e o

e

Digital
Electronics

.‘..
,n

I

1
Principles, Devices |
and Applications

1410101010104 090101 8
5 {’

Digital Electronics

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

Digital Electronics

Principles, Devices and Applications

Anil K. Maini
Defence Research and Development Organization (DRDO), India

1807 |
H| GWILEY [:
12007

=

NNNNNNNNNNNN

John Wiley & Sons, Ltd

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons
Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, Canada L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Anniversary Logo Design: Richard J. Pacifico
Library of Congress Cataloging in Publication Data

Maini, Anil Kumar.
Digital electronics : principles, devices, and applications/ Anil Kumar Maini.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-03214-5 (Cloth)
1. Digital electronics. 1. Title.
TK7868.D5M275 2007
621.381—dc22 2007020666

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 978-0-470-03214-5 (HB)

Typeset in 9/11pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which
at least two trees are planted for each one used for paper production.

In the loving memory of my father, Shri Sukhdev Raj Maini, who has been a source of
inspiration, courage and strength to me to face all challenges in life, and above all instilled
in me the value of helping people to make this world a better place.

Anil K. Maini

Contents

Preface

1 Number Systems

1.1
1.2
1.3
14

1.5
1.6
1.7

1.8

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

Analogue Versus Digital

Introduction to Number Systems

Decimal Number System

Binary Number System

1.4.1 Advantages

Octal Number System

Hexadecimal Number System

Number Systems — Some Common Terms
1.7.1 Binary Number System

1.7.2 Decimal Number System

1.7.3 Octal Number System

1.7.4 Hexadecimal Number System
Number Representation in Binary

1.8.1 Sign-Bit Magnitude

1.8.2 I's Complement

1.8.3 2’s Complement

Finding the Decimal Equivalent

1.9.1 Binary-to-Decimal Conversion
1.9.2 Octal-to-Decimal Conversion
1.9.3 Hexadecimal-to-Decimal Conversion
Decimal-to-Binary Conversion
Decimal-to-Octal Conversion
Decimal-to-Hexadecimal Conversion
Binary—Octal and Octal-Binary Conversions
Hex—Binary and Binary—Hex Conversions
Hex—Octal and Octal-Hex Conversions
The Four Axioms

Floating-Point Numbers

1.17.1 Range of Numbers and Precision
1.17.2 Floating-Point Number Formats

y
.

NN BEN BEN I life Nie Nie Nie NIV, BV, BV, BT, TN, T S N N S GC I US I NS I NS Iy

— e = = =
W W= O O \0

viii

Contents

Review Questions
Problems
Further Reading

2 Binary Codes

2.1

2.2
23

24

2.5
2.6

Binary Coded Decimal

2.1.1 BCD-to-Binary Conversion
2.1.2 Binary-to-BCD Conversion
2.1.3 Higher-Density BCD Encoding
2.1.4 Packed and Unpacked BCD Numbers
Excess-3 Code

Gray Code

2.3.1 Binary—Gray Code Conversion
2.3.2 Gray Code—Binary Conversion
2.3.3 n-ary Gray Code

2.3.4 Applications

Alphanumeric Codes

2.4.1 ASCII code

2.4.2 EBCDIC code

2.4.3 Unicode

Seven-segment Display Code

Error Detection and Correction Codes
2.6.1 Parity Code

2.6.2 Repetition Code

2.6.3 Cyclic Redundancy Check Code
2.6.4 Hamming Code

Review Questions

Problems

Further Reading

3 Digital Arithmetic

3.1
32

33

34

35

3.6

3.7

Basic Rules of Binary Addition and Subtraction

Addition of Larger-Bit Binary Numbers

3.2.1 Addition Using the 2’s Complement Method

Subtraction of Larger-Bit Binary Numbers

3.3.1 Subtraction Using 2’s Complement Arithmetic
BCD Addition and Subtraction in Excess-3 Code

3.4.1 Addition

3.4.2 Subtraction

Binary Multiplication

3.5.1 Repeated Left-Shift and Add Algorithm

3.5.2 Repeated Add and Right-Shift Algorithm

Binary Division

3.6.1 Repeated Right-Shift and Subtract Algorithm
3.6.2 Repeated Subtract and Left-Shift Algorithm

Floating-Point Arithmetic
3.7.1 Addition and Subtraction
3.7.2 Multiplication and Division

17
17
18

19
19
20
20
21
21
21
23
24
25
25
25
27
28
31
37
38
40
41
41
41
42
44
45
45

47
47
49
49
52
53
57
57
57
58
59
59
60
61
62
64
65
65

Contents

ix

4 Logic
4.1
42
43

44
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12

4.13

4.14

5 Logic

52
53

Review Questions
Problems
Further Reading

Gates and Related Devices

Positive and Negative Logic

Truth Table

Logic Gates

4.3.1 OR Gate

4.3.2 AND Gate

4.3.3 NOT Gate

4.3.4 EXCLUSIVE-OR Gate

4.3.5 NAND Gate

4.3.6 NOR Gate

4.3.7 EXCLUSIVE-NOR Gate

4.3.8 INHIBIT Gate

Universal Gates

Gates with Open Collector/Drain Outputs
Tristate Logic Gates

AND-OR-INVERT Gates

Schmitt Gates

Special Output Gates

Fan-Out of Logic Gates

Buffers and Transceivers

IEEE/ANSI Standard Symbols

4.12.1 IEEE/ANSI Standards — Salient Features
4.12.2 ANSI Symbols for Logic Gate ICs
Some Common Applications of Logic Gates
4.13.1 OR Gate

4.13.2 AND Gate

4.13.3 EX-OR/EX-NOR Gate

4.13.4 Inverter

Application-Relevant Information
Review Questions

Problems

Further Reading

Families

Logic Families — Significance and Types
5.1.1 Significance

5.1.2 Types of Logic Family
Characteristic Parameters

Transistor Transistor Logic (TTL)

5.3.1 Standard TTL

5.3.2 Other Logic Gates in Standard TTL
5.3.3 Low-Power TTL

5.34 High-Power TTL (74H/54H)
5.3.5 Schottky TTL (745/54S)

67
68
68

69
69
70
71
71
73
75
76
79
79
80
82
85
85
87
87
88
91
95
98
100
100
101
102
103
104
104
105
107
109
110
114

115
115
115
116
118
124
125
127
133
134
135

X Contents
5.3.6 Low-Power Schottky TTL (74LS/54LS) 136

5.3.7 Advanced Low-Power Schottky TTL (74ALS/54ALS) 137

5.3.8 Advanced Schottky TTL (74AS/54AS) 139

5.3.9 Fairchild Advanced Schottky TTL (74F/54F) 140
5.3.10 Floating and Unused Inputs 141

5.3.11 Current Transients and Power Supply Decoupling 142

5.4 Emitter Coupled Logic (ECL) 147
5.4.1 Different Subfamilies 147

5.4.2 Logic Gate Implementation in ECL 148

5.4.3 Salient Features of ECL 150

5.5 CMOS Logic Family 151
5.5.1 Circuit Implementation of Logic Functions 151

552 CMOS Subfamilies 165

5.6 BiCMOS Logic 170
5.6.1 BiCMOS Inverter 171

5.6.2 BiCMOS NAND 171

5.7 NMOS and PMOS Logic 172
5.7.1 PMOS Logic 173

5.72 NMOS Logic 174

5.8 Integrated Injection Logic (I’L) Family 174
5.9 Comparison of Different Logic Families 176
5.10 Guidelines to Using TTL Devices 176
5.11 Guidelines to Handling and Using CMOS Devices 179
5.12 Interfacing with Different Logic Families 179
5.12.1 CMOS-to-TTL Interface 179
5.12.2 TTL-to-CMOS Interface 180
5.12.3 TTL-to-ECL and ECL-to-TTL Interfaces 180
5.12.4 CMOS-to-ECL and ECL-to-CMOS Interfaces 183

5.13 Classification of Digital ICs 183
5.14 Application-Relevant Information 184
Review Questions 185
Problems 185
Further Reading 187

6 Boolean Algebra and Simplification Techniques 189
6.1 Introduction to Boolean Algebra 189
6.1.1 Variables, Literals and Terms in Boolean Expressions 190

6.1.2 Equivalent and Complement of Boolean Expressions 190

6.1.3 Dual of a Boolean Expression 191

6.2 Postulates of Boolean Algebra 192
6.3 Theorems of Boolean Algebra 192
6.3.1 Theorem 1 (Operations with ‘0’ and ‘1’) 192

6.3.2 Theorem 2 (Operations with ‘0’ and ‘1) 193

6.3.3 Theorem 3 (Idempotent or Identity Laws) 193

6.3.4 Theorem 4 (Complementation Law) 193

6.3.5 Theorem 5 (Commutative Laws) 194

6.3.6 Theorem 6 (Associative Laws) 194

6.3.7 Theorem 7 (Distributive Laws) 195

Contents xi
6.3.8 Theorem 8 196

6.3.9 Theorem 9 197
6.3.10 Theorem 10 (Absorption Law or Redundancy Law) 197

6.3.11 Theorem 11 197

6.3.12 Theorem 12 (Consensus Theorem) 198
6.3.13 Theorem 13 (DeMorgan’s Theorem) 199
6.3.14 Theorem 14 (Transposition Theorem) 200
6.3.15 Theorem 15 201
6.3.16 Theorem 16 201
6.3.17 Theorem 17 (Involution Law) 202

6.4 Simplification Techniques 204
6.4.1 Sum-of-Products Boolean Expressions 204

6.4.2 Product-of-Sums Expressions 205

6.4.3 Expanded Forms of Boolean Expressions 206

6.4.4 Canonical Form of Boolean Expressions 206

6.4.5 3 and II Nomenclature 207

6.5 Quine-McCluskey Tabular Method 208
6.5.1 Tabular Method for Multi-Output Functions 212

6.6 Karnaugh Map Method 216
6.6.1 Construction of a Karnaugh Map 216

6.6.2 Karnaugh Map for Boolean Expressions with a Larger Number of

Variables 222

6.6.3 Karnaugh Maps for Multi-Output Functions 225
Review Questions 230
Problems 230
Further Reading 231

7 Arithmetic Circuits 233
7.1 Combinational Circuits 233
7.2 Implementing Combinational Logic 235
7.3 Arithmetic Circuits — Basic Building Blocks 236
7.3.1 Half-Adder 236

7.3.2 Full Adder 237

7.3.3 Half-Subtractor 240

7.3.4 Full Subtractor 242

7.3.5 Controlled Inverter 244

7.4 Adder—Subtractor 245
7.5 BCD Adder 246
7.6 Carry Propagation—Look-Ahead Carry Generator 254
7.7 Arithmetic Logic Unit (ALU) 260
7.8 Multipliers 260
7.9 Magnitude Comparator 261
7.9.1 Cascading Magnitude Comparators 263

7.10 Application-Relevant Information 266
Review Questions 266
Problems 267
Further Reading 268

xii Contents

8 Multiplexers and Demultiplexers 269
8.1 Multiplexer 269
8.1.1 Inside the Multiplexer 271

8.1.2 Implementing Boolean Functions with
Multiplexers 273
8.1.3 Multiplexers for Parallel-to-Serial Data Conversion 277
8.1.4 Cascading Multiplexer Circuits 280
8.2 Encoders 280
8.2.1 Priority Encoder 281
8.3 Demultiplexers and Decoders 285
8.3.1 Implementing Boolean Functions with Decoders 286
8.3.2 Cascading Decoder Circuits 288
8.4 Application-Relevant Information 293
Review Questions 294
Problems 295
Further Reading 298
9 Programmable Logic Devices 299
9.1 Fixed Logic Versus Programmable Logic 299
9.1.1 Advantages and Disadvantages 301
9.2 Programmable Logic Devices — An Overview 302
9.2.1 Programmable ROMs 302
9.2.2 Programmable Logic Array 302
9.2.3 Programmable Array Logic 304
9.2.4 Generic Array Logic 305
9.2.5 Complex Programmable Logic Device 306
9.2.6 Field-Programmable Gate Array 307
9.3 Programmable ROMs 308
9.4 Programmable Logic Array 312
9.5 Programmable Array Logic 317
9.5.1 PAL Architecture 319
9.5.2 PAL Numbering System 320
9.6 Generic Array Logic 325
9.7 Complex Programmable Logic Devices 328
9.7.1 Internal Architecture 328
9.7.2 Applications 330
9.8 Field-Programmable Gate Arrays 331
9.8.1 Internal Architecture 331
9.8.2 Applications 333
9.9 Programmable Interconnect Technologies 333
9.9.1 Fuse 334
9.9.2 Floating-Gate Transistor Switch 334
9.9.3 Static RAM-Controlled Programmable Switches 335
9.9.4 Antifuse 335
9.10 Design and Development of Programmable Logic Hardware 337
9.11 Programming Languages 338
9.11.1 ABEL-Hardware Description Language 339

9.11.2 VHDL-VHSIC Hardware Description Language 339

Contents

xiii

10

9.12

9.11.3 Verilog

9.11.4 Java HDL

Application Information on PLDs
9.12.1 SPLDs

9.12.2 CPLDs

9.12.3 FPGAs

Review Questions

Problems

Further Reading

Flip-Flops and Related Devices

10.1

10.2

10.3

104
10.5

10.6

10.7

10.8
10.9

10.10

10.11

Multivibrator

10.1.1 Bistable Multivibrator

10.1.2 Schmitt Trigger

10.1.3 Monostable Multivibrator

10.1.4 Astable Multivibrator

Integrated Circuit (IC) Multivibrators

10.2.1 Digital IC-Based Monostable Multivibrator
10.2.2 IC Timer-Based Multivibrators

R-S Flip-Flop

10.3.1 R-S Flip-Flop with Active LOW Inputs
10.3.2 R-S Flip-Flop with Active HIGH Inputs
10.3.3 Clocked R-S Flip-Flop
Level-Triggered and Edge-Triggered Flip-Flops
J-K Flip-Flop

10.5.1 J-K Flip-Flop with PRESET and CLEAR Inputs
10.5.2 Master-Slave Flip-Flops

Toggle Flip-Flop (T Flip-Flop)

10.6.1 J-K Flip-Flop as a Toggle Flip-Flop

D Flip-Flop

10.7.1 J-K Flip-Flop as D Flip-Flop

10.7.2 D Latch

Synchronous and Asynchronous Inputs

Flip-Flop Timing Parameters

10.9.1 Set-Up and Hold Times

10.9.2 Propagation Delay

10.9.3 Clock Pulse HIGH and LOW Times
10.9.4 Asynchronous Input Active Pulse Width
10.9.5 Clock Transition Times

10.9.6 Maximum Clock Frequency

Flip-Flop Applications

10.10.1 Switch Debouncing

10.10.2 Flip-Flop Synchronization

10.10.3 Detecting the Sequence of Edges
Application-Relevant Data

Review Questions

Problems

Further Reading

339
340
340
340
343
349
352
353
355

357
357
357
358
360
362
363
363
363
373
374
375
371
381
382
382
382
390
391
394
395
395
398
399
399
399
401
401
402
402
402
402
404
404
407
408
409
410

xiv Contents
11 Counters and Registers 411
11.1 Ripple (Asynchronous) Counter 411
11.1.1 Propagation Delay in Ripple Counters 412

11.2 Synchronous Counter 413
11.3 Modulus of a Counter 413
11.4 Binary Ripple Counter — Operational Basics 413
11.4.1 Binary Ripple Counters with a Modulus of Less than 2V 416

11.4.2 Ripple Counters in IC Form 418

11.5 Synchronous (or Parallel) Counters 423
11.6 UP/DOWN Counters 425
11.7 Decade and BCD Counters 426
11.8 Presettable Counters 426
11.8.1 Variable Modulus with Presettable Counters 428

11.9 Decoding a Counter 428
11.10 Cascading Counters 433
11.10.1 Cascading Binary Counters 433
11.10.2 Cascading BCD Counters 435

11.11 Designing Counters with Arbitrary Sequences 438
11.11.1 Excitation Table of a Flip-Flop 438

11.11.2 State Transition Diagram 439

11.11.3 Design Procedure 439

11.12 Shift Register 447
11.12.1 Serial-In Serial-Out Shift Register 449

11.12.2 Serial-In Parallel-Out Shift Register 452

11.12.3 Parallel-In Serial-Out Shift Register 452

11.12.4 Parallel-In Parallel-Out Shift Register 453

11.12.5 Bidirectional Shift Register 455
11.12.6 Universal Shift Register 455

11.13 Shift Register Counters 459
11.13.1 Ring Counter 459

11.13.2 Shift Counter 460

11.14 IEEE/ANSI Symbology for Registers and Counters 464
11.14.1 Counters 464

11.14.2 Registers 466

11.15 Application-Relevant Information 466
Review Questions 466
Problems 469
Further Reading 471

12 Data Conversion Circuits — D/A and A/D Converters 473
12.1 Digital-to-Analogue Converters 473
12.1.1 Simple Resistive Divider Network for D/A Conversion 474

12.1.2 Binary Ladder Network for D/A Conversion 475

12.2 D/A Converter Specifications 476
12.2.1 Resolution 476

12.2.2 Accuracy 477

12.2.3 Conversion Speed or Settling Time 477

12.2.4 Dynamic Range 478

Contents XV
12.2.5 Nonlinearity and Differential Nonlinearity 478
12.2.6 Monotonocity 478
12.3 Types of D/A Converter 479
12.3.1 Multiplying D/A Converters 479
12.3.2 Bipolar-Output D/A Converters 480
12.3.3 Companding D/A Converters 480
124 Modes of Operation 480
12.4.1 Current Steering Mode of Operation 480
12.4.2 Voltage Switching Mode of Operation 481
12.5 BCD-Input D/A Converter 482
12.6 Integrated Circuit D/A Converters 486
12.6.1 DAC-08 486
12.6.2 DAC-0808 487
12.6.3 DAC-80 487
12.6.4 AD 7524 489
12.6.5 DAC-1408/DAC-1508 489
12.7 D/A Converter Applications 490
12.7.1 D/A Converter as a Multiplier 490
12.7.2 D/A converter as a Divider 490
12.7.3 Programmable Integrator 491
12.7.4 Low-Frequency Function Generator 492
12.7.5 Digitally Controlled Filters 493
12.8 A/D Converters 495
129 A/D Converter Specifications 495
12.9.1 Resolution 495
12.9.2 Accuracy 496
12.9.3 Gain and Offset Errors 496
12.94 Gain and Offset Drifts 496
12.9.5 Sampling Frequency and Aliasing Phenomenon 496
12.9.6 Quantization Error 496
12.9.7 Nonlinearity 497
12.9.8 Differential Nonlinearity 497
12.9.9 Conversion Time 498
12.9.10 Aperture and Acquisition Times 498
12.9.11 Code Width 499
12.10 A/D Converter Terminology 499
12.10.1 Unipolar Mode Operation 499
12.10.2 Bipolar Mode Operation 499
12.10.3 Coding 499
12.10.4 Low Byte and High Byte 499
12.10.5 Right-Justified Data, Left-Justified Data 499
12.10.6 Command Register, Status Register 500
12.10.7 Control Lines 500
12.11 Types of A/D Converter 500
12.11.1 Simultaneous or Flash A/D Converters 500
12.11.2 Half-Flash A/D Converter 503
12.11.3 Counter-Type A/D Converter 504
12.11.4 Tracking-Type A/D Converter 505

Xvi Contents
12.11.5 Successive Approximation Type A/D Converter 505
12.11.6 Single-, Dual- and Multislope A/D Converters 506
12.11.7 Sigma-Delta A/D Converter 509

12.12 Integrated Circuit A/D Converters 513
12.12.1 ADC-0800 513
12.12.2 ADC-0808 514
12.12.3 ADC-80/AD ADC-80 515
12.12.4 ADC-84/ADC-85/AD ADC-84/AD ADC-85/AD-5240 516
12.12.5 AD 7820 516
12.12.6 ICL 7106/ICL 7107 517

12.13 A/D Converter Applications 520
12.13.1 Data Acquisition 521
Review Questions 522
Problems 523
Further Reading 523

13 Microprocessors 525

13.1 Introduction to Microprocessors 525

13.2 Evolution of Microprocessors 527

13.3 Inside a Microprocessor 528
13.3.1 Arithmetic Logic Unit (ALU) 529
13.3.2 Register File 529
13.3.3 Control Unit 531

13.4 Basic Microprocessor Instructions 531
13.4.1 Data Transfer Instructions 531
13.4.2 Arithmetic Instructions 532
13.4.3 Logic Instructions 533
13.4.4 Control Transfer or Branch or Program Control Instructions 533
13.4.5 Machine Control Instructions 534

13.5 Addressing Modes 534
13.5.1 Absolute or Memory Direct Addressing Mode 534
13.5.2 Immediate Addressing Mode 535
13.5.3 Register Direct Addressing Mode 535
13.5.4 Register Indirect Addressing Mode 535
13.5.5 Indexed Addressing Mode 536
13.5.6 Implicit Addressing Mode and Relative Addressing Mode 537

13.6 Microprocessor Selection 537
13.6.1 Selection Criteria 537
13.6.2 Microprocessor Selection Table for Common Applications 539

13.7 Programming Microprocessors 540

13.8 RISC Versus CISC Processors 541

13.9 Eight-Bit Microprocessors 541
13.9.1 8085 Microprocessor 541
13.9.2 Motorola 6800 Microprocessor 544
13.9.3 Zilog Z80 Microprocessor 546

13.10 16-Bit Microprocessors 547
13.10.1 8086 Microprocessor 547
13.10.2 80186 Microprocessor 548

Contents xvii

13.10.3 80286 Microprocessor 548

13.10.4 MC68000 Microprocessor 549

13.11 32-Bit Microprocessors 551
13.11.1 80386 Microprocessor 551

13.11.2 MC68020 Microprocessor 553

13.11.3 MC68030 Microprocessor 554

13.11.4 80486 Microprocessor 555

13.11.5 PowerPC RISC Microprocessors 557

13.12 Pentium Series of Microprocessors 557
13.12.1 Salient Features 558

13.12.2 Pentium Pro Microprocessor 559

13.12.3 Pentium II Series 559

13.12.4 Pentium Il and Pentium IV Microprocessors 559
13.12.5 Pentium M, D and Extreme Edition Processors 559
13.12.6 Celeron and Xeon Processors 560

13.13 Microprocessors for Embedded Applications 560
13.14 Peripheral Devices 560
13.14.1 Programmable Timer/Counter 561
13.14.2 Programmable Peripheral Interface 561
13.14.3 Programmable Interrupt Controller 561
13.14.4 DMA Controller 561
13.14.5 Programmable Communication Interface 562
13.14.6 Math Coprocessor 562
13.14.7 Programmable Keyboard/Display Interface 562
13.14.8 Programmable CRT Controller 562
13.14.9 Floppy Disk Controller 563
13.14.10 Clock Generator 563
13.14.11 Octal Bus Transceiver 563
Review Questions 563
Further Reading 564

14 Microcontrollers 565
14.1 Introduction to the Microcontroller 565
14.1.1 Applications 567

142 Inside the Microcontroller 567
14.2.1 Central Processing Unit (CPU) 568

14.2.2 Random Access Memory (RAM) 569

14.2.3 Read Only Memory (ROM) 569

14.2.4 Special-Function Registers 569

14.2.5 Peripheral Components 569

143 Microcontroller Architecture 574
14.3.1 Architecture to Access Memory 574

14.3.2 Mapping Special-Function Registers into Memory Space 576

14.3.3 Processor Architecture 577

144 Power-Saving Modes 579
14.5 Application-Relevant Information 580
14.5.1 Eight-Bit Microcontrollers 580

14.5.2 16-Bit Microcontrollers

588

xviii

Contents

14.6

14.5.3 32-Bit Microcontrollers

Interfacing Peripheral Devices with a Microcontroller
14.6.1 Interfacing LEDs

14.6.2 Interfacing Electromechanical Relays
14.6.3 Interfacing Keyboards

14.6.4 Interfacing Seven-Segment Displays
14.6.5 Interfacing LCD Displays

14.6.6 Interfacing A/D Converters

14.6.7 Interfacing D/A Converters

Review Questions

Problems

Further Reading

15 Computer Fundamentals

15.1

152
153

15.4

15.5

15.6

15.7

15.8

15.9

15.10

Anatomy of a Computer

15.1.1 Central Processing Unit

15.1.2 Memory

15.1.3 Input/Output Ports

A Computer System

Types of Computer System

15.3.1 Classification of Computers on the Basis of Applications
15.3.2 Classification of Computers on the Basis of the Technology Used
15.3.3 Classification of Computers on the Basis of Size and Capacity
Computer Memory

15.4.1 Primary Memory

Random Access Memory

15.5.1 Static RAM

15.5.2 Dynamic RAM

15.5.3 RAM Applications

Read Only Memory

15.6.1 ROM Architecture

15.6.2 Types of ROM

15.6.3 Applications of ROMs

Expanding Memory Capacity

15.7.1 Word Size Expansion

15.7.2 Memory Location Expansion
Input and Output Ports

15.8.1 Serial Ports

15.8.2 Parallel Ports

15.8.3 Internal Buses

Input/Output Devices

15.9.1 Input Devices

15.9.2 Output Devices

Secondary Storage or Auxiliary Storage
15.10.1 Magnetic Storage Devices
15.10.2 Magneto-Optical Storage Devices
15.10.3 Optical Storage Devices

15.10.4 USB Flash Drive

590
592
592
593
594
596
598
600
600
602
602
603

605
605
605
606
607
607
607
607
608
609
610
611
612
612
619
622
622
623
624
629
632
632
634
637
638
640
642
642
643
643
645
645
648
648
650

Contents xix
Review Questions 650
Problems 650
Further Reading 651

16 Troubleshooting Digital Circuits and Test Equipment 653

16.1 General Troubleshooting Guidelines 653
16.1.1 Faults Internal to Digital Integrated Circuits 654
16.1.2 Faults External to Digital Integrated Circuits 655
16.2 Troubleshooting Sequential Logic Circuits 659
16.3 Troubleshooting Arithmetic Circuits 663
16.4 Troubleshooting Memory Devices 664
16.4.1 Troubleshooting RAM Devices 664
16.4.2 Troubleshooting ROM Devices 664
16.5 Test and Measuring Equipment 665
16.6 Digital Multimeter 665
16.6.1 Advantages of Using a Digital Multimeter 666
16.6.2 Inside the Digital Meter 666
16.6.3 Significance of the Half-Digit 666
16.7 Oscilloscope 668
16.7.1 Importance of Specifications and Front-Panel Controls 668
16.7.2 Types of Oscilloscope 669
16.8 Analogue Oscilloscopes 669
16.9 CRT Storage Type Analogue Oscilloscopes 669
16.10 Digital Oscilloscopes 669
16.11 Analogue Versus Digital Oscilloscopes 672
16.12 Oscilloscope Specifications 672
16.12.1 Analogue Oscilloscopes 673
16.12.2 Analogue Storage Oscilloscope 674
16.12.3 Digital Storage Oscilloscope 674
16.13 Oscilloscope Probes 677
16.13.1 Probe Compensation 677
16.14 Frequency Counter 678
16.14.1 Universal Counters — Functional Modes 679
16.14.2 Basic Counter Architecture 679
16.14.3 Reciprocal Counters 681
16.14.4 Continuous-Count Counters 682
16.14.5 Counter Specifications 682
16.14.6 Microwave Counters 683
16.15 Frequency Synthesizers and Synthesized Function/Signal Generators 684
16.15.1 Direct Frequency Synthesis 684
16.15.2 Indirect Synthesis 685
16.15.3 Sampled Sine Synthesis (Direct Digital Synthesis) 687
16.15.4 Important Specifications 689
16.15.5 Synthesized Function Generators 689
16.15.6 Arbitrary Waveform Generator 690
16.16 Logic Probe 691
16.17 Logic Analyser 692
16.17.1 Operational Modes 692

XX Contents

16.17.2 Logic Analyser Architecture 692
16.17.3 Key Specifications 695
16.18 Computer—Instrument Interface Standards 696
16.18.1 IEEE-488 Interface 696
16.19 Virtual Instrumentation 697
16.19.1 Use of Virtual Instruments 698
16.19.2 Components of a Virtual Instrument 700
Review Questions 703
Problems 704
Further Reading 705

Index 707

Preface

Digital electronics is essential to understanding the design and working of a wide range of applications,
from consumer and industrial electronics to communications; from embedded systems, and computers
to security and military equipment. As the devices used in these applications decrease in size and
employ more complex technology, it is essential for engineers and students to fully understand both
the fundamentals and also the implementation and application principles of digital electronics, devices
and integrated circuits, thus enabling them to use the most appropriate and effective technique to suit
their technical needs.

Digital Electronics: Principles, Devices and Applications is a comprehensive book covering, in
one volume, both the fundamentals of digital electronics and the applications of digital devices and
integrated circuits. It is different from similar books on the subject in more than one way. Each chapter
in the book, whether it is related to operational fundamentals or applications, is amply illustrated
with diagrams and design examples. In addition, the book covers several new topics, which are of
relevance to any one having an interest in digital electronics and not covered in the books already in
print on the subject. These include digital troubleshooting, digital instrumentation, programmable logic
devices, microprocessors and microcontrollers. While the book covers in entirety what is required by
undergraduate and graduate level students of engineering in electrical, electronics, computer science and
information technology disciplines, it is intended to be a very useful reference book for professionals,
R&D scientists and students at post graduate level.

The book is divided into sixteen chapters covering seven major topics. These are: digital electronics
fundamentals (chapters 1 to 6), combinational logic circuits (chapters 7 and 8), programmable logic
devices (chapter 9), sequential logic circuits (chapters 10 and 11), data conversion devices and circuits
(chapter 12), microprocessors, microcontrollers and microcomputers (chapters 13 to 15) and digital
troubleshooting and instrumentation (chapter 16). The contents of each of the sixteen chapters are
briefly described in the following paragraphs.

The first six chapters deal with the fundamental topics of digital electronics. These include different
number systems that can be used to represent data and binary codes used for representing numeric and
alphanumeric data. Conversion from one number system to another and similarly conversion from one
code to another is discussed at length in these chapters. Binary arithmetic, covering different methods
of performing arithmetic operations on binary numbers is discussed next. Chapters four and five cover
logic gates and logic families. The main topics covered in these two chapters are various logic gates
and related devices, different logic families used to hardware implement digital integrated circuits, the
interface between digital ICs belonging to different logic families and application information such

xxii Preface

as guidelines for using logic devices of different families. Boolean algebra and its various postulates
and theorems and minimization techniques, providing exhaustive coverage of both Karnaugh mapping
and Quine-McCluskey techniques, are discussed in chapter six. The discussion includes application of
these minimization techniques for multi-output Boolean functions and Boolean functions with larger
number of variables. The concepts underlying different fundamental topics of digital electronics and
discussed in first six chapters have been amply illustrated with solved examples.

As a follow-up to logic gates — the most basic building block of combinational logic — chapters
7 and 8 are devoted to more complex combinational logic circuits. While chapter seven covers
arithmetic circuits, including different types of adders and subtractors, such as half and full adder and
subtractor, adder-subtractor, larger bit adders and subtractors, multipliers, look ahead carry generator,
magnitude comparator, and arithmetic logic unit, chapter eight covers multiplexers, de-multiplexers,
encoders and decoders. This is followed by a detailed account of programmable logic devices in
chapter nine. Simple programmable logic devices (SPLDs) such as PAL, PLA, GAL and HAL devices,
complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGAs) have been
exhaustively treated in terms of their architecture, features and applications. Popular devices, from
various international manufacturers, in the three above-mentioned categories of programmable logic
devices are also covered with regard to their architecture, features and facilities.

The next two chapters, 10 and 11, cover the sequential logic circuits. Discussion begins with the
most fundamental building block of sequential logic, that is, flip flop. Different types of flip flops
are covered in detail with regard to their operational fundamentals, different varieties in each of
the categories of flip flops and their applications. Multivibrator circuits, being operationally similar
to flip flops, are also covered at length in this chapter. Counters and registers are the other very
important building blocks of sequential logic with enormous application potential. These are covered
in chapter 11. Particular emphasis is given to timing requirements and design of counters with varying
count sequence requirements. The chapter also includes a detailed description of the design principles
of counters with arbitrary count sequences. Different types of shift registers and some special counters
that have evolved out of shift registers have been covered in detail.

Chapter 12 covers data conversion circuits including digital-to-analogue and analogue-to-digital
converters. Topics covered in this chapter include operational basics, characteristic parameters, types
and applications. Emphasis is given to definition and interpretation of the terminology and the
performance parameters that characterize these devices. Different types of digital-to-analogue and
analogue-to-digital converters, together with their merits and drawbacks are also addressed. Particular
attention is given to their applications. Towards the end of the chapter, application oriented information
in the form of popular type numbers along with their major performance specifications, pin connection
diagrams etc. is presented. Another highlight of the chapter is the inclusion of detailed descriptions of
newer types of converters, such as quad slope and sigma-delta types of analogue-to-digital converters.

Chapters 13 and 14 discuss microprocessors and microcontrollers — the two versatile devices that
have revolutionized the application potential of digital devices and integrated circuits. The entire
range of microprocessors and microcontrollers along with their salient features, operational aspects
and application guidelines are covered in detail. As a natural follow-up to these, microcomputer
fundamentals, with regard to their architecture, input/output devices and memory devices, are discussed
in chapter 15.

The last chapter covers digital troubleshooting techniques and digital instrumentation.
Troubleshooting guidelines for various categories of digital electronics circuits are discussed. These will
particularly benefit practising engineers and electronics enthusiasts. The concepts are illustrated with
the help of a large number of troubleshooting case studies pertaining to combinational, sequential and
memory devices. A wide range of digital instruments is covered after a discussion on troubleshooting
guidelines. The instruments covered include digital multimeters, digital oscilloscopes, logic probes,

Preface xxiii

logic analysers, frequency synthesizers, and synthesized function generators. Computer-instrument
interface standards and the concept of virtual instrumentation are also discussed at length towards the
end of the chapter.

As an extra resource, a companion website for my book contains lot of additional application
relevant information on digital devices and integrated circuits. The information on this website includes
numerical and functional indices of digital integrated circuits belonging to different logic families,
pin connection diagrams and functional tables of different categories of general purpose digital
integrated circuits and application relevant information on microprocessors, peripheral devices and
microcontrollers. Please go to URL http://www.wiley.com/go/maini_digital.

The motivation to write this book and the selection of topics to be covered were driven mainly by
the absence a book, which, in one volume, covers all the important aspects of digital technology. A
large number of books in print on the subject cover all the routine topics of digital electronics in a
conventional way with total disregard to the needs of application engineers and professionals. As the
author, I have made an honest attempt to cover the subject in entirety by including comprehensive
treatment of newer topics that are either ignored or inadequately covered in the available books on the
subject of digital electronics. This is done keeping in view the changed requirements of my intended
audience, which includes undergraduate and graduate level students, R&D scientists, professionals and
application engineers.

Anil K. Maini

Number Systems

The study of number systems is important from the viewpoint of understanding how data are represented
before they can be processed by any digital system including a digital computer. It is one of the
most basic topics in digital electronics. In this chapter we will discuss different number systems
commonly used to represent data. We will begin the discussion with the decimal number system.
Although it is not important from the viewpoint of digital electronics, a brief outline of this will be
given to explain some of the underlying concepts used in other number systems. This will then be
followed by the more commonly used number systems such as the binary, octal and hexadecimal
number systems.

1.1 Analogue Versus Digital

There are two basic ways of representing the numerical values of the various physical quantities with
which we constantly deal in our day-to-day lives. One of the ways, referred to as analogue, is to
express the numerical value of the quantity as a continuous range of values between the two expected
extreme values. For example, the temperature of an oven settable anywhere from 0 to 100 °C may be
measured to be 65 °C or 64.96 °C or 64.958 °C or even 64.9579 °C and so on, depending upon the
accuracy of the measuring instrument. Similarly, voltage across a certain component in an electronic
circuit may be measured as 6.5 V or 6.49 V or 6.487 V or 6.4869 V. The underlying concept in this
mode of representation is that variation in the numerical value of the quantity is continuous and could
have any of the infinite theoretically possible values between the two extremes.

The other possible way, referred to as digital, represents the numerical value of the quantity in steps
of discrete values. The numerical values are mostly represented using binary numbers. For example,
the temperature of the oven may be represented in steps of 1°C as 64 °C, 65°C, 66 °C and so on.
To summarize, while an analogue representation gives a continuous output, a digital representation
produces a discrete output. Analogue systems contain devices that process or work on various physical
quantities represented in analogue form. Digital systems contain devices that process the physical
quantities represented in digital form.

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

2 Digital Electronics

Digital techniques and systems have the advantages of being relatively much easier to design and
having higher accuracy, programmability, noise immunity, easier storage of data and ease of fabrication
in integrated circuit form, leading to availability of more complex functions in a smaller size. The
real world, however, is analogue. Most physical quantities — position, velocity, acceleration, force,
pressure, temperature and flowrate, for example — are analogue in nature. That is why analogue
variables representing these quantities need to be digitized or discretized at the input if we want to
benefit from the features and facilities that come with the use of digital techniques. In a typical system
dealing with analogue inputs and outputs, analogue variables are digitized at the input with the help
of an analogue-to-digital converter block and reconverted back to analogue form at the output using a
digital-to-analogue converter block. Analogue-to-digital and digital-to-analogue converter circuits are
discussed at length in the latter part of the book. In the following sections we will discuss various
number systems commonly used for digital representation of data.

1.2 Introduction to Number Systems

We will begin our discussion on various number systems by briefly describing the parameters that are
common to all number systems. An understanding of these parameters and their relevance to number
systems is fundamental to the understanding of how various systems operate. Different characteristics
that define a number system include the number of independent digits used in the number system,
the place values of the different digits constituting the number and the maximum numbers that can
be written with the given number of digits. Among the three characteristic parameters, the most
fundamental is the number of independent digits or symbols used in the number system. It is known as
the radix or base of the number system. The decimal number system with which we are all so familiar
can be said to have a radix of 10 as it has 10 independent digits, i.e. 0, 1, 2, 3,4, 5, 6, 7, 8 and 9.
Similarly, the binary number system with only two independent digits, O and 1, is a radix-2 number
system. The octal and hexadecimal number systems have a radix (or base) of 8 and 16 respectively.
We will see in the following sections that the radix of the number system also determines the other
two characteristics. The place values of different digits in the integer part of the number are given by
O, r', 2, r* and so on, starting with the digit adjacent to the radix point. For the fractional part, these
are r~', r=2, r=* and so on, again starting with the digit next to the radix point. Here, r is the radix
of the number system. Also, maximum numbers that can be written with n digits in a given number
system are equal to r".

1.3 Decimal Number System

The decimal number system is a radix-10 number system and therefore has 10 different digits or
symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher numbers after ‘9’ are represented in terms
of these 10 digits only. The process of writing higher-order numbers after ‘9’ consists in writing the
second digit (i.e. ‘1) first, followed by the other digits, one by one, to obtain the next 10 numbers
from ‘10’ to ‘19’. The next 10 numbers from 20’ to ‘29’ are obtained by writing the third digit (i.e.
2’) first, followed by digits ‘0’ to ‘9°, one by one. The process continues until we have exhausted all
possible two-digit combinations and reached ‘99’. Then we begin with three-digit combinations. The
first three-digit number consists of the lowest two-digit number followed by ‘0’ (i.e. 100), and the
process goes on endlessly.

The place values of different digits in a mixed decimal number, starting from the decimal point, are
10°, 10', 10% and so on (for the integer part) and 107!, 1072, 10~ and so on (for the fractional part).

Number Systems 3

The value or magnitude of a given decimal number can be expressed as the sum of the various digits
multiplied by their place values or weights.

As an illustration, in the case of the decimal number 3586.263, the integer part (i.e. 3586) can be
expressed as

3586 =6 x 10°4+8 x 10" +5 x 10> +3 x 10* = 6 + 80+ 500 + 3000 = 3586
and the fractional part can be expressed as
265=2x10""+6x1072+5x 1073 =0.240.06 +0.005 = 0.265

We have seen that the place values are a function of the radix of the concerned number system and
the position of the digits. We will also discover in subsequent sections that the concept of each digit
having a place value depending upon the position of the digit and the radix of the number system is
equally valid for the other more relevant number systems.

1.4 Binary Number System

The binary number system is a radix-2 number system with ‘0’ and ‘1’ as the two independent digits.
All larger binary numbers are represented in terms of ‘0’ and ‘1°. The procedure for writing higher-
order binary numbers after ‘1’ is similar to the one explained in the case of the decimal number system.
For example, the first 16 numbers in the binary number system would be 0, 1, 10, 11, 100, 101, 110,
111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111. The next number after 1111 is 10000, which
is the lowest binary number with five digits. This also proves the point made earlier that a maximum
of only 16 (= 2*) numbers could be written with four digits. Starting from the binary point, the place
values of different digits in a mixed binary number are 2°, 2!, 22 and so on (for the integer part) and
271,272,273 and so on (for the fractional part).

Example 1.1

Consider an arbitrary number system with the independent digits as 0, 1 and X. What is the radix of
this number system? List the first 10 numbers in this number system.

Solution
® The radix of the proposed number system is 3.
e The first 10 numbers in this number system would be 0, 1, X, 10, 11, 1X, X0, X1, XX and 100.

1.4.1 Advantages

Logic operations are the backbone of any digital computer, although solving a problem on computer
could involve an arithmetic operation too. The introduction of the mathematics of logic by George
Boole laid the foundation for the modern digital computer. He reduced the mathematics of logic to a
binary notation of ‘0’ and ‘1’. As the mathematics of logic was well established and had proved itself
to be quite useful in solving all kinds of logical problem, and also as the mathematics of logic (also
known as Boolean algebra) had been reduced to a binary notation, the binary number system had a
clear edge over other number systems for use in computer systems.

4 Digital Electronics

Yet another significant advantage of this number system was that all kinds of data could be
conveniently represented in terms of Os and 1s. Also, basic electronic devices used for hardware
implementation could be conveniently and efficiently operated in two distinctly different modes. For
example, a bipolar transistor could be operated either in cut-off or in saturation very efficiently.

Lastly, the circuits required for performing arithmetic operations such as addition, subtraction,
multiplication, division, etc., become a simple affair when the data involved are represented in the
form of Os and Is.

1.5 Octal Number System

The octal number system has a radix of 8 and therefore has eight distinct digits. All higher-order
numbers are expressed as a combination of these on the same pattern as the one followed in the case
of the binary and decimal number systems described in Sections 1.3 and 1.4. The independent digits
are 0, 1, 2, 3,4, 5, 6 and 7. The next 10 numbers that follow ‘7’, for example, would be 10, 11, 12,
13, 14, 15, 16, 17, 20 and 21. In fact, if we omit all the numbers containing the digits 8 or 9, or both,
from the decimal number system, we end up with an octal number system. The place values for the
different digits in the octal number system are 8°, 8!, 82 and so on (for the integer part) and 87!, 872,
83 and so on (for the fractional part).

1.6 Hexadecimal Number System

The hexadecimal number system is a radix-16 number system and its 16 basic digits are 0, 1, 2, 3,
4,5,6,7,8, 9, A, B, C, D, E and F. The place values or weights of different digits in a mixed
hexadecimal number are 16°, 16!, 162 and so on (for the integer part) and 167!, 1672, 16~ and so on
(for the fractional part). The decimal equivalent of A, B, C, D, E and F are 10, 11, 12, 13, 14 and 15
respectively, for obvious reasons.

The hexadecimal number system provides a condensed way of representing large binary numbers
stored and processed inside the computer. One such example is in representing addresses of different
memory locations. Let us assume that a machine has 64K of memory. Such a memory has 64K (= 2'¢
= 65 536) memory locations and needs 65 536 different addresses. These addresses can be designated
as 0 to 65 535 in the decimal number system and 00000000 00000000 to 11111111 11111111 in the
binary number system. The decimal number system is not used in computers and the binary notation
here appears too cumbersome and inconvenient to handle. In the hexadecimal number system, 65 536
different addresses can be expressed with four digits from 0000 to FFFF. Similarly, the contents of the
memory when represented in hexadecimal form are very convenient to handle.

1.7 Number Systems — Some Common Terms

In this section we will describe some commonly used terms with reference to different number systems.

1.7.1 Binary Number System

Bit is an abbreviation of the term ‘binary digit’ and is the smallest unit of information. It is either ‘0
or ‘1’. A byte is a string of eight bits. The byte is the basic unit of data operated upon as a single unit
in computers. A computer word is again a string of bits whose size, called the ‘word length’ or ‘word
size’, is fixed for a specified computer, although it may vary from computer to computer. The word
length may equal one byte, two bytes, four bytes or be even larger.

Number Systems 5

The I’s complement of a binary number is obtained by complementing all its bits, i.e. by replacing
Os with Is and 1s with Os. For example, the 1’s complement of (10010110), is (01101001),. The 2’s
complement of a binary number is obtained by adding ‘1’ to its 1’s complement. The 2’s complement
of (10010110), is (01101010),.

1.7.2 Decimal Number System

Corresponding to the 1’s and 2’s complements in the binary system, in the decimal number system we
have the 9’s and 10’s complements. The 9’s complement of a given decimal number is obtained by
subtracting each digit from 9. For example, the 9°s complement of (2496),, would be (7503),,. The
10’s complement is obtained by adding ‘1’ to the 9°s complement. The 10’s complement of (2496),,
is (7504),.

1.7.3 Octal Number System

In the octal number system, we have the 7’s and 8’s complements. The 7’s complement of a given
octal number is obtained by subtracting each octal digit from 7. For example, the 7°s complement of
(562); would be (215);. The 8’s complement is obtained by adding ‘1’ to the 7’s complement. The 8’s
complement of (562)g would be (216)s.

1.7.4 Hexadecimal Number System

The 15’s and 16’s complements are defined with respect to the hexadecimal number system. The /5’s
complement is obtained by subtracting each hex digit from 15. For example, the 15’s complement of
(3BF),; would be (C40),,. The 16’s complement is obtained by adding ‘1’ to the 15’s complement.
The 16’s complement of (2AE),, would be (D52),6.

1.8 Number Representation in Binary

Different formats used for binary representation of both positive and negative decimal numbers include
the sign-bit magnitude method, the 1’s complement method and the 2’s complement method.

1.8.1 Sign-Bit Magnitude

In the sign-bit magnitude representation of positive and negative decimal numbers, the MSB represents
the ‘sign’, with a ‘0’ denoting a plus sign and a ‘1’ denoting a minus sign. The remaining bits represent
the magnitude. In eight-bit representation, while MSB represents the sign, the remaining seven bits
represent the magnitude. For example, the eight-bit representation of +9 would be 00001001, and that
for —9 would be 10001001. An n—bit binary representation can be used to represent decimal numbers
in the range of —(2"~! — 1) to +(2"~! —1). That is, eight-bit representation can be used to represent
decimal numbers in the range from —127 to +127 using the sign-bit magnitude format.

6 Digital Electronics

1.8.2 1's Complement

In the 1’s complement format, the positive numbers remain unchanged. The negative numbers are
obtained by taking the 1’s complement of the positive counterparts. For example, +9 will be represented
as 00001001 in eight-bit notation, and —9 will be represented as 11110110, which is the 1’s complement
of 00001001. Again, n-bit notation can be used to represent numbers in the range from —(2"~! —1)
to +(2"~! — 1) using the 1’s complement format. The eight-bit representation of the 1’s complement
format can be used to represent decimal numbers in the range from —127 to +127.

1.8.3 2’s Complement

In the 2’s complement representation of binary numbers, the MSB represents the sign, with a ‘0’
used for a plus sign and a ‘1’ used for a minus sign. The remaining bits are used for representing
magnitude. Positive magnitudes are represented in the same way as in the case of sign-bit or 1°s
complement representation. Negative magnitudes are represented by the 2’s complement of their
positive counterparts. For example, +9 would be represented as 00001001, and —9 would be written
as 11110111. Please note that, if the 2’s complement of the magnitude of +9 gives a magnitude of —9,
then the reverse process will also be true, i.e. the 2’s complement of the magnitude of —9 will give a
magnitude of +9. The n-bit notation of the 2’s complement format can be used to represent all decimal
numbers in the range from +(2"~! — 1) to —(2"!). The 2’s complement format is very popular as it is
very easy to generate the 2’s complement of a binary number and also because arithmetic operations
are relatively easier to perform when the numbers are represented in the 2’s complement format.

1.9 Finding the Decimal Equivalent

The decimal equivalent of a given number in another number system is given by the sum of all
the digits multiplied by their respective place values. The integer and fractional parts of the given
number should be treated separately. Binary-to-decimal, octal-to-decimal and hexadecimal-to-decimal
conversions are illustrated below with the help of examples.

1.9.1 Binary-to-Decimal Conversion

The decimal equivalent of the binary number (1001.0101), is determined as follows:

® The integer part = 1001

® The decimal equivalent =1 x 2° + 0 x 2! + 0 x 22+ 1 x2*=1+0+0+8=9

® The fractional part = .0101

e Therefore, the decimal equivalent =0 x 27! + 1 x 22 4+0x 23 +1x2#=0+025+0
+ 0.0625 = 0.3125

Therefore, the decimal equivalent of (1001.0101), = 9.3125

1.9.2 Octal-to-Decimal Conversion

The decimal equivalent of the octal number (137.21), is determined as follows:

® The integer part = 137
e The decimal equivalent =7 x 8° +3 x 8' + 1 x 8 =7 +24 + 64 =95

Number Systems 7

® The fractional part = .21
e The decimal equivalent =2 x 87! + 1 x 872 = 0.265
e Therefore, the decimal equivalent of (137.21)y = (95.265),,

1.9.3 Hexadecimal-to-Decimal Conversion

The decimal equivalent of the hexadecimal number (1E0.2A),¢ is determined as follows:

e The integer part = 1EO

e The decimal equivalent = 0 x 16° + 14 x 16" 4+ 1 x 167 = 0 + 224 + 256 = 480
® The fractional part = 2A

e The decimal equivalent =2 x 167! + 10 x 1672 = 0.164

e Therefore, the decimal equivalent of (1E0.2A),, = (480.164),,

Example 1.2

Find the decimal equivalent of the following binary numbers expressed in the 2’s complement format:

(a) 00001110;
(b) 10001110.

Solution
(a) The MSB bit is ‘0’, which indicates a plus sign.
The magnitude bits are 0001110.
The decimal equivalent =0x 2%+ 1 x 2! +1x224+1x 23 +0x2*+0x 25 +0 x 2°
=04+24+4+84+04+0+0=14

Therefore, 00001110 represents +14
(b) The MSB bit is ‘1°, which indicates a minus sign
The magnitude bits are therefore given by the 2’s complement of 0001110, i.e. 1110010
The decimal equivalent =0 x 2% 4+ 1 x 2" +0x22+0x 23 +1 x 24 4+ 1 x 23
+1x26
=04+24+0+0+164+32+64=114

Therefore, 10001110 represents —114

1.10 Decimal-to-Binary Conversion

As outlined earlier, the integer and fractional parts are worked on separately. For the integer part,
the binary equivalent can be found by successively dividing the integer part of the number by 2
and recording the remainders until the quotient becomes ‘0’. The remainders written in reverse order
constitute the binary equivalent. For the fractional part, it is found by successively multiplying the
fractional part of the decimal number by 2 and recording the carry until the result of multiplication
is ‘0’. The carry sequence written in forward order constitutes the binary equivalent of the fractional

8 Digital Electronics

part of the decimal number. If the result of multiplication does not seem to be heading towards zero in the
case of the fractional part, the process may be continued only until the requisite number of equivalent bits
has been obtained. This method of decimal-binary conversion is popularly known as the double-dabble
method. The process can be best illustrated with the help of an example.

Example 1.3
We will find the binary equivalent of (13.375),.

Solution
® The integer part = 13

Divisor Dividend Remainder

2 13 —
2 6 1
2 3 0
2 1 1
— 0 1

The binary equivalent of (13),, is therefore (1101),

The fractional part = .375

0.375 x 2 = 0.75 with a carry of 0

0.75 x 2 = 0.5 with a carry of 1

0.5 x 2 = 0 with a carry of 1

The binary equivalent of (0.375),, = (.011),

Therefore, the binary equivalent of (13.375),, = (1101.011),

1.11 Decimal-to-Octal Conversion

The process of decimal-to-octal conversion is similar to that of decimal-to-binary conversion. The
progressive division in the case of the integer part and the progressive multiplication while working
on the fractional part here are by ‘8’ which is the radix of the octal number system. Again, the integer
and fractional parts of the decimal number are treated separately. The process can be best illustrated
with the help of an example.

Example 1.4
We will find the octal equivalent of (73.75),,.

Solution
e The integer part = 73

Divisor Dividend Remainder
8 73

8 9

8 1
0

1
1
1

Number Systems 9

e The octal equivalent of (73),, = (111)g

e The fractional part = 0.75

® (.75 x 8 = 0 with a carry of 6

e The octal equivalent of (0.75),, = (.6),

e Therefore, the octal equivalent of (73.75),,= (111.6),

1.12 Decimal-to-Hexadecimal Conversion

The process of decimal-to-hexadecimal conversion is also similar. Since the hexadecimal number
system has a base of 16, the progressive division and multiplication factor in this case is 16. The
process is illustrated further with the help of an example.

Example 1.5

Let us determine the hexadecimal equivalent of (82.25),,.

Solution
e The integer part = 82

Divisor Dividend Remainder

16 82 —
16 5 2
— 0 5

e The hexadecimal equivalent of (82),, = (52)4

® The fractional part = 0.25

® (0.25 x 16 = 0 with a carry of 4

e Therefore, the hexadecimal equivalent of (82.25),, = (52.4)4

1.13 Binary-Octal and Octal-Binary Conversions

An octal number can be converted into its binary equivalent by replacing each octal digit with its
three-bit binary equivalent. We take the three-bit equivalent because the base of the octal number
system is 8 and it is the third power of the base of the binary number system, i.e. 2. All we have then
to remember is the three-bit binary equivalents of the basic digits of the octal number system. A binary
number can be converted into an equivalent octal number by splitting the integer and fractional parts
into groups of three bits, starting from the binary point on both sides. The Os can be added to complete
the outside groups if needed.

Example 1.6
Let us find the binary equivalent of (374.26)g and the octal equivalent of (1110100.0100111),.
Solution

e The given octal number = (374.26),
e The binary equivalent = (011 111 100.010 110),= (011111100.010110),

10 Digital Electronics

e Any Os on the extreme left of the integer part and extreme right of the fractional part of the equivalent
binary number should be omitted. Therefore, (011111100.010110),= (11111100.01011),
e The given binary number = (1110100.0100111),
e (1110100.0100111), = (1 110 100.010 011 1),
= (001 110 100.010 011 100), = (164.234),

1.14 Hex-Binary and Binary—Hex Conversions

A hexadecimal number can be converted into its binary equivalent by replacing each hex digit with its
four-bit binary equivalent. We take the four-bit equivalent because the base of the hexadecimal number
system is 16 and it is the fourth power of the base of the binary number system. All we have then to
remember is the four-bit binary equivalents of the basic digits of the hexadecimal number system. A
given binary number can be converted into an equivalent hexadecimal number by splitting the integer
and fractional parts into groups of four bits, starting from the binary point on both sides. The Os can
be added to complete the outside groups if needed.

Example 1.7
Let us find the binary equivalent of (17E.F6),s and the hex equivalent of (1011001110.011011101),.

Solution
e The given hex number = (17E.F6),,
e The binary equivalent = (0001 0111 1110.1111 0110),

= (000101111110.11110110),

= (101111110.1111011),
e The Os on the extreme left of the integer part and on the extreme right of the fractional part have

been omitted.
e The given binary number = (1011001110.011011101),
= (10 1100 1110.0110 1110 1),

e The hex equivalent = (0010 1100 1110.0110 1110 1000), = (2CE.6ER),,

1.15 Hex-Octal and Octal-Hex Conversions

For hexadecimal—octal conversion, the given hex number is firstly converted into its binary equivalent
which is further converted into its octal equivalent. An alternative approach is firstly to convert the
given hexadecimal number into its decimal equivalent and then convert the decimal number into an
equivalent octal number. The former method is definitely more convenient and straightforward. For
octal-hexadecimal conversion, the octal number may first be converted into an equivalent binary
number and then the binary number transformed into its hex equivalent. The other option is firstly to
convert the given octal number into its decimal equivalent and then convert the decimal number into
its hex equivalent. The former approach is definitely the preferred one. Two types of conversion are
illustrated in the following example.

Example 1.8
Let us find the octal equivalent of (2F.C4),s and the hex equivalent of (762.013)g.

Number Systems 1

Solution
e The given hex number = (2F.C4),,.
e The binary equivalent = (0010 1111.1100 0100), = (00101111.11000100),

= (101111.110001), = (101 111.110 001), = (57.61)s.

e The given octal number = (762.013);.
e The octal number = (762.013); = (111 110 010.000 001 011),

= (111110010.000001011),
= (0001 1111 0010.0000 0101 1000), = (1F2.058),c.

1.16 The Four Axioms

Conversion of a given number in one number system to its equivalent in another system has been discussed
at length in the preceding sections. The methodology has been illustrated with solved examples. The
complete methodology can be summarized as four axioms or principles, which, if understood properly,
would make it possible to solve any problem related to conversion of a given number in one number system
to its equivalent in another number system. These principles are as follows:

1.

Whenever it is desired to find the decimal equivalent of a given number in another number system,
it is given by the sum of all the digits multiplied by their weights or place values. The integer and
fractional parts should be handled separately. Starting from the radix point, the weights of different
digits are r°, r!, r? for the integer part and r~!, r=2, r=* for the fractional part, where r is the radix
of the number system whose decimal equivalent needs to be determined.

. To convert a given mixed decimal number into an equivalent in another number system, the integer

part is progressively divided by r and the remainders noted until the result of division yields a
zero quotient. The remainders written in reverse order constitute the equivalent. r is the radix of
the transformed number system. The fractional part is progressively multiplied by r and the carry
recorded until the result of multiplication yields a zero or when the desired number of bits has been
obtained. The carrys written in forward order constitute the equivalent of the fractional part.

. The octal-binary conversion and the reverse process are straightforward. For octal-binary

conversion, replace each digit in the octal number with its three-bit binary equivalent. For
hexadecimal-binary conversion, replace each hex digit with its four-bit binary equivalent. For
binary—octal conversion, split the binary number into groups of three bits, starting from the binary
point, and, if needed, complete the outside groups by adding Os, and then write the octal equivalent
of these three-bit groups. For binary—hex conversion, split the binary number into groups of four
bits, starting from the binary point, and, if needed, complete the outside groups by adding Os, and
then write the hex equivalent of the four-bit groups.

. For octal-hexadecimal conversion, we can go from the given octal number to its binary equivalent

and then from the binary equivalent to its hex counterpart. For hexadecimal—octal conversion, we
can go from the hex to its binary equivalent and then from the binary number to its octal equivalent.

Example 1.9

Assume an arbitrary number system having a radix of 5 and 0, 1, 2, L and M as its independent digits.
Determine:

(a) the decimal equivalent of (12LM.LI);
(b) the total number of possible four-digit combinations in this arbitrary number system.

12 Digital Electronics

Solution
(a) The decimal equivalent of (12LM) is given by

Mx5' 4L x5 42552+ 1 x5 =4x5"43 x5 +2x 5 +1 x5} (L =3, M=4)
=4415+504125=19%

The decimal equivalent of (L1) is given by

Lx5'4+1x52=3x5"1452=0.64

Combining the results, (12LM.L1)5 = (194.64),,,.
(b) The total number of possible four-digit combinations = 5% = 625.

Example 1.10

The 7’s complement of a certain octal number is 5264. Determine the binary and hexadecimal
equivalents of that octal number.

Solution

The 7’s complement = 5264.

e Therefore, the octal number = (2513);.

e The binary equivalent = (010 101 001 011), = (10101001011),.

e Also, (10101001011), = (101 0100 1011), = (0101 0100 1011), = (54B),s.

e Therefore, the hex equivalent of (2513); = (54B),, and the binary equivalent of (2513); =
(10101001011),.

1.17 Floating-Point Numbers

Floating-point notation can be used conveniently to represent both large as well as small fractional
or mixed numbers. This makes the process of arithmetic operations on these numbers relatively much
easier. Floating-point representation greatly increases the range of numbers, from the smallest to the
largest, that can be represented using a given number of digits. Floating-point numbers are in general
expressed in the form

N =mx b° (1.1)

where m is the fractional part, called the significand or mantissa, e is the integer part, called the
exponent, and b is the base of the number system or numeration. Fractional part m is a p-digit number
of the form (+d.dddd . . . dd), with each digit d being an integer between 0 and b — 1 inclusive. If the
leading digit of m is nonzero, then the number is said to be normalized.

Equation (1.1) in the case of decimal, hexadecimal and binary number systems will be written as
follows:

Decimal system

N =mx 10° (1.2)

Number Systems 13

Hexadecimal system

N=mx16° (1.3)
Binary system

N=mx?2° (1.4)

For example, decimal numbers 0.0003754 and 3754 will be represented in floating-point notation
as 3.754 x 107 and 3.754 x 10° respectively. A hex number 257.ABF will be represented as
2.57ABF x 16%. In the case of normalized binary numbers, the leading digit, which is the most
significant bit, is always ‘1’ and thus does not need to be stored explicitly.

Also, while expressing a given mixed binary number as a floating-point number, the radix point is
so shifted as to have the most significant bit immediately to the right of the radix point as a ‘1’. Both
the mantissa and the exponent can have a positive or a negative value.

The mixed binary number (110.1011), will be represented in floating-point notation as .1101011
x 23 = .1101011e 4 0011. Here, .1101011 is the mantissa and e +0011 implies that the exponent is
+3. As another example, (0.000111), will be written as .111e — 0011, with .111 being the mantissa
and e — 0011 implying an exponent of —3. Also, (—0.00000101), may be written as —.101 x 27> =
—.101e— 0101, where —.101 is the mantissa and ¢ — 0101 indicates an exponent of —5. If we wanted
to represent the mantissas using eight bits, then .1101011 and .111 would be represented as .11010110
and .11100000.

1.17.1 Range of Numbers and Precision

The range of numbers that can be represented in any machine depends upon the number of bits in the
exponent, while the fractional accuracy or precision is ultimately determined by the number of bits
in the mantissa. The higher the number of bits in the exponent, the larger is the range of numbers
that can be represented. For example, the range of numbers possible in a floating-point binary number
format using six bits to represent the magnitude of the exponent would be from 27% to 2¥%4, which
is equivalent to a range of 10~"°to 10*!°. The precision is determined by the number of bits used to
represent the mantissa. It is usually represented as decimal digits of precision. The concept of precision
as defined with respect to floating-point notation can be explained in simple terms as follows. If the
mantissa is stored in n number of bits, it can represent a decimal number between 0 and 2" — 1 as the
mantissa is stored as an unsigned integer. If M is the largest number such that 10 — 1 is less than or
equal to 2" — 1, then M is the precision expressed as decimal digits of precision. For example, if the
mantissa is expressed in 20 bits, then decimal digits of precision can be found to be about 6, as 22 — 1
equals 1 048 575, which is a little over 10° — 1. We will briefly describe the commonly used formats
for binary floating-point number representation.

1.17.2 Floating-Point Number Formats

The most commonly used format for representing floating-point numbers is the IEEE-754 standard.
The full title of the standard is IEEE Standard for Binary Floating-point Arithmetic (ANSI/IEEE STD
754-1985). It is also known as Binary Floating-point Arithmetic for Microprocessor Systems, IEC

14 Digital Electronics

60559:1989. An ongoing revision to IEEE-754 is IEEE-754r. Another related standard IEEE 854-
1987 generalizes IEEE-754 to cover both binary and decimal arithmetic. A brief description of salient
features of the IEEE-754 standard, along with an introduction to other related standards, is given below.

ANSI/IEEE-754 Format

The IEEE-754 floating point is the most commonly used representation for real numbers on
computers including Intel-based personal computers, Macintoshes and most of the UNIX platforms.
It specifies four formats for representing floating-point numbers. These include single-precision,
double-precision, single-extended precision and double-extended precision formats. Table 1.1 lists
characteristic parameters of the four formats contained in the IEEE-754 standard. Of the four formats
mentioned, the single-precision and double-precision formats are the most commonly used ones. The
single-extended and double-extended precision formats are not common.

Figure 1.1 shows the basic constituent parts of the single- and double-precision formats. As shown in
the figure, the floating-point numbers, as represented using these formats, have three basic components
including the sign, the exponent and the mantissa. A ‘0’ denotes a positive number and a ‘1’ denotes
a negative number. The n-bit exponent field needs to represent both positive and negative exponent
values. To achieve this, a bias equal to 2"~! — 1 is added to the actual exponent in order to obtain the
stored exponent. This equals 127 for an eight-bit exponent of the single-precision format and 1023 for
an 11-bit exponent of the double-precision format. The addition of bias allows the use of an exponent
in the range from —127 to 4128, corresponding to a range of 0-255 in the first case, and in the range
from —1023 to +1024, corresponding to a range of 0-2047 in the second case. A negative exponent
is always represented in 2’s complement form. The single-precision format offers a range from 2~'?’
to 2127, which is equivalent to 1073 to 10738, The figures are 2712 to 2192, which is equivalent to
1073% to 10*3% in the case of the double-precision format.

The extreme exponent values are reserved for representing special values. For example, in the case
of the single-precision format, for an exponent value of —127, the biased exponent value is zero,
represented by an all Os exponent field. In the case of a biased exponent of zero, if the mantissa is zero
as well, the value of the floating-point number is exactly zero. If the mantissa is nonzero, it represents
a denormalized number that does not have an assumed leading bit of ‘1°. A biased exponent of +255,
corresponding to an actual exponent of +128, is represented by an all 1s exponent field. If the mantissa
is zero, the number represents infinity. The sign bit is used to distinguish between positive and negative
infinity. If the mantissa is nonzero, the number represents a ‘NaN’ (Not a Number). The value NaN is
used to represent a value that does not represent a real number. This means that an eight-bit exponent
can represent exponent values between —126 and +127. Referring to Fig. 1.1(a), the MSB of byte 1
indicates the sign of the mantissa. The remaining seven bits of byte 1 and the MSB of byte 2 represent
an eight-bit exponent. The remaining seven bits of byte 2 and the 16 bits of byte 3 and byte 4 give a
23-bit mantissa. The mantissa m is normalized. The left-hand bit of the normalized mantissa is always

Table 1.1 Characteristic parameters of IEEE-754 formats.

Precision Sign (bits) Exponent (bits) Mantissa (bits) Total length (bits) Decimal digits of precision
Single 1 8 23 32 >6
Single-extended 1 >11 >32 >44 >9
Double 1 11 52 64 > 15

1

Double-extended >15 > 64 >80 > 19

Number Systems 15

Byte-1 Byte-2 Byte-3 Byte-4
8-bit 23-bit
Sign exponent mantissa
(a)
Byte-1 Byte-2 Byte-3 Byte-4 Byte-5 Byte-6 Byte-7 Byte-8
T 11-bit 52-bit
Sign exponent mantissa

(b)

Figure 1.1 Single-precision and double-precision formats.

‘1°. This ‘1’ is not included but is always implied. A similar explanation can be given in the case of
the double-precision format shown in Fig. 1.1(b).

Step-by-step transformation of (23),, into an equivalent floating-point number in single-precision
IEEE format is as follows:

e (23),, = (10111), = 1.0111e 4 0100.

e The mantissa = 0111000 00000000 00000000.

® The exponent = 00000100.

e The biased exponent = 00000100 4+ 01111111 = 10000011.
® The sign of the mantissa = 0.

e (423),, = 01000001 10111000 00000000 00000000.

e Also, (-23),,= 11000001 10111000 00000000 00000000.

IEEE-754r Format
As mentioned earlier, IEEE-754r is an ongoing revision to the IEEE-754 standard. The main objective of
the revision is to extend the standard wherever it has become necessary, the most obvious enhancement
to the standard being the addition of the 128-bit format and decimal format. Extension of the standard
to include decimal floating-point representation has become necessary as most commercial data are
held in decimal form and the binary floating point cannot represent decimal fractions exactly. If the
binary floating point is used to represent decimal data, it is likely that the results will not be the same as
those obtained by using decimal arithmetic.

In the revision process, many of the definitions have been rewritten for clarification and consistency.
In terms of the addition of new formats, a new addition to the existing binary formats is the 128-bit
‘quad-precision’ format. Also, three new decimal formats, matching the lengths of binary formats,

16 Digital Electronics

have been described. These include decimal formats with a seven-, 16- and 34-digit mantissa, which
may be normalized or denormalized. In order to achieve maximum range (decided by the number of
exponent bits) and precision (decided by the number of mantissa bits), the formats merge part of the
exponent and mantissa into a combination field and compress the remainder of the mantissa using
densely packed decimal encoding. Detailed description of the revision, however, is beyond the scope
of this book.

IEEE-854 Standard

The main objective of the IEEE-854 standard was to define a standard for floating-point arithmetic
without the radix and word length dependencies of the better-known IEEE-754 standard. That is why
IEEE-854 is called the IEEE standard for radix-independent floating-point arithmetic. Although the
standard specifies only the binary and decimal floating-point arithmetic, it provides sufficient guidelines
for those contemplating the implementation of the floating point using any other radix value such
as 16 of the hexadecimal number system. This standard, too, specifies four formats including single,
single-extended, double and double-extended precision formats.

Example 1.11

Determine the floating-point representation of (—142),, using the IEEE single-precision format.

Solution

e As a first step, we will determine the binary equivalent of (142),,. Following the procedure outlined
in an earlier part of the chapter, the binary equivalent can be written as (142),, = (10001110),.
(10001110), = 1.000 1110 x 27 = 1.0001110e + 0111.

The mantissa = 0001110 00000000 00000000.

The exponent = 00000111.

The biased exponent = 00000111 4+ 01111111 = 10000110.

The sign of the mantissa = 1.

Therefore, (—142),, = 11000011 00001110 00000000 00000000.

Example 1.12

Determine the equivalent decimal numbers for the following floating-point numbers:

(a) 00111111 01000000 00000000 00000000 (IEEE-754 single-precision format);
(b) 11000000 00101001 01100 . .. 45 Os (IEEE-754 double-precision format).

Solution
(a) From an examination of the given number:
The sign of the mantissa is positive, as indicated by the ‘0’ bit in the designated position.
The biased exponent = 01111110.
The unbiased exponent =01111110—01111111 = 11111111.
It is clear from the eight bits of unbiased exponent that the exponent is negative, as the 2’s
complement representation of a number gives ‘1’ in place of MSB.
The magnitude of the exponent is given by the 2’s complement of (11111111),, which is
(00000001), = 1.

Number Systems 17

(b)

Therefore, the exponent = —1.

The mantissa bits = 11000000 00000000 00000000 (‘1° in MSB is implied).

The normalized mantissa = 1.1000000 00000000 00000000.

The magnitude of the mantissa can be determined by shifting the mantissa bits one position to the left.
That is, the mantissa = (.11), = (0.75),.

The sign of the mantissa is negative, indicated by the ‘1’ bit in the designated position.

The biased exponent = 10000000010.

The unbiased exponent = 10000000010 —01111111111 = 00000000011.

It is clear from the 11 bits of unbiased exponent that the exponent is positive owing to the ‘0’ in
place of MSB. The magnitude of the exponent is 3. Therefore, the exponent = +3.

The mantissa bits = 1100101100 ... 45 Os (‘1” in MSB is implied).

The normalized mantissa = 1.100101100 ... 45 Os.

The magnitude of the mantissa can be determined by shifting the mantissa bits three positions to

the right.
That is, the mantissa = (1100.101), = (12.625),,.
Therefore, the equivalent decimal number = —12.625.

Review Questions

1.

What is meant by the radix or base of a number system? Briefly describe why hex representation is
used for the addresses and the contents of the memory locations in the main memory of a computer.

. What do you understand by the I's and 2’s complements of a binary number? What will be the

range of decimal numbers that can be represented using a 16-bit 2’s complement format?

. Briefly describe the salient features of the IEEE-754 standard for representing floating-point

numbers.

. Why was it considered necessary to carry out a revision of the IEEE-754 standard? What are the

main features of IEEE-754r (the notation for IEEE-754 under revision)?

. In a number system, what decides (a) the place value or weight of a given digit and (b) the maximum

numbers representable with a given number of digits?

. In a floating-point representation, what represents (a) the range of representable numbers and (b)

the precision with which a given number can be represented?

. Why is there a need to have floating-point standards that can take care of decimal data and decimal

arithmetic in addition to binary data and arithmetic?

Problems

1.

Do the following conversions:

(a) eight-bit 2’s complement representation of (—23),;
(b) The decimal equivalent of (00010111), represented in 2’s complement form.
(a) 11101001; (b) +23

. Two possible binary representations of (—1),, are (10000001), and (11111111),. One of them

belongs to the sign-bit magnitude format and the other to the 2’s complement format. Identify.
(10000001), = sign-bit magnitude and (11111111), = 2’s complement form

. Represent the following in the IEEE-754 floating-point standard using the single-precision format:

(a) 32-bit binary number 11110000 11001100 10101010 00001111,
(b) (—118.625),0.

18 Digital Electronics

(a) 01001111 01110000 11001100 10101010;
(b) 11000010 11101101 01000000 00000000

4. Give the next three numbers in each of the following hex sequences:

(a) 4AS5, 4A6,4A7,4A8, ...,
(b) B998, B999, ...
(a) 4A9, 4AA, 4AB; (b) B99A, B99B, B99C
5. Show that:

(@) (13A7);5 = (5031),;
(b) (3F2),c = (1111110010),.

6. Assume a radix-32 arbitrary number system with 0-9 and A-V as its basic digits. Express the mixed
binary number (110101.001), in this arbitrary number system.
1L4

Further Reading

1. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Companies Inc., USA.

2. Atiyah, S. K. (2005) A Survey of Arithmetic, Trafford Publishing, Victoria, BC, Canada.

3. Langholz, G., Mott, J. L. and Kandel, A. (1998) Foundations of Digital Logic Design, World Scientific Publ.
Co. Inc., Singapore.

4. Cook, N. P. (2003) Practical Digital Electronics, Prentice-Hall, NJ, USA.

5. Lu, M. (2004) Arithmetic and Logic in Computer Systems, John Wiley & Sons, Inc., NJ, USA.

2

Binary Codes

The present chapter is an extension of the previous chapter on number systems. In the previous
chapter, beginning with some of the basic concepts common to all number systems and an outline
on the familiar decimal number system, we went on to discuss the binary, the hexadecimal and
the octal number systems. While the binary system of representation is the most extensively used
one in digital systems, including computers, octal and hexadecimal number systems are commonly
used for representing groups of binary digits. The binary coding system, called the straight binary
code and discussed in the previous chapter, becomes very cumbersome to handle when used to
represent larger decimal numbers. To overcome this shortcoming, and also to perform many other
special functions, several binary codes have evolved over the years. Some of the better-known binary
codes, including those used efficiently to represent numeric and alphanumeric data, and the codes
used to perform special functions, such as detection and correction of errors, will be detailed in this
chapter.

2.1 Binary Coded Decimal

The binary coded decimal (BCD) is a type of binary code used to represent a given decimal number
in an equivalent binary form. BCD-to-decimal and decimal-to-BCD conversions are very easy and
straightforward. It is also far less cumbersome an exercise to represent a given decimal number in
an equivalent BCD code than to represent it in the equivalent straight binary form discussed in the
previous chapter.

The BCD equivalent of a decimal number is written by replacing each decimal digit in the integer
and fractional parts with its four-bit binary equivalent. As an example, the BCD equivalent of (23.15),,
is written as (0010 0011.0001 0101)gcp. The BCD code described above is more precisely known
as the 8421 BCD code, with 8, 4, 2 and 1 representing the weights of different bits in the four-bit
groups, starting from MSB and proceeding towards LSB. This feature makes it a weighted code,
which means that each bit in the four-bit group representing a given decimal digit has an assigned

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

20 Digital Electronics

Table 2.1 BCD codes.

Decimal 8421 BCD code 4221 BCD code 5421 BCD code

0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 1000 0100
5 0101 0111 1000
6 0110 1100 1001
7 0111 1101 1010
8 1000 1110 1011
9 1001 1111 1100

weight. Other weighted BCD codes include the 4221 BCD and 5421 BCD codes. Again, 4, 2, 2 and
1 in the 4221 BCD code and 5, 4, 2 and 1 in the 5421 BCD code represent weights of the relevant
bits. Table 2.1 shows a comparison of 8421, 4221 and 5421 BCD codes. As an example, (98.16),,
will be written as 1111 1110.0001 1100 in 4221 BCD code and 1100 1011.0001 1001 in 5421 BCD
code. Since the 8421 code is the most popular of all the BCD codes, it is simply referred to as the
BCD code.

2.1.1 BCD-to-Binary Conversion

A given BCD number can be converted into an equivalent binary number by first writing its decimal
equivalent and then converting it into its binary equivalent. The first step is straightforward, and the
second step was explained in the previous chapter. As an example, we will find the binary equivalent
of the BCD number 0010 1001.0111 0101:

BCD number: 0010 1001.0111 0101.

Corresponding decimal number: 29.75.

The binary equivalent of 29.75 can be determined to be 11101 for the integer part and .11 for the
fractional part.

Therefore, (0010 1001.0111 0101)cp = (11101.11),.

2.1.2 Binary-to-BCD Conversion

The process of binary-to-BCD conversion is the same as the process of BCD-to-binary conversion
executed in reverse order. A given binary number can be converted into an equivalent BCD number
by first determining its decimal equivalent and then writing the corresponding BCD equivalent. As an
example, we will find the BCD equivalent of the binary number 10101011.101:

® The decimal equivalent of this binary number can be determined to be 171.625.
® The BCD equivalent can then be written as 0001 0111 0001.0110 0010 0101.

Binary Codes 21

2.1.3 Higher-Density BCD Encoding

In the regular BCD encoding of decimal numbers, the number of bits needed to represent a given
decimal number is always greater than the number of bits required for straight binary encoding of the
same. For example, a three-digit decimal number requires 12 bits for representation in conventional
BCD format. However, since 2' > 103, if these three decimal digits are encoded together, only 10
bits would be needed to do that. Two such encoding schemes are Chen-Ho encoding and the densely
packed decimal. The latter has the advantage that subsets of the encoding encode two digits in the
optimal seven bits and one digit in four bits like regular BCD.

2.1.4 Packed and Unpacked BCD Numbers

In the case of unpacked BCD numbers, each four-bit BCD group corresponding to a decimal digit is
stored in a separate register inside the machine. In such a case, if the registers are eight bits or wider,
the register space is wasted.

In the case of packed BCD numbers, two BCD digits are stored in a single eight-bit register. The
process of combining two BCD digits so that they are stored in one eight-bit register involves shifting
the number in the upper register to the left 4 times and then adding the numbers in the upper and lower
registers. The process is illustrated by showing the storage of decimal digits ‘5’ and ‘7’:

e Decimal digit 5 is initially stored in the eight-bit register as: 0000 0101.

® Decimal digit 7 is initially stored in the eight-bit register as: 0000 0111.

e After shifting to the left 4 times, the digit 5 register reads: 0101 0000.

e The addition of the contents of the digit 5 and digit 7 registers now reads: 0101 0111.

Example 2.1

How many bits would be required to encode decimal numbers 0 to 9999 in straight binary and BCD
codes? What would be the BCD equivalent of decimal 27 in 16-bit representation?

Solution

e Total number of decimals to be represented = 10 000 = 10* =232,

e Therefore, the number of bits required for straight binary encoding = 14.
® The number of bits required for BCD encoding = 16.

® The BCD equivalent of 27 in 16-bit representation = 0000000000100111.

2.2 Excess-3 Code

The excess-3 code is another important BCD code. It is particularly significant for arithmetic operations
as it overcomes the shortcomings encountered while using the 8421 BCD code to add two decimal
digits whose sum exceeds 9. The excess-3 code has no such limitation, and it considerably simplifies
arithmetic operations. Table 2.2 lists the excess-3 code for the decimal numbers 0-9.

The excess-3 code for a given decimal number is determined by adding ‘3’ to each decimal
digit in the given number and then replacing each digit of the newly found decimal number by

22 Digital Electronics

Table 2.2 Excess-3 code equivalent of decimal numbers.

Decimal number Excess-3 code Decimal number Excess-3 code

0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 0111 9 1100

its four-bit binary equivalent. It may be mentioned here that, if the addition of ‘3’ to a digit
produces a carry, as is the case with the digits 7, 8 and 9, that carry should not be taken
forward. The result of addition should be taken as a single entity and subsequently replaced
with its excess-3 code equivalent. As an example, let us find the excess-3 code for the decimal
number 597:

e The addition of ‘3’ to each digit yields the three new digits/numbers ‘8’, ‘12’ and ‘10’.
® The corresponding four-bit binary equivalents are 1000, 1100 and 1010 respectively.
® The excess-3 code for 597 is therefore given by: 1000 1100 1010 =100011001010.

Also, it is normal practice to represent a given decimal digit or number using the maximum number
of digits that the digital system is capable of handling. For example, in four-digit decimal arithmetic,
5 and 37 would be written as 0005 and 0037 respectively. The corresponding 8421 BCD equivalents
would be 0000000000000101 and 0000000000110111 and the excess-3 code equivalents would be
0011001100111000 and 0011001101101010.

Corresponding to a given excess-3 code, the equivalent decimal number can be determined by
first splitting the number into four-bit groups, starting from the radix point, and then subtracting
0011 from each four-bit group. The new number is the 8421 BCD equivalent of the given
excess-3 code, which can subsequently be converted into the equivalent decimal number. As an
example, following these steps, the decimal equivalent of excess-3 number 01010110.10001010 would
be 23.57.

Another significant feature that makes this code attractive for performing arithmetic operations is
that the complement of the excess-3 code of a given decimal number yields the excess-3 code for 9’s
complement of the decimal number. As adding 9’s complement of a decimal number B to a decimal
number A achieves A — B, the excess-3 code can be used effectively for both addition and subtraction
of decimal numbers.

Example 2.3

Find (a) the excess-3 equivalent of (237.75),, and (b) the decimal equivalent of the excess-3 number
110010100011.01110101.

Solution

(a) Integer part=237. The excess-3 code for (237),, is obtained by replacing 2, 3 and 7 with the
four-bit binary equivalents of 5, 6 and 10 respectively. This gives the excess-3 code for (237),,
as: 0101 0110 1010=010101101010.

Binary Codes 23

Fractional part =.75. The excess-3 code for (.75),, is obtained by replacing 7 and 5 with the four-bit
binary equivalents of 10 and 8 respectively. That is, the excess-3 code for (.75),, =.10101000.
Combining the results of the integral and fractional parts, the excess-3 code for
(237.75),,=010101101010.10101000.

(b) The excess-3 code =110010100011.01110101 =1100 1010 0011.0111 0101.
Subtracting 0011 from each four-bit group, we obtain the new number as: 1001 0111 0000.0100
0010.
Therefore, the decimal equivalent=(970.42),,.

2.3 Gray Code

The Gray code was designed by Frank Gray at Bell Labs and patented in 1953. It is an unweighted
binary code in which two successive values differ only by 1 bit. Owing to this feature, the maximum
error that can creep into a system using the binary Gray code to encode data is much less than the
worst-case error encountered in the case of straight binary encoding. Table 2.3 lists the binary and
Gray code equivalents of decimal numbers 0—15. An examination of the four-bit Gray code numbers,
as listed in Table 2.3, shows that the last entry rolls over to the first entry. That is, the last and the
first entry also differ by only 1 bit. This is known as the cyclic property of the Gray code. Although
there can be more than one Gray code for a given word length, the term was first applied to a
specific binary code for non-negative integers and called the binary-reflected Gray code or simply the
Gray code.

There are various ways by which Gray codes with a given number of bits can be remembered.
One such way is to remember that the least significant bit follows a repetitive pattern of 2’ (11,
00, 11,...), the next higher adjacent bit follows a pattern of ‘4> (1111, 0000, 1111,...) and so
on. We can also generate the n-bit Gray code recursively by prefixing a ‘0’ to the Gray code
for n—1 bits to obtain the first 2"~' numbers, and then prefixing ‘1’ to the reflected Gray code
for n—1 bits to obtain the remaining 2"~' numbers. The reflected Gray code is nothing but the
code written in reverse order. The process of generation of higher-bit Gray codes using the reflect-
and-prefix method is illustrated in Table 2.4. The columns of bits between those representing the
Gray codes give the intermediate step of writing the code followed by the same written in reverse
order.

Table 2.3 Gray code.

Decimal ~ Binary Gray Decimal Binary Gray

0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

24 Digital Electronics

Table 2.4 Generation of higher-bit Gray code numbers.

One-bit Gray code Two-bit Gray code Three-bit Gray code Four-bit Gray code
0 00 00 000 000 0000
1 1 01 01 001 001 0001
1 11 11 011 011 0011
0 10 10 010 010 0010
10 110 110 0110
11 111 111 0111
01 101 101 0101
00 100 100 0100
100 1100
101 1101
111 1111
110 1110
010 1010
011 1011
001 1001
000 1000

2.3.1 Binary-Gray Code Conversion

A given binary number can be converted into its Gray code equivalent by going through the following
steps:

1. Begin with the most significant bit (MSB) of the binary number. The MSB of the Gray code
equivalent is the same as the MSB of the given binary number.

2. The second most significant bit, adjacent to the MSB, in the Gray code number is obtained by
adding the MSB and the second MSB of the binary number and ignoring the carry, if any. That is,
if the MSB and the bit adjacent to it are both ‘1’, then the corresponding Gray code bit would be a
‘0.

3. The third most significant bit, adjacent to the second MSB, in the Gray code number is obtained
by adding the second MSB and the third MSB in the binary number and ignoring the carry, if any.

4. The process continues until we obtain the LSB of the Gray code number by the addition of the LSB
and the next higher adjacent bit of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of (1011), into its Gray code equivalent:

Binary 1011
Gray code 1-- -
Binary 1011
Gray code 11- -
Binary 1011
Gray code 111-
Binary 1011

Gray code 1110

Binary Codes 25

2.3.2 Gray Code—Binary Conversion

A given Gray code number can be converted into its binary equivalent by going through the following
steps:

1. Begin with the most significant bit (MSB). The MSB of the binary number is the same as the MSB
of the Gray code number.

2. The bit next to the MSB (the second MSB) in the binary number is obtained by adding the MSB in the
binary number to the second MSB in the Gray code number and disregarding the carry, if any.

3. The third MSB in the binary number is obtained by adding the second MSB in the binary number
to the third MSB in the Gray code number. Again, carry, if any, is to be ignored.

4. The process continues until we obtain the LSB of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of the Gray code number 1110 into its binary equivalent:

Gray code 1110

Binary 1---
Gray code 1110
Binary 10 - -
Gray code 1110
Binary 101

Gray code 1110
Binary 1011

2.3.3 n-ary Gray Code

The binary-reflected Gray code described above is invariably referred to as the ‘Gray code’. However,
over the years, mathematicians have discovered other types of Gray code. One such code is the n-ary
Gray code, also called the non-Boolean Gray code owing to the use of non-Boolean symbols for
encoding. The generalized representation of the code is the (n, k)-Gray code, where n is the number
of independent digits used and k is the word length. A ternary Gray code (n=3) uses the values 0,
1 and 2, and the sequence of numbers in the two-digit word length would be (00, 01, 02, 12, 11, 10,
20, 21, 22). In the quaternary (n =4) code, using 0, 1, 2 and 3 as independent digits and a two-digit
word length, the sequence of numbers would be (00, 01, 02, 03, 13, 12, 11, 10, 20, 21, 22, 23, 33, 32,
31, 30). It is important to note here that an (n, k)-Gray code with an odd n does not exhibit the cyclic
property of the binary Gray code, while in case of an even n it does have the cyclic property.

The (n, k)-Gray code may be constructed recursively, like the binary-reflected Gray code, or may be
constructed iteratively. The process of generating larger word-length ternary Gray codes is illustrated in
Table 2.5. The columns between those representing the ternary Gray codes give the intermediate steps.

2.3.4 Applications

1. The Gray code is used in the transmission of digital signals as it minimizes the occurrence of
erTors.

2. The Gray code is preferred over the straight binary code in angle-measuring devices. Use of
the Gray code almost eliminates the possibility of an angle misread, which is likely if the

26 Digital Electronics

Table 2.5 Generation of a larger word-length ternary Gray code.

One-digit ternary code Two-digit ternary code Three-digit ternary code
0 0 00 00 000
1 1 01 01 001
2 2 02 02 002
2 12 12 012
1 11 11 011
0 10 10 010
0 20 20 020
1 21 21 021
2 22 22 022
22 122
21 121
20 120
10 110
11 111
12 112
02 102
01 101
00 100
00 200
01 201
02 202
12 212
11 211
10 210
20 220
21 221
22 222

angle is represented in straight binary. The cyclic property of the Gray code is a plus in this
application.

3. The Gray code is used for labelling the axes of Karnaugh maps, a graphical technique used for
minimization of Boolean expressions.

4. The use of Gray codes to address program memory in computers minimizes power consumption.
This is due to fewer address lines changing state with advances in the program counter.

5. Gray codes are also very useful in genetic algorithms since mutations in the code allow for mostly
incremental changes. However, occasionally a one-bit change can result in a big leap, thus leading
to new properties.

Example 2.4

Find (a) the Gray code equivalent of decimal 13 and (b) the binary equivalent of Gray code number
1111.

Binary Codes 27

Solution
(a) The binary equivalent of decimal 13 is 1101.
Binary—Gray conversion

Binary 1101
Gray 1- - -

Binary 1101
Gray 10 - -
Binary 1101
Gray 101 —
Binary 1101
Gray 1011

(b) Gray-binary conversion

Gray 1111
Binary 1- - -
Gray 1111
Binary 10- -
Gray 1111
Binary 101-
Gray 1111
Binary 1010

Example 2.5

Given the sequence of three-bit Gray code as (000, 001, 011, 010, 110, 111, 101, 100), write the next
three numbers in the four-bit Gray code sequence after 0101.

Solution

The first eight of the 16 Gray code numbers of the four-bit Gray code can be written by appending ‘0’
to the eight three-bit Gray code numbers. The remaining eight can be determined by appending ‘1’ to
the eight three-bit numbers written in reverse order. Following this procedure, we can write the next
three numbers after 0101 as 0100, 1100 and 1101.

2.4 Alphanumeric Codes

Alphanumeric codes, also called character codes, are binary codes used to represent alphanumeric
data. The codes write alphanumeric data, including letters of the alphabet, numbers, mathematical
symbols and punctuation marks, in a form that is understandable and processable by a computer. These
codes enable us to interface input—output devices such as keyboards, printers, VDUs, etc., with the
computer. One of the better-known alphanumeric codes in the early days of evolution of computers,
when punched cards used to be the medium of inputting and outputting data, is the 12-bit Hollerith
code. The Hollerith code was used in those days to encode alphanumeric data on punched cards.
The code has, however, been rendered obsolete, with the punched card medium having completely
vanished from the scene. Two widely used alphanumeric codes include the ASCII and the EBCDIC
codes. While the former is popular with microcomputers and is used on nearly all personal computers
and workstations, the latter is mainly used with larger systems.

28 Digital Electronics

Traditional character encodings such as ASCII, EBCDIC and their variants have a limitation in
terms of the number of characters they can encode. In fact, no single encoding contains enough
characters so as to cover all the languages of the European Union. As a result, these encodings do
not permit multilingual computer processing. Unicode, developed jointly by the Unicode Consortium
and the International Standards Organization (ISO), is the most complete character encoding scheme
that allows text of all forms and languages to be encoded for use by computers. Different codes are
described in the following.

2.4.1 ASCII code

The ASCII (American Standard Code for Information Interchange), pronounced ‘ask-ee’, is strictly a
seven-bit code based on the English alphabet. ASCII codes are used to represent alphanumeric data
in computers, communications equipment and other related devices. The code was first published as
a standard in 1967. It was subsequently updated and published as ANSI X3.4-1968, then as ANSI
X3.4-1977 and finally as ANSI X3.4-1986. Since it is a seven-bit code, it can at the most represent
128 characters. It currently defines 95 printable characters including 26 upper-case letters (A to Z),
26 lower-case letters (a to z), 10 numerals (0 to 9) and 33 special characters including mathematical
symbols, punctuation marks and space character. In addition, it defines codes for 33 nonprinting, mostly
obsolete control characters that affect how text is processed. With the exception of ‘carriage return’
and/or ‘line feed’, all other characters have been rendered obsolete by modern mark-up languages and
communication protocols, the shift from text-based devices to graphical devices and the elimination of
teleprinters, punch cards and paper tapes. An eight-bit version of the ASCII code, known as US ASCII-8
or ASCII-8, has also been developed. The eight-bit version can represent a maximum of 256 characters.

Table 2.6 lists the ASCII codes for all 128 characters. When the ASCII code was introduced, many
computers dealt with eight-bit groups (or bytes) as the smallest unit of information. The eighth bit was
commonly used as a parity bit for error detection on communication lines and other device-specific
functions. Machines that did not use the parity bit typically set the eighth bit to ‘0’.

Table 2.6 ASCII code.

Decimal Hex Binary Code Code description
0 00 0000 0000 NUL Null character
1 01 0000 0001 SOH Start of header
2 02 0000 0010 STX Start of text
3 03 0000 0011 ETX End of text
4 04 0000 0100 EOT End of transmission
5 05 0000 0101 ENQ Enquiry
6 06 00000110 ACK Acknowledgement
7 07 0000 0111 BEL Bell
8 08 0000 1000 BS Backspace
9 09 0000 1001 HT Horizontal tab
10 0A 0000 1010 LF Line feed
11 0B 0000 1011 VT Vertical tab
12 0C 0000 1100 FF Form feed
13 0D 0000 1101 CR Carriage return
14 OE 00001110 SO Shift out
15 OF 0000 1111 SI Shift in
16 10 0001 0000 DLE Data link escape
17 11 0001 0001 DCl Device control 1 (XON)

Binary Codes

Table 2.6 (continued).

Decimal ~ Hex Binary Code Code description

18 12 0001 0010 DC2 Device control 2

19 13 0001 0011 DC3 Device control 3 (XOFF)
20 14 0001 0100 DC4 Device control 4

21 15 0001 0101 NAK Negative acknowledgement
22 16 0001 0110 SYN Synchronous idle

23 17 0001 0111 ETB End of transmission block
24 18 0001 1000 CAN Cancel

25 19 0001 1001 EM End of medium

26 1A 0001 1010 SUB Substitute

27 1B 0001 1011 ESC Escape

28 1C 0001 1100 FS File separator

29 1D 0001 1101 GS Group separator

30 1E 0001 1110 RS Record separator

31 1IF 0001 1111 US Unit separator

32 20 0010 0000 SP Space

33 21 0010 0001 ! Exclamation point

34 22 0010 0010 " Quotation mark

35 23 0010 0011 # Number sign, octothorp, pound
36 24 00100100 % Dollar sign

37 25 0010 0101 % Percent

38 26 0010 0110 & Ampersand

39 27 ooioorrr Apostrophe, prime

40 28 0010 1000 (Left parenthesis

41 29 0010 1001) Right parenthesis

42 2A 0010 1010 =* Asterisk, ‘star’

43 2B 0010 1011 + Plus sign

44 2C 00101100 Comma

45 2D 0010 1101 - Hyphen, minus sign

46 2E 0010 1110 . Period, decimal Point, ‘dot’
47 2F 0010 1111/ Slash, virgule

48 30 00110000 O 0

49 31 0011 0001 1 1

50 32 00110010 2 2

51 33 0011 0011 3 3

52 34 00110100 4 4

53 35 0011 0101 5 5

54 36 00110110 6 6

55 37 oolrorrr 7 7

56 38 0011 1000 8 8

57 39 0011 1001 9 9

58 3A 0011 1010 Colon

59 3B 0011 1011 ; Semicolon

60 3C 0011 1100 < Less-than sign

61 3D 00111101 = Equals sign

62 3E 0011 1110 > Greater-than sign

63 3F 0011 1111 ? Question mark

64 40 0100 0000 @ At sign

65 41 0100 0001 A A

(continued overleaf)

30

Digital Electronics

Table 2.6 (continued).

Decimal Hex Binary Code Code description
66 42 0100 0010 B B

67 43 0100 0011 C C

68 44 0100 0100 D D

69 45 0100 0101 E E

70 46 0100 0110 F F

71 47 0100 0111 G G

72 48 0100 1000 H H

73 49 0100 1001 I I

74 4A 0100 1010 J J

75 4B 0100 1011 K K

76 4C 0100 1100 L L

77 4D 0100 1101 M M

78 4E 0100 1110 N N

79 4F 0100 1111 O (0]

80 50 0101 0000 P P

81 51 0101 0001 Q Q

82 52 0101 0010 R R

83 53 0101 0011 S S

84 54 0101 0100 T T

85 55 0101 0101 U U

86 56 0101 0110 V \%

87 57 0101 0111 W w

88 58 0101 1000 X X

89 59 0101 1001 Y Y

90 5A 0101 1010 Z Z

91 5B 0101 1011 [Opening bracket
92 5C 0101 1100 \ Reverse slash
93 SD 0101 1101] Closing bracket
94 S5E 0101 1110 A Circumflex, caret
95 5F 0101 1111 _ Underline, underscore
96 60 0110 0000 * Grave accent
97 61 0110 0001 a a

98 62 0110 0010 b b

99 63 0110 0011 ¢ c

100 64 01100100 d d

101 65 0110 0101 e e

102 66 01100110 f f

103 67 orioo111r g g

104 68 0110 1000 h h

105 69 0110 1001 i i

106 6A 0110 1010 j j

107 6B 0110 1011 k k

108 6C 0110 1100 1 1

109 6D 0110 1101 m m

110 6E 0110 1110 n n

111 6F 0110 1111 o o

112 70 0111 0000 p p

113 71 0111 0001 q q

114 72 0111 0010 r r

Binary Codes 31

Table 2.6 (continued).

Decimal Hex Binary Code Code description

115 73 0111 0011 s s

116 74 01110100 t t

117 75 0111 0101 u u

118 76 01110110 v v

119 77 01110111 w w

120 78 0111 1000 x X

121 79 0111 1001 'y y

122 7A 0111 1010 =z z

123 7B o111 1011 { Opening brace
124 7C OI11 1100 | Vertical line
125 7D 0111 1101 '} Closing brace
126 7E Olll 1110 ~ Tilde

127 7F 0111 1111 DEL Delete

Looking at the structural features of the code as reflected in Table 2.6, we can see that the digits O to
9 are represented with their binary values prefixed with 0011. That is, numerals O to 9 are represented
by binary sequences from 0011 0000 to 0011 1001 respectively. Also, lower-case and upper-case
letters differ in bit pattern by a single bit. While upper-case letters ‘A’ to ‘O’ are represented by 0100
0001 to 0100 1111, lower-case letters ‘a’ to ‘0’ are represented by 0110 0001 to 0110 1111. Similarly,
while upper-case letters ‘P’ to ‘Z’ are represented by 0101 0000 to 0101 1010, lower-case letters ‘p’
to ‘z’ are represented by 0111 0000 to 0111 1010.

With widespread use of computer technology, many variants of the ASCII code have evolved over
the years to facilitate the expression of non-English languages that use a Roman-based alphabet. In
some of these variants, all ASCII printable characters are identical to their seven-bit ASCII code
representations. For example, the eight-bit standard ISO/IEC 8859 was developed as a true extension
of ASCII, leaving the original character mapping intact in the process of inclusion of additional values.
This made possible representation of a broader range of languages. In spite of the standard suffering
from incompatibilities and limitations, ISO-8859-1, its variant Windows-1252 and the original seven-bit
ASCII continue to be the most common character encodings in use today.

2.4.2 EBCDIC code

The EBCDIC (Extended Binary Coded Decimal Interchange Code), pronounced ‘eb-si-dik’, is another
widely used alphanumeric code, mainly popular with larger systems. The code was created by IBM to
extend the binary coded decimal that existed at that time. All IBM mainframe computer peripherals
and operating systems use EBCDIC code, and their operating systems provide ASCII and Unicode
modes to allow translation between different encodings. It may be mentioned here that EBCDIC offers
no technical advantage over the ASCII code and its variant ISO-8859 or Unicode. Its importance in the
earlier days lay in the fact that it made it relatively easier to enter data into larger machines with punch
cards. Since, punch cards are not used on mainframes any more, the code is used in contemporary
mainframe machines solely for backwards compatibility.

It is an eight-bit code and thus can accommodate up to 256 characters. Table 2.7 gives the listing of
characters in binary as well as hex form in EBCDIC. The arrangement is similar to the one adopted
for Table 2.6 for the ASCII code. A single byte in EBCDIC is divided into two four-bit groups called

32

Digital Electronics

Table 2.7 EBCDIC code.

Decimal Hex Binary Code Code description
0 00 0000 0000 NUL Null character
1 01 0000 0001 SOH Start of header
2 02 0000 0010 STX Start of text
3 03 0000 0011 ETX End of text
4 04 0000 0100 PF Punch off
5 05 0000 0101 HT Horizontal tab
6 06 0000 0110 LC Lower case
7 07 0000 0111 DEL Delete
8 08 0000 1000
9 09 0000 1001
10 0A 0000 1010 SMM Start of manual message
11 0B 0000 1011 VT Vertical tab
12 0C 0000 1100 FF Form feed
13 0D 0000 1101 CR Carriage return
14 OE 0000 1110 SO Shift out
15 OF 00001111 SI Shift in
16 10 0001 0000 DLE Data link escape
17 11 0001 0001 DC1 Device control 1
18 12 0001 0010 DC2 Device control 2
19 13 0001 0011 TM Tape mark
20 14 0001 0100 RES Restore
21 15 0001 0101 NL New line
22 16 0001 0110 BS Backspace
23 17 0001 0111 IL Idle
24 18 0001 1000 CAN Cancel
25 19 0001 1001 EM End of medium
26 1A 0001 1010 CC Cursor control
27 1B 0001 1011 CU1 Customer use 1
28 1C 0001 1100 IFS Interchange file separator
29 ID 0001 1101 IGS Interchange group separator
30 1E 0001 1110 IRS Interchange record separator
31 1F 0001 1111 TUS Interchange unit separator
32 20 0010 0000 DS Digit select
33 21 0010 0001 SOS Start of significance
34 22 0010 0010 FS Field separator
35 23 0010 0011
36 24 0010 0100 BYP Bypass
37 25 0010 0101 LF Line feed
38 26 0010 0110 ETB End of transmission block
39 27 0010 0111 ESC Escape
40 28 0010 1000
41 29 0010 1001
42 2A 0010 1010 SM Set mode
43 2B 0010 1011 CU2 Customer use 2
44 2C 0010 1100
45 2D 0010 1101 ENQ Enquiry
46 2E 00101110 ACK Acknowledge
47 2F 0010 1111 BEL Bell
48 30 0011 0000

Binary Codes

33

Table 2.7 (continued).

Decimal Hex Binary Code Code description
49 31 0011 0001

50 32 0011 0010 SYN Synchronous idle
51 33 0011 0011

52 34 0011 0100 PN Punch on

53 35 0011 0101 RS Reader stop

54 36 0011 0110 UC Upper case

55 37 0011 0111 EOT End of transmission
56 38 0011 1000

57 39 0011 1001

58 3A 0011 1010

59 3B 0011 1011 CU3 Customer use 3
60 3C 0011 1100 DC4 Device control 4
61 3D 0011 1101 NAK Negative acknowledge
62 3E 0011 1110

63 3F 00111111 SUB Substitute

64 40 0100 0000 SP Space

65 41 0100 0001

66 42 0100 0010

67 43 0100 0011

68 44 0100 0100

69 45 0100 0101

70 46 0100 0110

71 47 0100 0111

72 48 0100 1000

73 49 0100 1001

74 4A 0100 1010 ¢ Cent sign

75 4B 0100 1011 . Period, decimal point
76 4C 0100 1100 < Less-than sign

77 4D 0100 1101 (Left parenthesis
78 4E 0100 1110 + Plus sign

79 4F 0100 1111 | Logical OR

80 50 0101 0000 & Ampersand

81 51 0101 0001

82 52 0101 0010

83 53 0101 0011

84 54 0101 0100

85 55 0101 0101

86 56 0101 0110

87 57 0101 0111

88 58 0101 1000

89 59 0101 1001

90 5A 0101 1010 ! Exclamation point
91 5B o101 1011 $ Dollar sign

92 5C 0101 1100 * Asterisk

93 5D 0101 1101) Right parenthesis
94 S5E 0101 1110 Semicolon

95 SF 0101 1111 A Logical NOT

96 60 0110 0000 - Hyphen, minus sign

(continued overleaf)

34

Digital Electronics

Table 2.7 (continued).

Decimal Hex Binary Code Code description
97 61 0110 0001 7/ Slash, virgule
98 62 0110 0010

99 63 0110 0011

100 64 0110 0100

101 65 0110 0101

102 66 01100110

103 67 0110 0111

104 68 0110 1000

105 69 0110 1001

106 6A 0110 1010

107 6B 0110 1011 s Comma

108 6C 01101100 % Percent

109 6D 0110 1101 _ Underline, underscore
110 6E 0110 1110 > Greater-than sign
111 6F o110 1111 ? Question mark
112 70 0111 0000

113 71 0111 0001

114 72 0111 0010

115 73 0111 0011

116 74 0111 0100

117 75 0111 0101

118 76 0111 0110

119 77 0111 0111

120 78 0111 1000

121 79 0111 1001 ¢ Grave accent
122 7A 0111 1010 Colon

123 7B 0111 1011 # Number sign, octothorp, pound
124 7C 01111100 @ At sign

125 7D o111 1101~ Apostrophe, prime
126 7E Ol11 1110 = Equals sign

127 7F 0111 1111 * Quotation mark
128 80 1000 0000

129 81 1000 1001 a a

130 82 1000 1010 b b

131 83 1000 1011 ¢ c

132 84 1000 1100 d d

133 85 1000 0101 e e

134 86 1000 0110 £ f

135 87 10000111 g g

136 88 1000 1000 h h

137 89 1000 1001 i i

138 8A 1000 1010

139 8B 1000 1011

140 8C 1000 1100

141 8D 1000 1101

142 8E 1000 1110

143 8F 1000 1111

144 90 1001 0000

145 91 1001 0001 j]

Binary Codes

Table 2.7 (continued).

Decimal Hex Binary Code Code description
146 92 1001 0010 k k
147 93 1001 0011 1 1
148 94 1001 0100 m m
149 95 1001 0101 n n
150 96 1001 0110 o o
151 97 1001 0111 p p
152 98 1001 1000 q q
153 99 1001 1001 r r
154 9A 1001 1010

155 9B 1001 1011

156 9C 1001 1100

157 oD 1001 1101

158 9E 1001 1110

159 9F 1001 1111

160 A0 1010 0000

161 Al 1010 0001 ~ Tilde
162 A2 10100010 s s
163 A3 1010 0011 ¢ t
164 A4 10100100 u u
165 AS 1010 0101 v v
166 A6 10100110 w w
167 A7 10100111 x X
168 A8 1010 1000 'y y
169 A9 1010 1001 z z
170 AA 1010 1010

171 AB 1010 1011

172 AC 1010 1100

173 AD 1010 1101

174 AE 1010 1110

175 AF 1010 1111

176 BO 1011 0000

177 B1 1011 0001

178 B2 1011 0010

179 B3 1011 0011

180 B4 1011 0100

181 B5 1011 0101

182 B6 1011 0110

183 B7 1011 0111

184 B8 1011 1000

185 B9 1011 1001

186 BA 1011 1010

187 BB 1011 1011

188 BC 1011 1100

189 BD 1011 1101

190 BE 1011 1110

191 BF 1011 1111

192 Co 1100 0000 { Opening brace
193 C1 1100 0001 A A

(continued overleaf)

36

Table 2.7 (continued).

Decimal Hex Binary Code Code description
194 C2 1100 0010 B B
195 C3 1100 0011 C C
196 C4 1100 0100 D D
197 C5 1100 0101 E E
198 C6 1100 0110 F F
199 C7 11000111 G G
200 C8 1100 1000 H H
201 Cc9 1100 1001 I I
202 CA 1100 1010

203 CB 1100 1011

204 CcC 1100 1100

205 CD 1100 1101

206 CE 1100 1110

207 CF 1100 1111

208 DO 1101 0000 } Closing brace
209 D1 1101 0001 J J
210 D2 1101 0010 K K
211 D3 11010011 L L
212 D4 1101 0100 M M
213 D5 1101 0101 N N
214 D6 1101 0110 O O
215 D7 11010111 P P
216 D8 1101 1000 Q Q
217 D9 1101 1001 R R
218 DA 1101 1010

219 DB 1101 1011

220 DC 1101 1100

221 DD 1101 1101

222 DE 1101 1110

223 DF 1101 1111

224 EO 1110 0000 \ Reverse slant
225 El 1110 0001

226 E2 1110 0010 S S
227 E3 11100011 T T
228 E4 11100100 U U
229 E5 11100101 VvV A%
230 E6 11100110 W w
231 E7 1ioorrr X X
232 E8 1110 1000 Y Y
233 E9 1110 1001 Z Z
234 EA 1110 1010

235 EB 1110 1011

236 EC 1110 1100

237 ED 1110 1101

238 EE 1110 1110

239 EF 1110 1111

240 FO 1111 0000 0 0
241 F1 1111 0001 1 1

Digital Electronics

Binary Codes 37

Table 2.7 (continued).

Decimal Hex Binary Code Code description
242 F2 1111 0010 2 2
243 F3 1r1roorr 3 3
244 F4 1111 0100 4 4
245 F5 1111 0101 5 5
246 F6 11110110 6 [§
247 F7 rrrorrr 7 7
248 F8 1111 1000 8 8
249 F9 1111 1001 9 9
250 FA 1111 1010 |

251 FB 1111 1011

252 FC 1111 1100

253 FD 1111 1101

254 FE 1111 1110

255 FF 1111 1111 eo

nibbles. The first four-bit group, called the ‘zone’, represents the category of the character, while the
second group, called the ‘digit’, identifies the specific character.

2.4.3 Unicode

As briefly mentioned in the earlier sections, encodings such as ASCII, EBCDIC and their variants
do not have a sufficient number of characters to be able to encode alphanumeric data of all forms,
scripts and languages. As a result, these encodings do not permit multilingual computer processing.
In addition, these encodings suffer from incompatibility. Two different encodings may use the same
number for two different characters or different numbers for the same characters. For example, code
4E (in hex) represents the upper-case letter ‘N’ in ASCII code and the plus sign ‘+’ in the EBCDIC
code. Unicode, developed jointly by the Unicode Consortium and the International Organization for
Standardization (ISO), is the most complete character encoding scheme that allows text of all forms
and languages to be encoded for use by computers. It not only enables the users to handle practically
any language and script but also supports a comprehensive set of mathematical and technical symbols,
greatly simplifying any scientific information exchange. The Unicode standard has been adopted by
such industry leaders as HP, IBM, Microsoft, Apple, Oracle, Unisys, Sun, Sybase, SAP and many more.

Unicode and ISO-10646 Standards

Before we get on to describe salient features of Unicode, it may be mentioned that another standard
similar in intent and implementation to Unicode is the ISO-10646. While Unicode is the brainchild of
the Unicode Consortium, a consortium of manufacturers (initially mostly US based) of multilingual
software, ISO-10646 is the project of the International Organization for Standardization. Although
both organizations publish their respective standards independently, they have agreed to maintain
compatibility between the code tables of Unicode and ISO-10646 and closely coordinate any further
extensions.

38 Digital Electronics

The Code Table

The code table defined by both Unicode and ISO-10646 provides a unique number for every character,
irrespective of the platform, program and language used. The table contains characters required to
represent practically all known languages and scripts. The list includes not only the Greek, Latin,
Cyrillic, Arabic, Arabian and Georgian scripts but also Japanese, Chinese and Korean scripts. In
addition, the list also includes scripts such as Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Telugu,
Tamil, Kannada, Thai, Tibetan, Ethiopic, Sinhala, Canadian Syllabics, Mongolian, Myanmar and
others. Scripts not yet covered will eventually be added. The code table also covers a large number of
graphical, typographical, mathematical and scientific symbols.

In the 32-bit version, which is the most recent version, the code table is divided into 2'® subsets, with
each subset having 2'¢ characters. In the 32-bit representation, elements of different subsets therefore
differ only in the 16 least significant bits. Each of these subsets is known as a plane. Plane 0, called the
basic multilingual plane (BMP), defined by 00000000 to 0000FFFF, contains all most commonly used
characters including all those found in major older encoding standards. Another subset of 2'° characters
could be defined by 00010000 to 0001FFFF. Further, there are different slots allocated within the
BMP to different scripts. For example, the basic Latin character set is encoded in the range 0000 to
007F. Characters added to the code table outside the 16-bit BMP are mostly for specialist applications
such as historic scripts and scientific notation. There are indications that there may never be characters
assigned outside the code space defined by 00000000 to 0010FFFF, which provides space for a little
over 1 million additional characters.

Different characters in Unicode are represented by a hexadecimal number preceded by ‘U+’. For
example, ‘A’ and ‘e’ in basic Latin are respectively represented by U+0041 and U+4-0065. The first
256 code numbers in Unicode are compatible with the seven-bit ASCII-code and its eight-bit variant
ISO-8859-1. Unicode characters U4+0000 to U4+007F (128 characters) are identical to those in the
ASCII code, and the Unicode characters in the range U40000 to U+00FF (256 characters) are identical
to ISO-8859-1.

Use of Combining Characters

Unicode assigns code numbers to combining characters, which are not full characters by themselves
but accents or other diacritical marks added to the previous character. This makes it possible to place
any accent on any character. Although Unicode allows the use of combining characters, it also assigns
separate codes to commonly used accented characters known as precomposed characters. This is done
to ensure backwards compatibility with older encodings. As an example, the character ‘4’ can be
represented as the precomposed character U4+-00E4. It can also be represented in Unicode as U+0061
(Latin lower-case letter ‘a’) followed by U+00A8 (combining character °..”).

Unicode and ISO-10646 Comparison

Although Unicode and ISO-10646 have identical code tables, Unicode offers many more features not
available with ISO-10646. While the ISO-10646 standard is not much more than a comprehensive
character set, the Unicode standard includes a number of other related features such as character
properties and algorithms for text normalization and handling of bidirectional text to ensure correct
display of mixed texts containing both right-to-left and left-to-right scripts.

2.5 Seven-segment Display Code

Seven-segment displays [Fig. 2.1(a)] are very common and are found almost everywhere, from pocket
calculators, digital clocks and electronic test equipment to petrol pumps. A single seven-segment
display or a stack of such displays invariably meets our display requirement. There are both LED and

Binary Codes

o P

DP

()

Figure 2.1 Seven-segment displays.

40 Digital Electronics

Table 2.8 Seven-segment display code.

Common cathode type Common anode type ‘0’ means ON
‘1’ means ON

a b c d e f g DP a b c d e f g DP
0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1
2 1 1 0 1 1 0 1 2 0 0 1 0 0 1 0
3 1 1 1 1 0 0 1 3 0 0 0 0 1 1 0
4 0 1 1 0 0 1 1 4 1 0 0 1 1 0 0
5 1 0 1 1 0 1 1 5 0 1 0 0 1 0 0
6 0 0 1 1 1 1 1 6 1 1 0 0 0 0 0
7 1 1 1 0 0 0 0 7 0 0 0 1 1 1 1
8 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0
9 1 1 1 0 0 1 1 9 0 0 0 1 1 0 0
a 1 1 1 1 1 0 1 a 0 0 0 0 0 1 0
b 0 0 1 1 1 1 1 b 1 1 0 0 0 0 0
c 0 0 0 1 1 0 1 c 1 1 1 0 0 1 0
d 0 1 1 1 1 0 1 d 1 0 0 0 0 1 0
e 1 1 0 1 1 1 1 e 0 0 1 0 0 0 0
f 1 0 0 0 1 1 1 f 0 1 1 1 0 0 0

LCD types of seven-segment display. Furthermore, there are common anode-type LED displays where
the arrangement of different diodes, designated a, b, ¢, d, e, f and g, is as shown in Fig. 2.1(b), and
common cathode-type displays where the individual diodes are interconnected as shown in Fig. 2.1(c).
Each display unit usually has a dot point (DP).

The DP could be located either towards the left (as shown) or towards the right of the figure
‘8> display pattern. This type of display can be used to display numerals from O to 9 and letters
from A to F. Table 2.8 gives the binary code for displaying different numeric and alphabetic
characters for both the common cathode and the common anode type displays. A ‘1’ lights a
segment in the common cathode type display, and a ‘0’ lights a segment in the common anode type
display.

2.6 Error Detection and Correction Codes

When we talk about digital systems, be it a digital computer or a digital communication set-up, the issue
of error detection and correction is of great practical significance. Errors creep into the bit stream owing
to noise or other impairments during the course of its transmission from the transmitter to the receiver.
Any such error, if not detected and subsequently corrected, can be disastrous, as digital systems are
sensitive to errors and tend to malfunction if the bit error rate is more than a certain threshold level.
Error detection and correction, as we will see below, involves the addition of extra bits, called check
bits, to the information-carrying bit stream to give the resulting bit sequence a unique characteristic
that helps in detection and localization of errors. These additional bits are also called redundant bits
as they do not carry any information. While the addition of redundant bits helps in achieving the goal
of making transmission of information from one place to another error free or reliable, it also makes
it inefficient. In this section, we will examine some common error detection and correction codes.

Binary Codes 41

2.6.1 Parity Code

A parity bit is an extra bit added to a string of data bits in order to detect any error that might have
crept into it while it was being stored or processed and moved from one place to another in a digital
system.

We have an even parity, where the added bit is such that the total number of Is in the data bit string
becomes even, and an odd parity, where the added bit makes the total number of Is in the data bit
string odd. This added bit could be a ‘0’ or a ‘1’. As an example, if we have to add an even parity bit to
01000001 (the eight-bit ASCII code for ‘A’), it will be a ‘0’ and the number will become 001000001.
If we have to add an odd parity bit to the same number, it will be a ‘I’ and the number will become
101000001. The odd parity bit is a complement of the even parity bit. The most common convention
is to use even parity, that is, the total number of 1s in the bit stream, including the parity bit, is even.

The parity check can be made at different points to look for any possible single-bit error, as it would
disturb the parity. This simple parity code suffers from two limitations. Firstly, it cannot detect the
error if the number of bits having undergone a change is even. Although the number of bits in error
being equal to or greater than 4 is a very rare occurrence, the addition of a single parity cannot be
used to detect two-bit errors, which is a distinct possibility in data storage media such as magnetic
tapes. Secondly, the single-bit parity code cannot be used to localize or identify the error bit even if
one bit is in error. There are several codes that provide self-single-bit error detection and correction
mechanisms, and these are discussed below.

2.6.2 Repetition Code

The repetition code makes use of repetitive transmission of each data bit in the bit stream. In the case
of threefold repetition, ‘1’ and ‘0’ would be transmitted as ‘111’ and ‘000 respectively. If, in the
received data bit stream, bits are examined in groups of three bits, the occurrence of an error can be
detected. In the case of single-bit errors, ‘1’ would be received as 011 or 101 or 110 instead of 111,
and a ‘0’ would be received as 100 or 010 or 001 instead of 000. In both cases, the code becomes
self-correcting if the bit in the majority is taken as the correct bit. There are various forms in which
the data are sent using the repetition code. Usually, the data bit stream is broken into blocks of bits,
and then each block of data is sent some predetermined number of times. For example, if we want
to send eight-bit data given by 11011001, it may be broken into two blocks of four bits each. In the
case of threefold repetition, the transmitted data bit stream would be 110111011101100110011001.
However, such a repetition code where the bit or block of bits is repeated 3 times is not capable of
correcting two-bit errors, although it can detect the occurrence of error. For this, we have to increase
the number of times each bit in the bit stream needs to be repeated. For example, by repeating each
data bit 5 times, we can detect and correct all two-bit errors. The repetition code is highly inefficient
and the information throughput drops rapidly as we increase the number of times each data bit needs
to be repeated to build error detection and correction capability.

2.6.3 Cyclic Redundancy Check Code

Cyclic redundancy check (CRC) codes provide a reasonably high level of protection at low redundancy
level. The cycle code for a given data word is generated as follows. The data word is first appended
by a number of Os equal to the number of check bits to be added. This new data bit sequence is then
divided by a special binary word whose length equals n+ 1, n being the number of check bits to
be added. The remainder obtained as a result of modulo-2 division is then added to the dividend bit

42 Digital Electronics

sequence to get the cyclic code. The code word so generated is completely divisible by the divisor
used in the generation of the code. Thus, when the received code word is again divided by the same
divisor, an error-free reception should lead to an all ‘0’ remainder. A nonzero remainder is indicative
of the presence of errors.

The probability of error detection depends upon the number of check bits, n, used to construct the
cyclic code. It is 100 % for single-bit and two-bit errors. It is also 100 % when an odd number of bits
are in error and the error bursts have a length less than n 4 1. The probability of detection reduces to
1 — (1/2)*~! for an error burst length equal to n + 1, and to 1 — (1/2)" for an error burst length greater
than n + 1.

2.6.4 Hamming Code

We have seen, in the case of the error detection and correction codes described above, how an increase
in the number of redundant bits added to message bits can enhance the capability of the code to detect
and correct errors. If we have a sufficient number of redundant bits, and if these bits can be arranged
such that different error bits produce different error results, then it should be possible not only to detect
the error bit but also to identify its location. In fact, the addition of redundant bits alters the ‘distance’
code parameter, which has come to be known as the Hamming distance. The Hamming distance is
nothing but the number of bit disagreements between two code words. For example, the addition of
single-bit parity results in a code with a Hamming distance of at least 2. The smallest Hamming
distance in the case of a threefold repetition code would be 3. Hamming noticed that an increase
in distance enhanced the code’s ability to detect and correct errors. Hamming’s code was therefore
an attempt at increasing the Hamming distance and at the same time having as high an information
throughput rate as possible.
The algorithm for writing the generalized Hamming code is as follows:

1. The generalized form of code is P,P,D,P;D,D;D,P,DsD¢D,D3DyD oD, Ps. .., where P and D
respectively represent parity and data bits.

2. We can see from the generalized form of the code that all bit positions that are powers of 2 (positions
1,2,4,8,16,...) are used as parity bits.

3. All other bit positions (positions 3, 5, 6, 7, 9, 10, 11,...) are used to encode data.

4. Each parity bit is allotted a group of bits from the data bits in the code word, and the value of the
parity bit (0 or 1) is used to give it certain parity.

5. Groups are formed by first checking N— 1 bits and then alternately skipping and checking N bits
following the parity bit. Here, N is the position of the parity bit; 1 for P, 2 for P,, 4 for P, 8 for P,
and so on. For example, for the generalized form of code given above, various groups of bits formed
with different parity bits would be P,D,D,D,Ds ..., P,D,D;D,D¢D; ..., PyD,D;D,D¢Dy. . .,
P,DsDsD,DgDyD (D, .. .and so on. To illustrate the formation of groups further, let us examine
the group corresponding to parity bit P;. Now, the position of P; is at number 4. In order to form
the group, we check the first three bits (N— 1=23) and then follow it up by alternately skipping
and checking four bits (N =4).

The Hamming code is capable of correcting single-bit errors on messages of any length. Although
the Hamming code can detect two-bit errors, it cannot give the error locations. The number of parity
bits required to be transmitted along with the message, however, depends upon the message length, as
shown above. The number of parity bits n required to encode m message bits is the smallest integer
that satisfies the condition (2" — n) > m.

Binary Codes 43

Table 2.9 Generation of Hamming code.

Data bits (without parity) 0 1 1 0
Data bits with parity bit P, 1 0 1 0
Data bits with parity bit P, 1 0 1 0
Data bits with parity bit P 0 1 1 0
Data bits with parity 1 1 0 0 1 1 0

The most commonly used Hamming code is the one that has a code word length of seven bits with
four message bits and three parity bits. It is also referred to as the Hamming (7, 4) code. The code word
sequence for this code is written as P, P,D, P;D,D;D,, with P, P, and P; being the parity bits and D,
D,, D; and D, being the data bits. We will illustrate step by step the process of writing the Hamming
code for a certain group of message bits and then the process of detection and identification of error
bits with the help of an example. We will write the Hamming code for the four-bit message 0110
representing numeral ‘6’. The process of writing the code is illustrated in Table 2.9, with even parity.

Thus, the Hamming code for 0110 is 1100110. Let us assume that the data bit D, gets corrupted
in the transmission channel. The received code in that case is 1110110. In order to detect the error,
the parity is checked for the three parity relations mentioned above. During the parity check operation
at the receiving end, three additional bits X, Y and Z are generated by checking the parity status of
P,D\D,D,, P,D,D;D, and P;D,D;D, respectively. These bits are a ‘0’ if the parity status is okay,
and a ‘1’ if it is disturbed. In that case, ZYX gives the position of the bit that needs correction. The
process can be best explained with the help of an example.

Examination of the first parity relation gives X =1 as the even parity is disturbed. The second
parity relation yields Y =1 as the even parity is disturbed here too. Examination of the third relation
gives Z =0 as the even parity is maintained. Thus, the bit that is in error is positioned at 011 which is
the binary equivalent of ‘3°. This implies that the third bit from the MSB needs to be corrected. After
correcting the third bit, the received message becomes 1100110 which is the correct code.

Example 2.6

By writing the parity code (even) and threefold repetition code for all possible four-bit straight binary
numbers, prove that the Hamming distance in the two cases is at least 2 in the case of the parity code
and 3 in the case of the repetition code.

Solution

The generation of codes is shown in Table 2.10. An examination of the parity code numbers reveals
that the number of bit disagreements between any pair of code words is not less than 2. It is either 2
or 4. It is 4, for example, between 00000 and 10111, 00000 and 11011, 00000 and 11101, 00000 and
11110 and 00000 and 01111. In the case of the threefold repetition code, it is either 3, 6, 9 or 12 and
therefore not less than 3 under any circumstances.

Example 2.7

It is required to transmit letter ‘A’ expressed in the seven-bit ASCII code with the help of the Hamming
(11, 7) code. Given that the seven-bit ASCII notation for ‘A’ is 1000001 and that the data word gets

44 Digital Electronics

Table 2.10 Example 2.6.

Binary Parity Three-time Binary Parity Three-time
number code repetition number code repetition
Code code

0000 00000 000000000000 1000 11000 100010001000
0001 10001 000100010001 1001 01001 100110011001
0010 10010 001000100010 1010 01010 101010101010
0011 00011 001100110011 1011 11011 101110111011
0100 10100 010001000100 1100 01100 110011001100
0101 00101 010101010101 1101 11101 110111011101
0110 00110 011001100110 1110 11110 111011101110
0111 10111 011101110111 1111 01111 IRRRREEREENA!

corrupted to 1010001 in the transmission channel, show how the Hamming code can be used to identify
the error. Use even parity.

Solution

e The generalized form of the Hamming code in this case is P,P,D,P;D,D;D,P,DsDsD, =
P, P,1P;000P,001.

® The four groups of bits using different parity bits are P, D,D,D,DsD,, P,D,D;D,D¢D,, PyD,D;D,

and P,DsD¢D,.

This gives P, =0, P,=0, P;=0and P,=1.

Therefore, the transmitted Hamming code for ‘A’ is 00100001001.

The received Hamming code is 00100101001.

Checking the parity for the P; group gives ‘0’ as it passes the test.

Checking the parity for the P, group gives ‘1’ as it fails the test.

Checking the parity for the P; group gives ‘1’ as it fails the test.

Checking the parity for the P, group gives ‘0’ as it passes the test.

The bits resulting from the parity check, written in reverse order, constitute 0110, which is the

binary equivalent of ‘6’. This shows that the bit in error is the sixth from the MSB.

Therefore, the corrected Hamming code is 00100001001, which is the same as the transmitted code.

® The received data word is 1000001.

Review Questions

1. Distinguish between weighted and unweighted codes. Give two examples each of both types of
code.

2. What is an excess-3 BCD code? Which shortcoming of the 8421 BCD code is overcome in the
excess-3 BCD code? Illustrate with the help of an example.

3. What is the Gray code? Why is it also known as the binary-reflected Gray code? Briefly outline
some of the important applications of the Gray code.

4. Briefly describe salient features of the ASCII and EBCDIC codes in terms of their capability to
represent characters and suitability for their use in different platforms.

5. What is the Unicode? Why is it called the most complete character code?

Binary Codes 45

. What is a parity bit? Define even and odd parity. What is the limitation of the parity code when it

comes to detection and correction of bit errors?

. What is the Hamming distance? What is the role of the Hamming distance in deciding the error

detection and correction capability of a code meant for the purpose? How does it influence the
information throughput rate?

. With the help of the generalized form of the Hamming code, explain how the number of parity bits

required to transmit a given number of data bits is decided upon.

Problems

1.

Write the excess-3 equivalent codes of (6),,, (78),, and (357),,, all in 16-bit format.
0011001100111001, 0011001110101011, 0011011010001010

. Determine the Gray code equivalent of (10011), and the binary equivalent of the Gray code number

110011.
11010, (100010),

. A 16-bit data word given by 1001100001110110 is to be transmitted by using a fourfold repetition

code. If the data word is broken into four blocks of four bits each, then write the transmitted bit
stream.
1001100110011001100010001000100001110111011101110110011001100110

. Write (a) the Hamming (7, 4) code for 0000 using even parity and (b) the Hamming (11, 7) code

for 1111111 using odd parity.
(a) 0000000; (b) 00101110111

. Write the last four of the 16 possible numbers in the two-bit quaternary Gray code with 0, 1, 2 and

3 as its independent digits, beginning with the thirteenth number.
33, 32, 31, 30

Further Reading

1.

Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Book Companies Inc., USA.

2. Gillam, R. (2002) Unicode Demystified: A Practical Programmer’s Guide to the Encoding Standard, 1st edition,

Addison-Wesley Professional, Boston, MA, USA.

. MacWilliams, F. J. and Sloane, N. J. A. (2006) The Theory of Error-Correcting Codes, North-Holland

Mathematical Library, Elsevier Ltd, Oxford, UK.

. Huffman, W. C. and Pless, V. (2003) Fundamentals of Error-Correcting Codes, Cambridge University Press,

Cambridge, UK.

3

Digital Arithmetic

Having discussed different methods of numeric and alphanumeric data representation in the first two
chapters, the next obvious step is to study the rules of data manipulation. Two types of operation
that are performed on binary data include arithmetic and logic operations. Basic arithmetic operations
include addition, subtraction, multiplication and division. AND, OR and NOT are the basic logic
functions. While the rules of arithmetic operations are covered in the present chapter, those related to
logic operations will be discussed in the next chapter.

3.1 Basic Rules of Binary Addition and Subtraction

The basic principles of binary addition and subtraction are similar to what we all know so well in
the case of the decimal number system. In the case of addition, adding ‘0’ to a certain digit produces
the same digit as the sum, and, when we add ‘1’ to a certain digit or number in the decimal number
system, the result is the next higher digit or number, as the case may be. For example, 6 + 1 in decimal
equals ‘7’ because ‘7’ immediately follows ‘6’ in the decimal number system. Also, 7 + 1 in octal
equals ‘10’ as, in the octal number system, the next adjacent higher number after ‘7’ is ‘10’. Similarly,
9 + 1 in the hexadecimal number system is ‘A’. With this background, we can write the basic rules of
binary addition as follows:

.0+0=0.
.0+ 1=1.
1+0=1

1 + 1 = 0 with a carry of ‘1’ to the next more significant bit.
14+ 1+ 1 =1 with a carry of ‘1’ to the next more significant bit.

N

Table 3.1 summarizes the sum and carry outputs of all possible three-bit combinations. We have
taken three-bit combinations as, in all practical situations involving the addition of two larger bit

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

48 Digital Electronics

Table 3.1 Binary addition of three bits.

A B Carry- Sum Carry- A B Carry- Sum Carry-
in (Cin) out (Co) in (Cin) out (Co)

0 0 0 0 0 1 0 0 1 0

0 0 1 1 0 1 0 1 0 1

0 1 0 1 0 1 1 0 0 1

0 1 1 0 1 1 1 1 1 1

numbers, we need to add three bits at a time. Two of the three bits are the bits that are part of the two
binary numbers to be added, and the third bit is the carry-in from the next less significant bit column.
The basic principles of binary subtraction include the following:

1.0-0=0.
2.1-0=1.
3.1-1=0.

4. 0 — 1 = 1 with a borrow of 1 from the next more significant bit.

The above-mentioned rules can also be explained by recalling rules for subtracting decimal numbers.
Subtracting ‘0’ from any digit or number leaves the digit or number unchanged. This explains
the first two rules. Subtracting ‘1’ from any digit or number in decimal produces the immediately
preceding digit or number as the answer. In general, the subtraction operation of larger-bit binary
numbers also involves three bits, including the two bits involved in the subtraction, called the minuend
(the upper bit) and the subtrahend (the lower bit), and the borrow-in. The subtraction operation
produces the difference output and borrow-out, if any. Table 3.2 summarizes the binary subtraction
operation. The entries in Table 3.2 can be explained by recalling the basic rules of binary subtraction
mentioned above, and that the subtraction operation involving three bits, that is, the minuend (A),
the subtrahend (B) and the borrow-in (By,), produces a difference output equal to (A — B — B,,)).
It may be mentioned here that, in the case of subtraction of larger-bit binary numbers, the least
significant bit column always involves two bits to produce a difference output bit and the borrow-out

Table 3.2 Binary subtraction.

Inputs Outputs

Minuend Subtrahend Borrow-in Difference Borrow-out
(4) (B) (Bin) (D) (B,)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Digital Arithmetic 49

bit. The borrow-out bit produced here becomes the borrow-in bit for the next more significant bit
column, and the process continues until we reach the most significant bit column. The addition and
subtraction of larger-bit binary numbers is illustrated with the help of examples in sections 3.2 and 3.3
respectively.

3.2 Addition of Larger-Bit Binary Numbers

The addition of larger binary integers, fractions or mixed binary numbers is performed columnwise
in just the same way as in the case of decimal numbers. In the case of binary numbers, however, we
follow the basic rules of addition of two or three binary digits, as outlined earlier. The process of
adding two larger-bit binary numbers can be best illustrated with the help of an example.

Consider two generalized four-bit binary numbers (A; A, A, A,) and (B; B, B, B,), with A, and B,
representing the LSB and A; and Bj; representing the MSB of the two numbers. The addition of these
two numbers is performed as follows. We begin with the LSB position. We add the LSB bits and
record the sum S, below these bits in the same column and take the carry C,,, if any, to the next column
of bits. For instance, if Ay = 1 and B, = 0, then S, = 1 and C;, = 0. Next we add the bits A, and B,
and the carry C, from the previous addition. The process continues until we reach the MSB bits. The
four steps are shown ahead. C,, C;, C, and Cj; are carrys, if any, produced as a result of adding first,
second, third and fourth column bits respectively, starting from LSB and proceeding towards MSB. A
similar procedure is followed when the given numbers have both integer as well as fractional parts:

(Go) (€) (G)
L A, A A A 2 A, A, A A
B, B, B B, B, B, B B,
So S, So

() (C€) (G () () (G
3.0A A A A 4 A, A, A A
B3 BZ Bl BO B3 BZ Bl BO
Sy Sy So G 5 S S So

3.2.1 Addition Using the 2’s Complement Method

The 2’s complement is the most commonly used code for processing positive and negative binary
numbers. It forms the basis of arithmetic circuits in modern computers. When the decimal numbers to
be added are expressed in 2’s complement form, the addition of these numbers, following the basic
laws of binary addition, gives correct results. Final carry obtained, if any, while adding MSBs should
be disregarded. To illustrate this, we will consider the following four different cases:

1. Both the numbers are positive.

2. Larger of the two numbers is positive.

3. The larger of the two numbers is negative.
4. Both the numbers are negative.

50 Digital Electronics

Case 1

e Consider the decimal numbers 437 and +18.

e The 2’s complement of +37 in eight-bit representation = 00100101.

® The 2’s complement of 418 in eight-bit representation = 00010010.

e The addition of the two numbers, that is, +-37 and +18, is performed as follows

00100101
+ 00010010
00110111

e The decimal equivalent of (00110111), is (+55), which is the correct answer.

Case 2
e Consider the two decimal numbers +37 and -18.
e The 2’s complement representation of 437 in eight-bit representation = 00100101.
® The 2’s complement representation of —18 in eight-bit representation = 11101110.
e The addition of the two numbers, that is, +37 and —18, is performed as follows:

00100101

+ 11101110
00010011

The final carry has been disregarded.
The decimal equivalent of (00010011), is +19, which is the correct answer.

Case 3
e Consider the two decimal numbers +18 and —37.
e —37 in 2’s complement form in eight—bit representation = 11011011.
® +18in 2’s complement form in eight—bit representation = 00010010.
e The addition of the two numbers, that is, —37 and +18, is performed as follows:
11011011
+ 00010010
11101101

e The decimal equivalent of (11101101),, which is in 2’s complement form, is —19, which is the
correct answer. 2’s complement representation was discussed in detail in Chapter 1 on number
systems.

Case 4

e Consider the two decimal numbers —18 and —37.

e —18in 2’s complement form is 11101110.

® —37in 2’s complement form is 11011011.

® The addition of the two numbers, that is, —37 and —18, is performed as follows:

Digital Arithmetic 51

11011011
+ 11101110
11001001

e The final carry in the ninth bit position is disregarded.
e The decimal equivalent of (11001001),, which is in 2’s complement form, is —55, which is the
correct answer.

It may also be mentioned here that, in general, 2’s complement notation can be used to perform
addition when the expected result of addition lies in the range from —2""! to +(2"~! — 1), n being
the number of bits used to represent the numbers. As an example, eight-bit 2’s complement arithmetic
cannot be used to perform addition if the result of addition lies outside the range from —128 to +127.
Different steps to be followed to do addition in 2’s complement arithmetic are summarized as follows:

. Represent the two numbers to be added in 2’s complement form.
. Do the addition using basic rules of binary addition.

. Disregard the final carry, if any.

. The result of addition is in 2’s complement form.

S I S

Example 3.1

Perform the following addition operations:

1. (275.75),0+ (37.875),0.
2. (AF1.B3),4+ (FFF.E),;.

Solution

1. As a first step, the two given decimal numbers will be converted into their equivalent binary
numbers (decimal-to-binary conversion has been covered at length in Chapter 1, and therefore the
decimal-to-binary conversion details will not be given here):

(275.75),4 = (100010011.11), and (37.875),, = (100101.111),

The two binary numbers can be rewritten as (100010011.110), and (000100101.111), to have the
same number of bits in their integer and fractional parts. The addition of two numbers is performed
as follows:

100010011.110
000100101.111
100111001.101

The decimal equivalent of (100111001.101), is (313.625),,.

52 Digital Electronics

2. (AF1.B3),,=(101011110001.10110011), and (FFF.E),q=(111111111111.1110),. (1111111111
11.1110), can also be written as (111111111111.11100000), to have the same number of bits in
the integer and fractional parts. The two numbers can now be added as follows:

0101011110001.10110011
0111111111111.11100000
1101011110001.10010011

The hexadecimal equivalent of (1101011110001.10010011), is (1AF1.93),,, which is equal to the
hex addition of (AF1.B3),, and (FFF.E).

Example 3.2
Find out whether 16-bit 2’s complement arithmetic can be used to add 14 276 and 18 490.

Solution

The addition of decimal numbers 14 276 and 18 490 would yield 32 766. 16-bit 2’s complement
arithmetic has a range of —2'5 to +(2!° — 1), i.e. —32 768 to +32 767. The expected result is inside
the allowable range. Therefore, 16-bit arithmetic can be used to add the given numbers.

Example 3.3

Add —118 and —32 firstly using eight-bit 2’s complement arithmetic and then using 16-bit 2’s
complement arithmetic. Comment on the results.

Solution

e —118 in eight-bit 2’s complement representation = 10001010.

e —32 in eight-bit 2’s complement representation = 11100000.

® The addition of the two numbers, after disregarding the final carry in the ninth bit position, is
01101010. Now, the decimal equivalent of (01101010),, which is in 2’s complement form, is +106.
The reason for the wrong result is that the expected result, i.e. —150, lies outside the range of
eight-bit 2’s complement arithmetic. Eight-bit 2’s complement arithmetic can be used when the
expected result lies in the range from —27 to + (2”7 — 1), i.e. —128 to +127. —118 in 16-bit 2’s
complement representation = 1111111110001010.

e —32 in 16-bit 2’s complement representation = 1111111111100000.

e The addition of the two numbers, after disregarding the final carry in the 17th position, produces
1111111101101010. The decimal equivalent of (1111111101101010),, which is in 2’s complement
form, is —150, which is the correct answer. 16-bit 2’s complement arithmetic has produced the
correct result, as the expected result lies within the range of 16-bit 2’s complement notation.

3.3 Subtraction of Larger-Bit Binary Numbers

Subtraction is also done columnwise in the same way as in the case of the decimal number system.
In the first step, we subtract the LSBs and subsequently proceed towards the MSB. Wherever the
subtrahend (the bit to be subtracted) is larger than the minuend, we borrow from the next adjacent

Digital Arithmetic 53

higher bit position having a ‘1’. As an example, let us go through different steps of subtracting (1001),
from (1100),.

In this case, ‘1’ is borrowed from the second MSB position, leaving a ‘0’ in that position. The
borrow is first brought to the third MSB position to make it ‘10’. Out of ‘10’ in this position,
‘1’ is taken to the LSB position to make ‘10’ there, leaving a ‘1’ in the third MSB position.
10 —1 in the LSB column gives ‘1°, 1 —0 in the third MSB column gives ‘1°, 0 — 0 in the second
MSB column gives ‘0’ and 1 —1 in the MSB also gives ‘0’ to complete subtraction. Subtraction
of mixed numbers is also done in the same manner. The above-mentioned steps are summarized
as follows:

. 1.1 0 0 2. 1.1 0 0
1 0 0 1 1 0 0 1

1 1 1

3.1.1 0 0 4. 1. 1 0 O
1 0 0 1 1 0 0 1

0 1 1 0 0 1 1

3.3.1 Subtraction Using 2’s Complement Arithmetic

Subtraction is similar to addition. Adding 2’s complement of the subtrahend to the minuend and
disregarding the carry, if any, achieves subtraction. The process is illustrated by considering six
different cases:

. Both minuend and subtrahend are positive. The subtrahend is the smaller of the two.
. Both minuend and subtrahend are positive. The subtrahend is the larger of the two.
The minuend is positive. The subtrahend is negative and smaller in magnitude.

The minuend is positive. The subtrahend is negative and greater in magnitude.

. Both minuend