffering from the
SDRAM to an external SRAM device. This technique creates performance gains for the
following three reasons:

e The input side of the application achieves higher throughput because it now uses
its own dedicated external SRAM to bring in video data.

¢ Two of the high-bandwidth channels from the SDRAM are eliminated, allowing the
remaining SDRAM channels to achieve higher throughput.

e Eliminating two channels reduces the number of accesses to the SDRAM memory,
leading to fewer SDRAM row changes, leading to higher throughput.

The redesigned system processes data faster, at the expense of more complexity and
higher cost. The figure below illustrates the redesigned system.

If the video frames are small enough to fit in FPGA on-chip memory, you can use on-
chip memory for the input buffers, saving the expense and complexity of adding an
external SRAM device.

Figure 24. Input Channel Moved to External SSRAM
Note that four channels remain connected to SDRAM:
1. Processor instruction channel
2. Processor data channel
3. Output data from processor
4. Output data to DMA
While we could probably achieve some additional performance benefit by adding a
second external SRAM for the output channel, the benefit is not likely to be significant
enough to outweigh the added cost and complexity. The reason is that only two of the
four remaining channels require significant bandwidth from the SDRAM, the two video
output channels. Assuming our Nios II processor contains both instruction and data
Embedded Design Handbook D Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer < l n tel)

caches, the SDRAM bandwidth required by the processor is likely to be relatively
small. Therefore, sharing the SDRAM for processor instructions, processor data, and
the video output channel is probably acceptable. If necessary, increasing the processor
cache sizes can further reduce the processor's reliance on SDRAM bandwidth.

3.5.6.3.2. Add On-Chip Memory for Video Line Buffers

Figure 25.

The final optimization is to add small on-chip memory buffers for input and output
video lines. Because the processing algorithm operates on the video input one line at a
time, buffering entire lines of input data in an on-chip memory improves performance.
This buffering enables the Nios II processor to read all its input data from on-chip RAM
—the fastest, lowest latency type of memory available.

The DMA fills these buffers ahead of the Nios II processor in a ping-pong scheme, in a
manner analogous to the input frame buffers used for the external SRAM. The same
on-chip memory line buffering scheme is used for processor output. The Nios II
processor writes its output data to an on-chip memory line buffer, which is copied to
the output frame buffer by a DMA after both the input and output ping-pong buffers
flip, and the processor begins processing the next line. The figure below illustrates this
memory architecture.

On-Chip Memories Added As Line Buffers

d
l
o
-‘

k_
L

C] Send Feedback Embedded Design Handbook

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.6. Nios II Hardware Development Tutorial
This tutorial describes the system development flow for the Intel Nios II processor.
Using the Intel Quartus Prime software and the Nios II Embedded Design Suite (EDS),
you can:
e build a Nios II hardware system design
e create a software program that runs on the Nios II system and interfaces with
components on Intel development boards

Building embedded systems in FPGAs involves system requirements analysis,
hardware design tasks, and software design tasks. This tutorial guides you through
the basics of each topic, with special focus on the hardware design steps.

3.6.1. Software and Hardware Requirements

The following are the software requirements for the tutorial:

e Intel Quartus Prime software version 14.0 or later—The software must be installed
on a Windows or Linux computer that meets the Intel Quartus Prime minimum
requirements.

e Nios II EDS version 14.0 or later.

¢ Design files for the design example—Refer related information below for the
design example file.

You can build the design example with any Intel development board or your own

custom board that meets the following hardware requirements:

e The board must have either Intel MAX® 10, Stratix series, Cyclone series, or Arria
series FPGA.

e The FPGA must contain a minimum of 2800 logic elements (LE) or adaptive lookup
tables (ALUT).

e The FPGA must contain a minimum of 40 M9K memory blocks.

e An oscillator must drive a constant clock frequency to an FPGA pin. The maximum
frequency limit depends on the speed grade of the FPGA. Frequencies of 50 MHz
or less should work for most boards; higher frequencies might work.

e FPGA I/0 pins can optionally connect to eight or fewer LEDs to provide a visual
indicator of processor activity.

e The board must have a JTAG connection to the FPGA that provides a programming
interface and communication link to the Nios II system. The JTAG connection can
be a dedicated 10-pin JTAG header for an Intel FPGA USB Download Cable or a
USB connection with Intel FPGA Download Cable circuitry embedded on the board.

Note: Refer to the documentation for your board that describes clock frequencies and
pinouts. For Intel development boards, refer to the related information below.
Related Information
e The Intel FPGA Software Installation and Licensing manual
e All Development Kits

e Nios II Hardware Development Design Example Webpage

Embedded Design Handbook D Send Feedback

68

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/quartus_install.pdf
https://www.altera.com/products/boards_and_kits/all-development-kits.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-hardware-tutorial.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.6.2. Intel FPGA IP Evaluation Mode
You can perform this tutorial on hardware without a license. With Intel FPGA IP
Evaluation Mode, you can perform the following actions:
e Simulate the behavior of a Nios II processor within your system
e Verify the functionality of your design
e Evaluate the size and speed of your design quickly and easily

e Generate time-limited device programming files for designs that include Nios II
processors

e Program a device and verify your design in hardware

You need to purchase a license for the Nios II processor only when you are completely
satisfied with its functionality and performance, and want to use your design in
production.

Related Information

Using Intel FPGA IP Evaluation Mode

3.6.3. Nios II Design Example

The design example you build in this tutorial demonstrates a small Nios II system for
control applications, that displays character I/O output and blinks LEDs in a binary
counting pattern. This Nios II system can also communicate with a host computer,
allowing the host computer to control logic inside the FPGA.

The example Nios II system contains the following components:

e Nios II/f processor core

e On-chip memory

e Timer

e JTAG UART

e 8-bit parallel I/O (PIO) pins to control the LEDs

e System identification component

D Send Feedback Embedded Design Handbook

69

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an320.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 3. Hardware System Design with Intel Quartus Prime and Platform Designer

Figure 26. Nios II Design Example Block Diagram

EDH | 2018.11.12

The block diagram shows the relationship between the host computer, the target board, the FPGA, and the Nios

Instr

Data

PIO

II system.
Target Board
Intel FPGA
Nios Il System
Debu
5 control | Nios II/f
= core
E
)
= JTAG
10-pin Character | UART
JTAG /0
header
] Timer

System interconnect fabric

System
yID

On-chi
RAMp

Other logic

Clock
oscillator

Other logic can exist within the FPGA alongside the Nios II system. In fact, most FPGA
designs with a Nios II system also include other logic. A Nios II system can interact
with other on-chip logic, depending on the needs of the overall system. This design
example does not include other logic in the FPGA.

Embedded Design Handbook

70

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel
EDH | 2018.11.12

3.6.4. Nios II System Development Flow

Figure 27. Nios II System Development Flow

Analyze system
requirements

R — \4 ——
Nios Il cores > Define and generate < Custom instruction
and standard system in Platform Designer and custom
peripherals peripheral logic
ARG
—
e
S Il;1tel hardwlare
_’ - abstraction layer
Custom hardware .| Integrate Platform Designer system Develop software with <&—| and peripheral
modules into Quartus Prime project the Nios I Softwpre drivers
Proj Build Tools for Eclipse
\/ \d N
S —
Assign pin locations, Download software
timing requirementsand | > executable to Nios Il User (/C++
other design constraints system on target board a(s’P"Cat'O", code
and custom libraries
— 7
y \ 4
Compile hardware design Run and debug software
for target board on target board
A\ v
Download FPGA design Refine software
to target board and hardware

The Nios II development flow consists of three types of development:
e hardware design steps
e software design steps

e system design steps, involving both hardware and software

The design steps in this tutorial focus on hardware development, and provide only a
simple introduction to software development.

3.6.4.1. Analyzing System Requirements
The development flow begins with predesign activity which includes an analysis of the
application requirements, such as the following questions:
e What computational performance does the application require?
e How much bandwidth or throughput does the application require?
e What types of interfaces does the application require?
¢ Does the application require multithreaded software?

D Send Feedback Embedded Design Handbook

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Based on the answers to these questions, you can determine the concrete system
requirements, such as:

e Which Nios II processor core to use: smaller or faster.
e What components the design requires and how many of each kind.
¢ Which real-time operating system (RTOS) to use, if any.

e Where hardware acceleration logic can dramatically improve system performance.
For example:

— Could adding a DMA component eliminate wasted processor cycles copying
data?

— Could a custom instruction replace the critical loop of a DSP algorithm?

Analyzing these topics involve both the hardware and software point of view.

3.6.4.2. Defining and Generating the System in Platform Designer

After analyzing the system hardware requirements, you use Platform Designer to
specify the Nios II processor core(s), memory, and other components your system
requires. Platform Designer automatically generates the interconnect logic to integrate
the components in the hardware system.

You can select from a list of standard processor cores and components provided with
the Nios II EDS. You can also add your own custom hardware to accelerate system
performance. You can add custom instruction logic to the Nios II core which
accelerates CPU performance, or you can add a custom component which offloads
tasks from the CPU. This tutorial covers adding standard processor and component
cores, and does not cover adding custom logic to the system.

The primary outputs of Platform Designer are the following file types:

Table 7. Platform Designer Primary Output File Types

File Types Description

Platform Designer Design File (.qsys) | Contains the hardware contents of the Platform Designer system

SOPC Information File (.sopcinfo) Contains a description of the contents of the .gsys file in Extensible Markup
Language File (.xml) format. The Nios II EDS uses the .sopcinfo file to create
software for the target hardware.

Hardware description language (HDL) | Are the hardware design files that describe the Platform Designer system. The
files Intel Quartus Prime software uses the HDL files to compile the overall FPGA
design into an SRAM Object File (.sof).

Related Information

Intel Quartus Prime Handbook

3.6.4.3. Integrating the Platform Designer System into the Intel Quartus Prime
Project

After generating the Nios II system using Platform Designer, you integrate it into the
Intel Quartus Prime project. Using the Intel Quartus Prime software, you perform all
tasks required to create the final FPGA hardware design.

Embedded Design Handbook D Send Feedback

72

https://www.altera.com/products/design-software/fpga-design/quartus-prime/support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel
EDH | 2018.11.12

Using the Intel Quartus Prime software, you can:

e assign pin locations for I/0 signals

e specify timing requirements

e apply other design constraints

e compile the Intel Quartus Prime project to produce a .sof to configure the FPGA
You download the .sof to the FPGA on the target board using an Intel download
cable, such as the Intel FPGA USB Download Cable. After configuration, the FPGA

behaves as specified by the hardware design, which in this case is a Nios II processor
system.

3.6.4.4. Developing Software with the Nios II Software Build Tools for Eclipse

You can perform all software development tasks for your Nios II processor system
using the Nios II Software Build Tools (SBT) for Eclipse™.

After you generate the system with Platform Designer, you can begin designing your
C/C++ application code immediately with the Nios II SBT for Eclipse. Intel provides
component drivers and a hardware abstraction layer (HAL) which allows you to write
Nios II programs quickly and independently of the low-level hardware details. In
addition to your application code, you can design and reuse custom libraries in your
Nios II SBT for Eclipse projects.

To create a new Nios II C/C++ application project, the Nios II SBT for Eclipse uses
information from the .sopcinfo file. You also need the .sof file to configure the
FPGA before running and debugging the application project on target hardware.

The Nios II SBT for Eclipse can produce several outputs, listed below. Not all projects
require all of these outputs.

Table 8. Nios II SBT for Eclipse Outputs
The Nios II SBT for Eclipse can produce several outputs but not all projects require all of these outputs.
Output Description
system.h file ¢ Defines symbols for referencing the hardware in the system.
e The Nios II SBT for Eclipse automatically create this file when you create a
new board support package (BSP).
Executable and Linking Format File Is the result of compiling a C/C++ application project, that you can download
(-elf) directly to the Nios II processor.
Hexadecimal (Intel-Format) File e Contains initialization information for on-chip memories.
(-hex) e The Nios II SBT for Eclipse generate these initialization files for on-chip
memories that support initialization of contents.
Flash memory programming data e Boot code and other arbitrary data you might write to flash memory.
e The flash programmer adds appropriate boot code to allow your program to
boot from flash memory.
e The Nios II SBT for Eclipse includes a flash programmer to allow you to write
your program or arbitrary data to flash memory.
This tutorial focuses on downloading only the .el ¥ directly to the Nios II system.
D Send Feedback Embedded Design Handbook

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.6.4.5. Running and Debugging Software on the Target Board

The Nios II SBT for Eclipse has the capability to download software to a target board,
and run or debug the program on hardware. The Nios II SBT for Eclipse debugger
allows you to start and stop the processor, step through code, set breakpoints, and
analyze variables as the program executes.

3.6.4.6. Varying the Development Flow

The development flow is not strictly linear. The following lost the common variations:
e Refining the Software and Hardware

e Iteratively Creating a Nios II System

e Verifying the System with Hardware Simulation Tools

Refining the Software and Hardware

After running software on the target board, you might discover that the Nios II system
requires higher performance. In this case, you can:

e return to software design steps to make improvements to the software algorithm;
or

e return to hardware design steps to add acceleration logic

If the system performs multiple mutually exclusive tasks, you might even decide to
use two (or more) Nios II processors that divide the workload and improve the
performance of each individual processor.

Iteratively Creating a Nios II System

A common technique for building a complex Nios II system is to start with a simpler
Platform Designer system, and iteratively add to it. At each iteration, you can verify
that the system performs as expected. You might choose to verify the fundamental
components of a system, such as the processor, memory, and communication
channels, before adding more complex components. When developing a custom
component or a custom instruction, first integrate the custom logic into a minimal
system to verify that it works as expected; then integrate the custom logic into a
more complex system.

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the Nios II system,
using tools such as the ModelSim® RTL simulator. Hardware simulation is useful to
meet certain needs, including the following cases:

e To verify the cycle-accurate performance of a Nios II system before target
hardware is available.

e To verify the functionality of a custom component or a Nios II custom instruction
before trying it on hardware.

If you are building a Nios II system based on the standard components provided with
the Nios II EDS, the easiest way to verify functionality is to download the hardware
and software directly to a development board.

Embedded Design Handbook D Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.6.5. Creating the Design Example

First, you must install the Intel Quartus Prime software and the Nios II EDS. You must
also download tutorial design files from the Intel web site. The design files provide a
ready-made Intel Quartus Prime project to use as a starting point.

3.6.5.1. Install the Design Files

Perform the following steps to set up the design environment:
1. Locate the zipped design files on the Intel web site.

2. Unzip the contents of the zip file to a directory on your computer. Do not use
spaces in the directory path name.

The remainder of this tutorial refers to this directory as the <design files
directory>.

3.6.5.2. Analyze System Requirements
The system requirements are derived from the following goals of the tutorial design
example:

e Demonstrate a simple Nios II processor system that you can use for control
applications.

e Build a practical, real-world system, while providing an educational experience.

e Demonstrate the most common and effective techniques to build practical, custom
Nios II systems.

e Build a Nios II system that works on any board with an Intel FPGA. The entire
system must use only on-chip resources, and not rely on the target board.

e The design should conserve on-chip logic and memory resources so it can fit in a
wide range of target FPGAs.
These goals lead to the following design decisions:
e The Nios II system uses only the following inputs and outputs:
— One clock input, which can be any constant frequency.
— Eight optional outputs to control LEDs on the target board.
e The design uses the following components:
— Nios II/f core with 2 KB of instruction cache with static branch prediction
— 20 KB of on-chip memory
— Timer
— JTAG UART
— Eight output-only parallel I/0 (PIO) pins
— System ID component

Related Information
Embedded Peripherals IP User Guide

D Send Feedback Embedded Design Handbook

75

https://www.altera.com/documentation/sfo1400787952932.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.6.5.3. Start the Intel Quartus Prime Software and Open the Example Project

The Intel Quartus Prime project serves as an easy starting point for the Nios II
development flow. The Intel Quartus Prime project contains all settings and design
files required to create the .sof. To open the Intel Quartus Prime project, perform the
following steps:

1. Start the Intel Quartus Prime software.

2. Click Open Existing Project on the splash screen, or, on the File menu, click
Open Project.
The Open Project dialog box appears.

Browse to the <design files directory>.
4. Select the file nios2_quartus2_project.gpf and click Open.

To display the Block Diagram File (.bdf) nios2_quartus2_project.bdf,
perform the following steps:

a. On the File menu, click Open.
The Open dialog box appears.

b. Browse to the <design files directory>.

C. Select nios2_quartus2_project.bdf and click Open.

The .bdf contains an input pin for the clock input and eight output pins to drive
LEDs on the board.

Next, you create a new Platform Designer system, which you ultimately connect to
these pins.

3.6.5.4. Create a New Platform Designer System

You use Platform Designer to generate the Nios II processor system, adding the
desired components, and configuring how they connect together. To create a new
Platform Designer system, click Platform Designer on the Tools menu in the Intel
Quartus Prime software. Platform Designer starts and displays the System Contents
tab.

3.6.5.5. Define the System in Platform Designer

You use Platform Designer to define the hardware characteristics of the Nios II
system, such as which Nios II core to use, and what components to include in the
system. Platform Designer does not define software behavior, such as where in
memory to store instructions or where to send the stderr character stream.

The Platform Designer design process does not need to be linear. The design steps in
this tutorial are presented in the most straightforward order for a new user to
understand. However, you can perform Platform Designer design steps in a different
order.

3.6.5.5.1. Specify Target FPGA and Clock Settings

To specify target FPGA and clock settings, perform the following steps:

1. On the Project Settings tab, select the Device Family that matches the Intel
FPGA you are targeting.

Embedded Design Handbook D Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer < l n tel)

4.

If a warning appears stating the selected device family does not match the
Quartus project settings, ignore the warning. You specify the device in the Quartus
project settings later in this tutorial.

In the documentation for your board, look up the clock frequency of the oscillator
that drives the FPGA.

On the Clock Settings tab, double-click the clock frequency in the MHz column
for clk_0. clk_O is the default clock input name for the Platform Designer
system. The frequency you specify for clk_0 must match the oscillator that drives
the FPGA.

Type the clock frequency and press Enter.

Next, you begin to add hardware components to the Platform Designer system. As you
add each component, you configure it appropriately to match the design
specifications.

Related Information

All Development Kits

3.6.5.5.2. Add the On-Chip Memory

Processor systems require at least one memory for data and instructions. This design
example uses one 20 KB on-chip memory for both data and instructions. To add the
memory, perform the following steps:

1. On the IP Catalog tab (to the left of the System Contents tab), expand Basic
Functions, expand On-Chip Memory, and then click On-Chip Memory (RAM
or ROM).

2. Click Add.

The On-Chip Memory (RAM or ROM) parameter editor appears.

3. In the Block type list, select Auto.

In the Total memory size box, type 20480 to specify a memory size of 20 KB.
Do not change any of the other default settings.

Click Finish. You return to Platform Designer.

Click the System Contents tab.

An instance of the on-chip memory appears in the system contents table.

7. In the Name column of the system contents table, right-click the on-chip memory
and click Rename.

8. Type onchip_mem and press Enter.

You must type these tutorial component names exactly as specified. Otherwise,
the tutorial programs written for this Nios II system fail in later steps. In general,
it is @ good habit to give descriptive names to hardware components. Nios II
programs use these symbolic names to access the component hardware.
Therefore, your choice of component names can make Nios II programs easier to
read and understand.

D Send Feedback Embedded Design Handbook

77

https://www.altera.com/products/boards_and_kits/all-development-kits.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

3.6.5.5.3. Add the Nios II Processor Core

You add the Nios II/f core and configure it to use 2 KB of on-chip instruction cache
memory, no data cache and use static branch prediction. For this tutorial, the Nios II/f
core is configured to provide a balanced trade-off between performance and resource
utilization. To add a Nios II/f core to the system, perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, and then click
Nios II Gen2 Processor.

2. Click Add.
The Nios II Processor parameter editor appears, displaying the Core Nios II tab.

3. In the Main Tab under Select an Implementation, select Nios II/f.
Click Finish and return to the Platform Designer System Contents tab.
The Nios II core instance appears in the system contents table. Ignore the
exception and reset vector error messages. You resolve these errors in future
steps.

5. In the Name column, right-click the Nios II processor and click Rename.
Type cpu and press Enter.
In the Connections column, connect the clk port of the clk_0 clock source to
both the clkl port of the on-chip memory and the clk port of the Nios II
processor by clicking the hollow dots on the connection line. The dots become
solid indicating the ports are connected.

8. Connect the clk_reset port of the clk_0 clock source to both the resetl port
of the on-chip memory and the reset_n port of the Nios II processor.

9. Connect the sl port of the on-chip memory to both the data_master port and
instruction_master port of the Nios II processor.

10. Double-click the Nios II processor row of the system contents table to reopen the
Nios II Processor parameter editor.

11. Under Reset Vector in Vectors tab, select onchip_mem.s1 in the Reset vector
memory list and type 0x0 in the Reset vector offset box.

12. Under Exception Vector, select onchip_mem.s1 in the Exception vector
memory list and type 0x20 in the Exception vector offset box.

13. Click the Caches and Memory Interfaces tab.

14. In the Instruction cache list, select 2 Kbytes.

15. Choose None for Data Cache size and do not change other default settings.

16. In Advanced Features tab, select Static branch prediction type.

17. Click Finish. You return to the Platform Designer System Contents tab.
Do not change any settings on the MMU and MPU Settings and JTAG Debug
tabs.

Embedded Design Handbook D Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer < l n tel)

3.6.5.5.4. Add the JTAG UART

The JTAG UART provides a convenient way to communicate character data with the
Nios II processor through the Intel FPGA Download Cable. To add the JTAG UART,
perform the following steps:

1.

On the IP Catalog tab, expand Interface Protocols, expand Serial, and then
click ITAG UART.

Click Add.
The JTAG UART parameter editor appears and do not change the default settings.

Click Finish and return to the Platform Designer System Contents tab.
The JTAG UART instance appears in the system contents table.

In the Name column, right-click the JTAG UART and click Rename.
Type jtag_uart and press Enter.

Connect the clk port of the clk_0 clock source to the clk port of the JTAG
UART.

Connect the clk_reset port of the clk_0 clock source to the reset port of the
JTAG UART.

Connect the data_master port of the Nios II processor to the
avalan_jtag_slave port of the JTAG UART.

The instruction_master port of the Nios II processor does not connect to the
JTAG UART because the JTAG UART is not a memory device and cannot send
instructions to the Nios II processor.

Related Information
Embedded Peripherals IP User Guide

3.6.5.5.5. Add the Interval Timer

Most control systems use a timer component to enable precise calculation of time. To
provide a periodic system clock tick, the Nios II HAL requires a timer. To add the timer,
perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, expand
Peripherals, and then click Interval Timer.

2. Click Add.
The Interval Timer parameter editor appears.

3. Click Finish return to the Platform Designer System Contents tab.
The interval timer instance appears in the system contents table.
In the Name column, right-click the interval timer and click Rename.
Type sys_clk_timer and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the interval
timer.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
interval timer.

8. Connect the data master port of the Nios II processor to the sl port of the
interval timer.

D Send Feedback Embedded Design Handbook

79

https://www.altera.com/documentation/sfo1400787952932.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
< l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

Related Information
Embedded Peripherals IP User Guide

3.6.5.5.6. Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading software
compiled for a different Nios II system. If the system includes the system ID
peripheral, the Nios II SBT for Eclipse can prevent you from downloading programs
compiled for a different system. To add system ID peripheral, perform the following
steps:

1. On the IP Catalog tab, expand Basic Functions, expand Simulations; Debug
and Verifications and then click System ID Peripheral.

2. Click Add.
The System ID Peripheral parameter editor appears and do not change the
default setting.

3. Click Finish and return to the Platform Designer System Contents tab.
The system ID peripheral instance appears in the system contents table.

In the Name column, right-click the system ID peripheral and click Rename.
Type sysid and press Enter.

Connect the clk port of the clk_0 clock source to the clk port of the system ID
peripheral.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
system ID peripheral.

8. Connect the data_master port of the Nios II processor to the control_slave
port of the system ID peripheral.

Related Information

Embedded Peripherals IP User Guide

3.6.5.5.7. Add the PIO

PIO signals provide an easy method for Nios II processor systems to receive input

stimuli and drive output signals. Complex control applications might use hundreds of
PIO signals which the Nios II processor can monitor. This design example uses eight
PIO signals to drive LEDs on the board. To add the PIO, perform the following steps:

Note: Perform these steps even if your target board does not have LEDs.
1. On the IP Catalog tab, expand Processors and Peripherals, expand
Peripherals, and then click PIO .
2. Click Add.
The PIO (Parallel I/0) parameter editor appears and do not change the default
settings.
3. Click Finish and return to the Platform Designer System Contents tab.
The PIO instance appears in the system contents table.
In the Name column, right-click the PIO and click Rename.
Type led_pio and press Enter.
6. Connect the clk port of the clk_0 clock source to the clk port of the PIO.
Embedded Design Handbook D Send Feedback

80

https://www.altera.com/documentation/sfo1400787952932.html
https://www.altera.com/documentation/sfo1400787952932.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
PIO.

8. Connect the data_master port of the Nios II processor to the sl port of the
PIO.

9. In the external_connection row, click Click to export in the Export column to
export the PIO ports.

Related Information
Embedded Peripherals IP User Guide

3.6.5.5.8. Specify Base Addresses and Interrupt Request Priorities

To specify how the components added in the design to interact to form a system, you
need assign base addresses for each slave component, and assign interrupt request
(IRQ) priorities for the JTAG UART and the interval timer.

Platform Designer provides the Assign Base Addresses command which makes
assigning component base addresses easy. For many systems, including this design
example, Assign Base Addresses is adequate. However, you can adjust the base
addresses to suit your needs. Below are some guidelines for assigning base
addresses:

e Nios II processor cores can address a 31-bit address span. You must assign base
address between 0x00000000 and Ox7FFFFFFF.

Note: The Use most-significant address bit in processor to bypass data
cache option is enable by default. If disabled, the Nios II processor cores
supports full 32-bit address.

¢ Nios II programs use symbolic constants to refer to addresses. You do not have to
choose address values that are easy to remember.

e Address values that differentiate components with only a one-bit address
difference produce more efficient hardware. You do not have to compact all base
addresses into the smallest possible address range, because this can create less
efficient hardware.

e Platform Designer does not attempt to align separate memory components in a
contiguous memory range. For example, if you want an on-chip RAM and an off-
chip RAM to be addressable as one contiguous memory range, you must explicitly
assign base addresses.

Platform Designer also provides an Assign Interrupt Numbers command which
connects IRQ signals to produce valid hardware results. However, assigning IRQs

effectively requires an understanding of how software responds to them. Because
Platform Designer does not know the software behavior, Platform Designer cannot
make educated guesses about the best IRQ assignment.

The Nios II HAL interprets low IRQ values as higher priority. The timer component
must have the highest IRQ priority to maintain the accuracy of the system clock tick.

D Send Feedback Embedded Design Handbook

81

https://www.altera.com/documentation/sfo1400787952932.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

To assign appropriate base addresses and IRQs, perform the following steps:

1. On the System menu, click Assign Base Addresses to make Platform Designer
assign functional base addresses to each component in the system. Values in the
Base and End columns might change, reflecting the addresses that Platform
Designer reassigned.

2. In the IRQ column, connect the Nios II processor to the JTAG UART and interval
timer.

Click the IRQ value for the jtag_uart component to select it.
Type 16 and press Enter to assign a new IRQ value.

Click the IRQ value for the sys_clk_timer component to select it.

o u kW

Type 1 and press Enter to assign a new IRQ value.

3.6.5.5.9. Generate the Platform Designer System

To generate the Platform Designer system, perform the following steps:
1. Click the Generation tab.

2. Select None in both the Create simulation model and Create testbench
Platform Designer system lists.

Because this tutorial does not cover the hardware simulation flow, you can select
these settings to shorten generation time.

3. Click Generate. Click Yes when the Save changes? dialog box appears.

Type First_nios2_system in the File name box and click Save.

The Generate dialog box appears and system generation process begins. The
generation process can take several minutes. When generation completes,
Platform Designer prompt: Create HDL design files for synthesis.

5. Click Close to close the dialog box.

On the File menu, click Exit to close Platform Designer and return to the Intel
Quartus Prime software.

You are ready to integrate the system into the Intel Quartus Prime hardware project
and use the Nios II SBT for Eclipse to develop software.

3.6.5.6. Integrate the Platform Designer System into the Intel Quartus Prime
Project
To complete the hardware design, you need to perform the following tasks:

e Instantiate the Platform Designer system module in the Intel Quartus Prime
project.

¢ Assign FPGA device and pin locations.
e Compile the Intel Quartus Prime project.
e \Verify timing.

Embedded Design Handbook D Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

3.6.5.6.1. Instantiate the Platform Designer System Module in the Intel Quartus Prime

Project

Note:

Platform Designer outputs a design entity called the system module. The tutorial
design example uses the block diagram method of design entry, so you instantiate a
system module symbol first_nios2_system into the .bdf.

How you instantiate the system module depends on the design entry method of the
overall Intel Quartus Prime project. For example, if you were using Verilog HDL for
design entry, you would instantiate the Verilog module First_nios2_system
defined in the file First_nios2_system.v.

To instantiate the system module in the -bd¥, perform the following steps:

1. Double-click in the empty space to the right of the input and output wires.
The Symbol dialog box appears.

Under Libraries, expand Project.

Click first_nios2_system.
The Symbol dialog box displays the first_nios2_system symbol.

4. Click OK. You return to the .bdf schematic. The first_nios2_system symbol
tracks with your mouse pointer.

5. Position the symbol so the pins on the symbol align with the wires on the
schematic.

Click to anchor the symbol in place.
If your target board does not have LEDs that the Nios II system can drive, you

(inteD

must delete the LEDG[7..0] pins. To delete the pins, perform the following steps:

a. Click the output symbol LEDG[7..0] to select it.
b. On your keyboard, press Delete.

8. To save the completed .bdT, click Save on the File menu.

3.6.5.6.2. Add IP Variation File

D Send Feedback

You can add the Intel Quartus Prime IP File (-qip) to the your Intel Quartus Prime
project by performing the following steps:

1. On the Assignments menu, click Settings.
The Settings dialog box appears.

2. Under Category, click Files.
The Files page appears.

3. Next to File name, click the browse (...) button.
In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

Browse to locate <design files directory>/first nios2_system/
synthesis/ first_nios2_system.qip and click Open to select the file.

Click Add to include First_nios2_system.qip in the project.
7. Click OK to close the Settings dialog box.

Embedded Design Handbook

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

3.6.5.6.3. Assign FPGA Device

Before assigning FPGA pin locations to match the pinouts of your board, you need to
first assign a specific target device. To assign the device, perform the following steps:

1.

5.

On the Assignments menu, click Device.
The Device dialog box appears.

In the Family list, select the FPGA family that matches your board.
If prompted to remove location assignments, do so.

Under Target device, select Specific device selected in Available devices
list.

Under Available devices, select the exact device that matches your board.
If prompted to remove location assignments, do so.
Click OK to accept the device assignment.

3.6.5.6.4. Assign FPGA Pin Locations

Before assigning the FPGA pins, you must know the pin layout for the board. You also
must know other requirements for using the board, refer to related information below.
To assign the FPGA pin locations, perform the following steps:

1. On the Processing menu, point to Start, and click Start Analysis & Elaboration
to prepare for assigning pin locations.
The analysis starts by displaying a data not available message and can take
several minutes. A confirmation message box appears when analysis and
elaboration completes.
Click OK.
On the Assignments menu, click Pin Planner.
The Intel Quartus Prime Pin Planner appears.
In the Node Name column, locate PLD_CLOCKINPUT.
5. In the PLD_CLOCKINPUT row, double-click in the Location cell to access a list
of available pin locations.
6. Select the appropriate FPGA pin that connects to the oscillator on the board.
If your design fails to work, recheck your board documentation for this step first.
7. In the PLD_CLOCKINPUT row, double-click in the I/0 Standard cell to access a
list of available I/O standards.
Select the appropriate I/0 standard that connects to the oscillator on the board.
9. If you connected the LED pins in the board design schematic, repeat steps 4 to 8
for each of the LED output pins (LEDG[0], LEDG[1], LEDG[2], LEDG[3],
LEDG[4], LEDG[5], LEDG[6], LEDG[7]) to assign appropriate pin locations.
10. On the File menu, click Close to save the assignments.
11. On the Assignments menu, click Device.
The Device dialog box appears.
12. Click Device and Pin Options.
The Device and Pin Options dialog box appears.
13. Click the Unused Pins page.
Embedded Design Handbook D Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer < l n tel)

14. In the Reserve all unused pins list, select As input tri-stated with weak pull-

up. With this setting, all unused I/O pins on the FPGA enter a high-impedance
state after power-up.

Unused pins are set as input tri-stated with weak pull-up to remove contention
which might damage the board. Depending on the board, you might have to make
more assignments for the project to function correctly. You can damage the board
if you fail to account for the board design. Consult with the maker of the board for
specific contention information.

15. Click OK to close the Device and Pin Options dialog box.

16. Click OK to close the Device dialog box.

3.6.5.6.5. Set Timing

To ensure the design meets timing, perform the following steps:

1.
2.
3.

10.

11.

12

On the File menu, click Open.
In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

Browse to locate <design files directory>/hw_dev_tutorial.sdc and
click Open. The file opens in the text editor.

Locate the following create_clock command:create_clock -name
sopc_clk -period 20 [get _ports PLD_CLOCKINPUT]

Change the period setting from 20 to the clock period (1/frequency) in
nanoseconds of the oscillator driving the clock pin.

On the File menu, click Save.

On the Assignments menu, click Settings.
The Settings dialog box appears.

Under Category, click TimeQuest Timing Analyzer.
Next to File name, click the browse (...) button.

Browse to locate <design files directory>/hw_dev_tutorial.sdc and
click Open to select the file.

Click Add to include hw_dev_tutorial .sdc in the project.

. Turn on Enable multicorner timing analysis during compilation.
13.

Click OK.

3.6.5.6.6. Compile the Intel Quartus Prime Project and Verify Timing

To create a .sof file, you have to compile the hardware design and then it download
to the board. After the compilation completes, you must analyze the timing
performance of the FPGA design to verify that the design works in hardware. To
compile the Intel Quartus Prime project, perform the following steps:

1.

D Send Feedback

On the Processing menu, click Start Compilation.

Embedded Design Handbook

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

The Tasks window and percentage and time counters in the lower-right corner
display progress. The compilation process can take several minutes. When
compilation completes, a dialog box displays the message "Full Compilation was
successful."

Click OK. The Quartus Prime software displays the Compilation Report tab.
Expand the TimeQuest Timing Analyzer category in the compilation report.
Click Multicorner Timing Analysis Summary.

gu A W N

Verify that the Worst-case Slack values are positive numbers for Setup, Hold,
Recovery, and Removal.

If any of these values are negative, the design might not operate properly in
hardware. To meet timing, adjust Intel Quartus Prime assignments to optimize
fitting, or reduce the oscillator frequency driving the FPGA.

3.6.5.7. Download the Hardware Design to the Target FPGA

To download the .sof to the target board, perform the following steps:

1. Connect the board to the host computer with the download cable, and apply power
to the board.

2. On the Tools menu in the Intel Quartus Prime software, click Programmer.
The Intel Quartus Prime Programmer appears and automatically displays the
appropriate configuration file (n10s2_quartus2_project.sof).

3. Click Hardware Setup in the upper left corner of the Intel Quartus Prime
Programmer to verify your download cable settings.
The Hardware Setup dialog box appears.

4. Select the appropriate download cable in the Currently selected hardware list.

If the appropriate download cable does not appear in the list, you must first install
drivers for the cable.

5. Click Close.
In the nios2_quartus2_project.sof row, turn on Program/Configure.

Click Start.
The Progress meter sweeps to 100% as the Intel Quartus Prime software
configures the FPGA.

At this point, the Nios II system is configured and running in the FPGA, but it does not
yet have a program in memory to execute.

3.6.5.8. Develop Software Using the Nios II SBT for Eclipse

Developing software using the Nios II SBT for Eclipse consists the following tasks:
e Create new Nios II C/C++ application and BSP projects.
e Compile the projects.

To perform these steps, you must have the .sopcinfo file you created earlier in this
tutorial. Refer to related information for more information.

Note: This tutorial presents only the most basic software development steps to demonstrate
software running on the hardware system you created in previous sections.
Embedded Design Handbook D Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

Related Information

Define the System in Platform Designer on page 76

3.6.5.8.1. Create a New Nios II Application and BSP from Template

To create new Nios II C/C++ application and BSP projects, perform the following
steps:

1.

7.
8.
9.

Start the Nios II SBT for Eclipse. On Windows computers, click Start, point to
Programs, Nios II EDS <version>, and then click Nios II <version>
Software Build Tools for Eclipse. On Linux computers, run the executable file
<Nios Il EDS install path>/bin/eclipse-nios2.

If the Workspace Launcher dialog box appears, click OK to accept the default
workspace location.

On the Window menu, point to Open Perspective, and then either click Nios II,
or click Other and then click Nios II to ensure you are using the Nios II
perspective.

On the File menu, point to New, and then click Nios II Application and BSP
from Template.
The Nios II Application and BSP from Template wizard appears.

Under Target hardware information, next to SOPC Information File name,
browse to locate the <design files directory>.

Select First_nios2_system.sopcinfo and click Open.
Nios II Application and BSP from Template wizard shows the current
information for the SOPC Information File name and CPU name fields.

In the Project name box, type count_binary.
In the Templates list, select Count Binary
Click Finish.

The Nios II SBT for Eclipse creates and displays the following new projects in the
Project Explorer view, typically on the left side of the window:

count_binary—Your C/C++ application project

count_binary_bsp—A board support package that encapsulates the details of
the Nios II system hardware

3.6.5.8.2. Compile the Project

You have to compile the project to produce an executable software image. For the
tutorial design example, you must first adjust the project settings to minimize the
memory footprint of the software, because your Nios II hardware system contains only
20 KB of memory. To adjust the project settings and compile the project, perform the
following steps:

1.

2.

D Send Feedback

In the Project Explorer view, right-click count_binary_bsp and click
Properties. The Properties for count_binary_bsp dialog box appears.

Click the Nios II BSP Properties page. The Nios II BSP Properties page contains
basic software build settings.

Embedded Design Handbook

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

Though not needed for this tutorial, note the BSP Editor button in the lower right
corner of the dialog box. You use the Nios II BSP Editor to access advanced BSP
settings.

Adjust the following settings to reduce the size of the compiled executable:
a. Turn on enable_reduced_device_drivers.

b. Turn off enable_gprof.

c. Turn on enable_small_c_library.

d. Turn off enable_sim_optimize.

Click OK.
The BSP regenerates, the Properties dialog box closes, and you return to the
Nios II SBT for Eclipse.

In the Project Explorer view, right-click the count_binary project and click
Build Project.

The Build Project dialog box appears, and the Nios II SBT for Eclipse begins
compiling the project. When compilation completes, a count_binary build
complete message appears in the Console view.

3.6.5.9. Run the Program on Target Hardware

To download the software executable to the target board, perform the following steps:

1.

Right-click the count_binary project, point to Run As, and then click Nios II
Hardware.

If the Run Configurations dialog box appears, verify that Project name and
ELF file name contain relevant data, then click Run.

The Nios II SBT for Eclipse downloads the program to the FPGA on the target
board and the program starts running. When the target hardware starts running
the program, the Nios II Console view displays character I/O output. If you
connected LEDs to the Nios II system in previous section, then the LEDs blink in a
binary counting pattern.

Click the Terminate icon (the red square) on the tool bar of the Nios II Console
view to terminate the run session and the Nios II SBT for Eclipse disconnects from
the target hardware.

You can edit the count_binary.c program in the Nios II SBT for Eclipse text
editor and repeat these two steps to witness your changes executing on the target
board. If you rerun the program, buffered characters from the previous run
session might display in the Console view before the program begins executing.

Related Information

Integrate the Platform Designer System into the Intel Quartus Prime Project on page

82

Embedded Design Handbook D Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.7. Platform Designher System Design Tutorial

This tutorial introduces you to the Platform Designer system integration tool available
with the Intel Quartus Prime software.

This tutorial shows you how to design a system that uses various test patterns to test
an external memory device. It guides you through system requirement analysis,
hardware design tasks, and evaluation of the system performance, with emphasis on
system architecture.

In this tutorial, you create a memory tester system that tests a synchronous dynamic
random access memory (SDRAM) device. The final system contains the SDRAM
controller and instantiates a Nios® II processor and embedded peripherals in a
hierarchical subsystem. The final design includes various Platform Designer
components that generate test data, access memory, and verify the returned data.

The memory tester components for the design are Verilog HDL components with an
accompanying Hardware Component Description File (_hw.tcl) that describes the
interfaces and parameterization of each component. The _hw.tcl files are located in
the tt_qgsys_design\memory_ tester_ip directory.

The final system contains the following components:

e Processor subsystem based on the Nios II/e core, which includes an on-chip RAM
to store the processor's software code, and a JTAG UART to communicate via JTAG
and display the memory test results in the host PC's console.

e SDRAM controller to control the off-chip DDR SDRAM device under test.

e Custom and pseudo-random binary sequence (PRBS) pattern generators and
checkers to test the robustness of links.

e Pattern select multiplexer and demultiplexer to choose between the two pattern
generators and checkers.

e Pattern writer and reader that interact with the SDRAM controller.
e Memory test controller.
Each section in this tutorial provides an overview describing the components that you

instantiate. You can use the final system on hardware without a license, and perform
the following actions with Intel FPGA IP Evaluation Mode feature:

e Simulate the behavior of the system and verify its functionality.

e Generate time-limited device programming files for designs that incorporate Intel
or partner IP.

e Program a device and verify your design in hardware.

You can use the Nios II/e processor and the DDR SDRAM IP cores with a Quartus
Prime subscription license. Design files for other development kit boards use different
DDR SDRAM controllers to match the memory device available on the development
kit.

In this tutorial, you instantiate the complete memory tester system in the top-level
system along with the processor IP Cores, which are grouped as their own processor
system, and the SDRAM Controller IP. The Nios II processor includes a software
program to control the memory tester system, which communicates with the SDRAM
Controller to access the off-chip SDRAM device under test.

D Send Feedback Embedded Design Handbook

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

Figure 28. Platform Designer Memory Tester

The components in the memory tester system are grouped into a single Platform Designer system with three
major design functions. The design hierarchy allows you to instantiate the data pattern generator and data
pattern checker components into separate systems. You can then add the memory tester system with the
memory master and controller components.

Top-Level Platform Designer System

Processor
and Nios Il
IP Cores
A

\ Y Y

Onchip Pipeline JTAG

RAM Bridge UART

(Code and Data)
A

Memory Tester
Data Pattern Generator Data Pattern Checker

i 1
1 1
i 1

! I

i 1

i Y 1

I 1

PRBS ! | Test Controller | ! PRBS
Generator i | Checker

! I

i 1

1 % % H

I 1

! I

T 1

i 1

! I

i 1

! I

i 1

! I

I 1

! |

i I

Pattern Checker
Select »-| Pattern Writer Pattern Reader »| Select
(Mux) (DEMUX)

Custom
Pattern
Checker

Custom
Pattern
Generator

~¢—>» Avalon-MM Interface

“—> Avalon-STinterface SDRAM
Controller

?

v

SDRAM
Under Test

Related Information
AN320: Using Intel FPGA IP Evaluation Mode

3.7.1. Software and Hardware Requirements

The Platform Designer System Design tutorial requires the following software and
hardware requirements:

e Intel Quartus Prime software.
e Nios II EDS.
o tt_qgsys_design.zip design files, available from the Platform Designer Tutorial
Design Example page. The design files include project files set up for select Intel
development boards, and components that you can use in any Platform Designer
design.
Embedded Design Handbook D Send Feedback

90

http://www.altera.com/literature/an/an320.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

You can build the Platform Designer system in this tutorial for any Intel development
board or your own custom board, if it meets the following requirements:

e An Intel Arria, Cyclone, or Stratix series FPGA.
e Minimum of 12k logic elements (LEs).
e Minimum of 128k of embedded memory.

e JTAG connection to the FPGA that provides a communications link back to the host
so that you can monitor the memory test progress.

e Any memory that has a Platform Designer-based controller with an Avalon®
Memory-Mapped (Avalon-MM) slave interface.

Related Information
e Intel FPGA Software Installation and Licensing Manual.
e Platform Designer Tutorial Design Example

e Platform Designer Tutorial Design Example (detailed diagram)

3.7.2. Download and Install the Tutorial Design Files

1. On the Platform Designer Tutorial Design Example page, under Using this
Design Example, click Platform Designer Tutorial Design Example (.zip) to
download and install the tutorial design files for the Platform Designer tutorial.

2. Extract the contents of the archive file to a directory on your computer. Do not use
spaces in the directory path name.

In place of following all steps in this tutorial to create subsystem, hierarchical, and
top-level design files, you can copy the completed design files listed below into the
tt _gsys_design\quartus_ii_projects for_boards

\<devel opnent _boar d_t ype> directory, depending on your board type.

e The two completed subsystems: pattern_generator_system.qsys, and
pattern_checker_system.qsys from the tt_gsys_design
\completed_subsystems directory.

e The hierarchical system memory_tester_system.qsys from the
tt_gsys_design\completed_subsystems
\completed_memory_tester_system directory.

e The top-level hierarchical system top_system.qsys from the tt_qsys_design
\quartus_ii_projects_for_boards\<development_board_type>
\backup_and_completed_top_system\completed_top_system directory.

Related Information

Platform Designer Tutorial Design Example

Platform Designer Tutorial Design Example (.zip)

Detailed Diagram of the Memory Tester System

3.7.3. Open the Tutorial Project
The design files for the Platform Designer tutorial provide the custom IP design blocks

that you need, and a partially completed Intel Quartus Prime project and Platform
Designer system.

D Send Feedback Embedded Design Handbook

91

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/images/qsys_diagram_memory_tester_system.jpg
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/download/tt_qsys_design.zip
http://www.altera.com/support/examples/images/qsys_diagram_memory_tester_system.jpg
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

The following design requirements are included in the Platform Designer tutorial
design files:

e Intel Quartus Prime project I/O pin assignments and Synopsys Design Constraint
(.sdc) timing assignments for each supported development board.

e Parameterized Nios II processor core and software to communicate with the host
PC that controls the memory test system that you develop.

e Parameterized DDR SDRAM controller to use the memory on the development
board.

To open the tutorial project:
1. Open the Intel Quartus Prime software.

2. To open the Intel Quartus Prime Project File (.qpf) for your board, click File O
Open Project.

3. Browse to the tt_qgsys_design\quartus_ii_projects_ for_boards
\<development_board>\ directory.

4. Select the relevant board-specific .qpf file, and then click Open.

3.7.4. Creating Platform Designer Systems

The data pattern generator and data pattern checker are design blocks for the
memory tester system. In this tutorial, you learn to instantiate, parameterize, and
connect components by creating the data pattern generator and data pattern checker
Platform Designer systems.

o Data pattern generator—The data pattern generator generates high-speed
streaming data, which performs either as a PRBS, or as a soft programmable
sequence, for example, “walking ones.” The design sends the data with an Avalon-
Streaming (Avalon-ST) connection to the pattern writer of the memory master and
control logic. The data pattern generator writes the data to memory based on
commands issued by the controller logic. When the design writes the data to
memory, the pattern reader logic reads the contents back and sends it to the data
pattern verification logic.

o Data pattern checker—The data pattern checker accepts the data read back by
the pattern reader from an Avalon-ST connection. The design verifies the data
pattern to ensure that the pattern it writes to memory is identical to the data that
it reads back.

3.7.4.1. Create a Data Pattern Generator Platform Designer System

The data pattern generator includes two components to generate test patterns, and a
third component to multiplex the data that a processor controls. You configure the
pattern generator to match the width of the memory interface. Because the data
pattern generator provides a full word of data every clock cycle, configuring the
components to match the memory width provides sufficient bandwidth to access the
memory.

Embedded Design Handbook D Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

Note: As you add components and make connections in your Platform Designer system,
error and warning messages appear in the Platform Designer Messages tab,
indicating steps that you must perform before the system is complete. Some error
messages appear between steps and are not resolved immediately; as you progress
through the tutorial, errors are resolved, and the error messages disappear.

You must use the exact system names described in this tutorial in order for the
provided scripts to function correctly.

3.7.4.1.1. Create a New Platform Designer System and Set up the Clock Source

1. 1In the Intel Quartus Prime software, click Tools O Platform Designer to create a
new Platform Designer design.

2. In the System Contents tab, Platform Designer shows a clock source instance,
clk_0. To open the clock source settings, right-click clk_0, and then click Edit.

3. Turn off Clock frequency is known to indicate that, when created, the higher-
level hierarchical system that instantiates this subsystem provides the clock
frequency.

4. Click Finish.
Click File O Save As to save the Platform Designer system.

6. In the Save As dialog box, type pattern_generator_system, and then click
Save.

If Platform Designer prompts you to open the top_system.qsys file, click Cancel in
the Open dialog box

3.7.4.1.2, Add a Pipeline Bridge

The components that make up the data pattern generator include several Avalon-MM
slave interfaces. To allow a higher-level system to access the Avalon-MM slave
interfaces by reading and writing to a single slave interface, you can consolidate the
slave interfaces behind an Avalon-MM pipeline bridge, and export a single Avalon-MM
slave interface out of the system.

To determine the required address width for a bridge, you must know the required
addresses span of the other components in the system. Memory-mapped component
interfaces outside the system address each interface in the system by specifying a
memory offset value relative to the base address of the bridge.

A pipeline bridge can also improve system timing performance by optionally adding
pipeline registers to the design.

1. In the Library search box, type bridge to filter the component list and show only
bridge components.

Select Avalon-MM Pipeline Bridge, and then click Add.

In the parameter editor, under Parameters, type 11 for the Address width.

This width accommodates the memory span of all memory-mapped components
behind the bridge in this system. As you add the other components in the system,
you specify their base addresses within the span of the address space.

4. Accept all other default settings, and then click Finish.
The pipeline bridge is added to your system with the instance name
mm_bridge_0.

D Send Feedback Embedded Design Handbook

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

5. On the System Contents tab, right-click mm_bridge_0, click Rename, and
then type mm_bridge.

6. In the Clock column for the mm_bridge clk interface, select clk_0 from the list.

7. To export the mm_bridge sO0 interface, double-click the Export column, and then
type slave.

3.7.4.1.3. Add a Custom Pattern Generator

The pattern generator generates multiple test patterns to test the off-chip SDRAM
device. The custom pattern generator system provides a stream of pattern data via an
Avalon-ST source interface.

The component is programmed with the pattern data and a pattern length. When the
end of the pattern is reached, the custom pattern generator cycles back to the first
element of the pattern. This custom pattern generator generates the following
standard memory tester patterns:

e Walking ones

e Walking zeros

e Low frequency

e Alternating low frequency
e High frequency

e Alternating high frequency
e Synchronous PRBS

The width of the memory dictates the walking ones or zeros pattern lengths. For
example, when testing a 32-bit memory, the walking ones or zeros pattern is 32
elements in length before repeating. The high and low frequency patterns contain only
two elements before repeating. The synchronous PRBS pattern is the longest pattern
containing 256 elements before repeating.

This custom pattern generator contains three interfaces, two of which control the
generated pattern, and a third interface which control the behavior of the custom
pattern generated. The processor accesses the pattern_access interface, which is write
only, to program the elements of the custom pattern that are sent to the pattern
writer core, and the csr interface, which is used for the control and status registers.
The st_pattern_output is the streaming source interface that sends data to the pattern
writer core.

To add the custom pattern generator:

1. In the IP Catalog, expand Memory Test Microcores, and then double-click
Custom Pattern Generator.

In the parameter editor, accept the default parameters, and then click Finish.
Rename the instance to custom_pattern_generator.
Set the custom_pattern_generator clock interface to clk_0.

Embedded Design Handbook D Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

5. To connect the custom_pattern_generator csr interface to the mm_bridge mO
interface, in the Connections column, click to fill in the connection dot between
the custom_pattern_generator csr interface and the mm_bridge mO
interface.

6. Connect the custom_pattern_generator pattern_access interface to the
mm_bridge mO interface.
The processor accesses the system through the m0 interface to communicate with
the csr and pattern_access interfaces.

7. To assign the custom_pattern_generator csr interface to a base address of
0400, in the Base column, double-click the 0X00000000 address, and then enter
400 for the base address, which is in hexadecimal format.

If the Base column is locked for the custom_pattern_generator csr, right-click
and then click Unlock Base Address.

The address space represents memory accessible by the processor. Each address
specifies a location in memory that can be addressed and accessed, and each interface
must have a unique address range. The address space of each interface is determined
by its base address and its memory span, or how much memory is required for that
interface.

You can see the default address range of the pattern_access interface in the Base and
End columns on the System Contents tab.

You assign a base address for the csr interface that is higher than the end address of
the pattern_access interface to avoid conflicting with the address space of the
pattern_access interface.

3.7.4.1.4. Add a PRBS Pattern Generator

The output of the PRBS pattern generator is a statically-defined PRBS pattern. You can
specify the pattern length before the pattern repeats in the parameter editor. The
pattern length is defined by 2/~ (data width) - 1.

For example, a 32-bit PRBS pattern generator repeats the pattern after it sends
4,294,967,295 elements. You set the width of the PRBS generator based on the (local)
data width of the memory on your board.

The PRBS pattern generator has two interfaces; the csr and the st_pattern_output
streaming source interface. The csr interface controls the behavior of the PRBS
pattern generated. The st_pattern_output streaming source interface sends data to
the pattern writer component.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click PRBS
Pattern Generator.

In the parameter editor, accept the default parameters, and then click Finish.
Rename the instance to prbs_pattern_generator.
Set the prbs_pattern_generator clock interface to clk_0.

vk wnN

Connect the prbs_pattern_generator csr interface to the mm_bridge mO
interface.

6. Assign the prbs_pattern_generator csr interface to a base address of 0x0420,
which is a base address just higher than the end address of the
custom_pattern_generator csr interface of 0x410.

D Send Feedback Embedded Design Handbook

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.7.4.1.5. Add a Two-to-One Streaming Multiplexer

You add a two-to-one streaming multiplexer between the pattern generators and the

pattern writer because the system has two pattern sources, and the pattern writer

component accepts data only from one streaming source. The two-to-one streaming

soft programmable multiplexer IP core allows the processor to select which pattern to

send to the pattern writer.

The two-to-one streaming multiplexer component has the following interfaces:

e Two streaming inputs: st_input_A and st_input_B.

¢ One streaming output: st_output.

e One csr slave interface, which the processor controls to select whether input A or
input B is sent to the streaming output.

The custom pattern generator connects to input A, and the PRBS pattern generator

connects to input B.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click Two-
to-one Streaming Mux.

In the parameter editor, accept the default parameters, and then click Finish.
Rename the instance to two_to_one_st_mux.

Set the two_to_one_st_mux clock to clk_0.

u A W N

Connect the two_to_one_st_mux st_input_A interface to the
custom_pattern_generator st_pattern_output interface.

6. Connect the two_to_one_st_mux st_input_B interface to the
prbs_pattern_generator st_pattern_output interface.

7. Connect the two_to_one_st_mux csr interface to the mm_bridge mO
interface.

8. Export the two_to_one_st_mux st_output interface with the name
st_data_out.

9. Assign the two_to_one_st_mux csr interface to a base address of 0x0440,
which is a base address higher than the end address of the
prbs_pattern_generator csr interface at base address 0x0420

The output of the two-to-one streaming multiplexer carries the pattern data from
either the custom pattern generator or the PRBS pattern generator, to the pattern
writer. The data, from the output of the two-to-one streaming multiplexer, achieves a
throughput of one word per clock cycle.

3.7.4.1.6. Verify the Memory Address Map

You control the system by accessing the memory locations allocated to each
component within the subsystem. To ensure that the memory map of the system you
create matches the memory map of other components, you must verify the base
addresses for the data pattern generator system.

On the Address Map tab, verify that the entries in the Address Map table match the
values in in the table below. Red exclamation marks indicate that the address ranges
overlap. Correct the base addresses, as appropriate, to ensure there are no
overlapping addresses, and your map matches this tutorial’s guidelines.

Embedded Design Handbook D Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

Table 9. Address Map Table
Component Address
custom_pattern_generator.csr 0x00000400 - 0x0000040f
custom_pattern_generator.pattern_access 0x00000000 - 0x000003ff
prbs_pattern_generator.csr 0x00000420 - 0x0000043f
two_to_one_st_mux.csr 0x00000440 - 0x00000447

3.7.4.1.7. Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the
Messages tab. Platform Designer allows multiple reset domains, or one reset signal
for the system. In the design, you want to connect all the reset signals with the
incoming reset signal. To connect all the reset signals, on the System menu, select
Create Global Reset Network.

At this point in the system design, Platform Designer shows no remaining error
messages. If you have any error messages in the Messages tab, review the
procedures to create this system to ensure you did not miss a step. You can view the
reset connections and the timing adapters on the System Contents tab, and by
selecting Show System With Platform Designer Interconnect on the System
menu.

3.7.4.1.8. Save the System

At this point, there should be no remaining error messages in the Messages tab, and
the system is complete. Save the system.

3.7.4.2. Create a Data Pattern Checker Platform Designer System

The data pattern checker system receives a pattern from SDRAM and verifies it
against the pattern from the data pattern generator. The pattern reader sends the
data to a one-to-two streaming demultiplexer that routes the data to either the
custom pattern checker or the PRBS pattern checker. The one-to-two streaming
demultiplexer is soft programmable so that the processor can select which pattern
checker IP core should verify the data that the pattern reader reads. The custom
pattern checker is also soft programmable and is configured to match the same
pattern as the custom pattern generator.

Refer to the Platform Designer Memory Tester figure for a graphical description.

3.7.4.2.1. Create a New Platform Designer System and Set Up the Clock Source

1. In the Intel Quartus Prime software, click Tools O Platform Designer to create a
new Platform Designer design.

2. In the System Contents tab, Platform Designer shows a clock source instance,
clk_0. To open the clock source settings, right-click clk_0, and then click Edit.

3. Turn off Clock frequency is known to indicate that, when created, the higher-
level hierarchical system that instantiates this subsystem provides the clock
frequency.

D Send Feedback Embedded Design Handbook

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.

3.7.4.2.2. Add a
1.

3.7.4.2.3. Add a

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

Click Finish.
Click File O Save As to save the Platform Designer system.

In the Save As dialog box, type pattern_checker_system, and then click Save.

Pipeline Bridge

In the Library search box, type bridge to filter the component list and show only
bridge components.

Select Avalon-MM Pipeline Bridge, and then click Add.

In the parameter editor, under Parameters, type 11 for the Address width.

This width accommodates the memory span of all memory-mapped components
behind the bridge in this system. As you add the other components in the system,
you specify their base addresses within the span of the address space.

Accept all other default settings, and then click Finish.
The pipeline bridge is added to your system with the instance name
mm_bridge_0.

On the System Contents tab, right-click mm_bridge_0, click Rename, and
then type mm_bridge.

In the Clock column for the mm_bridge clk interface, select clk_0 from the list.
To export the mm_bridge s0 interface, double-click the Export column, and then
type slave.

Custom Pattern Checker

The custom pattern checker performs the opposite operation of the custom pattern
generator. It has a streaming input interface, st_pattern_input, that accepts data
from the one-to-two streaming demultiplexer. The processor uses the Avalon-MM csr
slave interface to control the component. The custom packet checker also has a
memory-mapped slave interface, pattern_access, that the processor uses to
program the same patterns as the custom pattern generator component.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click
Custom Pattern Checker.

2. In the parameter editor, accept the default parameters, and then click Finish.

3. Rename the instance to custom_pattern_checker.

4. Set the custom_pattern_checker clock to clk_0.

5. Connect the custom_pattern_checker csr interface to the mm_bridge mO
interface.

6. Connect the custom_pattern_checker pattern_access interface to the
mm_bridge mO interface.

7. Assign the custom_pattern_checker csr interface to a base address of
0x0420.

8. Maintain the custom_pattern_checker pattern_access interface base address
of 0x0000.

Embedded Design Handbook D Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.7.4.2.4. Add the PRBS Pattern Checker

The PRBS pattern checker performs the opposite operation of the PRBS pattern
generator. The processor uses the memory-mapped csr slave interface to control the
component. The st_pattern_input streaming input accepts data from the one-to-two
streaming demultiplexer.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click PRBS
Pattern Checker.

In the parameter editor, accept the default parameters, and then click Finish.
Rename the instance to prbs_pattern_checker.
Set the prbs_pattern_checker clock to clk_0.

ik W

Connect the prbs_pattern_checker csr interface to the mm_bridge mO
interface.

6. Assign the prbs_pattern_checker csr interface to a base address of 0x0440.

3.7.4.2.5. Add a One-to-Two Streaming Demultiplexer

The one-to-two streaming demultiplexer performs the opposite operation of the two-
to-one streaming multiplexer. It has a streaming input interface, st_input, that
accepts data from the pattern reader, and two streaming output interfaces,
st_output_A and st_output_B, that connect to the custom pattern generator and
PRBS pattern generator. To allow the processor to program the data route through the
component, the system includes the slave interface, csr.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click One-
to-two Streaming Demux.

In the parameter editor, accept the default parameters, and then click Finish.
Rename the instance to one_to_two_st_demux.

Set the one_to_two_st_demux clock to clk_0.

i kW

Export the one_to_two_st_demux st_input interface with the name
st_data_.in.

6. Connect the one_to_two_st_demux csr interface to the mm_bridge m0
interface.

7. Assign the one_to_two_st_demux csr interface to a base address of 0x0400.

Connect the custom_pattern_checker st_pattern_input interface to the
one_to_two_st_demux st_output_A interface.

9. Connect the prbs_pattern_checker st_pattern_input interface to the
one_to_two_st_demux st_output_B interface.
3.7.4.2.6. Verify the Memory Address Map

On the Address Map tab, verify that the entries in the Address Map table match the
values in the table below. Red exclamation marks indicate that the address ranges
overlap. Correct the base addresses, as appropriate, to ensure there are no
overlapping addresses, and your map matches this tutorial’s guidelines.

D Send Feedback Embedded Design Handbook

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Table 10. Address Map Table

Component

Address

one_to_two_st_demux.csr

0x00000400 - 0x00000407

custom_pattern_checker.csr

0x00000420 - 0x0000042f

custom_pattern_checker.pattern_access

0x00000000 - 0x000003ff

prbs_pattern_checker.csr

0x00000440 - 0x0000045f

3.7.4.2.7. Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the
Messages tab. Platform Designer allows multiple reset domains, or one reset signal
for the system. In the design, you want to connect all the reset signals with the
incoming reset signal. To connect all the reset signals, on the System menu, select
Create Global Reset Network.

At this point in the system design, Platform Designer shows no remaining error
messages. If you have any error messages in the Messages tab, review the
procedures to create this system to ensure you did not miss a step. You can view the
reset connections and the timing adapters on the System Contents tab, and by
selecting Show System With Platform Designer Interconnect on the System
menu.

3.7.4.2.8. Save the System

At this point, there should be no remaining error messages in the Messages tab, and
the system is complete. Save the system.

3.7.5. Assemble a Hierarchical System

Hierarchical systems allow you to reuse modular system components. Additionally,
hierarchical systems allow you to break large systems into smaller subsystems thus,
creating more manageable designs.

The memory tester design includes the following lower-level subsystems:

o Data pattern generator—Generates and transmits Avalon-ST data to the
memory tester components.

o Data pattern checker—Receives and verifies Avalon-ST data from the memory
tester components.

Embedded Design Handbook D Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

Figure 29. Top-Level Memory Tester Design with a Processor and SDRAM Controller

Platform Designer System
Processor
IP Cores
[u]
&
Memory Tester
[w] [w]
[s 1]
SDRAM
Controller
@ Avalon-MM Master
Avalon-ST Slave
A 4
Note: The hierarchical system you create is based on the lower-level

pattern_checker_system.qsys, and pattern_generator_system.qsys
subsystems that you created in previous sections. If you did not create these
subsystems in the previous section, you can use the completed versions provided with
the design files in the tt_qsys_design\completed_subsystems directory available
from the Platform Designer Tutorial Design Example web page. Copy these files
to the appropriate tt_gsys_design\quartus_ii_projects_for_boards\
<devel oprent _boar d> directory for your board.

Related Information
Platform Designer Tutorial Design Example

3.7.5.1. Create the Hierarchical Memory Tester System

The memory tester system includes several slave interfaces. However, the memory
tester groups the interfaces behind a pipeline bridge that exports a single slave
interface to the top-level system. This technique allows the top-level system to access
all of the memory-mapped slave ports by reading and writing to a single pipeline
bridge slave interface. The bridge also adds a level of pipelining, which can improve
timing performance.

D Send Feedback Embedded Design Handbook

101

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
< l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

Figure 30. Memory Tester Design Interface

[$]

Pipeline Bridge

[M]

A

Memory Master
Components

H
RAM Test
Controller

Pattern Generator [s, E M w E W Sk Data Checker
Subsystem Pattern Pattern Subsystem
Writer W m Reader
v |
Legend

Avalon-MM Master Avalon-ST Source 4> Avalon-MM Interface
Avalon-MM Slave Avalon-ST Sink < Avalon-ST Interface

In Platform Designer, create a new system called, memory_tester_system.

2. For the clk instance, turn off Clock frequency is known to indicate that the
higher-level hierarchical system that instantiates this subsystem provides the
clock frequency.

3. In the IP Catalog, select the Avalon-MM Pipeline Bridge to add to your Platform
Designer system.

4. For the Avalon-MM Pipeline Bridge, in the parameter editor, type 13 for the
Address width.
To accommodate for the address translation from master to slave, that is a byte
address as the input, and a word address (4 bytes) as the output, the address
width increases from 11.

5. Rename the instance to mm_bridge.
Set the mm_bridge_clk interface to clk_0.
7. Export the mm_bridge sO interface with the name slave.

3.7.5.1.1. Add the Pattern Generator

The custom pattern generator system provides a stream of pattern data via an
Avalon-ST source interface. You control the system by accessing the memory locations
allocated to each component within the subsystem. The system connects slave ports
to a pipeline bridge, which it then exposes outside of the system.

Embedded Design Handbook D Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

The pattern generator system contains the following components:

i kW

Pipeline bridge

Custom pattern generator

PRBS pattern generator
Two-to-one streaming multiplexer
Streaming timing adapters

In the IP Catalog, under Project expand System, and then double-click
pattern_generator_system.

In the parameter editor, click Finish to accept the default settings.
Rename the instance to pattern_generator_subsystem.
Set the pattern_generator_subsystem clk to clk_0.

Connect the pattern_generator_subsystem slave interface to the mm_bridge
mO interface.

Connect the pattern_generator_subsystem reset interface to the clk_0
clk_reset interface.

3.7.5.1.2. Add the Pattern Checker

The pattern checker system validates data that arrives via an Avalon-ST sink
interface. You control the system by accessing the memory locations allocated to each
component within the subsystem. The system connects all of the slave ports to a
pipeline bridge, which it then exposes outside of the system.

The pattern checker system contains the following components:

i wn

Pipeline bridge

Custom pattern checker
PRBS pattern checker
One-to-two demultiplexer

In the IP Catalog, double-click pattern_checker_system from the System
group.

In the parameter editor, click Finish to accept the default settings.
Rename the instance to pattern_checker_subsystem.
Set the pattern_checker_subsystem clk to clk_0.

Connect the pattern_checker_subsystem slave interface to the mm_bridge
mO interface.

Connect the pattern_checker_subsystem reset interface to the clk_0
clk_reset interface.

3.7.5.1.3. Add Memory Master Components

Memory masters access the SDRAM controller by writing the test pattern to the
memory and reading the pattern back for validation. The RAM test controller accepts
commands from the processor and controls the memory masters. Each command
contains a start address, test length in bytes, and memory block size in bytes. The

D Send Feedback

Embedded Design Handbook

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

RAM test controller segments the commands into smaller block transfers and issues
the commands to the read and write masters independently via streaming
connections.

When the pattern reader or writer components complete a block transfer, they signal
to the RAM test controller that they are ready for another command. The RAM test
controller issues the block-sized commands independently, which minimizes the
number of idle cycles between memory transfers. The RAM test controller also ensures
that the pattern reader never overtakes the pattern writer with respect to the memory
locations it is testing, otherwise data corruption occurs.

The SDRAM controller is parameterized to use a local maximum burst length of 2. The
pattern reader and writer components are also configured to match this burst length
to maximize the memory bandwidth.

Add a Pattern Writer Component

The pattern writer component accepts memory transfer commands from the RAM test
controller with the command streaming interface. The st_data streaming interface
accepts data provided by the design’s pattern generator. The mm_data memory-
mapped interface writes the pattern data to the SDRAM controller.

1. In the IP Catalog, double-click Pattern Writer from the Memory Test
Microcores group.

In the parameter editor, turn on Burst Enable.

Ensure that the Maximum Burst Count is 2.

Ensure that Enable Burst Re-alignment is turned on.
To accept the other default parameters, click Finish.
Rename the instance to pattern_writer.

Set the pattern_writer clock to clk_0.

©® N v kWD

Connect the pattern_writer st_data interface to the
pattern_generator_subsystem st_data_out interface.

9. Export the pattern_writer mm_data interface with the name write_master.

Add a Pattern Reader Component

The pattern reader component accepts memory transfer commands from the RAM test
controller with the command streaming interface. The mm_data interface reads the
pattern data from the SDRAM controller. The st_data interface sends the data read
from memory to the design’s pattern checker.

1. 1In the IP Catalog, double-click Pattern Reader from the Memory Test
Microcores group.

2. n the parameter editor, turn on Burst Enable.
3. Ensure the Maximum Burst Count is 2.
4. Ensure that Enable Burst Re-alignment is turned on.
5. To accept the other default parameters, click Finish.
6. Rename the instance to pattern_reader.
Embedded Design Handbook D Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

7. Set the pattern_reader clock to clk_0.

Connect the pattern_reader st_data interface to the
pattern_checker_subsystem st_data_in interface.

9. Export the pattern_reader mm_data interface with the name read_master.

Add a RAM Test Controller

The RAM test controller contains two streaming command interfaces; write_command
and read_command, that send commands to the pattern reader and pattern writer
components. These streaming interfaces issue commands effectively because Avalon-
ST interfaces offer low latency and a simple handshaking protocol, as well as because
the processor accesses a slave port, csr, to write commands to the controller.

1. In the IP Catalog, double-click RAM Test Controller from the Memory Test
Microcores group.

In the parameter editor, click Finish to accept the default parameters.
Rename the instance to ram_test_controller.

Set the ram_test_controller clock to clk_0.

L

Connect the ram_test_controller write_command interface to the
pattern_writer_command interface.

6. Connect the ram_test_controller read_command interface to the
pattern_reader_command interface.

7. Connect the ram_test_controller csr interface to the mm_bridge mO0 interface.

Do not use the Generation tab at this point in the tutorial to generate HDL code for
these subsystems. You must generate files for the entire top-level system, which
includes all the subsystems. The batch script provided for you to program the device
requires that only one system is generated in the project directory. The top-level
design includes a Nios II subsystem, and the Nios II software build tools require the
SOPC Information File (.sopcinfo) to be generated for the top-level design. If there are
multiple .sopcinfo files, the batch script to program the device fails with an error from
the software build tools.

3.7.5.1.4. Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the
Messages tab. Platform Designer allows multiple reset domains, or one reset signal
for the system. In the design, you want to connect all the reset signals with the
incoming reset signal. To connect all the reset signals, on the System menu, select
Create Global Reset Network.

At this point in the system design, Platform Designer shows no remaining error
messages. If you have any error messages in the Messages tab, review the
procedures to create this system to ensure you did not miss a step. You can view the
reset connections and the timing adapters on the System Contents tab, and by
selecting Show System With Platform Designer Interconnect on the System
menu.

3.7.5.1.5. Verify the Memory Address Map

To ensure that the memory map of the system you create matches the memory map
of other components, you must verify the base addresses for the memory tester
system. In Platform Designer, on the Address Map tab, verify that the entries in

D Send Feedback Embedded Design Handbook

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

Address Map table match the values in Table 3-1. Red exclamation marks indicate that
the address ranges overlap. Correct the base addresses, as appropriate, to ensure
there are no overlapping addresses.

Table 11. Address Map Table

Component Base Address Address
mm_bridge_0.s0 N/A N/A
pattern_generator_subsystem.slave 0x0 0x00000000 - 0x000007ff
pattern_checker_subsystem.slave 0x1000 0x0001000 - 0x000017ff
ram_test_controller.csr 0x800 0x00000800 - 0x0000081f

3.7.5.1.6. Save the System

At this point, there should be no remaining error messages in the Messages tab, and
the system is complete. Save the system.

3.7.5.2. Complete the Top-Level System

1.

In Platform Designer, open the top_system.qsys file from the
tt_gsys_design\quartus_ii_projects for_boards

\<devel oprment _boar d> directory.

The top-level system is set up for your development board, with an external clock
source, a processor system, and an SDRAM controller. You can view the clocks in
top-level system on the Clock Settings tab, and the partially-completed system
connections on the System Contents tab.

In the IP Catalog, double-click memory_tester_system from the System group.

Click Finish to accept the default parameters, and to add the memory tester
system to the top-level system.

Rename the system to memory_tester_subsystem.

On the System Contents tab, use the arrows to move the
memory_tester_subsystem up between the cpu_subsystem and the sdram.
Since the cpu_subsystem controls the memory_tester_subsystem, and the
memory_tester_subsystem controls the sdram, this positioning allows you to
more easily visualize system performance.

Set the memory_tester_subsystem clk to either the sdram_sysclk (for
ALTMEMPHY-based designs), or sdram_afi_clk (for UniPHY-based designs).
Some boards have an FPGA and SDRAM device that use either the Intel DDR or
DDR2 SDRAM Controller with ALTMEMPHY; others use the Intel DDR3 SDRAM
controller with UniPHY.

Connect the memory_tester_subsystem reset interface to the ext_clk
clk_reset interface.

Connect the memory_tester_subsystem reset interface to the
cpu_subsystem cpu_jtag_debug_reset interface.

This design exports the Nios II processor JTAG debug reset output interface,
jtag_debug_module_reset, from the cpu_subsystem with the interface name
cpu_ jtag_debug_reset. The design must connect this Nios II reset output to
any component reset inputs that require resetting by the Nios II processor code or
JTAG interface, and also to the Nios II processor's reset input interface. The

Embedded Design Handbook D Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

cpu_subsystem cpu_reset interface connects to the Nios II processor's reset
input interface. The top_level.gsys file connects the cpu_jtag_debug_reset
interface to the cpu_reset interface.

9. Connect the memory_tester_subsystem write_master and read_master
interfaces to either the sdram s1 interface (for ALTMEMPHY-based designs), or
sdram avl interface (for UniPHY-based designs).

10. Connect the memory_tester_subsystem slave interface to the
cpu_subsystem master interface.

11. Maintain the base addresses of 0x0 for the memory_tester_subsystem slave
interface, and for either the sdram s1 interface (for ALTMEMPHY-based designs),
or sdram avl interface (for UniPHY-based designs).

The two slave interfaces can use the same address map range because different
masters control them. The cpu_subsystem master interface controls the
memory_tester_subsystem, and the memory_tester_subsystem write_master
and read_master interfaces control the sdram interface.

3.7.6. Viewing the Memory Tester System in Platform Designer

You can use the Hierarchy tab, accessed from the View menu, to show the complete
hierarchy of your design. The Hierarchy tab is a full system hierarchical navigator,
which expands the system contents to show modules, interfaces, signals, contents of
subsystems, and connections. The graphical interface of the Hierarchy tab displays a
unique icon for each element represented in the system, including interfaces,
directional pins, IP blocks, and system icons that show exported interfaces and the
instances of components that make up a system.

Click Generate 0 HDL Example to view the HDL for an example instantiation of the
system. The HDL example lists the signals from the exported interfaces in the system.
The signal names are the exported interface name followed by an underscore, and
then the signal name specified in the component or IP core. Most of the signals
connect to the external SDRAM device.

3.7.7. Compiling and Downloading Software to a Development Board

Intel recommends that you download the memory tester system to a development
board to complete the design process and test the memory interface of the board. If
you do not have a development board you can follow the steps provided in the
accompanying readme.txt file to learn more details about porting designs to FPGA
devices or boards.

The Intel provided software tests the memory using various test parameters and
patterns, and is scripted for compilation and download to the board.

1. To download the top-level system to a development board, in Platform Designer,
click Generate 0 Generate.

2. Select the language for Create HDL design files for synthesis, and turn off the
option to create a Block Symbol File (.bsf).

3. Click Generate. Platform Designer generates HDL files for the system and the
Intel Quartus Prime IP File (.qip) that provides the list of required HDL files for the
Intel Quartus Prime compilation.

4. When Platform Designer completes the generation, click Close.

D Send Feedback Embedded Design Handbook

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

5. In the Intel Quartus Prime software, on the Project menu, click Add/Remove
Files in Project and verify that the newly-generated .qip file, top_system.qip,
and the timing constraints file, my_constraints.sdc appear in the Files list.

Click Processing [0 Start Compilation. When compilation completes, click OK.
Connect the development board to a supported programming cable.
Click Tools U Nios ITI Command Shell [gcc4].

Type the following command to emulate your local c:/ drive for your Windows
environment: cd /cygdrive/c/.

© © N o

10. Navigate to the quartus_ii_projects for_boards\<devel opnment _boar d>
\software directory.

11. Type the following command at the Nios II command Shell: ./batch_script.sh.
The batch script compiles the Nios II software and downloads the SRAM Object
File (.sof) programming file to the FPGA.

The terminal window shows messages indicating the progress. If you see error
messages related to the JTAG chain, check your programming cable installation and
board setup to ensure that it is set up correctly.

After the script configures the FPGA, it downloads the compiled Nios II software to the
board and establishes a terminal connection with the board. The test software
performs test sweeps on the SDRAM by varying the following parameters:

e Pattern type
e Memory block size

e Memory block trail distance (number of blocks by which the pattern reader trails
the pattern writer)

e Memory span tested

Ensure that you have only one set of generated system files in the project directory,
otherwise the batch script to program the device fails with an error from the software
build tools.

The memory throughput values appear in the command terminal as the memory is
tested. These values are reported in hexadecimal and represent the number of clock
cycles required to test the entire SDRAM address span. The output is restricted to
hexadecimal due to a small software library that prints the characters to the terminal.
Because the memory tester system writes to the memory and then reads it back, the
number of bytes it accesses and reports in the transcript window is double the
memory span. This number varies depending on the span of memory being tested for
your memory device. Knowing the data width of the memory interface, the number of
bytes transferred, and the number of clock cycles for the transfer, you can determine
the memory access efficiency.

The SDRAM controller in the top-level Platform Designer system has a 32-bit local
interface width, therefore memory data width in bytes is 4 bytes for the tutorial
design.

Efficiency = 100 x total bytes transferred/(memory data width in bytes x
total clock cycles)

Embedded Design Handbook D Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

The memory test runs until the design finishes testing the complete memory. To end
the test early, type Ctrl+C in the command window. To calculate the efficiency for the
last throughput numbers in, convert the hexadecimal numbers to decimal, as follows:

e 0x4000000 bytes transferred is 0d67108864 total bytes transferred
e 0x107d856 clock cycles is 0d17291350 total clock cycles

Therefore, the efficiency for this example is:

100 x 67108864 / (4 x 17291350) = 97.0%

3.7.8. Debugging Your Design

If the memory test starts but does not complete successfully, the terminal displays
failure messages. If you see failure messages from the memory test, review the
previous sections and check that you have completed all of the instructions in this
tutorial successfully. A missed connection or incorrect memory address assignment
may cause the tester design to fail on the board.

Intel provides completed systems, so that you can verify your system designs. You
can copy the completed systems into the project directory with different names, so
that you can open two different instances of Platform Designer for a side-by-side
comparison. Alternatively, you can replace your systems with the provided completed
systems to run the memory tester design successfully.

3.7.9. Verifying Hardware in System Console

You can use the Intel Quartus Prime System Console to verify your system design. The
design example files include scripts that exercise your system using System Console
Tcl commands. The example uses a JTAG-to-Avalon Master Bridge component to drive
the slave components, instead of a Nios II processor system.

The \quartus_ii_projects for_boards\<development board>
\system_console directory contains the run_sweep.tcl, base_address.tcl, and
test_cases.tcl scripts. You use these scripts to set up and run memory tests on the
development board projects. You can view the scripts to help you understand the
System Console commands that drive the slave component registers. The scripts work
with any board, if you keep the same Platform Designer system structure.

The run_sweep . tcl file is the main script, which calls the other two scripts. The
base address.tcl file includes information about the base addresses of the slave
components from the previous chapters. If you change the base addresses of the
slave components, you must also change the addresses in the base address.tcl
file. The test_cases.tcl file includes settings for memory span, memory block
sizes, and memory block trail distance.

The run_sweep.tcl file contains Tcl commands for the following actions:

e Initialize the components

e Adjust test parameters

e Start the PRBS pattern checker, PRBS pattern generator, and RAM controller

e Continuously poll the stop and fail bits in the PRBS checker

D Send Feedback Embedded Design Handbook

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
< l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

Related Information

Analyzing and Debugging Designs with System Console

3.7.9.1. Open the Tutorial Project
You can use completed design files in the tt_qsys_design
\quartus_ii_projects_for_boards\<devel opnent _boar d> directory.

1. Open the Intel Quartus Prime project in the project directory for your development
board type.

2. In Platform Designer, open top_system.qsys in the project directory for your
development board type.

3.7.9.2. Add the JTAG-to-Avalon Master Bridge

The JTAG-to-Avalon master bridge acts as a bridge between the JTAG interface and
the system's memory tester.

In the IP Catalog select JTAG to Avalon Master Bridge, and then click Add.

2. In the parameter editor, click Finish to accept the default parameters.

3. Rename the instance to jtag_to_avalon_bridge.

4. Connect the jtag_to_avalon_bridge master interface to the
memory_tester_subsystem slave interface.

5. Set the jtag_to_avalon_bridge clk domain to sdram_sysclk.

6. Connect the jtag_avalon_bridge clk_reset interface to the ext_clk clk_reset
interface.

7. Connect the jtag_avalon_bridge clk_reset interface to either the sdram
reset_request_n interface (for ALTMEMPHY-based designs), or sdram afi_reset
interface (for UniPHY-based designs).

8. Connect the jtag_avalon_bridge master_reset interface to the
memory_tester_subsystem reset interface, and to either the sdram
soft_reset_n interface (for ALTMEMPHY-based designs), or sdram soft_reset
interface (for UniPHY-based designs).

9. To disable the cpu_subsystem system, in the Use column, turn off Use, since
you are replacing its function with the bridge and System Console.

10. Save the jtag_to_avalon_bridge system.

3.7.9.3. Debug with System Console

The design example scripts test the memory in loops for different block sizes, that is,
the number of bytes to group together in a single instance of back-to-back reads or
writes. The scripts also test the memory in loops for different memory block trails,
that is, the number of blocks by which the pattern reader trails the pattern writer.

1. To download the programming file to your development board, in Platform
Designer, click Generate [0 Generate.

Select the language for Create HDL design files for synthesis.

Click Generate. Platform Designer generates HDL files for the system and the .qip
file, which provides the list of required HDL files for the Intel Quartus Prime
compilation.

Embedded Design Handbook D Send Feedback

110

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384184752
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

When Platform Designer completes the generation, click Close.

In the Intel Quartus Prime software, click Project 0 Add/Remove Files in
Project, and verify that the project contains the top_system.qip.

Click Processing U Start Compilation. When compilation completes, click OK.
Connect the development board to a supported programming cable.

Click Tools 0 Programmer.

© ® N o

Check that the Programmer displays the correct programming hardware.
Otherwise, click Hardware Setup and select the correct programming hardware,
and then click Close.

10. To program the device, click Start.
11. In Platform Designer, click Tools 0 System Console.

12. Before you execute scripts in System Console, navigate to the directory for the Tcl
scripts, and then in Platform Designer System Console window, click File O
Execute Script.

13. To start the memory tests, run the run_sweep.tcl file from the
tt _gsys_design\quartus_ii_projects for_ boards
\<devel opnent _boar d> \system_console directory.
When you run the run_sweep.tcl script, the System Console displays the
progress of the tests in the Messages tab. The tests perform test sweeps on the
SDRAM by varying the memory block size and memory block trail distance. When
the tests finish successfully, Platform Designer generates a message that reports
successful completion.

3.7.10. Simulating Custom Components

You can simulate a custom component with Platform Designer and the Avalon
Verification IP Suite. You use Platform Designer to generate a testbench system for
the design under test, and then perform a functional simulation with the ModelSim
simulator. The Platform Designer-generated testbench uses the Avalon Verification IP
Suite components.

D Send Feedback Embedded Design Handbook

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Figure 31. Typical Platform Designer Test Environment

Test Stimuli
Testbench
- Avalon —p
Test Program Verification DUT
- Suite -
Test
Parameters

3.7.10.1. Generate a Testbench System in Platform Designer

The custom pattern generator generates high-speed streaming data for testing
memory devices. The soft-programmable custom pattern generator can generate
multiple test patterns, and is programmed with the pattern data and pattern length.
When the end of the pattern is reached, the custom pattern generator cycles back to
the first element of the pattern.

If you do not want to use the Platform Designer-generated testbench system, you can
create your own Platform Designer testbench system by adding the Avalon Verification
Suite Bus Functional Models (BFMs) or your own models for simulation. You can also
generate a Platform Designer simulation model for the design or Platform Designer
system under test, and use your own custom HDL testbench to provide the simulation
stimulus.

3.7.10.1.1. Create a New Platform Designher System for the Design Under Test

1. In the Intel Quartus Prime software, open the Intel Quartus Prime Project File,
qsys_sim_tutorial.qpf, from the \simulation_tutorial directory.

2. In Platform Designer, click File 0 New System to create a new Platform Designer
design.

3. To remove the clock source, which is not needed for this design, right-click clk_0,
and then click Remove.

Embedded Design Handbook D Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

4. 1In the IP Catalog, select Custom Pattern Generator from the Memory Test
Microcores group, and then click Add.

In the parameter editor, click Finish to accept the default parameters.

6. Rename the instance to pg to provide a short instance name for the pattern
generator.

3.7.10.1.2. Export Design Under Test

1. In Platform Designer, on the System Contents tab, in the Export column, for
each interface click Double-click to export, and maintain the default export
names.

2. Save the system as pattern_generator.

3.7.10.1.3. Generate a Testbench System

1. In Platform Designer click Generate 0 Generate Testbench System.

2. Under Testbench System, for Create testbench Platform Designer system,
select Standard, BFMs for standard Platform Designer interfaces.

3. Under Synthesis, select None for Create HDL design files for synthesis, and
turn off Create block symbol file (.bsf).

4. Click Generate.
5. After Platform Designer generates the testbench, click Close.

Platform Designer generates this testbench system in the \simulation_tutorial
\pattern_generator\testbench directory.

You can generate the simulation model for the Platform Designer testbench system at
the same time by turning on Create testbench simulation model. However, the
Platform Designer-generated testbench system's components names are assigned
automatically and you may want to control the instance names to make it easier to
run the test program for the BFMs. In this tutorial, you edit the Platform Designer
testbench system before generating the simulation model.

3.7.10.1.4. Generate Testbench System's Simulation Models

In this section, you open the generated Platform Designer testbench system and
rename the BFM component instance names to ensure the testbench names match the
test program provided with the tutorial design files. Additionally, you generate the
testbench's simulation model.

1. In Platform Designer, open the testbench system, pattern_generator_tb.qsys,
from the simulation_tutorial\pattern_generator\testbench directory.

2. On the System Contents tab, rename the instance as they appear in Table 5-1.

Platform Designer-Generated Components' Names New Instance Name

pattern_generator_inst

DUT

pattern_generator_inst_pg_clock_bfm

clock_source

pattern_generator_inst_pg_reset_bfm

reset_source

continued...

D Send Feedback

Embedded Design Handbook

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

Platform Designer-Generated Components' Names New Instance Name
pattern_generator_inst_pg_csr_bfm csr_master
pattern_generator_inst_pg_pattern_access_bfm pattern_master
pattern_generator_inst_pg_pattern_output_bfm pattern_sink

3. Double-click a BFM component to open the parameter editor and view its settings.
These BFM components are available in the Avalon Verification Suite group in the
library. If necessary, you can change the parameters for the BFMs to ensure
adequate test coverage for your design.

The Platform Designer-generated testbench matches inserted BFMs with the
exported interfaces from the design that they drive. The test program that
provides stimulus to the BFMs must account for the matching interface. For
example, an exported Avalon-MM slave interface (which expects word-aligned
addresses) is connected to an Avalon master BFM, which expects and transacts
word-aligned addresses instead of the byte or symbol addresses that are default
for Avalon masters.

Click Cancel to close the parameter editor without making changes.

5. In the Generation dialog box, under Simulation, for Create simulation model,
select Verilog.

6. Under Testbench System, select None for Create testbench Platform
Designer system and Create testbench simulation model.

7. Under Synthesis, select None for Create HDL design files for synthesis, and
turn off Create Block design files (.bsf).

8. Save the system.

9. Click Generate.

10. After Platform Designer generates the testbench, click Close.

Platform Designer generates the testbench system’s simulation models in the

\simulation_tutorial\pattern_generator\testbench\pattern_generator_tb
\simulation directory.

Platform Designer generates the simulation models and a ModelSim simulation script
(msim_setup.tcl), which compiles the required files for simulation and sets up
commands to load the simulation in the ModelSim simulator. You can run this
ModelSim script in ModelSim to compile, elaborate, or load for simulation.

In this tutorial, there is an external test program to provide simulation stimulus. The
tutorial design files include a simulation script, load_sim.tcl that compiles the top-
level simulation file and test program, and calls the Platform Designer-generated script
to compile the required files.

3.7.10.2. Run Simulation In the ModelSim Software

You can run a simulation in the ModelSim software on the testbench that you created.
To complete this simulation you use the test program provided in the design files. The
test begins by writing a walking ones pattern to the design under test.

Embedded Design Handbook D Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

This test program performs the following actions:

Reads a pattern file.

Writes the pattern to the design under test via the pattern master BFM.
Sets various design under test options via the CSR master BFM.

Starts the design under test pattern generation.

Collects data generated by the design under test.

Compares the results against the original pattern file.

3.7.10.2.1. Set Up the Simulation Environment

This tutorial includes test program files that you can use with the Platform Designer-
generated testbench and ModelSim simulation script. To learn more about Platform
Designer simulation support, open and review the simulation script,
\simulation_tutorial\load_sim.tcl. After your review of the script, close the script
without making changes.

The load_sim.tcl script sets simulation variables to set up the correct hierarchical
paths in the Platform Designer-generated simulation model and ModelSim script.
Additionally, the script identifies the top-level instance name for the simulation and
provides the path to the location of the Platform Designer-generated files. Some
functions, such as memory initialization, rely on correct hierarchical paths names in
the simulation model.

The load_sim.tcl script performs the following actions:

Sources the Platform Designer-generated ModelSim simulation script,
msim_setup.tcl.

Uses the command aliases defined in the msim_setup.tcl script to compile and
elaborate the files for the Platform Designer testbench simulation model.

Compiles and elaborates the extra simulation files for the tutorial—the test
program and top-level simulation file that instantiates the test program.

Loads the wave.do file that provides signals for the ModelSim waveform view.

3.7.10.2.2. Run the Simulation

D Send Feedback

Start the ModelSim software.

Click File O Change Directory, browse to the \simulation_tutorial directory,
and then click OK.

Click Compile 0 Compile Options.

Click the Verilog & SystemVerilog tab, select Use SystemVerilog, and then
click OK.

Click File O Load
Ensure you activate the ModelSim Transcript window, otherwise the Load function
is disabled.

Select the load_sim.tcl script, and then click Open.

The warning messages relate to unused connections in an ALTSYNCRAM
megafunction. Because these ports are not used, you can ignore the warning
messages.

Embedded Design Handbook

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
l n tel 3. Hardware System Design with Intel Quartus Prime and Platform Designer
EDH | 2018.11.12

7. Run the simulation for 40us. To run the simulation, in the ModelSim Transcript
window type the following command: run 40us.
You can run the h command to show the available options for the
msim_setup.tcl script.

8. Observe the results.

INFO: top.tb.reset_source.reset_deassert: Reset deasserted
INFO: top.pgm: Starting test walking_ones.hex

INFO: top.pgm.read_file: Read file walking_ones.hex success
INFO: top.pgm.read_file: Read file walking_ones_rev.hex success
INFO: top.pgm: Test walking_ones.hex passed

9. To run the low frequency test, modify \simulation_tutorial\test_include.svh
according to Table 12 on page 116.

Table 12. Values for Low Frequency Pattern Test

Macro New Value
PATTERN_POSITION 0
NUM_OF_PATTERN 2
NUM_OF_PAYLOAD_BYTES 256
FILENAME low_freq.hex
FILENAME_REV low_freq_rev.hex

10. Reload the load_sim.tcl script, run the simulation for 40us, and observe the
result in the Transcript window.

INFO: top.pgm: Starting test low_freq.hex

INFO: top.pgm.read_file: Read file low_freq.hex success

INFO: top.pgm.read_file: Read file walking_ones_rev.hex success
INFO: top.pgm: Test low_freq.-hex passed

11. To run the random number pattern test, modify \simulation_tutorial
\test_include.svh according to Table 13 on page 116.

Table 13. Values for Random Number Pattern Test

Macro New Value

PATTERN_POSITION 32

NUM_OF_PATTERN

64

NUM_OF_PAYLOAD_BYTES

1024

FILENAME

random_num.hex

FILENAME_REV

random_num_rev.hex

12. Reload the load_sim.tcl script, and run the simulation for 40us to observe the
following results.
INFO: top.pgm: Starting test random_num.hex
INFO: top.pgm.read_file: Read file random_num.hex success

INFO: top.pgm.read_file: Read file random_num_rev.hex success
INFO: top.pgm: Test random_num.hex passed

Embedded Design Handbook D Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
3. Hardware System Design with Intel Quartus Prime and Platform Designer l n tel)

EDH | 2018.11.12

3.7.11. View a Diagram of the Completed System

You set up the simulation environment for the custom pattern generator component
and used BFM test code to perform simulation. You can test your own custom Platform
Designer components with this method to verify their functionality before you
integrate them into a complete system. You can also create a testbench system for a
complete Platform Designer system with this method, and test your top-level system
behavior with BFMs.

On the Platform Designer Tutorial Desigh Example page, click detailed diagram
under Block Diagram to view a detailed diagram of the completed Memory Tester
System.

Related Information
e Platform Designer Tutorial Design Example

e Detailed Diagram of the Memory Tester System

D Send Feedback Embedded Design Handbook

117

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/images/qsys_diagram_memory_tester_system.jpg
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 3. Hardware System Design with Intel Quartus Prime and Platform Designer

EDH | 2018.11.12

3.8. Hardware System Design with Intel Quartus Prime and
Platform Designer Revision History

Document Changes
Version

2017.06.12 Added new sections:
e Hardware Development Tutorial
e System Design Tutorial

2016.12.19 Initial release.

Related Information

Document Revision History for Embedded Design Handbook on page 6

Embedded Design Handbook D Send Feedback
118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
EDH | 2018.11.12 l n tel
D Send Feedback

4. Software System Design with a Nios II Processor

This chapter describes the software flow in a Nios II processor system design. It
includes a detailed explanation and example on the Nios II command line tools that
are provided in the Nios II Embedded Design Suite (EDS). Descriptions of both the
Intel tools and the GNU tools are also included. Most of the commands are located in
the bon and sdk subdirectories of your EDS installation.

Included is a description on how to develop the software flow and the software tools
you can use in developing your embedded design system. Information about
development with HAL drivers is also in this chapter.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

EDH | 2018.11.12

| | ®
< l n tel) 4. Software System Design with a Nios II Processor

4.1. Nios II Command-Line Tools

The Intel command line tools are useful for a range of activities, from board and
system-level debugging to programming an FPGA configuration file (.sof). For these
tools, the examples expand on the brief descriptions of the Intel-provided command-
line tools for developing Nios II programs in “Intel-Provided Embedded Development
Tools” in the Nios II Software Build Tools chapter of the Nios II Gen2 Software
Developer’s Handbook. The Nios II GCC toolchain contains the GNU Compiler
Collection, GNU Binary Utilities (binutils), and newlib C library.

All of the commands described in this section are available in the Nios II command
shell. For most of the commands, you can obtain help in this shell by typing:

<command name> --help

To start the Nios II command shell on Windows platforms, on the Start menu, click All
Programs. On the All Programs menu, on the Intel submenu, on the Nios II EDS
<version> submenu, click Nios II <version> Command Shell.

On Linux platforms, type the following command:
<Nios Il EDS install path>/nios2_command_shell.shr
The command shell is a Bourne-again shell (bash) with a pre-configured environment.

Related Information
Nios II Software Build Tools

4.1.1. Intel Command-Line Tools for Board Bringup and Diagnostics

This section describes Intel command-line tools useful for Nios development board
bringup and debugging.

4.1.1.1. jtagconfig

This command returns information about the devices connected to your host PC
through the JTAG interface, for your use in debugging or programming. Use this
command to determine if you configured your FPGA correctly.

Many of the other commands depend on successful JTAG connection. If you are unable
to use other commands, check whether your JTAG chain differs from the simple,
single-device chain used as an example in this section.

Type jtagconfig --help from a Nios II command shell to display a list of options
and a brief usage statement.

4.1.1.1.1. jtagconfig Usage Example

To use the jtagconfig command, perform the following steps:
1. Open a Nios II command shell.
2. In the command shell, type the following command:

Jjtagconfig -n

Embedded Design Handbook D Send Feedback

120

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Example 4. jtagconfig Example Response
$ jtagconfig -n
1) Intel FPGA Download Cable [USB-0]
020050DD EP1S40/_HARDCOPY_FPGA_PROTOTYPE
Node 11104600
Node OCOO6EOO
The information in the response varies, depending on the particular FPGA, its
configuration, and the JTAG connection cable type. The table below describes the
information that appears in the response in the example.
Table 14. Interpretation of jtagconfig Command Response
Value Description

Intel FPGA Download Cable [USB-0] The type of cable. You can have multiple cables connected
to your workstation.

EP1S40/_HARDCOPY_FPGA_PROTOTYPE The device name, as identified by silicon identification
number.

Node 11104600 The node number of a JTAG node inside the FPGA. The
appearance of a node number between 11104600 and
11046FF, inclusive, in this system’s response confirms that
you have a Nios II processor with a JTAG debug module.

Note OCOO6EOO The node number of a JTAG node inside the FPGA. The
appearance of a node number between 0CO06E00 and
0COOG6EFF, inclusive, in this system’s response confirms that
you have a JTAG UART component.

The device name is read from the text file pgm_parts.txt in your Quartus Prime
installation. In the example above, the name is EP1540/
_HARDCOPY_FPGA_PROTOTYPE because the silicon identification number on the JTAG
chain for the FPGA device is 020050DD, which maps to the names EP1S40<device-
specific name>, a couple of which end in the string _HARDCOPY_FPGA_PROTOTYPE.
The internal nodes are nodes on the system-level debug (SLD) hub. All JTAG
communication to an Intel FPGA passes through this hub, including advanced
debugging capabilities such as the SignalTap II embedded logic analyzer and the
debugging capabilities in the Nios II EDS.

The example above illustrates a single cable connected to a single-device JTAG chain.
However, your computer can have multiple JTAG cables, connected to different
systems. Each of these systems can have multiple devices in its JTAG chain. Each
device can have multiple JTAG debug modules, JTAG UART modules, and other kinds
of JTAG nodes. Use the jtagconfig -n command to help you understand the
devices with JTAG connections to your host PC and how you can access them.

4.1.1.2. nios2-configure-sof

This command downloads the specified .sof and configures the FPGA according to its
contents. At a Nios II command shell prompt, type nios2-configure-sof --help
for a list of available command-line options.

You must specify the cable and device when you have more than one JTAG cable (Intel
FPGA Download Cable) connected to your computer or when you have more than one
device (FPGA) in your JTAG chain. Use the —-cable and --device options for this
purpose.

D Send Feedback Embedded Design Handbook

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.1.1.2.1. nios2-configure-sof Usage Example

To use the nios2-configure-sof command, perform the following steps:
1. Open a Nios II command shell.

2. In the command shell, change to the directory in which your .sof is located. By
default, the correct location is the top-level Intel Quartus Prime project directory.

3. In the command shell, type the following command:

nios2-configure-sof

The Nios II EDS searches the current directory for a .sof and programs it through the
specified JTAG cable.

4.1.1.3. system-console

The system-console command starts a Tcl-based command shell that supports low-
level JTAG chain verification and full system-level validation.This tool is available in the
Nios II EDS starting in version 8.0.

This application is very helpful for low-level system debug, especially when bringing
up a system. It provides a Tcl-based scripting environment and many features for
testing your system.

The following important command-line options are available for the system-console
command:

e The --script=<your script>_tcl option directs the System Console to run
your Tcl script.

e The --cli option directs the System Console to open in your existing shell, rather
than opening a new window.

e The --debug option directs the System Console to redirect additional debug
output to stderr.

e The --project-dir=<project dir> option directs the System Console to the
location of your hardware project. Ensure that you're working with the project you
intend—the JTAG chain details and other information depend on the specific
project.

e The -—jdi=<JDIl file> option specifies the name-to-node mapping for the JTAG
chain elements in your project.

For System Console usage examples and a comprehensive list of system console
commands, refer to Analyzing and Debugging Designs with the System Console in
volume 3 of the Intel Quartus Prime Handbook, on-line training is available.

Related Information
Analyzing and Debugging Designs with System Console
4.1.2. Intel Command-Line Tools for Flash Programming

This section describes the command-line tools for programming your Nios II-based
design in flash memory.

Embedded Design Handbook D Send Feedback

122

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384184752
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

When you use the Nios II EDS to program flash memory, the Nios II EDS generates a
shell script that contains the flash conversion commands and the programming
commands. You can use this script as the basis for developing your own command-line
flash programming flow.

For more details about the Nios II EDS and command-line usage of the Nios II Flash
Programmer and related tools, refer to the Nios II Flash Programmer User Guide.

Related Information

Nios II Flash Programmer User Guide

4.1.2.1. nios2-flash-programmer

Note:

This command programs common flash interface (CFI) memory. Because the Nios II
flash programmer uses the JTAG interface, the nios2-flash-programmer command
has the same options for this interface as do other commands. You can obtain
information about the command-line options for this command with the --help
option.

The nios2-flash-programmer has been replaced by the Intel Quartus Prime
Programmer flow for EPCS.

4.1.2.1.1. nios2-flash-programmer Usage Example

You can perform the following steps to program a CFI device:

1. Follow the steps in nios2-download on page 125, or use the Nios II EDS, to
program your FPGA with a design that interfaces successfully to your CFI device.

2. Type the following command to verify that your flash device is detected correctly:

nios2-flash-programmer —debug —base=<base address>

where <base address> is the base address of your flash device. The base address
of each component is displayed in Platform Designer. If the flash device is
detected, the flash memory’s CFI table contents are displayed.

3. Convert your file to flash format (.flash) using one of the utilities el f2flash,
bin2flash, or sof2flash described in elf2flash, bin2flash, and sof2flash on
page 123.

4. Type the following command to program the resulting .flash file in the CFI device:

nios2-flash-programmer —base=<base address> <file>.flashr

5. Optionally, type the following command to reset and start the processor at its
reset address:

nios2-download —g —r

4.1.2.2. elf2flash, bin2flash, and sof2flash

These three commands are often used with the nios2-flash-programmer
command. The resulting .flash file is a standard .srec file.

D Send Feedback Embedded Design Handbook

123

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_nios2_flash_programmer.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Software System Design with a Nios II Processor
EDH | 2018.11.12

The following two important command-line options are available for the elf2flash
command:

e The -boot=<boot copier file>_.srec option directs the elf2flash command
to prepend a bootloader S-record file to the converted ELF file.

e The -after=<flash file>.flash option places the generated .flash file—the
converted ELF file—immediately following the specified .flash file in flash memory.

The -after option is commonly used to place the .elf file immediately following
the .sof in an erasable, programmable, configurable serial EPCS or EPCQ flash device.

Caution: If you use an EPCS or EPCQ device, you must program the hardware image in the
device before you program the software image. If you disregard this rule your
software image will be corrupted.

Before it writes to any flash device, the Nios II flash programmer erases the entire
sector to which it expects to write. In EPCS and EPCQ devices, however, if you
generate the software image using the el f2flash -after option, the Nios II flash
programmer places the software image directly following the hardware image, not on
the next flash sector boundary. Therefore, in this case, the Nios II flash programmer
does not erase the current sector before placing the software image. However, it does
erase the current sector before placing the hardware image.

When you use the flash programmer through the Nios II SBT, you automatically create
a script that contains some of these commands. Running the flash programmer
creates a shell script (.sh) in the Debug or Release target directory of your project.
This script contains the detailed command steps you used to program your flash
memory.

Example 5. Sample Auto-Generated Script:

#1/bin/sh

#

This file was automatically generated by the Nios 11 SBT For Eclipse.

#

1t will be overwritten when the flash programmer options change.

#

cd <full path to your project>/Debug

Creating .flash file for the FPGA configuration

#"<Nios Il EDS install path>/bin/sof2flash" --offset=0x400000 \
—-—input="full path to your SOF" \
--output=""<your design>.flash"

Programming flash with the FPGA configuration

#'"<Nios 11 EDS install path>/bin/nios2-flash-programmer" --base=0x00000000 \
--sidp=0x00810828 --i1d=1436046714 \
—--timestamp=1169569475 --instance=0 '‘<your design>.flash"

#

Creating .flash file for the project

"<Nios 1l EDS install path>/bin/elf2flash” --base=0x00000000 --end=0x7Ffffff \
--reset=0x0 \
——input="<your project name>.elf" --output="ext_flash.flash" \
--boot="<path to the bootloader>/boot_loader_cfi.srec"

Programming flash with the project

"<Nios 11 EDS install path>/bin/nios2-flash-programmer"” --base=0x00000000 \
--sidp=0x00810828 --i1d=1436046714 \
--timestamp=1169569475 --instance=0 "ext_flash.flash"

Creating .flash file for the read only zip file system

"<Nios Il EDS install path>/bin/bin2flash" --base=0x00000000 --

Embedded Design Handbook D Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

location=0x100000\
—-—input="<full path to your binary file>" --output="<filename>.flash"

Programming flash with the read only zip file system

"<Nios 11 EDS install path>/bin/nios2-flash-programmer" --base=0x00000000 \
--sidp=0x00810828 --1d=1436046714 \
--timestamp=1169569475 --instance=0 "<filename>.flash"

The paths, file names, and addresses in the auto-generated script change depending
on the names and locations of the files that are converted and on the configuration of
your hardware design.

4.1.2.2.1. bin2flash Usage Example

To program an arbitrary binary file to flash memory, perform the following steps:
1. Type the following command to generate your .flash file:

bin2flash --location=<offset from the base address> \
—-input=<your file> --output=<your file>._flash

2. Type the following command to program your newly created file to flash memory:

nios2-flash-programmer -base=<base address> <your file>.flash

4.1.3. Intel Command-Line Tools for Software Development and Debug

This section describes Intel command-line tools that are useful for software
development and debugging.

4.1.3.1. nios2-terminal

This command establishes contact with stdin, stdout, and stderr in a Nios II
processor subsystem. stdin, stdout, and stderr are routed through a UART (standard
UART or JTAG UART) module within this system.

The nios2-terminal command allows you to monitor stdout, stderr, or both, and
to provide input to a Nios II processor subsystem through stdin. This command
behaves the same as the nios2-configure-sof command described in nios2-
configure-sof on page 121 with respect to JTAG cables and devices. However, because
multiple JTAG UART modules may exist in your system, the nios2-terminal
command requires explicit direction to apply to the correct JTAG UART module
instance. Specify the instance using the -instance command-line option. The first
instance in your design is 0 (-instance '"'0'"). Additional instances are numbered
incrementally, starting at 1 (-instance ''1").

4.1.3.2. nios2-download

This command parses Nios II .elf files, downloads them to a functioning Nios II
processor, and optionally runs the .elf file.

As for other commands, you can obtain command-line option information with the —-
help option. The nios2-download command has the same options as the nios2-
terminal command for dealing with multiple JTAG cables and Nios II processor
subsystems.

D Send Feedback Embedded Design Handbook

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.1.3.2.1. nios2-download Usage Example

To download (and run) a Nios II .elf program:
1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located. If you use the Nios II SBT
for development, the correct location is often the Debug or Release subdirectory
of your top-level project. If you use the Nios II SBT, the correct location is the app
folder.

3. In the command shell, type the following command to download and start your
program:

nios2-download -g <project name>.elf

4. Optionally, use the nios2-terminal command to connect to view any output or
provide any input to the running program.

4.1.3.3. nios2-stackreport

This command returns a brief report on the amount of memory still available for stack
and heap from your project's .elf file.

This command does not help you to determine the amount of stack or heap space
your code consumes during runtime, but it does tell you how much space your code
has to work in.

Example 6. nios2-stackreport Command and Response
$ nios2-stackreport <your project>.elf

Info: (<your project>._elf) 6312 KBytes program size (code + initialized data).
Info: 10070 KBytes free for stack + heap.

4.1.3.3.1. nios2-stackreport Usage Example

To use the nios2-stackreport command, perform the following steps:
1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:

nios2-stackreport <your project>.elf

4.1.3.4. validate_zip

The Nios II EDS uses this command to validate that the files you use for the Read Only
Zip Filing System are uncompressed. You can use it for the same purpose.

4.1.3.4.1. validate_zip Usage Example

To use the validate_zip command, perform the following steps:
1. Open a Nios II command shell.

2. Change to the directory in which your .zip file is located.

3. In the command shell, type the following command:

validate_zip <file>.zip

Embedded Design Handbook D Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel
EDH | 2018.11.12

If no response appears, your .zip file is not compressed.

4.1.3.5. nios2-gdb-server

This command starts a GNU Debugger (GDB) JTAG conduit that listens on a specified
TCP port for a connection from a GDB client, such as a nios2-elf-gdb client.

Occasionally, you may have to terminate a GDB server session. If you no longer have
access to the Nios II command shell session in which you started a GDB server
session, or if the offending GDB server process results from an errant Nios II SBT
debugger session, you should stop the nios2-gdb-server.exe process on Windows
platforms, or type the following command on Linux platforms:

pkill -9 -f nios2-gdb-server

4.1.3.5.1. nios2-gdb-server Usage Example

The Nios II SBT for Eclipse and most of the other available debuggers use the nios2-
gdb-server and nios2-elf-gdb commands for debugging. You should never have
to use these tools at this low level. However, in case you prefer to do so, this section
includes instructions to start a GDB debugger session using these commands, and an
example GDB debugging session.

You can perform the following steps to start a GDB debugger session:
1. Open a Nios II command shell.

2. In the command shell, type the following command to start the GDB server on the
machine that is connected through a JTAG interface to the Nios II system you wish
to debug:

nios2-gdb-server --tcpport 2342 --tcppersist

If the transfer control protocol port 2342 is already in use, use a different port.
Following is the system response:

Using cable "Intel FPGA Download Cable [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Listening on port 2342 for connection from GDB:

Now you can connect to your server (locally or remotely) and start debugging.
3. Type the following command to start a GDB client that targets your .elf file:

nios2-elf-gdb <file>._elf

Example 7. Sample Debugging Session

GNU gdb 6.1

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "'show copying"™ to see the conditions.

There is absolutely no warranty for GDB. Type '"show warranty" for details.
This GDB was configured as "--host=i1686-pc-cygwin --target=nios2-elf"...
(gdb) target remote <your_host>:2342

Remote debugging using <your_host>:2342

0S_Taskldle (p_arg=0x0) at sys/alt_irq.h:127

127 {

(gdb) load

Loading section .exceptions, size 0x1b0 Ima 0x1000020

Loading section .text, size 0x3e4f4 Ima 0x10001d0O

[;:J Send Feedback Embedded Design Handbook

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Loading section .rodata, size 0x4328 Ima 0x103e6c4
Loading section .rwdata, size 0x2020 Ima 0x10429ec
Start address 0x10001d0, load size 281068

Transfer rate: 562136 bits/sec, 510 bytes/write.
(gdb) step

(gdb) quit

Possible commands include the standard debugger commands load, step,
continue, run, and quit. Press Ctrl+c to terminate your GDB server session.

4.1.4. Intel Command-Line Nios II Software Build Tools

The Nios II software build tools are command-line utilities available from a Nios II
command shell that enable you to create application, board support package (BSP),
and library software for a particular Nios II hardware system. Use these tools to create
a portable, self-contained makefile-based project that can be easily modified later to
suit your build flow.

Unlike the Nios II SBT-based flow, proficient use of these tools requires some
expertise with the GNU make-based software build flow. Before you use these tools,
refer to the Nios II Software Build Tools and the Nios II Software Build Tools Reference
chapters of the Nios II Software Developer's Handbook.

The following sections summarize the commands available for generating a BSP for
your hardware design and for generating your application software. Many additional
options are available in the Nios II software build tools. For an overview of the tools
summarized in this section, refer to the Nios II Software Build Tools chapter of the
Nios II Software Developer's Handbook.

Related Information

e Nios II Software Build Tools

¢ Nios II Software Build Tools Reference

e Developing Nios II Software on page 137

4.1.4.1. BSP Related Tools

Use the following command-line tools to create a BSP for your hardware design:
* nios2-bsp-create-settings creates a BSP settings file.

e nios2-bsp-update-settings updates a BSP settings file.

e nios2-bsp-query-settings queries an existing BSP settings file.

* nios2-bsp-generate-files generates all the files related to a given BSP
settings file.

e nios2-bsp is a script that includes most of the functionality of the preceding
commands.

e create-this-bsp is a high-level script that creates a BSP for a specific
hardware design example.

Embedded Design Handbook D Send Feedback

128

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.1.4.2. Application Related Tools

Use the following commands to create and manipulate Nios II application and library
projects:

nios2-app-generate-makefile creates a makefile for your application.
nios2-lib-generate-makefile creates a makefile for your application library.

create-this-app is a high-level script that creates an application for a specific
hardware design example.

4.1.5. Rebuilding Software from the Command Line

Example 8.

Rebuilding software after minor source code edits does not require a GUI. You can
rebuild the project from a Nios II Command Shell, using your application's makefile.
To build or rebuild your software, perform the following steps:

1.

Open a Nios II Command Shell by executing one of the following steps, depending
on your environment:

e In the Windows operating system, on the Start menu, point to Programs >
Intel FPGA > Nios 11 EDS, and click Nios II Command Shell.

e In the Linux operating system, in a command shell, type the following
sequence of commands:

cd <Nios Il EDS install path>
-/nios2_command_shell _sh

Change to the directory in which your makefile is located. If you use the Nios II
SBT for development, the correct location is often the Debug or Release
subdirectory of your software project directory.

In the Command Shell, type one of the following commands:
make
or

make -s

The example below illustrates the output of the make command run on a sample
system.

Sample Output From make -s Command

$ make -s

Creating generated_app-mk. ..
Creating generated_all_mk...
Creating system.h...
Creating alt_sys_init.c...
Creating generated.sh. ..
Creating generated.gdb...
Creating generated.x. ..
Compiling srcl.c...
Compiling src2.c...
Compiling src3.c...
Compiling src4.c...
Compiling src5.c...

Linking project _name.elf. ..

D Send Feedback Embedded Design Handbook

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

If you add new files to your project or make significant hardware changes, recreate
the project with the original tool (the Nios II SBT). Recreating the project recreates
the makefile for the new version of your system after the modifications.

4.1.6. GNU Command-Line Tools

The Nios II GCC toolchain contains the GNU Compiler Collection, the GNU binutils, and
the newlib C library. You can follow links to detailed documentation from the Nios II
EDS documentation launchpad found in your Nios II EDS distribution. To start the
launchpad on Windows platforms, on the Start menu, click All Programs. On the All
Programs menu, on the Nios II EDS <version> submenu, click Literature. On Linux
platforms, open <Nios Il EDS install dir>/documents/index.htmin a web
browser. In addition, more information about the GNU GCC toolchain is available on
the online.

4.1.6.1. nios2-elf-addr2line

This command returns a source code line number for a specific memory address. The
command is similar to but more specific than the nios2-elf-objdump command
described in nios2-elf-objdump on page 136 and the nios2-elf-nm command
described in nios2-elf-nm on page 135.

Use the

nios2-elf-addr2line

command to help validate code that should be stored at specific memory addresses.
The example below illustrates its usage and results:

Example 9. nios2-elf-addr2line Utility Usage Example
$ nios2-elf-addr2line --exe=<your project>.elf 0x1000020

<Nios Il EDS install path>/components/altera_nios2/HAL/src/
alt_exception_entry.S:99

4.1.6.1.1. nios2-elf-addr2line Usage Example

To use the nios2-elf-addr2line command, perform the following steps:
1. Open a Nios II command shell.
2. In the command shell, type the following command:

nios2-elf-addr2line <your project>_elf <your_address_0>,\
<your_address_1>,..., <your_address_n>

If your project file contains source code at this address, its line number appears.
4.1.6.2. nios2-elf-gdb
This command is a GDB client that provides a simple shell interface, with built-in

commands and scripting capability. A typical use of this command is illustrated in the
section nios2-gdb-server on page 127.

4.1.6.3. nios2-elf-readelf

Use this command to parse information from your project's .elf file. The command is
useful when used with grep, sed, or awk to extract specific information from
your .elf file.

Embedded Design Handbook D Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.1.6.3.1. nios2-elf-readelf Usage Example

To display information about all instances of a specific function name in your .elf file,
perform the following steps:

1. Open a Nios II command shell.
2. In the command shell, type the following command:

nios2-elf-readelf -symbols <project>.elf | grep <function name>

Example 10. Search for the http_read_line Function Using nios2-elf-readelf

$ nios2-elf-readelf.exe —s my_file.elf | grep http_read_line
1106: 01001168 160 FUNC GLOBAL DEFAULT 3 http_read_line

Table 15. Interpretation of nios2-elf-readelf Command Response
Value Description
1106 Symbol instance number
0100168 Memory address, in hexadecimal format
160 Size of this symbol, in bytes
FUNC Type of this symbol (function)
GLOBAL Binding (values: GLOBAL, LOCAL, and WEAK)
DEFAULT Visibility (values: DEFAULT, INTERNAL, HIDDEN, and PROTECTED)
3 Index
http_read_line Symbol name

You can obtain further information about the ELF file format online. Each of the ELF
utilities has its own main page.

4.1.6.4. nios2-elf-ar

This command generates an archive (.a) file containing a library of object (.0) files.
The Nios II SBT uses this command to archive the System Library project.

4.1.6.4.1. nios2-elf-ar Usage Example
To archive your object files using the nios2-elf-ar command, perform the following
steps:
1. Open a Nios II command shell.
2. Change to the directory in which your object files are located.
3. In the command shell, type the following command:
nios2-elf-ar g <archive_name>.a <object files>
The example shows how to create an archive of all of the object files in your current
directory. In the example, the g option directs the command to append each object file
it finds to the end of the archive. After the archive file is created, it can be distributed

for others to use, and included as an argument in linker commands, in place of a long
object file list.

D Send Feedback Embedded Design Handbook

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Example 11. nios2-elf-ar Command Response

$ nios2-elf-ar gq <archive_name>.a *.o
nios2-elf-ar: creating <archive_name>.a

4.1.6.5. Linker

Use the nios2-elf-g++ command to link your object files and archives into the final
executable format, ELF.

4.1.6.5.1. Linker Usage Example

To link your object files and archives into a .elf file, open a Nios II command shell and
call nios2-el f-g++ with appropriate arguments. The following example command
line calls the linker:

nios2-elf-g++ -T"<linker script>" -msys-crtO="<crt0.o file>" \
-msys-lib=<system library> -L "<The path where your libraries reside>" \
-DALT_DEBUG -00 -g -Wall -mhw-mul -mhw-mulx -mno-hw-div \

-0 <your project>.elf <object files> -Im

The exact linker command line to link your executable may differ. When you build a
project in the Nios II SBT, you can see the command line used to link your application.
To turn on this option in the Nios II SBT, on the Window menu, click Preferences,
select the Nios II tab, and enable Show command lines when running make. You
can also force the command lines to display by running make without the -s option
from a Nios II command shell.

Note: Intel recommends that you not use the native linker nios2-elf-1d to link your
programs. For the Nios II processor, as for all softcore processors, the linking flow is
complex. The g++ (nios2-elf-g++) command options simplify this flow. Most of
the options are specified by the -m command-line option, but the options available
depend on the processor choices you make.

4.1.6.6. nios2-elf-size
This command displays the total size of your program and its basic code sections.
4.1.6.6.1. nios2-elf-size Usage Example

To display the size information for your program, perform the following steps:
1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:

nios2-elf-size <project>.elf

Example 12. nios2-elf-size Command Usage

$ nios2-elf-size my_project.elf
text data bss dec hex Filename
272904 8224 6183420 6464548 62a424 my project.elf

4.1.6.7. nios2-elf-strings

This command displays all the strings in a .elf file.

Embedded Design Handbook D Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.1.6.7.1. nios2-elf-strings Usage Example

The command has a single required argument:

nios2-elf-strings <project>._elf

4.1.6.8. nios2-elf-strip

This command strips all symbols from object files. All object files are supported,
including ELF files, object files (.0) and archive files (.a).

4.1.6.8.1. nios2-elf-strip Usage Example
nios2-elf-strip <options> <project>_.elf

4.1.6.8.2. nios2-elf-strip Usage Notes
The nios2-elf-strip command decreases the size of the .elf file.
This command is useful only if the Nios II processor is running an operating system
that supports ELF natively.If ELF is the native executable format, the entire .elf file is
stored in memory, and the size savings matter.If not, the file is parsed and the

instructions and data stored directly in memory, without the symbols in any case.

Linux is one operating system that supports ELF natively; uClinux is another. uClinux
uses the flat (FLT) executable format, which is translated directly from the ELF.

4.1.6.9. nios2-elf-gdbtui

This command starts a GDB session in which a terminal displays source code next to
the typical GDB console.

The syntax for the nios2-elf-gdbtul command is identical to that for the nios2-
elf-gdb command described in nios2-elf-gdb on page 130.

Two additional GDB user interfaces are available for use with the Nios II GDB

Debugger. CGDB, a cursor-based GDB UI, is available at sourceforge.net. The Data
Display Debugger (DDD) is highly recommended.

4.1.6.10. nios2-elf-gprof

This command allows you to profile your Nios II system.

For details about this command and the Nios II EDS-based results GUI, refer to AN
391: Profiling Nios II Systems.

Related Information
AN391: Profiling Nios II Systems

4.1.6.11. nios2-elf-gcc and g++

These commands run the GNU C and C++ compiler, respectively, for the Nios II
processor.

D Send Feedback Embedded Design Handbook

133

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an391.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

4. Software System Design with a Nios II Processor
EDH | 2018.11.12

4.1.6.11.1. Compilation Command Usage Example

The following simple example shows a command line that runs the GNU C or C++
compiler:

nios2-elf-gcc(g++) <options> -0 <object files> <C files>

4.1.6.11.2. More Complex Compilation Example

The example below is a Nios II EDS-generated command line that compiles C code in
multiple files in many directories.

Example 13. Example nios2-elf-gcc Command Line

nios2-elf-gcc -xc -MD -c \

-DSYSTEM_BUS_WIDTH=32 -DALT_NO_C_PLUS_PLUS -DALT_NO_INSTRUCTION_EMULATION \
-DALT_USE_SMALL_DRIVERS -DALT_USE_DIRECT_DRIVERS -DALT_PROVIDE_GMON \

-1.. -1/cygdrive/c/Work/Projects/demo_reg32/Designs/std_2s60_ES/software/\
reg_32_example_0_syslib/Release/system_description \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/HAL/inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag_uart/HAL/
inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag uart/inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_pio/inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/HAL/
inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/HAL/inc \
-1/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/inc \
-1/cygdrive/c/altera/70_b31l/nios2eds/components/altera_nios2/HAL/inc \
-1/cygdrive/c/altera/70_b31/nios2eds/components/altera_hal/HAL/inc \
-DALT_SINGLE_THREADED -D__hal__ -pipe -DALT_RELEASE -02 -g -Wall\

-mhw-mul -mhw-mulx -mno-hw-div -0 obj/reg_32_buttons.o ../reg_32_buttons.c

4.1.6.12. nios2-elf-c++filt

This command demangles C++ mangled names. C++ allows multiple functions to
have the same name if their parameter lists differ; to keep track of each unique
function, the compiler mangles, or decorates, function names. Each compiler mangles
functions in a particular way.

For a full explanation, including more details about how the different compilers mangle
C++ function names, refer to standard reference sources for the C++ language
compilers.

4.1.6.12.1. nios2-elf-c++filt Usage Example

To display the original, demangled function name that corresponds to a particular
symbol name, you can type the following command:

nios2-elf-c++filt -n <symbol name>

For example,

nios2-elf-c++filt -n _Z11my functionv

Embedded Design Handbook D Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.1.6.12.2. More Complex nios2-elf-c++filt Example

The following example command line causes the display of all demangled function
names in an entire file:

nios2-elf-strings <file>_elf | grep ~_Z | nios2-elf-c++filt -n
In this example, the nios2-elf-strings operation outputs all strings in the .elf
file. This output is piped to a grep operation that identifies all strings beginning with
_Z. (GCC always prepends mangled function names with _Z). The output of the grep

command is piped to a nios2-elf-c++filt command. The result is a list of all
demangled functions in a GCC C++ .elf file.

4.1.6.13. nios2-elf-nm

This command list the symbols in a .elf file.

4.1.6.13.1. nios2-elf-nm Usage Example

The following two simple examples illustrate the use of the nios2-elf-nm command:
e nios2-elf-nm <project>.elf
e nios2-elf-nm <project>.elf | sort -n

4.1.6.13.2. More Complex nios2-elf-nm Example

To generate a list of symbols from your .elf file in ascending address order, use the
following command:

nios2-elf-nm <project>.elf | sort -n > <project>.elf.nm

The <project>.elf.nm file contains all of the symbols in your executable file, listed in
ascending address order. In this example, the nios2-elf-nm command creates the
symbol list. In this text list, each symbol’s address is the first field in a new line. The -
n option for the sort command specifies that the symbols be sorted by address in
numerical order instead of the default alphabetical order.

4.1.6.14. nios2-elf-objcopy

Use this command to copy from one binary object format to another, optionally
changing the binary data in the process.

Though typical usage converts from or to ELF files, the objcopy command is not
restricted to conversions from or to ELF files. You can use this command to convert
from, and to, any of the formats listed in the table below.

Table 16. -objcopy Binary Formats
Command (...-objcopy) Comments
elf32-littlenios2, elf32-little Header little endian, data little endian, the default and most
commonly used format
elf32-bignios2, elf32-big Header big endian, data big endian
srec S-Record (SREC) output format
continued...
D Send Feedback Embedded Design Handbook

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Command (...-objcopy) Comments
symbolsrec SREC format with all symbols listed in the file header,
preceding the SREC data
tekhex Tektronix hexadecimal (TekHex) format
binary Raw binary format Useful for creating binary images for

storage in flash on your embedded system

ihex Intel hexadecimal (ihex) format

You can obtain information about the TekHex, ihex, and other text-based binary
representation file formats online. As of the initial publication of this handbook, you
can refer to the sbprojects.com knowledge-base entry on file formats.

4.1.6.14.1. nios2-elf-objcopy Usage Example
To create an SREC file from an ELF file, use the following command:

nios2-elf-objcopy -0 srec <project>.elf <project>.srec

ELF is the assumed binary format if none is listed. For information about how to
specify a different binary format, in a Nios II command shell, type the following
command:

nios2-elf-objcopy --help

4.1.6.15. nios2-elf-objdump
Use this command to display information about the object file, usually an ELF file.

The nios2-elf-objdump command supports all of the binary formats that the
nios2- elf-objcopy command supports, but ELF is the only format that produces
useful output for all command-line options.

4.1.6.15.1. nios2-elf-objdump Usage Description

The Nios II EDS uses the following command line to generate object dump files:

nios2-elf-objdump -D -S -x <project>.elf > <project>.elf.objdump

4.1.6.16. nios2-elf-ranlib

Calling nios2-elf-ranlib is equivalent to calling nios2-elf-ar with the -s
option (nios2-elf-ar -s).

For further information about this command, refer to nios2-elf-ar on page 131 or type
nios2-elf-ar --help in a Nios II command shell.

Embedded Design Handbook D Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.2. Developing Nios II Software

This section provides in-depth information about software development for the Intel
Nios II processor. It complements the Nios II Gen2 Software Developer’s Handbook by
providing the following additional information:

¢ Recommended design practices—Best practice information for Nios II software
design, development, and deployment.

e Implementation information—Additional in-depth information about the
implementation of application programming interfaces (APIs) and source code for
each topic, if available.

e Pointers to topics—Informative background and resource information for each
topic, if available.

Before reading this section, you should be familiar with the process of creating a
simple board support package (BSP) and an application project using the Nios II
Software Build Tools development flow. The Software Build Tools flow is supported by
Nios II Software Build Tools for Eclipse™ as well as the Nios II Command Shell. This
section focuses on the Nios II Software Build Tools for Eclipse, but most information is
also applicable to project development in the Command Shell.

The following resources provide training on the Nios II SW Build Tools development
flow:

e Online training demonstrations located on the Embedded Software Designer
Curriculum page of the Intel website.

e Documentation located on the Documentation: Nios II Processor page of the Intel
website, especially the "Getting Started from the Command Line" and "Getting
Started with the Graphical User Interface" chapters of the Nios IT Gen2 Software
Developer's Handbook.

e Example designs provided with the Nios II Embedded Design Suite (EDS). The
online training demonstrations describe these software design examples, which
you can use as-is or as the basis for your own more complex designs.

This section is structured according to the Nios II software development process. Each
section describes Intel’s recommended design practices to accomplish a specific task.

When you install the Nios II EDS, it is installed in the same directory with the Intel
Quartus Prime software. For example, if the Intel Quartus Prime software is installed
on the Windows operating system, and the root directory of the Intel Quartus Prime
software is c:\altera\<version>\quartus, then the root directory of the Nios II
EDS is c:\altera\<version>\nios2eds. For simplicity, this handbook refers to
the nios2eds directory as:

<Nios Il EDS install dir>

Related Information

e Nios II Gen2 Software Developer's Handbook
e Embedded SW Designer Curriculum

e Documentation: Nios II Processor

D Send Feedback Embedded Design Handbook

137

https://www.altera.com/documentation/lro1419794938488.html
https://www.altera.com/support/training/curricula.html#embedded-hardware
https://www.altera.com/products/processors/support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.2.1. Software Development Cycle

The Nios II EDS includes a complete set of C/C++ software development tools for the
Nios II processor. In addition, a set of third-party embedded software tools is provided
with the Nios II EDS. This set includes the MicroC/0S-II real-time operating system
and the NicheStack TCP/IP networking stack. This section focuses on the use of the
Intel-created tools for Nios II software generation. It also includes some discussion of
third-party tools.

The Nios II EDS is a collection of software generation, management, and deployment
tools for the Nios II processor. The toolchain includes tools that perform low-level
tasks and tools that perform higher-level tasks using the lower-level tools. For more
information on Linux, refer to rocketboards.org.

Related Information

Intel System on a Programmable Chip (Platform Designer) Solutions on page 20

Nios II Software Development Process on page 140

rocketboards.org

4.2.1.1. Nios II Software Design

This section contains brief descriptions of the software design tools provided by the
Nios II EDS, including the Nios II SBT development flow.

4.2.1.1.1. Nios II Tools Overview

The Nios II EDS provides the following tools for software development:
e GNU toolchain: GCC-based compiler with the GNU binary utilities

Note: For an overview of these and other Intel-provided utilities, refer to the "Nios
II Command-Line Tools" chapter of this handbook.

e Nios II processor-specific port of the newlib C library
e Hardware abstraction layer (HAL)

The HAL provides a simple device driver interface for programs to communicate
with the underlying hardware. It provides many useful features such as a POSIX-
like application program interface (API) and a virtual-device file system.

For more information about the Intel HAL, refer to The Hardware Abstraction Layer
section of the Nios II Gen2 Software Developer’s Handbook.

e Nios II SBT

The Nios II SBT development flow is a scriptable development flow. It includes the
following user interfaces:

— The Nios II SBT for Eclipse—a GUI that supports creating, modifying, building,
running, and debugging Nios II programs. It is based on the Eclipse open
development platform and Eclipse C/C++ development toolkit (CDT) plug-ins.

— The Nios II SBT command-line interface—From this interface, you can execute
SBT command utilities, and use scripts (or other tools) to combine the
command utilities in many useful ways.

For more information about the Nios II SBT flow, refer to the Developing Nios
II Software chapter of this handbook.

Embedded Design Handbook D Send Feedback

138

http://rocketboards.org/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tEI)

EDH | 2018.11.12

Figure 32. Nios II Software Development Flows: Developing Software

Intel Hardware
Abstraction
Layerand
Peripheral
Drivers

User (/C++
Application
Code and
Custom

Intel recommends that you view and begin your design with one of the available
software examples that are installed with the Nios II EDS. From simple “Hello, World”
programs to networking and RTOS-based software, these examples provide good
reference points and starting points for your own software development projects. The
Hello World Small example program illustrates how to reduce your code size without
losing all of the conveniences of the HAL.

Note: Intel recommends that you use an Intel development kit or custom prototype board
for software development and debugging. Many peripheral and system-level features
are available only when your software runs on an actual board.

Related Information

e Nios II Command-Line Tools on page 120

e Overview of the Hardware Abstraction Layer
e Developing Nios II Software on page 137

4.2.1.1.2. Nios II Software Build Tools

The Nios II SBT flow uses the Software Build Tools to provide a flexible, portable, and
scriptable software build environment. Intel recommends that you use this flow. The
SBT includes a command-line environment and fits easily in your preferred software or
system development environment.

D Send Feedback Embedded Design Handbook

139

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946747618
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

The SBT flow requires that you have a .sopcinfo file for your system. The flow
includes the following steps to create software for your system:

1. Create a board support package (BSP) for your system. The BSP is a layer of
software that interacts with your development system. It is a makefile-based
project.

2. Create your application software:
a. Write your code.
b. Generate a makefile-based project that contains your code.

3. Iterate through one or both of these steps until your design is complete.

For more information, refer to the software example designs that are shipped with
every release of the Nios II EDS. For more information about these examples, refer to
one of the following sections:

e “Getting Started” in the Getting Started with the Graphical User Interface chapter
of the Nios II Gen2 Software Developer’s Handbook.

¢ “Nios II Example Design Scripts” in the Nios II Software Build Tools Reference
chapter of the Nios II Gen2 Software Developer’s Handbook.

Related Information

e Getting Started with the Graphical User Interface

e Nios II Software Build Tools Reference

4.2.1.2. Nios II Software Development Process

This section provides an overview of the Nios II software development process and
introduces terminology. The rest of the chapter elaborates the description in this
section.

The Nios II software generation process includes the following stages and main
hardware configuration tools:
1. Hardware configuration
e Platform Designer
e Intel Quartus Prime software
2. Software project management
e BSP configuration
e Application project configuration
e Editing and building the software project
¢ Running, debugging, and communicating with the target
e Ensuring hardware and software coherency
e Project management
3. Software project development

Embedded Design Handbook D Send Feedback

140

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946583818
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Note:

e Developing with the Hardware Abstraction Layer (HAL)
e Programming the Nios II processor to access memory
e Writing exception handlers
e Optimizing the application for performance and size
e Real-time operating system (RTOS) support
4. Application deployment
e Linking (run-time memory)
e Boot loading the system application
e Programming flash memory

In this list of stages and tools, the subtopics under the topics Software project
management, Software project development, and Application deployment correspond
closely to sections in the chapter.

You create the hardware for the system using the Intel Quartus Prime and Platform
Designer software. The main output produced by generating the hardware for the
system is the SRAM Object File (.sof), which is the hardware image of the system,
and the Platform Designer Information File (.sopcinfo), which describes the hardware
components and connections.

The key file required to generate the application software is the .sopcinfo file.

The software generation tools use the .sopcinfo file to create a BSP project. The BSP
project is a collection of C source, header and initialization files, and a makefile for
building a custom library for the hardware in the system. This custom library is the
BSP library file (.a). The BSP library file is linked with your application project to
create an executable binary file for your system, called an application image. The
combination of the BSP project and your application project is called the software
project.

The application project is your application C source and header files and a makefile
that you can generate by running Intel-provided tools. You can edit these files and
compile and link them with the BSP library file using the makefile. Your application
sources can reference all resources provided by the BSP library file. The BSP library
file contains services provided by the HAL, which your application sources can
reference. After you build your application image, you can download it to the target
system, and communicate with it through a terminal application.

You can access the makefile in the Eclipse Project Explorer view after you have
created your project in the Nios II Software Build Tools for Eclipse framework.

The software project is flexible: you can regenerate it if the system hardware changes,
or modify it to add or remove functionality, or tune it for your particular system. You
can also modify the BSP library file to include additional Intel-supplied software
packages, such as the read-only zip file system or TCP/IP networking stack (the
NicheStack TCP/IP Stack). Both the BSP library file and the application project can be
configured to build with different parameters, such as compiler optimizations and
linker settings.

If you change the hardware system, you must recreate, update or regenerate the BSP
project to keep the library header files up-to-date.

D Send Feedback Embedded Design Handbook

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

For information about how to keep your BSP up-to-date with your hardware, refer to
“Revising Your BSP” in the Nios II Software Build Tools chapter of the Nios II Gen2
Software Developer's Handbook.

4.2.2. Software Project Mechanics

This section describes the recommended ways to edit, build, download, run, and

debug your software application, primarily using the Nios II Software Build Tools for
Eclipse.

The Nios II Software Build Tools flow is the recommended design flow for hardware
designs that contain a Nios II processor. This section describes how to configure BSP
and application projects, and the process of developing a software project for a
system that contains a Nios II processor, including ensuring coherency between the
software and hardware designs.

4.2.2.1. Software Tools Background

The Nios II EDS provides a sophisticated set of software project generation tools to
build your application image. The Nios II Software Build Tools flow is available for
project creation. The Nios II Software Build Tools flow includes the Software Build
Tools command-line interface and the Nios II Software Build Tools for Eclipse.

The Nios II Software Build Tools for Eclipse is the recommended flow. The Nios II
Software Build Tools for Eclipse does not support the following Nios II Integrated
Development Environment (IDE) feature:

e stdio output to an RS-232 UART cannot display on the System Console. To
display stdio output on the System Console, configure your BSP to use a JTAG
UART peripheral for stdout, using the hal . stdout BSP setting. If no JTAG UART
is available in your hardware system, you can run nios2-terminal in a separate
Nios II Command Shell to capture stdio output.

Intel recommends that you use the Nios II Software Build Tools for Eclipse to create
new software projects. The Nios II Software Build Tools are the basis for Intel’s future
development.

A graphical user interface for configuring BSP libraries, called the Nios II BSP Editor, is
also available. The BSP Editor is integrated with the Nios II Software Build Tools for
Eclipse, and can also be used independently.

Embedded Design Handbook D Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.2.2.2. Development Flow Guidelines

The Nios II Software Build Tools flow provides many services and functions for your
use. Until you become familiar with these services and functions, Intel recommends
that you adhere to the following guidelines to simplify your development effort:

e Begin with a known hardware design—The All Design Examples page of the
Intel website includes a set of known working designs, called hardware example
designs, which are excellent starting points for your own design. In addition, the
Nios II Hardware Development Tutorial walks through some example designs.

e Begin with a known software example design—The Nios II EDS includes a set
of preconfigured application projects for you to use as the starting point of your
own application. Use one of these designs and parameterize it to suit your
application goals.

¢ Follow pointers to documentation—Many of the application and BSP project
source files include inline comments that provide additional information.

e Make incremental changes—Regardless of your end-application goals, develop
your software application by making incremental, testable changes, to
compartmentalize your software development process. Intel recommends that you
use a version control system to maintain distinct versions of your source files as
you develop your project.

Related Information
e All Design Examples

e Nios II Hardware Development Tutorial

4.2.2.3. Nios II Software Build Tools

The Nios II Software Build Tools are a collection of command-line utilities and scripts.
These tools allow you to build a BSP project and an application project to create an
application image. The BSP project is a parameterizable library, customized for the
hardware capabilities and peripherals in your system. When you create a BSP library
file from the BSP project, you create it with a specific set of parameter values. The
application project consists of your application source files and the application
makefile. The source files can reference services provided by the BSP library file.

For the full list of utilities and scripts in the Nios II Software Build Tools flow, refer to
“Intel-Provided Embedded Development Tools” in the Nios II Software Build Tools
chapter of the Nios II Gen2 Software Developer's Handbook.

Related Information

Nios II Software Build Tools

4.2.2.3.1. The Nios II Software Build Tools for Eclipse

The Nios II Software Build Tools for Eclipse provide a consistent development platform
that works for all Nios II processor systems. You can accomplish most software
development tasks in the Nios II Software Build Tools for Eclipse, including creating,
editing, building, running, debugging, and profiling programs.

The Nios II Software Build Tools for Eclipse are based on the popular Eclipse
framework and the Eclipse C/C++ development toolkit (CDT) plug-ins. Simply put, the
Nios II Software Build Tools for Eclipse provides a GUI that runs the Nios II Software
Build Tools utilities and scripts behind the scenes.

D Send Feedback Embedded Design Handbook

143

https://www.altera.com/support/support-resources/design-examples/all-design-examples.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_hardware_tutorial.pdf
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

For detailed information about the Nios II Software Build Tools for Eclipse, refer to the
Getting Started with the Graphical User Interface chapter of the Nios II Gen2 Software
Developer's Handbook. For details about Eclipse, visit the Eclipse Foundation website.

Related Information
Getting Started with the Graphical User Interface

4.2.2.3.2. The Nios II Software Build Tools Command Line

In the Nios II Software Build Tools command line development flow, you create,
modify, build, and run Nios II programs with Nios II Software Build Tools commands
typed at a command line or embedded in a script.

To debug your program, import your Software Build Tools projects to Eclipse. You can
further edit, rebuild, run, and debug your imported project in Eclipse.

For further information about the Nios II Software Build Tools and the Nios II
Command Shell, refer to the "Getting Started from the Command Line" chapter of the
Nios II Gen2 Software Developer's Handbook.

Related Information

Getting Started from the Command Line

4.2.2.4. Configuring BSP and Application Projects

This section describes some methods for configuring the BSP and application projects
that comprise your software application, while encouraging you to begin your software
development with a software example design.

For information about using version control, copying, moving and renaming a BSP
project, and transferring a BSP project to another person, refer to *Common BSP
Tasks” in the Nios II Software Build Tools chapter of the Nios Gen2 II Software
Developer's Handbook.

Related Information

Nios II Software Build Tools
4.2.2.4.1. Software Example Designs

The best way to become acquainted with the Nios II Software Build Tools flow and
begin developing software for the Nios II processor is to use one of the pre-existing
software example designs that are provided with the Nios II EDS. The software
example designs are preconfigured software applications that you can use as the basis
for your own software development. The software examples can be found in the Nios
II installation directory.

For more information about the software example designs provided in the Nios II EDS,
refer to “"Nios II Embedded Design Examples” in the Overview of Nios II Embedded
Development chapter of the Nios II Gen2 Software Developer’s Handbook.

To use a software example design, follow these steps:

1. Set up a working directory that contains your system hardware, including the
system .sopcinfo file.

Embedded Design Handbook D Send Feedback

144

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946650595
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

7.
8.
9.

Note: Ensure that you have compiled the system hardware with the Intel Quartus
Prime software to create up-to-date .sof and .sopcinfo files.

Start the Nios II Software Build Tools for Eclipse as follows:

e In the Windows operating system, on the Start menu, point to Programs >
Nios II EDS <version>, and click Nios II <version> Software Build Tools
for Eclipse.

e In the Linux operating system, in a command shell, type eclipse-nios2.

Right-click anywhere in the Project Explorer view, point to New and click Nios
II Application and BSP from Template.

Select an appropriate software example from the Templates list.

Note: You must ensure that your system hardware satisfies the requirements for
the software example design listed under Template description. If you
use an Intel Nios II development kit, the software example designs supplied
with the kit are guaranteed to work with the hardware examples included
with the kit.

Next to Information File Name, browse to your working directory and select
the .sopcinfo file associated with your system.

In a multiprocessor design, you must select the processor on which to run the
software project.

Note: If your design contains a single Nios II processor, the processor name is
automatically filled in.

Fill in the project name.
Click Next.

Select Create a new BSP project based on the application project template.

10. Click Finish. The Nios II Software Build Tools generate an Intel HAL BSP for you.

If you do not want the Software Build Tools for Eclipse to automatically create a BSP
for you, at Step 9, select Select an existing BSP project from your workspace. You
then have several options:

You can import a pre-existing BSP by clicking Import.

You can create a HAL or MicroC/OS-II BSP as follows:

— Click Create. The Nios II Board Support Package dialog box appears.
— Next to Operating System, select either HAL or Micrium MicroC/0OS-II.

You can select the operating system only at the time you create the BSP. To
change operating systems, you must create a new BSP.

Related Information

Overview of Nios II Embedded Development

D Send Feedback Embedded Design Handbook

145

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946568604
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
< l n tel) 4. Software System Design with a Nios II Processor

4.2.2.4.2. Selecting the Operating System (HAL versus MicroC/0S-II RTOS)

You have a choice of the following run-time environments (operating systems) to
incorporate in your BSP library file:

e The Nios II HAL—A lightweight, POSIX-like, single-threaded library, sufficient for
many applications.

e The MicroC/0OS-II RTOS—A real-time, multi-threaded environment. The Nios II
implementation of MicroC/0S-II is based on the HAL, and includes all HAL
services.

After you select HAL or MicroC/0S-II, you cannot change the operating system for this
BSP project.

4.2.2.4.3. Configuring the BSP Project

The BSP project is a configurable library. You can configure your BSP project to
incorporate your optimization preferences—size, speed, or other features—in the
custom library you create. This custom library is the BSP library file (.a) that is used
by the application project.

Creating the BSP project populates the target directory with the BSP library file source
and build file scripts. Some of these files are copied from other directories and are not
overwritten when you recreate the BSP project. Others are generated when you create
the BSP project.

The most basic tool for configuring BSPs is the BSP setting. Throughout this section,
many of the project modifications you can make are based on BSP settings. In each
case, this section presents the names of the relevant settings, and explains how to
select the correct setting value. You can control the value of BSP settings several
ways: on the command line, with a Tcl script, by directly adjusting the settings with
the BSP Editor, or by importing a Tcl script to the BSP Editor.

Another powerful tool for configuring a BSP is the software package. Software
packages add complex capabilities to your BSP. As when you work with BSP settings,
you can add and remove software packages on the command line, with a Tcl script,
directly with the BSP Editor, or by importing a Tcl script to the BSP Editor.

Intel recommends that you use the Nios II BSP Editor to configure your BSP project.
To start the Nios II BSP Editor from the Nios II Software Build Tools for Eclipse, right-
click an existing BSP, point to Nios II, and click BSP Editor.

For detailed information about how to manipulate BSP settings and add and remove
software packages with the BSP Editor, refer to “"Using the BSP Editor” in the Getting
Started with the Graphical User Interface chapter of the Nios II Gen2 Software
Developer's Handbook. This chapter also discusses how to use Tcl scripts in the BSP
Editor.

For information about manipulating BSP settings and controlling software packages at
the command line, refer to “Nios II Software Build Tools Utilities” in the Nios II
Software Build Tools Reference chapter of the Nios II Gen2 Software Developer's
Handbook.

For details about available BSP settings, refer to "Settings Managed by the Software
Build Tools” in the Nios II Software Build Tools Reference chapter of the Nios II Gen2
Software Developer's Handbook.

Embedded Design Handbook D Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Software System Design with a Nios II Processor
EDH | 2018.11.12

Note:

For a discussion of Tcl scripting, refer to “Software Build Tools Tcl Commands” in the
Nios II Software Build Tools Reference chapter of the Nios II Gen2 Software
Developer's Handbook.

Do not edit BSP files, because they are overwritten by the Software Build Tools the
next time the BSP is generated.

Related Information

e Nios II Software Build Tools

e Getting Started with the Graphical User Interface

e Nios II Software Build Tools Reference

MicroC/0OS-II RTOS Configuration Tips

D Send Feedback

(intel“)

If you use the MicroC/0OS-II RTOS environment, be aware of the following properties of

this environment:

e MicroC/0S-II BSP settings—The MicroC/0S-II RTOS supports many
configuration options. All of these options can be enabled and disabled with BSP

settings. Some of the options are enabled by default. A comprehensive list of BSP

settings for MicroC/OS-II is shown in the Settings tab of the Nios II BSP Editor.

Note: The MicroC/0OS-1I BSP settings are also described in “Settings Managed by

the Software Build Tools” in the Nios II Software Build Tools Reference
chapter of the Nios II Gen2 Software Developer's Handbook.

e MicroC/0OS-II setting modification—Modifying the MicroC/0S-II options modifies
the system.h file, which is used to compile the BSP library file.

e MicroC/0S-II initialization—The core MicroC/0OS-II RTOS is initialized during the
execution of the C run-time initialization (crt0) code block. After the crt0 code

block runs, the MicroC/OS-II RTOS resources are available for your application to

use. For more information, refer to “crt0 Initialization”.

You can configure MicroC/0S-II with the BSP Editor. Figure 2-1 shows how you enable

the MicroC/0S-II timer and queue code. The figure below shows how you specify a
maximum of four timers for use with MicroC/OS-II.

Embedded Design Handbook

147

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 4. Software System Design with a Nios II Processor
EDH | 2018.11.12

Figure 33. Enabling MicroC/0S-1I Timers and Queues in BSP Editor

« Nios Il BSP Editor - C:\altera\91\nios2eds\examples\verilog\niosll_stratixll_2s60_... Ekfg

Fle Edt Tools Help
I Settings | Software Packages | Drivers | Linker Script | Target Generation Files |
SOPC Information file: .. \..\NiosII_stratixIl_2s60_RoHS_full_featured_sopc.sopcinfo
CPU name: cpu
Operating system: Micrium MiroC/OS-T
BSP target directory: |C:\altera\91\nios2eds \examples\veriog \niosll_stratixII_2560_RoHS\ful_featured\software \ExampleuCOSBSP\ Ll
= Settings ucosii A
&-Common
&-Advanced os_flag_en
#-hal
= os_lowest_prio |20
os_flag_en
—os_lowest_prio 0s_max_tasks ‘10
05_max_tasks
os_mbox_en 0s_mbox_en
05_mem_en os_mem_en
os_mutex_en
05_g_en 0s_mutex_en
+-0s_sem_en
- 0s_thread_safe_newib 0s_q_en
os_tmr_en
- event_flag o0s_sem_en
- maibox
& memory os_thread_safe_newlib
[miscellaneous
B-mutex o0s_tmr_en
¥ -queue
#-semaphore ucosii.event_flag
- task
E-time os_flag_accept_en
E r
W-thoe o0s_flag_del_en i
Informaten | problems | Processing |
e ——— o —————— T e
(@) searching for 55 companents with category: software_package_slement o]
(@ Finished searching for BSP components, Total time taken = 2 seconds
(@ Searching for BSP companents with category: generator_slement
(@ Finished searching for BSP components, Total time taken = 2 seconds
(@ Loading drivers from ensemble repart.
@ Finished loading drivers from ensemble report,
(@ Finished loading SOPC Builder system info fie "..\.. \NiosII_stratixII_2s60_RoHS_full_featured_sopc.sopcinfo [relative to settings fie]”
@ Setting "ucosii.os_g_en" set to “true”. -

The MicroC/0S-II configuration script in the example below performs the same
MicroC/0S-II configuration as in the figure above and Figure 34 on page 149: it
enables the timer and queue code, and specifies a maximum of four timers.

Embedded Design Handbook D Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Software System Design with a Nios II Processor
EDH | 2018.11.12

Figure 34. Configuring MicroC/0S-1I for Four Timers in BSP Editor

= Nios Il BSP Editor - C:\altera\91\nios2eds\examples\verilog\niosll_stratixll_2s60_.

Fie Edit Tooks Help

Settings | Software Packages | Drivers | Litker Seipt | Target Generation Fiks |

SOPC Information file: ..\..\NiosII_stratbII_2s60 RoHS_full featursd_sopc.soodinfo
CPUname: cpu
Onerating system: Micrium Micro/0S 11

BSP target directory: | C:\altera\31\nios Jeds\examplesveriloginiosll_stratII_2s60_RoHS\ful_featuredisoftware\ExampleuCCSBEPY

=-Settngs ucosi.timar
[&-Corrmon

E-Advanced 0s_task_tmr_prio ‘ 2

Fal
AT 0s_task_trrr_sti_size 512

aiRsGn
o5_lpwest_prio 03_tmr_cfg_max ‘ 4

~05_max_tasks 05_tmr_clg_name_size ‘15

--05_mbox_en

0s_mer_en os_tmr_cfg_ticks_per_sec ‘ 10

- 05_Mutex_en

na-pen 0s_tmr_cfg_wheel_size ‘ 2
05_sem_en
o0s_thread_safa_newlh
--0§_tmr_en
event_flag
~maibox
-memory
-miscellaneous
mutex
cueua
-serraphore
-task
time

e |

1y SEArINg 10 55 COMPONENTS WIT CATEQOrY: JeNerair_Eiement
@ rrished searching for BsP components. | otal tme taken = 2 scconds
@ Loading drivers from ensemble repart,

(@ Frished badng drivers from ensemble report,

(& Setting "ucosi.os_g_en”set to "true”,

@) Setting “ucosii,os_tmr_en” set to "true”

(&) Setting "ucosi.tiner.os_tmr_cfg_ max” set to 4",

@ Setting "ucosi. tiner .os_tmr_cfg_name_size” set to "16",

@ Frished hadng SOFC Builder system info fle ~.,\,.\WicslI_stratix[l_2s60_RoHS_full_feaured_sopc.sopcinfo [relatve to settings fie]”

~

Example 14. MicroC/0S-II Tcl Configuration Script Example (ucosii_conf.tcl)

#enable code for UCOSII timers
set_setting ucosii.os_tmr_en 1

#enable a maximum of 4 UCOSII timers
set_setting ucosii.timer.os_tmr_cfg_max 4

#enable code for UCOSII queues
set_setting ucosii.os g en 1

Related Information
e Nios II Software Build Tools Reference
e crtO Initialization on page 163

D Send Feedback

Embedded Design Handbook

149

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tEI 4. Software System Design with a Nios II Processor
EDH | 2018.11.12

HAL Configuration Tips

If you use the HAL environment, be aware of the following properties of this
environment:

e HAL BSP settings—A comprehensive list of options is shown in the Settings tab
in the Nios II BSP Editor. These options include settings to specify a pre- and post-
process to run for each C or C++ file compiled, and for each file assembled or
archived.

Note: For more information about BSP settings, refer to “Settings Managed by the
Software Build Tools” in the Nios II Software Build Tools Reference chapter
of the Nios II Gen2 Software Developer's Handbook.

e HAL setting modification—Modifying the HAL options modifies the system.h file,
which is used to compile the BSP library file.

e HAL initialization—The HAL is initialized during the execution of the C run-time
initialization (crt0) code block. After the crtO code block runs, the HAL resources
are available for your application to use.For more information, refer to the “crt0
Initialization” section.

You can configure the HAL in the BSP Editor. The figure below shows how you specify a
UART to be used as the stdio device.

The Tcl script in the example performs the same configuration as in the figure: it
specifies a UART to be used as the stdio device.

Figure 35. Configuring HAL stdio Device in BSP Editor

Nio BSP Edito altera\91\nios2Zeds\example erilos 0 atix| 60]
Fie Edit Tools Help
Settings | Software Packages || Drivers || Linker script | Targer Generation Fikes | I
SOPC Informaticn file: ..\, \NinsIL_stratix1_?s60_RoHS_full_featured_sopc. sonanfo
CPUname: cpu
Operating system: Altera HAL
B5P target dircetory: |Cialtera\S1Yios 2ods\examples\reribg ios(T_stratixII_2s60_RoHS\ful_featired software YelloWorld2s60R0HS_bsp\ | (=
=-Sattngs | hat - ‘
Ecommon | = =
E-hal enable_gprof T
~enahle_gprof
enable_reduced_device_drivers enable_reduced_device_drivers]
~enable_sim_optimize
enable_small_c_library enable_sim_aptimize]
~ekderr . i
st enable_small_c_library]
sdout st o ¥
--gys_clk_timer et |
~timestamp_timer stdin ‘ vartd 0 |
&-Inker ——— -
i~ enable_exception_stack stdout | uart1 vl
i~ anable_intarrupt_stack ———
-axcepton_stack_memary_regon_ sys_clk_timer ‘sys,clk Limar M|
exception_stack size i
- interrupt_stack_memory_region_n || timestamp_timer \none ¥|
interrupt_stack_size
Ehmaka hal.linker
~hsp_cflags_debug R
7 3 enable_sxcaption_stack il

~
Informaton | problems | Processing| |
W0 Fnished searching Tor sP COmponents, TOMal tme taken = Zsetonds “

v

(@ Loading drivers fom ensemble report.

@) Frisked lhadng drivers from ensemble repart.

(@ Fished badng SOPC Builder system info fle "\, .\NicsIT_stratixIl_2s60_RoHS_full_featured_sopcsopdnfo [relatve to settings fie]”

(@ Setting "hal.stder” set to "Lart1”,

@ Setting "hal.stdin” set to "uart1”,

(@) setting "hal.stdout™ set to "uart1”,

(@ Generated file "C:\altera19 Tinios2eds \examplestverilogiosIT_stratix_3s60 RcHS'Yull_featuredisoftwarelHeloWorld2s60RoHS _bsp!\SetpSTDIO 1™

Embedded Design Handbook D Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Example 15. HAL Tcl Configuration Script Example (hal_conf.tcl)

#set up stdio file handles to point to a UART
set default_stdio uartl
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio
Related Information
e Nios II Software Build Tools Reference

e crtO Initialization on page 163
Adding Software Packages

Intel supplies several add-on software packages in the Nios II EDS. These software
packages are available for your application to use, and can be configured in the BSP
Editor from the Software Packages tab. The Software Packages tab allows you to
insert and remove software packages in your BSP, and control software package
settings. The software package table at the top of this tab lists each available software
package. The table allows you to select the software package version, and enable or
disable the software package.

The operating system determines which software packages are available.

The following software packages are provided with the Nios II EDS:

e Host File System—Allows a Nios II system to access a file system that resides on
the workstation. For more information, refer to “The Host-Based File System”.

e Read-Only Zip File System—Provides access to a simple file system stored in flash
memory. For more information, refer to “"Read-Only Zip File System”.

e NicheStack TCP/IP Stack - Nios II Edition—Enables support of the NicheStack
TCP/IP networking stack.

Note: The stack is provided as is but Intel does not offer additional support.

For more information about the NicheStack TCP/IP networking stack, refer to the
Ethernet and the TCP/IP Networking Stack - Nios II Edition chapter of the Nios II Gen2
Software Developer's Handbook.

Related Information

Ethernet and the NicheStack TCP/IP Stack
Using Tcl Scripts with the Nios II BSP Editor

The Nios II BSP Editor supports Tcl scripting. Tcl scripting in the Nios II BSP Editor is a
simple but powerful tool that allows you to easily migrate settings from one BSP to
another. This feature is especially useful if you have multiple software projects utilizing
similar BSP settings. Tcl scripts in the BSP editor allow you to perform the following
tasks:

e Regenerate the BSP from the command line
e Export a TCL script from an existing BSP as a starting point for a new BSP
e Recreate the BSP on a different hardware platform

e Examine the Tcl script to improve your understanding of Tcl command usage and
BSP settings

D Send Feedback Embedded Design Handbook

151

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
https://www.altera.com/documentation/lro1419794938488.html#lhf1489505529242
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

You can configure a BSP either by importing your own manually-created Tcl script, or
by using a Tcl script exported from the Nios II BSP Editor.

You can apply a Tcl script only at the time that you create the BSP.
Exporting a Tcl Script

To export a Tcl script, follow these steps:

1. Use the Nios II BSP Editor to configure the BSP settings in an existing BSP project.
2. In the Tools menu, click Export Tcl Script.

3. Navigate to the directory where you wish to store your Tcl script.

4. Select a file name for the Tcl script.

When creating a Tcl script, the Nios II BSP Editor only exports settings that differ from
the BSP defaults. For example, if the only non-default settings in the BSP are those

shown in Configuring HAL stdio Device in BSP Editor, the BSP Editor exports the script
shown in the example below.

Example 16. Tcl Script Exported by BSP Editor

HHHA AR R AR

H*

This is a generated Tcl script exported
by a user of the Intel FPGA Nios Il BSP Editor.

It can be used with the Intel FPGA "nios2-bsp® shell script "--script”

#
#
#
#
option to customize a new or existing BSP.

H*

HHHH AR R R R R R R R R R R R R R R
HH AR A A R R R S R R A A A R R R
#

Exported Setting Changes

#

HHHHHHHH R R T I I
set_setting hal.stdout uartl

set_setting hal.stderr uartl
set_setting hal.stdin uartl

For details about default BSP settings, refer to “Specifying BSP Defaults” in the Nios II
Software Build Tools chapter of the Nios II Gen2 Software Developer's Handbook.
Related Information

Nios II Software Build Tools
Importing a Tcl Script to Create a New BSP

The following example illustrates how to configure a new BSP with an imported Tcl
script. You import the Tcl script with the Nios II BSP Editor, when you create a new
BSP settings file.

In this example, you create the Tcl script by hand, with a text editor. You can also use
a Tcl script exported from another BSP, as described in “Exporting a Tcl Script”.

To configure a new BSP with a Tcl script, follow these steps:

1. With any text editor, create a new file called example.tcl.
2. Insert the contents of the example below in the file.

3. In the Nios II BSP Editor, in the File menu, click New BSP.

Embedded Design Handbook D Send Feedback

152

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4. In the BSP Settings File Name box, select a folder in which to save your new
BSP settings file. Accept the default settings file name, settings.bsp.

In the Operating System list, select Intel FPGA HAL.
In the Additional Tcl script box, navigate to example.tcl.

In the Platform Designer Information File Name box, select the .sopcinfo
file.

8. Click OK. The BSP Editor creates the new BSP. The settings modified by
example.tcl appear as in the figure below.

Example 17. Example 2-4. BSP Configuration Tcl Script example.tcl

set_setting hal.enable_reduced_device_drivers true
set_setting hal .enable_sim_optimize true
set_setting hal.enable_small_c_library true
set_setting hal.enable_gprof true

Figure 36. Nios II BSP Settings Configured with example.tcl

[=-Settings || nal
=-hal enable_gprof
--enable_gprof
enable_reduced_device_drivers enable_reduced_device_drivers

enable_sim_optimize
enable_small_c_library
stoerr

S|

enable_sim_optimize

<tdin enahle_small_c_library
stoout
stderr v
gys_clk_timer |tag_uart
| FlrEestamp_t\mer stdin ftag_uart v
EHfinker
enable_exception_stack stdout jftag_uart v
enable_interupt_stack ' -
exception_stack_rmemory_region_na sys_clk_timer |none v
exception_stack_size
interrupt_stack_memary_region_nar timestamp_timer none ¥

interrupt_stack _size

Do not attempt to import an Intel FPGA HAL Tcl script to a MicroC/OS-II BSP or vice-
versa. Doing so could result in unpredictable behavior, such as lost settings. Some BSP

settings are OS-specific, making scripts from different OSes incompatible.

For more information about commands that can appear in BSP Tcl scripts, refer to
“Software Build Tools Tcl Commands” in the Nios II Software Build Tools Reference
chapter of the Nios II Gen2 Software Developer's Handbook.

Related Information

e Nios II Software Build Tools Reference

e Exporting a Tcl Script on page 152

4.2.2.4.4. Configuring the Application Project

You configure the application project by specifying source files and a valid BSP project,
along with other command-line options to the nios2-app-generate-makefile or

nios2-app-update-makefile commands.

D Send Feedback Embedded Design Handbook

153

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Application Configuration Tips

Use the following tips to increase your efficiency in designing your application project:

1. Source file inclusion—To add source files to your project, drag them from a file
browser, such as Windows Explorer, and drop them in the Project Explorer view
in the Nios II Software Build Tools for Eclipse.

From the command line, several options are available for specifying the source
files in your application project. If all your source files are in the same directory,
use the --src-dir command-line option. If all your source files are contained in
a single directory and its subdirectories, use the --src-rdir command-line
option.

2. Makefile variables—When a new project is created in the Nios II Software Build
Tools for Eclipse, a makefile is automatically generated in the software project
directory. You can modify application makefile variables with the Nios II
Application Wizard.

From the command line, set makefile variables with the —--set <var> <value>
command-line option during configuration of the application project. The variables
you can set include the pre- and post-processing settings BUILD_PRE_PROCESS
and BUILD_POST_PROCESS to specify commands to be executed before and after
building the application. Examine a generated application makefile to ensure you
understand the current and default settings.

3. Creating top level generation script—From the command line, simplify the
parameterization of your application project by creating a top level shell script to
control the configuration. The create-this-app scripts in the embedded processor
design examples available from the All Design Examples web page are good
models for your configuration script.

Related Information

All Design Examples
Linking User Libraries

You can create and use your own user libraries in the Nios II Software Build Tools. The
Nios II Software Build Tools for Eclipse includes the Nios II Library wizard, which
enables you to create a user library in a GUI environment.

You can also create user libraries in the Nios II Command Shell, as follows:

1. Create the library using the nios2-lib-generate-makefile command. This
command generates a public.mk file.

2. Configure the application project with the new library by running the nios2-app-
generate-makefile command with the —-use-lib-dir option. The value for the
option specifies the path to the library's public.mk file.

4.2.2.4.5. Makefiles and the Nios II Software Build Tools for Eclipse

The Nios II Software Build Tools for Eclipse create and manage the makefiles for Nios
II software projects. When you create a project, the Nios II Software Build Tools
create a makefile based on parameters and settings you select. When you modify
parameters and settings, the Nios II Software Build Tools update the makefile to
match. BSP makefiles are based on the operating system, BSP settings, selected
software packages, and selected drivers.

Embedded Design Handbook D Send Feedback

154

https://www.altera.com/support/support-resources/design-examples/all-design-examples.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Nios II BSP makefiles are handled differently from application and user library
makefiles. Nios II application and user library makefiles are based on source files that
you specify directly. The following changes to an application or user library change the
contents of the corresponding makefile:

e Change the application or user library name

e Add or remove source files

e Specify a path to an associated BSP

e Specify a path to an associated user library

e Enable, disable or modify compiler options

For information about BSPs and makefiles, refer to "Makefiles and the Nios II Software
Build Tools for Eclipse” in the Getting Started with the Graphical User Interface chapter
of the Nios II Gen2 Software Developer's Handbook.

Related Information

Getting Started with the Graphical User Interface

4.2.2.4.6. Building and Running the Software in Nios II Software Build Tools for Eclipse

Building the Project

After you edit the BSP settings and properties, and generate the BSP (including the
makefile), you can build your project. Right-click your project in the Project Explorer
view and click Build Project.

Downloading and Running the Software

To download and run or debug your program, right-click your project in the Project
Explorer view. To run the program, point to Run As and click Nios II Hardware.

Before you run your target application, ensure that your FPGA is configured with the
target hardware image in your .sof file.

Communicating with the Target

The Nios II Software Build Tools for Eclipse provide a console window through which
you can communicate with your system. When you use the Nios II Software Build
Tools for Eclipse to communicate with the target, characters you input are transmitted
to the target line by line. Characters are visible to the target only after you press the
Enter key on your keyboard.

If you configured your application to use the stdio functions in a UART or JTAG UART
interface, you can use the nios2-terminal application to communicate with your
target subsystem. However, the Nios II Software Build Tools for Eclipse and the nios2-
terminal application handle input characters very differently.

On the command line, you must use the nios2-terminal application to communicate
with your target. To start the application, type the following command: nios2-
terminal

When you use the nios2-terminal application, characters you type in the shell are
transmitted, one by one, to the target.

D Send Feedback Embedded Design Handbook

155

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Software Debugging in Nios II Software Build Tools for Eclipse

This section describes how to debug a Nios II program using the Nios II Software Build
Tools for Eclipse. You can debug a Nios II program on Nios II hardware such as a Nios
development board. To debug a software project, right-click the application project
name, point to Debug As and click Nios II Hardware.

Note: Do not select Local C/C++ Application. Nios II projects can only be run and debugged
with Nios II run configurations.

For more information about using the Nios II Software Build Tools for Eclipse to debug
your application, refer to the Debugging Nios II Designs chapter of the Embedded
Design Handbook.

Related Information

Debugging Nios II Designs on page 392
Run Time Stack Checking

For debugging purposes, it is useful to enable run-time stack checking, using the
hal.enable_runtime_stack_checking BSP setting. When properly used, this setting
enables the debugger to take control if the stack collides with the heap or with
statically allocated data in memory.

For information about how to use run-time stack checking, refer to "Run-Time Analysis
Debug Techniques” and Stack Overflow in the Debugging Nios II Designs chapter. And
"Run Time Stack Checking And Exception Debugging" section in the Getting Started
with Graphical User Interface chapter of the Nios IT Gen2 Software Developer's
Handbook.

For more information about this and other BSP configuration settings, refer to
“Settings Managed by the Software Build Tools” in the Nios II Software Build Tools
Reference chapter of the Nios II Gen2 Software Developer's Handbook.

Related Information
e Getting Started with the Graphical User Interface

e Nios II Software Build Tools Reference

e Debugging Nios II Designs on page 392

4.2.2.5. Ensuring Software Project Coherency

In some engineering environments, maintaining coherency between the software and
system hardware projects is difficult. For example, in a mixed team environment in
which a hardware engineering team creates new versions of the hardware,
independent of the software engineering team, the potential for using the incorrect
version of the software on a particular version of the system hardware is high. Such
an error may cause engineers to spend time debugging phantom issues. This section
discusses several design and software architecture practices that can help you avoid
this problem.

4.2.2.5.1. Recommended Development Practice

The safest software development practice for avoiding the software coherency problem
is to follow a strict hardware and software project hierarchy, and to use scripts to
generate your application and BSP projects.

Embedded Design Handbook D Send Feedback

156

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

One best practice is to structure your application hierarchy with parallel application
project and BSP project folders. In the recommended directory structure below, a top-
level hardware project folder includes the Intel Quartus Prime project file, the Platform
Designer-generated files, and the software project folder. The software project folder
contains a subfolder for the application project and a subfolder for the BSP project.
The application project folder contains a create-this-app script, and the BSP project
folder contains a create-this-bsp script.

Figure 37. Recommended Directory Structure
Ej Hardware project folder
—1J <system_name>.sopcinfo
—_J <system_name>.sof
—Ej Software project folder
—Ej Application project folder
—D create-this-app
—] dlean-this-app
—g application software source files
_Ej BSP project folder
—] create-this-app
—] dean-this-app
_D bsp_settings.tcl (optional)
Note: bsp_settings.tcl is a Tcl configuration file. For more information about the Tcl
configuration file, refer to “Configuring the BSP Project”.

To build your own software project from the command line, create your own create-

this-app and create-this-bsp scripts. Intel recommends that you also create clean-

this-app and clean-this-bsp scripts. These scripts perform the following tasks:

e create-this-app—This bash script uses the nios2-app-generate-makefile
command to create the application project, using the application software source
files for your project. The script verifies that the BSP project is properly configured
(a settings.bsp file is present in the BSP project directory), and runs the create-
this-bsp script if necessary. The Intel-supplied create-this-app scripts that are
included in the embedded design examples on the All Design Examples web page
of the Intel website provide good models for this script.

e clean-this-app—This bash script performs all necessary clean-up tasks for the
whole project, including the following:

— Call the application makefile with the clean-all target.
— Call the clean-this-bsp shell script.

e create-this-bsp—This bash script generates the BSP project. The script uses the
nios2-bsp command, which can optionally call the configuration script
bsp_settings.tcl. The nios2-bsp command references the
<system_name>.sopcinfo file located in the hardware project folder. Running this
script creates the BSP project, and builds the BSP library file for the system.

¢ clean-this-bsp—This bash script calls the clean target in the BSP project
makefile and deletes the settings.bsp file.

D Send Feedback Embedded Design Handbook

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

The complete system generation process, from hardware to BSP and application
projects, must be repeated every time a change is made to the system in Platform
Designer. Therefore, defining all your settings in your create-this-bsp script is more
efficient than using the Nios II BSP Editor to customize your project. The system
generation process follows:

1. Hardware files generation—Using Platform Designer, write the updated system
description to the <system_name>.sopcinfo file.

2. Regenerate BSP project—Generate the BSP project with the create-this-bsp
script.

3. Regenerate application project—Generate the application project with the
create-this-app script. This script typically runs the create-this-bsp script,
which builds the BSP project by creating and running the makefile to generate the
BSP library file.

4. Build the system—Build the system software using the application and BSP
makefile scripts. The create-this-app script runs make to build both the
application project and the BSP library.

To implement this system generation process, Intel recommends that you use the
following checklists for handing off responsibility between the hardware and software
groups.

Note: This method assumes that the hardware engineering group installs the Nios II EDS. If
so, the hardware and software engineering groups must use the same version of the
Nios II EDS toolchain.

To hand off the project from the hardware group to the software group, perform the

following steps:

1. Hardware project hand-off —The hardware group provides copies of the
<system_name>.sopcinfo and <system_name>.sof files. The software group
copies these files to the software group’s hardware project folder.

2. Recreate software project—The software team recreates the software
application for the new hardware by running the create-this-app script. This
script runs the create-this-bsp script.

3. Build—The software team runs make in its application project directory to
regenerate the software application.

To hand off the project from the software group to the hardware group, perform the

following steps:

1. Clean project directories—The software group runs the clean-this-app script.

2. Software project folder hand-off—The software group provides the hardware
group with the software project folder structure it generated for the latest
hardware version. Ideally, the software project folder contains only the application
project files and the application project and BSP generation scripts.

3. Reconfigure software project—The hardware group runs the create-this-app
script to reconfigure the group’s application and BSP projects.

4. Build—The hardware group runs make in the application project directory to
regenerate the software application.

Related Information

e All Design Examples

Embedded Design Handbook D Send Feedback

158

https://www.altera.com/support/support-resources/design-examples/all-design-examples.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

e Configuring the BSP Project on page 146

4.2.2.5.2. Recommended Architecture Practice

Many of the hardware and software coherency issues that arise during the creation of
the application software are problems of misplaced peripheral addresses. Because of
the flexibility provided by Platform Designer, almost any peripheral in the system can

D Send Feedback Embedded Design Handbook

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

be assigned an arbitrary address, or have its address modified during system creation.
Implement the following practices to prevent this type of coherency issue during the
creation of your software application:

e Peripheral and Memory Addressing—The Nios II Software Build Tools
automatically generate a system header file, system.h, that defines a set of
#define symbols for every peripheral in the system. These definitions specify the
peripheral name, base address location, and address span. If the Memory
Management Unit (MMU) is enabled in your Nios II system, verify that the address
span for all peripherals is located in direct-mapped memory, outside the memory
address range managed by the MMU.

To protect against coherency issues, access all system peripherals and memory
components with their system.h name and address span symbols. This method
guarantees successful peripheral register access even after a peripheral's
addressable location changes.

For example, if your system includes a UART peripheral named UART1, located at
address 0x1000, access the UART1 registers using the system.h address symbol
(iowr_32(UART1_BASE, 0x0, 0x10101010)) rather than using its address
(iowr_32(0x1000, 0x0, 0x10101010)).

e Checking peripheral values with the preprocessor—If you work in a large
team environment, and your software has a dependency on a particular hardware
address, you can create a set of C preprocessor #ifdef statements that validate
the hardware during the software compilation process. These #ifdef statements
validate the #define values in the system.h file for each peripheral.

For example, for the peripheral UART1, assume the #define values in system.h
appear as follows:

#define UART1_NAME "/dev/uartl”
#define UART1_BASE 0x1000
#define UART1_SPAN 32

#define UARTL_IRQ 6

In your C/C++ source files, add a preprocessor macro to verify that your expected
peripheral settings remain unchanged in the hardware configuration. For example,
the following code checks that the base address of UART1 remains at the expected
value:

#if (UART1_BASE != 0x1000)
#error UART should be at 0x1000, but it is not
#endif

¢ Ensuring coherency with the System ID core—Use the System ID core. The
System ID core is an Platform Designer peripheral that provides a unique identifier
for a generated hardware system. This identifier is stored in a hardware register
readable by the Nios II processor. This unique identifier is also stored in
the .sopcinfo file, which is then used to generate the BSP project for the system.
You can use the system ID core to ensure coherency between the hardware and
software by either of the following methods:

— The first method is optionally implemented during system software
development, when the Executable and Linking Format (.elf) file is
downloaded to the Nios II target. During the software download process, the
value of the system ID core is checked against the value present in the BSP
library file. If the two values do not match, this condition is reported. If you
know that the system ID difference is not relevant, the system ID check can
be overridden to force a download. Use this override with extreme caution,
because a mismatch between hardware and software can lead you to waste
time trying to resolve nonexistent bugs.

: — The second method for using the system ID peripheral is useful jn systems

Embedded Design Handbooky -+t do not have a Nios II dgbug port, or in situations in whi g fgfeback

160 Nios II software download utilities is not practical. In this method you use the
C function alt_avalon_sysid_test(). This function reports whether the
hardware and software system IDs match.

EFar maora infoarematinn shniriy Fha Cyvuctarm TD ~Aara raofar +a Fhe Syvuctrarm TD CAare

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Related Information
Embedded Peripherals IP User Guide

4.2.3. Developing With the Hardware Abstraction Layer

The HAL for the Nios II processor is a lightweight run-time environment that provides
a simple device driver interface for programs to communicate with the underlying
hardware. The HAL API is integrated with the ANSI C standard library. The HAL API
allows you to access devices and files using familiar C library functions.

4.2.3.1. Overview of the HAL

This section describes how to use HAL services in your Nios II software. It provides
information about the HAL configuration options, and the details of system startup and
HAL services in HAL-based applications.

4.2.3.1.1. HAL Configuration Options

To support the Nios II software development flow, the HAL BSP library is self-
configuring to some extent. By design, the HAL attempts to enable as many services
as possible, based on the peripherals present in the system hardware. This approach
provides your application with the least restrictive environment possible—a useful
feature during the product development and board bringup cycle.

The HAL is configured with a group of settings whose values are determined by Tcl
commands, which are called during the creation of the BSP project.

As mentioned in “Configuring the BSP Project”, Intel recommends you create a
separate Tcl file that contains your HAL configuration settings.

HAL configuration settings control the boot loading process, and provide detailed
control over the initialization process, system optimization, and the configuration of
peripherals and services. For each of these topics, this section provides pointers to the
relevant material elsewhere in this section.

Related Information
Configuring the BSP Project on page 146

4.2.3.1.2. Configuring the Boot Environment

Your particular system may require a boot loader to configure the application image
before it can begin execution. For example, if your application image is stored in flash
memory and must be copied to volatile memory for execution, a boot loader must
configure the application image in the volatile memory. This configuration process
occurs before the HAL BSP library configuration routines execute, and before the crt0
code block executes. A boot loader implements this process.

For more information, refer to “Linking Applications” and “Application Boot Loading
and Programming System Memory”.

Related Information

Linking Applications on page 182

D Send Feedback Embedded Design Handbook

161

https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.2.3.1.3. Controlling HAL Initialization

As noted in “"HAL Initialization”, although most application debugging begins in the
main() function, some tasks, such as debugging device driver initialization, require
the ability to control overall system initialization after the crt0 initialization routine
runs and before main() is called.

For an example of this kind of application, refer to the hello_alt_main software
example design supplied with the Nios II EDS installation.
Related Information

HAL Initialization on page 164

4.2.3.1.4. Minimizing the Code Footprint and Increasing Performance

For information about increasing your application's performance, or minimizing the
code footprint, refer to “Software Application Optimization”.

Related Information

Software Application Optimization on page 455
4.2.3.1.5. Configuring Peripherals and Services

For information about configuring and using HAL services, refer to "HAL Peripheral
Services”.

Related Information

HAL Peripheral Services on page 165

4.2.3.2. System Startup in HAL-Based Applications

System startup in HAL-based applications is a three-stage process. First, the system
initializes, then the crt0 code section runs, and finally the HAL services initialize. The
following sections describe these three system-startup stages.

4.2.3.2.1. System Initialization

The system initialization sequence begins when the system powers up. The
initialization sequence steps for FPGA designs that contain a Nios II processor are the
following:

1. Hardware reset event—The board receives a power-on reset signal, which
resets the FPGA.

2. FPGA configuration—The FPGA is programmed with a .sof file, from a specialized
configuration memory or an external hardware master. The external hardware
master can be a CPLD device or an external processor.

3. System reset—The Platform Designer system, composed of one or more Nios II
processors and other peripherals, receives a hardware reset signal and enters the
components’ combined reset state.

Embedded Design Handbook D Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Nios II processor(s)—Each Nios II processor jumps to its preconfigured reset
address, and begins running instructions found at this address.

Boot loader or program code—Depending on your system design, the reset
address vector contains a packaged boot loader, called a boot image, or your
application image. Use the boot loader if the application image must be copied
from non-volatile memory to volatile memory for program execution. This case
occurs, for example, if the program is stored in flash memory but runs from
SDRAM. If no boot loader is present, the reset vector jumps directly to the .crt0
section of the application image. Do not use a boot loader if you wish your
program to run in-place from non-volatile or preprogrammed memory.

For additional information about both of these cases, refer to “"Application Boot
Loading and Programming System Memory”.

crt0 execution—After the boot loader executes, the processor jumps to the
beginning of the program's initialization block—the .crtO code section. The
function of the crtO code block is detailed in the next section.

4.2.3.2.2. crt0 Initialization

The crtO code block contains the C run-time initialization code—software instructions
needed to enable execution of C or C++ applications. The crt0 code block can
potentially be used by user-defined assembly language procedures as well. The Intel-
provided crt0 block performs the following initialization steps:

1.

D Send Feedback

Calls alt_load macros—If the application is designed to run from flash memory
(the .text section runs from flash memory), the remaining sections are copied to
volatile memory.

For additional information, refer to “Configuring the Boot Environment”.

Initializes instruction cache—If the processor has an instruction cache, this
cache is initialized. All instruction cache lines are zeroed (without flushing) with
the initi instruction.

Note: Platform Designer determines the processors that have instruction caches,
and configures these caches at system generation. The Nios II Software
Build Tools insert the instruction-cache initialization code block if necessary.

Initializes data cache—If the processor has a data cache, this cache is
initialized. All data cache lines are zeroed (without flushing) with the initd
instruction. As for the instruction caches, this code is enabled if the processor has
a data cache.

Sets the stack pointer—The stack pointer is initialized. You can set the stack
pointer address.

For additional information refer to "HAL Linking Behavior”.

Clears the .bss section—The .bss section is initialized to all zeros. You can set
the .bss section address.

For additional information refer to "HAL Linking Behavior”.
Initializes stack overflow protection—Stack overflow checking is initialized.

For additional information, refer to “Software Debugging in Nios II Software Build
Tools for Eclipse”.

Jumps to alt_main()—The processor jumps to the alt_main() function, which
begins initializing the HAL BSP run-time library.

Embedded Design Handbook

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Note: If you use a third-party RTOS or environment for your BSP library file, the
alt_main() function could be different than the one provided by the Nios
II EDS.

If you use a third-party compiler or library, the C run-time initialization behavior may
differ from this description.

The crtO code includes initialization short-cuts only if you perform hardware
simulations of your design. You can control these optimizations by turning
hal .enable_sim_optimize on or off.

For information about the hal .enable_sim_optimize BSP setting, refer to
“Settings Managed by the Software Build Tools” in the Nios II Software Build Tools
Reference chapter of the Nios II Gen2 Software Developer's Handbook.

The crt0.S source file is located in the <Ttools installation>/ip/altera/nios2_ip/
altera_nios2/HAL/src directory.

Related Information

¢ Nios II Software Build Tools Reference

e Configuring the Boot Environment on page 161

e HAL Linking Behavior on page 182

e Software Debugging in Nios II Software Build Tools for Eclipse on page 156

4.2.3.2.3. HAL Initialization

As for any other C program, the first part of the HAL's initialization is implemented by
the Nios II processor's crt0.S routine. For more information, see “crt0 Initialization”.
After crt0.S completes the C run-time initialization, it calls the HAL alt_main()
function, which initializes the HAL BSP run-time library and subsystems.

The HAL alt_main() function performs the following steps:

1. Initializes interrupts—Sets up interrupt support for the Nios II processor (with
the alt_irg_init() function).

2. Starts MicroC/0S-II—Starts the MicroC/0S-II RTOS, if this RTOS is configured
to run (with the ALT_OS_INIT and ALT_SEM_CREATE functions). For additional
information about MicroC/0S-II use and initialization, refer to “Selecting the
Operating System (HAL versus MicroC/0OS-II RTOS)".

3. Initializes device drivers—Initializes device drivers (with the alt_sys_init()
function). The Nios II Software Build Tools automatically find all peripherals
supported by the HAL, and automatically insert a call to a device configuration
function for each peripheral in the alt_sys_init() code. To override this
behavior, you can disable a device driver with the Nios II BSP Editor, in the Drivers
tab.

For information about enabling and disabling device drivers, refer to “Using the
BSP Editor” in the Getting Started with the Graphical User Interface chapter of the
Nios II Gen2 Software Developer's Handbook.

To disable a driver from the Nios II Command Shell, use the following option to
the nios2-bsp script:

--cmd set_driver <peripheral_name> none

Embedded Design Handbook D Send Feedback

164

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
4. Software System Design with a Nios II Processor < l n tel)

For information about removing a device configuration function, and other
methods of reducing the BSP library size, refer to Table 50 on page 461.

Configures stdio functions—Initializes stdio services for stdin, stderr, and
stdout. These services enable the application to use the GNU newlib stdio
functions and maps the file pointers to supported character devices.For more
information about configuring the stdio services, refer to "Character Mode
Devices”.

Initializes C++ CTORS and DTORS—Handles initialization of C++
constructor and destructor functions. These function calls are necessary if your
application is written in the C++ programming language. By default, the HAL
configuration mechanism enables support for the C++ programming language.
Disabling this feature reduces your application's code footprint, as noted in
“Software Application Optimization”.

The Nios II C++ language support depends on the GCC tool chain. The Nios II
GCC 4 C++ tool chain supports polymorphism, friendship and inheritance, multiple
inheritance, virtual base classes, run-time type information (typeid), the mutable
type qualifier, namespaces, templates, new-and-delete style dynamic memory
allocation, operator overloading, and the Standard Template Library (STL).
Exceptions and new-style dynamic casts are not supported.

Calls main()—Calls function main(), or application program. Most applications
are constructed using a main() function declaration, and begin execution at this
function.

If you use a BSP that is not based on the HAL and need to initialize it after the
crt0.S routine runs, define your own alt_main() function. For an example, see
the main() and alt_main() functions in the hello_alt_main.c file at <Nios II
EDS install dir>\examples\software\hello_alt_main.

After you generate your BSP project, the alt_main.c source file is located in the
HAL/src directory.

Related Information

Getting Started with the Graphical User Interface

crtO Initialization on page 163

Selecting the Operating System (HAL versus MicroC/OS-II RTOS) on page 146
Character Mode Devices on page 168

Software Application Optimization on page 455

4.2.3.3. HAL Peripheral Services

The HAL provides your application with a set of services, typically relying on the
presence of a hardware peripheral to support the services. By default, if you configure
your HAL BSP project from the command-line by running the nios2-bsp script, each
peripheral in the system is initialized, operational, and usable as a service at the entry
point of your C/C++ application (main()).

This section describes the core set of Intel-supplied, HAL-accessible peripherals and
the services they provide for your application. It also describes application design
guidelines for using the supplied service, and background and configuration
information, where appropriate.

D Send Feedback Embedded Design Handbook

165

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

For more information about the HAL peripheral services, refer to the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Gen2 Software
Developer's Handbook. For more information about HAL BSP configuration settings,
refer to the Nios II Software Build Tools Reference chapter of the Nios II Gen2
Software Developer's Handbook.

Related Information
e Nios II Software Build Tools Reference

e Developing Programs Using the Hardware Abstraction Layer

4.2.3.3.1. Timers

The HAL provides two types of timer services, a system clock timer and a timestamp
timer. The system clock timer is used to control, monitor, and schedule system events.
The timestamp variant is used to make high performance timing measurements. Each
of these timer services is assigned to a single Intel Avalon Timer peripheral.

For more information about this peripheral, refer to the Interval Timer Core chapter of
the Embedded Peripherals IP User Guide.

Related Information
Embedded Peripherals IP User Guide

System Clock Timer

Note:

The system clock timer resource is used to trigger periodic events (alarms), and as a
timekeeping device that counts system clock ticks. The system clock timer service
requires that a timer peripheral be present in the Platform Designer system. This timer
peripheral must be dedicated to the HAL system clock timer service.

Only one system clock timer service may be identified in the BSP library. This timer
should be accessed only by HAL supplied routines.

The hal .sys_clk_timer setting controls the BSP project configuration for the
system clock timer. This setting configures one of the timers available in your Platform
Designer design as the system clock timer.

Intel provides separate APIs for application-level system clock functionality and for
generating alarms.

Application-level system clock functionality is provided by two separate classes of
APIs, one Nios II specific and the other Unix-like. The Intel function alt_nticks
returns the number of clock ticks that have elapsed. You can convert this value to
seconds by dividing by the value returned by the alt_ticks_per_second()
function. For most embedded applications, this function is sufficient for rudimentary
time keeping.

The POSIX-like gettimeofday() function behaves differently in the HAL than on a
Unix workstation. On a workstation, with a battery backed-up, real-time clock, this
function returns an absolute time value, with the value zero representing 00:00
Coordinated Universal Time (UTC), January 1, 1970, whereas in the HAL, this function
returns a time value starting from system power-up. By default, the function assumes
system power-up to have occurred on January 1, 1970. Use the settimeofday()
function to correct the HAL gettimeofday() response. The times() function exhibits
the same behavior difference.

Embedded Design Handbook D Send Feedback

166

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Consider the following common issues and important points before you implement a
system clock timer:

e System Clock Resolution—The timer’s period value specifies the rate at which
the HAL BSP project increments the internal variable for the system clock counter.
If the system clock increments too slowly for your application, you can decrease
the timer's period in Platform Designer.

e Rollover—The internal, global variable that stores the number of system clock
counts (since reset) is a 32-bit unsigned integer. No rollover protection is offered
for this variable. Therefore, you should calculate when the rollover event occurs in
your system, and plan the application accordingly.

e Performance Impact—Every clock tick causes the execution of an interrupt
service routine. Executing this routine leads to a minor performance penalty. If
your system hardware specifies a short timer period, the cumulative interrupt
latency may impact your overall system performance.

The alarm API allows you to schedule events based on the system clock timer, in the
same way an alarm clock operates. The API consists of the alt_alarm_start()
function, which registers an alarm, and the alt_alarm_stop() function, which
disables a registered alarm.

Consider the following common issues and important points before you implement an
alarm:

e Interrupt Service Routine (ISR) context—A common mistake is to program
the alarm callback function to call a service that depends on interrupts being
enabled (such as the printf() function). This mistake causes the system to
deadlock, because the alarm callback function occurs in an interrupt context, while
interrupts are disabled.

¢ Resetting the alarm—The callback function can reset the alarm by returning a
nonzero value. Internally, the alt_alarm_start() function is called by the
callback function with this value.

e Chaining—The alt_alarm_start() function is capable of handling one or more
registered events, each with its own callback function and number of system clock
ticks to the alarm.

¢ Rollover—The alarm API handles clock rollover conditions for registered alarms
seamlessly.

A good timer period for most embedded systems is 50 ms. This value provides enough
resolution for most system events, but does not seriously impact performance nor roll
over the system clock counter too quickly.

Timestamp Timer

The timestamp timer service provides applications with an accurate way to measure
the duration of an event in the system. The timestamp timer service requires that a
timer peripheral be present in the Platform Designer system. This timer peripheral
must be dedicated to the HAL timestamp timer service.

Only one timestamp timer service may be identified in the BSP library file. This timer
should be accessed only by HAL supplied routines.

The hal . timestamp_timer setting controls the BSP configuration for the timer. This
setting configures one of the timers available in the Platform Designer design as the
timestamp timer.

D Send Feedback Embedded Design Handbook

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Intel provides a timestamp API. The timestamp API is very simple. It includes the
alt_timestamp_start() function, which makes the timer operational, and the
alt_timestamp() function, which returns the current timer count.

Consider the following common issues and important points before you implement a
timestamp timer:

e Timer Frequency—The timestamp timer decrements at the clock rate of the clock
that feeds it in the Platform Designer system. You can modify this frequency in
Platform Designer.

e Rollover—The timestamp timer has no rollover event. When the alt_timestamp()
function returns the value 0, the timer has run down.

¢ Maximum Time—The timer peripheral has 32 bits available to store the timer
value. Therefore, the maximum duration a timestamp timer can count is ((1/timer
frequency) x 232) seconds.

For more information about the APIs that control the timestamp and system clock
timer services, refer to the HAL API Reference chapter of the Nios II Gen2 Software
Developer's Handbook.

Related Information
HAL API Reference

4.2.3.3.2. Character Mode Devices

stdin, stdout, and stderr

The HAL can support the stdio functions provided in the GNU newlib library. Using the
stdio library allows you to communicate with your application using functions such as
printf() and scanf().

Currently, Intel supplies two system components that can support the stdio library,
the UART and JTAG UART components. These devices can function as standard I/0O
devices.

To enable this functionality, use the --default_stdio <device> option during Nios
IT BSP configuration. The stdin character input file variable and the stdout and
stderr character output file variables can also be individually configured with the HAL
BSP settings hal .stdin, hal .stdout, and hal .stderr.

Make sure that you assign values individually for each of the stdin, stdout, and
stderr file variables that you use.

After your target system is configured to use the stdin, stdout, and stderr file
variables with either the UART or JTAG UART peripheral, you can communicate with
the target Nios II system with the Nios II EDS development tools. For more
information about performing this task, refer to *"Communicating with the Target”.

For more information about the -—default_stdio <device> option, refer to “Nios II
Software Build Tools Utilities” in the Nios II Software Build Tools Reference chapter of
the Nios II Gen2 Software Developer's Handbook.

Related Information
e Nios II Software Build Tools Reference

Embedded Design Handbook D Send Feedback

168

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946972385
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

e Communicating with the Target on page 155

Blocking versus Non-Blocking I/0

Example 18.

Example 19.

Character mode devices can be configured to operate in blocking mode or non-
blocking mode. The mode is specified in the device’s file descriptor. In blocking mode,
a function call to read from the device waits until the device receives new data. In
non-blocking mode, the function call to read new data returns immediately and
reports whether new data was received. Depending on the function you use to read
the file handle, an error code is returned, specifying whether or not new data arrived.

The UART and JTAG UART components are initialized in blocking mode. However, each
component can be made non-blocking with the fnctl or the 1ioctl () function, as
seen in the following open system call, which specifies that the device being opened is
to function in non-blocking mode:

fd = open (*'/dev/<your uart name>", O_NONBLOCK | O_RDWR);

The fnctl () system call shown in the example below specifies that a device that is
already open is to function in non-blocking mode:
fnctl() System Call

/* You can specify <file_descriptor> to be

* STDIN_FILENO, STDOUT_FILENO, or STDERR_FILENO

* if you are using STDIO

*/
fnctl(<file_descriptor>, F_SETFL, O_NONBLOCK);

Non-Blocking Device Code Fragment

input_chars[128];

return_chars = scanf('%128s", &input_chars);
if(return_chars == 0)

{

if(errno !'= EWOULDBLOCK)

{
/* check other errnos */

b

¥

else

/* process received characters */

}

The behavior of the UART and JTAG UART peripherals can also be modified with an
ioctl () function call. The 1octl () function supports the following parameters:

e For UART peripherals:
— TIOCMGET (reports baud rate of UART)
— TIOCMSET (sets baud rate of UART)
e For JTAG UART peripherals:
— TIOCSTIMEOUT (timeout value for connecting to workstation)
— TIOCGCONNECTED (find out whether host is connected)
The altera_avalon_uart_driver.enable_ioctl BSP setting enables and

disables the 1octl () function for the UART peripherals. The ioctl () function is
automatically enabled for the JTAG UART peripherals.

D Send Feedback Embedded Design Handbook

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

The 1octl () function is not compatible with the
altera_avalon_uart_driver.enable_small_driver and

hal .enable_reduced_driver BSP settings. If either of these settings is enabled,
ioctl () is not implemented.

Adding Your Own Character Mode Device

If you have a custom device capable of character mode operation, you can create a
custom device driver that the stdio library functions can use.

For information about how to develop the device driver, refer to AN459: Guidelines for
Developing a Nios II HAL Device Driver.

Related Information

AN459: Guidelines for Developing a Nios II HAL Device Driver
4.2.3.3.3. Flash Memory Devices

The HAL BSP library supports parallel common flash interface (CFI) memory devices
and Intel erasable, programmable, configurable serial (EPCS) flash memory devices. A
uniform API is available for both flash memory types, providing read, write, and erase
capabilities.

Memory Initialization, Querying, and Device Support

Every flash memory device is queried by the HAL during system initialization to
determine the kind of flash memory and the functions that should be used to manage
it. This process is automatically performed by the alt_sys_init() function, if the
device drivers are not explicitly omitted and the small driver configuration is not set.

After initialization, you can query the flash memory for status information with the
alt_flash_get flash_info() function. This function returns a pointer to an array
of flash region structures—C structures of type struct flash_region—and the
number of regions on the flash device.

For additional information about the struct flash_region structure, refer to the
source file HAL/inc/sys/alt_flash_types.h in the BSP project directory.

Accessing the Flash Memory

The alt_flash_open() function opens a flash memory device and returns a
descriptor for that flash memory device. After you complete reading and writing the
flash memory, call the alt_flash_close() function to close it safely.

The HAL flash memory device model provides you with two flash access APIs, one
simple and one fine-grained The simple API takes a buffer of data and writes it to the
flash memory device, erasing the sectors if necessary. The fine-grained API enables
you to manage your flash device on a block-by-block basis.

Embedded Design Handbook D Send Feedback

170

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an459.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Both APIs can be used in the system. The type of data you store determines the most
useful API for your application. The following general design guidelines help you
determine which API to use for your data storage needs:

Simple API—This API is useful for storing arbitrary streams of bytes, if the exact flash
sector location is not important. Examples of this type of data are log or data files
generated by the system during run-time, which must be accessed later in a
continuous stream somewhere in flash memory.

Fine-Grained API—This API is useful for storing units of data, or data sets, which
must be aligned on absolute sector boundaries. Examples of this type of data include
persistent user configuration values, FPGA hardware images, and application images,
which must be stored and accessed in a given flash sector (or sectors).

For examples that demonstrate the use of APIs, refer to the “Using Flash Devices”
section in the Developing Programs Using the Hardware Abstraction Layer chapter of
the Nios II Gen2 Software Developer's Handbook.

Related Information

Developing Programs Using the Hardware Abstraction Layer
Configuration and Use Limitations

If you use flash memories in your system, be aware of the following properties of this
memory:

e Code Storage—If your application runs code directly from the flash memory, the
flash manipulation functions are disabled. This setting prevents the processor from
erasing the memory that holds the code it is running. In this case, the symbols
ALT_TEXT_DEVICE, ALT_RODATA _DEVICE, and ALT_EXCEPTIONS_DEVICE must
all have values different from the flash memory peripheral. (Note that each of
these #define symbols names a memory device, not an address within a memory
device).

e Small Driver—If the small driver flag is set for the software—the
hal .enable_reduced_device_drivers setting is enabled—then the flash
memory peripherals are not automatically initialized. In this case, your application
must call the initialization routines explicitly.

e Thread safety—Most of the flash access routines are not thread-safe. If you use
any of these routines, construct your application so that only one thread in the
system accesses these function.

e EPCS flash memory limitations—The Intel EPCS memory has a serial interface.
Therefore, it cannot run Nios II instructions and is not visible to the Nios II
processor as a standard random-access memory device. Use the Intel-supplied
flash memory access routines to read data from this device.

e File System—The HAL flash memory API does not support a flash file system in
which data can be stored and retrieved using a conventional file handle. However,
you can store your data in flash memory before you run your application, using
the read-only zip file system and the Nios II flash programmer utility. For
information about the read-only zip file system, refer to “Read-Only Zip File
System”.

For more information about the configuration and use limitations of flash memory,
refer to the “Using Flash Devices” section in the Developing Programs Using the
Hardware Abstraction Layer chapter of the Nios II Gen2 Software Developer's

D Send Feedback Embedded Design Handbook

171

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Handbook. For more information about the API for the flash memory access routines,
refer to the HAL API Reference chapter of the Nios II Gen2 Software Developer’s
Handbook.

Related Information

e HAL API Reference

e Developing Programs Using the Hardware Abstraction Layer
e Read-Only Zip File System on page 176

4.2.3.3.4. Direct Memory Access Devices

The HAL Direct Memory Access (DMA) model uses DMA transmit and receive channels.
A DMA operation places a transaction request on a channel. A DMA peripheral can
have a transmit channel, a receive channel, or both. This section describes three
possible hardware configurations for a DMA peripheral, and shows how to activate
each kind of DMA channel using the HAL memory access functions.

The DMA peripherals are initialized by the alt_sys_init() function call, and are
automatically enabled by the nios2-bsp script.

DMA Configuration and Use Model

The following examples illustrate use of the DMA transmit and receive channels in a
system. The information complements the information available in "Using DMA
Devices” in the Developing Programs Using the Hardware Abstraction Layer chapter of
the Nios II Gen2 Software Developer's Handbook.

Regardless of the DMA peripheral connections in the system, initialize a transmit
channel by running the alt_dma_txchan_open() function, and initialize a receive
DMA channel by running the alt_dma_rxchan_open() function. The following
sections describe the use model for some specific cases.

Related Information

Developing Programs Using the Hardware Abstraction Layer
RX-Only DMA Component

A typical RX-only DMA component moves the data it receives from another component
to memory. In this case, the receive channel of the DMA peripheral reads continuously
from a fixed location in memory, which is the other peripheral's data register. The
following sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_rxchan_open() function to open
the receive DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_rxchan_ioctl () function to
set the ALT_DMA_RX_ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other
peripheral to begin loading new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_prepare()
function to begin a DMA operation. In the function call, you specify the DMA
receive channel, the other peripheral’s data register address, the number of bytes
to transfer, and a callback function to run when the transaction is complete.

Embedded Design Handbook D Send Feedback

172

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946972385
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
4. Software System Design with a Nios II Processor < l n tel)

TX-Only DMA Component

A typical TX-only DMA component moves data from memory to another component. In
this case, the transmit channel of the DMA peripheral writes continuously to a fixed
location in memory, which is the other peripheral's data register. The following
sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_txchan_open() function to open
the transmit DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_txchan_ioctl () function to
set the ALT_DMA_ TX ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other
peripheral to begin receiving new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_send()
function to begin a DMA operation. In the function call, you specify the DMA
transmit channel, the other peripheral’s data register address, the number of
bytes to transfer, and a callback function to run when the transaction is complete.

RX and TX DMA Component

A typical RX and TX DMA component performs memory-to-memory copy operations.
The application must open, configure, and assign transaction requests to both DMA
channels explicitly. The following sequence of operations directs the DMA peripheral:

1. Open the DMA RX channel—Call the alt_dma_rxchan_open() function to open
the DMA receive channel.

2. Enable DMA RX 1octl operations—Call the alt_dma_rxchan_ioctl () function
to set the ALT_DMA_RX_ONLY_OFF flag. Use the ALT_DMA_SET_MODE_<n> flag
to set the data width to the correct value for the memory transfers.

3. Open the DMA TX channel—Call the alt_dma_txchan_open() function to open
the DMA transmit channel.

4. Enable DMA TX ioctl operations—Call the alt_dma_txchan_ioctl () function
to set the ALT_DMA_TX ONLY_OFF flag. Use the ALT_DMA_SET_MODE_<n> flag
to set the data width to the correct value for the memory transfers.

5. Queue the DMA RX transaction requests—Call the alt_avalon_dma_prepare()
function to begin a DMA RX operation. In the function call, you specify the DMA
receive channel, the address from which to begin reading, the number of bytes to
transfer, and a callback function to run when the transaction is complete.

6. Queue the DMA TX transaction requests—Call the alt_avalon_dma_send()
function to begin a DMA TX operation. In the function call, you specify the DMA
transmit channel, the address to which to begin writing, the number of bytes to
transfer, and a callback function to run when the transaction is complete.

The DMA peripheral does not begin the transaction until the DMA TX transaction
request is issued.

For examples of DMA device use, refer to "Using DMA Devices” in the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Gen2 Software
Developer's Handbook.

D Send Feedback Embedded Design Handbook

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Related Information

Developing Programs Using the Hardware Abstraction Layer
DMA Data-Width Parameter

The DMA data-width parameter is configured in Platform Designer to specify the
widths that are supported. In writing the software application, you must specify the
width to use for a particular transaction. The width of the data you transfer must
match the hardware capability of the component.

Consider the following points about the data-width parameter before you implement a
DMA peripheral:

e Peripheral width—When a DMA component moves data from another peripheral,
the DMA component must use a single-operation transfer size equal to the width
of the peripheral’s data register.

e Transfer length—The byte transfer length specified to the DMA peripheral must be
a multiple of the data width specified.

e 0dd transfer sizes—If you must transfer an uneven number of bytes between
memory and a peripheral using a DMA component, you must divide up your data
transfer operation. Implement the longest allowed transfer using the DMA
component, and transfer the remaining bytes using the Nios II processor. For
example, if you must transfer 1023 bytes of data from memory to a peripheral
with a 32-bit data register, perform 255 32-bit transfers with the DMA and then
have the Nios II processor write the remaining 3 bytes.

Configuration and Use Limitations

If you use DMA components in your system, be aware of the following properties of
these components:

e Hardware configuration—The following aspects of the hardware configuration of
the DMA peripheral determine the HAL service:

— DMA components connected to peripherals other than memory support only
half of the HAL API (receive or transmit functionality). The application software
should not attempt to call API functions that are not available.

— The hardware parameterization of the DMA component determines the data
width of its transfers, a value which the application software must take into
account.

e IOCTL control—The DMA i1octl () function call enables the setting of a single
flag only. To set multiple flags for a DMA channel, you must call ioctl () multiple
times.

e DMA transaction slots—The current driver is limited to four transaction slots. If
you must increase the number of transaction slots, you can specify the number of
slots using the macro ALT_AVALON_DMA_NSLOTS. The value of this macro must
be a power of two.

e Interrupts—The HAL DMA service requires that the DMA peripheral's interrupt
line be connected in the system.

e User controlled DMA accesses—If the default HAL DMA access routines are too
unwieldy for your application, you can create your own access functions. For
information about how to remove the default HAL DMA driver routines, refer to
“Reducing Code Size”".

Embedded Design Handbook D Send Feedback

174

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

For more information about the HAL API for accessing DMA devices, refer to “Using
DMA Devices” in the Developing Programs Using the Hardware Abstraction Layer
chapter of the Nios II Gen2 Software Developer's Handbook and to the HAL API
Reference chapter of the Nios II Gen2 Software Developer's Handbook.

Related Information
e Developing Programs Using the Hardware Abstraction Layer
e Reducing Code Size on page 460

4.2.3.3.5. Files and File Systems

The HAL provides two simple file systems and an API for dealing with file data. The
HAL uses the GNU newlib library's file access routines, found in file.h, to provide
access to files. In addition, the HAL provides the following file systems:

e Host-based file system—Enables a Nios II system to access the host workstation's
file system

e Read-only zip file system—Enables simple access to preconfigured data in the Nios
IT system memory

Several more conventional file systems that support both read and write operations
are available through third-party vendors. For up-to-date information about the file
system solutions available for the Nios II processor, visit the Nios II Processor page of
the Intel website, and look for Intel FPGA Embedded Alliance.

To make either of these software packages visible to your application, you must
enable it in the BSP. You can enable a software package either in the BSP Editor, or
from the command line. The names that specify the host-based file system and read-
only zip file system packages are altera_hostfs and altera_ro_zipfs,
respectively.

Related Information

Nios II Processor
The Host-Based File System

The host-based file system enables the Nios II system to manipulate files on a
workstation through a JTAG connection. The API is a transparent way to access data
files. The system does not require a physical block device.

Consider the following points about the host-based file system before you use it:

e Communication speed—Reading and writing large files to the Nios II system
using this file system is slow.

e Debug use mode—The host-based file system is only available during debug
sessions from the Nios II debug perspective. Therefore, you should use the host-
based file system only during system debugging and prototyping operations.

e Incompatibility with direct drivers—The host-based file system only works if
the HAL BSP library is configured with direct driver mode disabled. However,
enabling this mode reduces the size of the application image. For more
information, refer to “Software Application Optimization”.

For more information about the host file system, refer to “Using File Subsystems” in
the Developing Programs Using the Hardware Abstraction Layer chapter of the Nios IT
Gen2 Software Developer’s Handbook.

D Send Feedback Embedded Design Handbook

175

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
https://www.altera.com/products/processors/overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Related Information
e Software Application Optimization on page 455

e Developing Programs Using the Hardware Abstraction Layer
Read-Only Zip File System

The read-only zip file system is a lightweight file system for the Nios II processor,
targeting flash memory.
Consider the following points about the read-only zip file system before you use it:

e Read-Only—The read-only zip file system does not implement writes to the file
system.

e Configuring the file system—To create the read-only zip file system you must
create a binary file on your workstation and use the Nios II flash programmer
utility to program it in the Nios II system.

e Incompatibility with direct drivers—The read-only zip file system only works if
the HAL BSP library is configured with direct driver mode disabled. However,
enabling this mode reduces the size of the application image. For more
information, refer to “Software Application Optimization”.

For more information, refer to the Read-Only Zip File System and Developing
Programs Using the Hardware Abstraction Layer chapters of the Nios II Gen2 Software
Developer's Handbook. Also the read-only zip file system Nios II software example
design listed in “Nios II Design Example Scripts” in the Nios II Software Build Tools
Reference chapter of the Nios II Gen2 Software Developer’s Handbook.

Related Information

e Nios II Software Build Tools Reference

e Software Application Optimization on page 455

e Developing Programs Using the Hardware Abstraction Layer

e Read-Only Zip File System

4.2.3.3.6. Unsupported Devices

The HAL provides a wide variety of native device support for Intel-supplied
peripherals. However, your system may require a device or peripheral that Intel does
not provide. In this case, one or both of the following two options may be available to
you:

e Obtain a device through Intel's third-party program

e Incorporate your own device

Intel's third-party program information is available on the Nios II embedded software
partners page. Refer to the Nios II Processor page of the Intel website, and look for
Intel FPGA Embedded Alliance.

Incorporating your own custom peripheral is a two-stage process. First you must
incorporate the peripheral in the hardware, and then you must develop a device driver.

Embedded Design Handbook D Send Feedback

176

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946669272
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946758774
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946962466
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

For more information about how to incorporate a new peripheral in the hardware, refer
to the Nios II Hardware Development Tutorial. For more information about how to
develop a device driver, refer to the Developing Device Drivers for the Hardware
Abstraction Layer chapter of the Nios IT Gen2 Software Developer's Handbook and
AN459: Guidelines for Developing a Nios II HAL Device Driver.

Related Information

e AN459: Guidelines for Developing a Nios II HAL Device Driver
e Nios II Processor

e Developing Device Drivers for the Hardware Abstraction Layer

e Nios II Hardware Development Tutorial

4.2.3.4. Accessing Memory With the Nios II Processor

It can be difficult to create software applications that program the Nios II processor to
interact correctly with data and instruction caches when it reads and writes to
peripherals and memories. There are also subtle differences in how the different Nios
IT processor cores handle these operations, that can cause problems when you
migrate from one Nios II processor core to another.

This section helps you avoid the most common pitfalls. It provides background critical
to understanding how the Nios II processor reads and writes peripherals and
memories, and describes the set of software utilities available to you, as well as
providing sets of instructions to help you avoid some of the more common problems in
programming these read and write operations.

4.2.3.4.1. Creating General C/C++ Applications

You can write most C/C++ applications without worrying about whether the
processor's read and write operations bypass the data cache. However, you do need to
make sure the operations do not bypass the data cache in the following cases:

e Your application must guarantee that a read or write transaction actually reaches a
peripheral or memory. This guarantee is critical for the correct functioning of a
device driver interrupt service routine, for example.

e Your application shares a block of memory with another processor or Avalon
interface master peripheral.

4.2.3.4.2. Accessing Peripherals

If your application accesses peripheral registers, or performs only a small set of
memory accesses, Intel recommends that you use the default HAL I/O macros, IORD
and IOWR. These macros guarantee that the accesses bypass the data cache.

Two types of cache-bypass macros are available. The HAL access routines whose
names end in _32DIRECT, _16 DIRECT, and _8 DIRECT interpret the offset as a byte
address. The other routines treat this offset as a count to be multiplied by four bytes,
the number of bytes in the 32-bit connection between the Nios II processor and the
system interconnect fabric. The _32DIRECT, _16DIRECT, and _8DIRECT routines are
designed to access memory regions, and the other routines are designed to access
peripheral registers.

D Send Feedback Embedded Design Handbook

177

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an459.pdf
https://www.altera.com/products/processors/overview.html
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946760162
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_hardware_tutorial.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

The example below shows how to write a series of half-word values into memory.
Because the target addresses are not all on a 32-bit boundary, this code sample uses
the 10WR_16DIRECT macro.

Example 20. Writing Half-Word Locations

/* Loop across 100 memory locations, writing Oxdead to */
/* every half word location... */
for(i=0, j=0;i<100;i++, j+=2)

{
I0WR_16DIRECT(MEM_START, j, (unsigned short)Oxdead);
¥

The example below shows how to access a peripheral register. In this case, the write is
to a 32-bit boundary address, and the code sample uses the IOWR macro.

Example 21. Peripheral Register Access

unsigned int control_reg_val = 0;
/* Read current control register value */
control_reg_val = I0RD(BAR_BASE_ADDR, CONTROL_REG);

/* Enable "start" bit */
control_reg_val |= 0x01;

/* Write "start" bit to control register to start peripheral */
I10WR(BAR_BASE_ADDR, CONTROL_REG, control_reg_val);

Note: Intel recommends that you use the HAL-supplied macros for accessing external
peripherals and memory.

4.2.3.4.3. Sharing Uncached Memory

If your application must allocate some memory, operate on that memory, and then
share the memory region with another peripheral (or processor), use the HAL-supplied
alt_uncached_malloc() and alt_uncached_free() functions. Both of these
functions operate on pointers to bypass cached memory.

To share uncached memory between a Nios II processor and a peripheral, perform the
following steps:

1. malloc memory—Run the alt_uncached_malloc() function to claim a block
of memory from the heap. If this operation is successful, the function returns a
pointer that bypasses the data cache.

2. Operate on memory—Have the Nios II processor read or write the memory
using the pointer. Your application can perform normal pointer-arithmetic
operations on this pointer.

3. Convert pointer—Run the alt_remap_cached() function to convert the pointer
to a memory address that is understood by external peripherals.

4. Pass pointer—Pass the converted pointer to the external peripheral to enable it
to perform operations on the memory region.

Embedded Design Handbook D Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.2.3.4.4. Sharing Memory With Cache Performance Benefits

Another way to share memory between a data-cache enabled Nios II processor and
other external peripherals safely without sacrificing processor performance is the
delayed data-cache flush method. In this method, the Nios II processor performs
operations on memory using standard C or C++ operations until it needs to share this
memory with an external peripheral.

Note: Your application can share non-cache-bypassed memory regions with external masters
if it runs the alt_dcache_flush() function before it allows the external master to
operate on the memory.

To implement delayed data-cache flushing, the application image programs the Nios II
processor to follow these steps:

1. Processor operates on memory—The Nios II processor performs reads and
writes to a memory region. These reads and writes are C/C++ pointer or array
based accesses or accesses to data structures, variables, or a malloc'ed region of
memory.

2. Processor flushes cache—After the Nios II processor completes the read and
write operations, it calls the alt_dcache_flush() instruction with the location
and length of the memory region to be flushed. The processor can then signal to
the other memory master peripheral to operate on this memory.

3. Processor operates on memory again—When the other peripheral has
completed its operation, the Nios II processor can operate on the memory once
again. Because the data cache was previously flushed, any additional reads or
writes update the cache correctly.

The example below shows an implementation of delayed data-cache flushing for
memory accesses to a C array of structures. In the example, the Nios II processor
initializes one field of each structure in an array, flushes the data cache, signals to
another master that it may use the array, waits for the other master to complete
operations on the array, and then sums the values the other master is expected to set.

Example 22. Data-Cache Flushing With Arrays of Structures
struct input foo[100];

for(i=0;i<100;i++)
foo[i]-input = i;
alt_dcache_flush(&foo, sizeof(struct input)*100);
signal_master(&foo);
Ffor(i=0;1i1<100;i++)
sum += foo[i].output;

The example below shows an implementation of delayed data-cache flushing for
memory accesses to a memory region the Nios II processor acquired with malloc().
Example 23. Data-Cache Flushing With Memory Acquired Using malloc()
char * data = (char*)malloc(sizeof(char) * 1000);
write_operands(data);
alt_dcache_flush(data, sizeof(char) * 1000);
signal_master(data);

result = read_results(data);
free(data);

D Send Feedback Embedded Design Handbook

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

The alt_dcache_Fflush_all () function call flushes the entire data cache, but this
function is not efficient. Intel recommends that you flush from the cache only the
entries for the memory region that you make available to the other master peripheral.

4.2.3.5. Handling Exceptions

The HAL infrastructure provides a robust interrupt handling service routine and an API
for exception handling. The Nios II processor can handle exceptions caused by
hardware interrupts, unimplemented instructions, and software traps.

This section discusses exception handling with the Nios II internal interrupt controller.
The Nios II processor also supports an external interrupt controller (EIC), which you
can use to prioritize interrupts and make other performance improvements.

For information about the EIC, refer to the Programming Model chapter of the Nios IT
Gen2 Processor Reference Handbook. For information about the exception handler
software routines, HAL-provided services, API, and software support for the EIC, refer
to the Exception Handling chapter of the Nios II Gen2 Software Developer's Handbook.

Consider the following common issues and important points before you use the HAL-
provided exception handler:

e Prioritization of interrupts—The Nios II processor does not prioritize its 32
interrupt vectors, but the HAL exception handler assigns higher priority to lower
numbered interrupts. You must modify the interrupt request (IRQ) prioritization of
your peripherals in Platform Designer.

e Nesting of interrupts—The HAL infrastructure allows interrupts to be nested—
higher priority interrupts can preempt processor control from an exception handler
that is servicing a lower priority interrupt. However, Intel recommends that you
not nest your interrupts because of the associated performance penalty.

e Exception handler environment—When creating your exception handler, you
must ensure that the handler does not run interrupt-dependent functions and
services, because this can cause deadlock. For example, an exception handler
should not call the IRQ-driven version of the printf() function.

e VIC block—Vector interrupt controller block provides an interface to the interrupts
in your system. The VIC offers high-performance, low-latency interrupt handling.
The VIC prioritizes interrupts in hardware and outputs information about the
highest-priority pending interrupt. For more information, refer to the "Vectored
Interrupt Controller Core" chapter of the Embedded Peripheral IP User Guide.

Related Information

e Embedded Peripherals IP User Guide

e Exception Handling

4.2.3.6. Modifying the Exception Handler

In some very special cases, you may wish to modify the existing HAL exception
handler routine or to insert your own interrupt handler for the Nios II processor.
However, in most cases you need not modify the interrupt handler routines for the
Nios II processor for your software application.

Embedded Design Handbook D Send Feedback

180

https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/documentation/lro1419794938488.html#mwh1416946760505
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Consider the following common issues and important points before you modify or
replace the HAL-provided exception handler:

e Interrupt vector address—The interrupt vector address for each Nios II
processor is set during compilation of the FPGA design. You can modify it during
hardware configuration in Platform Designer.

¢ Modifying the exception handler—The HAL-provided exception handler is fairly
robust, reliable, and efficient. Modifying the exception handler could break the
HAL-supplied interrupt handling API, and cause problems in the device drivers for
other peripherals that use interrupts, such as the UART and the JTAG UART.

You may wish to modify the behavior of the exception handler to increase overall
performance. For guidelines for increasing the exception handler’s performance, refer
to “Accelerating Interrupt Service Routines”.

Related Information

Accelerating Interrupt Service Routines on page 459

D Send Feedback Embedded Design Handbook

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.2.4. Linking Applications

This section discusses how the Nios II software development tools create a default
linker script, what this script does, and how to override its default behavior. The
section also includes instructions to control some common linker behavior, and
descriptions of the circumstances in which you may need them.

4.2.4.1. Background

When you generate your project, the Nios II Software Build Tools generate two linker-
related files, linker.x and linker.h. linker.x is the linker command file that the
generated application's makefile uses to create the .elf binary file. All linker setting
modifications you make to the HAL BSP project affect the contents of these two files.

4.2.4.2. Linker Sections and Application Configuration

Every Nios II application contains .text, .rodata, -rwdata, .bss, -heap,
and .stack sections. Additional sections can be added to the .elf file to hold custom
code and data.

These sections are placed in named memory regions, defined to correspond with
physical memory devices and addresses. By default, these sections are automatically
generated by the HAL. However, you can control them for a particular application.

4.2.4.3. HAL Linking Behavior

This section describes the default linking behavior of the BSP generation tools and how
to control the linking explicitly.

4.2.4.3.1. Default BSP Linking

During BSP configuration, the tools perform the following steps automatically:

1. Assign memory region names—Assign a name to each system memory device,
and add each name to the linker file as a memory region.

2. Find largest memory—Identify the largest read-and-write memory region in the
linker file.

3. Assign sections—Place the default sections
(-text, .rodata, .rwdata, -bss, -heap, and .stack) in the memory region
identified in the previous step.

4. Write files—Write the linker.x and linker.h files.
Usually, this section allocation scheme works during the software development

process, because the application is guaranteed to function if the memory is large
enough.

The rules for the HAL default linking behavior are contained in the Intel-generated Tcl
scripts bsp-set-defaults.tcl and bsp-linker-utils.tcl found in the <Nios 11 EDS
install dir>/sdk2/bin directory. These scripts are called by the nios2-bsp-
create-settings configuration application. Do not modify these scripts directly.

Embedded Design Handbook D Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.2.4.3.2. User-Controlled BSP Linking

You can manage the default linking behavior in the Linker Script tab of the Nios II BSP
Editor. You can manipulate the linker script in the following ways:

e Add a memory region—Maps a memory region nhame to a physical memory device.

e Add a section mapping—Maps a section name to a memory region. The Nios II
BSP Editor allows you to view the memory map before and after making changes.

For more information about the linker-related BSP configuration commands, refer to
“Using the BSP Editor” in the Getting Started with the Graphical User Interface chapter
of the Nios II Gen2 Software Developer's Handbook.

Related Information

Getting Started with the Graphical User Interface

D Send Feedback Embedded Design Handbook

183

https://www.altera.com/documentation/lro1419794938488.html#mwh1416946671721
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.3. Nios II MPU Usage

Note:

The Nios II MPU Usage section covers the basic features of the Nios II processor’s
optional memory protection unit (MPU), describing how to use it without the support
of an operating system (0S). When the Nios II MPU is enabled and properly
configured, it monitors all processor data and instruction accesses and triggers
exceptions when illegal accesses are attempted.

Also included are two design examples, with notes about how they work. These
examples walk you through making use of the Nios II processor's MPU in an
environment based on the Intel hardware abstraction layer (HAL), without an OS. One
of the examples uses the MPU to detect the following three issues commonly seen
when debugging embedded systems:

e Stack overflow
e Null pointer
e Wild pointer

Do not confuse the MPU with the Nios II memory management unit (MMU). The MPU
does not provide memory mapping or management.

After you have studied the code and understand the desigh examples described in this
section, you have the skills to use the Nios II MPU successfully in your HAL-based
design. These examples illustrate the basics of how to use mpubase and mpuacc to
configure your MPU prior to enabling it.

4.3.1. Requirements

To use this section effectively, you need to be familiar with the following topics:
e The basic purpose and architecture of the Nios II MPU

Note: For a detailed description of the Nios II MPU, refer to "Memory Protection
Unit” in the Programming Model chapter of the Nios II Processor Reference
Handbook.

Embedded Design Handbook D Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EDH | 2018.11.12

™ ®
4. Software System Design with a Nios II Processor < l n tel)

Note:

To work with this section's design examples and software examples, you need the
following items:

The Nios II Embedded Evaluation Kit (NEEK), Cyclone® III Edition

Note: The design examples use only on-chip hardware resources. Therefore, it is
easy to port the designs to a different hardware platform if necessary.

Quartus Prime software.
Nios II Embedded Design Suite (EDS).

The design example archive file, an540_91.zip. This file is available on the Nios
IT Processor support menrtpage of the Intel website.

Unzip an540_91.zip to a working directory on your computer. We refer to this
directory throughout this section as <design examples>. Be sure to preserve the
directory structure of the extracted software archive. Extraction creates a
directory structure tree under <design examples> with the following
subdirectories:

— MPU_Design_limit/software_examples/app/mpu_basic

— MPU_Design_limit/software_examples/app/mpu_exc_detection
— MPU_Design_limit/software_examples/bsp/mpu_example_bsp

— MPU_Design_msk/software_examples/app/mpu_basic

— MPU_Design_msk/software_examples/app/mpu_exc_detection

— MPU_Design_msk/software_examples/bsp/mpu_example_bsp
Note: The working directory name you choose must not contain any spaces.

After extracting an540_91.zip, refer to <design examples>/ReadMe.txt for a list of
any required software patches or other updated information. If a patch is required,
install it according to the instructions in ReadMe.txt.

Related Information

Nios II Processor Documentation Support

4.3.2. General Usage

This section describes the process of configuring the Nios II MPU hardware and writing
software to support it.

4.3.2.1. Adding the MPU Hardware

To add an MPU to your system, you must use a Nios II/f core. In Platform Designer,
enable the MPU by turning on Include MPU in the Core Nios II tab of the Nios II
parameter editor interface, as shown in below.

D Send Feedback Embedded Design Handbook

185

https://www.altera.com/products/processors/support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tEI 4. Software System Design with a Nios II Processor
EDH | 2018.11.12

Figure 38. Enabling the MPU in the Nios II/f Processor Core

Arithmetic Instructions r MU and MPLU Settings r |TAC Dehug r,&dvanced Features
Main r Wectors Caches and Memory Interfaces

|' Select an Implementation
Mins |l Core: D Mios l1fe

o Mios II/f
| INios Il/e Nios II/f
Summary |Resource-optimized 32-bit RISC Performance-optimized 32-bit RISC
Features IJTAG Debug JTAG Debug
ECC RAM Protection Hardware Multiply / Divide
Instruction; Data Caches
Tightly-Coupled Masters
ECC RAM Protection
External Interrupt Controller
Shadow Register Sets
MPU
MMU
Fah Usage |2 + Qptions 2 + Options

Use the MMU and MPU Settings tab, as shown below, to configure the MPU.

Figure 39. MMU and MPU Settings Tab

Main | Vectars | Caches and MemoryImerfaces | Arithmetic Instructions | MM and MFU Settings | JTAG Dehug | Advanced Features
[~ Mmiu
Cinclucie MMU
Process ID (PID) bits. l:D
Optimize TLB entries base on device family
TLB enries :D
TLE Set-Assacialiity: :D
Micro DTLE entries. :D
Micro [TLB entries: :D
[~ mpPu
[inclucle MPU
[Use Limit for region range
Nurnber of data regions: :‘]
Minimurm data region size :D
Number of instruction regions :D
Minimum instruction region size :D
Embedded Design Handbook D Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Table 17. MPU Configuration Options
Option Allowed Values Default Value

Use Limit for Region Range Off or On Off

Number of Data Regions 2—32 8

Minimum Data Region Size 256 bytes—1 MB 4 KB

Number of Instruction Regions 2—32 8

Minimum Instruction Region Size 256 bytes—1 MB 4 KB
You can configure the MPU to define the size of its memory regions in either of the
following ways:
e Define region size by specifying an address mask
e Define region size by specifying the end address
By default, the MPU defines region sizes with an address mask. To define region sizes
with an end address, turn on Use Limit for Region Range. For detailed information
about the two methods of specifying region size, refer to "MPU Register Details”
section.
The minimum region size is crucial to understanding MPU run-time configuration. The
minimum region size, <min_region>, specifies the granularity of the MPU memory
map. The size of any particular memory region must be an integer multiple of
<min_region>.
Most of the MPU parameters controlled by software are based on the minimum region
size. You can specify separate values of <min_region> for data and instruction
regions.

Note: For simplicity, this section's design examples have <min_region> = 64 for both data

and instruction regions.

Related Information
MPU Register Details on page 188

4.3.2.2. Writing Software for the MPU

This section describes the process of writing software to configure and manage the
Nios II MPU.

4.3.2.2.1. MPU Programming Guidelines

Software is responsible for enabling and configuring the MPU as well as maintaining
MPU region information. In a single-threaded operating environment (such as the Intel
FPGA HAL), use a global data structure to store the MPU region information.

The Nios II MPU must be disabled before software attempts to configure it.

Software normally initializes the MPU after reset. If it is necessary to change MPU
regions or region permissions after reset, software also reinitializes the MPU.

D Send Feedback Embedded Design Handbook

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Every region supported by the MPU must be either configured or disabled before
allowing application code to execute. Leaving a region enabled and unconfigured
results in undefined behavior. For details about how to disable an MPU region, refer to
“Defining Regions with mpubase and mpuacc” section.

Depending on the complexity of your software, you might need to define several MPU
configurations, each with a different set of regions or region permissions. This
technique is typically used by an operating system. For details, refer to “Operating
Systems and the MPU” section.

Related Information

e Defining Regions with mpubase and mpuacc on page 192

e Operating Systems and the MPU on page 188
4.3.2.2.2. Operating Systems and the MPU

Even if you are not using an operating system, it is helpful to understand the
techniques that an OS uses to manage an MPU.

When an operating system uses an MPU, it typically defines two or more MPU
configurations. One configuration defines the permissions that the MPU applies to
operating system or kernel level accesses. One or more configurations define the
permissions available to user or application processes. The OS might also define
additional configurations for non-user purposes. For example, there might be a special
factory task that can modify system-critical information like product serial numbers or
media access control (MAC) addresses in flash or other nonvolatile memory. Such a
task is likely to need a special set of memory and device permissions.

The operating system disables the MPU, reconfigures it, and then re-enables it
whenever the processor needs to run in a different MPU configuration. For example,
the OS might need to change MPU configurations upon the following types of events:

e Exception
e Return from exception
e QOperating system call

e Return from operating system call

The exact circumstances under which MPU reconfiguration is required depends on the
OS implementation and settings.

4.3.2.2.3. MPU Register Details

This section describes the register maps, the meanings of the register fields, and how
the register fields are used.

When you initialize the MPU you use two registers: mpubase and mpuacc.
Register mpubase Usage

Table 18. mpubase Control Register Fields

3

=

30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9 |8 |7 |6 5 |4 |3 |2 |1 0

o | Base(2) INDEX(3) D

Embedded Design Handbook D Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Table 19. mpubase Control Register Field Descriptions
Field Description Access Reset
BASE BASE represents the base memory address of the region identified by the Read/Write 0
INDEX and D fields.
INDEX INDEX is the region index number. Read/Write 0
D D is the region access bit. When D = 1, INDEX refers to a data region. When | Read/Write 0
D = 0, INDEX refers to an instruction region.

Equation 1.

You specify an MPU region by writing a value representing the region's base address to
the BASE field, a unique index to the INDEX field, and the region type (data or
instruction) to field D.

The BASE field represents the region's base address, in the form described by the
equation below. The BASE field can only represent addresses aligned to an integer
multiple of <min_region>. For example, if the minimum region size is 16 kilobytes
(KB), regions can be located at addresses such as 0x0, 0x4000, 0x8000,

Base Address Computation
BASE = <base address>/<min_region>

For example, if the region starts at 0x1000 and the minimum region size is 64 bytes,
set the BASE field to 0x40, which is 0x1000/64.

The INDEX field provides a unique identifier for the region. INDEX also specifies the
priority of the region. The lower the index value, the higher the region’s priority.

Use the D field to specify the region type: data or instruction.

Register mpuacc Usage

mpuacc has two possible layouts, depending on the Platform Designer generation-
time option Use limit for region range, as described in “"Adding the MPU Hardware”
section. This option controls whether the mpuacc register contains a MASK or LIMIT
field. The table below shows the layout of the mpuacc register with the MASK field.

Table 20. mpuacc Control Register Fields for MASK Variation
31 (30 |29 |28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 | 8 | 7 | 6 |5 (4 | 3 | 2|1
O | MASK C | PERM R [W
D[R
Table 21. mpuacc Control Register Fields for LIMIT Variation
31 |30 |29 |28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 | 8 | 7 | 6 |5 (4 | 3 | 2|1
LIMIT(4) C | PERM R | W
D[R
(2) This field size is variable. Unused upper bits and unused lower bits must be written as zero.
(3) This field size is variable. Unused upper bits must be written as zero.
(4) This field size is variable. Unused upper bits and unused lower bits must be written as zero.
D Send Feedback Embedded Design Handbook

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 4. Software System Design with a Nios II Processor
EDH | 2018.11.12

Table 22. mpuacc Control Register Field Descriptions

Field Description Access Reset
MASK() MASK specifies the size of the region. Read/Write 0
LIMITG) LIMIT specifies the upper address limit of the region. Read/Write 0
C C is the data cacheable flag. C only applies to MPU data regions and Read/Write 0

determines the default cacheability of a data region. When C = 0, the data
region is uncacheable. When C = 1, the data region is cacheable.

PERM PERM specifies the access permissions for the region. Read/Write 0

RD RD is the read region flag. When RD = 1, wrctl instructions to the mpuacc Write 0
register perform a read operation.

WR WR is the write region flag. When WR = 1, wrctl instructions to the mpuacc Write 0
register perform a write operation.

If the mpuacc register is configured with the MASK field, the MASK field represents the
size of your region. The value of MASK is defined in the equation below.

Equation 2. Computing Region Mask
MASK = Ox1FFFFFF << log> (<region_size> >> 6)

The table below lists every possible MASK value for an MPU configured with a 64-byte
minimum region size.

Table 23. MASK Encodings for 64-byte Minimum Region

MASK Encoding Region Size
Ox1FFFFFF 64 bytes
Ox1FFFFFE 128 bytes
Ox1FFFFFC 256 bytes
Ox1FFFFF8 512 bytes
Ox1FFFFFO 1 KByte
Ox1FFFFEO 2 KB
Ox1FFFFCO 4 KB
Ox1FFFF80 8 KB
Ox1FFFFOO0 16 KB
Ox1FFFEOO 32 KB
0x1FFFCO0 64 KB
Ox1FFF800 128 KB
Ox1FFFO0O0 256 KB
Ox1FFEO00 512 KB
continued...
(3) The MASK and LIMIT fields are mutually exclusive.
Embedded Design Handbook D Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Software System Design with a Nios II Processor

EDH | 2018.11.12

MASK Encoding Region Size

0x1FFC000 1 MB

0x1FF8000 2 MB

0x1FF0000 4 MB

0x1FE0000 8 MB

0x1FC0000 16 MB

0x1F80000 32 MB

0x1F00000 64 MB

0x1E00000 128 MB

0x1C00000 256 MB

0x1800000 512 MB

0x1000000 1GB

0x0000000 2 GB
If the mpuacc register is configured with the LIMIT field, LIMIT represents the
address immediately following the upper end of your region. For example, suppose the
MPU’s minimum region size is 64 bytes, and you need to set up the following region:
e The region starts at 0x1000
e The region ends at Ox1FFF
To set up the desired region, configure mpubase .BASE and mpuacc.LIMIT as shown
in the following list:
e Set mpubase.BASE to 0x40, which is 0x1000/64
e Set mpuacc.LIMIT to 0x80, which is 0x2000/64
Use the C field to specify whether a data region is to be cached. Usually, you set C for
memory regions and clear it for regions representing registers or general-purpose
memory-mapped I/0.
The PERM field defines the permissions for the region, as shown in the two tables
below.

Table 24. Instruction Region Permission Encodings
PERM Encoding Supervisor Permissions User Permissions

000 Noe None

001 Execute None

010 Execute Execute

Table 25. Data Region Permission Encodings
PERM Encoding Supervisor Permissions User Permissions
000 None None
001 Read None
continued...

D Send Feedback

Embedded Design Handbook

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

PERM Encoding Supervisor Permissions User Permissions
010 Read Read
100 Read/Write None
101 Read/Write Read
110 Read/Write Read/Write

Related Information
Adding the MPU Hardware on page 185

Defining Regions with mpubase and mpuacc

The mpubase register works in conjunction with the mpuacc register to set and
retrieve MPU region information. Use the RD and WR fields of mpuacc to instruct the
MPU to perform an MPU region read or write, as shown in the following list:

e Set mpuacc.RD = 1 to perform an MPU region read operation.

e Set mpuacc.WR = 1 to perform an MPU region write operation.
Note: Simultaneously setting both the RD and WR fields to 1 results in undefined behavior.

An MPU region must be disabled if it is not in use. To disable a region, software sets
up the following conditions:
e mpubase.BASE is any nonzero value.

e If the MPU is configured to define region size by mask, mpuacc .MASK represents
0x80000000, which is 23! (the size of the Nios II address space). For example, if
the minimum region size is 64, or 0x40 bytes, mpuacc.MASK is 0x80000000 /
0x40, or 0x20000000.

e If the MPU is configured to define region size by limit, mpuacc.LIMIT = O.
4.3.2.2.4. Region Layout Considerations

This section describes how to select MPU region locations and sizes to make the most
effective use of the MPU. For information about the mechanics of setting up MPU
regions, refer to "MPU Register Details” section.

Each region size must be an integer power of two. You must ensure that each region is
aligned to an address that is an integer multiple of its size.

Embedded Design Handbook D Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Figure 40. MPU Data Region Example (Addresses not to scale)

small exclusion region

0x0

0x100

0x140

0x1000

0x1800
0x10000

0x14000

0x20000

0x21000
0x21040

0x22000

0x80000000

jtag_uart Region
(read & write permissions ;
uncached)

jtag_debug_module Region
(read & write permissions;
cached)

instr_ram Region
(read & write permissions;
cached)

stack_ram Region
(read & write permissions;
cached)

A low-priority exclusion region spans the entire 2 GB address space from 0x0 to

0x80000000.

Regions can overlap. For example, you can place a higher-priority region inside a

lower-priority region. region[3] in mpu_utils.c illustrates this technique, creating a

small exclusion region from 0x21000 to 0x21040, as shown in Figure 3. Any access to
addresses in the 0x21000 to 0x21040 range is controlled by the exclusion region

rather than the stack_ram region (region[4]), because the exclusion region has the
higher priority.

D Send Feedback

Embedded Design Handbook

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

| | ®
< l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

Figure 41. MPU Instruction Region Example (Addresses not to scale)

0x0
01000 jtag_debug_module Region
0x1800 (execute permission)
0x10000
instr_ram Region
(execute permission)
(0x14000
0x80000000

A low-priority exclusion region spans the entire 2 GB address space from 0x0 to
0x80000000.

Related Information
MPU Register Details on page 188
4.3.2.2.5. Flow Summary
In a Nios II system with an MPU, whenever MPU initialization or reinitialization is
required, the software is responsible for the following tasks:
1. Ensure that the MPU is disabled.

Note: At system reset, the MPU is disabled by default. At other times, software
must disable the MPU before reconfiguring regions.

Initialize and configure the MPU with region information.

Enable the MPU prior to executing task-specific or single-threaded application
code.

Embedded Design Handbook D Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.3.3. Nios II MPU Design Examples

The desigh examples accompanying this section illustrate the use of the Nios II MPU in
a single-threaded environment, such as the Intel FPGA HAL.

4.3.3.1. Example Hardware

The simple hardware designs, emphasizing MPU usage, are easily portable to other
hardware platforms. There are two design examples, both targeting the NEEK. In one,
the MPU specifies region sizes by mask, and in the other the MPU specifies region
sizes by limit. Aside from this detail of MPU instantiation, the two designs are
identical.

The address map is designed to make MPU configuration very straightforward. For
instance, the instr_ram and stack_ram memories reside on valid region boundaries,
and the JTAG UART base address is unique and aligned to a valid region boundary, as
illustrated in Figure 40 on page 193.

The figure below illustrates one of the design examples as it appears in Platform
Designer. The hardware addresses fall on valid MPU region boundaries. While this
constraint is not required, it is more convenient for the software engineer.

Figure 42. MPU Example Hardware System

Use = Conn.. Module Name Description Clock Base End Tags IRQ

Nios Il Processor
instruction_master Avalon Memory Mapped Master [clkin

data_master Avalon Memory Mapped Master IRQ 0O IRQ 31
ftag_debug_module |Avalon Memery Mapped Slave 0x00001000 (0x000017£E
B stack_ram On-Chip Memory (RAM or ROM)
s1 Avalon Memory Mapped Slave clkin 0x00020000 |0x0QQ0Z1££E
B instr_ram On-Chip Memory (RAM or ROM)
el Avalon Memory Mapped Slave clkin 0x00010000 |0x00013££5
E jtag_uart JTAG UART
avalon_jtag_slave Avalon Memory Mapped Slave clkin 0x00000100 |0x00000107 P a

4.3.3.2. Software
The design files accompanying this section include the following example software
projects:

e mpu_basic—Configures the MPU with several data and instruction regions, and
prints a simple message.

e mpu_exc_detection—Configures the MPU with the same data instruction regions
as in mpu_basic, and sets up an exception handler to detect the following
conditions:

— Null pointer
— Wild pointer

— Stack overflow

The software examples in each subdirectory are identical. The code is written to detect
the whether the MPU is configured for mask or limit region sizes, and to behave
appropriately.

D Send Feedback Embedded Design Handbook

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

The mpu_exc_detection example detects stack overflow by creating a small high-
priority exclusion data region in the middle of a larger data region where both the
stack and the heap reside. Whenever the stack grows downwards or the heap grows
upwards into this exclusion region, the MPU triggers an exception and the software
detects it.

The mpu_exc_detection example detects null pointer usage by making sure that no
regions include offset 0x0. The example system is designed such that no components
(memory or otherwise) are located at this offset. If software attempts to access
address 0x0, the MPU triggers an exception, allowing the software to recover. If you
ensure that memories are preinitialized to zero, null pointer detection helps protects
against uninitialized data access.

The mpu_exc_detection example detects wild pointer usage by creating very large
low-priority exclusion regions covering the majority of the memory map. In this way, if
the Nios II processor attempts to access an address outside of valid memory and
peripheral I/O address space, the MPU triggers an exception and software can detect
it.

Both of these software examples use the MPU utility functions and macros in
mpu_utils.c and mpu_utils.h. In both examples, initialization and reinitialization are
handled by two functions: one for data regions, and one for instruction regions. In
most real-world systems, a single function is sufficient to handle initialization and
reinitialization for both types of regions.

4.3.3.2.1. MPU Utilities

You can find helpful MPU utility functions and macros in the mpu_utils.c and
mpu_utils.h files in each software example. The following functions are the most
important for you to understand:

e nios2_mpu_data_init()—A system-specific function. In your own code, write
an equivalent function to specify the MPU data regions in your design.

e nios2_mpu_inst_init()—A system-specific function. In your own code, write
an equivalent function to specify the MPU instruction regions in your design.

e nios2_mpu_load_region()—Configures an MPU region with specific
parameters.

e nios2_mpu_enable()—Enables the entire MPU.
e nios2_mpu_disable()—Disables the entire MPU.

Each utility function makes use of the Nios2MPURegion data structure shown in the
example below.

Example 24. Nios2MPURegion Data Structure
typedef struct
unsigned int base;
unsigned int index;
unsigned int mask;
unsigned int c;

unsigned int perm;
} Nios2MPURegion;

Embedded Design Handbook D Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel
EDH | 2018.11.12

The example below shows nios2_mpu_inst_init() for the mpu_basic software
example. The constants NIOS2_MPU_NUM_INST_REGIONS and
N10S2_MPU_REGION_USES_LIMIT are defined in system.h.

In nios2_mpu_inst_init() in the mpu_basic Software Example on page 197,
region[0] grants execution access to the instr_ram memory in both user and
supervisor modes, as shown in Figure 41 on page 194. region[1] grants execution
access to the break and trace memory (starting at 0x1000) in both modes. The other
two MPU instruction regions grant no execution permissions to the entire Nios II
address space. Because their priorities, 2 and 3, are lower than the first two regions,
the code stored in the Instr_ram runs, and the break and trace features work
correctly. However, if code attempts to execute outside those regions, the MPU
triggers an exception.

The final statement in nios2_mpu_inst_init() calls nios2_mpu_load_region()
to configure the region with the information contained in the structure.

Example 25. nios2_mpu_inst_init() in the mpu_basic Software Example

void nios2_mpu_inst_init()
{
unsigned int mask;
Nios2MPURegion region[N10S2_MPU_NUM_INST_REGIONS];

//Main instruction region.
region[0].index = 0;

region[0] .base = 0x400; // Byte Address 0x10000
#ifdef NI0S2_MPU_REGION_USES_LIMIT

region[0].-mask = 0x500; // Byte Address 0x14000
#else

region[0] -mask = Ox1FFFFOO;
#endif

region[0].c = 1;

region[0] -perm = MPU_INST_PERM_SUPER_EXEC_USER_EXEC;

//1Instruction region for break address.
region[1].index = 1;
region[1l].base = 0x40; // Byte Address 0x1000
#ifdef N10S2_MPU_REGION_USES_LIMIT
region[l1].-mask = 0x60; // Byte Address 0x1800
#else
region[1l].-mask = Ox1ffffeO;
#endif
region[l].c = 1;
region[1].perm = MPU_INST_PERM_SUPER_EXEC_USER_EXEC;

//Rest of the regions are maximally sized and permissive.
#ifdef NI10S2_MPU_REGION_USES_LIMIT
mask = 0x2000000;
#else
mask = Ox0;
#endif
unsigned int num_of_region = NI0S2_MPU_NUM_INST_REGIONS;
unsigned int index;
for (index = 2; index < num_of_region; index++){
region[index] -base = 0x0;
region[index].-index = index;
region[index] -mask = mask;
region[index].c = 0O;
region[index] -perm = MPU_INST_PERM_SUPER_NONE_USER_NONE;
¥

nios2_mpu_Jload_region(region, num_of_region, 0);

[;:J Send Feedback Embedded Design Handbook

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

Example 26.

EDH | 2018.11.12

The example below shows the function prototype for nios2_mpu_load_region().

nios2_mpu_load_region()

void nios2_mpu_load_region (
Nios2MPURegion region[],
unsigned int num_of _region,
unsigned int d);

The following list shows the arguments to nios2_mpu_Jload_region():
¢ Nios2MPURegion—AnN array of data structures, each representing an MPU region

e num_of_region—The number of regions

e d—The region type (instruction or data)

nios2_mpu_load_region() configures the MPU according to the arguments passed
by the calling function.

The MPU is disabled by default at system restart. After the MPU is configured, the
example uses nios2_mpu_enable() and nios2_mpu_disable() to enable and
disable the MPU. Whenever you reconfigure the MPU, you must first disable it, and re-
enable it after configuring.

The software examples accompanying this section are commented to help you
understand how each example works. Most of the complexity of managing the MPU
and its regions is embodied in the MPU utility functions and macros in mpu_utils.c
and mpu_utils.h, allowing you to focus on the top-level software flow.

4.3.3.2.2. Building the Software

Embedded Design

198

To create and build a software example, execute the following steps:

1. Identify the directory containing the software example that you want to run, based
on the hardware example that you want to use. For example, to run the
mpu_basic software example on the MPU_Design_limit hardware design
example, the directory is <design examples>/MPU_Design_limit/
software_examples/app/ mpu_basic.

2. Use one of the following methods to open the Nios II Command Shell:

e In the Windows operating system, on the Start menu, point to Programs >
Intel FPGA > Nios II EDS <version>, and click Nios II <version>
Command Shell.

e In the Linux operating system, in a command shell, execute the following
commands:

cd $SOPC_KIT_NI0OS2
-/sdk_shell

3. Change directories to the software example directory identified in Step 1.
Type the following command:

./create-this-app

Handbook [;:J Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel

EDH | 2018.11.12

5.

After the projects are generated and built, configure your board with the hardware
image and run the software with the following commands:

nios2-configure-sof -C ../../../
nios2-download -g <example>_elf && nios2-terminal

Each software example displays information on the screen. The output from the
mpu_basic example resembles the example below.

Example 27. mpu_basic Console Output

Using cable "Intel FPGA Download Cable [USB-0]", device 1, instance 0x00
Pausing target processor: OK

Initializing CPU cache (if present)

oK

Downloaded 3KB in 0.0s

Verified OK

Starting processor at address 0x00010020

nios2-terminal: connected to hardware target using JTAG UART on cable
nios2-terminal: "Intel FPGA Download Cable [USB-0]", device 1, instance 0O
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Hello from a simple MPU-Enabled Nios 11 System!.
vall = Oxfeedface, val2 = Oxfeedface, val3 = 0x@.

The output from the mpu_exc_detection example resembles mpu_exc_detection
Console Output on page 199.

mpu_exc_detection Console Output

Example 28. mpu_exc_detection Console Output

Using cable "Intel FPGA Download Cable [USB-0]", device 1, instance 0x00
Pausing target processor: OK

Initializing CPU cache (if present)

oK

Downloaded 5KB in 0.0s

Verified OK

Starting processor at address 0x00010110

nios2-terminal: connected to hardware target using JTAG UART on cable
nios2-terminal: "Intel FPGA Download Cable [USB-0]", device 1, instance O
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Hello from a simple MPU-Enabled Nios Il System!.
Starting some exceptions tests.

MPU NULL data pointer test.

MPU NULL data pointer test passed!
MPU wild pointer test.

MPU wild pointer test passed!

MPU stack overflow test.

MPU stack overflow test passed!

Exception Tests ended.
Now exiting program.

For further details, refer to the source code and the <design examples>/ReadMe.txt
file accompanying the examples.

If the software example appears to hang, verify that you have configured your board
with the correct .sof.

D Send Feedback Embedded Design Handbook

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.4. Profiling Nios II Systems

This chapter describes the methods to measure the performance of a Nios II system
with the GNU profiler (nios2-elf-gprof), the performance counter component, and
the timestamp interval timer component. This chapter also includes two tutorials to
measure performance in the Intel Nios II Software Build Tools (SBT) development
flow.

The Nios II development environment provides several tools to analyze the
performance of your project. The software-only GNU profiler approach adds minimal
overhead. To analyze deterministic real-time performance issues, you can use a
hardware timer or a performance counter. To choose the best tool for your task,
consider the problem that you are solving.

4.4.1. Requirements

You must be familiar with the Nios II SBT development flow for Nios II systems,
including the Quartus Prime software and Platform Designer to use the tutorials.

4.4.1.1. Obtaining the Hardware Design
The tutorials in this chapter work with the Nios II Ethernet Standard Design Example.

To use the design example, unzip the .zip for your development kit to a working
directory on your system.

Note: This chapter refers the software example directory as <project_directory>.
Related Information
Profiling Nios II Systems Design Example Webpage

4.4.1.2. Obtaining the Software Examples

To obtain the software examples for this chapter, follow these steps:

1. Download the profiler_software_examples.zip.

2. Unzip the profiler_software_examples.zip to <project_directory> in your
system.

Note: This chapter refers the directory as <profiler_software_examples>.

Related Information

Profiling Nios II Systems Design Example Webpage

4.4.2. Tools

You can use the GNU profiler without making any hardware changes to your Nios II
system. This tool directs the compiler to add calls to profiler library functions into your
application code.

The performance counter component and the timestamp component are minimally
intrusive hardware methods for measuring the performance of a Nios II system. This
chapter describes and compares the two components. To use these methods, you add

Embedded Design Handbook D Send Feedback

200

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-net-std-de.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-profiling-de.html
https://www.intel.com/content/dam/altera-www/global/en_US/others/literature/an/profiler_software_examples.zip
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-profiling-de.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

the hardware components to your system, and you add macro invocations to your
source code to start and stop the components. The hardware components perform the
measurements.

Compiler speed optimizations affect functions to widely varying degrees. Compiler size
optimizations also affect functions in different ways. These differences impact the
cache usage and the resource contention, which can change the relative start times
and therefore increase the execution times of functions. For these reasons, you must
optimize your code with the -O3 compiler switch, and then perform profiling on the
code to gain the most insight on how to improve an application in its final form.

The tutorials use three tools to measure the performance of a Nios II system, as
described in the following sections:

e GNU Profiler

e Intel Performance Counter

e High-Resolution Timer

In addition, the program counter trace collection tool is available for some Nios II
processors. However, the tutorials do not use this tool.

You use the GNU profiler to identify the areas of code that consume the most CPU
time, and a performance counter or a timer component to analyze functional
bottlenecks.

4.4.2.1. GNU Profiler
You must make minimal changes to the source code to take measurements for
analysis with the GNU profiler. To implement the required changes, follow these steps:

1. In the Nios II SBT, enable the GNU profiler in your project by turning on the
hal _.enable_gprof and hal _.enable_exit board support package (BSP)
settings.

Note: If you use the Nios II SBT for Eclipse, the software enables
hal _enable_exit by default.

2. Verify that your main() function returns.

Note: When main() calls return() or terminates, alt_main() calls exit() as
appropriate for profiling. The exit() function runs the BREAK 2
instruction, which causes the profiling data to write to the gmon.out on the
host computer.

3. Rebuild the BSP and the application project.

4.4.2.2. Intel Performance Counter

A performance counter is a block of counters in the hardware that measures the
execution time of the code sections that you choose. A performance counter
component can track up to seven code sections. By default, the component tracks
three code sections. A pair of counters tracks each code section:

e Time—A 64-bit time (clock tick) counter that counts the number of clock ticks
during code section runs.

e Occurrences—A 32-bit event counter that counts the number of times the code
section runs.

D Send Feedback Embedded Design Handbook

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

Note:

Note:

EDH | 2018.11.12

You can change the maximum number of measured code sections by editing the
performance counter component in Platform Designer.

These counters enable you to measure the execution time of the designated sections
of C/C++ code. Macros enable you to mark the start and the end of the code sections
in your program. The performance counter component has up to seven pairs of
counters, supporting as many as seven measured sections of C/C++ code. You must
add macros to your code at the start and end of each measured section. An additional,
built-in pair of counters aggregates the individual code section counters, enabling you
to measure each section as a fraction of a larger program.

You can use performance counters for analyzing determinism and other runtime
issues.

The performance counter component occupies a substantial number of logic elements
(LEs) on your device, and requires software implementation to obtain performance
measurements.

4.4.2.3. High-Resolution Timer

A high-resolution timer, in contrast to a performance counter component, does not use
a large number of LEs on your device, and does not require heavy implementation of
every function call in your code to obtain performance measurements. Timers require
explicit read calls in the sections of the source code that you want to measure, so their
use is better suited for pinpointing the performance issues in a program. You must
implement the source code manually; however, because this implementation is less
pervasive, therefore, this implementation is also less intrusive. Unlike the performance
counter macros, the timer requires many more processor cycles to make two function
calls; one to read the time at the beginning of a measured section, and one to read
the time at the end.

4.4.2.4. Program Counter Trace Information

The Nios II processor can generate complete and accurate program counter trace
information. However, the GNU profiler does not use this information. To generate this
information, you must have a Nios II processor configured with a JTAG debug module
of level 3 or greater. The level 3 JTAG debug module creates on-chip trace data. You
can capture approximately a dozen instructions in the on-chip trace buffer.

You can obtain a much larger trace by configuring a Nios II core with a level 4 JTAG
debug module to generate off-chip trace information; however, you need a First Silicon
Solutions, Inc. (FS2) or Lauterbach Datentechnik GmBH (Lauterbach)
(www.lauterbach.com) hardware to collect this off-chip trace data.

For more information about the Lauterbach hardware, refer to the “Debuggers” section
in the Debugging Nios II Designs chapter.

4.4.3. Using the GNU Profiler to Measure Code Performance

The following sections explain the advantages and limitations of using the GNU profiler
for performance analysis. A tutorial demonstrates the use of the GNU profiler to collect
and analyze performance data.

Embedded Design Handbook D Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

4.4.3.1. GNU Profiler Advantages

The major advantage to measuring performance with the GNU profiler is that the GNU
profiler provides an overview of the entire system. Although the GNU profiler adds
some overhead, the GNU profiler distributes this overhead throughout the system
evenly. The functions the GNU profiler identifies as consuming the most processor
time also consume the most processor time when you run the application at full speed
without profiler implementation.

4.4.3.2. GNU Profiler Limitations

Adding instructions to each function call for use by the GNU profiler affects the
behavior of the code in the following ways:

e Each function is slightly larger due to the additional function call to collect profiling
information.

e The entry and the exit time of each function due to profiling information collection.

e The instruction-cache misses are higher because the profiling function is in the
instruction cache memory.

e Memory that records the profiling data can change the behavior of the data cache.

These effects can mask the time sensitive issues that you are trying to uncover
through profiling.

The GNU profiler determines the percentage of time spent in each function by
interpolation, based on periodic samplings of the program counter. The GNU profiler
ties the periodic samples to the timer tick of the system clock. The GNU profiler can
take samples only when you enable interrupts, and therefore cannot record the
processor cycles spent in interrupt routines.

The GNU profiler cannot profile individual functions. You can use the GNU profiler to
profile the entire system, or not at all.

The profiling data is a sampling of the program counter at the resolution of the system
timer tick. Therefore, the profiling data provides estimation, not an exact
representation, of the processor time spent in different functions. You can improve the
statistical significance of the sampling by increasing the frequency of the system timer
tick. However, increasing the frequency of the tick increases the time spent recording
samples, which in turn affects the integrity of the measurement.

Note: To use the GNU profiler successfully with your custom hardware design, you must
ensure that your design includes a system clock timer. The GNU profiler requires this
component to produce proper output.

4.4.3.3. Software Considerations

The GNU profiler implements your source code with functions to track processor
usage.

4.4.3.3.1. Profiler Mechanics

You enable the GNU profiler by turning on the hal.enable_gprof switch in the scripts to
generate the BSP. Turning on this switch automatically turns on the -pg compiler
switch and then links the profiling library code in the altera_nios2 software component
with the BSP. This code counts the number of calls to each profiled function.

D Send Feedback Embedded Design Handbook

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

Note:

EDH | 2018.11.12

The -pg compiler option forces the compiler to insert a call to the mcount() function
(located in the file altera_nios2/HAL/src/alt_mcount.S) at the beginning of
every function call. The calls to mcount() track every dynamic parent and child
function call relationship to enable the construction of a call graph. The option also
installs nios2_pcsample()function (located in the file altera_nios2/HAL/src/
alt_gmon.c) that samples the foreground program counter at every system clock
interrupt. When the program executes, the GNU profiler collects data on the host of
the gmon.out. The nios2-elf-gprof utility can read this file and display profiling
information about the program.

The profiling code operates on the target by performing the following steps:

1. The Compiler implements function prologues with a call to mcount() to enable
the Compiler to determine the function call graph. The GNU profiler documentation
refers to this data as the function call arc data.

2. The timer interrupt handler registers an alarm to capture information about the
foreground function (histogram data) that executes when the alarm triggers.

3. The heap allocates a target memory to store the profiling data.
When your code exits with a BREAK 2 instruction, the nios2-download utility
copies the profiling data from the target to the host.

The nios2-elf-gprof utility requires the function call arc data and the histogram data
to work correctly.

For more information about the GNU profiler, refer to the Nios II GNU profiler
documentation, included with the GCC documentation, available on the Nios II
Embedded Design Suite Support page of the Intel website.

4.4.3.3.2. Profiler Overhead

Memory

Using the GNU profiler impacts memory and processor cycles.

The impact of the profiling information on the .text section size is proportional to the
number of small functions in the application. The code overhead—the size of

the .text section—increases when the GNU profiler enables profiling, due to the
addition of the nios2_pcsample() and mcount() functions. The GNU profiler
implements the system timer with a call to nios2_pcsample(), and implements
every function with a call to mcount(). The .text section increases by the additional
function calls and by the sizes of these two functions.

To view the impact on the .text section, you can compare the sizes of the . text
sections in the .objdump.

The GNU profiler uses buckets to store data on the heap during profiling. Each bucket
is two bytes in size. Each bucket holds samples for 32 bytes of code in the .text
section. The total number of profiler buckets allocated from the heap is when you
divide the size of the .text section by 32. The heap memory that the GNU profiler
buckets consume is therefore:

((.text section size) / 32) x 2 bytes

Embedded Design Handbook D Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

The GNU profiler measures all functions in the object code that the GNU profiler
compiles with profiling information. This set of functions includes the library functions,
which include the run-time library and the BSP.

Processor Cycles

The GNU profiler tracks each individual function with a call to mcount(). Therefore, if
the application code contains many small functions, the impact of the GNU profiler on
processor time is larger. However, the resolution of the profiled data is higher. To
calculate the additional processor time consumed by profiling with mcount(), multiply
the amount of time that the processor requires to execute mcount() by the number
of run-time function calls in your application run.

On every clock tick, the processor calls the nios2_pcsample() function. To calculate
the required additional processor time to perform profiling with nios2_pcsample(),
multiply the time the processor requires to execute this function by the number of
clock ticks that your application requires, which includes the time the mcount() calls
and execution requires.

To calculate the number of additional processor cycles used for profiling, add the
overhead you calculated for all the calls to mcount() to the overhead you calculated
for all the calls to nios2_pcsample().

4.4.3.4. Hardware Considerations

The GNU profiler requires only a system timer. If your Nios II hardware design
includes a system timer, you do not need to change your design.

4.4.3.5. Tutorial: Using the GNU Profiler

Note:

For demonstration purposes, this tutorial uses the Nios II Ethernet Standard design
example for the Nios II Embedded Evaluation Kit, Cyclone III Edition (NEEK)
development kit. You could use other similar design examples which target your
development kit.

To configure your device with the design example, follow these steps:

1. Start the Intel Quartus Prime software.

On the File menu, click Open Project.

Open niosii_ethernet_standard_3c25.qpf.

On the Tools menu, click Programmer.

Click Start to download the SRAM Object File (.sof) to your device.

ik N

If the software disabled the Start button, or the Hardware Setup field does not list
the Intel FPGA Download Cable, refer to the Introduction to the Quartus Software
manual for more details on the Programmer tool.

4.4.3.5.1. Profiler Example with the Nios II Command Line

D Send Feedback Embedded Design Handbook

205

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(inteD

4. Software System Design with a Nios II Processor
EDH | 2018.11.12

Creating the Profiler Software Example

To create the profiler_gnu software project in the Nios II command-line flow, follow
these steps:

1.

Open a Nios II command shell by executing one of the following steps, depending
on your environment:

e In the Windows operating system, on the Start menu, point to Programs >
Intel FPGA > Nios 1l EDS <version>, and click Nios II <version>
Command Shell.

e In the Linux operating system, in a command shell, change directories to
<Nios II EDS install path>, and type the command ./sdk_shell.

Change to the directory <profiler_software_examples>/app/profiler_gnu

Create and build the application with the create-this-app script, by typing the
following command:

./create-this-app

The create-this-app script runs the create-this-bsp script, which reads settings
from the parameter_definition.tcl in <profiler_software_examples>/bsp/
hal_profiler_gnu. This Tcl file contains the following lines:

set_setting hal.enable_gprof true

set_setting hal.enable_exit true

The first setting enables the GNU profiler, and the second setting enables the
alt_main() function to call exit() following main().

Running the Profiler Software Example

To run the application and collect the GNU profiler data, follow these steps:

1.
2.

Open a second Nios II command shell.

In the second shell, open a nios2-terminal session by typing the following
command:

nios2-terminal

In your original Nios II command shell, download the .elf to the development
board, run your design, and write the GNU profiler data to the gmon.out, by
typing the following command:

nios2-download -g --write-gmon gmon.out *._elf

The GNU profiler collects data while the application runs, and then writes the data
to the gmon.out when the application calls the exit() function. The figure below
shows an example of the GNU profiler output in the Nios II command shell.

Exit nios2-terminal by typing control-C.

Embedded Design Handbook D Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

Figure 43.

GNU Profiler Output on Nios II Command Shell

=+ Nios Il EDS 9.1

Wlelcome To Altera SOPC Builder

me to the Nios Il Embedded Design Suite
on 9.1, Built Tue Jan 26 808:59:48 PST 20186

Example designs can be found in
Fd ’,

/?spl/nios2eds/examples

pt: c:i/alteras%1ispl/nios2eds/user.bashrc)

nal
to hardware tavget using JIAG UART on cable
ter [USB-81%, device 1, instance 8

{Use the IDE op button or Ctrl-C to terminate’

Hello from MNios Il Profiler Checksum Test?
hecksum value: 55875 total.

Creating the GNU Profiler Report

When you run your project, your project creates the gmon.out. You must format this
file to a readable format. To format this file, follow these steps:

1. In the original Nios II command shell, change your directory to
<profiler_software_examples>/app/profiler_gnu.

2. Type the following command:
nios2-elf-gprof profiler_gnu.elf gmon.out > report.txt
3. Use any text editor to view the report.txt.

For more information about the GNU profiler report, refer to “Analyzing the GNU
Profiler Report”.

4.4.3.5.2. Profiler Example with Nios II SBT for Eclipse

Creating and Running the Profiler Software Example

1. Start the Nios II SBT for Eclipse.

2. Under File menu, point to New, and click Nios II Application and BSP from
template.

3. Set Platform Designer Information File name by browsing to locate the
Platform Designer Information File (.sopcinfo) in <project_directory>.

Name your project, such as profiler_gnu.
Under Templates, select Blank Project.
Click Finish to create your new project.

No u bk

Locate the <profiler_software_examples> [eclipse_source_files/profiler_gnu
folder and copy all the files in this directory. In Nios II SBT for Eclipse, right click
on profiler_gnu in Project Explorer view and select Paste.

8. Right click your project in the Project Explorer view, point to Nios II and click
BSP Editor.

D Send Feedback Embedded Design Handbook

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

9. 1In the Nios II BSP Editor, turn on hal .enable_gprof to enable the GNU profiler
in your project.

10. Generate your BSP project and exit.
11. Right click your project in the Project Explorer view and then click Build Project.

12. To download and run the profiler_gnu software, right click your project, point to
Run As, and then click Nios ITI Hardware.

Figure 44. Nios II Console After Running profiler_gnu

FfH Mios II Console 22

Hello from Nios II Profiler Checksum Test!

Checksum wvalue: 4055875 total.

Viewing the GNU Profiler Report

The software creates the gmon.out in your project folder, which you can view in the
Project Explorer view of the Nios II SBT for Eclipse. If the gmon.out does not appear,
right click on your project and select Refresh. When you open gmon.out, the Nios II
SBT for Eclipse switches to the Profiling view, in which you can view the report. For
more information about the GNU profiler report, refer to “"Analyzing the GNU Profiler
Report”.

4.4.3.5.3. Analyzing the GNU Profiler Report

The information in this section is applicable to the GNU profiler report that the
command line or the Nios II SBT for Eclipse generates.

The GNU profiler report contains information in the following formats:

o The flat profile portion of the report identifies the child functions in the order in
which they consume processing time.

e The call graph portion of the report describes the call tree of the program sorted
by the total amount of time spent in each function and its children. Each entry in
this table consists of several lines. The line with the index number at the left hand
margin lists the current function. The lines above it list the functions that called
this function, and the lines below it list the functions this one called, with
exceptions and conditions detailed further in the report itself and the GNU profiler
documentation.

Note: For more information, refer to the Nios II GNU profiler documentation, with the GCC
documentation, available at the Nios II Embedded Design Suite Support page.

The example below shows the GNU profiler report excerpts from the previous tutorial.
In the example, the flat profile shows that the checksum_test_routine() function
call consumed 79.19% of the processing time during the execution.

Embedded Design Handbook D Send Feedback

208

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

The granularity statement in the call graph report states that the report covers 2.55
seconds (2550 milliseconds). The Nios II timer (sys_clk_timer) has a 10
millisecond timer. The GNU profiler calls the timer interrupt once at the beginning,
before a full clock period elapsed, and once every 10 milliseconds thereafter. A precise
report, therefore, would show that the GNU profiler calls the timer interrupt handler
255 times. Index[13] shows that the GNU profiler calls
alt_avalon_timer_sc_irq() 256 times, which is in the precision range of this
measurement method.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
79.19 2.02 2.02 1 2.02 2.03 checksum_test_routine

18.01 2.48 0.46 1 0.46 0.46 alt_busy_sleep

Call graph (explanation follows)

granularity: each sample hit covers 32 byte(s) for 0.39% of 2.55 seconds

index % time self children called name
0.00 0.00 273/273 alt_irg_entry [106]

[13] 0.0 0.00 0.00 273 alt_irg_handler [13]
0.00 0.00 256/256 alt_avalon_timer_sc_irq [14]
0.00 0.00 17/17 altera_avalon_jtag_uart_irq [17]

4.4.4. Using Performance Counter and Timer Components

After the GNU profiler identifies areas of code that consume the most processor time,
a performance counter or a timer component can further analyze these functional
bottlenecks.

The following sections describe the advantages and limitations of using performance
counters and timers for performance analysis. A tutorial demonstrates the use of
performance counters and timers to collect and analyze performance data.

4.4.4.1. Performance Counter Advantages

Performance counters are the only mechanism available with the Nios II development
kits that provide measurements with little intrusion. You can use efficient macros to
start and stop the measurement for each measured section. A performance counter is
an order of magnitude faster than the GNU profiler. The only less intrusive way to
collect measurement data would be a completely hardware-based solution, such as a
logic analyzer configured with triggers on particular bus addresses.

4.4.4.2. Timer Advantages

Unlike the performance counter, which can track only seven sections of code
simultaneously, the timer has no such limit. You can read the timer 1,000 times and
store the timer in 1,000 different variables as a start time for a section. Then, you can
compare the timer to 1,000 end timer readings. The only practical limiting factors are
memory consumption, processor overhead, and complexity.

D Send Feedback Embedded Design Handbook

209

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

4.4.4.3. Performance Counter and Timer Hardware Considerations

Note:

Note:

One disadvantage to measuring performance with a performance counter is the size of
the counter. The performance counter component consumes a large number of LEs on
your device.

On a 3C120 device, a single performance counter component with three section
counters defined in a modified standard hardware design consumes 671 logic cells
(LCs), and 420 LC registers. In the same design, a single performance counter defined
with seven section counters consumes 1339 logic cells and 808 LC registers. The
resource usage of the performance counter component is nearly identical on all
devices.

Remove the performance counter from the final version of your system to save
resources.

The timer consumes hardware resources, although substantially less than a
performance counter. The timer also introduces an additional interrupt source in the
system that impacts interrupt latency.

Adding performance counters and timers can reduce fyax-

4.4.4.4. Performance Counter and Timer Software Considerations

Note:

A common disadvantage of performance counters and timers is the lack of context
awareness. If a timer interrupt occurs during the measurement of a section of code,
performance counters and timers add the time taken by the processor to process the
timer interrupt to the total measurement time. This effect occurs for simple interrupts
and multithreading context switching, although this effect occurs more in a
multithreaded system. Many threads or interrupt service routines might execute while
you measure the section of code, resulting in a very large, skewed measurement. The
resulting measurement distortion is unpredictable, and has no correlation with the
behavior of the code section you are attempting to measure.

To avoid context switch impacts, most multithreaded operating systems have a system
call to temporarily lock the scheduler. Alternatively, you can disable interrupts to avoid
context switches during section measurement.

Disabling interrupts or locking the scheduler affects the behavior of your system, so
you must use these techniques only as a last resort.

4.4.4.5. Performance Counter Software Considerations

You must use the PERF_BEGIN and PERF_END performance counter macros to record
the beginning and ending times of each measured section.

PERF_BEGIN and PERF_END are single writes to the performance counter component.
These macros are very efficient, requiring only two or three machine instructions.

Embedded Design Handbook D Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
4. Software System Design with a Nios II Processor l n tel)

EDH | 2018.11.12

The example below shows the PERF_BEGIN and PERF_END performance counter
macros in altera_avalon_performance_counter.h:

Example 29. PERF_BEGIN and PERF_END Performance Counter Macros in
altera_avalon_performance_counter.h

#define PERF_BEGIN(p,n) IOWR((p),(((n)*4)+1),0)
#define PERF_END(p,n) 10WR((p).,(((n)*4)),0)

4.4.4.6. The Global Counter

The performance counter component contains several counters. You can configure the
number of measured sections in Platform Designer. You have one pair of counters for
each measured section, as described in “Intel FPGA Performance Counter” section. In
addition, the performance counter component always has a global counter.

The global counter measures the total time of the measurement. When you stop the
global counter, other counters do not run. The PERF_START_MEASURING and
PERF_STOP_MEASURING macros control the global counter.

Warning: Do not attempt to manipulate the global counter in any other way.

For more information about performance counters, refer to the Performance Counter
Core chapter in the Embedded Peripherals IP User Guide.

4.4.4.7. Hardware Considerations

Performance counters and timestamp interval timers are Platform Designer
components. When you add one to an existing system, you must regenerate the
Platform Designer system and recompile the .sof in the Intel Quartus Prime software.
Timers and performance counters can eventually overflow, such as any hardware
counter.

4.4.4.8. Tutorial: Using Performance Counters and Timers

This tutorial demonstrates the use of performance counters and timestamp interval
timers to measure the performance of a Nios II system more precisely than is possible
with the GNU profiler, by identifying the sections of code that use the most processor
time.

This tutorial uses the same NEEK design as the GNU profiler tutorial. This design has
an interval timer and a performance counter. You can change the timer interval and
the number of sections that the performance counter measures.

4.4.4.8.1. Modifying the Nios II Hardware Design

You must modify the Nios II Ethernet Standard design example for this tutorial. To
modify the Nios II Ethernet Standard design example, follow these steps:

In Intel Quartus Prime software, on the Tools menu, click Platform Designer.

2. In <project_directory>, click peripheral_system.qgsys.
3. Right click the high_res_timer module and then click Edit.
4. Under Timeout period, set the interval time Period to 1 and the units to us
(microseconds).
D Send Feedback Embedded Design Handbook

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10.

11.
12.
13.

14.

4. Software System Design with a Nios II Processor
EDH | 2018.11.12

Click Finish.
On the File menu, click Save.

The Nios II Ethernet Standard design example is a hierarchal based design. To
generate the system, on the File menu, click Open, and then select
eth_std_main_system.qsys.

Click the Generation tab.

Turn on the Create HDL design files for synthesis and Create block symbol
file (.bsf) options.

Ensure that the Output Directory path is <project_directory>/
eth_std_main_system.

Click Generate. Save the system if the software prompts you to do so.
Exit Platform Designer when generation is complete.

To generate the .sof, in the Intel Quartus Prime software, on the Processing
menu, click Start Compilation.

Click OK when the following message appears:

Full Compilation was successful

4.4.4.8.2. Programming the Hardware Design to Your Device

After compiling your modified hardware design, you can program the hardware design
to your device. To do so, follow these steps:

1.
2.

On the Tools menu, click Programmer.
Click Start to download the .sof to your device.

If the software disables the Start button, or the Hardware Setup field does not
list the Intel FPGA Download Cable cable, refer to the Introduction to the Quartus
Software manual for more details on the Programmer tool.

4.4.4.8.3. Performance Counter Example with the Nios II Command Line

This section describes how to create and run the performance counter software
example with the Nios II command line.

Creating the Performance Counter Software Example

To create the profiler_performance_counter software project in the Nios II
software build flow, follow these steps:

1. Open a Nios II command shell as described in “Creating the Profiler Software
Example”.
2. Change to the <profiler_software_examples>/app/
profiler_performance_counter directory.
3. Create and build the application by typing the following command:
./create-this-app
Embedded Design Handbook D Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
4. Software System Design with a Nios II Processor l n tel
EDH | 2018.11.12

The create-this-app script runs the create-this-bsp script, which reads settings
from the parameter_definition.tcl in <profiler_software_examples>/bsp/

hal_profiler_performance_counter. This Tcl file contains the following
lines:

set_setting hal.sys_clk_timer peripheral_subsystem_sys_clk_timer
set_setting hal.timestamp_timer peripheral_subsystem_high_res_timer
set_setting hal.enable_gprof true

set_setting hal.enable_exit true

The first two lines set the system clock timer and timestamp timer to the
corresponding timers in the Platform Designer system.

The third line enables the GNU profiler, and the last line enable the alt_main()
function to call exit() following main().

Running the Performance Counter Software Example

To run the application and collect the GNU profiler data, follow these steps:
1. Open a second Nios II command shell.

2. In the second shell, open a nios2-terminal session by typing the following
command:

nios2-terminal

3. In your original Nios II command shell, run the program by typing the following
command:

nios2-download -g *.elf

The figure below shows an example of the output that appears in the Nios II
command shell. Your output might vary. For more information, refer to “Analyzing
the Performance Counter Report”.

Figure 45. Performance Counter Report on Nios II Command Shell

o Altera Nies Il EDS 11.0 [gcc4]

iting due to “C on host
inal

UART on cable
ce B

terminate

5118382 ticks

t = 2551689801 ticks

125000880
t

D Send Feedback Embedded Design Handbook

213

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

4.4.4.8.4. Performance Counter Example with Nios II SBT for Eclipse

4. Software System Design with a Nios II Processor
EDH | 2018.11.12

This section describes how to create and run the profiler_performance_counter
software example with the Nios II SBT for Eclipse.

1.
2.

N o u ok

10.

11.

12.
13.
14.

Start the Nios II SBT for Eclipse.

Under File menu, point to New, and click Nios II Application and BSP from
template.

Set Platform Designer Information File name by browsing to the
<project_directory> directory and selecting the .sopcinfo.

Give your project a name, for example profiler_performance_counter.
Under Templates, select Blank Project.
Click Finish to create your new project.

Locate the <profiler_software_examples> [/ eclipse_source_files/
profiler_performance_counter folder, and copy all the files in this directory. In
Nios II SBT for Eclipse, right click on profiler_gnu in Project Explorer view and
select Paste.

Right click your project in the Project Explorer view, point to Nios II and click
BSP Editor.

In the Nios II BSP Editor, turn on hal .enable_gprof to enable the GNU profiler
in your project.

Set the hal .sys_clk_timer to the peripheral_subsystem_sys_clk_timer
component.

Set hal .timestamp_timer to the peripheral_subsystem_high_res_timer
component.

Generate your BSP project and exit.
Right click your project in the Project Explorer view, point to Build Project.

To run the profiler_performance_counter software, right click your application
project, point to Run As and click Nios II Hardware.

The figure below shows the Nios II Console output after running
profiler_performance_counter. The data are similar to the command-line example
in Figure 45 on page 213. For more information, refer to “Analyzing the Performance
Counter Report”.

Embedded Design Handbook D Send Feedback

214

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
4. Software System Design with a Nios II Processor l n tel
EDH | 2018.11.12

Figure 46. Performance Counter Report on Nios II Console

o D

profiler_performance_counter Nios IT Hardware configuration - cable: USB-Blaster on localhost [USE-0] device ID: 1 instance ID: 0 name: jtag_uart
Hello from Nios II Performance Checksum Test!

timestamp measurement for checksum_ test = 255122352 ticks

timestamp measurement overhead = 517 ticks

Actual time in checksum_test = 255121635 ticks

Timestamp timer frequency = 125000000

--Performance Counter Report--

Total Time: 4.08337 seconds (510421072 clock-cycles)

B T e fmmmmmmmaaas mmmmmmmmm——aaae o m e +

| Section | % | Time (sec)| Time (clocks) |Dccurrences|

R S - - -—- - -+
|15t checksum_test| 501 2.04111) 255138503 1|
B e e R A et o mmm e +
|pc_overhead |7. 84e-086| 0.00000] 401 1]
e e o o o +

| ta_overhead 19.27e-051 0.000001 4731 11
B T T e T Tt T T o mmmm e +

Goodbye from Nios IT - returning from main()!

4.4.4.8.5. Analyzing the Performance Counter Report

The information in this section is applicable to the performance counter report that the
command line or the Nios II SBT for Eclipse generates.

pc_overhead is the performance counter component overhead due to a single call to
the PERF_BEGIN macro. This number includes the overhead of executing the

PERF_BEGIN macro and the corresponding PERF_END macro for this measured
section.

ts_overhead is the timestamp overhead—the overhead of a single function call to

read the timer. This number includes the performance counter overhead to implement
the measurement.

4.4.5. Troubleshooting

The following sections describe several problems that might occur, and suggest ways
to troubleshoot the problems.

4.4.5.1. nios2-elf-gprof —annotated-source Switch Has No Effect

The profiler does not track the basic-block-count information, so switches (such
as the —annotated-source switch) do not work.

4.4.5.2. Writing to the Registers of a Nonexistent Section Counter

The performance counter report in the example below shows what happens when you
attempt to use a nonexistent section counter of the performance counter component.

Example 30. Result of Using a Nonexistent Section Counter

--Performance Counter Report--
Total Time: 5.78751 seconds (289375582 clock-cycles)

S e [Ty S [TS [TR . +
| Section | % | Time (sec) | Time (clocks) |Occurrences]
ey e oo oo oo oo e +
|sleep_tests | 49._4] 2.86162] 143081026 1]
S e F TS SR TSRS e +
|perf_begin_overhead | 7.6e-06] 0.00000] 22| 1]

D Send Feedback Embedded Design Handbook

215

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 4. Software System Design with a Nios II Processor

EDH | 2018.11.12

o o Ty TRy R o +
| timestamp_overhead | 7.6e-06] 0.00000] 22] 1]
e e oo e e oo mooeeees +
|non_existent_counter|6.37e+12]368934881474.19104] -1] 4294967295]
e o e S e +

Assume a fourth section counter specifies a performance counter component that
Platform Designer defines to have three section counters only (the default value).

In the example, the test is performed on a hardware design that does not have any
other component defined with registers mapped immediately after the registers of the
performance counter component. Therefore, there is no impact to other component.
Depending on how you configure the component register base addresses in Platform
Designer for a particular hardware design, unpredictable system behavior could occur.

4.4.5.3. Output From a printf() or perf_print_formatted_output() Call Near the
End

This issue occurs when the Nios II application executes a BREAK instruction to transfer
profiling data to the development workstation during the exit() or return() from
main().

As a workaround, call usleep(500000) before exiting or returning from main().
This call creates an adequate delay for you to transmit the I/O to the JTAG UART
before main returns (or calls exit()). If the output is still partially truncated,
increase the delay value passed to usleep(). Use #include <unistd.h> for the
usleep() function prototype.

4.4.5.4. Fitting a Performance Counter in a Hardware Design That Consumes
Most

During development, you can measure the system in a larger device than the size of
your device in a deployed system.

Configure a performance counter to have only one section counter to save the most
resources.

4.4.5.5. The Histogram for the gmon.out File Is Missing, Even Though My main()

If you do not define a system timer for the system, the profiler does not call the
nios2_pcsample() function, and does not generate the histogram for the
gmon.out. Define a system timer for your system.

4.5. Software System Design with a Nios II Processor Revision
History

Document Changes
Version

2017.06.12 Added a new section: Profiling Systems.

2016.12.19 Initial release.

Related Information
Document Revision History for Embedded Design Handbook on page 6

Embedded Design Handbook D Send Feedback

216

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

m ®
EDH | 2018.11.12 l n tel:

D Send Feedback

5. Nios II Configuration and Booting Solutions

This chapter describes the various boot or software execution options available with
the Nios II processor. You can configure the Nios II processor to boot and execute
software from different memory locations. The boot memory could be the Common
Flash Interface (CFI) flash, User Flash Memory (UFM) flash in Intel MAX 10, Intel FPGA
Serial Flash (EPCS)/Intel FPGA Quad Serial Flash (EPCQ) configuration device, Quad
Serial Parallel Interface (QSPI) flash or On-Chip RAM (OCRAM).

5.1. Introduction

The Nios II processor is a soft core processor that supports all Intel FPGA System on
Chip (SoC) and Field Programmable Gate Array (FPGA) families. There are two types
of supported boot processes—Execute-in-Place (XIP) and boot copier. Developing Nios
II embedded programs can be based on the hardware abstraction layer (HAL). The
HAL provides a small boot loader program (also known as boot copier) that copies
relevant sections from the boot memory to their run time location at boot time. You
can specify the run time locations for program and data memory by manipulating the
Nios II BSP settings. The creation and management of software projects based on the
HAL is integrated tightly with the Nios II Software Build Tools (SBT). The boot memory
could be the Compact Flash Interface (CFI) flash, Intel MAX 10 User Flash Memory
(UFM), Intel Serial Flash (EPCS)/Intel Quad Serial Flash (EPCQ) configuration device,
Quad Serial Peripheral Interface (QSPI) flash or on-chip RAM (OCRAM). Regardless of
the nature of the boot memory, HAL-based systems are constructed so that the reset
vector and all program and data sections are initially stored in the boot memory.

This document describes:

e The Nios II processor boot copier that boots your Nios II system according to the
boot memory selection

e Nios II processor booting options and general flow
¢ Nios II programming solutions for the selected boot memory

5.1.1. Prerequisites

You are required to have knowledge in instantiating and developing a system with a
Nios II processor. Intel FPGA recommends that you go through the following online
tutorials and training materials before using this application note:

e Nios II Gen2 Software Developer’s Handbook

e Nios II Flash Programmer User Guide

e AN370: Using the Serial Flash Loader with the Intel Quartus Prime Software
e Parallel Flash Loader IP Core User Guide

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

intel.

5.2. Nios II Processor Booting Methods

Table 26. Supported Flash Memories with respective Boot Options
Supported Boot Nios II Booting Application Code Application Runtime Boot Copier
Memories Options Storage Location
On-Chip Flash (UFM in | Nios II processor UFM UFM (XIP) + OCRAM/ Enable alt_load
Intel MAX 10 FPGA application execute- External RAM (for function
devices only) in-place from On-chip writable data sections)
Flash (UFM)
Nios II processor UFM OCRAM/ External RAM | Memcpy-based boot
application copied copier
from UFM to RAM
using boot copier
EPCQ Flash Nios II processor EPCQ flash EPCQ flash (XIP) + Enable alt_load ()
application execute- OCRAM/ External RAM | function
in-place from EPCQ (for writable data
flash sections)
Nios II processor EPCQ flash OCRAM/ External RAM | Memcpy-based boot
application copied copier
from EPCQ flash to
RAM using boot copier
QSPI Flash (applies to | Nios II processor QSPI flash QSPI flash (XIP) + Enable alt_load
any FPGA with a soft application execute- OCRAM/ External RAM | function
QSPI Controller) in-place from QSPI (for writable data
flash sections)
Nios II processor QSPI flash OCRAM/ External RAM | Memcpy-based boot
application copied copier
from QSPI flash to
RAM using boot copier
On-chip Memory Nios II processor OCRAM OCRAM No boot copier
(OCRAM) application execute- required
in-place from OCRAM
CFI Flash Nios II processor CFI flash CFI flash (XIP) + Enable alt_load
application execute- OCRAM/ External RAM | function
in-place from CFI flash (for writable data
sections)
Nios II processor CFI flash OCRAM/ External RAM | Memcpy-based boot

Embedded Design Handbook

218

5. Nios II Configuration and Booting Solutions

EDH | 2018.11.12

There are a few methods to boot up Nios II processor in Intel FPGA devices. The
methods to boot up Nios II processor varies according to the flash memory selection.

application copied
from CFI flash to RAM
using boot copier

copier

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

Figure 47.

Nios II Boot Flow

Reset

v

Processor jumps to reset vector (boot code start)

v

Boot code initializes the processor

v

Depending on boot options, the boot code may
copy initial values for data/code to another
memory space (alt_load)

v

Boot code initializes the application code/data
memory space/data

v

Application code may be copied to another
memory location (depending on boot options)

v

Boot code initializes all the system peripherals
with HAL drivers (alt_main)

v

Entry to main

5.2.1. Introduction to Nios II Booting Methods

5.2.1.1. Nios II Processor Application Execute-In-Place from Boot Flash

(6) Boot Flash refers to UFM, EPCQ, QSPI, or CFI flash devices.

D Send Feedback

Nios II systems require the hardware and software images to be configured in system
memory before the processor can begin executing the application program. This
section briefly describes various memory topologies that are available.

The boot flash(®) controller is designed so that the boot flash address space is
immediately accessible to the Nios II processor upon system reset, without the need
to initialize the memory controller or memory devices. This enables Nios II to execute
application code, stored on the boot devices, directly without the use of a boot copier
to copy the code to another memory type.

Embedded Design Handbook

219

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 5. Nios II Configuration and Booting Solutions

EDH | 2018.11.12

When a boot copier is not used, the Nios II application .text linker sections are set to
the boot flash memory region while .bss, .rodata, .rwdata, .stack and .heap linker
sections are set to the RAM memory region. Enable the alt_load () function in the
BSP Settings to copy the data sections (.rodata, .rwdata, .exceptions) to the RAM

upon system reset. The code section (.text) remains in the boot flash memory region.
(7)

5.2.1.1.1.alt_load ()

You may enable the alt_load () function in the HAL code. This function operates as
a mini boot copier that copies only the writable memory sections to RAM based on the
BSP settings. It optionally copies sections from the boot memory to RAM. It can copy
data sections (.rodata, .rwdata, .exceptions) to RAM but not the code sections
(.text). The code section (.text) section is a read-only section and remains in the
booting flash memory region. This partitioning helps to minimize the RAM usage but
may limit the code execution performance because accesses to flash memory are
slower than accesses to the on-chip RAM. The alt_load () function can be enabled
in the BSP Settings.

Table 27. BSP Settings
BSP Settings Functions
hal . linker.enable_alt_load Enable alt_load() function.
hal . linker.enable_alt_load_copy_rodata alt_load() copies .rodata section to RAM.
hal . linker._enable_alt_load_copy_rwdata alt_load() copies . rwdata section to RAM.
hal . linker.enable_alt_load_copy_exceptions alt_load() copies .exceptions section to RAM.

5.2.1.2. Nios II Processor Application Copied from Boot Flash to RAM Using Boot

Copier

The boot copier included with the Nios II processor, EDS, SBT, and HAL provides
sufficient functionality for most Nios II applications and is convenient to implement
with the Nios II software build tools development flow. If the system is not set up for
OCRAM or XIP boot, then the Nios II processor boot copier is automatically and
transparently added to your system software when you convert your executable files
to flash programming files.

When a boot copier is used, all linker sections

(.text, .heap, .rwdata, .rodata, .bss, .stack) are set to internal or external RAM.
Using the boot copier to copy a Nios II processor application from boot flash(®) to
internal or external RAM for execution helps to improve the execution performance.
The Nios II SBT tool suite automatically adds the Nios II processor memcpy-based
boot copier to the system when the executable file (.elf) is converted to the Memory
initialization file (.hex) because memory access times are faster for RAM.

The boot copier is placed at the reset address, if the runtime location of the .text
section is outside of the boot memory. Otherwise, the boot copier is located at the
base address of the image or file, followed by the application, unless the .text linker

(7) .text, .rodata, .rwdata, and .exceptions are part of the Nios II default section names. For
more details about these functions, refer to Nios IT Gen2 Software Developer’s Handbook.

(8) Boot Flash is referring to UFM, EPCS, EPCQ, CFI, or QPSI flash devices.

Embedded Design Handbook D Send Feedback

220

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
5. Nios II Configuration and Booting Solutions l n tel)

EDH | 2018.11.12

Note:

sections are set to the boot flash memory region. For this boot option, the Nios II
processor starts executing the boot copier software upon system reset. The software
copies the application from the boot flash to the internal or external RAM. Once this is
complete, the Nios II processor transfers the program control over to the application.

The Nios II SBT ensures that the processor software is linked and determines where
the software resides in memory. It uses the exception addresses to calculate where
each code section is linked. The Nios II SBT positions the processor's code region in
the memory component containing the exception address. Each processor has five
default linker sections. The default linker sections are as follows:

e .text—the executable code

e .rodata—any read-only data used in the execution of the code

e .rwdata—where read-write variables and pointers are stored

e _.heap—where dynamically allocated memory is located

e .stack—where function-call parameters and other temporary data is stored

SBT ensure that these sections are linked and located at fixed addresses in memory.

If the boot copier is in flash, then the alt_load () function does not need to be
called because they both serve the same purpose.

5.2.1.2.1. Memcpy-based Boot Copier

The memcpy-based boot copier is the default Nios II processor boot copier that
supports Intel MAX 10 UFM, EPCS/ EPCQ, CFI, and QSPI flash memory. The memcpy-
based boot copier has the following features:

e Locates the software application in non-volatile memory

e Unpacks and copies the software application image to Random Access Memory
(RAM)

e Automatically switches processor execution to application code in RAM after copy
completes

The boot image is located just right after the boot copier. You need to ensure the Nios
IT reset vector offset points to the start of the boot copier. Figure 48 on page 222
shows the flash memory map for EPCS/ EPCQ flash when using a boot copier. This
memory map assumes a FPGA image is also stored in the flash memory.

D Send Feedback Embedded Design Handbook

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 5. Nios II Configuration and Booting Solutions

Figure 48.

Note:

EDH | 2018.11.12

Memory Map for EPCS/EPCQ Flash with Memcpy-based Bootcopier

0x01EOE400
Customer Data (*.hex)

Application Code

Boot Copier

Reset Vector Offset —————»

0x01E00000

FPGA Image (*.sof)

0x00000000

At the start of the memory map is the FPGA image, followed by the customer data
which consists of boot copier and application code. The size of the FPGA image is
unknown and the exact size can only be known after the Intel Quartus Prime project
compilation. The Nios II reset vector offset must be set in Platform Designer and must
point to the start of the boot copier which is located after the FPGA image. You have to
determine an upper bound for the size of the FPGA image. For instance, if the size of
the FPGA image is estimated to be less than OXO1E0Q000O, you can set the Nios II
Reset Vector offset to OXO1EOOOOO in Platform Designer, which is also the start of the
boot copier.

Figure 49 on page 223 shows the memory map of a system designed for a Intel MAX
10 FPGA device using QSPI/UFM flash with the memcpy-based boot copier. Since the
FPGA image (*.sof) is stored in the MAX10 CFM section, the boot copier is located
at the base address of QSPI/UFM flash. Hence, the Nios II reset vector offset can be
set to address 0x00000000 in Platform Designer.

Embedded Design Handbook D Send Feedback

222

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
5. Nios II Configuration and Booting Solutions l n tel)

EDH | 2018.11.12

Figure 49. Memory Map of a System Using UFM with memcpy-based Boot Copier

RAM & FPGA RAM

RAM base ———»
QSPI/UFM Flash

Application Code

Boot Copier

Reset Vector offset
Memory base ——p»

0x0000000

The memcpy-based boot copier is automatically incorporated as part of the HEX file
during the memory initialization file generation ("mem_init_generate") target in the
"Nios II Software Build Tools (SBT)" section.

For more information about mem_init_generate, refer to the "Nios II SBT Makefile
"mem_init_generate" Target" section.

The source code for the memcpy-based boot copier is included with the Nios II
Embedded Design Suite (EDS) under the following directory:

<install_directory>/<version>/nios2eds/components/altera_nios2/
boot loader_sources

5.2.1.3. Nios II Processor Application Execute-In-Place from OCRAM

In this method, the Nios II reset address is set to the base address of the on-chip
memory (OCRAM). The application (.hex) file is loaded into the OCRAM when the
FPGA is configured, after the hardware design is compiled in the Intel Quartus Prime
software. Once the Nios II processor resets, the application begins executing and
branches to the entry point.

Note: This method does not require boot copier because Nios II application is already in
place at system reset.

Note: The Nios II SBT tool suite does not include boot copier in the system if the .text
Linker Section is set to OCRAM in the BSP Editor Settings.

D Send Feedback Embedded Design Handbook

223

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 5. Nios II Configuration and Booting Solutions

EDH | 2018.11.12

5.2.2. Nios II Processor Booting from On-Chip Flash (UFM)

This section describes the Nios II processor booting and executing software from on-
chip flash (UFM) available in Intel MAX 10 FPGA devices.
Intel MAX 10 FPGA devices contain on-chip flash that is segmented into two parts:

e Configuration Flash Memory (CFM)—stores the hardware configuration data for
Intel MAX 10 FPGAs.

e User Flash Memory (UFM)—stores the user data or software applications.

The UFM architecture of Intel MAX 10 devices is a combination of soft and hard IPs.
You can only access the UFM using the On-Chip Flash IP Core in the Intel Quartus
Prime software.

5.2.2.1. Intel MAX 10 FPGA On-Chip Flash Description

The Intel MAX 10 On-chip Flash IP core supports the following features:

e Read or write accesses to UFM and CFM (if enabled in Platform Designer) sectors
using the Avalon MM data and control slave interface.

e Supports page erase, sector erase and sector write.
e Simulation model for UFM read / write accesses using various EDA simulation tool.

Table 28. On-chip Flash Regions in Intel MAX 10 FPGA Devices
Flash Regions Functionality
Configuration Flash Memory (sectors CFM0-2) FPGA configuration file storage
User Flash Memory (sectors UFM0-1) Nios II processor application and/or user data
Intel MAX 10 FPGA devices support several configuration modes and some of these
modes allow CFM1 and CFM2 to be used as an additional UFM region. The following
table shows the storage location of the FPGA configuration images based on the Intel
MAX 10 FPGA's configuration modes.
Table 29. Storage Location of FPGA Configuration Images
Configuration Mode CFM2(9) | CFM1(9) CFMO
Dual compressed images Compressed Image 2 Compressed Image 1
Single uncompressed image UFM(10) | Uncompressed image

Single uncompressed image with Memory
Initialization

Uncompressed image (with pre-initialized on-chip memory content)

Single compressed image with Memory
Initialization

Compressed image (with pre-initialized on-chip memory content)

Single compressed image UFM(10) Compressed Image

(9) Sector is NOT supported in 10M02 device.

(10) The CFM sector is configured as virtual UFM.

Embedded Design Handbook D Send Feedback

224

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Nios II Configuration and Booting Solutions

intel)

EDH | 2018.11.12

Figure 50.

Note:

D Send Feedback

You must use the Intel MAX 10 On-chip Flash IP core to access to the flash memory in
Intel MAX 10 FPGAs. You can instantiate and connect the On-chip Flash IP to the Intel
Quartus Prime software. The Nios II soft core processor uses the Avalon Memory-
Mapped (Avalon-MM) interface to communicate with the On-chip Flash IP.

Connection Example for The On-chip Flash IP and the Nios II Processor

Use Connections Mame Description
= ck_0 Clodk Source
C— dk_in Clock Input
T ck_in_reset Reset Input
- ck Clack Qutput
—————— dk_reset Reset Output
= IQ nios2_genz_0 Mios I Processor
[ck Clock Input
reset Reset Input
—— data_master Avalon Memory Mapped Master
— instruction_master Avalon Memaory Mapped Master
irg Interrupt Receiver
debug_reset_request |[Reset Cutput
—p—— debug_mem_slave Avalon Memory Mapped Slave
custom_instruction_m... (Custom Instruction Master
B onchip_flash_0 Altera On-Chip Flash
[ck Clock Input
L nreset Reset Input
I: data Avalon Memory Mapped Slave
Csr Avalon Memory Mapped Slave

Make sure the On-chip Flash csr port is connected to the Nios II processor
data_master to enable the Nios II processor to control write and erase operations.

The On-chip Flash IP core can provide access to five flash sectors:

e UFMO
e UFM1
e CFMO
¢ CFM1
e CFM2

Important facts about UFM and CFM sectors:
e CFM sectors are intended for configuration (bitstream) data (*.pof) storage.

e User data can be stored in the UFM sectors and may be hidden, if the correct
settings are selected in the Platform Designer tool.

e Certain devices do not have a UFM1 sector. You can refer to Table: UFM and CFM
Sector Size for available sectors in each individual Intel MAX 10 FPGA device.

Embedded Design Handbook

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 5. Nios II Configuration and Booting Solutions

EDH | 2018.11.12

e You can configure CFM2 as a virtual UFM by selecting “Single Uncompressed
Image” configuration mode.

e You can configure CFM2 and CFM1 as a virtual UFM by selecting “Single
Compressed Image” configuration mode.

e The size of each sector varies with the selected Intel MAX 10 FPGA devices.

Table 30. UFM and CFM Sector Size
This table lists the dimensions of the UFM and CFM arrays.

Device Pages per Sector F;?zg: l';,lsae):'"l::; Con-:’-i;tuarlatio Og:?;l:M
UFM1 | UFMO | CFM2 | CFM1 | cFMo © | Memory Size | n Memory :
(Kbit) | (kbit)1D) | size (Kbit) | (KPIY)
10M02 3 3 0 0 34 16 96 544 108
10M04 0 8 41 29 70 16 1248 2240 189
10M08 8 8 41 29 70 16 1376 2240 378
10M16 4 4 38 28 66 32 2368 4224 549
10M25 4 4 52 40 92 32 3200 5888 675
10M40 4 4 48 36 84 64 5888 10752 1260
10M50 4 4 48 36 84 64 5888 10752 1638

Related Information
e MAX 10 FPGA Configuration User Guide
e MAX 10 User Flash Memory User Guide

5.2.2.2. Nios II Processor Application Execute-In-Place from UFM

This solution is suitable for Nios II processor applications which require limited on-chip
memory usage. The alt_load () function operates as a mini boot copier which
copies the data sections (-rodata, .rwdata, or .exceptions) from boot memory
to RAM based on the BSP settings. The code section (.text), which is a read only
section, remains in the Intel MAX 10 On-chip Flash memory region. This setup
minimizes the RAM usage but may limit the code execution performance as access to
the flash memory is slower than the on-chip RAM.

The Nios II processor application is programmed into the UFM sector. The Nios II
processor's reset vector points to the UFM base address in order to execute code from
the UFM after the system resets.

If you are debugging the application using the source-level debugger, you must use a
hardware break-point to debug because the UFM does not support random memory
access. Random memory access is required for soft break-point debug.

(11) The maximum possible value, which is dependent on the configuration mode you select.

Embedded Design Handbook D Send Feedback

226

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/ug_m10_config.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/ug_m10_ufm.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

Figure 51. Block Diagram
FPGA
Logic
Table 31. RAM and ROM Size Requirement

.POF

FPGA Data
.SOF

SOF
(Fm1/2

Nios Il Software

User HEX

Software
Alt_load

You can manually determine the required RAM size for the On-Chip Flash by referring to the initial part of

the .objdump file, created when you build your application.

RAM Size Requirement

ROM Size Requirement

Equivalent to the dynamic memory space usage during run time which is
the sum of the maximum heap and stack size.

Executable code must not exceed the size of
the UFM.

D Send Feedback

Embedded Design Handbook

227

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

intel.

Figure 52. Design, Configuration and Booting Flow

Design

« Create your Nios Il Processor based project using Platform Designer.
- Ensure that there is external RAM or on-chip RAM in the system design.
« Instantiate the Intel FPGA Dual Confiuration IP into your Platform Designer system if you opt for Dual Images configuration mode.

v

FPGA Configuration and Compilation

- Set the same internal configuration mode in MAX 10 On-chip Flash IP in Platform Designer and Quartus Prime software.

« Set Nios Il processor reset and exception vector based on your boot option.

- Uncheck Initialize memory content option in Intel FPGA On-Chip Flash IP to include UFM data (.HEX) separately during
programming files conversion.

- Optionally, you can check Initialize memory content option to include UFM data (.HEX) into the SOF file.

- Generate your design in Platform Designer.

- Compile your project in Quartus Prime software.

v

BSP Editor Settings

- Create Nios |1 processor HAL BSP based on .sopcinfo file created by Platform Designer.
- Edit Nios Il processor BSP settings and Linker Script in BSP Editor.
- Generate BSP project.

Application

+ Develop Nios Il processor application code.

- Compile Nios Il processor application and generate HEX file using makefile mem_init_generate target.

« Recompile your project in Quartus Prime software if you check Initialize memory content option in
Intel FPGA On-Chip Flash IP.

Programming Files Conversion, Download and Run

- Generate the .pof file using Convert Programming Files feature in Quartus Prime software.
+ Program the .pof file into your MAX 10 device.
« Power cycle your hardware.

5.2.2.2.1. Hardware Design

1. Create your Intel Quartus Prime and Platform Designer project.

2. Make sure external RAM or onchip memory (OCRAM) is added into your Platform
Designer system.

3. If dual image configuration is required, ensure that the Dual Configuration IP is
instantiated in Platform Designer (Configuration Mode is set to Dual Compressed
Images).

4. Refer to the diagram below for example IP connections in Platform Designer.

Embedded Design Handbook D Send Feedback

228

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
5. Nios II Configuration and Booting Solutions l n tel
EDH | 2018.11.12

Figure 53. Example IP Connections in Platform Designer for Booting Nios II from On-
Chip Flash (UFM)

Cornections Name: Description Export Clock Base End RQ Ta
= sys_dk Clock Source
O dkn Clock Input iclk exported
- ckin_reset Reset Input reset
——— dk (Clock Output sys_ck
———————— dkeset Reset Output

B onchip_flash \Altera On-Chip Flash
k. Clock Input sys_clk
nreset Reset Input (k]
data \avalon Memory Mapped Slave [ck] 0x0008_0000 0x000e_s£55
s \Avalon Memory Mapped Slave [ck] 0x0014_1020 0x0014_1027

B nios2 INios 11 Processor
ck (Clock Input sys_clk
reset Reset Input (k]
data_master \valon Memory Mapped Master [ch]
instruction_master Avalon Memory Mapped Master [clk]

| g Interrupt Receiver [kl 1= o 180 31
— debug_reset request Reset Output [clk]

debug_mem_slave \Avalon Memory Mapped Slave [chk] 0x0014_0800 0x0014_0££E
custom_instruction_m. .. (Custom Instruction Master

Bl onchip_mem On-Chip Memory (RAM or ROM)
ki Clock Input sys_clk
st \avalon Memory Mapped Slave [ck1] 0x0012_0000 0x0013_se£5
resetl Reset Input [ck1]

B jtag_uart UTAG UART
ck (Clock Input sys_clk
reset Reset Input (k]
avalon_jtag_slave ‘Avalon Memory Mapped Slave [ck] 0x0014_1030 0x0012_1037
irq Interrupt Sender [clk]

8 sysid System ID Peripheral
k. Clock Input sys_clk
reset Reset Input (k]
control_siave ‘Avalon Memory Mapped Slave [ck] 0x0014_1028 0x0012_1028

Bl dual_boot \Altera Dual Configuration
k. Clock Tnput sys_clk
nreset Reset Input [ch]
avalon \Avalon Memory Mapped Slave [ck] 0x0014_1000 0:x0014_101£

IP Component Settings

1. In the Nios II processor parameter editor, set the reset vector memory to On-Chip
Flash and exception vector memory to OCRAM/ ERAM or On-Chip Flash according
to your design preference.

Note: Setting the exception vector memory to OCRAM/ ERAM is recommended to
make the interrupt processing faster.

a. If exception vector memory is set to On-Chip Flash, the minimum exception
vector offset that you can set is 0x20.

Note: When executing-in-place, the Nios II processor boots and runs directly
from UFM, without copying any code at boot time. Because the Nios II
begins executing at the reset address in this case, exception vectors
must be located at a nonzero exception vector offset to allow for 32
bytes instructions between the reset vector and the base of the
exception vectors.

D Send Feedback Embedded Design Handbook

229

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tEI 5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

Figure 54. Nios II Parameter Editor Settings with Exception Vector Set to OCRAM/ERAM

Nios II Processor
altera_nios2_gen2

Main Vectors Caches and Memory Interfaces Arithmetic Instructions Mb

- Reset Vector

Reset vector memaory: onchip_flash.data W

Heset vector ofrset: 0x00000000

Reset vector: Ox00080000

- Exception Vector

Exception vector memory: onchip_mem.s1 e

Exception vector otfset: 000000020

Exception vector: Ox00120020

Figure 55. Nios II Parameter Editor Settings with Exception Vector Set to On-Chip Flash

Nios II Processor
altera_nios2_gen?

Main Vectors Caches and Memory Interfaces Arithmetic Instructions

~ Reset Vector

Reset vector memory: onchip_flash.data o
Reset vector offset; 0x00000000
Reset vector: Ox00030000

onchip_flash.data
Exception vector offset: Ox00000020

Exceplion vector: Ox00020020

2. 1In the On-chip Flash IP parameter editor, set the Configuration Mode to one of the
following, according to your design preference:

¢ Single Uncompressed Image
e Single Compressed Image
e Dual Compressed Images

Embedded Design Handbook D Send Feedback

230

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
5. Nios II Configuration and Booting Solutions l n tel)

EDH | 2018.11.12

Figure 56. Configuration Mode Selection in On-Chip Flash Parameter Editor

|~ Configuration Mode

Configuration Scheme: Internal Configuration
Configuration Made: Single Uncompressed Image -
Ipual Compressed Images |
|~ Flash Memory ngle Uncompressed Image
Sector ID Access MdSingle Compressed Image

Single Uncompressed Image with Memory Initialization

1 Read enly” . N

5 Read an Single Compressed Image with Memory Initialization

3 Read and write 010000 - 0x6fff UFM
4 Read and write 0x70000 - Oxb7ff CFM
5 Read and write 0xb3000 - 0x 15ffff CFM

3. Program the UFM data (HEX file) by using one of the following methods:

e Method 1: Initialize the UFM data in the SOF—Intel Quartus Prime
includes the UFM initialization data in the SOF during compilation. SOF
recompilation is needed if there are changes in the UFM data.

¢ Method 2: Combine UFM data with a compiled SOF during
programming files (POF) generation(12)—UFM data is combined with the
compiled SOF during the programming files conversion. SOF recompilation is
NOT needed even if there are changes in the UFM data.

4. Click Generate HDL. The Generation dialog box appears.
5. Specify output file generation options, and then click Generate.

On-Chip Flash IP Settings for Method 1
1. Check Initialize flash content.

Figure 57. Initialize Flash Contents with Default Initialization File

[~ Flash Initialization

[Iniialze flash content
[Enable non-defait infiaization i

User created hex or mif e AX10RemoteUpdate.t Wiorld_| Linitjonchip_flash_0.hex

User created dat file for simulation: AX10/Remot=Update T World_) initjnd|_simfonchip_fizsh_0.dat

The on-chip flash will be initialized from "onChip_onchip_flash_0.hex"
The on-chip flash will be initialized from "OnChip_onchip_flash_0.dat" for simulation

2. If the default path is used, add meminit.qip generated during “make
mem_init_generate” into Intel Quartus Prime project.

(12) This is the recommended method for application developer. You are not required to recompile
SOF file for application changes during development.

Embedded Design Handbook

D Send Feedback

231

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

Figure 58. Adding neni nit. qi p File in Intel Quartus Prime

|+ Settings - RemoteUpdate
Category E I
]
Libraries Select the design files you wantto include in the project. Click Add All to add all design files in the
- IP Settings preject directory to the project
IP Catalog Search Locations } - prereve
Design Templates File name: |software/helloWorld_|edBlink/mem_init/meminit.qip Add
= Operating Settings and Conditic 4
Voltage File Name Type |L|nrary]Deswgn Entr Add All
Temperature # MMTan/synthesis/OnChip.gip IP Variation File (.qip) <None>
= Compilztion Process Settings RemoteUpdate v Verilog HDL File <Nene=> Remove
stpl.stp SignalTap Il Logic Analyzer File <None>

Incremental Compilation

=l EDA Tool Settings Up
Design Entry/Synthesis
Simulation Down
Formal Verification
Board-Level Properties

= Compiler Settings
VHDL Input
Verilog HDL Input
Default Parameters
TimeQuest Timing Analyzer
Assembler
Design Assistant
SignalTap Il Logic Analyzer
Logic Analyzer Interface
PowerPlay Power Analyzer Sett
S5N Analyzer

L | i

L] oK | Cance\‘ Apply | Help

R]

Make sure the generated HEX naming matches the default naming.

3. If non-default path is selected, enable the Enable non-default initialization file
and specify the path of the HEX file.

On-Chip Flash IP Settings for Method 2
1. Uncheck Initialize flash content.

Figure 59. Initialize Flash Content with Non-default Initialization File
~ Flash Initialization

[Initialize flash content

fault ini

non-d

User created hex ar mif file:

User created dat file for simulation

The on-chip flash is not initialized during device programming.

Intel Quartus Prime Software Settings

1. In the Intel Quartus Prime software, click on Assighment 0 Device [Device
and Pin Options U Configuration. Set Configuration mode to Single
Uncompressed Image or Single Compressed Image or Dual Compressed
Images.(13)

(13) The size of UFM shown vary according to your device selection.

Embedded Design Handbook D Send Feedback

232

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
5. Nios II Configuration and Booting Solutions l n tel
EDH | 2018.11.12

Figure 60. Configuration Mode Selection in Intel Quartus Prime Software

Configuration

Specify the device configuration scheme and the configuration device.

Configuration scheme: [Internal Configuration -]

Configuration mode: | Single Uncompressed Image (3584Kbits UFM) -]
Dual Compressed iImages (512Kbits UFW)

Single Compressed Image (5838Kbits UFM)

Single Compressed Image with Memory Initialization (512Kbits UFM)

Configuration device

Single Uncompressed Image (3584Kbits UFM)
Single Uncompressed Image with Memory Intialization [(512Kbits UFK)
L

Use configuration

J

Configuration device 'O voltage:

|:| Force WVCCIO to be compatible with configuration VO voltage

Note: If the configuration mode setting in Intel Quartus Prime software and
Platform Designer parameter editor is different, the Intel Quartus Prime
project fails with the following error messages.

0 14740 Configuration Mode parameter on atom "ufm block" i= inconsistent with Quartus IT project setting.
€ 14740 MAY address parameter on atom "ufm block" is inconsistent with Quartus II preoject setting.

+ 0 Quartus IT 64-Bit Fitter was unsuccessful. 2 errors, 0 warnings
€3 293001 Quartus IT Full Compilation was unsuccessful. 4 errors, 10 warnings

Click OK to exit the Device and Pin Options window.
Click OK to exit the Device window.

Click Processing > Start Compilation to compile your project and generate
the .sof file.

5.2.2.2.2. Application

In the Nios II SBT window, select either:

e File O New 0O Nios II Application to develop a Nios II application.
or

e File 0 New 0O Nios II Application and BSP from Template to create a
template to use for the Nios II application.

BSP Editor Settings
You must edit the BSP settings according to the selected Nios II processor boot
options.

1. In the Nios II SBT tool, right click on your BSP project in the Project Explorer
window. Select Nios II [0 BSP Editor... to open the Nios II BSP Editor.

2. In Nios II BSP Editor, expand into Advanced.hal.linker under Settings in Main

tab.
3. If the exception vector memory is set to OCRAM or External RAM, then enable the
following:
D Send Feedback Embedded Design Handbook

233

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 61.

allow_code_at_reset
enable_alt_load
enable_alt_load_copy_rodata
enable_alt_load_copy_rwdata
enable_alt_load_copy_exceptions

Advanced.hal.linker Settings

5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

If exception vector memory is set to OCRAM or External RAM.

4,

Figure 62.

bsp_cflags_debug hal.linker
cflags_mgpopt
bsp_cflags_optimazation
= Advanced
=-hal
max_file_descriptors
enable_nstruction_related_exceptions
log_port
enable_extt
enable_clean_exit
enable_runtime_stack_checking
enable_c_plus_plus
enable_ightweight_device_driver_api
enable_mul_div_emulation E

¥ allow_code_at_reset

7] enable_alt_load

enable_sopc_sysid_check
custom_newib_flags
log_flags

& inker

& make -|

allow_code_at_reset
enable_alt_load
enable_alt_load_copy_rodata
enable_alt_load_copy_rwdata

Advanced.hal.linker Settings

If exception vector memory is set to On-Chip Flash.

7] enable_all_load_copy_rodata
/| enable_alt_load_copy_rwdata
7 enable_alt_load_copy_exceptions

If the exception vector memory is set to On-chip Flash, then enable the following:

bsp_cfiags_debug = || hallinker
;zgsggvggspz%;mmn [¥] allow_code_at_reset
= Advanced [¥] enable_alt_load

=-hal

max_file_descriptors
enable_instruction_related_exceptions
log_port
enable_exit
enable_clean_exit
enable_runtime_stack_checking
enable_c_plus_plus
enable_lightweight_device_driver_ap|
enable_mul_div_emulation =
enable_sopc_sysid_check
custom_newlib_flags
log_flags

#-linker

i make s

¥l enable_alt_load_copy_rodata
7| enable_alt_load_copy_rwdata

enable_alt_load_copy_exceptions

Click on the Linker Script tab in the Nios II BSP Editor.

Set the .text region in the Linker Section Name to the On-chip Flash in the
Linker Region Name. Set the rest of the regions in the Linker Section Name
list to the On-chip Memory (OCRAM) or external RAM.

Embedded Design Handbook

234

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
5. Nios II Configuration and Booting Solutions l n tel)
EDH | 2018.11.12

Figure 63. Linker Region Settings

Tools Help

Man | software Packages | Drivers | Linker Script | Ensble Fie Generation | Target BsP Drectory
Linker Section Mappings

Linker SectionName

Linker Region Name Memory Device Name Add
lonchip_mem

‘)
onchip_mem Remove. ..]
nchip_flash_0_data

| Restore Defauts. .,]
nchip_fla da nchip_flash 0_data
onchip_mem

HEX File Generation

1. After creating the Nios II application, right click on the project in Project
Explorer and select Build Project. An *.elf file is created under the project
folder.

2. Again right click on your project and click Make Targets -> Build..., the Make
Targets dialog box appears. You can also press shift + F9 to trigger the Make
Target dialog box.

3.

Select mem_init_generate.

Click Build to generate the HEX file.

Figure 64. Selecting nem.init _gener at e in Make Targets

= Make Targets

>
Make Targets for: test
Target Location Add...
(@) mem_init_install
= o _ Remove
[®mem_init_generate;
(&) help Edit...

5. The “mem_init_generate” macro will create two HEX files; <on_chip_ram.hex>
and <on_chip_Fflash.hex>.

D Send Feedback

Embedded Design Handbook

235

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 5. Nios II Configuration and Booting Solutions

EDH | 2018.11.12

Note: « The mem_init_generate target also generates a Intel Quartus Prime
IP file (meminit.qip). Intel Quartus Prime software will refer to the
meminit.qip for the location of the initialization files.

e All these files can be found under the "'<project_folder>/
software/<application_name>/mem_init" folder.

6. Recompile your project in Intel Quartus Prime software if you check Initialize
memory content option in On-Chip Flash IP. This is to include the software data
(.HEX) into the SOF file.

5.2.2.2.3. Programming

1. 1In Intel Quartus Prime, click on Convert Programming Files from the File tab.
2. Choose Programmer Object File (.pof) as Programming file type:.
3. Set Mode to Internal Configuration.

Figure 65. Convert Programming File Settings

Specify the input files to convert and the type of programming file to generate
ou can also import input file information from other files and save the conversion setup information created here for
future use

Conversion setup files

| Open Conversion Setup Data... Save Conversion Setup... |
Output programming file
I Programming file type: [Prngrammer Object File (.pof) -
e
Options/Boot info... | Configuration device: |EPCE1S Il.!nde Internal Configuration -
File name: output_file. pof |j

Advanced... Remote/Local update difference file:

[¥] Create Memory Map File (Generate output_file map)
Create CvP files
[Create config data RPD (Generate output_fie_auto.rpd)

4. Click on Options/Boot info..., the Intel MAX 10 Device Options dialog box
appears.

5. Based on the Initialize flash content settings in the On-chip Flash IP, do one of
the following:

— If Initialize flash content is checked, the UFM initialization data was
included in the SOF during Intel Quartus Prime compilation.

— For Single Uncompressed/ Compressed Image configuration mode,
select Page_0 for UFM source: option. Click OK and proceed to next
step.

— For Dual Compressed Images configuration mode, select Page_0 or
Page_1 for UFM source: option. Click OK and proceed to next step. The
UFM data (.HEX file) can be included in either Page_0 or Page_1 only.
The On-chip flash does not support two .HEX files for Dual Compressed
images configuration mode.

Embedded Design Handbook D Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

intel.

Figure 66. Setting Page_0 for UFM Source if Initialize Flash Content is checked

@ Max 10 Device Options

Power On Reset scheme: | Instant ON
Set I/ O to weak pull-up prior usermode

] configure device from CEMO only

Security

[verify protect

[Allow encrypted POF only
Dual Canfig

Enable watchdog

Wwatch value:

User Flash Memory
UFM source: | Page O

File path:

RPD File Endianness
Little endian

] Big endian

Description:

[] Use secondary image ISP data as default setting when available

x

UFM source that is copied to Programmer Object File (POF),
either from initial image, secondary image or new memaory file

Ok Cancel

— If Initialize flash content is not checked, choose Load memory file for the
UFM source option. Browse to the generated On-chip Flash HEX file
(on_chip_flash.hex) in the File path: and click OK. This will add UFM data
separately to the SOF file during the programming file conversion.

D Send Feedback

Embedded Design Handbook

237

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel 5. Nios II Configuration and Booting Solutions
EDH | 2018.11.12

Figure 67. Setting Load Memory File for UFM Source if Initialize Flash Content is not
checked

T Max 10 Device Options x

Power On Reset scheme: | Instant OM -
Set I/O to weak pull-up prior usermode

L] configure device from CEMO only

[use secondary image ISP data as default setting when available

Security
[] verify protect
(] Allow encrypted POF only
Dual Config
Enable watchdog

Watch value:

User Flash Memory

UFM source: | Load memaory file v

File path: D

RPD File Endianness
Little endian

] Big endian

Description:

MNew mernory file path used as UFM data

Ok Cancel

6. In the Convert Programming File dialog box, at the Input files to convert
section, click Add File... and point to the generated Intel Quartus Prime .sof file.

Embedded Design Handbook D Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Embedded%20Design%20Handbook%20(EDH%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
5. Nios II Configuration and Booting Solutions l n tel
EDH | 2018.11.12

Figure 68. Input Files to Convert in Convert Programming Files for Single Image Mode

Open Conversion Setup Data... I [Save Conversion Setup...]

Output pregramming file

Programming file type: [Prﬂgrammer Object File (_pof) =]
OptionsiBoot info. Configuration device: EPCE18