ISTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

INDUSTRIAL NETWORKS

(AN APPLICATION PROTOCOL ON CANBUS: CANUP)

M.S. Thesis by

Akin OZDEMIR, B.Sc.

Department : Control and Computer Engineering

Programme: Control and Computer Engineering

JANUARY 2004

ISTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

INDUSTRIAL NETWORKS

(AN APPLICATION PROTOCOL ON CANBUS: CANUP)

M.S. Thesis by
Akin OZDEMIR, B.Sc.

(504981179)

Date of submission: 19 December 2003

Date of defence examination: 15 January 2004

Supervisor (Chairman): Prof.Dr. Esref ADALI (iTU.)
Members of the Examining Committee Prof.Dr. Tevfik AKGUN (YU.)

Assoc.Prof.Dr. Coskun SONMEZ (iT0.)

JANUARY 2004

ISTANBUL TEKNiK UNIVERSITESi * FEN BILIMLERiI ENSTITUSU

ENDUSTRIYEL AGLAR

(CANBUS UZERINDE BiR UYGULAMA PROTOKOLU: CANUP)

YUKSEK LiSANS TEZi
Miih. Akin OZDEMIR

(504981179)

Tezin Enstitiiye Verildigi Tarih : 19 Aralik 2003

Tezin Savunuldugu Tarih : 15 Ocak 2004

Tez Danigsmani : Prof.Dr. Esref ADALI (iTU.)
Diger Jiiri Uyeleri Prof.Dr. Tevfik AKGUN (YU.)

Dog¢.Dr. Coskun SONMEZ (iTU.)

OCAK 2004

FOREWORD

| am very grateful to my advisor Prof.Esref ADALI for his guidance throughout this
study.

Thanks to my family for their patience.

Special thanks to Melih Aybey for the opportunity he supplied me to put my theories
into practise.

December 2003 Akin OZDEMIR

TABLE OF CONTENTS

FOREWORD

TABLE OF CONTENTS

ABBREVIATIONS

LIST OF TABLES

LIST OF FIGURES

Vii

viii

OZET X
SUMMARY Xi
1. INDUSTRIAL NETWORKS 1
1.1 Ethernet 2
1.2 Modbus 3
1.3 Profibus 3
1.4 Foundation Fieldbus 4
1.5 Controller Area Network 4
2. CONTROLLER AREA NETWORK (CAN) 6
21 History of CAN 6
2.2 Protocol 7
2.2.1 Frame Formats 8
2.2.1.1 Standard format frame 8
2.2.1.2 Extended format frame 9
2.2.2 Frame types 9
2.2.2.1 Bus value 9
2.2.2.2 Data frame 9
2.2.2.3 Remote frame 10
2.2.2.4 Error frame 15
2.2.2.5 Overload frame 16

2.3 Function
2.3.1 Determining bus priority
2.3.2 Bit stuffing
233 Multi masters
2.3.4 Multi cast
2.3.5 Sleep mode/stop mode
2.3.6 Error control
2.3.7 Baud rate control
2.3.71 Bittime
2.3.7.2 Synchronization of data bit

3. CAN-BASED APPLICATION LAYER PROTOCOLS

3.1 The Requirement of Higher Layers

3.2 Survey of CAN-based Higher Layer Protocols

3.3 CAN Application Layer
3.4 CANopen

3.5 DeviceNet

3.6 Main Items of CAN-based Higher Layer Protocols

3.6.1 Message Identifier Assignment System
3.6.2 Exchange of Process Data

3.6.2.1 Message Triggering

3.6.2.2 Mapping of Application Objects
3.6.3 Peer-to-Peer Communication Channels

3.6.4 Establishment of Process Data Message Connections

3.6.5 Network Management
3.6.6 Device Modeling and Device Profiles

4. NEW PROTOCOL DEVELOPMENT: CANUP
4.1 Baudrate

4.2 ID Assignment
4.2.1 System Messages
4.21.1 Emergency Messages
4.2.1.2 General System Messages
4.2.1.3 Unit System Messages

4.3 Data Exchange
431 Instant Data
4.3.2 Short Data
4.3.3 Mid-Data
4.3.4 Long Data

44 Network Management
4.4.1 Startup
4.4.2 Node Guarding
4.4.3 Detecting and Recovering Faulty Nodes
444 Node Adding-Removing

17
17
18
18
18
18
19
21
21
22

24

25

25

26

27

29

31
32
35
39
40
41
44
46
49

53

53

54
54
55
56
58

59
59
59
59
59

60
60
61
62
63

4.5 Message Triggering
4.51 Event-Driven
4.5.2 Periodically
4.5.3 Remotely Requested

5. A CANUP APPLICATION: LIFT COMMUNICATION PROTOCOL ASCAN

5.1 Baudrate

5.2 ID Distribution

5.3 Messages On ASCAN
5.3.1 Control Panel Messages
5.3.2 Floor Unit Messages
5.3.3 Cabin Messages

5.4 Message Triggering

5.5 Network Management
6. CONCLUSION AND FUTURE WORK
REFERENCES

CURRICULUM VITAE

vi

63
63
63
63

64
65
65
65
68
69
69

70

71

73

74

ABBREVIATIONS

ASCIl : American Standard Code for Information Interchange
ACK . Acknowledge

AUL . Active Units List

CAL : CAN Application Layer

CAN : Controller Area Network

CANUP : CAN Uygulama Protokoll (CAN Application Protocol)
CiA : CAN in Automation

CIP : Control and Information Protocol
CcMSs . CAN Message Specification

CP : Control Panel

CPU : Central Processing Unit

CRC : Cyclic Redundancy Check

CRL . Cabin Registration Lamps

DBT . ldentifier Distributor

DCF : Device Configuration File

DLC . Data Length Code

DRL . Down Registration Lamps

EDS : Electronic Data Sheet

EMI . Electromagnetic Interference
EOF : End Of Frame

IDE . ldentifier Extension

IPT : Information Processing Time
ISO . International Standardization Organization
LLC . Logical Link Control

LMT . Layer Management

LSB . Least Significant Bit

MAC : Medium Access Control

MSB : Most Significant Bit

NMT : Network Management

oD . Object Dictionary

ODVA : Open DeviceNet Vendors Association
PC : Personal Computer

PDO . Process Data Object

PM . Process Messages

RFI : Radio Frequency Interference
URL . Up Registration Lamps

Vi

LIST OF TABLES

Page Number

Table 2.1 Frame Types and Their USageuceeiiiiiiiiiiiiiccie e 9
Table 2.2 Setting Of RTR Bit.......cooiiieiiiii e 11
Table 2.3 Setting of Frame Format (IDE Bit) and Number of Bits of Identifier (ID) . 12
Table 2.4 Data Length Settingoooviiiiiiiiii e 12
Table 2.5 Definition of Each Field for Error Frame ... 16
Table 2.6 Definition of Each Field for Overload Framecccccccoooiiiiiiiiiiiiins 17
Table 2.7 Determining Bus Priority ..o 17
Table 2.8 Bit StUffiNgooviiiii e 18
Table 2.9 Error TYPES ... e e et e e e e e e eaanes 19
Table 2.10 Error Frame Output Timingooooiiiiiiiiiie e 19
Table 2.11 Types of Error States.........ovueiiiiiiiiiicce e 20
Table 2.12 Error CoUNter......cooo oo 20
Table 2.13 Bit TiMme Segments...........oeiiiiiiiiii e 21
Table 2.14 Segment Name and Segment Lengthccocois 21
Table 3.1 DeVICENEL LAYEIScccooiiieiiiicee e 31
Table 3.2 Exchange of Process Data in CANopen and DeviceNet 37
Table 3.3 Main Characteristics of Peer-to-Peer Communication Channels............ 43
Table 3.4 Objects of a DeviceNet Nodeovveiiiiiiiiiiiiic e, 50
Table 4.1 Defined baudrates and COUESuuuiiiiiiiiiiiiiiiiiiis 53
Table 5.1 ID Distribution in ASCAN ... 65
Table 5.2 Traffic System Codes.........cooiiiiiiiiiiiee e 66
Table 5.3 Cabin State Byte.........coooiiiiiiii e 67

viii

LIST OF FIGURES Page Number

Figure 1.1 Classical Wiring versus Network Wiringccceoviiiiiiiiiiiiiiiiee e, 1
Figure 2.1 Layer Configurationc.coooiiiiiiiiii e, 8
Figure 2.2 Data Frame ... 10
Figure 2.3 Remote Frame ... 10
Figure 2.4 Start oOf Frameooouiiiii e 11
Figure 2.5 Arbitration Field (Standard Format Frame)cccoiiiiiiiiinnnns 11
Figure 2.6 Arbitration Field (Extended Format Frame)ccccoiiiiiiiiinnns 11
Figure 2.7 Control Field...........oooiiiiiiiii e 12
Figure 2.8 Data Field.........c.cooooiiiiiiiiie e 12
Figure 2.9 CRC Filldooooiiiiiiieie e 13
Figure 2.10 ACK Field.......cooo i 13
Figure 2.11 ENd of Frame ... 14
Figure 2.12 Interframe Space/Error ACHIVEccuuiiiiiiiiiiiiee e 14
Figure 2.13 Interframe Space/Error Passive...........c.eeevveiiiiiiiiiiiiiieeiieeee 14
Figure 2.14 Error Frame.........oooooiiiiii e 15
Figure 2.15 Overload Frame ... 16
Figure 2.16 Bit TIMe ... 21
Figure 2.17 Synchronization of Data Bitcccooooiiiiiiiiii e, 22
Figure 3.1 Identifier Usage in CAL/CANopen and DeviceNetcccceeeveeeeeennne. 32
Figure 3.2 Usage of Identifiers in CAL/CANopen and DeviceNetccceeeeen. 33
Figure 3.3 DeviceNet Predefined Master/Slave Connection Set Identifier
ASSIGNMENT ... 34
Figure 3.4 Store-and-Immediately-Notify-Event-Protocol (a), Read-Event-Protocol
(D) (CAL/CANOPEN) ...ttt e ettt e e e e e e et e e e e e e e e e annnneees 36
Figure 3.5 Structure of the Data Field of an Initiate_Multiplexed_Domain.request (a)
and a Download_Segment.request (B).........ccooiiiiiiiiiiiii e, 37
Figure 3.6 DeviceNet Transport ClasSes........ccoouiiuiiiiiiiiaiiiiiiiieeee e 39
Figure 3.7 DeviceNet Fragmented Explicit Message Data Field Format
(REQUES/RESPONSE)eeiieiie ettt ettt e e et e e e e e e e enaaee s 42
Figure 3.8 Identifier Allocation Process with CAL Distributorcccooiiieeeeen. 45
Figure 3.9 Creation, Configuration of /O Connection Instances...............ccccceeee... 46
Figure 3.10 CANopen Node State Diagram..............ooovviiiieiiiiiiiiiiecee e, 47
Figure 3.11 Device Net /0O Connection Object State Transition Diagram.............. 48
Figure 3.12 DeviceNet Object Model.............oooiiiiiiiiiiii e 49
Figure 3.13 CANopen Object Directory Structure..........cccoooeeviiiiiiiiiicceiiiieeeceeeeii, 51
Figure 3.14 CANopen Object Directory Communication Profile Section................ 51
Figure 4.1 General ID Fieldscooiiiiiiiiiiee e 54
Figure 4.2 Unit System Message Formatoiiiiiiiiiiicie e, 58
Figure 4.3 Long Data Startup Package Formatcccoooeeiiiiiiiiicie e, 60
Figure 5.1 Control Panel Message ID Format ..o, 65
Figure 5.2 Data 0..4 of CP MeSSAQEuuiiiiiiiiiiiiiiiie e 66
Figure 5.3 Signal Lamps State Byte Format................ccccoiiiiii i, 66
Figure 5.4 Format of Data4..7 of CP MeSSagescccceieiiiiiiiiiiiiieeeeeeiieeeeenn 67
Figure 5.5 Floor Unit Message Format............ccccooviviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee 68
Figure 5.6 State-Change Message of Floor Units...........ccccccoeiiiiiiiiiiiiiiie e, 68
Figure 5.7 Password-checking Message ID formatcooooiiiiiiiiiiiee e, 68
Figure 5.8 Cabin Message ID FOormat............cccooiiiiiiiiiiiii e 69

ENDUSTRIYEL AGLAR

(CANBUS UZERINDE BiR UYGULAMA PROTOKOLU: CANUP)

OzZET

Tezimiz, endustriyel aglara genel bir bakisla baglamaktadir. En yaygin olarak
kullanilan 5 sistem Ethernet, Modbus, Profibus, Foundation Fieldbus ve CANbus
kisaca anlatilarak avantaj ve dezavantajlari incelenmistir. Bu karsilastirmada
CANbus gucli hata belileme mekanizmalari, givenilir yapisi, disuk maliyeti ve
kolay uygulanabilirligi ile 6ne ¢ikmaktadir. Ayrica tasarimcilar igin hem yari iletken
hem de yazilim ve uygulama protokoli anlaminda ¢ok sayida alternatif bulmak
mamkundur.

Bundan sonra CANbus protokollu ayrintili olarak ele alinmistir. Protokoliin tarihgesi
ve gelisim asamalari kronolojik olarak anlatilmistir. Protokol tanimlamalar ve igleyis
acisindan ayrintilariyla incelenmistir. Protokolliin en énemli avantajlarindan biriside
birden fazla Unitenin ayni anda hatta erigmesine izin vermesidir. Herhangi bir
cakisma durumunda ise yazilim ve donanim olarak bir problem olusmadan ytksek
oncelikli mesaja sahip olan Unite erisim hakkini kazanmakta diger Uniteler alici
konumuna gecgerek haberlesme devam etmektedir.

Sonraki bélimde CANbus Uzerinde tanimlanmis en yaygin 2 uygulama protokollu
CANopen ve DeviceNet kisaca anlatiimis daha sonra asagidaki 6 agidan protokoller
karsilastirilarak benzerlik ve farkliliklar incelenmistir.

* Mesaj Kimligi Atama Sistemi

 Iglem Verilerinin Aktarimi

« iki nokta arasinda haberlesme kanallari
 Islem veri mesaj baglantilarinin kurulmasi
e Ag ybnetimi

e Cihaz modelleme ve cihaz profilleri

Tezimizin en 6nemli bolimu ise CANbus Uzerinde yeni bir uygulama protokolUnin
tanimlandigi bélimdidr. CANUP (CAN Uygulama Protokoll) adini verdigimiz bu
protokol uygulamadan bagimsiz olarak haberlesme hizi, mesaj kimligi atama, veri
degisimi metotlari, ag ydnetimi ve mesaj tetikleme mekanizmalari ile ilgili kurallari ve
yapilari tanimlamaktadir.

Son bélimde ise tanimlanan CANUP protokolliniin asansér kontrol sistemlerine
uygulanmasi anlatiimaktadir. ASCAN olarak adlandirdigimiz bu uygulamada
asansor kontrol sistemlerinde kullanilan 3 ayri seri haberlesme hatti tek bir CANbus
hattinda birlestirilmistir. Ana kontrol paneli ile kat ve kabin Uniteleri arasindaki
haberlegsme sistemi ayrintili olarak anlatiimigtir.

X

INDUSTRIAL NETWORKS

(AN APPLICATION PROTOCOL ON CANBUS: CANUP)

SUMMARY

Our thesis begins with an overview of industrial networks. Most commonly used 5
systems Ethernet, Modbus, Profibus, Foundation Fieldbus and CAN are briefly
explained and advantages and disadvantages are analysed. In this comparison
CANbus looks ahead due to its high reliability, robust error confinement
mechanisms and easy and low cost implementation ability. Nevertheless there are
lots of chips, software and application protocol alternatives for designers.

Then, CANbus protocol is explained in details. The history of the protocol and
development stages are described in chronological order. The protocol is analyzed
in detailed with definitions and functions. One of the most important advantages of
the protocol is that it allows multiple units to access bus simultaneously. In case of
collusion the unit with high priority message wins bus access right and other unit(s)
becomes receiver. So communication is carried on without causing any hardware or
software problem.

After that 2 well-known application protocols CANopen and DeviceNet defined on
CANbus are explained briefly. Then the protocols are compared in following points
and similarities and differences are discussed.

* Message ldentifier Assignment Sytem

* Process Data Exchange

* Peer to peer communication channels

» Establisment of process data message connections
* Network Management

» Device modelling and device profiles

Definition of a new application protocol on CANbus is the most important part of the
thesis. The protocol named as CANUP (CAN Uygulama Protokoll) defines general
rules and structures for message identifier allocation, data exchange methods,
network management, message triggering and baudrate.

At the last, an application of CANUP protocol for lift control systems is described. In
this application named as ASCAN 3 different networks in lift control systems are
gathered on single CAN network. Communication system between main control
panel, cabin and floor units is described in details.

Xi

1. INDUSTRIAL NETWORKS

The Internet has become a ubiquitous force that is redefining how we live and work.
Every imaginable kind of device will eventually be networked and this will transform

all devices from information devices into communication devices.

But the device world is more diverse than the PC world. In most cases, it's more
expensive to network a device with embedded intelligence than it is to connect a
PC, and there are more ways of doing it. The plethora of network standards and the
inherent difficulties in supporting more than one protocol make it difficult to decide

while designing a new system.

The reason for adding network capability to a device is to save wiring when
interconnecting multiple devices. Large factory automation and process control
applications use industrial networks (fieldbuses) extensively. The elimination of
large, unwieldy bundles of cables and the associated mess is an obvious advantage
(Figure 1.1). Networking allows you to connect hundreds of devices to a single trunk
line instead of using hundreds of individual wires. These benefits grow exponentially

with the size of the system.

HARD WIRE NETWORK WIRING

CONTROLLER CONTROLLER

o

—{]
-]
L]

Figure 1.1 Classical Wiring versus Network Wiring

alal=]u]ul

TTTrT
Ghoon

—

The modularity of a networked system is another major advantage. Connectivity is
achieved through software, so taking a large system apart, putting it on a truck, and

reassembling it somewhere else is much easier.

In addition to the wiring savings and modularity, there are three major reasons to

add network capability to a device:

» Diagnostics. A networked device often can tell you if it is malfunctioning, or
if something’s about to go wrong. This information can be of great help. It's
even more valuable if the information can be accessed remotely via the

Internet.

» Self-Configuration. Machine controllers can automatically detect which
modular components are connected to the network and determine what
software configuration to load. This can save hours or even days of the

delivery and setup time of a large system.

» Enterprisewide Information Systems. Initiatives to interconnect every
system in a company may extend down to individual devices. Even the most

mundane information can add money to the bottom line if used properly.

There are a lot of network standards out there. If you're going to add network
capability to your device, which one should you support? It's best to view networks
in terms of their scope. One of the reasons there are so many different network

standards is that there are so many different requirements

1.1 Ethernet

One of the most widely accepted standards, Ethernet, is designed to transfer large

amounts of data at high speed and to serve the needs of large installations.

The networking of millions of PCs in offices and the proliferation of the Internet
around the world has made Ethernet a universal networking standard. Today, the
standard is gradually working its way to the device level in data acquisition and
control applications. The hardware and related software have evolved to the point
where even inexperienced users can build simple networks and connect computers

together.

Ethernet hardware can be purchased easily from office supply stores, computer

stores, and e-commerce sites everywhere. The protocol appears to be a panacea

2

for all those who are overwhelmed by the confusing array of standards vying for
market dominance and who believe that the popular fieldbuses are expensive and
difficult to use. Furthermore, a study by a big three automotive manufacturer showed
that Ethernet could potentially serve up to 70% of plant floor networking

applications.

On the other hand, Ethernet does have its drawbacks. For example, it has a high
overhead-to-message ratio for small amounts of data. Also, Ethernet carries no
power on the bus, and its RJ-45 connectors are physically vulnerable and more
susceptible to EMI/RFI than most fieldbuses. And even now, its multiple open and

proprietary standards are a source of confusion in the industry.

1.2 Modbus

Modbus Remote Terminal Unit (RTU) / ASCII is probably the most popular serial
protocol in instrumentation, automation, and process control. Today, it provides
everything from short serial linkage of smart devices to wide area networking of
many devices. Modbus is commonly used with gateways and works well
encapsulated in TCP/IP. Developed almost 25 years ago, it's a simple yet effective

way of encapsulating analog and digital /0 and parameters in registers.

Modbus can link as many as 250 devices on an RS-485 cable. Furthermore, you
can find many gateway devices that link Modbus and other networks, so if your
product has the Modbus protocol on a serial port, you can get from there to almost

any network using a black box converter.

The downside, though, is that transmission speed is slow on standard serial media.
Also, the protocol lacks sophistication (i.e., it offers no peer-to-peer capabilities, and

it is not object oriented).

1.3 Profibus

Profibus is commonly found in process control, large assembly, and material-
handling machines—single-cable wiring of multi-input sensor blocks, pneumatic
valves, complex intelligent devices, smaller subnetworks, and operator interfaces.
Nearly universal in Europe and popular in North America, South America, and parts
of Africa and Asia, Profibus is the most widely accepted international networking

standard. It can handle large amounts of data at high speed and serve the needs of

large installations. The DP, FMS, and PA versions collectively address the majority

of automation applications.

Unfortunately, the network comes with a high overhead-to-message ratio for small
amounts of data and carries no power on the bus. Profibus also costs slightly more
than other buses. The standard’s European and Siemens centricity is occasionally

an obstacle for the users at far locations.

1.4 Foundation Fieldbus

Foundation Fieldbus rapidly establishing itself as the future standard for process
industry networking. Since its official introduction in 1997, many distributed control
system vendors have embraced the protocol, developing and certifying devices that
conformed to its specifications. This standard contends with Modbus, HART, and
Profibus PA.

The fieldbus is a flexible, sophisticated protocol with many capabilities. It holds great
appeal because it’s intrinsically safe and provides an integrated device-level/plant-
level approach. Broader adoption of Foundation Fieldbus has been slowed by the
protocol’'s process-industry-centric nature, the limited availability of compatible
devices, and the slow process of standardization. The fieldbus combines a device-

level network and High-Speed Ethernet.

The standard is typically used in distributed control, continuous process control,

batching, and oil and gas processing operations.

1.5 Controller Area Network

In the early 1980s, Bosch developed the Controller Area Network (CAN) so that the
primary control components in an automobile (e.g., brake lights, airbags, sensors,
lights, electric windows, and door locks) could be connected by a single cable
instead of bundle of cables. Automotive manufacturers found that if a wiring harness
was faulty, it was sometimes cheaper to scrap the entire car than to troubleshoot the
wiring harness. With a network, you can wire a control panel virtually in software,
rather than physically with a screwdriver and terminal blocks. The added hardware
cost of the network is less than paid for by labor savings. The same applies to

automated equipment in a factory.

Of course, in a vehicle, communication can mean the difference between life and
death. You cannot tolerate network errors, regardless of origin. CAN lives up to
these rigorous requirements, with a statistical probability of less than one faulty

message per century.

The standard is minimally a three-wire bus, with ground and two opposing signal
conductors. Signals consist of a pulse train centered at about 2.5 V, with the high
signal raising to about 3.2 V and the low signal falling to about 1.8 V. This creates

noise immunity, which is especially important in a vehicle.

CAN is a low-level message arbitration protocol implemented on inexpensive chips
available from multiple vendors and manufactured by the millions. To have a

functional network protocol, an additional software layer must be added.

Higher layer protocols (e.g., DeviceNet and CANopen) can be thought of as a

sophisticated set of macros for CAN messages, specifically suited for automation.

2. CONTROLLER AREA NETWORK (CAN)

2.1 History of CAN

The number of electronic devices installed in modern motor vehicles is increasing at
almost an exponential rate. Electronic controlled devices such as ABS, Electronic
Transmission Control, Airbags, Keyless Entry, Active Suspension, Radios,
Navigation, and many others too numerous to list have been added to the motor
vehicle in just the last few years. These have been added because of customer
demand, federal legalization, comfort, vehicle performance improvements and many

other reasons.

The need for all of the electronic systems in the vehicle to exchange information is
ever growing. Typically each sensor/device has a wire run from point A to point B,
which results in many redundant sensors etc. In the vehicle, the need to exchange
information has caused the number of cables and wire weight to grow substantially
over the last ten years. The modern mid-line vehicle has many thousands of feet of
wire. The number of wires (cut leads) has grown such that a driver passenger door
can have more then fifty wires in the bundle going through the hinge to the driver’s
side door. These large bundles of wire are causing problems for manufacturing as
well as system reliability. To reduce the number of wires and bundle size vehicle

manufactures have gone to a method of serially transmitting data between modules.

Forced by the increasing number of distributed control systems in cars and the
increasing wiring costs of car body electronics, the availability of a powerful and
reliable serial data communication system for the exchange of messages between
the different control units was becoming urgent. This was the starting point for
BOSCH and Controller Area Network was officially introduced in February 1986.
The first protocol controller chip (82526) was provided by INTEL in 1989. Originally
developed for use in automotive applications, CAN has begun to be successful in
many other fields of application. The first CAN applications were embedded

machine control systems and lift controllers.

CAN first time applied in Mercedes S class cars, launched in 1992, providing a high
speed network for communication between engine controller, gearbox controller and
dashboard and a low speed network for distributed air conditioning control. BMW,

Porsche, Jaguar, Volkswagen, Fiat and Renault applied CAN short time later.

In 1993 CAN was adopted as worldwide standard ISO 11898 by the International
Standardization Organization ISO, defining ISO-OSI Layers 1 and 2.

Today, more than 110 protocol controller implementations in form of stand-alone
controllers or integrated into a microcontroller are available from 20 manufacturers
including all of the main semiconductor manufacturers. According to a survey of the
CAN-in-Automation organization, the already designed number of CAN chips were
about 210 million in the year 2002 and estimated as 300 million at the end of 2003.
Today, the CAN interface already may be regarded as the standard serial interface

of microcontrollers, used in any type of distributed embedded applications.

Due to the outstanding features of the CAN protocol, the availability of low cost
network controllers from many manufacturers as well as the ease of implementation,
the CAN protocol today is in use not only in almost any type of mobile system
(passenger cars, trucks and buses, agricultural equipment, ships, aircraft,
elevators), but also in any type of machines, from textile, packaging, paper
manufacturing machines up to any type of medical equipment or robot control
systems. Controller Area Network is particularly well suited for networking of
“intelligent” devices. Since the availability of higher layer communication standards
and profiles, CAN-based networking is becoming one of the most promising
solutions for open, distributed automation systems, competing very successfully with

other bus standards in the field of industrial plant automation.

2.2 Protocol

The specifications of CAN are broadly classified into two layers: a physical layer and
a data link layer. The data link layer consists of logical link control and medium

access control. The configuration of each layer is shown in Figure 2.1.

Higher s Logical link cantnal (LLEC)

Data + Medium accees connol (MAC)
lird
laryar

& Acceplance filaring
= Crarload repoit
® Flecovery managemen

L Emap&uhuuumn-mcmmmn of oiata
Framie coding {saumnginon- shulfing)

+ Medium acness I'I'Iﬂl'lllgE'l'I'll'.""t

Erma deslection

» Ermor reper

= Scknowiedos

« Senalizabonnon-seralizaton

Losar | Physical Laper

Dadindthon ol sn]nal lerwedl amd bl rnprnr.i:r'-lark'm

Figure 2.1 Layer Configuration

The scope of the LLC sublayer is

» to provide services for data transfer and for remote data request,

» to decide which messages received by the LLC sublayer are actually to be

accepted,

» to provide means for recovery management and overload notifications.

There is much freedom in defining object handling. The scope of the MAC sublayer

mainly is the transfer protocol, i.e. controlling the Framing, performing Arbitration,

Error Checking, Error Signaling and Fault Confinement. Within the MAC sublayer it

is decided whether the bus is free for starting a new transmission or whether a

reception is just starting. Also some general features of the bit timing are regarded

as part of the MAC sublayer. It is in the nature of the MAC sublayer that there is no

freedom for modifications.

The scope of the physical layer is the actual transfer of the bits between the

different nodes with respect to all electrical properties. Within one network the

physical layer, of course, has to be the same for all nodes. There may be, however,

much freedom in selecting a physical layer.

2.2.1 Frame Formats

2.2.1.1 Standard format frame

In this format, 2,048 types of identifiers can be set. Because the identifier of a

standard format frame is 11 bits long, 2,048 types of messages can be handled.

2.2.1.2 Extended format frame

In this format, about 5.3 million types of identifiers can be set. The identifier of an
extended format frame is extended to 29 bits (11 bits + 18 bits), the number of

messages that can be handled increases to 2,048 x 2%

If the SRR and IDE bits in the arbitration field are “recessive: logical level 17, the

frame is sent in the extended format.

2.2.2 Frame types
The frames of the CAN protocol can be classified into the following four types.

Table 2.1 Frame Types and Their Usage

Frame Type Diescription
Data frame Frame to transmit data
Remote frame Frame to requast data frame
Error frame Frame to detect and report an error
COwverload frame Frame to delay the next data frame or remote frame

2.2.2.1 Bus value

The bus has two values: “dominant” and “recessive”. The “dominant level” is
expressed as logical 0, and the “recessive” level is expressed as logical 1. If both
the dominant level and recessive level are simultaneously transmitted, the value of

the bus is the dominant level.

2.2.2.2 Data frame

A data frame consists of seven fields, as illustrated below.

Dt fraema

j

|
e ! T B

el

Imorrame spacae
End of fBsama [ECF
ALK faid

G Mk
Dl M

Conir Medd

Artdiraticen Rakd

Elart of frama [S0F)

Figure 2.2 Data Frame

2.2.2.3 Remote frame

A remote frame consists of six fields, as illustrated below.

Remocte frame

Intarframs spacs
End of Wama [ECE)
ALK faald

CRC falkd

Control isld
Eitslration Sakd
Stant of frame [(S0F)

Figure 2.3 Remote Frame
<Description of each field>

<1> Start of frame: Indicates the start of a data frame or a remote frame.

10

el raime apace oF Bl kKie —’— Stard of frama

. rsibrabiom fald

——

R
&
Ll

—

Figure 2.4 Start of Frame

* If a dominant level is detected while the bus is idle, it is recognized as the

start of frame.

» If a recessive level is detected at the sample point of the start of frame, it is

assumed to be noise and the bus state becomes idle again.

<2> Arbitration field: Sets priority, data frame/remote frame, and frame format.

Arbitration field (Control field)
R
D n I
|
Identifier RTR 1 IDE H rd
D28 ... 1D18) o
(11 bits) (1 bit) (1 bit)

Figure 2.5 Arbitration Field (Standard Format

Frame)
Arbitration field (Control figld)
R
D | —
Identifier SRR ! IDE Identifiar RTR ri ! 0
ID28 ... D18 ! ID17 ... IDO |
{11 bits) (1 bit) (1 bit) {18 bits) (1 bit)

Figure 2.6 Arbitration Field (Extended Format Frame)

Table 2.2 Setting of RTR Bit

Type of Frame Bit
Data frame 0(D)
Remote frame T(R)

11

Table 2.3 Setting of Frame Format (IDE Bit) and Number of Bits of Identifier (ID)

Protocol Mode SER Bt IDE Bit Mumber of Bits
Standard format mode MNaone 0{D 11 bits
Extended format mode 1(R) 1{R) 29 hits

<3> Control field: Sets N, the number of data bytes of the data field.

(Arbitration fiald) Control field (Data field)

L e s

RTR; n ! m DLC3 I DLC2 DLCA [DLCO
1

Figure 2.7 Control Field

The IDE bit of the control field and r1 are identical in the standard format frame.

Table 2.4 Data Length Setting

Data Length Code Mumber of Data Bytes
DLC3 | DLCZ | DLCt1 | DLCO
] 0 0 0 0
0 0 0 1 1
0 1 1 1 7
1 P * * il

<4> Data field: A group of data (in bytes) set in the control field. Up to eight data can

be set.
(Control figld) Data field (CRC field)
R
D
Data Data
(B bits) (8 bits)

Figure 2.8 Data Field

12

<5> CRC field: 16-bit field that detects an error in transmit data

(Data field or control field) - CRC field ———==— (ACK field)
R
D I
CRC sequence

(15 bits) CRC delimiter
(1 bit)

Figure 2.9 CRC Field

* The polynomial expression P(X) that generates a 15-bit CRC is
P(X) = X"+ X"+ X"+ X%+ X"+ X* +X° + 1

» Transmission node: Transmits the CRC sequence calculated from the data of the

start of frame, arbitration field, control field, and data field (data before bit stuffing).

* Reception node: Compares the CRC sequence calculated from the data bits of the
receive data, excluding the stuff bits, with the CRC sequence in the CRC field. If the

two sequences do not match, the node transmits an error frame.

<6> ACK field: Field for checking normal reception

(CRC field) —=

ACK field ———=— (End of frame)

R

p— |

ACK slot ACK
(1 bit) delimiter
(1 bit)

Figure 2.10 ACK Field

« If a CRC error is not detected, the reception node sets the ACK slot to the

dominant level.

» The transmission node outputs 2 bits “recessive” level.

13

<7> End of frame: Frame that indicates the end of the data frame/remote frame.

(ACK field) T End of frame Ar (Cwverload frame or interframe space)

| (7 bits) |

R
D

Figure 2.11 End of Frame

<8> Interframe space: Frame inserted between the data frame, remote frame, error

frame, or overload frame and the next frame, as a delimiter between frames.
» The bus status differs depending on the error status.

(A) Node in error active state: Consists of 3 intermission bits and bus idle

(Frame) —— Interframe space ————————— (Frams)

i)

=)

Intarmission Bus idle
(3/2 bits) (010 == bits)

Figure 2.12 Interframe Space/Error Active

(B) Node in error passive state: Consists of intermission, suspend transmission, and

bus idle.
(Frame) Interframe space (Frame)
A ! !
7 | !
Intermission ! Suspend ' Bus idle
(372 bits) transmission (0 to == bits)
(8 bits)

Figure 2.13 Interframe Space/Error Passive

14

& Operahion in emor statke

Ernor Slaba Oparation
Emror active A node inthe stabe can star ransmesson in the bus e state.
Eimor pasaive A node in this sate can star ranamissson after @ bues idle (suspend transmission)

slate of 8 bk, 1 ancther node stans ransmisson, the pode s in b recapbon stabe
{Hhe fraremssion priorty of the sounte node drops)

= Omeration if the third bit of intemmission 1§ “daminant”

Ermor Stabe Operation
Transmission not pending | The bit is judged as the start of frame outpud by another noda, and recaption is
perfanmed
Transmission panding The bit is judgaed as the star of frame owtput by the source node. and the node
transamits the identifier.

2.2.2.4 Error frame

A node that has detected an error outputs this frame.

Lo s 5

Errar fraims

[k}

==

]

Irtedframe space or ovedoad frame

Error delimitar

Emor flag 2
Eiror flag 1

Ermror bit

Figure 2.14 Error Frame

15

Table 2.5 Definition of Each Field for Error Frame

Mo Mama T Dafiriticn
of Bits
1= | Ermor Bag 1 [Emar active node. Continuously cutpufs 6 bits of “dommant el
Emor passive node: Continuously cutputs. § bits of “mosshe” lovel
H anather rcdde ouipals e “dominant (D7 keval whis & passhes emmor g i being
outpul, T passve emor fag does nol end untl the same level is detecied for &
Cofsarutrg s
wde | Emorflag 2 Ok Ths i the mor Mlag culpas whan The node thal reostved eemor Magy 1 re-culpns an

o Py e detechng a bt shufing amoe

3= | Emor delmner

Contrumously cutputs 8 bits of “recessive” level
¥ = “domnant” el i detected al the saghith bk, an cearoad frame & ransetied
starting from the nast ba

<d» | Emor el

<hz | Interframa spaced
rverinad feae

B &t whiech @i emor ias Dean deteciad

The o T i oulpal Froem e bel e 1o e amor Bl
In the case of a CRE emor, the emor flag is culput following the ACK delmiter.

Intarirame space of overioad frams continues

2.2.2.5 Overload frame

This frame is transmitted under the following conditions.

« If the reception node has not completed a receive operation.

« If the dominant level is detected in the first 2 bits during an intermission.

* If the dominant level is detected in the last bit (eighth bit) of the end of frame or the

last bit (eighth bit) of the error delimiter/overload delimiter.

T]

—

I

[hm] |

=

- ks | i=Bs)

Intesframe space of overload frame
Cverload delimiter
Owveroad flag (node n)

Orveiload flag (node m)
Each frama

Figure 2.15 Overload Frame

16

Table 2.6 Definition of Each Field for Overload Frame

e Hams b [rmbior
ol Bils
ol | Crearloged Mg fnem B Conbridnnky oulgnas B s of “domirani” leeel Thess [S0 colpa becmss
node m node mi is not ready for recpion
e | Crearioad fag from Dind | Moden thal mosived an overioad fag n e inferrems space oulputs an cvwerioad
nadE flag
&3 | Orvorioad delieniier] Contnuousky outrasts B bis of rocossiee” kel
IF “dorranant beved o evoniioned il The eighih bt an crerkcad 1rams & Inansmmed
=ariing from the nesd et
cdx | Esch frams = Oiurput fallersing tha and of frame, emor delimiter; and seorizad delinito
B | Inledrae - Irbiflraie Apands oF deaibgl Iame Sofbiues
spacnovericad fame
2.3 Function
2.3.1 Determining bus priority

(1) If one node starts transmission

* In the bus idle state, the node that outputs data first acquires the transfer rights,
and outputs (transmits) data.

(2) If two or more nodes simultaneously start transmission

* The node that continuously outputs the “dominant (D)” level for the longest time,
starting from the first bit of the arbitration field, acquires the bus priority (if the

dominant level and recessive level are simultaneously transmitted, the value of the

bus is the dominant level).

» The transmission node compares the arbitration field it has output with the data

level on the bus.

Table 2.7 Determining Bus Priority

B Lawved o Adrblraiiom

Faalkd

Opsraaion of Transmisson Mods

F lerewls mabch

Combrases frarsmssion

¥ lerenls da rol alch

Saops dala culpu Feon the el nso 1o the on in whech the dscmpancy was Tourd and 3 recers
operation 1% perfomed

17

(3) Priority of data frame and remote frame

* If a data frame and remote frame conflict on the bus, the data frame, whose RTR

bit is the “dominant level”, takes precedence.

If a data frame in the extended format conflicts with a remote frame in the standard
format (if ID28 to ID18 of both are the same), the remote frame in the standard

format takes precedence.

2.3.2 Bit stuffing

Bit stuffing is a mechanism that is used to append 1 bit of inverted data to establish
synchronization if the same level continues for more than 5 bits, in order to prevent

a burst error.

Table 2.8 Bit Stuffing

LN 1 sgmig el comiinisee Tor 5 bels in T dala Esbween T stan of frame and CRO sequencs whan &

fransms=on node) | data frame and a rerole lame are rarsmitied, 1-50 leved data wath $he bevels of §e preceding © bits.
it im inserted belore e nest bit

Rigmpron I the sarme level confinues for 5 s n e data betwean the starl of frame and CRE sequence whan a
TeCRplion rode it g and & el Wame e recaced the ned b 5 debslesd

2.3.3 Multi masters

Because the bus priority (the node that acquires the transfer rights) is determined by

the identifier, any node can be the bus master.

2.3.4 Multi cast

Although only one transmission node exists, the same data can be received by two
or more nodes simultaneously because the same identifier can be set to these

nodes.

2.3.5 Sleep mode/stop mode

The CAN sleep mode and CAN stop mode functions can be used to reduce the

power consumption by placing the CAN controller in the standby state.

The CAN sleep mode is set using the procedure defined in the CAN Specifications.
The CAN sleep mode is woken up by the CAN controller via bus operation, but the

CAN stop mode is not woken up by bus operation (it is controlled by CPU access).

18

2.3.6 Error control

(1) Error types

Table 2.9 Error Types

Emor Typa D cniphaon ol Erege Mok Detesziing Ermor Fild®rama
Dl etion Misihoad Dsleciion Condition
Bif e Campar=on of ouipul Thia kevepls do nod malch | Transmsseoninecspbon | B thal ootpats data o tha
ool with bl on s s B ol he alad of frames o
[emompd Stul b} end of frama, @mor frama
] drwsirbousd Tradme
Sl e Chieck of the data B condsculive Bits of the | Transmisscnimceplion | Slan of ke 1o CRG
received ol e shuff bt same kvl data e sEqUENCE
R error Companson of CRE CRC doss not maich Rocepbon node Start of framse 1o data field
generahed Trom e
receive daia with e
raceived CRC seouerca
Form e Fiededtframe chesch of the | Delection of a fued Reception node « TR debmier
Traged Formeal e e = B Sald
» S af framie
AICH s Check of the ACK =k Dhsteschion of a recessres | Transmmsmon node AICK alob
try thie fransmission bl in i ALK siol
ik

(2) Error frame output timing

Table 2.10 Error Frame Output Timing

Error Type: Dutput Timing
Bal wrror, sl emor, Form o, Errer frames i oulpud af the nexd bl tming following the defecied sro
AT T
CRE s v teained if carlpd & the o bl timking follosaneg e ACK deliemler

(3) Measures when error occurs

* The transmission node re-transmits the data frame or remote frame after the error

frame.

(4) Types of error states

* Error states are classified into three types: “error active”, “error passive”, and “bus
off”. The latter error states are more serious than the former (the error state is
determined by the values of the transmission error counter and reception error

counter).

« If the value of the transmission error counter or reception error counter reaches 96
or more while the node is in the error active state (while the value of the error
counter is 127 or less), the chances are the bus has a severe fault and must be

checked.

19

Table 2.11 Types of Error States

Type of Enmor Stabe Oparation ‘aluo of Emor Counfier Type of Ouiput Emor Flag
B gt Trardmasionedapion | 0 e 127 Alren i flag
|6 bits of comsepetrse dommani” kewel)
Evmor passiee Transmession 12410 255 Parssive amor fag
Facagia 128 oFf o (6 bt ol cowrsesaies recasars’ bvel)
Bl off Trarsmeasion 56 of mom Cosmevamscation canndl ba mada
11 b= of commenatie “recsssys” level ocor 128
times jamor oounter = 0, the emor acive stale can
ba restoned.
Raszagitaon -

(5) Error counter

The error counter counts up when an error occurs, and counts down when

transmission or reception has been correctly performed.

Table 2.12 Error Counter

Stmie

 the receplon nods detects an smor (Sxced & bE smor in The adive
areoy fiagy nd overioad fag)

Mo chargs

+1

It I, Nl ORABCIS B comnananl e nied 10 I T ey
odput of the smor frame. This mears Tl o eeepbon emor has
e e in S sownce rode.

Ko ehirgs

8

Wi Ehal ISR MO DARPRILE A ETor Mg ol Thie

followng cames.

T Ham ACE emor s deteciad bt o domira evsed g not dedescisd
il [Diehied Tor g i Dding oulpid in Ihe Smor Disiive
b=

il M@ alull ol cotuns in e arbarmion Sekd

Mas chaings

Y tha earmmisiion node in D emor &Cive slale detects a b amor whia
caspuiing e actve smor fing and overcad flag

e ehangs

M the recegiion nods inthe smor actve stale debects o kil smvor afie

Mo charge

+B

<=1= I sach nods delects & dSomnant’ level for 14 comsecuiees bits:
froen thae iseinming of the sethee emor Ting and ovenosd fag

== W ech rpde delects & “dominant’ el for B consaculive bite
dilcrang the nessne Bmor fag

e @ “Gominant vl & debecied Tor B conmacilive s folowing
S EY- Fod

H the raramsson nods compebes Tamsmsson ethow =mror

o1 iwhan 1 £ TEC™
=10 (whan TEC =)

Ho chang=

o tha receplion nods compelss eeaplion withoul smor

Mo chargs

o
fwhen 1 £ REC™® ¢
127

&) fwhen REC =)
» Setbo 127

[REC = 127}

Note: TEC: Transmit Error Counter, REC: Receive Error Counter

20

2.3.7 Baud rate control

2.3.71 Bittime

Bit time has a 1-bit length on the CAN protocol. Bit time consists of eight to 25 time

quanta (time units), and is divided into four segment areas.

The structure is illustrated in Figure 2-16.

Bit tirne
Phase Phasea
Syncsegment | Prop segment| o ooentd | segment 2
Sample point

Figure 2.16 Bit Time

Table 2.13 Bit Time Segments

Sy asgEen] Sagrenl that stats mimedalaly afler bt synchnonizaton
Prosp sagineni Segrranl il corects signal detiy by 1 CAN TR and TAN bus
Plorcent

The &K siol i the ACK fsid i retumsd from the peoeplion nods, unil phass ssgment 1 of e
transisaicn node, while T data and conirol frames ane eng raramitied
(Preg megrment e 2 CAN anscaner (Innsrtsson, recepion deliy) « CAN Bus Saliy)

Phase segments 1, 2 Segrments thal comed smor of bit tma. (The larges thess segments, The grealer the pemressbis
emor can be Howsver, Fe communicabon spesd s imitsd |

Table 2.14 Segment Name and Segment Length

Sepmen Name Humizesr of Tirme Quania That Can Be Sat jor Esch Sagment

Sy asdgEenl i
[Syrchronzsbion Ssgmenk)
Prop segment 18
[Progagation Sagment)
Phame segmert 1 1808
[Phase BuTer Segreent 1)

Phase sagrent] P sagrent 1 oF |PT, whicssd raaien in valus (18T = Dig 2)
iPhase Bufer Segrent 2

IPT (Information Processing Time): Time necessary for determining the next bit level

21

2.3.7.2 Synchronization of data bit

Bit synchronization of the CAN protocol can be classified into two types: hard

synchronization and bit resynchronization.
(a) Hard synchronization

Hard synchronization is performed if both the reception node and transmission node

are in the bus idle state and detect the start of frame.

If the node detects a falling edge on the bus in the bus idle state, the sync segment

of the start of frame starts.

Bus idle Start of frame

\l /

Bit timing Sync segmant | Prop segment

Phasa Phase
sagmaent 1 segment 2

Figure 2.17 Synchronization of Data Bit
(b) Bit re-synchronization

If the node detects a falling edge on the bus in a segment other than the sync

segment during reception or transmission, it performs bit re-synchronization.

Bit re-synchronization corrects the falling edge on the bus and the position of the

sync segment.

» The phase error of the edge is given by the relative position of the detected edge

and sync segment.

<Code of phase error>

0: The edge is in the sync segment.

Positive: The edge is before the sample point (positive phase error).
Negative: The edge is after the sample point (negative phase error).

* The width of correction for bit re-synchronization is specified by SJW. One to four

time quanta are set for SUW.

22

Bit re-synchronization is performed according to the following criteria.

(i) Phase error < SJW set value

* If phase error is positive: Phase error with SJW set value as the maximum
Phase segment 1 is extended by the time quanta.

* If phase error is negative: Phase error with SJW set value as the maximum
Phase segment 2 is shortened by the time quanta.

(ii) Phase error > SJW set value

* If phase error is positive: Phase segment 1 is extended by the SUW set value.

* If phase error is negative: Phase segment 2 is shortened by the SJW set value.

23

3. CAN-BASED APPLICATION LAYER PROTOCOLS

The CAN protocol has gained worldwide acceptance as a very versatile, efficient,
reliable and economic platform for almost any type of data communication in mobile
systems, machines, technical equipment and industrial automation. Based on
sophisticated standardized higher layer protocols and profiles, CAN-based open
automation technology successfully competes on the market of distributed
automation systems. One of the main reasons for the enormous success of CAN-
based systems obviously are the special features of the CAN-protocol, especially its
producer-consumer-oriented principle of data transmission and its multimaster
capability. With these properties, the CAN-protocol also from the technical point of

view is very attractive for the usage in distributed systems applications.

When referring to the "CAN standard" or "CAN protocol" we understand the
functionality, which is standardized in ISO 11898. This standard comprises the
Physical (Layer 1) and Data Link Layer (Layer 2) according to the OSl-reference
model. Whereas Layer 1 is responsible for functions like physical signaling,
encoding, bit timing and bit synchronization, Layer 2 performs functions like bus
arbitration, message framing and data security, message validation, error detection
and signaling and fault confinement. The CAN standard does not specify the
medium attachment unit and the medium upon which it resides, nor an Application

Layer.

The Layer 2 of the CAN protocol offers two types of connectionless transmission

services to the user:
» Unacknowledged transfer of a CAN-message and
= Unacknowledged remote request of a CAN-message

Connectionless transmission means that no data link connection has to be
established before performing a message transfer or request. Reception of
messages is supported by the CAN chips in form of different type object filtering and
object buffering methods. A Layer 2 CAN data message according to the CAN

24

Specification V 2.0 is determined by the message identifier, standard/extended

format indication, data length and the data to be transmitted.

Since the CAN-Protocol specifies no rules for the assignment of message-
identifiers, a variety of different, application-specific usages are possible.
Assignment of the CAN message identifiers therefore is one of the most important
decisions when designing a CAN-based communication system. Assignment and
allocation of message identifiers also is one of the main items of a higher Layer

approach.

3.1 The Requirement of Higher Layers

In practice the implementation even of very simple distributed CAN-based systems
shows that beside of the basic Layer 2 services further functionality is required or
desirable e.g. for the transmission of data blocks longer than 8 bytes, acknowledged
or confirmed data transfer, identifier distribution, network startup or the supervision
of nodes. Since this additional functionality directly supports the application process,
it is understood as "Application Layer". If implemented properly, the introduction of
an Application Layer in addition with an appropriate Application Layer Interface

provides a clearly defined separation of communication and application processes.

Since the CAN protocol provides very unique features, most of the known higher
layer protocols conserve this features for the user of the Application Layer by
providing direct access to the services of the Data Link Layer (no additional protocol

overhead for basic functions).

Especially for industrial automation applications, the need for open, standardized
higher layer protocols was raised which support interoperability and exchangeability
of devices of different manufacturers. Supplementary to a standardized Application
Layer therefore the specification of standard device models, "standard devices" and

"standard applications" of basic functionality is required.

3.2 Survey of CAN-based Higher Layer Protocols

According to the widespread usage of CAN networks with different objectives and
requirements beside of many special solutions several main standards of CAN-

based Higher Layer protocols are available today. According to the different

25

requirements these solutions differ significantly with respect to their scope and

performance.

Main representatives of open distributed system standards for industrial applications

are CANopen and DeviceNet.

The industrial application of open distributed systems standards comprises low-level
networking of industrial devices (sensors, actors, controllers, men-machine
interfaces) in industrial automation. The main requirements of this type of application
are configurability, flexibility and extendibility. To provide manufacturer
independence the definition of device functionality has to be specified in form of
"Devices Profiles". Accordingly, communication systems solution of that type
provides a complete framework of communication and systems services, device

modeling, and facilities for system configuration and device parametrising.

3.3 CAN Application Layer

CAL (CAN Application Layer) was specified as one of the first work items of CAN-in-
Automation (CiA) and was published in 1993 as layer 7 standard CiA DS 201-207.

The protocol offers an application-independent, object-oriented environment for the
implementation of CAN-based distributed systems. It provides objects and services
for communication, identifier distribution, network and layer management. Main
application areas of CAL are CAN-based distributed systems, which do not require
configurability and standardized device modeling. Therefore in the CAL specification
only general communication procedures are defined as they are required in

distributed systems.

CAL provides objects, protocols and services for the event driven or requested
transmission of CAN messages and for the transmission of larger data blocks
between CAN devices. Furthermore CAL offers mechanisms for the automatic

distribution of CAN identifiers and for the initialization and monitoring of nodes.

CANopen and DeviceNet specify also the structure and parts of the application itself
mainly by fixed access methods for data exchange and data representation. In
contrast to these protocols CAL doesn't define data contents or specific
communication objects which a certain device has to provide or which are expected
by the system. So the user has the possibility to adapt the communication system

exactly to the requirements of his application or system and not the other way round.

26

Using a communication and device profile like CANopen or DeviceNet could mean
higher resource overhead for the realized application. Therefore CAL is suitable for
the realization of specific system solutions like medical systems or measuring
systems as well as for the realization of closed control systems with decentral
intelligent units like machine control systems (machine bus). CAL allows the
realization of systems with complex communication relations between devices in a

system. These systems can be installed without any configuration effort.

First versions of the CAL software have been available already in 1993. Until today,
the software was successfully in use in numerous applications. Hence the software

achieved a high and stable development state.

3.4 CANopen

The profile family CANopen defines a standardized application for distributed
industrial automation systems based on CAN as well as the communication
standard CAL. CANopen is a standard of CAN-in-Automation (CiA) and has already,
soon after its release, found a broad acceptance. Especially in Europe CANopen

can be considered the leading standard for CAN based industrial system solutions.

The CANopen profile family is based on a so-called "Communication Profile", which

specifies the basic communication mechanisms and their description.

The most important device types such as digital and analog 1/0O modules, drives,
operating devices, controllers, programmable controls or encoders, are described by
so called "Device Profiles". The device profiles define the functionality of standard
devices of the corresponding types. The configuration of devices through the bus is
the foundation of the preferred manufacturer-independent configuration by means of

the profile family.

The central element of the CANopen standard is the description of the device
functionality through an object dictionary (OD). The object dictionary is divided in
two sections. The first section contains general device information like device
identification, manufacturer name, etc., as well as communication parameters. The

second section describes the specific device functionality.

A 16-Bit index and an 8-Bit sub-index identify the entry ("object") in the object

dictionary. The entries in the object dictionary provide the standardized network

27

access to the "Application Objects" of a device, such as input and output signals,

device parameters, device functions or network variables.

The functionality and characteristics of a CANopen device can be described by
means of an "Electronic Data Sheet" (EDS) using the ASCII-format. In this case the
EDS must be understood as a kind of template. The actual device settings are
described by the so-called "Device Configuration File (DCF)". EDS and DCF can be
provided in form of a data carrier, which can be downloaded from the Internet or
stored inside the device. Similar to other well-known field bus systems CANopen
also distinguishes two basic data transfer mechanisms: The high-speed exchange of
small process data portions through so called "Process Data Objects (PDO)" as well
as the access to entries in the object dictionary through so called "Service Data
Objects (SDO)". The ladders ones are primarily used for the transmission of
parameters during the device configuration as well as in general for the transmission
of larger data portions. Process data object transmissions are generally event
triggered, cyclic or requested as broadcast objects without the additional protocol
overhead. A PDO can be used for the transmission of a maximum of 8 data bytes. In
connection with a synchronization message, the transmission as well as the
acceptance of PDOs can be synchronized through the entire network ("Synchronous
PDOs"). The assignment of application objects to a PDO (Transmission Object) is
adjustable through a structure description ("PDO Mapping"), which is stored in the
object dictionary, thus allowing the adjustment of a device to the corresponding

application requirements.

The transmission of SDOs is performed as a confirmed data transfer with two CAN
objects in form of a peer-to-peer connection between two network nodes. The
addressing of the corresponding object dictionary entries is accomplished by
providing the index and the sub-index of the object dictionary entry. Transmitted
messages can be of very large length. The transmission of SDO messages involves

an additional protocol overhead.

Standardized event-triggered "Emergency Messages" of high priority are reserved to
report device malfunctions. A common system time can be provided through a
central timing message. The required functionality for the preparation and
coordinated start of a distributed automation system is compliant to the under CAL
network management (NMT) defined mechanisms. The same applies to the cyclic

"Node Guarding".

28

Alternatively, it is possible to display the communication capability of a CANopen

device through a so-called "Heartbeat Message".

The assignment of CAN message identifiers to PDOs and SDOs is possible by
direct modifications of identifiers inside the data structure of the object dictionary or,

for simple system structures, through the use of pre-defined identifiers.

3.5 DeviceNet

DeviceNet was developed by Rockwell Automation as an open fieldbus standard
based on the CAN-protocol. Designed as a powerful protocol for automation
technology, it plays a leading role today in the USA and in Asia. More and more

systems solutions are also being implemented with DeviceNet in Europe.

The ODVA, being the organization of DeviceNet users, is responsible for the
specification and maintenance of the DeviceNet standard. In addition, the ODVA
promotes the worldwide distribution of DeviceNet. The currently available version

2.0 of the standard includes more functions and some corrections.

DeviceNet is an open protocol and every ODVA member can participate in the
further development of this standard in the various Special Interest Groups (SIGs).
Use of DeviceNet is free of charge. It is only necessary to sign the "Terms of
Agreement” in order to be able to use the DeviceNet technology and to receive the
vendor ID, a manufacturer's number. The only costs normally incurred are the

purchase of the specification. Membership of the ODVA is not necessary.

At the moment over 300 companies are registered members of the ODVA. A total of

approx. 700 companies offer DeviceNet products.

DeviceNet is one of three open network standards (DeviceNet, ControlNet and
EtherNet/IP), which all use a common application layer (ISO Layer 7), the so-called
"Control and Information Protocol" (CIP). This common application layer and open
software and hardware interfaces will in future enable a universal connection of
automation components from the field level with the Internet. The "Control" part of
the CIP defines the exchange I/O data in real time via I/O messages (/0O Messaging
or Implicit Messaging). The "Information" part of the CIP defines the exchange of
general data for configuration, diagnosis and management via explicit messages
(Explicit Messaging). These two message types provide optimum communication for

industrial controls. CIP thus provides the user with 4 basic functions:

29

= Uniform control services

= Uniform communication services

Uniform distribution of messages
= Common knowledge base

The DeviceNet protocol is designed as a simple, inexpensive yet powerful protocol
at the lowest fieldbus level, i.e. for the networking of sensors, actuators and
corresponding controls. The devices that can be connected to DeviceNet range from

a simple light barrier to a complex vacuum pump for semiconductor manufacture.

The core function of the DeviceNet protocol is, as with other protocols, data
exchange between devices and their corresponding controls. Communication
between two devices is based on a connection-based communication model, either
via a point-to-point or a Multicast connection. This allows the development of

Master/Slave systems as well as Multi-Master systems.

The so-called "Predefined Master/Slave Connection Set" was specified for simple
DeviceNet slave devices. This subset of the DeviceNet protocol supports Explicit
Messages, Polled-1/O, Multicast-Polled-1/O and Bit-Strobed I/0O messages from the
master to the slave as well as Change-of-State/Cyclic 1/O messages from the slave
to the master. The "Unconnected Message Manager Port" (UCMM) and the dynamic
creation of explicit and 1I/O-connections were specified for more complex slave
devices that are Multi-Master-capable and can maintain point-to-point connections
with other devices. The Device Heartbeat Message and Device Shutdown Message
functions were specified particularly for safety-critical systems. The Offline-

Connection-Set simplifies the configuration of off-the-shelf components.

DeviceNet presents communication and application in the object model. Predefined

objects facilitate the data exchange of different devices and manufacturers.

Further standardization of benefit to the user was accomplished by creating various

device profiles.

Besides Layer 7 (Application Layer), the DeviceNet specification also defines parts
of Layer 1 (Transceiver) and Layer O (Transmission Media), thus standardizing the
physical connection of DeviceNet nodes. Connectors, cable types and cable lengths
are specified as well as communication-based displays, operating elements and the

corresponding labeling of the housing.

30

Table 3.1 DeviceNet Layers

ISO-Layer 7 Application Layer DeVIcel;lltztILS"[')]zclllflcatlon
ISO-Layer 2 Data Link Layer
CAN Specification 2.0
ISO-Layer 1 Physical Signaling
ISO-Layer 1 Transceiver DeviceNet Specification
Volume |
ISO-Layer 0 Transmission Media

A DeviceNet network can run up to 64 nodes using baud rates of 125, 250 or 500
kBaud. The devices either have their own power supplies or are being supplied
through the DeviceNet bus.

Compared to CANopen, DeviceNet provides approximately the same functions,
however, with an emphasis on different priorities. The network management, for
instance, is stored in each individual node. As a result each node monitors the other.
CANopen, however, uses a central authority, the NMT-Master. The communication
mechanisms under CANopen are simpler, thus allowing the use of less complex
devices. In turn DeviceNet provides higher safety in the protocol use, but does also

require more resources.

3.6 Main Items of CAN-based Higher Layer Protocols

In the following the main solutions for industrial automation CAL/CANopen, and
DeviceNet will be evaluated closer. This will be done by considering the main items

of CAN-based higher layer protocols. These are the
* message identifier assignment system,
= method of exchanging Process Data,
= peer-to-peer communication,
= method of establishing Process Data connections,
= network management,

= principle of device modeling and device profiles

31

3.6.1 Message ldentifier Assignment System

The method of message identifier assignment may be regarded as the major
architectural element of CAN-based systems, since the identifier of a CAN-message
determines the relative priority of the message and such the message latency time.
It also has influence on the applicabilty of message filtering, possible

communication structures and the efficiency of identifier usage.

Concerning identifier assignment quite different philosophies have been chosen in
the considered system solutions. Whereas CAL and CANopen, apart from reserving
some identifiers for management purposes do not apply a predefinition of identifiers

for general system structures, DeviceNet does.

CAL/CANopen provide a common pool of identifiers, available to all devices and a
central instance, which automatically or manually allocates identifiers according to
the requirements of the devices. With this approach, identifier usage and such the
real-time-behaviour of the data communication system may be completely
determined through the system designer or integrator. Also maximum usage of the
available identifiers is possible since almost the complete set of message identifiers

is available for distribution.

a CAL/CANopen
10, o & 7 6 5 4 3

T 1
Mo Allocation™

[§=]

Y Gome identifiers reserved for management

b CAMopen - Minimum Device
0,2 & 7 &, 5 4,85 2 1 0

FunctionCode| Module ID

¢ Device Net

0. 9 8 7 68 5 4.3 2 1. 0

0 |Group 1 Messags ID Source MAC ID Greup 1
Group 2

10 MAC-ID Message ID Group 2

Group 3
11 Message ID Source MAC 1D Giroup
111 (1]1 Group 4 Message ID | Group4d

MAC-D: Node Identification Mumber

Figure 3.1 Identifier Usage in CAL/CANopen and
DeviceNet

32

In Fig. 3.1.a and Fig. 3.2.a the identifier assignment scheme of general
CAL/CANopen systems is shown, in Fig. 3.1.b and Fig. 3.2.b the identifier
assignment of a minimum configuration CANopen system is shown with the
predefined set of messages. 1760 message identifiers are available for general
usage. Since in a CAL-based system up to 256 nodes may be addressed, 256
messages are reserved for node guarding, in CANopen 128 nodes may be

addressed, only 128 messages are reserved for node guarding.

In the minimum system configuration, CANopen specifies a device-oriented identifier
allocation scheme by which default connections between up to 127 devices to a
master device are provided. By means of the 4-bit function code 16 basic functions
are distinguished for the reception and transmission of two process data channels,
one peer-to-peer channel, node state control, node guarding, emergency notification
and the reception of the synchronization and time stamp message. Since the priority
of a message should be determined by its function, the function code is located in

the most significant bits of the message identifier.

a CAL/CANopen b CANopen Minimum ¢ DeviceNet
Configuraticn
Idarnitifisr Lzags Idantifisr Ugage Idantifisr Lzage
0 NMT Start/Stop 0 NMT Start/Stop 0-63 ——Device n
1 = — Dievice n
128 -Mea A —
129 Syne 2age (AR — Dewice n
Emergency Messages — Diewice n
2585 e e
255 Time-Stamp-Measage R il
385 Process Data I 16 Group 1
514 Objects (Tx) I Mezsages
512 Process Data L, = De'.'"ce
830 Objects (Fx) | (64 Devices)
641 Process Data EEEREER PO
767 Objects (Tx) e BRI
— Dievice n
CMS Objects 783 F{'}fg_ﬂass DF?M —Device n
(@ Priority Groups) 895 joats (AxX) ——Device n
-1023 ——Device n
1024-1031 Diewice O
1032-1038 Dewice 4
L]
* Group 2
-
« Messages
L]
1400 Senice Data
1535 Ohbjects (Cliant) 15281535 Device 63
1657 Senice Data 1630 e R
1683 Objects (Sarver)
7 Group 3
1760 Messages
1761) 1793 - per Device
Mode Guarding 101D Moda Guarding
2015 1983 |——Devica n
2016-2031 [NMT- LMT- DBT-Servicea 2016-2031 [NMT- LMT- DET-Services 10ad-2031 [Group 4 Meszages

Figure 3.2 Usage of Identifiers in CAL/CANopen
and DeviceNet

33

With the CANopen minimum system configuration a 1:n communication structure is
supported per default. By means of identifiers not used by the predefined connection

set also direct connection between devices may be established.

One of the basics of the DeviceNet identifier assignment scheme is the node-
oriented ownership of message identifiers. Each of the maximum 64 nodes of a
DeviceNet system owns a set of identifiers out of 3 message groups (Fig. 3.1.c).
Message group 1 provides a high priority message pool of 16 messages per device,
message group 3 five (5) low priority identifiers per device. The identifiers/priorities
of those groups are distributed evenly among all the devices on the network. The
reservation of message identifiers for the maximum number of devices implies, that
for networks of less than 64 nodes, the identifiers of the unused nodes are not

available for the system.

With Message Group 2 it was intended to support devices with limited message-
filtering capabilities due to Basic-CAN type controllers. Therefore, a filtering
according to the node number (MAC-ID) was chosen. This means that the priority of
messages of that group is primarily determined by the node number. Two messages
of that group are reserved for management tasks (allocation of predefined
connection set, Duplicate MAC-ID check). The MAC-ID of Group 2 messages may

be destination or source address.

IDENTIFIER BITS IDENTITFIER

wlofs[7]e[s[a]a]z]1]0 USAGE
0 | Group 1 Source MACAD Group 1 Massages

Messags ID

11401 Source MAC-ID Slave's 1D Change of State or Cyclic Message

1 111 |0 | Source MAC-ID Slave'a /0 Bit-Strobe Reaponse Measage

1 111 1 | Source MAC-ID Slave's /0 Poll Respoenas or Change of State / Gyelic

Acknowledge Measage
110 MAC-ID Group 2 Group 2 Messages
Mesgzage ID

1| 0 | Soucs MAC-ID O 0] 0 | Master's 100 Bit-Strobe Command Measags
1| 0 | Source MAC-ID 0|0 |1 |Reserved for Master's Uss - Use iz TED
1 | 0 | Destination MAC-ID O (1] 0 | Master's Change of State or Cyclic Acknowlkedge Mezsage
1 | 0 | Soucs MAC-ID 0111 |Slave's Explicit Responze Messages
1 | 0 | Destination MAC-ID 1| 0] O | Master's Explicit Request Messages
1 | 0 | Destination MAC-ID 1| 011 | Master's 110 Pollf Change of State § Cyclic Measags
1 | 0 | Destination MAC-ID i 1 | O | Group 2 Only Uncon nected Explicit Request Messages
1 | O | Destination MAC-1D 1 11| 1 |Cuplicate MAC-D Check Mesgages

Figure 3.3 DeviceNet Predefined Master/Slave
Connection Set Identifier Assignment

DeviceNet specifies a so-called "Predefined Master/Slave Connection Set" to

facilitate the communication observed in a Master-Slave system configuration.

34

Fig. 3.3 shows the identifier assignment of this set. The following channel functions
are supported for exchanging of 1/0 and Explicit messages between a Slave and a

Master device based on the predefined connection set:
= Explicit Message channel
= Master Poll/Change of State/Cyclic channel
= Slave I/O Change of State/Cyclic channel
= Bit Strobe channel

The Explicit Message Channel mainly serves for configuration of a device. With the
Master Poll/Change of State channel the master can request I/0O data from the
device and send Output data to the Slave device. With the Slave /0 Change of
State/Cyclic a Slave device can transmit Input data to the Master, triggered by
change of state, cyclically or by the Slaves application. By means of a Bit Strobe
command the Master can request input data from any of up to 64 Slave devices with
only one message. Since all of these messages are acknowledged 8 message
identifiers are allocated for these functionalities. If Bit Strobe requested data
acquisition is not used a very effective identifier filtering on the Slave devices is

possible by means of the destination address field.

3.6.2 Exchange of Process Data

The transmission of process data between the devices of a distributed automation
system is the purpose of a CAN-based communication system. This should be
accomplished in the most efficient way. Therefore transmission of application
specific data (process data, 1/0 data) should be performed according to the
producer-consumer model, with the meaning of the transferred data implied by the
associated message ID. Producer and consumer of a message in that case are

assumed to have knowledge of the intended use or meaning of the transmitted data.

In the following, the main characteristics of the different solutions for exchanging of

process data will be outlined for CAL, CANopen and DeviceNet.

CAL is intended to provide standard, application-independent communication
facilities for the implementation of distributed systems. It provides communication
objects (CMS objects) in terms of "Variables", "Events" and "Domains". CMS objects
are specified by a set of attributes and are identified by symbolic names. Objects

and services of CAL are directly accessible by the user application. Variables may

35

be of type "Basic" or "Multiplexed". With Basic Variables and Events, the multicast
transmission of up to 8 bytes of data is provided, without any protocol overhead.
Multiplexed Variables contain a multiplexer within the first data byte to distinguish
between 128 "Multiplex-Variables" per message identifier and allow the transmission
of 7 bytes of data. Basic-Variables also may have different access type (read-only,
write-only, read-write). With a read-write Variable, an acknowledged transfer of data
between two devices is supported. The transmission of a variable is initiated by a
client, the transmission of an Event is initiated by a server of the corresponding
object. Fig. 3.4.a shows the "Store-And-Immediately-Notify-Event"-protocol, Fig.

3.4.b the "Read-Event"-protocol, by which a client also can read previously stored

data.
Server Cliant{s)
requast Daia }I |n:1|-::3110nh
—
a
Server Client
_, indication RTR |, requast

L5

- confirmati ug

Figure 3.4 Store-and-Immediately-Notify-Event-
Protocol (a), Read-Event-Protocol (b)
(CAL/CANopen)

Basic and Multiplexed Domains support the acknowledged transmission of data of
more than 8 bytes by means of a flow-controlled fragmented protocol. Since each
data segment is acknowledged, a receiver-controlled flow control is implicitly
provided. With the 3 byte Domain-Multiplexer a variety of different domains may be
identified per message identifier. The transfer of a data block is initiated by an
"Initiate"-request/response sequence, following data segments are transmitted by
means of a Data Segment request/response sequence. Fig. 3.5 shows the principal
structure of the data field of a "Initiate-Multiplexed-Domain" request and a
"Download-Segment" request. In the Control byte the message type

(Initiate/Download Segment/Upload Segment), the transfer type (expedited / non-

36

expedited), toggle-bit and number of bytes with no data is indicated. With the

expedited (non-fragmented) protocol the transmission of up to 4 bytes of data is

possible.
Control-Byte Control-Byte

Data
E Multiplexor = Data 2
B = Data 3
Data 1 Data 4
Data 2 Data 5
Data 3 Data 6
Data 4 Data 7

a b

Figure 3.5 Structure of the Data Field of an
Initiate_Multiplexed_Domain.request (a) and a
Download_Segment.request (b)

CANopen and DeviceNet at a first glance provide quite similar communication
mechanisms for transferring process and service/configuration data. With CANopen,
the transmission of process data occurs by means of so-called "Process Data
Objects (PDOs)", with DeviceNet by means of "I/O-messages".

Table 3.2 Exchange of Process Data in CANopen and DeviceNet

CANopen DeviceNet
Name of Process Data Object I/O-Message
Communication
Object
Maximal Number of | 512 Transmit PDOs 27 1/0- Transmit Messages
Communication |512 Receive PDOs 1701 1/0 Receive
Objects per Device Messages per device
Maximal length of |8 bytes 8 bytes
Data Field fragmented:Arbitrary length

37

Protocol

Unfragmented:

No overhead, Notify/Read
"Stored-Event"-protocol
(CAL/CMS)
Unacknowledged

Unfragmented:

No overhead, three
"Transport Classes"
supported:

e Unacknowledged,

« Acknowledged by
Server Connection
Object,

« Acknowledged by
Application

Fragmented:

Unacknowledged
fragmented protocol

1 byte protocol overhead
per frame

Message
Production
Triggering Modes

« On Request of local
or remote
application

» Cyclic/acyclic
synchron

« Cyclic
+ Change-of-State

« Application specific

Mapping of
Application Objects

Maximum number of
mappable application
objects/PDO dependent on
data size of objects (1-bit
objects: 64 application
objects mappable)

Definition of Application
objects by means of
"Mapping Parameter
Record" (configurable)

Dynamic mapping
supported

Arbitrary number of
Application objects

mappable with fragmented
protocol

Definition of Application
objects by means of
Assembly Object (several
Assembly Objects possible)

Dynamic mapping
supported

In Table 3.2 the main characteristics of process data exchange are summarized for

CANopen and DeviceNet. One of the main differences is the provision of an

unacknowledged fragmentation protocol in DeviceNet, which makes it possible to

transmit also process data with length more than 8 bytes. Also three different

protocols with respect to acknowledgement ("Transport Classes") are supported

(Fig. 3.6) and determined of the "Transport Class" of a Connection end point.

38

Transport class 2 or 3 may be used for example for efficient "polling" of devices. For
that purpose a master device implements the communication resources (connection
objects) associated with each Poll Command as a Client Transport Class 2 or 3.
Each slave implements a Server Transport Class 2 or 3 Connection Object to

receive the Poll Command and to transmit the associated response data.

Client Samwvear(s)
a Transport Class 1

indication

Cliant Sarvar
b Transport Class 2

redjuest irdication
canfirmation
e

Cliarit Sarver
¢ Transport Class 3

recjuest indication

confirmation I n&e
<ol et

Figure 3.6 DeviceNet Transport Classes

3.6.2.1 Message Triggering

All of the regarded protocols provide alternative modes of message triggering

supported by the Application Layers.

DeviceNet supports the triggering modes Cyclic, Change-of-State and Application
Object Triggered. With Cyclic Triggering the expiration of a message-specific
Transmission Trigger Timer starts the transmission of a message. With Change-of-
State the transmission occurs when a change-of-state of an Application Object is

detected. A message is also transmitted when a specified time interval has elapsed

39

without a transmission. With Application Object Triggering the Application Object

decides when to trigger the transmission.

CANopen distinguishes between triggering On Event, Application Request or after

Reception of a predefined Synchronization Message.

Triggering On Event may occur on a profile or application specific event
("Asynchronous PDQ"). The transmission of a PDO may also be triggered by the
reception of a remote request message (Remotely Requested). "Synchronous
PDOs" are cyclically triggered by the reception of a specified number of

Synchronization Messages.

The Synchronization Message also may be used for network wide synchronization

of data acquisition and the strobing of output data.

3.6.2.2 Mapping of Application Objects

Network devices normally will produce and/or consume more than one Application
Object and assembling of more than only one Application Object within one PDO

respectively 1/0-Message will be appropriate.

In CAL-based applications, the mapping of application data is done by the

programmer when defining communication objects (e.g. CMS Variables or Events).

CANopen and DeviceNet provide very sophisticated means for a flexible mapping of

application data into communication objects.

CANopen specifies the mapping of Application Objects into a PDO by means of a
data structure called "PDO-Mapping Record". This structure specifies the mapped
application object data in form of a list of object identifications (Object Directory
index/subindex) and data length. Since the PDO Mapping is accessible by means of

SDOs, PDO mappings are configurable by means of a configuration tool.

In DeviceNet the grouping of Application data is specified by means of instances of
the "Assembly" object, which defines the format of the transmitted application object
data. A device may contain more than one I/O assembly and the selection of the
appropriate assembly (consumed/produced connection_path) may be a

configurable device option.

40

3.6.3 Peer-to-Peer Communication Channels

For configuration of devices by means of a configuration tool, specific device
functions or program loading multi-purpose communication channels are required.
These non-time-critical communication channels always exist between two devices,
e.g. between a configuration tool and the device to be configured. The transfer of
data has to be performed by means of an acknowledged fragmentation protocol.
Any of the different higher layer protocols, which support some kind of device

configuration, provide this kind of peer-to-peer communication facility.

CAL for that purpose provides "configuration services" across predefined
management channels to each device as part of the CAL Network Management
service element. For that purpose two identifiers are reserved, the addressed device

is specified in the data field of the first fragment of a message by its node ID.

CANopen provides so-called "Service Channels" across which "Service Data
Objects" (SDOs) may be exchanged between any two devices according to the CAL
Multiplexed Domain protocol. This protocol provides the acknowledgement of any
frame transmitted. Within the first three bytes of the data field of the Initiate-Domain-
Request the address of the Object Directory entry is specified by means of a 16-bit
index and 8-bit subindex. With the index/subindex of an Object Directory entry the

function to be performed is specified implicitly.

Data of less than 5 bytes may be transferred with only the Initiate-Domain Request
Frame ("expedited protocol"), if more than 4 bytes of data have to be transmitted,
the acknowledged fragmented protocol has to be applied, with 7 bytes of data per
fragment. Each CANopen device has to provide a default server SDO-connection
with two predefined message identifiers according to the predefined connection set.
Across this default server SDO connection a device may be accessed by a

configuration tool.

For applications which require a dynamic establishment of SDO connections (e.g.
between test tools and devices) the "SDO-Manager" instance is introduced. The
SDO Manager is the owner of the predefined set of SDO connections and therefore
has access to any device on the network. A SDO-connection requesting device first
has to address the SDO Manager and to ask for establishing the requested

connection.

DeviceNet provides multi-purpose device-oriented channels and services. Writing

and Reading of object attributes, control of objects (reset, start, stop etc.),

41

storing/restoring of classes/objects attributes etc. is performed by means of "Explicit
Messages". These are exchanged across "Explicit Messaging Connections". The
meaning/intended use of an Explicit Message is stated in the CAN data field. In Fig.
3.7 the data field format of a fragmented Explicit Message is shown. For
unfragmented transfer the "Fragment Byte" is not transmitted. For a service request
normally the access path (class number, instance number, attribute number) of the

addressed object attribute is specified (Service specific arguments).

7] 5 4 a 2 1 0
F[rf]g XID MAC-ID Frag Fragment Bit
FI:%mam Fragment Count XD Transaction |D
MAC-ID Source or Destination MaC-ID
R/R Service Code]])
Fragment Type Indicates first, middle or last
fragment
Fragment Court
Service Specific Arguments R/R Request /Hesponse
Service Code Type of Service

Figure 3.7 DeviceNet Fragmented Explicit Message
Data Field Format (Request/Response)

An Explicit Message Connection has to be established by means of the
"Unconnected Message Manager (UCMM)". The UCCM provides two services for
opening and closing of an Explicit Message Connection. Each device supporting an
UCMM reserves message identifiers for transmitting UCMM request and response
message. For "Group 2 Only" devices (devices not supporting an UCMM port) a
master device first has to allocate the Explicit Messaging Connection of the devices'
Predefined Connection Set. The request to allocate a Group 2 Only device is
transmitted as a Group 2 Only Unconnected Explicit Request with a reserved

message identifier.

In Table 3.3 the main characteristics of peer-to-peer communication channels of

CANopen and DeviceNet are summarized.

42

Table 3.3 Main Characteristics of Peer-to-Peer Communication Channels

CANopen DeviceNet
Name Service Data Channel |Explicit Message
Maximum 128 Client SDOs, 27 Explicit Transmit
128 Server SDOs Messages
number of . - :
per device 1701 Explicit Receive
channels .
messages per device
< 5 byte: Acknowledged | < 7 byte: Acknowledged
unfragmented unfragmented
> 4 byte: Fragmented |> 6 byte: Fragmented
transmission transmission.
(7 bytes per fragment) |(6 bytes per fragment)
Protocol
Each frame Each frame acknowledged
acknowledged
Any length
Any length
(CAL Multiplexed
Domain protocol)
Dynamic establishment |Dynamic establishment by
by means of SDO means of Unconnected
Establishing Manager Message Manager
of

Connections

Default predefined

Group 2 Only devices:

connections Allocation of Explicit
Message from Predefined
Connection Set
Initiate, Abort Open/Close
Upload/Download Creation, Configuration,
Connection |Segment/Domain Start, Stop, Reset etc. of
Services and Objects

Arguments

Index and Subindex of
addressed Object
Directory Entry

Object attribute access
path, Service arguments

43

3.6.4 Establishment of Process Data Message Connections

Allocation of identifiers to the transmit messages of the message producers
respectively receive messages of the message consumers establishes the
communication paths in a CAN network. Establishing message connection is
possible through usage of predefined messages with already allocated message

identifiers or through a variable allocation of identifiers to messages.

DeviceNet and CANopen also make use of a predefined connection set approach
for 1:n system structures. A DeviceNet Master for example which has allocated a
Slave device’s predefined poll-connection already "knows" the message IDs for
transmitting the poll request and expecting the poll response message since they
are derived from the Slaves MAC-ID, according to the predefined set. Similarly in
CANopen the default predefined connection set, besides of other predefined
messages, provides two predefined Receive and Transmit PDOs. The

usage/meaning of the Default-PDOs is determined by the device type.

The main advantages of a non-predefined identifier allocation is the possibility of
establishing any type of communication structure, the availability of the maximum
number of message identifiers and the design-controlled allocation of message

identifiers according to the requirements of the application.

Whereas CAL/CANopen are based on a variable identifier allocation scheme based
on a central message identifier pool, DeviceNet distributes the available identifiers

across the maximum 64 devices of a DeviceNet system.

The allocation of identifiers with a common identifier pool is controlled by a specific
network instance (the Distributor in CAL) or by means of a configuration tool
(CANopen), which supports the building of message connections, by the system

administrator.

44

List af Nodea

(1) Cullng Noce o request idenifiars or all of I CMS-Objects

() Nods requesis an idemiifer for CMS-Otjeot of reme x priory group ¥
DET-Mamtar alicostnd |dentifier 1o ChiS-Object

(&) Moce aonfirme and of kiemiler requasting
@) e re repedied for the GOB’s ol all GUE-Objsots of & nude

Figure 3.8 Identifier Allocation Process with CAL
Distributor

CAL and CANopen are based on a variable identifier allocation with a common
identifier pool. Identifier allocation in CAL-based systems may be performed by the
"Distributor" service element (Figure 3.8). The Distributor (DBT) master instance
allocates message-IDs from a central pool of message-identifiers according to the
requests (priority group, name and type (transmitter/receiver)) of all of the
communication objects of the devices. By linking of requests according to object
name and type client(s) and server(s) of a message are connected. The distribution
process is controlled by a Network-Master application across network management
connections to the devices.

If no CAL-Distributor is used, configuration of message identifiers in CANopen
based systems may be performed by setting the corresponding PDO identifiers in

the Object Directory of the devices via a SDO channel.

The generic identifier allocation method of DeviceNet is determined by the fact that

here the devices are owner of message identifier pools. Therefore the connection of

45

I/0O messages first requires the allocation of an identifier out of the identifier pool of
the message-transmitting device. This identifier then has to be assigned to the

consuming device(s).

Configuration Toal
Expl Expl
ﬁj Create.req ET:- Craate.raq
N (2“\ Create.res (8 Create.res
(success) (success)
{27 Set_Aftribute.req \?:} Set_attribute.req
(Class 0 Client, @ Set_Attibute.res (Class O Server, @ Set_Attibute.res
Cycle, (success) Conzumad_ (success)
Message Group 1) Connection_|D)

.
@ Apply.req @-L. Apply.req

@. Apply.res @ Apply.res
{Consumed_Conn_ID, ({Consumed_Conn_|D,
Producad_Conn_ID) Produced_Conn_ID)

Expl Expl
] | |
Device A |'/ /.| Device B
o [j@. Connection Active > o
- Glaza O Clisnt - Class 0 Samvics
- Group 1 Messags - Group 1 Ms2aage

Figure 3.9 Creation, Configuration of /0O Connection
Instances

In Figure 3.9 the process of establishing an I/O Message Connection between two
devices by means of a configuration tool is illustrated. I/O connections are
established by addressing the Connection Class across an already established
Explicit Messaging Connection. This involves creation of an I/O Connection object
and configuring the Connection instance at the end point of the connection. During
that process a message-producing module allocates a free message-ID from the
pool of its message-IDs and combines this with its Source MAC ID to generate a so-
called "Connection ID". The "automatic" allocation of an identifier out of the
message group may be overridden by a direct modification of the Connection ID

attributes.

3.6.5 Network Management

Due to the fact that an application is distributed, certain events have to be handled
(e.g. failure of parts of an application or failure of a node) which would not occur if
the same application had not been distributed. Main tasks of an appropriate network
management therefore are the detection and indication of failures in the network and

services, which allow controlling the communication status of the distributed nodes

46

in a coordinated manner. Depending on the system solution, network management
functionality is provided by means of an explicit Network Management facility or

implicitly by means of other measures.

CANopen network management is based on the CAL NMT service element, which
applies the principle of "Node Guarding" for the detection of node failures. For this
purpose, a NMT master application cyclically transmits a guard request to each
node (NMT slave) of the network by means of a Remote-Request Frame. The
addressed slave responds to each request with its actual communication state. If the
NMT master detects a change in the node state or no response from the addressed
node, a guard error is indicated to the NMT master application. Node guarding
starts, when a node is connected to the network. Each node also supervises the
arrival of its guard request message. If there is no further guard request after
expiration of the nodes '"life time" a network error is signaled to the nodes

application.

Initialization
(101

{11}

POWER Gn

(=3 Service Start_Remots_Mode.indication
{7 Service Stop_Remaote_Mods.indication
[E=1} Service Enter_Pre-Opsrational_State.irdication

{10y Service Reast_MNode.indication

{11} Service Rsast_Communication.indcation
{12y After Initialisation is finished

{133(14) After Rasst ia parformed

Figure 3.10 CANopen Node State Diagram

Co-ordination of the communication status of the nodes is also supported by the

NMT master instance. Fig. 3.10 shows the node state transitions diagram of a

47

CANopen node. After power on, a node initializes and transits to the "Preoperational
State". In this state communication across SDO channels is possible for node
configuration, but not yet across PDOs. With the NMT message "Start Remote
Node" a selected or any nodes on the network can be set into the "Operational
State". In this state also the exchange of data by means of PDOs is possible. With
enabling the operation of all nodes of a network at the same time a co-coordinated

operation of the communicating system is secured.

According to its connection-oriented design, in DeviceNet each connection is
supervised. Therefore each receiving connection end point owns an
"Inactivity/Watchdog-Timer" to supervise the arrival of a message according to the
configured "expected packet rate". If the timer expires the connection performs the
specified "Timeout Action". Fig. 3.11 shows the state transitions diagram for an /O
connection object. After reception of a Create Service (Explicit Message) the
connection is configured by applying the appropriate sequence of Explicit Message

services and enabled after the complete connection has been configured.

Non Exlstent ——— pelete from any state

Create
Apply_
" Attribute
configuring Walting for
o Connection 1D
Get_Attribute,
Set_Attribute, Apply_Attribute
Apply_Attribute
ly_Attribute
Established APPIY..
Imactivity- / Watchdog-
Reset \ Timeout
Delete Time-Out

Figure 3.11 Device Net /O Connection Object State
Transition Diagram

Prior to getting access to the network every DeviceNet node has to perform the so-
called "Duplicate MAC ID Check". With this specific protocol sequence the
uniqueness of the MAC ID of a device is secured. All DeviceNet modules are

required to participate in this MAC ID detection algorithm.

An optional means for the supervision of devices is provided by means of a

"Heartbeat-Message" which may be broadcasted by the devices by means of the

48

UCMM in form of an Unconnected Response Message or by Group 2 only devices
by means of an Unconnected Response Message. In the data field of this message
the device state is transmitted. The Heartbeat Message is triggered by the Identity

Object. A node may optionally broadcast fault information before going offline.

3.6.6 Device Modeling and Device Profiles

For open automation systems, besides of standard communication, in addition
interoperability and interchangeability of alike device is demanded. Therefore open
systems higher layer protocols like DeviceNet and CANopen describe the
functionality of devices as seen from the network in form of a "Device Model". To
promote the interchangeability of alike devices "Device Profile" of main device
classes of industrial automation have to be specified which secures the same basic

("standard") behavior of devices of different manufacturers.

Beside of a description of the functionality of the device the device model must also

provide a description of the device’s identity, version number, status, diagnostic

information, communication facilities and configuration parameters.

Camry
Object(s)

L DeviceMet Metwork "

Figure 3.12 DeviceNet Object Model

In Fig. 3.12 the model of a DeviceNet node is shown. This includes several objects,
some required by DeviceNet, and others required by the product’s application
function. An object provides an abstract representation of a particular component

within a device and represents the related data (attributes) and procedures

49

(services) on that data. In Table 3.4 the main function of the objects of a DeviceNet

example node are summarized.

Table 3.4 Objects of a DeviceNet node

Dhject Funetion
Connection Instantiates connections (10 or Explicit Messaging)
DhewiceMet Maintains configuration and status of physical attachments to DeviceMet.

Message Router Routes recenved Explicit Messages to approprnate target objects

_ﬁ_ﬂtnlm'!.l Groups attnbutes of multiple obpect intd a angle black of data, which can be
sent and received over a s nglt' connechon

Parameter Provides a standard means for deviee configuration and attribute access

Identity Provides general information about the identity of a device

Application Supplees application-specilic behaviour and data

Object addressing in DeviceNet is based on a hierarchical addressing scheme and
consists of the MAC-ID (Medium Access Control Identifier), which distinguishes a
node among all other nodes on the same link, the class identifier (Class ID), which
identifies the object class, the instance identifier (Instance ID), which identifies an
instance among all instances of the same class and the attribute identifier which

identifies an attribute within a class or instance.

A DeviceNet device profile must contain the following information:
» an object model for the device type
» the I/O data format for the device type
« configuration data and the public interfaces to that data

The CANopen approach is based on the description of a device’s functionality by
means of an "Object Directory". Entries of the Object Directory are identified by a
16-bit index and an 8-bit subindex number with the function of an entry (data,
parameter or function) implicitly specified. Beside of a section used for the definition
of data types, three main sections are distinguished (Fig. 3.13): The Communication
Profile Section, Standardized Device Profile Section and Manufacturer Specific

Section.

50

Index (hex) Object
0000 Mot used
0001-009F Definition of static, complex, manufacturar-
specific and device profile-specific data types
00AD-OFFF Reserved
1000-1FFF
Communication Profile Area
2000-5FFF
Manufacturer Specific Profile Area
6000-9FFF
Standardised Device Profile Area
ADD0-FFFF
Reserved

Figure 3.13 CANopen Object Directory Structure

Index |Object Class Object
1000h VAR Device Type
1001k VAR Error Register
Device Specification Data
Device Global Communication Parameters
Mumber of supported PDOs and SDOs
1200h Record 1st Server SDO Parameter
l
128th Server SDO Parameter
1280h Record 1st Client SDO Parameter
l
128th Client SDO Parameter
1400h Record 1st Receive PDO Parameter
1
E12th Receive PDO Parameter
1600h Record 1st Receive PDO Mapping
l
E12th Receive PDO Mapping
1800h Record 1st Transmit PDO Parameter
l
E12th Transmit PDO Parameter
1A00R Record 1st Tranamit PDO Mapping
1
E12th Tranamit PDO Mapping

Figure 3.14 CANopen Object Directory
Communication Profile Section

51

The Communication Profile Section Information is identical for any CANopen device
type and contains device related information, parameters and functions that are
related for device identification, error management and the definition of the device’s
communication channels including the mapping of application objects into Process
Data Objects (Fig. 3.14). Related to DeviceNet the CANopen Communication Profile
Section may be compared with the functionality of the DeviceNet, Identity,

Connection and Assembly Objects.

The CANopen Device Profile Section provides the interface to the functionality of a
basic ("standard") device of a specific class. Some of these entries are mandatory
and some are optional. The mandatory, common entries shall ensure, that a device
behaves in a defined basic manner. Different Device Profiles for main industrial
devices like I/O modules or drives are specified to promote interchangeability of
devices.

Manufacturer specific or non-standardized device functionality may be provided by

means of the Manufacturer Specific Profile Section.

52

4. NEW PROTOCOL DEVELOPMENT: CANUP

CANUP (CAN Uygulama Protokolll) is application-independent CAN-based
application layer protocol which defines general rules and structures for message
identifier allocation, data exchange methods, network management, message

triggering and baudrate.

Protocol defines only one master and maximum 127 slaves total 128 units for a
network. Master is responsible and only authority for network management,

baudrate settings, ID and Unit Number assignment.

In a CANup based system every unit has a Unit Number that may be the same but

theoricaly is independent from message ID.

4.1 Baudrate

All units on network must support the baudrate 25 kbit/sec. This baudrate is used at
startup and during initialization process. Beside, any unit must also support at list

one of the defined baudrates at Table 4.1.

Table 4.1 Defined baudrates and codes

BAUDRATE CODE
10 kbit/s 10
25 kbit/s 25
50 kbit/s 50
100 kbit/s 100
125 kbit/s 125
250 kbit/s 250
500 kbit/s 251
800 kbit/s 253

1 Mbit/s 255

53

4.2 ID Assignment

CANUP supports both static and dynamic message identifier distribution. Basically

11-bit standard IDs are used. But protocol also supports 29-bit extended ID usage.

11-bit standard ID field is divided into 2-main sections.

10 9 8 7 6 5 4 3 2 1 0

TYPE MESSAGE ID

Figure 4.1 General ID Fields

Although function of these two fields depends on application, they have some
general meanings. Upper 3-bit field named as TYPE determines message type or
message group. Lower 8-bit field has different functions such as sender no, target

no, and message content.

If constant ID is used for a unit, ID must be assigned by taking consideration about

priorities for both fields.

For nonconstant ID units each unit has a startup ID. Type field is set according to

device priority group and message ID has a random value.

4.2.1 System Messages

255 messages having the highest priority with TYPE field all zero are called as
System Messages. These messages are application-independent and can be used

for only defined purposes. System messages are classified into 4 groups.

The messages with ID between 0 and 9 are Emergency Messages for master and

slave units.

The messages with ID between 10 and 59 are System Messages that can be used

only by master.

The messages with ID between 59 and 99 are System Messages that can be used

only by slave units.

The messages with ID as 100+Unit Number (100-227) are Special System

Messages that can be sent by specific Unit.

54

4.2.1.1 Emergency Messages

Message 0

SENDER ID DLC | DATAO Meaning
Slave 0 1 Unit No | Leaving from network

Message 1

SENDER ID DLC | DATAO Meaning
Slave 1 1 Unit No TEC exceeded 245

Message 2

SENDER ID DLC | DATAO Meaning
Slave 2 1 Unit No REC exceed 245

Message 3

SENDER ID DLC | DATAO Meaning
Slave 3 1 Unit No TEC exceeded 127

Message 4

SENDER ID DLC | DATAO Meaning
Slave 4 1 Unit No REC exceed 127

Message 5

SENDER ID DLC | DATAO Meaning
Slave 5 1 Unit No TEC exceeded 96

Message 6

SENDER ID DLC | DATAO Meaning
Slave 6 1 Unit No REC exceed 96

Message 7

SENDER ID DLC | DATAO Meaning
Slave 7 1 Unit No | Unable to support new baudrate

55

4.2.1.2 General System Messages

Message 10
SENDER ID DLC Meaning

Master 10 0 All Units start communication
Message 11
SENDER ID DLC Meaning

Master 11 0 All Units Stop Communication
Message 12
SENDER ID DLC DATAO0 Meaning

Master 12 1 Baudrate Code New Baudrate
Message 13
SENDER ID DLC DATAO0 Meaning

Master 13 1 Unit Number The unit joined network
Message 14
SENDER ID DLC DATAO0 Meaning

Master 14 1 Unit Number | The unit start communication
Message 15
SENDER ID DLC DATAO0 Meaning

Master 15 1 Unit Number The unit left network
Message 16
SENDER ID DLC DATAO0 Meaning

Master 16 1 Unit Number | The unit stop communication
Message 17
SENDER ID DLC DATAO0 Meaning

Master 17 1 Unit Number |LongData transmission allowed.

56

Message 18

SENDER ID DLC DATAO0 Meaning

Master 18 1 Unit Number |LongData transmission not allowed.
Message 19
SENDER ID DLC Meaning

Master 19 0 The units with constant ID, Introduce yourselves
Message 20
SENDER ID DLC DATAO0 Meaning

Master 20 1 Unit Number Unit number assignment
Message 21
SENDER ID DLC Meaning

Master 21 0 The units with dynamic ID, Introduce yourselves
Message 22
SENDER ID DLC DATAO0 Meaning

Master 22 1 Unit Number Unit number assignment
Message 23
SENDER ID DLC Meaning

Master 23 0 Baudrate determination process started.
Message 24
SENDER ID DLC DATAO0 Meaning

Master 24 1 Baudrate Code Baudrate offer
Message 25
SENDER ID DLC DATAO0 Meaning

Master 25 1 Unit Number Send your state information.
Message 59
SENDER ID DLC DATAO0 Meaning

Slave 59 1 Unit Number | Unit number confirmation

57

Message 60

SENDER ID DLC DATAO0 Meaning

Slave 60 1 Priority A unit wants to join network
Message 61
SENDER ID DLC Meaning

Master 61 0 Faulty node recovering

4.2.1.3 Unit System Messages

DLC is always greater than zero in Unit System Messages. The first byte of data
(DATAQO) always defines type or meaning of message. So 255 different messages

can be defined for each unit. General format of the messages are below:

Message 100+x

SENDER ID DLC DATAO DATA1 | DATA2DATAN

Unit x 100+X >1 Message Type

x=Unit Number (0-127)
Figure 4.2 Unit System Message Format

Message Type 0

DLC | DATAO DATA1 DATA2 Meaning

3 0 Length (MSB)| Length (LSB) | LongData Transmission Request

Message Type 1

DLC | DATAO DATA1 DATA2 Meaning
3 1 Unit Number | Baudrate Code | only support this baudrate
Message Type 2
DLC | DATAO DATA1 DATA2 Meaning
3 2 REC TEC State Information

58

4.3 Data Exchange

Data transmission is divided into 4 different methods according to length:

Instant (Logical) Data (0 byte)

Short Data (1-8 bytes)

Mid-Data (9-48 bytes)

Long Data (49-1785 bytes)

4.3.1 Instant Data

In this type of transmission DLC is 0(zero). Data is carried by some bits of ID field.

4.3.2 Short Data

DLC shows amount of total data bytes. All data is transmitted in one package. DLC

can be maximum 8.

4.3.3 Mid-Data

DLC takes the values between 9 and 14. Total data is transmitted by 2 to 6

packages. Package segment number is calculated by following formula:

Package Order =DLC -8
DLC=9 >>>> Package Order=9-8 =1

DLC=14 >>>> Package Order=14-8 =6

4.3.4 Long Data

DLC is always 15. All packages contain 8 bytes of data. Data0 content shows

package order.

Startup (first) package has different format. The content of Data0 is 0(zero). Data1
and Data2 content show total data number of bytes that will be transmitted.

Data3...Data7 content has no meaning.

59

Data O 0

Data 1 Length LSB
Data 2 Length MSB
Data3-7

Figure 4.3 Long Data Startup Package Format

Because producer and consumer of long data know about total length, unused data

bytes of last package are ignored.

4.4 Network Management

441 Startup

Initialization is divided into two steps: Registration and baudrate determination

process.
First of all, master broadcast message 12 with the baudrate code of 25.

Then master generates message 11 twice and starts registration process. Master
broadcasts message 19 to know if there is any unit with constant ID. If there is no

message within 20-bit time, master assumes there is no unit with constant ID.

The units with constant ID answer to master using data frames with their ID and
without data field. Here there cannot be two units with same constant ID and this is

responsibility of system designer.

A slave unit, which lost arbitration during this process aborts transmission and waits

until completion of registration process for arbitration winner unit.

Master answers each message with message 20. By this way every units gets a
Unit Number. Master is free about assigning unit number. For constant ID units
master assigns a unit number related to constant ID. The same unit produces
message 59 by using assigned Unit Number for confirmation. So registration

process for a slave unit with constant ID has been completed.

Master holds a table called Registered Units List (RUL). Master adds every unit to

RUL after registration process.

60

After broadcasting of message 59, master unit waits 20-bit time and if there is no
more messages it assumes that registration process for constant ID units

completed.

Master unit broadcasts message 21 for units with non-constant ID to introduce
themselves. The units get the message and wait for the random bit time that is
defined in the lower 8-bit of their startup ID and broadcast data frames with their ID

and without data field.

A slave unit, which lost arbitration during this process aborts transmission and

restarts random wait time.

Master answers each message with message 20. Master assigns unit numbers from
low to high by order. Then slave unit answers with message 59 and registration

completed. All units also are added to RUL.

After broadcasting of message 59, master waits 255-bit time and finishes whole

registration process.

Second step at initialization is baudrate determination. Broadcasting of message 23
by master starts this process. Master waits for 10-bit time for the units, which
supports only one baudrate. If there is any unit that supports only one more extra
baudrate, then it suddenly broadcasts unit system message 1 with supported
baudrate code. Then master broadcasts message12 using the same baudrate code

and baudrate determination process finishes.

If there is no unit with single baudrate, master firstly offers highest baudrate for
network by using message 24 and starts to wait for 15-bit times. Any unit that cannot
support offered baudrate, broadcasts emergency message 7. Then master offers
one lower baudrate. By this way, the baudrate that is not rejected by any unit is
determined as new baudrate and broadcasted by message 12. And baudrate

determination process finishes.

4.4.2 Node Guarding

For node guarding purposes master units hold two tables: Active Units List (AUL)
and Passive Units List (PUL). A unit can be member of AUL or PUL not both at any

time. After initialization all units in RUL are also added to AUL.

61

After completing initialization, master starts a periodic timer, which counts the time

called as Cycle Time. Cycle time is calculated by following formula:

Cycle Time = Registered Unit number * 5

During Cycle time, the units, which broadcasted any message is marked as active
unit. When cycle time finishes, master starts to send node-checking message
(message 25) to the units that are in AUL but not marked as active unit by unit
number order. A unit that takes this message, answers it by sending unit message
type 2. This message includes current state of unit. If there is no answer in 15-bit

time then the unit is transferred from AUL to PUL.

After every 10-cycle time, master sends node-checking message to all units in PUL.
After every message, master waits 15-bit time for answer. Any units that answered

this message by unit message type 2 are again transferred to AUL.

4.4.3 Detecting and Recovering Faulty Nodes

A unit broadcasts emergency message 5 as soon as Transmit Error Counter (TEC)
exceeds 96 and message 6 as soon as Receive Error Counter (REC) exceeds 96.
In this case master broadcasts message11 10 times then faulty unit broadcasts
message61 10 times consecutively. Then master broadcasts message10 and

recovering process ended.

A unit broadcasts emergency message 3 as soon as Transmit Error Counter (TEC)
exceeds 127 and message 3 as soon as Receive Error Counter (REC) exceeds
127. In this case master broadcasts message11 20 times then fault unit broadcasts
message61 20 times consecutively. Then master broadcasts message10 and

recovering process ended.

A unit broadcasts emergency message 1 as soon as Transmit Error Counter (TEC)
exceeds 245 and message 2 as soon as Receive Error Counter (REC) exceeds
245. In this case master broadcasts message11 30 times then fault unit broadcasts
message61 30 times consecutively. Then master broadcasts message10 and

recovering process ended.

For a faulty unit maximum 5 consecutive recovering processes can be applied. If
error state of the faulty node continues no more recovering process is applied and

master reports this state to user. In such cases measures are application-

62

dependent. But decreasing baudrate or inhibiting faulty node from communicating by

sending message16 may be recommended.

4.4.4 Node Adding-Removing

A unit that will join to a running network listens bus at all baudrates from high to low
until detecting current baudrate. Then unit sends message 60 to join network.
Master replies this message by sending message 13 and this message includes unit
number for new unit. Master sends message 14 to allow new unit to start
communication. The unit is added to both RUL and AUL.

A unit that will shut down or leave from network sends emergency message 0.
Master also sends message 15 to inform other units. The unit is removed from RUL
and AUL or PUL.

4.5 Message Triggering

The messages on a CANUP network are classified into two types: System
Messages (SM), Process Messages (PM). SM and PM transmission of a unit is

triggered in 3 modes: Event-Driven, Periodically and Remotely Requested.

4.5.1 Event-Driven

Message transmission is triggered by the occurrence of an application specific

event. This event may be change of state, expiration of a specified period etc.

4.5.2 Periodically

Message transmission is triggered by expiration of the application specified

transmission period.

4.5.3 Remotely Requested

Message transmission may be initiated on receipt of a remote request made by

another unit.

63

5. A CANUP APPLICATION: LIFT COMMUNICATION PROTOCOL ASCAN

There are several units, which communicate each other in different methods in lift
control systems. Classical systems use point-to-point wiring and all units are
connected to main control panel directly. For example for a 10-stop lift system there
are approximately 30 cables from control panel to cabin unit and 20 cables to each
floor push button unit. This costs much wiring and workmanship and causes

difficulties while expanding system and increases wrong connection rate.

Serial communication looks like the most effective solution in all aspects. CAN is
chosen as serial communication bus because of its high reliability and cost

efficiency.

There are 3 different serial lines in lift control systems. One line for communication
between control panel, cabin and floor push buttons, one line for communication
between control panel and sensors, speed control units, one line for between control
panels in group operations. In this CANUP application called as ASCAN, all these

lines are gathered on a single CAN network.

5.1 Baudrate

ASCAN supports the defined CANUP baudrates lower than 250 kbit/s. Because
urgent (time-critical) data in lift control systems such as security circuit signals are
connected to main control panel directly, so these low baudrates will be enough. As
the number of units and consequently network length increase, baudrate also

decreases.

For communication of control panel and floor push button units recommended
baudrate is 50 kbit/s.

64

5.2 ID Distribution

The units in lift control system use defined type of IDs as in Table 5.1.

Table 5.1 ID Distribution in ASCAN

TYPE FIELD MESSAGE
000 0 System Messages
001 1 Control Panels
010 2 Sensors

011 3 Smart Unites
100 4 Cabins

101 5 Floor Units 1
110 6 Floor Units 2
111 7 Common

5.3 Messages On ASCAN

5.3.1 Control Panel Messages

Control panel (CP) is master of all system. It uses Type 0 IDs for network
management messages and uses Type 1 IDs for lift control messages. In group
operation there can be up to 16 control panels. In such cases, CPO is master of all

system.

CP message ID format is described in Figure 5.1

Type Field Control Panel Number Message Number

ID10 | ID9 | ID8 | ID7 | ID6 | IDS | ID4 | ID3 | ID2 | ID1 | IDO

0 0 1 X X X X X X X X

Figure 5.1 Control Panel Message ID Format

Message 0 is broadcasted to inform all units about system parameters. There are 2
bytes of data in the message. DataO carries number of stops in system and Data1

carries traffic system code as explained in Table 5.2

65

Table 5.2 Traffic System Codes

CODE Traffic System

0 Simple Push Button

1 Simple Collective
2 Down Collective
3 Up Collective
4 Full Collective

For floor push button and cabin units CP broadcasts 3 similar messages: Message
number 1,2 and 3. In these messages there are 5-8 bytes of data and Data0..4 are

in the same format as in Figure 5.2.

DATAO DATA1 DATA2 DATA3

Left Display Code | Right Display Code | Signal Lamps State Cabin State

Figure 5.2 Data 0..4 of CP message

Data0 and Data1 bytes carry display codes that are in ASCII format for left and right

displays at cabin and floor display units.

Data2 carries Signal Lamps State information for signals lamps at cabin and floor

units, which has a format as in Figure 5.3.

B7 B6 B5 B4 B3 B2 B1 BO
Minimum Full Up Down Out Of
X Load Load Overload Arrow Arrow Busy Service

Figure 5.3 Signal Lamps State Byte Format
For each bit logic 1 means signal is active and logic 0 means signal is off.

Data3 carries information about cabin’s motion state code. Here two types of codes
are used. Decimal values up to 127 gives 10 times cabin speed in m/s. To calculate
actual speed the value is divided by 10. For example decimal 25 means that speed

is 2.5 m/s.

When msb bit of the byte is 1 (Data3 > 127) then Isb 4 bits are read as in Table 5.3

66

Table 5.3 Cabin State Byte

CODE
EXPLANATION
b3 | b2 | b1 b0 Dec
0 0 0 0 0 Cabin stops.
0 0 0 1 1 Cabin is about to move.

Cabin is moving slowly.

Cabin is moving fast.

Cabin is moving very fast.

Number of data bytes in the messages depends on the number of stops in lift
system. For every 8 stops one more byte is added to data field. For an 8-stop

system there are 5 data bytes and for 32 floors there are 8 data bytes.

Format of Data5..7 differs at every messages as in Figure 5.4. Message 1 carries
CRL information, message 2 carries URL information and message 3 carries DRL

information.

DATA4

DATAS

DATAG6

DATA7

CRL 0-7

CRL 8-15

CRL 16-23

CRL 24-31

CRL: Cabin Registration Lamps

DATA4

DATAS

DATAG6

DATA7

URL 0-7

URL 8-15

URL 16-23

URL 24-31

URL: Up Registration Lamps

DATA4

DATAS

DATAG6

DATA7

DRL 0-7

DRL 8-15

DRL 16-23

DRL 24-31

DRL: Down Registration Lamps

Figure 5.4 Format of Data4..7 of CP messages

Master also broadcasts second types of messages, message 4 and 5 for answering
password-checking messages of floor units and cabin. These messages contain 1
byte of data, which carries the unit number of answered unit. Message 4 means
password is correct and call request has been accepted. Message 5 means

password is invalid and call request has been rejected.

67

5.3.2 Floor Unit Messages

Floor Units broadcast 2 types of messages: One type of message for reporting
change of states of buttons and one for password checking.

Floor Units message ID format is described in Figure 5.5.

Type Field Floor Unit Number Message Type

ID10 | ID9 | ID8 | ID7 | ID6 | IDS | ID4 | ID3 | ID2 | ID1 | IDO

1 0 1 X X X X X X X X

Figure 5.5 Floor Unit Message Format

Floor Unit broadcasts the message as in Figure 5.6 to inform master about state
change of buttons.

Type Field Floor Unit Number Message Type

ID10 | ID9 | ID8 | ID7 | ID6 | IDS | ID4 | ID3 |ID2 |ID1 | IDO

1 0 1 X X X X X 0 | Up | Down

Figure 5.6 State-Change Message of Floor Units

This message is in Instant Data form and has no data field. ID2 bit of message ID is
always 0. ID1 shows the last state of Up-button and IDO shows the last state of
Down-button. For these bits logic 1 means that button is pressed and logic 0 means
button is released.

For password checking messages, message ID format is described in Figure 5.7.

Type Field Floor Unit Number Message Type

ID10 | ID9 | ID8 | ID7 | ID6 | IDS | ID4 | ID3 |ID2 |ID1 | IDO

1 0 1 X X X X X 1 Up | Down

Figure 5.7 Password-checking Message ID format

ID2 bit is always logic1. Logic 1 in ID1 bit shows up call request and in IDO bit down
call request for that floor. The message contains two bytes of data. DataO carries

upper byte of password and Data1 carries the lower byte.

68

5.3.3 Cabin Messages

Similar to floor units, cabin also broadcasts 2 types of messages: One type of

message for reporting changes of state of buttons and one for password checking.

Cabin message ID format is described in Figure 5.8.

Type Field Cabin Number Message Type

ID10 | ID9 | ID8 | ID7 | ID6 | IDS | ID4 | ID3 | ID2 | ID1 | IDO

1 0 0 X X X X X X X X

Figure 5.8 Cabin Message ID Format

Message 0,1,2 and 3 are used to report state-changes at cabin buttons. All these
messages carry 1 byte of data. MessageO carries information about buttons 0-7,
message1 buttons 8-15, message?2 buttons16-23 and message3 buttons 24-31. For
these bits logic 1 means that button is pressed and logic 0 means button is
released. Cabin broadcasts these messages according number of stops in lift

system.

5.4 Message Triggering

CP broadcasts messageO just after initialization. Message0 is also broadcasted if

there is a change in related lift parameters.

CP messages of 1,2 and 3 are normally broadcasted in order 10-bit time later after
bus is idle. If bus doesn’t become idle after 5 messages then master again
broadcasts the messages. But if a cabin or floor unit message is received or there is
a change in display or signal lamps information then related messages are produced

immediately.

CP broadcasts message 4 and 5 as soon as receiving password-checking

messages.

Floor Units and cabin broadcast their messages as soon as there is a change in

state of buttons or there is a call request with password.

69

5.5 Network Management

If there is still a faulty node even if 5 consecutive recovering processes were applied
then master decreases baudrate and starts new recovering process. Master applies
this procedure 3 times. If the problem continues then no more recovering process is

applied.

70

6. CONCLUSION AND FUTURE WORK

Due to the widespread use of the CAN protocol from automotive to any kind of
industrial applications, several classes of higher layer protocols have been
developed. In this study some open system solutions for industrial automation have
been mentioned. It was not intended to provide a guideline for choosing the best-
suited protocol, but primarily to provide a better functional understanding of higher

layer protocols.

Caused by the immense distribution of CAN in the non-automotive automation
several higher layer protocols and open systems approaches have been originated

almost simultaneously.

With CAL, a widely accepted and approved application layer standard is available
for use in any application, which has to fulfill specific requirements in a fixed
configuration environment. Due to the compatibility with CANopen, CANopen

modules may be used within CAL systems.

With DeviceNet and CANopen two CAN-based sophisticated open systems
standards are available today. On a first glance both solutions provide about the
same functionality, although the approaches, which are taken, are quite different.
Most significantly this concerns the usage of message identifiers, which completely
left open to the system designer or integrator in CANopen. Although DeviceNet
provides a free usage of message identifiers, there are some limitations. DeviceNet
is based on a connection-oriented view but CANopen is based on a message-
oriented view. Each of the system uses different data transport protocols with

DeviceNet providing the most variety.

We also defined a new application protocol CANUP. We think CANUP protocol is
easier to understand and to implement for small applications rather than well-known

protocols. And we described a lift communication application on CANUP.

71

However, it is also acceptable that CANUP protocol defined in thesis is just a
preliminary study and there may be some imperfect parts and structures. Anyway, it
is certain that CANUP must be developed according to the needs of different
applications and device profiles. There are some undefined message IDs in system
messages and these can be configured according to requirements. Protocol
structure also supports extended ID (29-bit) and lots of new messages and

structures can be added to the protocol.

There are also lots of future works in lift communication application ASCAN. In this
study, we made general ID assignment for whole lift network but only the
communication between control panel and cabin and floor units is described in
details. The communications between different control panels, sensors and other

smart units including definitions and structures left open for future work.

72

REFERENCES

[1] Perry Sink, 2003, A Comprehensive Guide to Industrial Networks,
http://bgfx.com/comprehensive_guide_to_industria.htm

[2] Synergetic Micro Systems, 2000, Eight Popular Open Architecture Fieldbuses,
Embedded Solutions Magazine.

[3] Etschberger, K., 2001,Controller Area Network Basics, Protocols, Chips and
Applications, IXXAT Press, Weingarten.

[4] I1SO-IS 11898, 1993, Road vehicles — Interchange of digital information —
Controller Area Network (CAN) for high-speed communication

[5] Bosch, 1991, CAN specification, Version 2.0, Robert Bosch GmbH.

[6] NEC, 2003, UPD78F9852 8-Bit Single-Chip Microcontroller with CAN Interface
Preliminary User’s Manual

[7] CAN-in-Automation, 1996, CAN Application Layer for Industrial Applications
CiA DS 201-207 Version 1.1.

[8] CAN-in-Automation, 2000, CANopen Communication Profile for Industrial
Systems CiA-301 Version 4.01.

[9] CAN-in-Automation, 2000, CANopen Framework for Programmed CANopen
Devices CiA-302 Version 3.0.

[10] ODVA, 1997, DeviceNet Specifications Release 2.0, Vol. I: Communication
Model and Protocol, Vol. II: Device Profiles and Object Library

[11] Etschberger, K., 1997, CAN-based Higher Layer Protocols and Profiles,
Proceedings of the 4" International CAN Conference, Berlin,
Germany, October 1997.

[12] Etschberger, K., 1994, Modelling Distributed Application Processes with CAL,
Proceedings of the 1 International CAN Conference

[13] Lennartsson, K., 1995, Fundemental Parts in SDS, DeviceNet and CAN-
Kingdom A Comparison, Proceedings of the 2™ International CAN
Conference,

73

CURRICULUM VITAE

Akin Ozdemir was born in 1976 in istanbul. He completed primary and secondary
schools in Istanbul. He graduated from Kadir Has high school in 1993. He received
his Bsc degree from Istanbul University Electronics Engineering Department in
1998. He started M.S. study in istanbul Technical University in 1998.

He has been a research & development engineer in Aybey Elektronik Company
since 1999.

74

