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ENDÜSTRİYEL AĞLAR 

(CANBUS ÜZERİNDE BİR UYGULAMA PROTOKOLÜ: CANUP) 

ÖZET 

Tezimiz, endüstriyel ağlara genel bir bakışla başlamaktadır. En yaygın olarak 
kullanılan 5 sistem Ethernet, Modbus, Profibus, Foundation Fieldbus ve CANbus 
kısaca anlatılarak avantaj ve dezavantajları incelenmiştir. Bu karşılaştırmada 
CANbus güçlü hata belirleme mekanizmaları, güvenilir yapısı, düşük maliyeti ve 
kolay uygulanabilirliği ile öne çıkmaktadır. Ayrıca tasarımcılar için hem yarı iletken 
hem de yazılım ve uygulama protokolü anlamında çok sayıda alternatif bulmak 
mümkündür.  

Bundan sonra CANbus protokolü ayrıntılı olarak ele alınmıştır. Protokolün tarihçesi 
ve gelişim aşamaları kronolojik olarak anlatılmıştır. Protokol tanımlamalar ve işleyiş 
açısından ayrıntılarıyla incelenmiştir. Protokolün en önemli avantajlarından biriside  
birden fazla ünitenin aynı anda hatta erişmesine izin vermesidir. Herhangi bir 
çakışma durumunda ise yazılım ve donanım olarak bir problem oluşmadan yüksek 
öncelikli mesaja sahip olan ünite erişim hakkını kazanmakta diğer üniteler alıcı 
konumuna geçerek haberleşme devam etmektedir.  

Sonraki bölümde CANbus üzerinde tanımlanmış en yaygın 2 uygulama protokolü 
CANopen ve DeviceNet kısaca anlatılmış daha sonra aşağıdaki 6 açıdan protokoller 
karşılaştırılarak benzerlik ve farklılıklar incelenmiştir. 

• Mesaj Kimliği Atama Sistemi 

• İşlem Verilerinin Aktarımı 

• İki nokta arasında haberleşme kanalları 

• İşlem veri mesaj bağlantılarının kurulması 

• Ağ yönetimi 

• Cihaz modelleme ve cihaz profilleri 

Tezimizin en önemli bölümü ise CANbus üzerinde yeni bir uygulama protokolünün 
tanımlandığı bölümdür. CANUP (CAN Uygulama Protokolü) adını verdiğimiz bu 
protokol uygulamadan bağımsız olarak haberleşme hızı, mesaj kimliği atama, veri 
değişimi metotları, ağ yönetimi ve mesaj tetikleme mekanizmaları ile ilgili kuralları ve 
yapıları tanımlamaktadır. 

Son bölümde ise tanımlanan CANUP protokolünün asansör kontrol sistemlerine 
uygulanması anlatılmaktadır. ASCAN olarak adlandırdığımız bu uygulamada 
asansör kontrol sistemlerinde kullanılan 3 ayrı seri haberleşme hattı tek bir CANbus 
hattında birleştirilmiştir. Ana kontrol paneli ile kat ve kabin üniteleri arasındaki 
haberleşme sistemi ayrıntılı olarak anlatılmıştır. 
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INDUSTRIAL NETWORKS 

(AN APPLICATION PROTOCOL ON CANBUS: CANUP) 

SUMMARY 

Our thesis begins with an overview of industrial networks. Most commonly used 5 
systems Ethernet, Modbus, Profibus, Foundation Fieldbus and CAN are briefly 
explained and advantages and disadvantages are analysed. In this comparison 
CANbus looks ahead due to its high reliability, robust error confinement 
mechanisms and easy and low cost implementation ability. Nevertheless there are 
lots of chips, software and application protocol alternatives for designers. 

Then, CANbus protocol is explained in details. The history of the protocol and 
development stages are described in chronological order. The protocol is analyzed 
in detailed with definitions and functions. One of the most important advantages of 
the protocol is that it allows multiple units to access bus simultaneously. In case of 
collusion the unit with high priority message wins bus access right and other unit(s) 
becomes receiver. So communication is carried on without causing any hardware or 
software problem. 

After that 2 well-known application protocols CANopen and DeviceNet defined on 
CANbus are explained briefly. Then the protocols are compared in following points 
and similarities and differences are discussed. 

• Message Identifier Assignment Sytem 

• Process Data Exchange 

• Peer to peer communication channels 

• Establisment of process data message connections 

• Network Management 

• Device modelling and device profiles 

Definition of a new application protocol on CANbus is the most important part of the 
thesis. The protocol named as CANUP (CAN Uygulama Protokolü) defines general 
rules and structures for message identifier allocation, data exchange methods, 
network management, message triggering and baudrate. 

At the last, an application of CANUP protocol for lift control systems is described. In 
this application named as ASCAN 3 different networks in lift control systems are 
gathered on single CAN network. Communication system between main control 
panel, cabin and floor units is described in details. 
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1. INDUSTRIAL NETWORKS 

The Internet has become a ubiquitous force that is redefining how we live and work. 

Every imaginable kind of device will eventually be networked and this will transform 

all devices from information devices into communication devices. 

But the device world is more diverse than the PC world. In most cases, it’s more 

expensive to network a device with embedded intelligence than it is to connect a 

PC, and there are more ways of doing it. The plethora of network standards and the 

inherent difficulties in supporting more than one protocol make it difficult to decide 

while designing a new system. 

The reason for adding network capability to a device is to save wiring when 

interconnecting multiple devices. Large factory automation and process control 

applications use industrial networks (fieldbuses) extensively. The elimination of 

large, unwieldy bundles of cables and the associated mess is an obvious advantage 

(Figure 1.1). Networking allows you to connect hundreds of devices to a single trunk 

line instead of using hundreds of individual wires. These benefits grow exponentially 

with the size of the system.  

 

Figure 1.1 Classical Wiring versus Network Wiring 
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The modularity of a networked system is another major advantage. Connectivity is 

achieved through software, so taking a large system apart, putting it on a truck, and 

reassembling it somewhere else is much easier.  

In addition to the wiring savings and modularity, there are three major reasons to 

add network capability to a device: 

• Diagnostics. A networked device often can tell you if it is malfunctioning, or 

if something’s about to go wrong. This information can be of great help. It’s 

even more valuable if the information can be accessed remotely via the 

Internet. 

• Self-Configuration. Machine controllers can automatically detect which 

modular components are connected to the network and determine what 

software configuration to load. This can save hours or even days of the 

delivery and setup time of a large system. 

• Enterprisewide Information Systems. Initiatives to interconnect every 

system in a company may extend down to individual devices. Even the most 

mundane information can add money to the bottom line if used properly. 

There are a lot of network standards out there. If you’re going to add network 

capability to your device, which one should you support? It’s best to view networks 

in terms of their scope. One of the reasons there are so many different network 

standards is that there are so many different requirements 

1.1 Ethernet 

One of the most widely accepted standards, Ethernet, is designed to transfer large 

amounts of data at high speed and to serve the needs of large installations.  

The networking of millions of PCs in offices and the proliferation of the Internet 

around the world has made Ethernet a universal networking standard. Today, the 

standard is gradually working its way to the device level in data acquisition and 

control applications. The hardware and related software have evolved to the point 

where even inexperienced users can build simple networks and connect computers 

together.  

Ethernet hardware can be purchased easily from office supply stores, computer 

stores, and e-commerce sites everywhere. The protocol appears to be a panacea 
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for all those who are overwhelmed by the confusing array of standards vying for 

market dominance and who believe that the popular fieldbuses are expensive and 

difficult to use. Furthermore, a study by a big three automotive manufacturer showed 

that Ethernet could potentially serve up to 70% of plant floor networking 

applications. 

On the other hand, Ethernet does have its drawbacks. For example, it has a high 

overhead-to-message ratio for small amounts of data. Also, Ethernet carries no 

power on the bus, and its RJ-45 connectors are physically vulnerable and more 

susceptible to EMI/RFI than most fieldbuses. And even now, its multiple open and 

proprietary standards are a source of confusion in the industry. 

1.2 Modbus  

Modbus Remote Terminal Unit (RTU) / ASCII is probably the most popular serial 

protocol in instrumentation, automation, and process control. Today, it provides 

everything from short serial linkage of smart devices to wide area networking of 

many devices. Modbus is commonly used with gateways and works well 

encapsulated in TCP/IP. Developed almost 25 years ago, it’s a simple yet effective 

way of encapsulating analog and digital I/O and parameters in registers. 

Modbus can link as many as 250 devices on an RS-485 cable. Furthermore, you 

can find many gateway devices that link Modbus and other networks, so if your 

product has the Modbus protocol on a serial port, you can get from there to almost 

any network using a black box converter. 

The downside, though, is that transmission speed is slow on standard serial media. 

Also, the protocol lacks sophistication (i.e., it offers no peer-to-peer capabilities, and 

it is not object oriented). 

1.3 Profibus 

Profibus is commonly found in process control, large assembly, and material-

handling machines—single-cable wiring of multi-input sensor blocks, pneumatic 

valves, complex intelligent devices, smaller subnetworks, and operator interfaces. 

Nearly universal in Europe and popular in North America, South America, and parts 

of Africa and Asia, Profibus is the most widely accepted international networking 

standard. It can handle large amounts of data at high speed and serve the needs of 
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large installations. The DP, FMS, and PA versions collectively address the majority 

of automation applications. 

Unfortunately, the network comes with a high overhead-to-message ratio for small 

amounts of data and carries no power on the bus. Profibus also costs slightly more 

than other buses. The standard’s European and Siemens centricity is occasionally 

an obstacle for the users at far locations. 

1.4 Foundation Fieldbus 

Foundation Fieldbus rapidly establishing itself as the future standard for process 

industry networking. Since its official introduction in 1997, many distributed control 

system vendors have embraced the protocol, developing and certifying devices that 

conformed to its specifications. This standard contends with Modbus, HART, and 

Profibus PA. 

The fieldbus is a flexible, sophisticated protocol with many capabilities. It holds great 

appeal because it’s intrinsically safe and provides an integrated device-level/plant-

level approach. Broader adoption of Foundation Fieldbus has been slowed by the 

protocol’s process-industry-centric nature, the limited availability of compatible 

devices, and the slow process of standardization. The fieldbus combines a device-

level network and High-Speed Ethernet.  

The standard is typically used in distributed control, continuous process control, 

batching, and oil and gas processing operations. 

1.5 Controller Area Network 

In the early 1980s, Bosch developed the Controller Area Network (CAN) so that the 

primary control components in an automobile (e.g., brake lights, airbags, sensors, 

lights, electric windows, and door locks) could be connected by a single cable 

instead of bundle of cables. Automotive manufacturers found that if a wiring harness 

was faulty, it was sometimes cheaper to scrap the entire car than to troubleshoot the 

wiring harness. With a network, you can wire a control panel virtually in software, 

rather than physically with a screwdriver and terminal blocks. The added hardware 

cost of the network is less than paid for by labor savings. The same applies to 

automated equipment in a factory. 
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Of course, in a vehicle, communication can mean the difference between life and 

death. You cannot tolerate network errors, regardless of origin. CAN lives up to 

these rigorous requirements, with a statistical probability of less than one faulty 

message per century. 

The standard is minimally a three-wire bus, with ground and two opposing signal 

conductors. Signals consist of a pulse train centered at about 2.5 V, with the high 

signal raising to about 3.2 V and the low signal falling to about 1.8 V. This creates 

noise immunity, which is especially important in a vehicle. 

CAN is a low-level message arbitration protocol implemented on inexpensive chips 

available from multiple vendors and manufactured by the millions. To have a 

functional network protocol, an additional software layer must be added. 

Higher layer protocols (e.g., DeviceNet and CANopen) can be thought of as a 

sophisticated set of macros for CAN messages, specifically suited for automation.  
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2. CONTROLLER AREA NETWORK (CAN) 

2.1 History of CAN 

The number of electronic devices installed in modern motor vehicles is increasing at 

almost an exponential rate. Electronic controlled devices such as ABS, Electronic 

Transmission Control, Airbags, Keyless Entry, Active Suspension, Radios, 

Navigation, and many others too numerous to list have been added to the motor 

vehicle in just the last few years. These have been added because of customer 

demand, federal legalization, comfort, vehicle performance improvements and many 

other reasons. 

The need for all of the electronic systems in the vehicle to exchange information is 

ever growing. Typically each sensor/device has a wire run from point A to point B, 

which results in many redundant sensors etc. In the vehicle, the need to exchange 

information has caused the number of cables and wire weight to grow substantially 

over the last ten years. The modern mid-line vehicle has many thousands of feet of 

wire. The number of wires (cut leads) has grown such that a driver passenger door 

can have more then fifty wires in the bundle going through the hinge to the driver’s 

side door. These large bundles of wire are causing problems for manufacturing as 

well as system reliability. To reduce the number of wires and bundle size vehicle 

manufactures have gone to a method of serially transmitting data between modules.  

Forced by the increasing number of distributed control systems in cars and the 

increasing wiring costs of car body electronics, the availability of a powerful and 

reliable serial data communication system for the exchange of messages between 

the different control units was becoming urgent. This was the starting point for 

BOSCH and Controller Area Network was officially introduced in February 1986. 

The first protocol controller chip (82526) was provided by INTEL in 1989. Originally 

developed for use in automotive applications, CAN has begun to be successful in 

many other fields of application. The first CAN applications were embedded 

machine control systems and lift controllers. 
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CAN first time applied in Mercedes S class cars, launched in 1992, providing a high 

speed network for communication between engine controller, gearbox controller and 

dashboard and a low speed network for distributed air conditioning control. BMW, 

Porsche, Jaguar, Volkswagen, Fiat and Renault applied CAN short time later. 

In 1993 CAN was adopted as worldwide standard ISO 11898 by the International 

Standardization Organization ISO, defining ISO-OSI Layers 1 and 2. 

 Today, more than 110 protocol controller implementations in form of stand-alone 

controllers or integrated into a microcontroller are available from 20 manufacturers 

including all of the main semiconductor manufacturers. According to a survey of the 

CAN-in-Automation organization, the already designed number of CAN chips were 

about 210 million in the year 2002 and estimated as 300 million at the end of 2003. 

Today, the CAN interface already may be regarded as the standard serial interface 

of microcontrollers, used in any type of distributed embedded applications. 

Due to the outstanding features of the CAN protocol, the availability of low cost 

network controllers from many manufacturers as well as the ease of implementation, 

the CAN protocol today is in use not only in almost any type of mobile system 

(passenger cars, trucks and buses, agricultural equipment, ships, aircraft, 

elevators), but also in any type of machines, from textile, packaging, paper 

manufacturing machines up to any type of medical equipment or robot control 

systems. Controller Area Network is particularly well suited for networking of 

“intelligent” devices. Since the availability of higher layer communication standards 

and profiles, CAN-based networking is becoming one of the most promising 

solutions for open, distributed automation systems, competing very successfully with 

other bus standards in the field of industrial plant automation.  

2.2 Protocol 

The specifications of CAN are broadly classified into two layers: a physical layer and 

a data link layer. The data link layer consists of logical link control and medium 

access control. The configuration of each layer is shown in Figure 2.1. 
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 Figure 2.1 Layer Configuration 

The scope of the LLC sublayer is 

• to provide services for data transfer and for remote data request, 

• to decide which messages received by the LLC sublayer are actually to be 

accepted,  

• to provide means for recovery management and overload notifications. 

There is much freedom in defining object handling. The scope of the MAC sublayer 

mainly is the transfer protocol, i.e. controlling the Framing, performing Arbitration, 

Error Checking, Error Signaling and Fault Confinement. Within the MAC sublayer it 

is decided whether the bus is free for starting a new transmission or whether a 

reception is just starting. Also some general features of the bit timing are regarded 

as part of the MAC sublayer. It is in the nature of the MAC sublayer that there is no 

freedom for modifications. 

 The scope of the physical layer is the actual transfer of the bits between the 

different nodes with respect to all electrical properties. Within one network the 

physical layer, of course, has to be the same for all nodes. There may be, however, 

much freedom in selecting a physical layer. 

2.2.1 Frame Formats 

2.2.1.1 Standard format frame 

In this format, 2,048 types of identifiers can be set. Because the identifier of a 

standard format frame is 11 bits long, 2,048 types of messages can be handled. 
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2.2.1.2 Extended format frame 

In this format, about 5.3 million types of identifiers can be set. The identifier of an 

extended format frame is extended to 29 bits (11 bits + 18 bits), the number of 

messages that can be handled increases to 2,048 x 218. 

If the SRR and IDE bits in the arbitration field are “recessive: logical level 1”, the 

frame is sent in the extended format. 

2.2.2 Frame types 

The frames of the CAN protocol can be classified into the following four types. 

       Table 2.1 Frame Types and Their Usage 

 

2.2.2.1 Bus value 

The bus has two values: “dominant” and “recessive”. The “dominant level” is 

expressed as logical 0, and the “recessive” level is expressed as logical 1. If both 

the dominant level and recessive level are simultaneously transmitted, the value of 

the bus is the dominant level. 

2.2.2.2 Data frame 

A data frame consists of seven fields, as illustrated below.  
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Figure 2.2 Data Frame 

2.2.2.3 Remote frame 

A remote frame consists of six fields, as illustrated below. 

 

Figure 2.3 Remote Frame 

<Description of each field> 

<1> Start of frame: Indicates the start of a data frame or a remote frame. 
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Figure 2.4 Start of Frame 

• If a dominant level is detected while the bus is idle, it is recognized as the 

start of frame. 

• If a recessive level is detected at the sample point of the start of frame, it is 

assumed to be noise and the bus state becomes idle again. 

<2> Arbitration field: Sets priority, data frame/remote frame, and frame format. 

 

Figure 2.5 Arbitration Field (Standard Format 
Frame) 

 

                       Figure 2.6 Arbitration Field (Extended Format Frame) 

                           Table 2.2 Setting of RTR Bit 
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Table 2.3 Setting of Frame Format (IDE Bit) and Number of Bits of Identifier (ID) 

 

<3> Control field: Sets N, the number of data bytes of the data field. 

 

Figure 2.7 Control Field 

The IDE bit of the control field and r1 are identical in the standard format frame. 

Table 2.4 Data Length Setting 

 

<4> Data field: A group of data (in bytes) set in the control field. Up to eight data can 

be set. 

 

Figure 2.8 Data Field 
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<5> CRC field: 16-bit field that detects an error in transmit data 

 

Figure 2.9 CRC Field 

• The polynomial expression P(X) that generates a 15-bit CRC is  

               P(X) = X15 + X14 + X10 + X8 + X7 + X4 +X3 + 1 

• Transmission node: Transmits the CRC sequence calculated from the data of the 

start of frame, arbitration field, control field, and data field (data before bit stuffing). 

• Reception node: Compares the CRC sequence calculated from the data bits of the 

receive data, excluding the stuff bits, with the CRC sequence in the CRC field. If the 

two sequences do not match, the node transmits an error frame. 

<6> ACK field: Field for checking normal reception 

 

Figure 2.10 ACK Field 

• If a CRC error is not detected, the reception node sets the ACK slot to the 

dominant level. 

• The transmission node outputs 2 bits “recessive” level. 
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<7> End of frame: Frame that indicates the end of the data frame/remote frame. 

 

Figure 2.11 End of Frame 

<8> Interframe space: Frame inserted between the data frame, remote frame, error 

frame, or overload frame and the next frame, as a delimiter between frames. 

• The bus status differs depending on the error status. 

(A) Node in error active state: Consists of 3 intermission bits and bus idle 

 

Figure 2.12 Interframe Space/Error Active 

(B) Node in error passive state: Consists of intermission, suspend transmission, and 

bus idle. 

 

Figure 2.13 Interframe Space/Error Passive 
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2.2.2.4 Error frame 

A node that has detected an error outputs this frame. 

 

Figure 2.14 Error Frame 
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Table 2.5 Definition of Each Field for Error Frame 

 

2.2.2.5 Overload frame 

This frame is transmitted under the following conditions. 

• If the reception node has not completed a receive operation. 

• If the dominant level is detected in the first 2 bits during an intermission. 

• If the dominant level is detected in the last bit (eighth bit) of the end of frame or the 

last bit (eighth bit) of the error delimiter/overload delimiter. 

 

Figure 2.15 Overload Frame 
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Table 2.6 Definition of Each Field for Overload Frame 

 

2.3 Function 

2.3.1 Determining bus priority 

(1) If one node starts transmission 

• In the bus idle state, the node that outputs data first acquires the transfer rights, 

and outputs (transmits) data. 

(2) If two or more nodes simultaneously start transmission 

• The node that continuously outputs the “dominant (D)” level for the longest time, 

starting from the first bit of the arbitration field, acquires the bus priority (if the 

dominant level and recessive level are simultaneously transmitted, the value of the 

bus is the dominant level). 

• The transmission node compares the arbitration field it has output with the data 

level on the bus. 

Table 2.7 Determining Bus Priority 
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(3) Priority of data frame and remote frame 

• If a data frame and remote frame conflict on the bus, the data frame, whose RTR 

bit is the “dominant level”, takes precedence. 

If a data frame in the extended format conflicts with a remote frame in the standard 

format (if ID28 to ID18 of both are the same), the remote frame in the standard 

format takes precedence. 

2.3.2 Bit stuffing 

Bit stuffing is a mechanism that is used to append 1 bit of inverted data to establish 

synchronization if the same level continues for more than 5 bits, in order to prevent 

a burst error. 

Table 2.8 Bit Stuffing 

 

2.3.3 Multi masters 

Because the bus priority (the node that acquires the transfer rights) is determined by 

the identifier, any node can be the bus master. 

2.3.4 Multi cast 

Although only one transmission node exists, the same data can be received by two 

or more nodes simultaneously because the same identifier can be set to these 

nodes. 

2.3.5 Sleep mode/stop mode 

The CAN sleep mode and CAN stop mode functions can be used to reduce the 

power consumption by placing the CAN controller in the standby state. 

The CAN sleep mode is set using the procedure defined in the CAN Specifications. 

The CAN sleep mode is woken up by the CAN controller via bus operation, but the 

CAN stop mode is not woken up by bus operation (it is controlled by CPU access). 
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2.3.6 Error control 

(1) Error types 

Table 2.9 Error Types 

 

 (2) Error frame output timing 

Table 2.10 Error Frame Output Timing 

 

 (3) Measures when error occurs 

• The transmission node re-transmits the data frame or remote frame after the error 

frame. 

(4) Types of error states 

• Error states are classified into three types: “error active”, “error passive”, and “bus 

off”. The latter error states are more serious than the former (the error state is 

determined by the values of the transmission error counter and reception error 

counter). 

• If the value of the transmission error counter or reception error counter reaches 96 

or more while the node is in the error active state (while the value of the error 

counter is 127 or less), the chances are the bus has a severe fault and must be 

checked. 
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Table 2.11 Types of Error States 

 

 (5) Error counter 

The error counter counts up when an error occurs, and counts down when 

transmission or reception has been correctly performed. 

 Table 2.12 Error Counter  

 

Note: TEC: Transmit Error Counter, REC: Receive Error Counter 
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2.3.7 Baud rate control 

2.3.7.1 Bit time 

Bit time has a 1-bit length on the CAN protocol. Bit time consists of eight to 25 time 

quanta (time units), and is divided into four segment areas. 

The structure is illustrated in Figure 2-16. 

 

Figure 2.16 Bit Time 

Table 2.13 Bit Time Segments 

 

Table 2.14 Segment Name and Segment Length 

 

IPT (Information Processing Time): Time necessary for determining the next bit level 
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2.3.7.2 Synchronization of data bit 

Bit synchronization of the CAN protocol can be classified into two types: hard 

synchronization and bit resynchronization. 

(a) Hard synchronization 

Hard synchronization is performed if both the reception node and transmission node 

are in the bus idle state and detect the start of frame. 

If the node detects a falling edge on the bus in the bus idle state, the sync segment 

of the start of frame starts. 

 

Figure 2.17 Synchronization of Data Bit 

 (b) Bit re-synchronization 

If the node detects a falling edge on the bus in a segment other than the sync 

segment during reception or transmission, it performs bit re-synchronization. 

Bit re-synchronization corrects the falling edge on the bus and the position of the 

sync segment. 

• The phase error of the edge is given by the relative position of the detected edge 

and sync segment. 

<Code of phase error> 

0: The edge is in the sync segment. 

Positive: The edge is before the sample point (positive phase error). 

Negative: The edge is after the sample point (negative phase error). 

• The width of correction for bit re-synchronization is specified by SJW. One to four 

time quanta are set for SJW. 
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Bit re-synchronization is performed according to the following criteria. 

(i) Phase error ≤ SJW set value 

• If phase error is positive: Phase error with SJW set value as the maximum 

Phase segment 1 is extended by the time quanta. 

• If phase error is negative: Phase error with SJW set value as the maximum 

Phase segment 2 is shortened by the time quanta. 

(ii) Phase error > SJW set value 

• If phase error is positive: Phase segment 1 is extended by the SJW set value. 

• If phase error is negative: Phase segment 2 is shortened by the SJW set value. 
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3. CAN-BASED APPLICATION LAYER PROTOCOLS 

The CAN protocol has gained worldwide acceptance as a very versatile, efficient, 

reliable and economic platform for almost any type of data communication in mobile 

systems, machines, technical equipment and industrial automation. Based on 

sophisticated standardized higher layer protocols and profiles, CAN-based open 

automation technology successfully competes on the market of distributed 

automation systems. One of the main reasons for the enormous success of CAN-

based systems obviously are the special features of the CAN-protocol, especially its 

producer-consumer-oriented principle of data transmission and its multimaster 

capability. With these properties, the CAN-protocol also from the technical point of 

view is very attractive for the usage in distributed systems applications. 

When referring to the "CAN standard" or "CAN protocol" we understand the 

functionality, which is standardized in ISO 11898. This standard comprises the 

Physical (Layer 1) and Data Link Layer (Layer 2) according to the OSI-reference 

model. Whereas Layer 1 is responsible for functions like physical signaling, 

encoding, bit timing and bit synchronization, Layer 2 performs functions like bus 

arbitration, message framing and data security, message validation, error detection 

and signaling and fault confinement. The CAN standard does not specify the 

medium attachment unit and the medium upon which it resides, nor an Application 

Layer. 

The Layer 2 of the CAN protocol offers two types of connectionless transmission 

services to the user: 

!" Unacknowledged transfer of a CAN-message and  

!" Unacknowledged remote request of a CAN-message  

Connectionless transmission means that no data link connection has to be 

established before performing a message transfer or request. Reception of 

messages is supported by the CAN chips in form of different type object filtering and 

object buffering methods. A Layer 2 CAN data message according to the CAN 



 25 

Specification V 2.0 is determined by the message identifier, standard/extended 

format indication, data length and the data to be transmitted. 

Since the CAN-Protocol specifies no rules for the assignment of message-

identifiers, a variety of different, application-specific usages are possible. 

Assignment of the CAN message identifiers therefore is one of the most important 

decisions when designing a CAN-based communication system. Assignment and 

allocation of message identifiers also is one of the main items of a higher Layer 

approach. 

3.1 The Requirement of Higher Layers 

In practice the implementation even of very simple distributed CAN-based systems 

shows that beside of the basic Layer 2 services further functionality is required or 

desirable e.g. for the transmission of data blocks longer than 8 bytes, acknowledged 

or confirmed data transfer, identifier distribution, network startup or the supervision 

of nodes. Since this additional functionality directly supports the application process, 

it is understood as "Application Layer". If implemented properly, the introduction of 

an Application Layer in addition with an appropriate Application Layer Interface 

provides a clearly defined separation of communication and application processes. 

Since the CAN protocol provides very unique features, most of the known higher 

layer protocols conserve this features for the user of the Application Layer by 

providing direct access to the services of the Data Link Layer (no additional protocol 

overhead for basic functions). 

Especially for industrial automation applications, the need for open, standardized 

higher layer protocols was raised which support interoperability and exchangeability 

of devices of different manufacturers. Supplementary to a standardized Application 

Layer therefore the specification of standard device models, "standard devices" and 

"standard applications" of basic functionality is required. 

3.2 Survey of CAN-based Higher Layer Protocols 

According to the widespread usage of CAN networks with different objectives and 

requirements beside of many special solutions several main standards of CAN-

based Higher Layer protocols are available today. According to the different 
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requirements these solutions differ significantly with respect to their scope and 

performance. 

Main representatives of open distributed system standards for industrial applications 

are CANopen and DeviceNet. 

The industrial application of open distributed systems standards comprises low-level 

networking of industrial devices (sensors, actors, controllers, men-machine 

interfaces) in industrial automation. The main requirements of this type of application 

are configurability, flexibility and extendibility. To provide manufacturer 

independence the definition of device functionality has to be specified in form of 

"Devices Profiles". Accordingly, communication systems solution of that type 

provides a complete framework of communication and systems services, device 

modeling, and facilities for system configuration and device parametrising. 

3.3 CAN Application Layer  

CAL (CAN Application Layer) was specified as one of the first work items of CAN-in-

Automation (CiA) and was published in 1993 as layer 7 standard CiA DS 201-207. 

The protocol offers an application-independent, object-oriented environment for the 

implementation of CAN-based distributed systems. It provides objects and services 

for communication, identifier distribution, network and layer management. Main 

application areas of CAL are CAN-based distributed systems, which do not require 

configurability and standardized device modeling. Therefore in the CAL specification 

only general communication procedures are defined as they are required in 

distributed systems. 

CAL provides objects, protocols and services for the event driven or requested 

transmission of CAN messages and for the transmission of larger data blocks 

between CAN devices. Furthermore CAL offers mechanisms for the automatic 

distribution of CAN identifiers and for the initialization and monitoring of nodes. 

CANopen and DeviceNet specify also the structure and parts of the application itself 

mainly by fixed access methods for data exchange and data representation. In 

contrast to these protocols CAL doesn't define data contents or specific 

communication objects which a certain device has to provide or which are expected 

by the system. So the user has the possibility to adapt the communication system 

exactly to the requirements of his application or system and not the other way round. 
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Using a communication and device profile like CANopen or DeviceNet could mean 

higher resource overhead for the realized application. Therefore CAL is suitable for 

the realization of specific system solutions like medical systems or measuring 

systems as well as for the realization of closed control systems with decentral 

intelligent units like machine control systems (machine bus). CAL allows the 

realization of systems with complex communication relations between devices in a 

system. These systems can be installed without any configuration effort. 

First versions of the CAL software have been available already in 1993. Until today, 

the software was successfully in use in numerous applications. Hence the software 

achieved a high and stable development state. 

3.4 CANopen 

The profile family CANopen defines a standardized application for distributed 

industrial automation systems based on CAN as well as the communication 

standard CAL. CANopen is a standard of CAN-in-Automation (CiA) and has already, 

soon after its release, found a broad acceptance. Especially in Europe CANopen 

can be considered the leading standard for CAN based industrial system solutions. 

The CANopen profile family is based on a so-called "Communication Profile", which 

specifies the basic communication mechanisms and their description. 

The most important device types such as digital and analog I/O modules, drives, 

operating devices, controllers, programmable controls or encoders, are described by 

so called "Device Profiles". The device profiles define the functionality of standard 

devices of the corresponding types. The configuration of devices through the bus is 

the foundation of the preferred manufacturer-independent configuration by means of 

the profile family.                                

The central element of the CANopen standard is the description of the device 

functionality through an object dictionary (OD). The object dictionary is divided in 

two sections. The first section contains general device information like device 

identification, manufacturer name, etc., as well as communication parameters. The 

second section describes the specific device functionality. 

A 16-Bit index and an 8-Bit sub-index identify the entry ("object") in the object 

dictionary. The entries in the object dictionary provide the standardized network 
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access to the "Application Objects" of a device, such as input and output signals, 

device parameters, device functions or network variables. 

The functionality and characteristics of a CANopen device can be described by 

means of an "Electronic Data Sheet" (EDS) using the ASCII-format. In this case the 

EDS must be understood as a kind of template. The actual device settings are 

described by the so-called "Device Configuration File (DCF)". EDS and DCF can be 

provided in form of a data carrier, which can be downloaded from the Internet or 

stored inside the device. Similar to other well-known field bus systems CANopen 

also distinguishes two basic data transfer mechanisms: The high-speed exchange of 

small process data portions through so called "Process Data Objects (PDO)" as well 

as the access to entries in the object dictionary through so called "Service Data 

Objects (SDO)". The ladders ones are primarily used for the transmission of 

parameters during the device configuration as well as in general for the transmission 

of larger data portions. Process data object transmissions are generally event 

triggered, cyclic or requested as broadcast objects without the additional protocol 

overhead. A PDO can be used for the transmission of a maximum of 8 data bytes. In 

connection with a synchronization message, the transmission as well as the 

acceptance of PDOs can be synchronized through the entire network ("Synchronous 

PDOs"). The assignment of application objects to a PDO (Transmission Object) is 

adjustable through a structure description ("PDO Mapping"), which is stored in the 

object dictionary, thus allowing the adjustment of a device to the corresponding 

application requirements. 

The transmission of SDOs is performed as a confirmed data transfer with two CAN 

objects in form of a peer-to-peer connection between two network nodes. The 

addressing of the corresponding object dictionary entries is accomplished by 

providing the index and the sub-index of the object dictionary entry. Transmitted 

messages can be of very large length. The transmission of SDO messages involves 

an additional protocol overhead. 

Standardized event-triggered "Emergency Messages" of high priority are reserved to 

report device malfunctions. A common system time can be provided through a 

central timing message. The required functionality for the preparation and 

coordinated start of a distributed automation system is compliant to the under CAL 

network management (NMT) defined mechanisms. The same applies to the cyclic 

"Node Guarding". 
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Alternatively, it is possible to display the communication capability of a CANopen 

device through a so-called "Heartbeat Message". 

The assignment of CAN message identifiers to PDOs and SDOs is possible by 

direct modifications of identifiers inside the data structure of the object dictionary or, 

for simple system structures, through the use of pre-defined identifiers. 

3.5 DeviceNet  

DeviceNet was developed by Rockwell Automation as an open fieldbus standard 

based on the CAN-protocol. Designed as a powerful protocol for automation 

technology, it plays a leading role today in the USA and in Asia. More and more 

systems solutions are also being implemented with DeviceNet in Europe. 

The ODVA, being the organization of DeviceNet users, is responsible for the 

specification and maintenance of the DeviceNet standard. In addition, the ODVA 

promotes the worldwide distribution of DeviceNet. The currently available version 

2.0 of the standard includes more functions and some corrections. 

DeviceNet is an open protocol and every ODVA member can participate in the 

further development of this standard in the various Special Interest Groups (SIGs). 

Use of DeviceNet is free of charge. It is only necessary to sign the "Terms of 

Agreement" in order to be able to use the DeviceNet technology and to receive the 

vendor ID, a manufacturer's number. The only costs normally incurred are the 

purchase of the specification. Membership of the ODVA is not necessary. 

At the moment over 300 companies are registered members of the ODVA. A total of 

approx. 700 companies offer DeviceNet products. 

DeviceNet is one of three open network standards (DeviceNet, ControlNet and 

EtherNet/IP), which all use a common application layer (ISO Layer 7), the so-called 

"Control and Information Protocol" (CIP). This common application layer and open 

software and hardware interfaces will in future enable a universal connection of 

automation components from the field level with the Internet. The "Control" part of 

the CIP defines the exchange I/O data in real time via I/O messages (I/O Messaging 

or Implicit Messaging). The "Information" part of the CIP defines the exchange of 

general data for configuration, diagnosis and management via explicit messages 

(Explicit Messaging). These two message types provide optimum communication for 

industrial controls. CIP thus provides the user with 4 basic functions: 
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!" Uniform control services  

!" Uniform communication services  

!" Uniform distribution of messages  

!" Common knowledge base  

The DeviceNet protocol is designed as a simple, inexpensive yet powerful protocol 

at the lowest fieldbus level, i.e. for the networking of sensors, actuators and 

corresponding controls. The devices that can be connected to DeviceNet range from 

a simple light barrier to a complex vacuum pump for semiconductor manufacture. 

The core function of the DeviceNet protocol is, as with other protocols, data 

exchange between devices and their corresponding controls. Communication 

between two devices is based on a connection-based communication model, either 

via a point-to-point or a Multicast connection. This allows the development of 

Master/Slave systems as well as Multi-Master systems. 

The so-called "Predefined Master/Slave Connection Set" was specified for simple 

DeviceNet slave devices. This subset of the DeviceNet protocol supports Explicit 

Messages, Polled-I/O, Multicast-Polled-I/O and Bit-Strobed I/O messages from the 

master to the slave as well as Change-of-State/Cyclic I/O messages from the slave 

to the master. The "Unconnected Message Manager Port" (UCMM) and the dynamic 

creation of explicit and I/O-connections were specified for more complex slave 

devices that are Multi-Master-capable and can maintain point-to-point connections 

with other devices. The Device Heartbeat Message and Device Shutdown Message 

functions were specified particularly for safety-critical systems. The Offline-

Connection-Set simplifies the configuration of off-the-shelf components. 

DeviceNet presents communication and application in the object model. Predefined 

objects facilitate the data exchange of different devices and manufacturers. 

Further standardization of benefit to the user was accomplished by creating various 

device profiles. 

Besides Layer 7 (Application Layer), the DeviceNet specification also defines parts 

of Layer 1 (Transceiver) and Layer 0 (Transmission Media), thus standardizing the 

physical connection of DeviceNet nodes. Connectors, cable types and cable lengths 

are specified as well as communication-based displays, operating elements and the 

corresponding labeling of the housing. 
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Table 3.1 DeviceNet Layers 

ISO-Layer 7 Application Layer DeviceNet Specification 
Volume II 

ISO-Layer 2 Data Link Layer 

ISO-Layer 1 Physical Signaling 
CAN Specification 2.0 

ISO-Layer 1 Transceiver 

ISO-Layer 0 Transmission Media 

DeviceNet Specification 
Volume I 

A DeviceNet network can run up to 64 nodes using baud rates of 125, 250 or 500 

kBaud. The devices either have their own power supplies or are being supplied 

through the DeviceNet bus. 

Compared to CANopen, DeviceNet provides approximately the same functions, 

however, with an emphasis on different priorities. The network management, for 

instance, is stored in each individual node. As a result each node monitors the other. 

CANopen, however, uses a central authority, the NMT-Master. The communication 

mechanisms under CANopen are simpler, thus allowing the use of less complex 

devices. In turn DeviceNet provides higher safety in the protocol use, but does also 

require more resources. 

3.6 Main Items of CAN-based Higher Layer Protocols 

In the following the main solutions for industrial automation CAL/CANopen, and 

DeviceNet will be evaluated closer. This will be done by considering the main items 

of CAN-based higher layer protocols. These are the  

!" message identifier assignment system,  

!" method of exchanging Process Data,  

!" peer-to-peer communication,  

!" method of establishing Process Data connections,  

!" network management,  

!" principle of device modeling and device profiles  



 32 

3.6.1 Message Identifier Assignment System 

The method of message identifier assignment may be regarded as the major 

architectural element of CAN-based systems, since the identifier of a CAN-message 

determines the relative priority of the message and such the message latency time. 

It also has influence on the applicability of message filtering, possible 

communication structures and the efficiency of identifier usage. 

Concerning identifier assignment quite different philosophies have been chosen in 

the considered system solutions. Whereas CAL and CANopen, apart from reserving 

some identifiers for management purposes do not apply a predefinition of identifiers 

for general system structures, DeviceNet does. 

CAL/CANopen provide a common pool of identifiers, available to all devices and a 

central instance, which automatically or manually allocates identifiers according to 

the requirements of the devices. With this approach, identifier usage and such the 

real-time-behaviour of the data communication system may be completely 

determined through the system designer or integrator. Also maximum usage of the 

available identifiers is possible since almost the complete set of message identifiers 

is available for distribution. 

 

Figure 3.1 Identifier Usage in CAL/CANopen and 
DeviceNet 
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In Fig. 3.1.a and Fig. 3.2.a the identifier assignment scheme of general 

CAL/CANopen systems is shown, in Fig. 3.1.b and Fig. 3.2.b the identifier 

assignment of a minimum configuration CANopen system is shown with the 

predefined set of messages. 1760 message identifiers are available for general 

usage. Since in a CAL-based system up to 256 nodes may be addressed, 256 

messages are reserved for node guarding, in CANopen 128 nodes may be 

addressed, only 128 messages are reserved for node guarding. 

In the minimum system configuration, CANopen specifies a device-oriented identifier 

allocation scheme by which default connections between up to 127 devices to a 

master device are provided. By means of the 4-bit function code 16 basic functions 

are distinguished for the reception and transmission of two process data channels, 

one peer-to-peer channel, node state control, node guarding, emergency notification 

and the reception of the synchronization and time stamp message. Since the priority 

of a message should be determined by its function, the function code is located in 

the most significant bits of the message identifier. 

 

Figure 3.2 Usage of Identifiers in CAL/CANopen 
and DeviceNet 
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With the CANopen minimum system configuration a 1:n communication structure is 

supported per default. By means of identifiers not used by the predefined connection 

set also direct connection between devices may be established. 

One of the basics of the DeviceNet identifier assignment scheme is the node-

oriented ownership of message identifiers. Each of the maximum 64 nodes of a 

DeviceNet system owns a set of identifiers out of 3 message groups (Fig. 3.1.c). 

Message group 1 provides a high priority message pool of 16 messages per device, 

message group 3 five (5) low priority identifiers per device. The identifiers/priorities 

of those groups are distributed evenly among all the devices on the network. The 

reservation of message identifiers for the maximum number of devices implies, that 

for networks of less than 64 nodes, the identifiers of the unused nodes are not 

available for the system. 

With Message Group 2 it was intended to support devices with limited message-

filtering capabilities due to Basic-CAN type controllers. Therefore, a filtering 

according to the node number (MAC-ID) was chosen. This means that the priority of 

messages of that group is primarily determined by the node number. Two messages 

of that group are reserved for management tasks (allocation of predefined 

connection set, Duplicate MAC-ID check). The MAC-ID of Group 2 messages may 

be destination or source address. 

 

Figure 3.3 DeviceNet Predefined Master/Slave 
Connection Set Identifier Assignment 

DeviceNet specifies a so-called "Predefined Master/Slave Connection Set" to 

facilitate the communication observed in a Master-Slave system configuration. 
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Fig. 3.3 shows the identifier assignment of this set. The following channel functions 

are supported for exchanging of I/O and Explicit messages between a Slave and a 

Master device based on the predefined connection set: 

!" Explicit Message channel  

!" Master Poll/Change of State/Cyclic channel  

!" Slave I/O Change of State/Cyclic channel  

!" Bit Strobe channel  

The Explicit Message Channel mainly serves for configuration of a device. With the 

Master Poll/Change of State channel the master can request I/O data from the 

device and send Output data to the Slave device. With the Slave I/O Change of 

State/Cyclic a Slave device can transmit Input data to the Master, triggered by 

change of state, cyclically or by the Slaves application. By means of a Bit Strobe 

command the Master can request input data from any of up to 64 Slave devices with 

only one message. Since all of these messages are acknowledged 8 message 

identifiers are allocated for these functionalities. If Bit Strobe requested data 

acquisition is not used a very effective identifier filtering on the Slave devices is 

possible by means of the destination address field. 

3.6.2 Exchange of Process Data 

The transmission of process data between the devices of a distributed automation 

system is the purpose of a CAN-based communication system. This should be 

accomplished in the most efficient way. Therefore transmission of application 

specific data (process data, I/O data) should be performed according to the 

producer-consumer model, with the meaning of the transferred data implied by the 

associated message ID. Producer and consumer of a message in that case are 

assumed to have knowledge of the intended use or meaning of the transmitted data. 

In the following, the main characteristics of the different solutions for exchanging of 

process data will be outlined for CAL, CANopen and DeviceNet. 

CAL is intended to provide standard, application-independent communication 

facilities for the implementation of distributed systems. It provides communication 

objects (CMS objects) in terms of "Variables", "Events" and "Domains". CMS objects 

are specified by a set of attributes and are identified by symbolic names. Objects 

and services of CAL are directly accessible by the user application. Variables may 
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be of type "Basic" or "Multiplexed". With Basic Variables and Events, the multicast 

transmission of up to 8 bytes of data is provided, without any protocol overhead. 

Multiplexed Variables contain a multiplexer within the first data byte to distinguish 

between 128 "Multiplex-Variables" per message identifier and allow the transmission 

of 7 bytes of data. Basic-Variables also may have different access type (read-only, 

write-only, read-write). With a read-write Variable, an acknowledged transfer of data 

between two devices is supported. The transmission of a variable is initiated by a 

client, the transmission of an Event is initiated by a server of the corresponding 

object. Fig. 3.4.a shows the "Store-And-Immediately-Notify-Event"-protocol, Fig. 

3.4.b the "Read-Event"-protocol, by which a client also can read previously stored 

data. 

 

Figure 3.4 Store-and-Immediately-Notify-Event-
Protocol (a), Read-Event-Protocol (b) 

(CAL/CANopen) 

Basic and Multiplexed Domains support the acknowledged transmission of data of 

more than 8 bytes by means of a flow-controlled fragmented protocol. Since each 

data segment is acknowledged, a receiver-controlled flow control is implicitly 

provided. With the 3 byte Domain-Multiplexer a variety of different domains may be 

identified per message identifier. The transfer of a data block is initiated by an 

"Initiate"-request/response sequence, following data segments are transmitted by 

means of a Data Segment request/response sequence. Fig. 3.5 shows the principal 

structure of the data field of a "Initiate-Multiplexed-Domain" request and a 

"Download-Segment" request. In the Control byte the message type 

(Initiate/Download Segment/Upload Segment), the transfer type (expedited / non-
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expedited), toggle-bit and number of bytes with no data is indicated. With the 

expedited (non-fragmented) protocol the transmission of up to 4 bytes of data is 

possible. 

 

Figure 3.5 Structure of the Data Field of an 
Initiate_Multiplexed_Domain.request (a) and a 

Download_Segment.request (b) 

CANopen and DeviceNet at a first glance provide quite similar communication 

mechanisms for transferring process and service/configuration data. With CANopen, 

the transmission of process data occurs by means of so-called "Process Data 

Objects (PDOs)", with DeviceNet by means of "I/O-messages". 

Table 3.2 Exchange of Process Data in CANopen and DeviceNet 

 CANopen DeviceNet 

Name of 
Communication 

Object 

Process Data Object I/O-Message 

Maximal Number of 
Communication 

Objects per Device 

512 Transmit PDOs 
512 Receive PDOs 

27 I/O- Transmit Messages 
1701 I/O Receive 
Messages per device 

Maximal length of 
Data Field 

8 bytes 8 bytes               
fragmented:Arbitrary length 
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Unfragmented: 

No overhead, Notify/Read 
"Stored-Event"-protocol 
(CAL/CMS) 
Unacknowledged 

Unfragmented: 

No overhead, three 
"Transport Classes" 
supported: 

• Unacknowledged, 

• Acknowledged by 
Server Connection 
Object, 

• Acknowledged by 
Application 

Protocol 

 Fragmented: 

Unacknowledged 
fragmented protocol 

1 byte protocol overhead 
per frame 

Message 
Production 

Triggering Modes 

• On Request of local 
or remote 
application 

• Cyclic/acyclic 
synchron 

• Cyclic 

• Change-of-State 

• Application specific 

Mapping of 
Application Objects 

Maximum number of 
mappable application 
objects/PDO dependent on 
data size of objects (1-bit 
objects: 64 application 
objects mappable) 

Definition of Application 
objects by means of 
"Mapping Parameter 
Record" (configurable) 

Dynamic mapping 
supported 

Arbitrary number of 
Application objects 

mappable with fragmented 
protocol 

Definition of Application 
objects by means of 
Assembly Object (several 
Assembly Objects possible) 

Dynamic mapping 
supported 

In Table 3.2 the main characteristics of process data exchange are summarized for 

CANopen and DeviceNet. One of the main differences is the provision of an 

unacknowledged fragmentation protocol in DeviceNet, which makes it possible to 

transmit also process data with length more than 8 bytes. Also three different 

protocols with respect to acknowledgement ("Transport Classes") are supported 

(Fig. 3.6) and determined of the "Transport Class" of a Connection end point. 
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Transport class 2 or 3 may be used for example for efficient "polling" of devices. For 

that purpose a master device implements the communication resources (connection 

objects) associated with each Poll Command as a Client Transport Class 2 or 3. 

Each slave implements a Server Transport Class 2 or 3 Connection Object to 

receive the Poll Command and to transmit the associated response data. 

 

 

Figure 3.6 DeviceNet Transport Classes 

3.6.2.1 Message Triggering 

All of the regarded protocols provide alternative modes of message triggering 

supported by the Application Layers. 

DeviceNet supports the triggering modes Cyclic, Change-of-State and Application 

Object Triggered. With Cyclic Triggering the expiration of a message-specific 

Transmission Trigger Timer starts the transmission of a message. With Change-of-

State the transmission occurs when a change-of-state of an Application Object is 

detected. A message is also transmitted when a specified time interval has elapsed 
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without a transmission. With Application Object Triggering the Application Object 

decides when to trigger the transmission.  

CANopen distinguishes between triggering On Event, Application Request or after 

Reception of a predefined Synchronization Message. 

Triggering On Event may occur on a profile or application specific event 

("Asynchronous PDO"). The transmission of a PDO may also be triggered by the 

reception of a remote request message (Remotely Requested). "Synchronous 

PDOs" are cyclically triggered by the reception of a specified number of 

Synchronization Messages. 

The Synchronization Message also may be used for network wide synchronization 

of data acquisition and the strobing of output data. 

3.6.2.2 Mapping of Application Objects 

Network devices normally will produce and/or consume more than one Application 

Object and assembling of more than only one Application Object within one PDO 

respectively I/O-Message will be appropriate. 

In CAL-based applications, the mapping of application data is done by the 

programmer when defining communication objects (e.g. CMS Variables or Events). 

CANopen and DeviceNet provide very sophisticated means for a flexible mapping of 

application data into communication objects. 

CANopen specifies the mapping of Application Objects into a PDO by means of a 

data structure called "PDO-Mapping Record". This structure specifies the mapped 

application object data in form of a list of object identifications (Object Directory 

index/subindex) and data length. Since the PDO Mapping is accessible by means of 

SDOs, PDO mappings are configurable by means of a configuration tool. 

In DeviceNet the grouping of Application data is specified by means of instances of 

the "Assembly" object, which defines the format of the transmitted application object 

data. A device may contain more than one I/O assembly and the selection of the 

appropriate assembly (consumed/produced_connection_path) may be a 

configurable device option. 
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3.6.3 Peer-to-Peer Communication Channels 

For configuration of devices by means of a configuration tool, specific device 

functions or program loading multi-purpose communication channels are required. 

These non-time-critical communication channels always exist between two devices, 

e.g. between a configuration tool and the device to be configured. The transfer of 

data has to be performed by means of an acknowledged fragmentation protocol. 

Any of the different higher layer protocols, which support some kind of device 

configuration, provide this kind of peer-to-peer communication facility. 

CAL for that purpose provides "configuration services" across predefined 

management channels to each device as part of the CAL Network Management 

service element. For that purpose two identifiers are reserved, the addressed device 

is specified in the data field of the first fragment of a message by its node ID. 

CANopen provides so-called "Service Channels" across which "Service Data 

Objects" (SDOs) may be exchanged between any two devices according to the CAL 

Multiplexed Domain protocol. This protocol provides the acknowledgement of any 

frame transmitted. Within the first three bytes of the data field of the Initiate-Domain-

Request the address of the Object Directory entry is specified by means of a 16-bit 

index and 8-bit subindex. With the index/subindex of an Object Directory entry the 

function to be performed is specified implicitly. 

Data of less than 5 bytes may be transferred with only the Initiate-Domain Request 

Frame ("expedited protocol"), if more than 4 bytes of data have to be transmitted, 

the acknowledged fragmented protocol has to be applied, with 7 bytes of data per 

fragment. Each CANopen device has to provide a default server SDO-connection 

with two predefined message identifiers according to the predefined connection set. 

Across this default server SDO connection a device may be accessed by a 

configuration tool. 

For applications which require a dynamic establishment of SDO connections (e.g. 

between test tools and devices) the "SDO-Manager" instance is introduced. The 

SDO Manager is the owner of the predefined set of SDO connections and therefore 

has access to any device on the network. A SDO-connection requesting device first 

has to address the SDO Manager and to ask for establishing the requested 

connection. 

DeviceNet provides multi-purpose device-oriented channels and services. Writing 

and Reading of object attributes, control of objects (reset, start, stop etc.), 
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storing/restoring of classes/objects attributes etc. is performed by means of "Explicit 

Messages". These are exchanged across "Explicit Messaging Connections". The 

meaning/intended use of an Explicit Message is stated in the CAN data field. In Fig. 

3.7 the data field format of a fragmented Explicit Message is shown. For 

unfragmented transfer the "Fragment Byte" is not transmitted. For a service request 

normally the access path (class number, instance number, attribute number) of the 

addressed object attribute is specified (Service specific arguments). 

 

Figure 3.7 DeviceNet Fragmented Explicit Message 
Data Field Format (Request/Response) 

An Explicit Message Connection has to be established by means of the 

"Unconnected Message Manager (UCMM)". The UCCM provides two services for 

opening and closing of an Explicit Message Connection. Each device supporting an 

UCMM reserves message identifiers for transmitting UCMM request and response 

message. For "Group 2 Only" devices (devices not supporting an UCMM port) a 

master device first has to allocate the Explicit Messaging Connection of the devices' 

Predefined Connection Set. The request to allocate a Group 2 Only device is 

transmitted as a Group 2 Only Unconnected Explicit Request with a reserved 

message identifier. 

In Table 3.3 the main characteristics of peer-to-peer communication channels of 

CANopen and DeviceNet are summarized. 
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Table 3.3 Main Characteristics of Peer-to-Peer Communication Channels 

 CANopen DeviceNet 

Name Service Data Channel Explicit Message 

Maximum 
number of 
channels 

128 Client SDOs, 
128 Server SDOs 
per device 

27 Explicit Transmit 
Messages 
1701 Explicit Receive 
messages per device 

Protocol 

< 5 byte: Acknowledged 
unfragmented 

> 4 byte: Fragmented 
transmission 

(7 bytes per fragment) 

Each frame 
acknowledged 

Any length 

(CAL Multiplexed 
Domain protocol) 

< 7 byte: Acknowledged 
unfragmented 

> 6 byte: Fragmented 
transmission. 

(6 bytes per fragment) 

Each frame acknowledged 

Any length 

Establishing 
of 

Connections 

Dynamic establishment 
by means of SDO 
Manager 

Default predefined 
connections 

Dynamic establishment by 
means of Unconnected 
Message Manager 

Group 2 Only devices: 
Allocation of Explicit 
Message from Predefined 
Connection Set 

Initiate, Abort 

Upload/Download 
Segment/Domain 

Open/Close 

Creation, Configuration, 
Start, Stop, Reset etc. of 
Objects 

Connection 
Services and 
Arguments 

Index and Subindex of 
addressed Object 
Directory Entry 

Object attribute access 
path, Service arguments 
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3.6.4 Establishment of Process Data Message Connections 

Allocation of identifiers to the transmit messages of the message producers 

respectively receive messages of the message consumers establishes the 

communication paths in a CAN network. Establishing message connection is 

possible through usage of predefined messages with already allocated message 

identifiers or through a variable allocation of identifiers to messages. 

DeviceNet and CANopen also make use of a predefined connection set approach 

for 1:n system structures. A DeviceNet Master for example which has allocated a 

Slave device’s predefined poll-connection already "knows" the message IDs for 

transmitting the poll request and expecting the poll response message since they 

are derived from the Slaves MAC-ID, according to the predefined set. Similarly in 

CANopen the default predefined connection set, besides of other predefined 

messages, provides two predefined Receive and Transmit PDOs. The 

usage/meaning of the Default-PDOs is determined by the device type. 

The main advantages of a non-predefined identifier allocation is the possibility of 

establishing any type of communication structure, the availability of the maximum 

number of message identifiers and the design-controlled allocation of message 

identifiers according to the requirements of the application. 

Whereas CAL/CANopen are based on a variable identifier allocation scheme based 

on a central message identifier pool, DeviceNet distributes the available identifiers 

across the maximum 64 devices of a DeviceNet system. 

The allocation of identifiers with a common identifier pool is controlled by a specific 

network instance (the Distributor in CAL) or by means of a configuration tool 

(CANopen), which supports the building of message connections, by the system 

administrator. 
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Figure 3.8 Identifier Allocation Process with CAL 
Distributor 

CAL and CANopen are based on a variable identifier allocation with a common 

identifier pool. Identifier allocation in CAL-based systems may be performed by the 

"Distributor" service element (Figure 3.8). The Distributor (DBT) master instance 

allocates message-IDs from a central pool of message-identifiers according to the 

requests (priority group, name and type (transmitter/receiver)) of all of the 

communication objects of the devices. By linking of requests according to object 

name and type client(s) and server(s) of a message are connected. The distribution 

process is controlled by a Network-Master application across network management 

connections to the devices. 

If no CAL-Distributor is used, configuration of message identifiers in CANopen 

based systems may be performed by setting the corresponding PDO identifiers in 

the Object Directory of the devices via a SDO channel. 

The generic identifier allocation method of DeviceNet is determined by the fact that 

here the devices are owner of message identifier pools. Therefore the connection of 
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I/O messages first requires the allocation of an identifier out of the identifier pool of 

the message-transmitting device. This identifier then has to be assigned to the 

consuming device(s). 

 

Figure 3.9 Creation, Configuration of I/O Connection 
Instances  

In Figure 3.9 the process of establishing an I/O Message Connection between two 

devices by means of a configuration tool is illustrated. I/O connections are 

established by addressing the Connection Class across an already established 

Explicit Messaging Connection. This involves creation of an I/O Connection object 

and configuring the Connection instance at the end point of the connection. During 

that process a message-producing module allocates a free message-ID from the 

pool of its message-IDs and combines this with its Source MAC ID to generate a so-

called "Connection ID". The "automatic" allocation of an identifier out of the 

message group may be overridden by a direct modification of the Connection ID 

attributes. 

3.6.5 Network Management 

Due to the fact that an application is distributed, certain events have to be handled 

(e.g. failure of parts of an application or failure of a node) which would not occur if 

the same application had not been distributed. Main tasks of an appropriate network 

management therefore are the detection and indication of failures in the network and 

services, which allow controlling the communication status of the distributed nodes 



 47 

in a coordinated manner. Depending on the system solution, network management 

functionality is provided by means of an explicit Network Management facility or 

implicitly by means of other measures. 

CANopen network management is based on the CAL NMT service element, which 

applies the principle of "Node Guarding" for the detection of node failures. For this 

purpose, a NMT master application cyclically transmits a guard request to each 

node (NMT slave) of the network by means of a Remote-Request Frame. The 

addressed slave responds to each request with its actual communication state. If the 

NMT master detects a change in the node state or no response from the addressed 

node, a guard error is indicated to the NMT master application. Node guarding 

starts, when a node is connected to the network. Each node also supervises the 

arrival of its guard request message. If there is no further guard request after 

expiration of the nodes "life time" a network error is signaled to the nodes 

application.  

 

Figure 3.10 CANopen Node State Diagram 

Co-ordination of the communication status of the nodes is also supported by the 

NMT master instance. Fig. 3.10 shows the node state transitions diagram of a 
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CANopen node. After power on, a node initializes and transits to the "Preoperational 

State". In this state communication across SDO channels is possible for node 

configuration, but not yet across PDOs. With the NMT message "Start Remote 

Node" a selected or any nodes on the network can be set into the "Operational 

State". In this state also the exchange of data by means of PDOs is possible. With 

enabling the operation of all nodes of a network at the same time a co-coordinated 

operation of the communicating system is secured. 

According to its connection-oriented design, in DeviceNet each connection is 

supervised. Therefore each receiving connection end point owns an 

"Inactivity/Watchdog-Timer" to supervise the arrival of a message according to the 

configured "expected packet rate". If the timer expires the connection performs the 

specified "Timeout Action". Fig. 3.11 shows the state transitions diagram for an I/O 

connection object. After reception of a Create Service (Explicit Message) the 

connection is configured by applying the appropriate sequence of Explicit Message 

services and enabled after the complete connection has been configured. 

 

Figure 3.11 Device Net I/O Connection Object State 
Transition Diagram 

Prior to getting access to the network every DeviceNet node has to perform the so-

called "Duplicate MAC ID Check". With this specific protocol sequence the 

uniqueness of the MAC ID of a device is secured. All DeviceNet modules are 

required to participate in this MAC ID detection algorithm. 

An optional means for the supervision of devices is provided by means of a 

"Heartbeat-Message" which may be broadcasted by the devices by means of the 
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UCMM in form of an Unconnected Response Message or by Group 2 only devices 

by means of an Unconnected Response Message. In the data field of this message 

the device state is transmitted. The Heartbeat Message is triggered by the Identity 

Object. A node may optionally broadcast fault information before going offline. 

3.6.6 Device Modeling and Device Profiles 

For open automation systems, besides of standard communication, in addition 

interoperability and interchangeability of alike device is demanded. Therefore open 

systems higher layer protocols like DeviceNet and CANopen describe the 

functionality of devices as seen from the network in form of a "Device Model". To 

promote the interchangeability of alike devices "Device Profile" of main device 

classes of industrial automation have to be specified which secures the same basic 

("standard") behavior of devices of different manufacturers. 

Beside of a description of the functionality of the device the device model must also 

provide a description of the device’s identity, version number, status, diagnostic 

information, communication facilities and configuration parameters. 

 

Figure 3.12 DeviceNet Object Model 

In Fig. 3.12 the model of a DeviceNet node is shown. This includes several objects, 

some required by DeviceNet, and others required by the product’s application 

function. An object provides an abstract representation of a particular component 

within a device and represents the related data (attributes) and procedures 
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(services) on that data. In Table 3.4 the main function of the objects of a DeviceNet 

example node are summarized. 

Table 3.4 Objects of a DeviceNet node 

 

Object addressing in DeviceNet is based on a hierarchical addressing scheme and 

consists of the MAC-ID (Medium Access Control Identifier), which distinguishes a 

node among all other nodes on the same link, the class identifier (Class ID), which 

identifies the object class, the instance identifier (Instance ID), which identifies an 

instance among all instances of the same class and the attribute identifier which 

identifies an attribute within a class or instance. 

A DeviceNet device profile must contain the following information: 

• an object model for the device type  

• the I/O data format for the device type  

• configuration data and the public interfaces to that data  

 The CANopen approach is based on the description of a device’s functionality by 

means of an "Object Directory". Entries of the Object Directory are identified by a 

16-bit index and an 8-bit subindex number with the function of an entry (data, 

parameter or function) implicitly specified. Beside of a section used for the definition 

of data types, three main sections are distinguished (Fig. 3.13): The Communication 

Profile Section, Standardized Device Profile Section and Manufacturer Specific 

Section. 
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Figure 3.13 CANopen Object Directory Structure 

 

Figure 3.14 CANopen Object Directory 
Communication Profile Section 
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The Communication Profile Section Information is identical for any CANopen device 

type and contains device related information, parameters and functions that are 

related for device identification, error management and the definition of the device’s 

communication channels including the mapping of application objects into Process 

Data Objects (Fig. 3.14). Related to DeviceNet the CANopen Communication Profile 

Section may be compared with the functionality of the DeviceNet, Identity, 

Connection and Assembly Objects. 

The CANopen Device Profile Section provides the interface to the functionality of a 

basic ("standard") device of a specific class. Some of these entries are mandatory 

and some are optional. The mandatory, common entries shall ensure, that a device 

behaves in a defined basic manner. Different Device Profiles for main industrial 

devices like I/O modules or drives are specified to promote interchangeability of 

devices. 

Manufacturer specific or non-standardized device functionality may be provided by 

means of the Manufacturer Specific Profile Section. 
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4. NEW PROTOCOL DEVELOPMENT: CANUP 

CANUP (CAN Uygulama Protokolü) is application-independent CAN-based 

application layer protocol which defines general rules and structures for message 

identifier allocation, data exchange methods, network management, message 

triggering and baudrate. 

Protocol defines only one master and maximum 127 slaves total 128 units for a 

network. Master is responsible and only authority for network management, 

baudrate settings, ID and Unit Number assignment. 

In a CANup based system every unit has a Unit Number that may be the same but 

theoricaly is independent from message ID. 

4.1 Baudrate 

All units on network must support the baudrate 25 kbit/sec. This baudrate is used at 

startup and during initialization process. Beside, any unit must also support at list 

one of the defined baudrates at Table 4.1. 

Table 4.1 Defined baudrates and codes 

BAUDRATE CODE 

10 kbit/s 10 

25 kbit/s 25 

50 kbit/s 50 

100 kbit/s 100 

125 kbit/s 125 

250 kbit/s 250 

500 kbit/s 251 

800 kbit/s 253 

1 Mbit/s 255 
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4.2 ID Assignment  

CANUP supports both static and dynamic message identifier distribution. Basically 

11-bit standard IDs are used. But protocol also supports 29-bit extended ID usage.  

11-bit standard ID field is divided into 2-main sections. 

10 9 8 7 6 5 4 3 2 1 0 

TYPE MESSAGE ID 

Figure 4.1 General ID Fields 

Although function of these two fields depends on application, they have some 

general meanings. Upper 3-bit field named as TYPE determines message type or 

message group. Lower 8-bit field has different functions such as sender no, target 

no, and message content. 

If constant ID is used for a unit, ID must be assigned by taking consideration about 

priorities for both fields. 

For nonconstant ID units each unit has a startup ID. Type field is set according to 

device priority group and message ID has a random value. 

4.2.1 System Messages 

255 messages having the highest priority with TYPE field all zero are called as 

System Messages. These messages are application-independent and can be used 

for only defined purposes. System messages are classified into 4 groups. 

The messages with ID between 0 and 9 are Emergency Messages for master and 

slave units.                  

The messages with ID between 10 and 59 are System Messages that can be used 

only by master.                   

The messages with ID between 59 and 99 are System Messages that can be used 

only by slave units. 

The messages with ID as 100+Unit Number (100-227) are Special System 

Messages that can be sent by specific Unit. 
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4.2.1.1 Emergency Messages 

Message 0 

SENDER ID DLC DATA0 Meaning 

Slave 0 1 Unit No Leaving from network 

Message 1 

SENDER ID DLC DATA0 Meaning 

Slave 1 1 Unit No TEC exceeded 245 

Message 2 

SENDER ID DLC DATA0 Meaning 

Slave 2 1 Unit No REC exceed 245 

Message 3 

SENDER ID DLC DATA0 Meaning 

Slave 3 1 Unit No TEC exceeded 127 

Message 4 

SENDER ID DLC DATA0 Meaning 

Slave 4 1 Unit No REC exceed 127 

Message 5 

SENDER ID DLC DATA0 Meaning 

Slave 5 1 Unit No TEC exceeded 96 

Message 6 

SENDER ID DLC DATA0 Meaning 

Slave 6 1 Unit No REC exceed 96 

Message 7 

SENDER ID DLC DATA0 Meaning 

Slave 7 1 Unit No Unable to support new baudrate 
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4.2.1.2 General System Messages 

Message 10 

SENDER ID DLC Meaning 

Master 10 0 All Units start communication  

Message 11 

SENDER ID DLC Meaning 

Master 11 0 All Units Stop Communication  

Message 12 

SENDER ID DLC DATA0 Meaning 

Master 12 1 Baudrate Code New Baudrate 

Message 13 

SENDER ID DLC DATA0 Meaning 

Master 13 1 Unit Number The unit joined network 

Message 14 

SENDER ID DLC DATA0 Meaning 

Master 14 1 Unit Number The unit start communication 

Message 15 

SENDER ID DLC DATA0 Meaning 

Master 15 1 Unit Number The unit left network 

Message 16 

SENDER ID DLC DATA0 Meaning 

Master 16 1 Unit Number The unit stop communication 

Message 17 

SENDER ID DLC DATA0 Meaning 

Master 17 1 Unit Number LongData transmission allowed. 
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Message 18 

SENDER ID DLC DATA0 Meaning 

Master 18 1 Unit Number LongData transmission not allowed. 

Message 19 

SENDER ID DLC Meaning 

Master 19 0 The units with constant ID, Introduce yourselves 

Message 20 

SENDER ID DLC DATA0 Meaning 

Master 20 1 Unit Number Unit number assignment 

Message 21 

SENDER ID DLC Meaning 

Master 21 0 The units with dynamic ID, Introduce yourselves 

Message 22 

SENDER ID DLC DATA0 Meaning 

Master 22 1 Unit Number Unit number assignment 

Message 23 

SENDER ID DLC Meaning 

Master 23 0 Baudrate determination process started. 

Message 24 

SENDER ID DLC DATA0 Meaning 

Master 24 1 Baudrate Code Baudrate offer 

Message 25 

SENDER ID DLC DATA0 Meaning 

Master 25 1 Unit Number Send your state information. 

Message 59 

SENDER ID DLC DATA0 Meaning 

Slave 59 1 Unit Number Unit number confirmation 
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Message 60 

SENDER ID DLC DATA0 Meaning 

Slave 60 1 Priority  A unit wants to join network 

Message 61 

SENDER ID DLC Meaning 

Master 61 0 Faulty node recovering 

4.2.1.3  Unit System Messages 

DLC is always greater than zero in Unit System Messages. The first byte of data 

(DATA0) always defines type or meaning of message. So 255 different messages 

can be defined for each unit. General format of the messages are below: 

Message 100+x 

SENDER ID DLC DATA0 DATA1 DATA2 ....DATAn 

Unit x 100+X >1 Message Type    

x=Unit Number (0-127) 

Figure 4.2 Unit System Message Format 

Message Type 0 

DLC DATA0 DATA1 DATA2 Meaning 

3 0 Length (MSB) Length (LSB) LongData Transmission Request 

Message Type 1 

DLC DATA0 DATA1 DATA2 Meaning 

3 1 Unit Number  Baudrate Code I only support this baudrate 

Message Type 2 

DLC DATA0 DATA1 DATA2 Meaning 

3 2 REC  TEC State Information 
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4.3 Data Exchange 

Data transmission is divided into 4 different methods according to length: 

• Instant (Logical) Data (0 byte) 

• Short Data (1-8 bytes) 

• Mid-Data (9-48 bytes) 

• Long Data (49-1785 bytes) 

4.3.1 Instant Data 

In this type of transmission DLC is 0(zero). Data is carried by some bits of ID field. 

4.3.2 Short Data 

DLC shows amount of total data bytes. All data is transmitted in one package. DLC 

can be maximum 8. 

4.3.3 Mid-Data 

DLC takes the values between 9 and 14.  Total data is transmitted by 2 to 6 

packages. Package segment number is calculated by following formula: 

Package Order = DLC – 8 

 DLC=9    >>>> Package Order = 9 - 8  = 1 

 DLC=14  >>>> Package Order = 14 - 8  = 6 

4.3.4 Long Data 

DLC is always 15. All packages contain 8 bytes of data. Data0 content shows 

package order.  

Startup (first) package has different format. The content of Data0 is 0(zero). Data1 

and Data2 content show total data number of bytes that will be transmitted. 

Data3...Data7 content has no meaning. 
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Data 0 0 

Data 1 Length LSB 

Data 2 Length MSB 

Data3-7 --- 

Figure 4.3 Long Data Startup Package Format 

Because producer and consumer of long data know about total length, unused data 

bytes of last package are ignored. 

4.4 Network Management 

4.4.1 Startup 

Initialization is divided into two steps: Registration and baudrate determination 

process. 

First of all, master broadcast message 12 with the baudrate code of 25. 

Then master generates message 11 twice and starts registration process. Master 

broadcasts message 19 to know if there is any unit with constant ID. If there is no 

message within 20-bit time, master assumes there is no unit with constant ID. 

The units with constant ID answer to master using data frames with their ID and 

without data field. Here there cannot be two units with same constant ID and this is 

responsibility of system designer. 

A slave unit, which lost arbitration during this process aborts transmission and waits 

until completion of registration process for arbitration winner unit. 

Master answers each message with message 20. By this way every units gets a 

Unit Number. Master is free about assigning unit number. For constant ID units 

master assigns a unit number related to constant ID. The same unit produces 

message 59 by using assigned Unit Number for confirmation. So registration 

process for a slave unit with constant ID has been completed. 

Master holds a table called Registered Units List (RUL). Master adds every unit to 

RUL after registration process. 
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After broadcasting of message 59, master unit waits 20-bit time and if there is no 

more messages it assumes that registration process for constant ID units 

completed. 

Master unit broadcasts message 21 for units with non-constant ID to introduce 

themselves. The units get the message and wait for the random bit time that is 

defined in the lower 8-bit of their startup ID and broadcast data frames with their ID 

and without data field. 

A slave unit, which lost arbitration during this process aborts transmission and 

restarts random wait time. 

Master answers each message with message 20. Master assigns unit numbers from 

low to high by order. Then slave unit answers with message 59 and registration 

completed. All units also are added to RUL. 

After broadcasting of message 59, master waits 255-bit time and finishes whole 

registration process.  

Second step at initialization is baudrate determination. Broadcasting of message 23 

by master starts this process. Master waits for 10-bit time for the units, which 

supports only one baudrate. If there is any unit that supports only one more extra 

baudrate, then it suddenly broadcasts unit system message 1 with supported 

baudrate code. Then master broadcasts message12 using the same baudrate code 

and baudrate determination process finishes. 

If there is no unit with single baudrate, master firstly offers highest baudrate for 

network by using message 24 and starts to wait for 15-bit times. Any unit that cannot 

support offered baudrate, broadcasts emergency message 7. Then master offers 

one lower baudrate. By this way, the baudrate that is not rejected by any unit is 

determined as new baudrate and broadcasted by message 12. And baudrate 

determination process finishes. 

4.4.2 Node Guarding 

For node guarding purposes master units hold two tables: Active Units List (AUL) 

and Passive Units List (PUL). A unit can be member of AUL or PUL not both at any 

time. After initialization all units in RUL are also added to AUL. 
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After completing initialization, master starts a periodic timer, which counts the time 

called as Cycle Time. Cycle time is calculated by following formula: 

Cycle Time = Registered Unit number * 5 

During Cycle time, the units, which broadcasted any message is marked as active 

unit. When cycle time finishes, master starts to send node-checking message 

(message 25) to the units that are in AUL but not marked as active unit by unit 

number order. A unit that takes this message, answers it by sending unit message 

type 2. This message includes current state of unit. If there is no answer in 15-bit 

time then the unit is transferred from AUL to PUL. 

After every 10-cycle time, master sends node-checking message to all units in PUL. 

After every message, master waits 15-bit time for answer. Any units that answered 

this message by unit message type 2 are again transferred to AUL. 

4.4.3 Detecting and Recovering Faulty Nodes 

A unit broadcasts emergency message 5 as soon as Transmit Error Counter (TEC) 

exceeds 96 and message 6 as soon as Receive Error Counter (REC) exceeds 96. 

In this case master broadcasts message11 10 times then faulty unit broadcasts 

message61 10 times consecutively. Then master broadcasts message10 and 

recovering process ended. 

A unit broadcasts emergency message 3 as soon as Transmit Error Counter (TEC) 

exceeds 127 and message 3 as soon as Receive Error Counter (REC) exceeds 

127. In this case master broadcasts message11 20 times then fault unit broadcasts 

message61 20 times consecutively. Then master broadcasts message10 and 

recovering process ended. 

A unit broadcasts emergency message 1 as soon as Transmit Error Counter (TEC) 

exceeds 245 and message 2 as soon as Receive Error Counter (REC) exceeds 

245. In this case master broadcasts message11 30 times then fault unit broadcasts 

message61 30 times consecutively. Then master broadcasts message10 and 

recovering process ended. 

For a faulty unit maximum 5 consecutive recovering processes can be applied. If 

error state of the faulty node continues no more recovering process is applied and 

master reports this state to user. In such cases measures are application-
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dependent. But decreasing baudrate or inhibiting faulty node from communicating by 

sending message16 may be recommended. 

4.4.4 Node Adding-Removing 

A unit that will join to a running network listens bus at all baudrates from high to low 

until detecting current baudrate. Then unit sends message 60 to join network. 

Master replies this message by sending message 13 and this message includes unit 

number for new unit. Master sends message 14 to allow new unit to start 

communication. The unit is added to both RUL and AUL. 

A unit that will shut down or leave from network sends emergency message 0.  

Master also sends message 15 to inform other units. The unit is removed from RUL 

and AUL or PUL. 

4.5 Message Triggering 

The messages on a CANUP network are classified into two types: System 

Messages (SM), Process Messages (PM). SM and PM transmission of a unit is 

triggered in 3 modes: Event-Driven, Periodically and Remotely Requested. 

4.5.1 Event-Driven 

Message transmission is triggered by the occurrence of an application specific 

event. This event may be change of state, expiration of a specified period etc. 

4.5.2 Periodically 

Message transmission is triggered by expiration of the application specified 

transmission period. 

4.5.3 Remotely Requested 

Message transmission may be initiated on receipt of a remote request made by 

another unit. 
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5. A CANUP APPLICATION: LIFT COMMUNICATION PROTOCOL ASCAN 

There are several units, which communicate each other in different methods in lift 

control systems. Classical systems use point-to-point wiring and all units are 

connected to main control panel directly. For example for a 10-stop lift system there 

are approximately 30 cables from control panel to cabin unit and 20 cables to each 

floor push button unit. This costs much wiring and workmanship and causes 

difficulties while expanding system and increases wrong connection rate. 

Serial communication looks like the most effective solution in all aspects. CAN is 

chosen as serial communication bus because of its high reliability and cost 

efficiency.  

There are 3 different serial lines in lift control systems. One line for communication 

between control panel, cabin and floor push buttons, one line for communication 

between control panel and sensors, speed control units, one line for between control 

panels in group operations. In this CANUP application called as ASCAN, all these 

lines are gathered on a single CAN network. 

5.1 Baudrate 

ASCAN supports the defined CANUP baudrates lower than 250 kbit/s. Because 

urgent (time-critical) data in lift control systems such as security circuit signals are 

connected to main control panel directly, so these low baudrates will be enough. As 

the number of units and consequently network length increase, baudrate also 

decreases. 

For communication of control panel and floor push button units recommended 

baudrate is 50 kbit/s. 
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5.2 ID Distribution 

The units in lift control system use defined type of IDs as in Table 5.1. 

                     Table 5.1 ID Distribution in ASCAN 

TYPE FIELD MESSAGE  

000 0 System Messages 

001 1 Control Panels  

010 2 Sensors 

011 3 Smart Unites 

100 4 Cabins 

101 5 Floor Units 1 

110 6 Floor Units 2 

111 7 Common 

5.3 Messages On ASCAN 

5.3.1 Control Panel Messages 

Control panel (CP) is master of all system. It uses Type 0 IDs for network 

management messages and uses Type 1 IDs for lift control messages. In group 

operation there can be up to 16 control panels. In such cases, CP0 is master of all 

system.  

CP message ID format is described in Figure 5.1 

Type Field Control Panel Number Message Number 

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 

0 0 1 x x x x x x x x 

Figure 5.1 Control Panel Message ID Format 

Message 0 is broadcasted to inform all units about system parameters. There are 2 

bytes of data in the message. Data0 carries number of stops in system and Data1 

carries traffic system code as explained in Table 5.2 
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        Table 5.2 Traffic System Codes 

CODE Traffic System 

0 Simple Push Button 

1 Simple Collective 

2 Down Collective 

3 Up Collective 

4 Full Collective 

For floor push button and cabin units CP broadcasts 3 similar messages: Message 

number 1,2 and 3. In these messages there are 5-8 bytes of data and Data0..4 are 

in the same format as in Figure 5.2. 

DATA0 DATA1 DATA2 DATA3 

Left Display Code Right Display Code Signal Lamps State Cabin State 

Figure 5.2 Data 0..4 of CP message 

Data0 and Data1 bytes carry display codes that are in ASCII format for left and right 

displays at cabin and floor display units.   

Data2 carries Signal Lamps State information for signals lamps at cabin and floor 

units, which has a format as in Figure 5.3. 

B7 B6 B5 B4 B3 B2 B1 B0 

X Minimum 
Load 

Full  
Load Overload Up  

Arrow 
Down 
Arrow Busy Out Of  

Service 

Figure 5.3 Signal Lamps State Byte Format 

For each bit logic 1 means signal is active and logic 0 means signal is off. 

Data3 carries information about cabin’s motion state code. Here two types of codes 

are used. Decimal values up to 127 gives 10 times cabin speed in m/s. To calculate 

actual speed the value is divided by 10. For example decimal 25 means that speed 

is 2.5 m/s. 

When msb bit of the byte is 1 (Data3 > 127) then lsb 4 bits are read as in Table 5.3   
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Table 5.3 Cabin State Byte 

CODE 

b3 b2 b1 b0 Dec 
EXPLANATION 

0 0 0 0 0 Cabin stops. 

0 0 0 1 1 Cabin is about to move. 

0 0 1 0 2 Cabin is moving slowly. 

0 1 0 0 4 Cabin is moving fast. 

1 0 0 0 8 Cabin is moving very fast. 

Number of data bytes in the messages depends on the number of stops in lift 

system. For every 8 stops one more byte is added to data field. For an 8-stop 

system there are 5 data bytes and for 32 floors there are 8 data bytes.  

Format of Data5..7 differs at every messages as in Figure 5.4. Message 1 carries 

CRL information, message 2 carries URL information and message 3 carries DRL 

information. 

DATA4 DATA5 DATA6 DATA7 

CRL 0-7 CRL 8-15 CRL 16-23 CRL 24-31 

CRL: Cabin Registration Lamps 

DATA4 DATA5 DATA6 DATA7 

URL 0-7 URL 8-15 URL 16-23 URL 24-31 

URL: Up Registration Lamps 

DATA4 DATA5 DATA6 DATA7 

DRL 0-7 DRL 8-15 DRL 16-23 DRL 24-31 

DRL: Down Registration Lamps 

Figure 5.4 Format of Data4..7 of CP messages 

Master also broadcasts second types of messages, message 4 and 5 for answering 

password-checking messages of floor units and cabin. These messages contain 1 

byte of data, which carries the unit number of answered unit. Message 4 means 

password is correct and call request has been accepted. Message 5 means 

password is invalid and call request has been rejected. 



 68 

5.3.2 Floor Unit Messages 

Floor Units broadcast 2 types of messages: One type of message for reporting 

change of states of buttons and one for password checking.  

Floor Units message ID format is described in Figure 5.5. 

Type Field Floor Unit Number Message Type 

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 

1 0 1 x x x x x x x x 

Figure 5.5 Floor Unit Message Format 

Floor Unit broadcasts the message as in Figure 5.6 to inform master about state 

change of buttons. 

Type Field Floor Unit Number Message Type 

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 

1 0 1 x x x x x 0 Up Down 

Figure 5.6 State-Change Message of Floor Units 

This message is in Instant Data form and has no data field. ID2 bit of message ID is 

always 0. ID1 shows the last state of Up-button and ID0 shows the last state of 

Down-button. For these bits logic 1 means that button is pressed and logic 0 means 

button is released. 

For password checking messages, message ID format is described in Figure 5.7.  

Type Field Floor Unit Number Message Type 

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 

1 0 1 x x x x x 1 Up Down 

Figure 5.7 Password-checking Message ID format 

ID2 bit is always logic1. Logic 1 in ID1 bit shows up call request and in ID0 bit down 

call request for that floor. The message contains two bytes of data. Data0 carries 

upper byte of password and Data1 carries the lower byte. 
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5.3.3 Cabin Messages 

Similar to floor units, cabin also broadcasts 2 types of messages: One type of 

message for reporting changes of state of buttons and one for password checking.  

Cabin message ID format is described in Figure 5.8. 

Type Field Cabin Number Message Type 

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 

1 0 0 x x x x x x x x 

Figure 5.8 Cabin Message ID Format 

Message 0,1,2 and 3 are used to report state-changes at cabin buttons. All these 

messages carry 1 byte of data. Message0 carries information about buttons 0-7, 

message1 buttons 8-15, message2 buttons16-23 and message3 buttons 24-31. For 

these bits logic 1 means that button is pressed and logic 0 means button is 

released. Cabin broadcasts these messages according number of stops in lift 

system. 

5.4 Message Triggering 

CP broadcasts message0 just after initialization. Message0 is also broadcasted if 

there is a change in related lift parameters. 

CP messages of 1,2 and 3 are normally broadcasted in order 10-bit time later after 

bus is idle. If bus doesn’t become idle after 5 messages then master again 

broadcasts the messages. But if a cabin or floor unit message is received or there is 

a change in display or signal lamps information then related messages are produced 

immediately. 

CP broadcasts message 4 and 5 as soon as receiving password-checking 

messages. 

Floor Units and cabin broadcast their messages as soon as there is a change in 

state of buttons or there is a call request with password.  
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5.5 Network Management 

If there is still a faulty node even if 5 consecutive recovering processes were applied 

then master decreases baudrate and starts new recovering process. Master applies 

this procedure 3 times. If the problem continues then no more recovering process is 

applied. 
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6. CONCLUSION AND FUTURE WORK 

Due to the widespread use of the CAN protocol from automotive to any kind of 

industrial applications, several classes of higher layer protocols have been 

developed. In this study some open system solutions for industrial automation have 

been mentioned. It was not intended to provide a guideline for choosing the best-

suited protocol, but primarily to provide a better functional understanding of higher 

layer protocols. 

Caused by the immense distribution of CAN in the non-automotive automation 

several higher layer protocols and open systems approaches have been originated 

almost simultaneously. 

With CAL, a widely accepted and approved application layer standard is available 

for use in any application, which has to fulfill specific requirements in a fixed 

configuration environment. Due to the compatibility with CANopen, CANopen 

modules may be used within CAL systems. 

With DeviceNet and CANopen two CAN-based sophisticated open systems 

standards are available today. On a first glance both solutions provide about the 

same functionality, although the approaches, which are taken, are quite different. 

Most significantly this concerns the usage of message identifiers, which completely 

left open to the system designer or integrator in CANopen. Although DeviceNet 

provides a free usage of message identifiers, there are some limitations. DeviceNet 

is based on a connection-oriented view but CANopen is based on a message-

oriented view. Each of the system uses different data transport protocols with 

DeviceNet providing the most variety.  

We also defined a new application protocol CANUP. We think CANUP protocol is 

easier to understand and to implement for small applications rather than well-known 

protocols. And we described a lift communication application on CANUP.  
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However, it is also acceptable that CANUP protocol defined in thesis is just a 

preliminary study and there may be some imperfect parts and structures. Anyway, it 

is certain that CANUP must be developed according to the needs of different 

applications and device profiles. There are some undefined message IDs in system 

messages and these can be configured according to requirements. Protocol 

structure also supports extended ID (29-bit) and lots of new messages and 

structures can be added to the protocol. 

There are also lots of future works in lift communication application ASCAN. In this 

study, we made general ID assignment for whole lift network but only the 

communication between control panel and cabin and floor units is described in 

details. The communications between different control panels, sensors and other 

smart units including definitions and structures left open for future work. 
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