
Modern System-on-Chip
Design on Arm

David J. Greaves

TEXTBOOK

SoC Design

Modern System-on-Chip
Design on Arm

Modern System-on-Chip
Design on Arm

DAVID J. GREAVES

Arm Education Media is an imprint of Arm Limited, 110 Fulbourn Road, Cambridge, CBI 9NJ, UK

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording or any other information storage and retrieval system, without
permission in writing from the publisher, except under the following conditions:

Permissions

n You may download this book in PDF format for personal, non-commercial use only.

 You may reprint or republish portions of the text for non-commercial, educational or research purposes but
only if there is an attribution to Arm Education.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein). Nothing in this license grants you any right to modify the whole, or portions of, this
book.

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods and professional practices may become necessary.

Readers must always rely on their own experience and knowledge in evaluating and using any information,
methods, project work, or experiments described herein. In using such information or methods, they should
be mindful of their safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent permitted by law, the publisher and the authors, contributors, and editors shall not have any
responsibility or liability for any losses, liabilities, claims, damages, costs or expenses resulting from or suffered in
connection with the use of the information and materials set out in this textbook.

Such information and materials are protected by intellectual property rights around the world and are copyright
© Arm Limited (or its affiliates). All rights are reserved. Any source code, models or other materials set out in this
reference book should only be used for non-commercial, educational purposes (and/or subject to the terms of
any license that is specified or otherwise provided by Arm). In no event shall purchasing this textbook be
construed as granting a license to use any other Arm technology or know-how.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. For more information about Arm’s trademarks,
please visit https://www.arm.com/company/policies/trademarks.

Arm is committed to making the language we use inclusive, meaningful, and respectful. Our goal is to remove and
replace non-inclusive language from our vocabulary to reflect our values and represent our global ecosystem.

Arm is working actively with our partners, standards bodies, and the wider ecosystem to adopt a consistent
approach to the use of inclusive language and to eradicate and replace offensive terms. We recognise that this will
take time. This book contains references to non-inclusive language; it will be updated with newer terms as those
terms are agreed and ratified with the wider community.

Contact us at education@arm.com with questions or comments about this course. You can also report non-
inclusive and offensive terminology usage in Arm content at terms@arm.com.

ISBN: 978-1-911531-37-1
978-1-911531-38-8 (ePub)
978-1-911531-36-4 (print)

Version: ePDF

For information on all Arm Education Media publications, visit our website at
https://www.arm.com/resources/education/books

To report errors or send feedback, please email edumedia@arm.com

https://www.arm.com/company/policies/trademarks
mailto:edumedia@arm.com

Contents

Preface xvii
Acknowledgments xix
Author Biography xxi
List of Figures xxiii
List of Tables xxxvii

1. Introduction to System-on-Chip
1.1 What is a System-on-Chip? 2

1.1.1 Historical Review 2
1.1.2 SimpleMicroprocessor Net-level Connections 4
1.1.3 Full Netlist andMemoryMap for aMicrocomputer 5
1.1.4 Separate Read andWrite Data Busses 7

1.2 Microcontrollers 8
1.3 Later Chapters 10
1.4 SoCDesign Flows 11

1.4.1 FunctionalModel 11
1.4.2 Architectural Partition 14
1.4.3 Architectural Partition and Co-design 15
1.4.4 IP Blocks 16
1.4.5 Synthesis 17
1.4.6 Simulation 17
1.4.7 Back-end Flow 18
1.4.8 Example: A Cell Phone 20
1.4.9 SoC Example: Helium 210 21

1.5 SoC Technology 24
1.6 Summary 26

1.6.1 Exercises 26

Contents

2. Processors, Memory and IP Blocks
2.1 Processor Cores 28

2.1.1 ISAs 30
2.1.2 Vector Instructions 31
2.1.3 Custom Instructions 32
2.1.4 The Classic Five-stage Pipeline 32

2.2 Super-scalar Processors 33
2.2.1 VirtualMemoryManagement Units: MMU and IOMMU 36

2.3 Multi-core Processing 37
2.3.1 SimultaneousMultithreading 39

2.4 Cache Design 39
2.4.1 Snooping andOther Coherency Protocols 43

2.5 Interrupts and the Interrupt Controller 46
2.5.1 Interrupt StructureWithin a Device 47

2.6 Memory Technology 48
2.6.1 Logical and Physical Layouts 49
2.6.2 Mask-programmed ROM 51
2.6.3 Static RandomAccessMemory 52
2.6.4 Synchronous Static RAM 53
2.6.5 Dual-ported Static RAM 54
2.6.6 Dynamic RAM 54
2.6.7 Electrically Alterable ROMs 59
2.6.8 Floating-gate EA-ROMs and Flash 61
2.6.9 EmergingMemory Technologies 62
2.6.10 Processor Speed versusMemory Speed 63

2.7 SoC I/O Blocks 64
2.7.1 Universal Asynchronous Receiver-Transmitter (UART) 65
2.7.2 Parallel Ports Using General-purpose I/O 68
2.7.3 General-purpose Input/Output Pins 69
2.7.4 Counter/Timer Blocks 70

vi

Contents

2.7.5 DMAControllers 72
2.7.6 Network and StreamingMedia Devices 73
2.7.7 Video Controllers and Frame Stores 75
2.7.8 Doorbell andMailbox Blocks 76
2.7.9 PerformanceManagement Units 76

2.8 Summary 77
2.8.1 Exercises 77

3. SoC Interconnect
3.1 Interconnect Requirements 82

3.1.1 Protocol Adaptors 85
3.1.2 On-chip Protocol Classes 89
3.1.3 Simple Bus Structures 89
3.1.4 Ordered and Unordered Interconnects 95
3.1.5 AMBAAXI Interconnect 97
3.1.6 Directory-based Coherence 99
3.1.7 Further BusOperations 101

3.2 Basic Interconnect Topologies 105
3.2.1 Simple Bus with One Initiator 106
3.2.2 Shared Bus withMultiple Initiators 106
3.2.3 Bridged Bus Structures 107

3.3 Simple Packet-Switched Interconnect 110
3.3.1 Multi-access SoC and Inter-chip Interconnect 111
3.3.2 Multi-access Folded Bus 112

3.4 Network-on-Chip 113
3.4.1 NoC Routing and Switching 115
3.4.2 Virtual Channels 118
3.4.3 NoCDeadlocks 118
3.4.4 Credit-based FlowControl 122
3.4.5 AMBA 5CHI 124

vii

Contents

2. Processors, Memory and IP Blocks
2.1 Processor Cores 28

2.1.1 ISAs 30
2.1.2 Vector Instructions 31
2.1.3 Custom Instructions 32
2.1.4 The Classic Five-stage Pipeline 32

2.2 Super-scalar Processors 33
2.2.1 VirtualMemoryManagement Units: MMU and IOMMU 36

2.3 Multi-core Processing 37
2.3.1 SimultaneousMultithreading 39

2.4 Cache Design 39
2.4.1 Snooping andOther Coherency Protocols 43

2.5 Interrupts and the Interrupt Controller 46
2.5.1 Interrupt StructureWithin a Device 47

2.6 Memory Technology 48
2.6.1 Logical and Physical Layouts 49
2.6.2 Mask-programmed ROM 51
2.6.3 Static RandomAccessMemory 52
2.6.4 Synchronous Static RAM 53
2.6.5 Dual-ported Static RAM 54
2.6.6 Dynamic RAM 54
2.6.7 Electrically Alterable ROMs 59
2.6.8 Floating-gate EA-ROMs and Flash 61
2.6.9 EmergingMemory Technologies 62
2.6.10 Processor Speed versusMemory Speed 63

2.7 SoC I/O Blocks 64
2.7.1 Universal Asynchronous Receiver-Transmitter (UART) 65
2.7.2 Parallel Ports Using General-purpose I/O 68
2.7.3 General-purpose Input/Output Pins 69
2.7.4 Counter/Timer Blocks 70

vi

Contents

2.7.5 DMAControllers 72
2.7.6 Network and StreamingMedia Devices 73
2.7.7 Video Controllers and Frame Stores 75
2.7.8 Doorbell andMailbox Blocks 76
2.7.9 PerformanceManagement Units 76

2.8 Summary 77
2.8.1 Exercises 77

3. SoC Interconnect
3.1 Interconnect Requirements 82

3.1.1 Protocol Adaptors 85
3.1.2 On-chip Protocol Classes 89
3.1.3 Simple Bus Structures 89
3.1.4 Ordered and Unordered Interconnects 95
3.1.5 AMBAAXI Interconnect 97
3.1.6 Directory-based Coherence 99
3.1.7 Further BusOperations 101

3.2 Basic Interconnect Topologies 105
3.2.1 Simple Bus with One Initiator 106
3.2.2 Shared Bus withMultiple Initiators 106
3.2.3 Bridged Bus Structures 107

3.3 Simple Packet-Switched Interconnect 110
3.3.1 Multi-access SoC and Inter-chip Interconnect 111
3.3.2 Multi-access Folded Bus 112

3.4 Network-on-Chip 113
3.4.1 NoC Routing and Switching 115
3.4.2 Virtual Channels 118
3.4.3 NoCDeadlocks 118
3.4.4 Credit-based FlowControl 122
3.4.5 AMBA 5CHI 124

vii

Contents

3.5 Advanced Interconnect Topologies 126
3.5.1 Traffic FlowMatrix 127

3.6 Interconnect Building Blocks 133
3.7 Long-distance Interconnects 136

3.7.1 Domain Crossing 136
3.7.2 Metastability Theory 137
3.7.3 CD-crossing Bridge 138
3.7.4 Harmonic Clocks 139
3.7.5 PDCrossing 141

3.8 Serialiser andDeserialiser: SERDES 142
3.8.1 PCIe and SATA 144
3.8.2 CCIX, CXL andNVLink 144

3.9 Automatic Topology Synthesis 145
3.9.1 Domain Assignment 145
3.9.2 FIFOBuffer Sizing 146
3.9.3 Link Sizing 147

3.10 Summary 147
3.10.1 Exercises 148

4. SystemDesign Considerations
4.1 DesignObjectives andMetrics 154
4.2 Parallel Speedup Theory 156

4.2.1 Contention and Arbitration 157
4.3 FIFOQueuing Theory andQoS 159

4.3.1 Classical Single-server andOpenQueueModels 160
4.3.2 Expedited Service Queuing 163
4.3.3 Statistical Multiplexing Gain 164
4.3.4 QoS Policing 166

4.4 Design Trade-offs 168
4.4.1 Thermal Design 169
4.4.2 Folding, Re-timing and Recoding 171

viii

Contents

4.5 Design Trade-offs inMemory Systems 175
4.6 SoC EnergyMinimisation 182

4.6.1 Power, Resistance and Capacitance 182
4.6.2 Dynamic Energy andDynamic Power 183
4.6.3 Static Power Use 185
4.6.4 Wiring and CapacitanceModelling 186
4.6.5 Landauer Limit and Reversible Computation 188
4.6.6 Gate Delay as a Function of Supply Voltage 190
4.6.7 SPICE Simulation of an Invertor 191
4.6.8 Dynamic Voltage and Frequency Scaling 191
4.6.9 Dynamic Clock Gating 194
4.6.10 Dynamic Supply Gating 196
4.6.11 Future Trends for Energy Use 199

4.7 Designing for Testability andDebug Integration 200
4.7.1 Application Debugging 200
4.7.2 Multi-core Debug Integration 202
4.7.3 DebugNavigation and JTAG 204
4.7.4 Additional DAP Facilities 205
4.7.5 Boundary and General Path Scans 206
4.7.6 BIST for SRAMMemories (MBIST) 207

4.8 Reliability and Security 208
4.8.1 Physical Faults, Performance Degradation, Error Detection and

Correction, and Pre- and Post-siliconMitigation Techniques 208
4.9 Hardware-based Security 209

4.9.1 Trusted Platform and ComputerModules 210
4.9.2 Trusted ExecutionMode 211
4.9.3 Capability-based Protection 211
4.9.4 Clock Sources 211
4.9.5 PLL and Clock Trees 212
4.9.6 Clock Skewing andMulti-cycle Paths 213

4.10 Summary 216
4.10.1 Exercises 216

ix

Contents

3.5 Advanced Interconnect Topologies 126
3.5.1 Traffic FlowMatrix 127

3.6 Interconnect Building Blocks 133
3.7 Long-distance Interconnects 136

3.7.1 Domain Crossing 136
3.7.2 Metastability Theory 137
3.7.3 CD-crossing Bridge 138
3.7.4 Harmonic Clocks 139
3.7.5 PDCrossing 141

3.8 Serialiser andDeserialiser: SERDES 142
3.8.1 PCIe and SATA 144
3.8.2 CCIX, CXL andNVLink 144

3.9 Automatic Topology Synthesis 145
3.9.1 Domain Assignment 145
3.9.2 FIFOBuffer Sizing 146
3.9.3 Link Sizing 147

3.10 Summary 147
3.10.1 Exercises 148

4. SystemDesign Considerations
4.1 DesignObjectives andMetrics 154
4.2 Parallel Speedup Theory 156

4.2.1 Contention and Arbitration 157
4.3 FIFOQueuing Theory andQoS 159

4.3.1 Classical Single-server andOpenQueueModels 160
4.3.2 Expedited Service Queuing 163
4.3.3 Statistical Multiplexing Gain 164
4.3.4 QoS Policing 166

4.4 Design Trade-offs 168
4.4.1 Thermal Design 169
4.4.2 Folding, Re-timing and Recoding 171

viii

Contents

4.5 Design Trade-offs inMemory Systems 175
4.6 SoC EnergyMinimisation 182

4.6.1 Power, Resistance and Capacitance 182
4.6.2 Dynamic Energy andDynamic Power 183
4.6.3 Static Power Use 185
4.6.4 Wiring and CapacitanceModelling 186
4.6.5 Landauer Limit and Reversible Computation 188
4.6.6 Gate Delay as a Function of Supply Voltage 190
4.6.7 SPICE Simulation of an Invertor 191
4.6.8 Dynamic Voltage and Frequency Scaling 191
4.6.9 Dynamic Clock Gating 194
4.6.10 Dynamic Supply Gating 196
4.6.11 Future Trends for Energy Use 199

4.7 Designing for Testability andDebug Integration 200
4.7.1 Application Debugging 200
4.7.2 Multi-core Debug Integration 202
4.7.3 DebugNavigation and JTAG 204
4.7.4 Additional DAP Facilities 205
4.7.5 Boundary and General Path Scans 206
4.7.6 BIST for SRAMMemories (MBIST) 207

4.8 Reliability and Security 208
4.8.1 Physical Faults, Performance Degradation, Error Detection and

Correction, and Pre- and Post-siliconMitigation Techniques 208
4.9 Hardware-based Security 209

4.9.1 Trusted Platform and ComputerModules 210
4.9.2 Trusted ExecutionMode 211
4.9.3 Capability-based Protection 211
4.9.4 Clock Sources 211
4.9.5 PLL and Clock Trees 212
4.9.6 Clock Skewing andMulti-cycle Paths 213

4.10 Summary 216
4.10.1 Exercises 216

ix

Contents

5. Electronic System-LevelModelling
5.1 Modelling Abstractions 220

5.1.1 ESL FlowDiagram 223
5.2 InterconnectModelling 225

5.2.1 Stochastic InterconnectModelling 226
5.2.2 Cycle-accurate InterconnectModelling 226

5.3 SystemCModelling Library 227
5.3.1 SystemC Structural Netlist 229
5.3.2 SystemC Threads andMethods 230
5.3.3 SystemC Plotting and its GUI 232
5.3.4 Towards GreaterModelling Efficiency 233

5.4 Transaction-levelModelling 234
5.4.1 OSCI TLM1.0 Standard 235
5.4.2 OSCI TLM2.0 Standard 237
5.4.3 TLMModels with Timing (TLM+T) 241
5.4.4 TLMwith Loosely TimedModelling 241
5.4.5 Modelling Contention Under Loosely Timed TLM 244
5.4.6 Non-blocking TLM coding 245
5.4.7 Typical ISS Setupwith Loose Timing and Temporal Decoupling 246
5.4.8 TLMTransactors for BridgingModelling Styles 246
5.4.9 ESLModel of the LocalLink Protocol 248

5.5 ProcessorModelling with Different Levels of Abstraction 248
5.5.1 Forms of ISS and Their Variants 249
5.5.2 Using the C Preprocessor to Adapt Firmware 251
5.5.3 ESL CacheModelling andDMI 253

5.6 ESLModelling of Power, Performance and Area 254
5.6.1 Estimating theOperating Frequency and Power with RTL 254
5.6.2 TypicalMacroscopic Performance Equations: SRAMExample 257
5.6.3 TypicalMacroscopic Performance Equations: DRAMExample 259
5.6.4 Macroscopic Phase andMode Power Estimation Formula 262

x

Contents

5.6.5 Spreadsheet-based Energy Accounting 263
5.6.6 Rent’s Rule for EstimatingWire Length 263
5.6.7 Dynamic EnergyModelling in TLM 266
5.6.8 ESLModelling of DVFS and Power Gating 267

5.7 Case Study: Modelling the Zynq Platform (Prazor) 268
5.8 Summary 268

5.8.1 Exercises 268

6. Architectural Design Exploration
6.1 Hardware and Software Design Partition 273

6.1.1 Design Partitioning Example: A BluetoothModule 274
6.2 Design Space Exploration 276

6.2.1 DSEWorkflows 280
6.2.2 C FunctionalModels 282
6.2.3 FunctionalModel Refactoring to ESL 284
6.2.4 Microarchitecture of a Subsystem 285
6.2.5 Interconnect Optimisation 287

6.3 Hazards 289
6.3.1 Hazards FromArrayMemories 291
6.3.2 Overcoming Structural Hazards using Holding Registers 291
6.3.3 NameAlias Hazards 293
6.3.4 FIFOBuffers andDual-port IP Blocks 293

6.4 CustomAccelerators 297
6.4.1 Accelerator Communication 298
6.4.2 Multiple Sub-tasks 301
6.4.3 CustomAccelerator Example I 301
6.4.4 FPGAAcceleration in the Cloud 303

6.5 Super FPGAs 305
6.6 Asymptotic Analysis 307

6.6.1 Illustration 1: Hierarchical Cache 308
6.6.2 Illustration 2: big.LITTLE 309

xi

Contents

5. Electronic System-LevelModelling
5.1 Modelling Abstractions 220

5.1.1 ESL FlowDiagram 223
5.2 InterconnectModelling 225

5.2.1 Stochastic InterconnectModelling 226
5.2.2 Cycle-accurate InterconnectModelling 226

5.3 SystemCModelling Library 227
5.3.1 SystemC Structural Netlist 229
5.3.2 SystemC Threads andMethods 230
5.3.3 SystemC Plotting and its GUI 232
5.3.4 Towards GreaterModelling Efficiency 233

5.4 Transaction-levelModelling 234
5.4.1 OSCI TLM1.0 Standard 235
5.4.2 OSCI TLM2.0 Standard 237
5.4.3 TLMModels with Timing (TLM+T) 241
5.4.4 TLMwith Loosely TimedModelling 241
5.4.5 Modelling Contention Under Loosely Timed TLM 244
5.4.6 Non-blocking TLM coding 245
5.4.7 Typical ISS Setupwith Loose Timing and Temporal Decoupling 246
5.4.8 TLMTransactors for BridgingModelling Styles 246
5.4.9 ESLModel of the LocalLink Protocol 248

5.5 ProcessorModelling with Different Levels of Abstraction 248
5.5.1 Forms of ISS and Their Variants 249
5.5.2 Using the C Preprocessor to Adapt Firmware 251
5.5.3 ESL CacheModelling andDMI 253

5.6 ESLModelling of Power, Performance and Area 254
5.6.1 Estimating theOperating Frequency and Power with RTL 254
5.6.2 TypicalMacroscopic Performance Equations: SRAMExample 257
5.6.3 TypicalMacroscopic Performance Equations: DRAMExample 259
5.6.4 Macroscopic Phase andMode Power Estimation Formula 262

x

Contents

5.6.5 Spreadsheet-based Energy Accounting 263
5.6.6 Rent’s Rule for EstimatingWire Length 263
5.6.7 Dynamic EnergyModelling in TLM 266
5.6.8 ESLModelling of DVFS and Power Gating 267

5.7 Case Study: Modelling the Zynq Platform (Prazor) 268
5.8 Summary 268

5.8.1 Exercises 268

6. Architectural Design Exploration
6.1 Hardware and Software Design Partition 273

6.1.1 Design Partitioning Example: A BluetoothModule 274
6.2 Design Space Exploration 276

6.2.1 DSEWorkflows 280
6.2.2 C FunctionalModels 282
6.2.3 FunctionalModel Refactoring to ESL 284
6.2.4 Microarchitecture of a Subsystem 285
6.2.5 Interconnect Optimisation 287

6.3 Hazards 289
6.3.1 Hazards FromArrayMemories 291
6.3.2 Overcoming Structural Hazards using Holding Registers 291
6.3.3 NameAlias Hazards 293
6.3.4 FIFOBuffers andDual-port IP Blocks 293

6.4 CustomAccelerators 297
6.4.1 Accelerator Communication 298
6.4.2 Multiple Sub-tasks 301
6.4.3 CustomAccelerator Example I 301
6.4.4 FPGAAcceleration in the Cloud 303

6.5 Super FPGAs 305
6.6 Asymptotic Analysis 307

6.6.1 Illustration 1: Hierarchical Cache 308
6.6.2 Illustration 2: big.LITTLE 309

xi

Contents

6.6.3 Illustration 3: NoC Topology Trade-off 311
6.6.4 Illustration 4: Static and Dynamic Power Trade-off 314

6.7 Virtual Platform Examples 315
6.7.1 The Prazor/Zynq Virtual Platform 315
6.7.2 Co-designWorked Example: MPEGVideo Compression 317

6.8 Design-entry Languages 320
6.8.1 Functional Units 323
6.8.2 Accellera IP-XACT 326
6.8.3 Hardware Construction Languages 331
6.8.4 Handel-C 334
6.8.5 Bluespec SystemVerilog 335

6.9 High-level Synthesis 339
6.9.1 Discovering Parallelism and Shared Variables in Iterations 347

6.10 Summary 356
6.10.1 Exercises 357

7. FormalMethods and Assertion-based Design
7.1 Formal Languages and Tools 365

7.1.1 Verification Coverage 367
7.1.2 Property Completeness 369
7.1.3 When Is a Formal Specification Complete? 369

7.2 Assertions 370
7.2.1 Predicate and Property Forms 373
7.2.2 Assertion-based Design 374
7.2.3 Regression Testing 375

7.3 Simulationwith Assertions 375
7.3.1 Simulations andDynamic Validation 376
7.3.2 Automated Stimulus Generation: Directed and Constrained

RandomVerification 376
7.3.3 Simulation versus Formal Checking 378

xii

Contents

7.4 Property Specification Language 380
7.4.1 PSL Four-level Syntax Structure 382
7.4.2 Extended Regular Expressions and SERES 383
7.4.3 SystemVerilog Assertions 384

7.5 Formal Interface Protocol Checkers 385
7.6 Equivalence Checking 389

7.6.1 Boolean Equivalence Checking 389
7.6.2 Sequential Equivalence Checking 390
7.6.3 X-propagation Checking 392
7.6.4 Model Checking the Items in a Data Path 396

7.7 Connectivity Checking 398
7.8 Checking the Security Policy 399
7.9 Summary 399

7.9.1 Exercises 401

8. Fabrication and Production
8.1 Evolution of Design Closure 405

8.1.1 Physically Aware Design Flows 407
8.2 VLSI Geometry 410

8.2.1 VLSI Evolution 412
8.2.2 Typical and Future Values 415

8.3 Register Transfer Languages 418
8.3.1 RTL Structural Elaboration 420
8.3.2 Unsynthesisable RTL 427
8.3.3 RTL Simulation Algorithms 429
8.3.4 Event-driven Simulation 431
8.3.5 Inertial and Transport Delays 431
8.3.6 Compute/CommitModelling and the Delta Cycle 432
8.3.7 Mixed Analogue andDigital Simulation 433

xiii

Contents

6.6.3 Illustration 3: NoC Topology Trade-off 311
6.6.4 Illustration 4: Static and Dynamic Power Trade-off 314

6.7 Virtual Platform Examples 315
6.7.1 The Prazor/Zynq Virtual Platform 315
6.7.2 Co-designWorked Example: MPEGVideo Compression 317

6.8 Design-entry Languages 320
6.8.1 Functional Units 323
6.8.2 Accellera IP-XACT 326
6.8.3 Hardware Construction Languages 331
6.8.4 Handel-C 334
6.8.5 Bluespec SystemVerilog 335

6.9 High-level Synthesis 339
6.9.1 Discovering Parallelism and Shared Variables in Iterations 347

6.10 Summary 356
6.10.1 Exercises 357

7. FormalMethods and Assertion-based Design
7.1 Formal Languages and Tools 365

7.1.1 Verification Coverage 367
7.1.2 Property Completeness 369
7.1.3 When Is a Formal Specification Complete? 369

7.2 Assertions 370
7.2.1 Predicate and Property Forms 373
7.2.2 Assertion-based Design 374
7.2.3 Regression Testing 375

7.3 Simulationwith Assertions 375
7.3.1 Simulations andDynamic Validation 376
7.3.2 Automated Stimulus Generation: Directed and Constrained

RandomVerification 376
7.3.3 Simulation versus Formal Checking 378

xii

Contents

7.4 Property Specification Language 380
7.4.1 PSL Four-level Syntax Structure 382
7.4.2 Extended Regular Expressions and SERES 383
7.4.3 SystemVerilog Assertions 384

7.5 Formal Interface Protocol Checkers 385
7.6 Equivalence Checking 389

7.6.1 Boolean Equivalence Checking 389
7.6.2 Sequential Equivalence Checking 390
7.6.3 X-propagation Checking 392
7.6.4 Model Checking the Items in a Data Path 396

7.7 Connectivity Checking 398
7.8 Checking the Security Policy 399
7.9 Summary 399

7.9.1 Exercises 401

8. Fabrication and Production
8.1 Evolution of Design Closure 405

8.1.1 Physically Aware Design Flows 407
8.2 VLSI Geometry 410

8.2.1 VLSI Evolution 412
8.2.2 Typical and Future Values 415

8.3 Register Transfer Languages 418
8.3.1 RTL Structural Elaboration 420
8.3.2 Unsynthesisable RTL 427
8.3.3 RTL Simulation Algorithms 429
8.3.4 Event-driven Simulation 431
8.3.5 Inertial and Transport Delays 431
8.3.6 Compute/CommitModelling and the Delta Cycle 432
8.3.7 Mixed Analogue andDigital Simulation 433

xiii

Contents

8.3.8 Logic Synthesis 439
8.3.9 Arrays and RAM Inference in RTL 442
8.3.10 MemoryMacrocell Compiler 443
8.3.11 Conventional RTL Comparedwith Software 444
8.3.12 Synthesis Intent and Goals 445

8.4 Chip Types and Classifications 448
8.4.1 Semi-custom (Cell-based) Design 452
8.4.2 Standard Cell Data 454
8.4.3 SPICE Characterisation 455
8.4.4 PVT Variations 456
8.4.5 Electromigration 456
8.4.6 Waveform-based Cell Characterisation 458
8.4.7 Noise Characterisation 460

8.5 Gate Arrays 461
8.5.1 Pass-transistorMultiplexers 462
8.5.2 Field-programmable Gate Arrays 464
8.5.3 Structured ASIC 467
8.5.4 FPGA SoC Emulators 467

8.6 Floor and Power Planning 468
8.6.1 Power Planning 468

8.7 Flow Steps 470
8.7.1 Placement 470
8.7.2 Clock Tree Insertion 473
8.7.3 Routing 473
8.7.4 Timing and Power Verification 474
8.7.5 Post-routeOptimisation 475
8.7.6 Layout versus Schematic Check 475
8.7.7 Sign-off and Tapeout 475

xiv

Contents

8.8 Production Testing 476
8.8.1 Universal VerificationMethodology andOpen Verification

Methodology 477
8.8.2 Test ProgramGeneration 478
8.8.3 Wafer Probe Testing 480
8.8.4 PackagedDevice Testing 482

8.9 Device Packaging andMCMs 483
8.9.1 MCMs andDie-stacking 484

8.10 Engineering ChangeOrders 485
8.11 ASIC Costs: Recurring andNon-recurring Expenses 487

8.11.1 Chip Cost versus Area 487
8.12 Static Timing Analysis and Timing Sign-off 488

8.12.1 STA Types: Maximum andMinimum 489
8.12.2 MaximumTiming Analysis 489
8.12.3 MinimumTiming Analysis 491
8.12.4 Process Corners 492
8.12.5 Early and Late Arrivals 494
8.12.6 TimingModels: Liberty 496
8.12.7 Multi-modeMulti-corner Analysis 499
8.12.8 Signal Integrity 500
8.12.9 Coupling Capacitance 500
8.12.10 Noise Analysis 501
8.12.11 Transition Time Limits 501
8.12.12 On-chip Variation 502
8.12.13 Net Delay Variation 504
8.12.14 Voltage Variation 505
8.12.15 Advanced Topics in STA 505
8.12.16 Timing Closure 506

8.13 Summary 507
8.13.1 Exercises 508

xv

Contents

8.3.8 Logic Synthesis 439
8.3.9 Arrays and RAM Inference in RTL 442
8.3.10 MemoryMacrocell Compiler 443
8.3.11 Conventional RTL Comparedwith Software 444
8.3.12 Synthesis Intent and Goals 445

8.4 Chip Types and Classifications 448
8.4.1 Semi-custom (Cell-based) Design 452
8.4.2 Standard Cell Data 454
8.4.3 SPICE Characterisation 455
8.4.4 PVT Variations 456
8.4.5 Electromigration 456
8.4.6 Waveform-based Cell Characterisation 458
8.4.7 Noise Characterisation 460

8.5 Gate Arrays 461
8.5.1 Pass-transistorMultiplexers 462
8.5.2 Field-programmable Gate Arrays 464
8.5.3 Structured ASIC 467
8.5.4 FPGA SoC Emulators 467

8.6 Floor and Power Planning 468
8.6.1 Power Planning 468

8.7 Flow Steps 470
8.7.1 Placement 470
8.7.2 Clock Tree Insertion 473
8.7.3 Routing 473
8.7.4 Timing and Power Verification 474
8.7.5 Post-routeOptimisation 475
8.7.6 Layout versus Schematic Check 475
8.7.7 Sign-off and Tapeout 475

xiv

Contents

8.8 Production Testing 476
8.8.1 Universal VerificationMethodology andOpen Verification

Methodology 477
8.8.2 Test ProgramGeneration 478
8.8.3 Wafer Probe Testing 480
8.8.4 PackagedDevice Testing 482

8.9 Device Packaging andMCMs 483
8.9.1 MCMs andDie-stacking 484

8.10 Engineering ChangeOrders 485
8.11 ASIC Costs: Recurring andNon-recurring Expenses 487

8.11.1 Chip Cost versus Area 487
8.12 Static Timing Analysis and Timing Sign-off 488

8.12.1 STA Types: Maximum andMinimum 489
8.12.2 MaximumTiming Analysis 489
8.12.3 MinimumTiming Analysis 491
8.12.4 Process Corners 492
8.12.5 Early and Late Arrivals 494
8.12.6 TimingModels: Liberty 496
8.12.7 Multi-modeMulti-corner Analysis 499
8.12.8 Signal Integrity 500
8.12.9 Coupling Capacitance 500
8.12.10 Noise Analysis 501
8.12.11 Transition Time Limits 501
8.12.12 On-chip Variation 502
8.12.13 Net Delay Variation 504
8.12.14 Voltage Variation 505
8.12.15 Advanced Topics in STA 505
8.12.16 Timing Closure 506

8.13 Summary 507
8.13.1 Exercises 508

xv

Contents

9. Putting Everything Together
9.1 Firmware 512

9.1.1 Secure Bootstrapping 513
9.2 Powering up 514

9.2.1 Engineering Sample Testing 514
9.3 Success or Failure? 517

Glossary of Abbreviations 521

Index 551

xvi

Preface

Silicon technology has seen relentless advances in the past 50 years, driven by constant innovation
andminiaturisation. As a result, more andmore functionality has been placed into a single chip. Today,
entire systems, including processors, memory, sensors and analogue circuitry, are integrated into one
single chip (hence, a system-on-chip or SoC), delivering increased performance despite tight area,
power and energy budgets. The aim of this textbook is to expose aspiring and practising SoC
designers to the fundamentals and latest developments in SoC design and technologies. The
processors within a SoC run a huge body of software. Much of this code is portable overmany
platforms, but low-level components, such as device drivers, are hardware-dependent andmay be
CPU-intensive. Power use can be reduced using custom accelerator hardware. Although this book
emphasises the hardware design elements, it also addresses co-design, in which the hardware and
software are designed hand in hand. It is assumed that the reader already understands the basics of
processor architecture, computer technology, and software and hardware design.

Is This Book Suitable For You?
We assume that you have some experience with hardware design using an RTL such as Verilog or
VHDL, and that you understand assembly language programming and basic principles of operating
systems. In other words, you have completed the first two years of a degree in Computer Science or
Electronic Engineering.

Many of the principles taught in this book are relevant for all forms of system architect, including
those who are designing cloud-scale applications, custom accelerators or IoT devices in general, or
thosemaking FPGA designs. But the details of design verification in Chapter 8 are likely to be just of
interest to those designing semi-custom silicon using standard cells.

A Git repository of online additional material is available at http://bitbucket.org/djg11/modern-
soc-design-djg

This contains data used for generating tables and graphs in the book, as well as further source code,
labmaterials, examples and answers to selected exercises.

The repo contains a SystemCmodel of the Zynq super FPGA device family, coded in blocking TLM
style. It is sufficient to run an ArmA9 Linux kernel using an identical boot image as the real silicon.

Book Structure
This book contains nine chapters, each devoted to a different aspect of SoC design.

Chapter 1 reviews basic computer architecture, defining terms that are used in later chapters.
Readers are expected to be largely familiar withmost of this material, although the transactional-level

Contents

9. Putting Everything Together
9.1 Firmware 512

9.1.1 Secure Bootstrapping 513
9.2 Powering up 514

9.2.1 Engineering Sample Testing 514
9.3 Success or Failure? 517

Glossary of Abbreviations 521

Index 551

xvi

Preface

Silicon technology has seen relentless advances in the past 50 years, driven by constant innovation
andminiaturisation. As a result, more andmore functionality has been placed into a single chip. Today,
entire systems, including processors, memory, sensors and analogue circuitry, are integrated into one
single chip (hence, a system-on-chip or SoC), delivering increased performance despite tight area,
power and energy budgets. The aim of this textbook is to expose aspiring and practising SoC
designers to the fundamentals and latest developments in SoC design and technologies. The
processors within a SoC run a huge body of software. Much of this code is portable overmany
platforms, but low-level components, such as device drivers, are hardware-dependent andmay be
CPU-intensive. Power use can be reduced using custom accelerator hardware. Although this book
emphasises the hardware design elements, it also addresses co-design, in which the hardware and
software are designed hand in hand. It is assumed that the reader already understands the basics of
processor architecture, computer technology, and software and hardware design.

Is This Book Suitable For You?
We assume that you have some experience with hardware design using an RTL such as Verilog or
VHDL, and that you understand assembly language programming and basic principles of operating
systems. In other words, you have completed the first two years of a degree in Computer Science or
Electronic Engineering.

Many of the principles taught in this book are relevant for all forms of system architect, including
those who are designing cloud-scale applications, custom accelerators or IoT devices in general, or
thosemaking FPGA designs. But the details of design verification in Chapter 8 are likely to be just of
interest to those designing semi-custom silicon using standard cells.

A Git repository of online additional material is available at http://bitbucket.org/djg11/modern-
soc-design-djg

This contains data used for generating tables and graphs in the book, as well as further source code,
labmaterials, examples and answers to selected exercises.

The repo contains a SystemCmodel of the Zynq super FPGA device family, coded in blocking TLM
style. It is sufficient to run an ArmA9 Linux kernel using an identical boot image as the real silicon.

Book Structure
This book contains nine chapters, each devoted to a different aspect of SoC design.

Chapter 1 reviews basic computer architecture, defining terms that are used in later chapters.
Readers are expected to be largely familiar withmost of this material, although the transactional-level

Preface

modelling (TLM) view of the hardware is likely to be new. A SoC is an assembly of intellectual property
(IP) blocks.

Chapter 2 describes many of the standard IP blocks that make up a typical SoC, including processors,
memories, input/output devices and interrupts.

Chapter 3 considers the interconnect between the IP blocks, covering the evolution of processor
busses and networks-on-chip (NoCs).

Chapter 4 teaches basic principles of system architecture, including dimensioning of busses and
queuing theory and arbitration policies. It also discusses debug support.

Chapter 5 presents Electronic System Level (ESL) modelling, where a simulation model for a whole
SoC, also known as a virtual platform, is put together. The ESL model is sufficient to test and develop
software, as well as to perform architectural exploration, where the throughput, energy use and
silicon area of a proposed system implementation can be examined at a high level.

Chapter 6 presents further architectural exploration considerations, including the design of custom
accelerators for a specific application. The languages Bluespec and Chisel are described as
alternatives to RTL for design entry and the basic principles of high-level synthesis (HLS) are covered.

Chapter 7 is a primer for formal verification of SoCs, comparing the usefulness of formal compared
with simulation for bug hunting and right-first-time solutions. A number of useful formal tricks are
covered.

Chapter 8 presents semi-custom fabrication flows for making the physical silicon and covers advanced
verification and variability mitigation techniques for today’s deep sub-micron devices using FinFETs.

Chapter 9 covers what to do when the first SoC samples arrive back from the wafer processing plant,
including booting an operating system and checking environmental compatibility (operating
temperature and unwanted radio emissions).

xviii

Acknowledgements

I am very grateful to Professor AndyHopper, whowasmy PhD supervisor, who has been a constant
source of inspiration and direction, andwho has often beenmy boss both in industry and at the
Computer Laboratory. He introducedme to the field of chip design. I am also very grateful to the late
M. G. Scroggie, the principal author of ‘Foundations ofWireless’, which was a book I read and re-read
all throughmy childhood. I can only hope some people find this current book as valuable as I found his.
Certainly I have tried tomix breadth and depth in the same accessible way that hemanaged. I would
like to thank those working in the Computer Laboratory who helpedwith this book, including David
Chisnall, RobertMullins, Omer Sella andMilos Puzovic. I would also like to thankmywife, Aldyth, for
putting upwithme for this last year. I’ve often read such comments in the acknowledgement sections
of other books, but now I understandwhat causes it.

Most importantly, I’d like to thank themany Arm staff who have helpedwith this book, either by
contributing text to large chunks of it, or with additional information and suggestions:

Khaled Benkrid, whomade this book possible.

LizWarman, who kept me on track and assistedmewith the process.

Shuojin Hang and Francisca Tanwho helped create the scope and reviewed early drafts.

This bookwould not have been possible without the collaboration of the following Arm engineers
who have co-written, reviewed and commented on the book:

Chapter 2: Processors, Memory and IP Blocks
RahulMathur, Staff Engineer

Chapter 3: SoC Interconnects
AnupGangwar, Distinguished Engineer
Antony Harris, Senior Principal AMBAArchitect

Chapter 6: Architectural Design Exploration
Edwin Dankert, Director, TechnologyManagement

Chapter 7: FormalMethods and Assertion-Based Design
Daryl Stewart, Distinguished Engineer

Chapter 8: Fabrication and Production
JimDodrill, Fellow
Christophe Lopez, Senior Principal Engineer
AurelienMerour, Principal Engineer
Jean-Luc Pelloie, Fellow

Preface

modelling (TLM) view of the hardware is likely to be new. A SoC is an assembly of intellectual property
(IP) blocks.

Chapter 2 describes many of the standard IP blocks that make up a typical SoC, including processors,
memories, input/output devices and interrupts.

Chapter 3 considers the interconnect between the IP blocks, covering the evolution of processor
busses and networks-on-chip (NoCs).

Chapter 4 teaches basic principles of system architecture, including dimensioning of busses and
queuing theory and arbitration policies. It also discusses debug support.

Chapter 5 presents Electronic System Level (ESL) modelling, where a simulation model for a whole
SoC, also known as a virtual platform, is put together. The ESL model is sufficient to test and develop
software, as well as to perform architectural exploration, where the throughput, energy use and
silicon area of a proposed system implementation can be examined at a high level.

Chapter 6 presents further architectural exploration considerations, including the design of custom
accelerators for a specific application. The languages Bluespec and Chisel are described as
alternatives to RTL for design entry and the basic principles of high-level synthesis (HLS) are covered.

Chapter 7 is a primer for formal verification of SoCs, comparing the usefulness of formal compared
with simulation for bug hunting and right-first-time solutions. A number of useful formal tricks are
covered.

Chapter 8 presents semi-custom fabrication flows for making the physical silicon and covers advanced
verification and variability mitigation techniques for today’s deep sub-micron devices using FinFETs.

Chapter 9 covers what to do when the first SoC samples arrive back from the wafer processing plant,
including booting an operating system and checking environmental compatibility (operating
temperature and unwanted radio emissions).

xviii

Acknowledgements

I am very grateful to Professor Sir AndyHopper, whowasmy PhD supervisor, who has been a
constant source of inspiration and direction, andwho has often beenmy boss both in industry and at
the Computer Laboratory. He introducedme to the field of chip design. I am also very grateful to the
lateM. G. Scroggie, the principal author of ‘Foundations ofWireless’, which was a book I read and
re-read all throughmy childhood. I can only hope some people find this current book as valuable as I
found his. Certainly I have tried tomix breadth and depth in the same accessible way that he
managed. I would like to thank those working in the Computer Laboratory who helpedwith this book,
including David Chisnall, RobertMullins, Omer Sella andMilos Puzovic. I would also like to thankmy
wife, Aldyth, for putting upwithme for this last year. I’ve often read such comments in the
acknowledgement sections of other books, but now I understandwhat causes it.

Most importantly, I’d like to thank themany Arm staff who have helpedwith this book, either by
contributing text to large chunks of it, or with additional information and suggestions:

Khaled Benkrid, whomade this book possible.

LizWarman, who kept me on track and assistedmewith the process.

Shuojin Hang and Francisca Tanwho helped create the scope and reviewed early drafts.

This bookwould not have been possible without the collaboration of the following Arm engineers
who have co-written, reviewed and commented on the book:

Chapter 2: Processors, Memory and IP Blocks
RahulMathur, Staff Engineer

Chapter 3: SoC Interconnects
AnupGangwar, Distinguished Engineer
Antony Harris, Senior Principal AMBAArchitect

Chapter 6: Architectural Design Exploration
Edwin Dankert, Director, TechnologyManagement

Chapter 7: FormalMethods and Assertion-Based Design
Daryl Stewart, Distinguished Engineer

Chapter 8: Fabrication and Production
JimDodrill, Fellow
Christophe Lopez, Senior Principal Engineer
AurelienMerour, Principal Engineer
Jean-Luc Pelloie, Fellow

Author Biography

Dr. David J. Greaves, PhDCEng. is Senior Lecturer in Computing Science at
the University of Cambridge, UK and a Fellow of Corpus Christi College.
Born in London, he grew up in a house full of engineering textbooks, circuit
diagrams and pieces of telecommunications equipment. His grandfather had
built his own television set as soon as television broadcasts started. His
father worked at EMI and IBM, developingmodems and computer
interfaces. With the shift of head office of IBMUK to Portsmouth, the family
moved to Romsey in Hampshire.

Plessey RokeManor was also situated in Romsey, along with IBM’s UK research laboratories at
Hursley Park. These were, and remain, world-leading research centres in the field of radio
communications and computing. The youngDavid J. Greaves was a regular visitor and intern at both
sites, and by the age of 17 had designed and built his first computer. The chips had beenmostly
removed from old circuit boards using a blow lamp. The software, including the disk operating system
and a Pascal compiler, had all beenwritten from scratch.

During his A-level studies, Greaves designed a local area network for Commodore PET computers.
The design was published inWirelessWorldmagazine and commercially replicated.

As an undergraduate at St John’s College Cambridge, he offered consultancy services to various small
electronics companies in the field of professional audio, developingMIDI interfaces and low-noise
pre-amplifiers. His final-year degree project was a fully digital keyboard instrument that was
serialised inWirelessWorld and copied bymany enthusiasts worldwide. Amain interest became the
design and implementation of compilers, as encouraged byDr. Martin Richards of St Johns, who had
developed the BCPL language, the direct precursor of C.

Greaves designed his first silicon chips during his PhD studies, which were in the field of metropolitan
area networks. He designed fibre optic transceivers that sent the first mono-mode signals over the
newly installed fibres that criss-crossed Cambridge. In collaboration with Acorn Computer, in 1995
Greaves was the chief network architect for the Cambridge ITV trial, which put ATM switches in the
kerbside cabinets belonging to Cambridge Cable Ltd and delivered video on demand to 50 or so
homes. It was 20 years later that the last movie rental shop in Cambridge closed.

Also in 1995, he implemented CSYN, one of the first Verilog compilers for synthesising hardware
specifically for field programmable gate arrays. This compiler was distributed widely among local
companies on the Cambridge Science Park and also used for undergraduate teaching. It was licensed
to amultinational to bundle with its own family of FPGAs.

Greaves had visited Armwhen it first spun out of Acorn and consisted of six engineers in a barn. At
the university, Greaves used a donation of Arm circuit boards for a new practical course in which the

Author Biography

Dr. David J. Greaves, PhDCEng. is Senior Lecturer in Computing Science at
the University of Cambridge, UK and a Fellow of Corpus Christi College.
Born in London, he grew up in a house full of engineering textbooks, circuit
diagrams and pieces of telecommunications equipment. His grandfather had
built his own television set as soon as television broadcasts started. His
father worked at EMI and IBM, developingmodems and computer
interfaces. With the shift of head office of IBMUK to Portsmouth, the family
moved to Romsey in Hampshire.

Plessey RokeManor was also situated in Romsey, along with IBM’s UK research laboratories at
Hursley Park. These were, and remain, world-leading research centres in the field of radio
communications and computing. The youngDavid J. Greaves was a regular visitor and intern at both
sites, and by the age of 17 had designed and built his first computer. The chips had beenmostly
removed from old circuit boards using a blow lamp. The software, including the disk operating system
and a Pascal compiler, had all beenwritten from scratch.

During his A-level studies, Greaves designed a local area network for Commodore PET computers.
The design was published inWirelessWorldmagazine and commercially replicated.

As an undergraduate at St John’s College Cambridge, he offered consultancy services to various small
electronics companies in the field of professional audio, developingMIDI interfaces and low-noise
pre-amplifiers. His final-year degree project was a fully digital keyboard instrument that was
serialised inWirelessWorld and copied bymany enthusiasts worldwide. Amain interest became the
design and implementation of compilers, as encouraged byDr. Martin Richards of St Johns, who had
developed the BCPL language, the direct precursor of C.

Greaves designed his first silicon chips during his PhD studies, which were in the field of metropolitan
area networks. He designed fibre optic transceivers that sent the first mono-mode signals over the
newly installed fibres that criss-crossed Cambridge. In collaboration with Acorn Computer, in 1995
Greaves was the chief network architect for the Cambridge ITV trial, which put ATM switches in the
kerbside cabinets belonging to Cambridge Cable Ltd and delivered video on demand to 50 or so
homes. It was 20 years later that the last movie rental shop in Cambridge closed.

Also in 1995, he implemented CSYN, one of the first Verilog compilers for synthesising hardware
specifically for field programmable gate arrays. This compiler was distributed widely among local
companies on the Cambridge Science Park and also used for undergraduate teaching. It was licensed
to amultinational to bundle with its own family of FPGAs.

Greaves had visited Armwhen it first spun out of Acorn and consisted of six engineers in a barn. At
the university, Greaves used a donation of Arm circuit boards for a new practical course in which the

Author Biography

students wrote assembly language and Verilog to learn about low-level hardware and software
interfacing. These courses still run today and the lecture notes have evolved into this textbook.

Greaves has been on the board or technical advisory board of at least ten start-up companies. He has
supervised or examined more than 60 PhD students. He holds at least five international patents in the
field of communications and electronics. His company Tenison EDA was, before acquisition, directly
providing tools to all major chip makers. His current research interests remain in the field of
compilation tools for design automation and scientific acceleration.

xxii

List of Figures

Figure 1.1 Transactional-level model (TLM) of the simplest computer (left) and code
fragments (right) 3

Figure 1.2 Schematic symbol and external connections for a tri-state version of a simple
microprocessor 4

Figure 1.3 A simple A16D8microcomputer structure 5
Figure 1.4 Connections tomemory 6
Figure 1.5 MSOC1 reference bus protocol, with read andwrite examples 7
Figure 1.6 Structure of a typical microcontroller, a single-chip microcomputer 9
Figure 1.7 Hitachi HD614080microcontroller chip from 1980 9
Figure 1.8 Contact plate for a smart card 10
Figure 1.9 An invertor viewed at various levels of abstraction 11
Figure 1.10 Front-end flow in SoC design 12
Figure 1.11 Main PCB of an ADSL homemodem 13
Figure 1.12 Main PCB structure of an ADSL homemodem 13
Figure 1.13 Overall design andmanufacturing flow for a SoC 18
Figure 1.14 General internal view of amobile phone (left) and views of both sides of themain

circuit board (centre and right) 20
Figure 1.15 An Apple SoCwith two Arm and three GPU cores 22
Figure 1.16 A platform chip example: the Virata Helium 210, as used inmany ADSLmodems 23
Figure 1.17 Helium chip as part of a home gateway ADSLmodem (partially masked by the

802.11module) 23
Figure 1.18 Another platform chip intended for use in thin-client display devices, such as a

tablet 24
Figure 1.19 Moore’s law (Section 8.2) 25
Figure 2.1 TLM connection diagrams for CPU andmemory configurations 28
Figure 2.2 TLM diagrams for a CPU core with integrated first-level caches and external

coprocessor connections 29
Figure 2.3 Main data paths in a generic five-stage RISCmicroarchitecture, excluding the

back sides of the cache andMMU 32
Figure 2.4 Key components of a super-scalar CPU core, excluding the back sides of the cache

andMMU 34

Author Biography

students wrote assembly language and Verilog to learn about low-level hardware and software
interfacing. These courses still run today and the lecture notes have evolved into this textbook.

Greaves has been on the board or technical advisory board of at least ten start-up companies. He has
supervised or examined more than 60 PhD students. He holds at least five international patents in the
field of communications and electronics. His company Tenison EDA was, before acquisition, directly
providing tools to all major chip makers. His current research interests remain in the field of
compilation tools for design automation and scientific acceleration.

xxii

List of Figures

Figure 1.1 Transactional-level model (TLM) of the simplest computer (left) and code
fragments (right) 3

Figure 1.2 Schematic symbol and external connections for a tri-state version of a simple
microprocessor 4

Figure 1.3 A simple A16D8microcomputer structure 5
Figure 1.4 Connections tomemory 6
Figure 1.5 MSOC1 reference bus protocol, with read andwrite examples 7
Figure 1.6 Structure of a typical microcontroller, a single-chip microcomputer 9
Figure 1.7 Hitachi HD614080microcontroller chip from 1980 9
Figure 1.8 Contact plate for a smart card 10
Figure 1.9 An invertor viewed at various levels of abstraction 11
Figure 1.10 Front-end flow in SoC design 12
Figure 1.11 Main PCB of an ADSL homemodem 13
Figure 1.12 Main PCB structure of an ADSL homemodem 13
Figure 1.13 Overall design andmanufacturing flow for a SoC 18
Figure 1.14 General internal view of amobile phone (left) and views of both sides of themain

circuit board (centre and right) 20
Figure 1.15 An Apple SoCwith two Arm and three GPU cores 22
Figure 1.16 A platform chip example: the Virata Helium 210, as used inmany ADSLmodems 23
Figure 1.17 Helium chip as part of a home gateway ADSLmodem (partially masked by the

802.11module) 23
Figure 1.18 Another platform chip intended for use in thin-client display devices, such as a

tablet 24
Figure 1.19 Moore’s law (Section 8.2) 25
Figure 2.1 TLM connection diagrams for CPU andmemory configurations 28
Figure 2.2 TLM diagrams for a CPU core with integrated first-level caches and external

coprocessor connections 29
Figure 2.3 Main data paths in a generic five-stage RISCmicroarchitecture, excluding the

back sides of the cache andMMU 32
Figure 2.4 Key components of a super-scalar CPU core, excluding the back sides of the cache

andMMU 34

List of Figures

Figure 2.5 TLM connection diagrams for a CPU andmemorymanagement unit (MMU): (a)
naive view and (b) one possible cache arrangement 36

Figure 2.6 A generalised PRAMmodel of computing 38
Figure 2.7 Two possible configurations for scratchpadmemory 39
Figure 2.8 Typical arrangement of virtual and physical mapping with L1, TLB and L2 42
Figure 2.9 An example system using a snoop control IP block fromArm (Cortex A9 family) 45
Figure 2.10 MOESI-like state diagram used in the ArmACE and CHI protocols 45
Figure 2.11 Three I/O blocks connected to a CPU, memory and an interrupt controller 46
Figure 2.12 Three I/O blocks with flexible interrupt distribution in amulti-core system 46
Figure 2.13 Interrupt generation: general structure within a device and at system level 47
Figure 2.14 Floorplan visualisation of a 3D implementation of the ArmNeoverse N1 design

using two chips, vertically stacked 49
Figure 2.15 Low-aspect-ratio RAM array showing the shared peripheral circuitry, which

includes the word-line decoder, sense amplifiers, tri-state buffers and I/O
multiplexer 50

Figure 2.16 Mask-programmedNMOSROM structure with a capacity of 2N locations, each
holding anM-bit word 51

Figure 2.17 Transistor-level view of a standard six-transistor (6T) SRAM cell 52
Figure 2.18 SSRAMwith a single port, showing the logic symbol (left) and internal RTLmodel

(right) 54
Figure 2.19 8T SRAM cell with true dual-porting 54
Figure 2.20 Dual-ported SSRAM logic symbol 54
Figure 2.21 Micrograph of a simple DRAM chip circa 1994 55
Figure 2.22 Left: pinout for a typical asynchronous. Right: basic internal structure schematic 55
Figure 2.23 4-Gbyte DRAMdual in-linememorymodule (DIMM) for a laptop computer 57
Figure 2.24 Internal block diagram of a 4-bit-wide DRAMdevice 58
Figure 2.25 NORROMblock diagram (left) with capacity 2(R+C) bits and alternative NAND

ROMarray detail (right) 60
Figure 2.26 EPROMdevice from the 1980s 61
Figure 2.27 Schematic of a possible bit cell for EPROMand EEPROM 62
Figure 2.28 Typical increase in benchmark performance in response to L3 cache size

enlargement for L2=64KB (blue), L2 = 128 KB (yellow) and L2 = 256 KB (red) 64

xxiv

List of Figures

Figure 2.29 Typical I/O ports. Shown are two serial ports, one parallel port, one Ethernet port,
twoUSB ports and three audio ports 65

Figure 2.30 Two typical configurations for a serial port using a UART 65
Figure 2.31 Timing diagram for an asynchronous four-phase handshake 68
Figure 2.32 Schematic and RTL implementation of 32 GPIO bits connected to anMSOC1 bus 70
Figure 2.33 Schematic symbol for a counter/timer block and internal RTL for one timer

function 71
Figure 2.34 A simple DMA controller: schematic symbol, example TLMwiring and RTL for

one channel 72
Figure 2.35 Net-level schematic symbol for a DMA-capable network interface IP block 74
Figure 2.36 Structure of a simple frame store, RTL implementation and generated timing

waveforms 75
Figure 2.37 Doorbell andmailbox block 76
Figure 3.1 Four of six permutations that implement a simplex protocol adaptor 85
Figure 3.2 Comparison of speed-of-light (LC) and RC-based Elmore delaymodels for

propagation along a net. Also shown is a real-world design rule for 16-nm
geometry 88

Figure 3.3 Timing diagram for AHB bus write cycle with onewait state 91
Figure 3.4 Timing diagram for an asynchronous four-phase handshake 91
Figure 3.5 Timing diagrams for the synchronous LocalLink protocol 92
Figure 3.6 BVCI core nets 94
Figure 3.7 BVCI protocol: Command phase timing diagram 94
Figure 3.8 BVCI protocol: Response phase timing diagram 95
Figure 3.9 Out-of-order bus formed from a pair of in-order busses with added tags (blue) 96
Figure 3.10 Augmenting the tag width through successivemultiplexing stages 96
Figure 3.11 The baseline port structure for an A32D32 AXI standard initiator showing the

five temporally floating channels, two for reads and three for writes 98
Figure 3.12 A basic SoC bus structure for theMSOC1 protocol 107
Figure 3.13 Example where one of the targets is also an initiator (e.g. a DMA controller) 107
Figure 3.14 A system design using three bridged busses 108
Figure 3.15 Bidirectional bus bridge for theMSOC1 protocol 109
Figure 3.16 Crossbar 4×4 connectivity implemented in three different ways: with a

high-capacity TDMbus (left), crossbar elements (centre) andmultiplexors (right) 110

xxv

List of Figures

Figure 2.5 TLM connection diagrams for a CPU andmemorymanagement unit (MMU): (a)
naive view and (b) one possible cache arrangement 36

Figure 2.6 A generalised PRAMmodel of computing 38
Figure 2.7 Two possible configurations for scratchpadmemory 39
Figure 2.8 Typical arrangement of virtual and physical mapping with L1, TLB and L2 42
Figure 2.9 An example system using a snoop control IP block fromArm (Cortex A9 family) 45
Figure 2.10 MOESI-like state diagram used in the ArmACE and CHI protocols 45
Figure 2.11 Three I/O blocks connected to a CPU, memory and an interrupt controller 46
Figure 2.12 Three I/O blocks with flexible interrupt distribution in amulti-core system 46
Figure 2.13 Interrupt generation: general structure within a device and at system level 47
Figure 2.14 Floorplan visualisation of a 3D implementation of the ArmNeoverse N1 design

using two chips, vertically stacked 49
Figure 2.15 Low-aspect-ratio RAM array showing the shared peripheral circuitry, which

includes the word-line decoder, sense amplifiers, tri-state buffers and I/O
multiplexer 50

Figure 2.16 Mask-programmedNMOSROM structure with a capacity of 2N locations, each
holding anM-bit word 51

Figure 2.17 Transistor-level view of a standard six-transistor (6T) SRAM cell 52
Figure 2.18 SSRAMwith a single port, showing the logic symbol (left) and internal RTLmodel

(right) 54
Figure 2.19 8T SRAM cell with true dual-porting 54
Figure 2.20 Dual-ported SSRAM logic symbol 54
Figure 2.21 Micrograph of a simple DRAM chip circa 1994 55
Figure 2.22 Left: pinout for a typical asynchronous. Right: basic internal structure schematic 55
Figure 2.23 4-Gbyte DRAMdual in-linememorymodule (DIMM) for a laptop computer 57
Figure 2.24 Internal block diagram of a 4-bit-wide DRAMdevice 58
Figure 2.25 NORROMblock diagram (left) with capacity 2(R+C) bits and alternative NAND

ROMarray detail (right) 60
Figure 2.26 EPROMdevice from the 1980s 61
Figure 2.27 Schematic of a possible bit cell for EPROMand EEPROM 62
Figure 2.28 Typical increase in benchmark performance in response to L3 cache size

enlargement for L2=64KB (blue), L2 = 128 KB (yellow) and L2 = 256 KB (red) 64

xxiv

List of Figures

Figure 2.29 Typical I/O ports. Shown are two serial ports, one parallel port, one Ethernet port,
twoUSB ports and three audio ports 65

Figure 2.30 Two typical configurations for a serial port using a UART 65
Figure 2.31 Timing diagram for an asynchronous four-phase handshake 68
Figure 2.32 Schematic and RTL implementation of 32 GPIO bits connected to anMSOC1 bus 70
Figure 2.33 Schematic symbol for a counter/timer block and internal RTL for one timer

function 71
Figure 2.34 A simple DMA controller: schematic symbol, example TLMwiring and RTL for

one channel 72
Figure 2.35 Net-level schematic symbol for a DMA-capable network interface IP block 74
Figure 2.36 Structure of a simple frame store, RTL implementation and generated timing

waveforms 75
Figure 2.37 Doorbell andmailbox block 76
Figure 3.1 Four of six permutations that implement a simplex protocol adaptor 85
Figure 3.2 Comparison of speed-of-light (LC) and RC-based Elmore delaymodels for

propagation along a net. Also shown is a real-world design rule for 16-nm
geometry 88

Figure 3.3 Timing diagram for AHB bus write cycle with onewait state 91
Figure 3.4 Timing diagram for an asynchronous four-phase handshake 91
Figure 3.5 Timing diagrams for the synchronous LocalLink protocol 92
Figure 3.6 BVCI core nets 94
Figure 3.7 BVCI protocol: Command phase timing diagram 94
Figure 3.8 BVCI protocol: Response phase timing diagram 95
Figure 3.9 Out-of-order bus formed from a pair of in-order busses with added tags (blue) 96
Figure 3.10 Augmenting the tag width through successivemultiplexing stages 96
Figure 3.11 The baseline port structure for an A32D32 AXI standard initiator showing the

five temporally floating channels, two for reads and three for writes 98
Figure 3.12 A basic SoC bus structure for theMSOC1 protocol 107
Figure 3.13 Example where one of the targets is also an initiator (e.g. a DMA controller) 107
Figure 3.14 A system design using three bridged busses 108
Figure 3.15 Bidirectional bus bridge for theMSOC1 protocol 109
Figure 3.16 Crossbar 4×4 connectivity implemented in three different ways: with a

high-capacity TDMbus (left), crossbar elements (centre) andmultiplexors (right) 110

xxv

List of Figures

Figure 3.17 Multiphase (split transaction) bus demultiplexor and remultiplexor for responses
(left) 111

Figure 3.18 Two folded busses that have similar component counts 113
Figure 3.19 A radix-3 switching element for a NoC using a broadcast bus at 4× the link

bandwidth and credit-based flow control 114
Figure 3.20 Example of a NoC fabric using radix-3 switching in a unidirectional torus mesh 115
Figure 3.21 Illustration of cut-through routing on a 2-DmeshNoC (left), wormhole operation

(centre) and potentially deadlocking routes (right) 117
Figure 3.22 Four elements in a 2-Dmesh 119
Figure 3.23 The eight possible 2-D turns (left), the allowable 2-D turns with Y-before-X

(north–south first) routing (centre) and an example set of turns used by two
transactions that obey the north–south first global policy but still manage to
deadlock owing to interference between requests and responses 121

Figure 3.24 Sample behavioural traffic specification containing a load profile and a
transaction phase dependency 122

Figure 3.25 One possible structure using link-level credit-based flow control, showing
tolerance to pipeline stages in the interconnect nets. The forward and return
paths need not bematched in delay terms 123

Figure 3.26 Two end points interconnected via some number of switching elements 124
Figure 3.27 Aminimal application of the AMBA 5CHI specification between a requester and

a completer (left) and full net-level details of the six channels found on a
more-typical request node (RN) (right) 125

Figure 3.28 A ring network 129
Figure 3.29 Regular cubic structures with 1, 2, 3 or 4 dimensions. 5-D and above are hard to

draw 131
Figure 3.30 The butterfly (or shuffle) network topology (left) and a flattened version (right),

with some example paths highlighted for comparison 131
Figure 3.31 Example of an 8×8 switching fabric that uses radix-2 elements and the delta

wiring pattern 132
Figure 3.32 A one-place pipelined FIFO stage using credit-based flow control 135
Figure 3.33 Metastability illustrated by a pencil balancing on a razor’s edge (left). The

essential structure of a transparent bistable (latch) and a transfer function
(centre). The gate signal andmeasured responses from a transparent latch with
an input wired to a voltage source close to themetastable point (right) 137

Figure 3.34 Generic structure of a simplex CBRI 138

xxvi

List of Figures

Figure 3.35 Timing diagram (top) and a basic structure for two systems that use harmonically
locked clocks (bottom) 140

Figure 3.36 Net-level view of the AMBAP-channel interface for device power control 141
Figure 3.37 Main components of an 8b10b, block-coded SERDES (serialiser/deserialiser)

transceiver (transmitter/receiver) operating over a twisted-pair channel 142
Figure 4.1 Example of parallel speedup 156
Figure 4.2 A schematic of a typical arbiter (left) and the RTL implementation (right) for a

three-port synchronous example using static priority with pre-emption. See also
Figure 6.31 159

Figure 4.3 General structure of a queue/server pair withmean customer rate λ andmean
service rate µ 160

Figure 4.4 Plots of the average number of customers in a system versus the utilisation ρ for
three common arrival/service disciplines 161

Figure 4.5 Separate queueing for high-priority and low-priority traffic gives an expedited
service 163

Figure 4.6 Generic switch that includes both input and output buffering on the input and
output ports, respectively, of a buffer-less switch fabric 164

Figure 4.7 Two scenarios that demonstrate statistical multiplexing gain forN=10 sources 165
Figure 4.8 A policed queue showing both input and output regulators, although commonly

only one site would be policed 167
Figure 4.9 Essence of a software implementation for one channel of a generic traffic policer

or regulator 167
Figure 4.10 Abstract views of the principal axes that span the SoC design space for a task 168
Figure 4.11 Thermal management of a high-power chip 169
Figure 4.12 Generic thermal circuit, showing on/off heat source, thermal node and thermal

resistance between the node and its heat sink 169
Figure 4.13 Primary timing characteristics of a D-type flip-flop (left). Typical nature of a

critical path in a synchronous clock domain indicating how themaximum clock
frequency (F) is calculated (right) 172

Figure 4.14 A circuit before (top) and after (bottom) insertion of an additional pipeline stage 173
Figure 4.15 Flip-flopmigration 173
Figure 4.16 Schematic and count sequence for a divide-by-five counter using Johnson encoding 175
Figure 4.17 Two code fragments usingmessage-passing in sharedmemory with explicit

memory fences 176

xxvii

List of Figures

Figure 3.17 Multiphase (split transaction) bus demultiplexor and remultiplexor for responses
(left) 111

Figure 3.18 Two folded busses that have similar component counts 113
Figure 3.19 A radix-3 switching element for a NoC using a broadcast bus at 4× the link

bandwidth and credit-based flow control 114
Figure 3.20 Example of a NoC fabric using radix-3 switching in a unidirectional torus mesh 115
Figure 3.21 Illustration of cut-through routing on a 2-DmeshNoC (left), wormhole operation

(centre) and potentially deadlocking routes (right) 117
Figure 3.22 Four elements in a 2-Dmesh 119
Figure 3.23 The eight possible 2-D turns (left), the allowable 2-D turns with Y-before-X

(north–south first) routing (centre) and an example set of turns used by two
transactions that obey the north–south first global policy but still manage to
deadlock owing to interference between requests and responses 121

Figure 3.24 Sample behavioural traffic specification containing a load profile and a
transaction phase dependency 122

Figure 3.25 One possible structure using link-level credit-based flow control, showing
tolerance to pipeline stages in the interconnect nets. The forward and return
paths need not bematched in delay terms 123

Figure 3.26 Two end points interconnected via some number of switching elements 124
Figure 3.27 Aminimal application of the AMBA 5CHI specification between a requester and

a completer (left) and full net-level details of the six channels found on a
more-typical request node (RN) (right) 125

Figure 3.28 A ring network 129
Figure 3.29 Regular cubic structures with 1, 2, 3 or 4 dimensions. 5-D and above are hard to

draw 131
Figure 3.30 The butterfly (or shuffle) network topology (left) and a flattened version (right),

with some example paths highlighted for comparison 131
Figure 3.31 Example of an 8×8 switching fabric that uses radix-2 elements and the delta

wiring pattern 132
Figure 3.32 A one-place pipelined FIFO stage using credit-based flow control 135
Figure 3.33 Metastability illustrated by a pencil balancing on a razor’s edge (left). The

essential structure of a transparent bistable (latch) and a transfer function
(centre). The gate signal andmeasured responses from a transparent latch with
an input wired to a voltage source close to themetastable point (right) 137

Figure 3.34 Generic structure of a simplex CBRI 138

xxvi

List of Figures

Figure 3.35 Timing diagram (top) and a basic structure for two systems that use harmonically
locked clocks (bottom) 140

Figure 3.36 Net-level view of the AMBAP-channel interface for device power control 141
Figure 3.37 Main components of an 8b10b, block-coded SERDES (serialiser/deserialiser)

transceiver (transmitter/receiver) operating over a twisted-pair channel 142
Figure 4.1 Example of parallel speedup 156
Figure 4.2 A schematic of a typical arbiter (left) and the RTL implementation (right) for a

three-port synchronous example using static priority with pre-emption. See also
Figure 6.31 159

Figure 4.3 General structure of a queue/server pair withmean customer rate λ andmean
service rate µ 160

Figure 4.4 Plots of the average number of customers in a system versus the utilisation ρ for
three common arrival/service disciplines 161

Figure 4.5 Separate queueing for high-priority and low-priority traffic gives an expedited
service 163

Figure 4.6 Generic switch that includes both input and output buffering on the input and
output ports, respectively, of a buffer-less switch fabric 164

Figure 4.7 Two scenarios that demonstrate statistical multiplexing gain forN=10 sources 165
Figure 4.8 A policed queue showing both input and output regulators, although commonly

only one site would be policed 167
Figure 4.9 Essence of a software implementation for one channel of a generic traffic policer

or regulator 167
Figure 4.10 Abstract views of the principal axes that span the SoC design space for a task 168
Figure 4.11 Thermal management of a high-power chip 169
Figure 4.12 Generic thermal circuit, showing on/off heat source, thermal node and thermal

resistance between the node and its heat sink 169
Figure 4.13 Primary timing characteristics of a D-type flip-flop (left). Typical nature of a

critical path in a synchronous clock domain indicating how themaximum clock
frequency (F) is calculated (right) 172

Figure 4.14 A circuit before (top) and after (bottom) insertion of an additional pipeline stage 173
Figure 4.15 Flip-flopmigration 173
Figure 4.16 Schematic and count sequence for a divide-by-five counter using Johnson encoding 175
Figure 4.17 Two code fragments usingmessage-passing in sharedmemory with explicit

memory fences 176

xxvii

List of Figures

Figure 4.18 SRAMmemory bank structures forMCMs (top) with two interconnection
patterns inside the SoC (bottom) 177

Figure 4.19 Pseudo-dual porting of RAM (using write mirroring) 178
Figure 4.20 Typical structure of a 32-bit DRAM controller connected to DRAMdevices 180
Figure 4.21 Three possible arrangements of DRAMaddress fields within a physical address 181
Figure 4.22 (a) Lithium-ion battery for amobile phone (3.7V, 1650mAh, 6Wh or 22 kJ),

external view. (b) Typical internal structure. (c) Two sugar cubes 183
Figure 4.23 Lumped-element electrical equivalent modelling of dynamic power use of a

CMOS SoC 184
Figure 4.24 A generic CMOS invertor structure shownwith explicit parasitic resistances and

lumped-equivalent output loading 184
Figure 4.25 A tri-state data line showing driving gates, sensing buffers and a bus holder (or

keeper) 185
Figure 4.26 Logic net with a single source and three loads, showing tracking and input load

capacitances 187
Figure 4.27 Dynamic energy use for various technologies 189
Figure 4.28 Fanout 4 (FO4) delay specification (left) and CMOS logic propagation delay

versus supply voltage (right) 190
Figure 4.29 SPICE description and setup for two transistors arranged as a CMOS invertor

simulatedwith a two-step input 192
Figure 4.30 Plots of the invertor when running fromVCC supplies of 2.5V (left) and 1.5V (right)193
Figure 4.31 Clock enable using (a) a multiplexer, (b) an AND gate and (c) anOR gate 195
Figure 4.32 Illustrating a transparent latch and its use to suppress clock gating glitches 195
Figure 4.33 Using XOR gates to determine whether a clock edgewould have any effect 196
Figure 4.34 Clock-needed computations forwarded down a pipeline 196
Figure 4.35 Power gating in general (left) and an actual power gate circuit (right) 197
Figure 4.36 Debugging hardware for a single-core SoC 202
Figure 4.37 Typical additional event-stream debug resources for amodernMPSoC 203
Figure 4.38 JTAG interface chaining at board level to create a top-level node in the debug

device tree 205
Figure 4.39 Basic structure of the additional logic required in input and output pads for

boundary scanning 206
Figure 4.40 A static RAMwith self-test wrapper around it 207

xxviii

List of Figures

Figure 4.41 Crystal oscillator circuit (left), canned crystal and contents (centre), and
specification and output waveform (right) 212

Figure 4.42 Clockmultiplication using a PLL (left) and clock distribution layout using a fractal
H-tree (right) 212

Figure 4.43 Clock skewing 214
Figure 4.44 Basic form of a timing slack graph 215
Figure 4.45 Schematic (left) and timing diagram (right) of a typical multi-cycle path 215
Figure 5.1 Overall setup of a generic ESL flow 224
Figure 5.2 A 10-bit binary counter with synchronous reset, coded as a SystemC class 229
Figure 5.3 Schematic (left) and SystemC structural netlist (right) for a 2-bit shift register 230
Figure 5.4 Compute/commit behaviour 230
Figure 5.5 Sample code using SC_THREAD 231
Figure 5.6 An example waveform view plotted by gtkwave 232
Figure 5.7 Naming nets 233
Figure 5.8 Equality operator overload 233
Figure 5.9 Positive edge 234
Figure 5.10 Three views of the four-phase transactional protocol from Section 3.1.3

operating between a sender and a receiver 235
Figure 5.11 Schematic of a FIFO device (top) and its typical instantiation (bottom) 236
Figure 5.12 SystemCmodule definition of an interface (left) and FIFOwriter (right) 236
Figure 5.13 TLM2.0 generic payload structure (left) and interconnection of three IP blocks

showing passthrough and demultiplexing (right) 238
Figure 5.14 Setting up a generic payload 238
Figure 5.15 Illustration of modelling artefacts relating tomodel interleaving and timing

arising from loosely timed TLM 243
Figure 5.16 Essence of the code for a virtual queue contention point 245
Figure 5.17 Typical setup of a thread using loosely timedmodelling with a quantum keeper

for one core of anMPSoC 246
Figure 5.18 Mixingmodelling styles using a target-to-initiator transactor 247
Figure 5.19 Mixingmodelling styles using amailbox paradigm transactor 247
Figure 5.20 Five views of the LocalLink protocol (also of AXI4-Stream). (a) Timing diagram.

(b) Net-level wiring. (c) TLM abstract view. (d) Blocking TLM target code, big
step. (e) Blocking TLM, small step 248

xxix

List of Figures

Figure 4.18 SRAMmemory bank structures forMCMs (top) with two interconnection
patterns inside the SoC (bottom) 177

Figure 4.19 Pseudo-dual porting of RAM (using write mirroring) 178
Figure 4.20 Typical structure of a 32-bit DRAM controller connected to DRAMdevices 180
Figure 4.21 Three possible arrangements of DRAMaddress fields within a physical address 181
Figure 4.22 (a) Lithium-ion battery for amobile phone (3.7V, 1650mAh, 6Wh or 22 kJ),

external view. (b) Typical internal structure. (c) Two sugar cubes 183
Figure 4.23 Lumped-element electrical equivalent modelling of dynamic power use of a

CMOS SoC 184
Figure 4.24 A generic CMOS invertor structure shownwith explicit parasitic resistances and

lumped-equivalent output loading 184
Figure 4.25 A tri-state data line showing driving gates, sensing buffers and a bus holder (or

keeper) 185
Figure 4.26 Logic net with a single source and three loads, showing tracking and input load

capacitances 187
Figure 4.27 Dynamic energy use for various technologies 189
Figure 4.28 Fanout 4 (FO4) delay specification (left) and CMOS logic propagation delay

versus supply voltage (right) 190
Figure 4.29 SPICE description and setup for two transistors arranged as a CMOS invertor

simulatedwith a two-step input 192
Figure 4.30 Plots of the invertor when running fromVCC supplies of 2.5V (left) and 1.5V (right)193
Figure 4.31 Clock enable using (a) a multiplexer, (b) an AND gate and (c) anOR gate 195
Figure 4.32 Illustrating a transparent latch and its use to suppress clock gating glitches 195
Figure 4.33 Using XOR gates to determine whether a clock edgewould have any effect 196
Figure 4.34 Clock-needed computations forwarded down a pipeline 196
Figure 4.35 Power gating in general (left) and an actual power gate circuit (right) 197
Figure 4.36 Debugging hardware for a single-core SoC 202
Figure 4.37 Typical additional event-stream debug resources for amodernMPSoC 203
Figure 4.38 JTAG interface chaining at board level to create a top-level node in the debug

device tree 205
Figure 4.39 Basic structure of the additional logic required in input and output pads for

boundary scanning 206
Figure 4.40 A static RAMwith self-test wrapper around it 207

xxviii

List of Figures

Figure 4.41 Crystal oscillator circuit (left), canned crystal and contents (centre), and
specification and output waveform (right) 212

Figure 4.42 Clockmultiplication using a PLL (left) and clock distribution layout using a fractal
H-tree (right) 212

Figure 4.43 Clock skewing 214
Figure 4.44 Basic form of a timing slack graph 215
Figure 4.45 Schematic (left) and timing diagram (right) of a typical multi-cycle path 215
Figure 5.1 Overall setup of a generic ESL flow 224
Figure 5.2 A 10-bit binary counter with synchronous reset, coded as a SystemC class 229
Figure 5.3 Schematic (left) and SystemC structural netlist (right) for a 2-bit shift register 230
Figure 5.4 Compute/commit behaviour 230
Figure 5.5 Sample code using SC_THREAD 231
Figure 5.6 An example waveform view plotted by gtkwave 232
Figure 5.7 Naming nets 233
Figure 5.8 Equality operator overload 233
Figure 5.9 Positive edge 234
Figure 5.10 Three views of the four-phase transactional protocol from Section 3.1.3

operating between a sender and a receiver 235
Figure 5.11 Schematic of a FIFO device (top) and its typical instantiation (bottom) 236
Figure 5.12 SystemCmodule definition of an interface (left) and FIFOwriter (right) 236
Figure 5.13 TLM2.0 generic payload structure (left) and interconnection of three IP blocks

showing passthrough and demultiplexing (right) 238
Figure 5.14 Setting up a generic payload 238
Figure 5.15 Illustration of modelling artefacts relating tomodel interleaving and timing

arising from loosely timed TLM 243
Figure 5.16 Essence of the code for a virtual queue contention point 245
Figure 5.17 Typical setup of a thread using loosely timedmodelling with a quantum keeper

for one core of anMPSoC 246
Figure 5.18 Mixingmodelling styles using a target-to-initiator transactor 247
Figure 5.19 Mixingmodelling styles using amailbox paradigm transactor 247
Figure 5.20 Five views of the LocalLink protocol (also of AXI4-Stream). (a) Timing diagram.

(b) Net-level wiring. (c) TLM abstract view. (d) Blocking TLM target code, big
step. (e) Blocking TLM, small step 248

xxix

List of Figures

Figure 5.21 Main step function 250
Figure 5.22 Block diagram of one channel of a DMA unit. (Repeated from Figure 2.34) 252
Figure 5.23 Behavioural model of (one channel of) the DMA controller 253
Figure 5.24 Example RTL fragment used in a static analysis 256
Figure 5.25 Performance and overheads for various sizes of a single-ported 32-bit data width

SRAM implemented in 22 nm, as modelled by CACTI 7.0 258
Figure 5.26 TLM+TEmodel of an SRAM. Constructor and blocking transport methods 259
Figure 5.27 A die-stackedDRAM subsystem in the style of theMicron HMC andHBM 260
Figure 5.28 A Parallella single-board computer 262
Figure 5.29 Example power estimation spreadsheet 263
Figure 5.30 Two similar designs with different Rent exponents (top) and two non-Rentian

design points (bottom) 264
Figure 5.31 Left: average net length in systems composed of 59 and 671 gates for various

values of rent exponent. Right: average net length for subsystems of different
sizes for rent exponent of 0.65 using four improved equations 265

Figure 5.32 Lowest common parent of the end-point logic blocks 266
Figure 5.33 Example of a transactional energymodelling plot 266
Figure 5.34 Example reports generated by the TLMPOWER3 library. The energy use

between two checkpoints is shown in the upper table and power consumption in
the lower table. A total for the whole device is given, along with subtotals for
parts of the design hierarchy specifically selected by the user 267

Figure 6.1 Typical wireless link for digital communications, showing the transmitter (top)
and receiver (bottom) for a simplex link 275

Figure 6.2 Block diagram and photographs of a first-generation Bluetooth USB dongle 276
Figure 6.3 Two PCIe 802.11Wi-Fi modules for a laptop 277
Figure 6.4 An iteration for hill climbing using simulated annealing to find a design point with

the highest scalar metric 279
Figure 6.5 Screenshot from a place-and-route tool, showing how thewiring avoids a region

of hardened layout (grey area on the right) 282
Figure 6.6 Mailbox, relay and pump paradigms: three initiator/target configurations

possible for dual-ported IP blocks 294
Figure 6.7 Schematic symbols of a FIFO buffer following themailbox pattern: synchronous

(left) and clock-domain crossing (right) 294
Figure 6.8 A generic schematic of a one-place synchronous FIFO buffer 296

xxx

List of Figures

Figure 6.9 Relay andmailbox paradigms for a one-place synchronous FIFO buffer 296
Figure 6.10 A customALU inside a CPU core implemented in two similar ways: (a) as a custom

instruction or (b) as a coprocessor 299
Figure 6.11 A specialised inter-coremessage-passing fabric allows cores to rapidly exchange

a packet composed of several successive registers with each other 300
Figure 6.12 A custom function implemented as a peripheral IP block, with optional DMA (bus

master) capability 300
Figure 6.13 Example of a hardware accelerator receiving data from a specialist interface 301
Figure 6.14 Representative bump-in-wire server blade architecture that has the FPGA in

series with the network interface and secondary storage (disk drives or SSD) 304
Figure 6.15 Simplified block diagram of a super FPGA, like the Xilinx Zynq devices 306
Figure 6.16 Relative performance of simple and complex CPU cores with DVFS 310
Figure 6.17 Threemulti-access NoC topologies 312
Figure 6.18 Comparison of variousmulti-access and switchedNoC designs in terms of

throughput (136 bit words per clock cycle) per gate input as the number of end
points (stations) is increased 313

Figure 6.19 Trading off Aesop’s hare versus the tortoise for increasingly leaky technology 315
Figure 6.20 Shift in the sweet spot (small vertical line) for DVFSwith high-leakage technology

for a real-time task 316
Figure 6.21 Block diagram for anMPEG compression subsystem 317
Figure 6.22 Code fragments for anMPEG encoder, coded in C# for Kiwi HLS 319
Figure 6.23 Typical examples of FUs deployed by higher-level design languages, especially HLS 323
Figure 6.24 Fixed-point implementation of a floating-point accumulator 325
Figure 6.25 Dynamic load balancing using the server farm paradigm 327
Figure 6.26 Generic setup of a system integrator tool 327
Figure 6.27 IP-XACT structures for documenting thememorymap and register field

definitions, plus the access type supported for each bit field 328
Figure 6.28 Generating an interconnect from IP-XACT: abstract view (top) using five IP-XACT

XML files and synthesised wiring (bottom) 329
Figure 6.29 Example of high-level manual wiring between subsystemswith wiring configured

using a GUI 331
Figure 6.30 Screenshot of the connectivity matrix editor within Arm Socrates 332
Figure 6.31 An example Chisel module: a static-priority arbiter, showing Chisel source code

(left) and the circuit generated (right) when n_inputs is 3 333

xxxi

List of Figures

Figure 5.21 Main step function 250
Figure 5.22 Block diagram of one channel of a DMA unit. (Repeated from Figure 2.34) 252
Figure 5.23 Behavioural model of (one channel of) the DMA controller 253
Figure 5.24 Example RTL fragment used in a static analysis 256
Figure 5.25 Performance and overheads for various sizes of a single-ported 32-bit data width

SRAM implemented in 22 nm, as modelled by CACTI 7.0 258
Figure 5.26 TLM+TEmodel of an SRAM. Constructor and blocking transport methods 259
Figure 5.27 A die-stackedDRAM subsystem in the style of theMicron HMC andHBM 260
Figure 5.28 A Parallella single-board computer 262
Figure 5.29 Example power estimation spreadsheet 263
Figure 5.30 Two similar designs with different Rent exponents (top) and two non-Rentian

design points (bottom) 264
Figure 5.31 Left: average net length in systems composed of 59 and 671 gates for various

values of rent exponent. Right: average net length for subsystems of different
sizes for rent exponent of 0.65 using four improved equations 265

Figure 5.32 Lowest common parent of the end-point logic blocks 266
Figure 5.33 Example of a transactional energymodelling plot 266
Figure 5.34 Example reports generated by the TLMPOWER3 library. The energy use

between two checkpoints is shown in the upper table and power consumption in
the lower table. A total for the whole device is given, along with subtotals for
parts of the design hierarchy specifically selected by the user 267

Figure 6.1 Typical wireless link for digital communications, showing the transmitter (top)
and receiver (bottom) for a simplex link 275

Figure 6.2 Block diagram and photographs of a first-generation Bluetooth USB dongle 276
Figure 6.3 Two PCIe 802.11Wi-Fi modules for a laptop 277
Figure 6.4 An iteration for hill climbing using simulated annealing to find a design point with

the highest scalar metric 279
Figure 6.5 Screenshot from a place-and-route tool, showing how thewiring avoids a region

of hardened layout (grey area on the right) 282
Figure 6.6 Mailbox, relay and pump paradigms: three initiator/target configurations

possible for dual-ported IP blocks 294
Figure 6.7 Schematic symbols of a FIFO buffer following themailbox pattern: synchronous

(left) and clock-domain crossing (right) 294
Figure 6.8 A generic schematic of a one-place synchronous FIFO buffer 296

xxx

List of Figures

Figure 6.9 Relay andmailbox paradigms for a one-place synchronous FIFO buffer 296
Figure 6.10 A customALU inside a CPU core implemented in two similar ways: (a) as a custom

instruction or (b) as a coprocessor 299
Figure 6.11 A specialised inter-coremessage-passing fabric allows cores to rapidly exchange

a packet composed of several successive registers with each other 300
Figure 6.12 A custom function implemented as a peripheral IP block, with optional DMA (bus

master) capability 300
Figure 6.13 Example of a hardware accelerator receiving data from a specialist interface 301
Figure 6.14 Representative bump-in-wire server blade architecture that has the FPGA in

series with the network interface and secondary storage (disk drives or SSD) 304
Figure 6.15 Simplified block diagram of a super FPGA, like the Xilinx Zynq devices 306
Figure 6.16 Relative performance of simple and complex CPU cores with DVFS 310
Figure 6.17 Threemulti-access NoC topologies 312
Figure 6.18 Comparison of variousmulti-access and switchedNoC designs in terms of

throughput (136 bit words per clock cycle) per gate input as the number of end
points (stations) is increased 313

Figure 6.19 Trading off Aesop’s hare versus the tortoise for increasingly leaky technology 315
Figure 6.20 Shift in the sweet spot (small vertical line) for DVFSwith high-leakage technology

for a real-time task 316
Figure 6.21 Block diagram for anMPEG compression subsystem 317
Figure 6.22 Code fragments for anMPEG encoder, coded in C# for Kiwi HLS 319
Figure 6.23 Typical examples of FUs deployed by higher-level design languages, especially HLS 323
Figure 6.24 Fixed-point implementation of a floating-point accumulator 325
Figure 6.25 Dynamic load balancing using the server farm paradigm 327
Figure 6.26 Generic setup of a system integrator tool 327
Figure 6.27 IP-XACT structures for documenting thememorymap and register field

definitions, plus the access type supported for each bit field 328
Figure 6.28 Generating an interconnect from IP-XACT: abstract view (top) using five IP-XACT

XML files and synthesised wiring (bottom) 329
Figure 6.29 Example of high-level manual wiring between subsystemswith wiring configured

using a GUI 331
Figure 6.30 Screenshot of the connectivity matrix editor within Arm Socrates 332
Figure 6.31 An example Chisel module: a static-priority arbiter, showing Chisel source code

(left) and the circuit generated (right) when n_inputs is 3 333

xxxi

List of Figures

Figure 6.32 An 8-bit counter with a synchronous load using sequential logic and a
when/otherwise clause: Chisel source code and schematic symbol 334

Figure 6.33 Three communication processes expressed using Handel-C 335
Figure 6.34 A Bluespec example in which three rules compete to act on a simple broadside

register 337
Figure 6.35 Bluespec definition of an example interface, the Pipe_ifc (top left), the definition

of a component that has an instance of a component that has that interface and
two rules to operate on it (bottom left) and a net-level schematic symbol for the
instantiated component showing handshake nets 338

Figure 6.36 Basic steps of an HLS tool chain for ASIC or FPGA 340
Figure 6.37 A very basic workedHLS example showing the input source code (left) and

generated RTL (right) for a 32-bit multiplier as a variable-latency FUwith start
and ready handshake nets 342

Figure 6.38 Longmultiplier output fromHLS showing the internal data path and sequencer
(left) and the schematic symbol (right) 343

Figure 6.39 An example of a static schedule for a basic block containing a single assignment 344
Figure 6.40 Various circuits that compute a running sum 345
Figure 6.41 Fragment of an example inter-block initiation and hazard graph 346
Figure 6.42 An iteration that performs associative reduction (in vr) 348
Figure 6.43 An iteration that has a loop-carried data dependency (through variable vd) 349
Figure 6.44 A loopwhere data fetched in one iteration (foo[i]) can usefully be forwarded to

a subsequent iteration 349
Figure 6.45 A loop that has data-dependent control flow (the loop exit depends on variable vr) 350
Figure 6.46 Lookup procedure when searching for a string using the BWT 351
Figure 6.47 Compacted Ranks array for BWT, redefinition of the ranks() routine for an

interpolated lookup and a sensible layout in a DRAM row 352
Figure 6.48 Data dependencies (slightly simplified) in the Smith–Waterman

alignment-finding algorithm 353
Figure 6.49 Affine transformation examples 354
Figure 6.50 Shuffle data flow for an FFT (left), elemental butterfly (top right) and code

(bottom right) 355
Figure 6.51 A circuit intended to compute the running sum of streaming data values 358
Figure 7.1 Comparing simulation (left) with a formal proof of correctness (right) 364

xxxii

List of Figures

Figure 7.2 Examples of imperative or procedural safety assertions in a software language
such as C++ 370

Figure 7.3 FSM transition diagramwith liveness, fairness and deadlock indications 372
Figure 7.4 Two simple PSL assertions 381
Figure 7.5 Dynamic validation: Monitoring bus operation with an RTL checker (top) or

interface PCs (bottom) 386
Figure 7.6 Framed standard synchronous connection, with interface checker instance (left)

and allowable protocol transitions (right) 387
Figure 7.7 Example of a PC for the framed interface implemented using an RTL statemachine 388
Figure 7.8 Comparable example of the PC implementedwith SVA 388
Figure 7.9 Amitre compares the outputs from a pair of supposedly equivalent

combinational components 390
Figure 7.10 A two-bit shift register (left) with a conventional design. By using a clock-enabled

flip-flop (centre), an alternative implementation is possible (right) 391
Figure 7.11 An X-propagationmitre around two instances of a simple DUT 394
Figure 7.12 An alternative DUT 395
Figure 7.13 A formal glue shim around a data path component (a LIFO stack) 397
Figure 7.14 A pulse generator: schematic symbol and timing waveforms 401
Figure 8.1 Back-end stages in the synthesis and physical design of a SoC, showing

representative diagrams for five of the stages 405
Figure 8.2 A small example of a universal power format (UPF) file 408
Figure 8.3 Technology scaling scatter plot 411
Figure 8.4 Dark silicon (using data from [5, 6]) 412
Figure 8.5 Basic layers in planar CMOSVLSI. Cross section through an invertor fabricated

using planar transistors (not FinFETs) in a twin-well process andmetal layers, M1
toM7 (not to scale) 412

Figure 8.6 Generic 3-D structure of a FinFET 414
Figure 8.7 Typical first-generation standard cell layout showing three rows of cells 415
Figure 8.8 EDA tools applied to synthesisable RTL for a simulation (left) and the synthesis to

a gate-level or structural netlist (right) 419
Figure 8.9 Example of a generate statement in Verilog RTL (left) and the resulting structural

netlist (right) 421

xxxiii

List of Figures

Figure 6.32 An 8-bit counter with a synchronous load using sequential logic and a
when/otherwise clause: Chisel source code and schematic symbol 334

Figure 6.33 Three communication processes expressed using Handel-C 335
Figure 6.34 A Bluespec example in which three rules compete to act on a simple broadside

register 337
Figure 6.35 Bluespec definition of an example interface, the Pipe_ifc (top left), the definition

of a component that has an instance of a component that has that interface and
two rules to operate on it (bottom left) and a net-level schematic symbol for the
instantiated component showing handshake nets 338

Figure 6.36 Basic steps of an HLS tool chain for ASIC or FPGA 340
Figure 6.37 A very basic workedHLS example showing the input source code (left) and

generated RTL (right) for a 32-bit multiplier as a variable-latency FUwith start
and ready handshake nets 342

Figure 6.38 Longmultiplier output fromHLS showing the internal data path and sequencer
(left) and the schematic symbol (right) 343

Figure 6.39 An example of a static schedule for a basic block containing a single assignment 344
Figure 6.40 Various circuits that compute a running sum 345
Figure 6.41 Fragment of an example inter-block initiation and hazard graph 346
Figure 6.42 An iteration that performs associative reduction (in vr) 348
Figure 6.43 An iteration that has a loop-carried data dependency (through variable vd) 349
Figure 6.44 A loopwhere data fetched in one iteration (foo[i]) can usefully be forwarded to

a subsequent iteration 349
Figure 6.45 A loop that has data-dependent control flow (the loop exit depends on variable vr) 350
Figure 6.46 Lookup procedure when searching for a string using the BWT 351
Figure 6.47 Compacted Ranks array for BWT, redefinition of the ranks() routine for an

interpolated lookup and a sensible layout in a DRAM row 352
Figure 6.48 Data dependencies (slightly simplified) in the Smith–Waterman

alignment-finding algorithm 353
Figure 6.49 Affine transformation examples 354
Figure 6.50 Shuffle data flow for an FFT (left), elemental butterfly (top right) and code

(bottom right) 355
Figure 6.51 A circuit intended to compute the running sum of streaming data values 358
Figure 7.1 Comparing simulation (left) with a formal proof of correctness (right) 364

xxxii

List of Figures

Figure 7.2 Examples of imperative or procedural safety assertions in a software language
such as C++ 370

Figure 7.3 FSM transition diagramwith liveness, fairness and deadlock indications 372
Figure 7.4 Two simple PSL assertions 381
Figure 7.5 Dynamic validation: Monitoring bus operation with an RTL checker (top) or

interface PCs (bottom) 386
Figure 7.6 Framed standard synchronous connection, with interface checker instance (left)

and allowable protocol transitions (right) 387
Figure 7.7 Example of a PC for the framed interface implemented using an RTL statemachine 388
Figure 7.8 Comparable example of the PC implementedwith SVA 388
Figure 7.9 Amitre compares the outputs from a pair of supposedly equivalent

combinational components 390
Figure 7.10 A two-bit shift register (left) with a conventional design. By using a clock-enabled

flip-flop (centre), an alternative implementation is possible (right) 391
Figure 7.11 An X-propagationmitre around two instances of a simple DUT 394
Figure 7.12 An alternative DUT 395
Figure 7.13 A formal glue shim around a data path component (a LIFO stack) 397
Figure 7.14 A pulse generator: schematic symbol and timing waveforms 401
Figure 8.1 Back-end stages in the synthesis and physical design of a SoC, showing

representative diagrams for five of the stages 405
Figure 8.2 A small example of a universal power format (UPF) file 408
Figure 8.3 Technology scaling scatter plot 411
Figure 8.4 Dark silicon (using data from [5, 6]) 412
Figure 8.5 Basic layers in planar CMOSVLSI. Cross section through an invertor fabricated

using planar transistors (not FinFETs) in a twin-well process andmetal layers, M1
toM7 (not to scale) 412

Figure 8.6 Generic 3-D structure of a FinFET 414
Figure 8.7 Typical first-generation standard cell layout showing three rows of cells 415
Figure 8.8 EDA tools applied to synthesisable RTL for a simulation (left) and the synthesis to

a gate-level or structural netlist (right) 419
Figure 8.9 Example of a generate statement in Verilog RTL (left) and the resulting structural

netlist (right) 421

xxxiii

List of Figures

Figure 8.10 A structural RTL example (left) and the net-level circuit it defines (a divide-by-five
Johnson counter, right) 422

Figure 8.11 A combinational RTL example (top) and the naive net-level circuit it defines
(bottom) 422

Figure 8.12 Example RTL fragment, before and after flattening 426
Figure 8.13 Schematic symbol, Verilogmodel, timing diagram and possible implementation

for a dual-edge-triggered RS flop 427
Figure 8.14 Simple synthesisable Verilog examples, including a transparent latch 429
Figure 8.15 Four-value logic-level encoding and its behaviour for six common gates 430
Figure 8.16 EDS event queue, which is a linked list, sorted in ascending temporal order 431
Figure 8.17 Behaviour of a runt pulse in an RS latch whenmodelling with transport delay 432
Figure 8.18 RTL code fragment and logical function for swapping data between a pair of

registers 433
Figure 8.19 Hybrid automobile transmission system 434
Figure 8.20 Capacitor charging circuit 435
Figure 8.21 Zenowonderedwhether Achilles could ever catch the tortoise, but we know that

the sum of a geometric progression often converges 437
Figure 8.22 Hybrid model simulation of a bouncing ball dropped from 7.0m. It stops

completely at 9.366 s 438
Figure 8.23 Fragment of a synthesised netlist rendered in a schematic viewer 439
Figure 8.24 Baseline RTL elaboration example showing synthesisable RTL input (left) and

structural netlist output that uses generic gates (right) 440
Figure 8.25 Essence of logic synthesised for integer division of the 32-bit value n by the

constant 10 using just adders, based on 8/10 being 0.11001100 recurring 441
Figure 8.26 AND-OR-INVERT gate, logical function (left) and actual circuit when realised in

CMOS (right) 442
Figure 8.27 Typical RTL coding style for RAM inference 443
Figure 8.28 Scatter plot of area versus operating frequency for a design (ArmCortex-A9

Falcon) on a common process node and cell library for different core utilisation
ratios 447

Figure 8.29 FinFET invertor area versus number of fins for different cell heights at a process
node 447

Figure 8.30 Scatter plot of area versus operating frequency for a given design (Arm
Cortex-A9 Falcon) and standard cell libraries on a common process node that
vary in cell height, measured in track equivalents 448

xxxiv

List of Figures

Figure 8.31 A broad-brush classification of digital ICs into full-custom, semi-custom and
field-programmable classes with some example device roles 449

Figure 8.32 SoC application diagram for an automotive headlight controller 452
Figure 8.33 Two-input NOR gate, circuit schematic (left) and several layers of a standard cell

layout (right) 452
Figure 8.34 Typical cell data sheet from a human-readable version of a standard cell library 454
Figure 8.35 Delay versus output loading capacitance for various input transition rates 459
Figure 8.36 Input capacitance is augmented or diminished due to theMiller effect 459
Figure 8.37 Real-world gate, with a linear slew input waveform, showing the timing behaviour

of Vin, Vout and Iout 460
Figure 8.38 Metal layers in amask-programmed gate array (ECL codec for fibre optic ring

network) 462
Figure 8.39 Transmission gate or bilateral switch: internal wiring (left) and schematic symbols

(right) 463
Figure 8.40 An activemultiplexer (a) needsmore silicon area than a pass-transistor

multiplexer (b), but restores logic levels rather than degrading the signal. Larger
pass-transistor multiplexers (c) are efficient and easy to lay out 463

Figure 8.41 FPGA, showing the I/O blocks around the edge, the interconnectionmatrix
blocks and the configurable logic blocks 464

Figure 8.42 CLB (left) and an IOB (right) for a simple FPGA 465
Figure 8.43 TheDSP block in the Xilinx Virtex 7 family (©Xilinx Inc) 466
Figure 8.44 Power and floor plan for a simple SoC along with the external supply, which uses

battery-backed RAM (left) and buck regulators (right) 469
Figure 8.45 Macroscopic back-end flow highlighting the verification flow paths 471
Figure 8.46 Standard cell polygons for a two-input NOR gate 471
Figure 8.47 A placed horizontal strip of standard cells showing the polygons significant for

routing, as rendered in a layout editor 472
Figure 8.48 Snapshot from a place-and-route tool, showing hundreds of interlacedwires that

are routedwith several metal layers, both vertically and horizontally 474
Figure 8.49 Enlargement of Figure 8.48, showing several wires routedwith several metal

layers (one colour for each layer), vertically and horizontally 474
Figure 8.50 Pin connections for a 7400 quadNAND gate device and part of a test program 479
Figure 8.51 Awafer (6 to 10 inches diameter) is diced into chips (1 cm on a side or so) 481
Figure 8.52 Load card with wafer probe pins for testing a chip before the wafer is diced 481

xxxv

List of Figures

Figure 8.10 A structural RTL example (left) and the net-level circuit it defines (a divide-by-five
Johnson counter, right) 422

Figure 8.11 A combinational RTL example (top) and the naive net-level circuit it defines
(bottom) 422

Figure 8.12 Example RTL fragment, before and after flattening 426
Figure 8.13 Schematic symbol, Verilogmodel, timing diagram and possible implementation

for a dual-edge-triggered RS flop 427
Figure 8.14 Simple synthesisable Verilog examples, including a transparent latch 429
Figure 8.15 Four-value logic-level encoding and its behaviour for six common gates 430
Figure 8.16 EDS event queue, which is a linked list, sorted in ascending temporal order 431
Figure 8.17 Behaviour of a runt pulse in an RS latch whenmodelling with transport delay 432
Figure 8.18 RTL code fragment and logical function for swapping data between a pair of

registers 433
Figure 8.19 Hybrid automobile transmission system 434
Figure 8.20 Capacitor charging circuit 435
Figure 8.21 Zenowonderedwhether Achilles could ever catch the tortoise, but we know that

the sum of a geometric progression often converges 437
Figure 8.22 Hybrid model simulation of a bouncing ball dropped from 7.0m. It stops

completely at 9.366 s 438
Figure 8.23 Fragment of a synthesised netlist rendered in a schematic viewer 439
Figure 8.24 Baseline RTL elaboration example showing synthesisable RTL input (left) and

structural netlist output that uses generic gates (right) 440
Figure 8.25 Essence of logic synthesised for integer division of the 32-bit value n by the

constant 10 using just adders, based on 8/10 being 0.11001100 recurring 441
Figure 8.26 AND-OR-INVERT gate, logical function (left) and actual circuit when realised in

CMOS (right) 442
Figure 8.27 Typical RTL coding style for RAM inference 443
Figure 8.28 Scatter plot of area versus operating frequency for a design (ArmCortex-A9

Falcon) on a common process node and cell library for different core utilisation
ratios 447

Figure 8.29 FinFET invertor area versus number of fins for different cell heights at a process
node 447

Figure 8.30 Scatter plot of area versus operating frequency for a given design (Arm
Cortex-A9 Falcon) and standard cell libraries on a common process node that
vary in cell height, measured in track equivalents 448

xxxiv

List of Figures

Figure 8.31 A broad-brush classification of digital ICs into full-custom, semi-custom and
field-programmable classes with some example device roles 449

Figure 8.32 SoC application diagram for an automotive headlight controller 452
Figure 8.33 Two-input NOR gate, circuit schematic (left) and several layers of a standard cell

layout (right) 452
Figure 8.34 Typical cell data sheet from a human-readable version of a standard cell library 454
Figure 8.35 Delay versus output loading capacitance for various input transition rates 459
Figure 8.36 Input capacitance is augmented or diminished due to theMiller effect 459
Figure 8.37 Real-world gate, with a linear slew input waveform, showing the timing behaviour

of Vin, Vout and Iout 460
Figure 8.38 Metal layers in amask-programmed gate array (ECL codec for fibre optic ring

network) 462
Figure 8.39 Transmission gate or bilateral switch: internal wiring (left) and schematic symbols

(right) 463
Figure 8.40 An activemultiplexer (a) needsmore silicon area than a pass-transistor

multiplexer (b), but restores logic levels rather than degrading the signal. Larger
pass-transistor multiplexers (c) are efficient and easy to lay out 463

Figure 8.41 FPGA, showing the I/O blocks around the edge, the interconnectionmatrix
blocks and the configurable logic blocks 464

Figure 8.42 CLB (left) and an IOB (right) for a simple FPGA 465
Figure 8.43 TheDSP block in the Xilinx Virtex 7 family (©Xilinx Inc) 466
Figure 8.44 Power and floor plan for a simple SoC along with the external supply, which uses

battery-backed RAM (left) and buck regulators (right) 469
Figure 8.45 Macroscopic back-end flow highlighting the verification flow paths 471
Figure 8.46 Standard cell polygons for a two-input NOR gate 471
Figure 8.47 A placed horizontal strip of standard cells showing the polygons significant for

routing, as rendered in a layout editor 472
Figure 8.48 Snapshot from a place-and-route tool, showing hundreds of interlacedwires that

are routedwith several metal layers, both vertically and horizontally 474
Figure 8.49 Enlargement of Figure 8.48, showing several wires routedwith several metal

layers (one colour for each layer), vertically and horizontally 474
Figure 8.50 Pin connections for a 7400 quadNAND gate device and part of a test program 479
Figure 8.51 Awafer (6 to 10 inches diameter) is diced into chips (1 cm on a side or so) 481
Figure 8.52 Load card with wafer probe pins for testing a chip before the wafer is diced 481

xxxv

List of Figures

Figure 8.53 General configuration of a wafer probe testingmachine 482
Figure 8.54 An FPGA composed of several chiplets with broadside inter-chiplet bonding,

connected closely to several DRAM chips in anMCM 484
Figure 8.55 Example of structural Verilog RTL that instantiates disconnected standard cells

as a ‘sewing kit’ 486
Figure 8.56 The threemain timing specifications for a sequential cell, such as a flip-flop

(repeated from Figure 4.13) 489
Figure 8.57 An example circuit with static timing annotations for maximumGBA analysis 490
Figure 8.58 CMOS chip structure, highlighting layers most affected by FEOL and BEOL

variations 494
Figure 8.59 Troublesome early and late path configurations for maximum (left) andminimum

(right) timing 495
Figure 8.60 A logic structure with a gated clock that could suffer in an FS process corner (left)

and a combinational logic circuit with two paths that differ in their levels of
inversion 496

Figure 8.61 An example of an SDC file 498
Figure 8.62 Global and localised views of process distributions 502
Figure 8.63 LVF path delay distribution and sigmamultiplier 504
Figure 8.64 Statistical VT shift due to bias temperature instability for various bias times 506
Figure 9.1 Environmental testing under various temperature and humidity conditions in a

climate-controlled chamber 515
Figure 9.2 EMC testing of radio-frequency interference 516

xxxvi

List of Tables

Table 1.1 Four quadrants of a computer 2
Table 1.2 Net-level connections 4
Table 1.3 Memorymap 6
Table 1.4 Net-level connections of anMSOC1 port in an A32D32 system 7
Table 2.1 Principal characteristics ofmemory technologies currently used for booting, caches,

primary storage and secondary storage 48
Table 2.2 DRAMaddress terminology and hierarchy with typical sizes 57
Table 2.3 Typical DIMM connections 59
Table 3.1 Major predefined AMBAAXI bus standards and profiles 99
Table 3.2 Some (simplified) synthetic traffic generation vectors and their descriptions 128
Table 4.1 Formulae forNsystem andNQ whereNsystem =NQ+Nserver 161
Table 4.2 Design space for dynamic power-saving techniques 191
Table 4.3 Example of static and dynamic power use for a three-level DVFS configuration 194
Table 4.4 Summary of the properties of four power-saving techniques 199
Table 4.5 JTAG signal list 205
Table 5.1 List of TLM2.0 convenience socket types 240
Table 5.2 Typical relative performance of different virtual platform processor modelling

approaches comparedwith real time 249
Table 5.3 Product space of power and area estimates for an RTL implementation 255
Table 5.4 Normal parameters for a RAM compiler together with selected values 257
Table 5.5 Example performance data from collated DRAMSim4 data sheets for a variety of

DDR4 devices 261
Table 5.6 Phase/mode example: supply rail voltage and current and total power consumption

for 3320C-EZKUSB line driver devices 262
Table 6.1 Determining the ROMneeds of anMP3 decoder by disassembling a segment

.rodata 283
Table 6.2 Statistics logged during one second of a profile run ofMP3 stream decoding 283
Table 6.3 Synchronous delay and combinational paths for basic FIFO types 295
Table 6.4 Key parameters for a range of super-FPGA parts available fromXilinx in 2018 307

List of Figures

Figure 8.53 General configuration of a wafer probe testingmachine 482
Figure 8.54 An FPGA composed of several chiplets with broadside inter-chiplet bonding,

connected closely to several DRAM chips in anMCM 484
Figure 8.55 Example of structural Verilog RTL that instantiates disconnected standard cells

as a ‘sewing kit’ 486
Figure 8.56 The threemain timing specifications for a sequential cell, such as a flip-flop

(repeated from Figure 4.13) 489
Figure 8.57 An example circuit with static timing annotations for maximumGBA analysis 490
Figure 8.58 CMOS chip structure, highlighting layers most affected by FEOL and BEOL

variations 494
Figure 8.59 Troublesome early and late path configurations for maximum (left) andminimum

(right) timing 495
Figure 8.60 A logic structure with a gated clock that could suffer in an FS process corner (left)

and a combinational logic circuit with two paths that differ in their levels of
inversion 496

Figure 8.61 An example of an SDC file 498
Figure 8.62 Global and localised views of process distributions 502
Figure 8.63 LVF path delay distribution and sigmamultiplier 504
Figure 8.64 Statistical VT shift due to bias temperature instability for various bias times 506
Figure 9.1 Environmental testing under various temperature and humidity conditions in a

climate-controlled chamber 515
Figure 9.2 EMC testing of radio-frequency interference 516

xxxvi

List of Tables

Table 1.1 Four quadrants of a computer 2
Table 1.2 Net-level connections 4
Table 1.3 Memorymap 6
Table 1.4 Net-level connections of anMSOC1 port in an A32D32 system 7
Table 2.1 Principal characteristics ofmemory technologies currently used for booting, caches,

primary storage and secondary storage 48
Table 2.2 DRAMaddress terminology and hierarchy with typical sizes 57
Table 2.3 Typical DIMM connections 59
Table 3.1 Major predefined AMBAAXI bus standards and profiles 99
Table 3.2 Some (simplified) synthetic traffic generation vectors and their descriptions 128
Table 4.1 Formulae forNsystem andNQ whereNsystem =NQ+Nserver 161
Table 4.2 Design space for dynamic power-saving techniques 191
Table 4.3 Example of static and dynamic power use for a three-level DVFS configuration 194
Table 4.4 Summary of the properties of four power-saving techniques 199
Table 4.5 JTAG signal list 205
Table 5.1 List of TLM2.0 convenience socket types 240
Table 5.2 Typical relative performance of different virtual platform processor modelling

approaches comparedwith real time 249
Table 5.3 Product space of power and area estimates for an RTL implementation 255
Table 5.4 Normal parameters for a RAM compiler together with selected values 257
Table 5.5 Example performance data from collated DRAMSim4 data sheets for a variety of

DDR4 devices 261
Table 5.6 Phase/mode example: supply rail voltage and current and total power consumption

for 3320C-EZKUSB line driver devices 262
Table 6.1 Determining the ROMneeds of anMP3 decoder by disassembling a segment

.rodata 283
Table 6.2 Statistics logged during one second of a profile run ofMP3 stream decoding 283
Table 6.3 Synchronous delay and combinational paths for basic FIFO types 295
Table 6.4 Key parameters for a range of super-FPGA parts available fromXilinx in 2018 307

List of Tables

Table 6.5 Basic parameters for two caches with different speed/power ratios but the same
technology and bit density, versus cache size 309

Table 6.6 Some composite design examples 309
Table 6.7 Power laws for performance delivered and power used in terms of three

independent parameters 310
Table 7.1 The three principal regular expression operators and concise derived shorthands 383
Table 7.2 Summary of themain SERES temporal conjunction and sequencing dyadic operators 384
Table 7.3 Some built-in primitivemacros in PSL 384
Table 8.1 Representativemicroprocessors 410
Table 8.2 ITRS roadmap projection for geometry, supply voltage, transistor properties and

FO3 gate energy 416
Table 8.3 ITRS predictions for the gate density andDRAMdensity for future silicon nodes,

and the expected number of cores in an 80mm2 CMP 417
Table 8.4 Main parameters for an example CMOS lithographic node (TSMC 28nm) 418
Table 8.5 Example of process, voltage and temperature (PVT) ranges 456
Table 8.6 Simplistic and rough estimates of recurring (RE) and non-recurring expenses (NRE)

for the first production run of nwafers 487
Table 8.7 Die yield 488
Table 8.8 Common sources of timing error 492
Table 8.9 Examples of process corners 493
Table 8.10 Examples of BEOL corners 493
Table 8.11 TypicalMMMC configurations, with 40 distinct analysis corners 499

xxxviii

Chapter 1
Introduction to
System-on-Chip

Modern SoCDesign

1.1 What is a System-on-Chip?
Themajority of computers made today follow the System-on-Chip (SoC) approach. A SoC contains
the processors, caches, memory and input/output (I/O) devices all on one piece of silicon. This gives
the lowest product cost and so is usedwhenever possible. More complex computers cannot fit onto a
single piece of silicon and somultiple chips are used. This is also the preferred approach if the
manufacturing process for a single chip is not the best for all of its parts. In a later chapter
(Section 6.1), we discuss motivations for using different chips for DRAMand flashmemories.
However, evenwhenmultiple pieces of silicon are used, they are often tightly integrated into a single
package using die-stacking or interposers (Section 8.9.1). Packing the computer into the smallest
space possible is the primary technique bywhich computer technology has progressed in the last
60 years. A smaller computer has shorter wires and can operate faster for the same power
consumption. The relevant equations are described in Section 4.6.

We start this bookwith a review of what a computer is andwas.

1.1.1 Historical Review
ASoC is a System-on-Chip. In this context, theword system originally denoted a computer but today’s
SoCs havemany computers on them. To kick off this chapter, we start by defining some terminology
that wewill develop and use throughout this book. AnMPSoC is a SoC containingmultiple embedded
processors. The four quadrants in Table 1.1 give a traditional view of an old computer system.

Table 1.1 Four quadrants of a computer

Control unit Execution unit

Primary storage I/O devices

Each quadrant occupied at least one full-height 19-inch rack in early computers. The execution unit
and the control unit are together known as the central processing unit (CPU).When VLSI technology
advanced such that a CPU could be put on a single chip, this was called amicroprocessor. Famously,
GordonMoore is recognised as the first person to do this, with the invention of the Intel 4004 in 1971.

The primary storage contains both programs and data in a vonNeumann architecture. This is in
contrast to a Harvard architecture that has separate primarymemories for programs and data
(Section 2.1). Primary storage is also known asmainmemory. Primary storage is directly addressed
by the CPU, both for an instruction fetch and for data load and store instructions. With the advent of
tape and disk drives as I/O devices, further memory was attached as secondary storage and behaves
like any other I/O device. Flashmemory is the predominant form of secondary storage today
(Section 2.6.8).

An important strand in this book is transactional-level modelling (TLM). Figure 1.1 illustrates a TLM
view of a simple computer with no I/O devices. Wewill describe TLM in detail in Chapter 5. In

2

Chapter 1 | Introduction to System-on-Chip

contrast, Verilog and VHDL are the predominant register transfer languages (RTLs), studied
in Section 8.3. We introduce TLM right here at the start andwill use TLM examples alongside RTL
examples throughout. In Figure 1.1, themicroprocessor makes TLM calls on thememory. The
processor is an initiator and thememory is the target. There is only one target in this very simple
system, but normally the initiator has a choice of targets onwhich to invoke transactions. TLM calls
are essentially the same asmethod calls in object-oriented languages such as C++.

Microprocessor
(MPU)

R[1] = mem.read(R[2]);

mem.write(R[2], R[3]);

Memory
(RAM)

Figure 1.1 Transactional-level model (TLM) of the simplest computer (left) and code fragments (right)

Personal computers of the 1970s were calledmicrocomputers. Famousmodels are the Commodore
Pet, the Tandy TRS-80 and various Acorn computers, including the BBCMicro, which led to the
founding of Arm. Thesemicrocomputers can be regarded as the ancestors of today’s SoCs. The range
of address values that can be put on the address bus is called an address space. They used a 16-bit
address bus and an 8-bit data bus, so are called A16D8 systems. Themicroprocessor canmake two
main TLM calls to access memory space:

// Simple A16D8 TLM interface signature
u8_t read_byte(u16_t addr); // Memory read (load)
void write_byte(u16_t addr, u8_t data); // Memory write (store)

Suchmicroprocessors often also support I/O transactions, again with 8-bit data, but perhaps fewer
address bits for the I/O space. Using separate instructions for I/O, such as in and out, was desirable
since the A16 primary storage address was a critical resource that was spared by avoiding
memory-mapped I/O. The I/O calls would be something like:

// Simple A16D8 TLM interface signature
u8_t io_read(u8_t io_addr); // Input instruction
void io_write(u8_t io_addr, u8_t data); // Output instruction

Early microprocessors, such as the original Intel 8080, were A16D8 systems, so could address
64 kbytes of memory. Modernmicroprocessors commonly have on-chip caches and amemory
management unit for translating virtual memory addresses.

As wewill see later, TLMmodelling of processor operations is at quite a high level, leading to orders of
magnitude saving in simulation time comparedwithmodelling each transition of every net that makes
up the components and their interconnect. We use the term ‘net’ throughout this book for a wire
between the output of one gate and the input or inputs of others. A net-level description of a SoC is its
circuit diagram.

3

Modern SoCDesign

1.1 What is a System-on-Chip?
Themajority of computers made today follow the System-on-Chip (SoC) approach. A SoC contains
the processors, caches, memory and input/output (I/O) devices all on one piece of silicon. This gives
the lowest product cost and so is usedwhenever possible. More complex computers cannot fit onto a
single piece of silicon and somultiple chips are used. This is also the preferred approach if the
manufacturing process for a single chip is not the best for all of its parts. In a later chapter
(Section 6.1), we discuss motivations for using different chips for DRAMand flashmemories.
However, evenwhenmultiple pieces of silicon are used, they are often tightly integrated into a single
package using die-stacking or interposers (Section 8.9.1). Packing the computer into the smallest
space possible is the primary technique bywhich computer technology has progressed in the last
60 years. A smaller computer has shorter wires and can operate faster for the same power
consumption. The relevant equations are described in Section 4.6.

We start this bookwith a review of what a computer is andwas.

1.1.1 Historical Review
ASoC is a System-on-Chip. In this context, theword system originally denoted a computer but today’s
SoCs havemany computers on them. To kick off this chapter, we start by defining some terminology
that wewill develop and use throughout this book. AnMPSoC is a SoC containingmultiple embedded
processors. The four quadrants in Table 1.1 give a traditional view of an old computer system.

Table 1.1 Four quadrants of a computer

Control unit Execution unit

Primary storage I/O devices

Each quadrant occupied at least one full-height 19-inch rack in early computers. The execution unit
and the control unit are together known as the central processing unit (CPU).When VLSI technology
advanced such that a CPU could be put on a single chip, this was called amicroprocessor. Famously,
GordonMoore is recognised as the first person to do this, with the invention of the Intel 4004 in 1971.

The primary storage contains both programs and data in a vonNeumann architecture. This is in
contrast to a Harvard architecture that has separate primarymemories for programs and data
(Section 2.1). Primary storage is also known asmainmemory. Primary storage is directly addressed
by the CPU, both for an instruction fetch and for data load and store instructions. With the advent of
tape and disk drives as I/O devices, further memory was attached as secondary storage and behaves
like any other I/O device. Flashmemory is the predominant form of secondary storage today
(Section 2.6.8).

An important strand in this book is transactional-level modelling (TLM). Figure 1.1 illustrates a TLM
view of a simple computer with no I/O devices. Wewill describe TLM in detail in Chapter 5. In

2

Chapter 1 | Introduction to System-on-Chip

contrast, Verilog and VHDL are the predominant register transfer languages (RTLs), studied
in Section 8.3. We introduce TLM right here at the start andwill use TLM examples alongside RTL
examples throughout. In Figure 1.1, themicroprocessor makes TLM calls on thememory. The
processor is an initiator and thememory is the target. There is only one target in this very simple
system, but normally the initiator has a choice of targets onwhich to invoke transactions. TLM calls
are essentially the same asmethod calls in object-oriented languages such as C++.

Microprocessor
(MPU)

R[1] = mem.read(R[2]);

mem.write(R[2], R[3]);

Memory
(RAM)

Figure 1.1 Transactional-level model (TLM) of the simplest computer (left) and code fragments (right)

Personal computers of the 1970s were calledmicrocomputers. Famousmodels are the Commodore
Pet, the Tandy TRS-80 and various Acorn computers, including the BBCMicro, which led to the
founding of Arm. Thesemicrocomputers can be regarded as the ancestors of today’s SoCs. The range
of address values that can be put on the address bus is called an address space. They used a 16-bit
address bus and an 8-bit data bus, so are called A16D8 systems. Themicroprocessor canmake two
main TLM calls to access memory space:

// Simple A16D8 TLM interface signature
u8_t read_byte(u16_t addr); // Memory read (load)
void write_byte(u16_t addr, u8_t data); // Memory write (store)

Suchmicroprocessors often also support I/O transactions, again with 8-bit data, but perhaps fewer
address bits for the I/O space. Using separate instructions for I/O, such as in and out, was desirable
since the A16 primary storage address was a critical resource that was spared by avoiding
memory-mapped I/O. The I/O calls would be something like:

// Simple A16D8 TLM interface signature
u8_t io_read(u8_t io_addr); // Input instruction
void io_write(u8_t io_addr, u8_t data); // Output instruction

Early microprocessors, such as the original Intel 8080, were A16D8 systems, so could address
64 kbytes of memory. Modernmicroprocessors commonly have on-chip caches and amemory
management unit for translating virtual memory addresses.

As wewill see later, TLMmodelling of processor operations is at quite a high level, leading to orders of
magnitude saving in simulation time comparedwithmodelling each transition of every net that makes
up the components and their interconnect. We use the term ‘net’ throughout this book for a wire
between the output of one gate and the input or inputs of others. A net-level description of a SoC is its
circuit diagram.

3

Modern SoCDesign

The C++ code fragments on the right in Figure 1.1 would be executed by an instruction set simulator
(ISS, Section 5.5) model of the processor when executing load and store instructions using
register-indirect addressing. The array Rmodels the processor register file.

1.1.2 SimpleMicroprocessor Net-level Connections
Figure 1.2 shows a basic A16D8microprocessor with a tri-state bus. A single set of data wires are
used, bidirectionally, to alternately send data to and from the processor. At most, only one source can
enable its tri-state buffers at a time, otherwise a heavy current will arise in a bus fight, during which
two sources disagree on the value of data bits. Microcomputers of the 1970s and 1980s used a
tri-state bus. This microprocessor uses the net-level connections shown in Table 1.2 for its bus
transactions.

Address

Data
8

16

System Clock

Reset Input

Interrupt Request
I

R

Microprocessor

hren
hwen
ack

Figure 1.2 Schematic symbol and external connections for a tri-state version of a simple microprocessor

The processor puts its address (and also data for a write) on the busses, asserts hwen or hren
depending onwhether it is a write or read andwaits for ack. For a read, the data present on the data
bus when ack is asserted is accepted by the processor. This is the essence of the bus protocol. We
later define the protocol more thoroughly using separate read andwrite data busses (Section 1.1.4).
Having just one bus protocol that is used by all interconnected blocks is a key part in facilitating SoC
integration at scale. Large real-world SoCs inevitably use several protocols, but eachmust be justified
by its performance, power use or other capabilities.

Table 1.2 Net-level connections

Connection Direction Use
data[7:0] I/O Bidirectional data bus
addr[15:0] Output Selection of internal address; not all 32 bits are used
hren Output Asserted during a data read from the target to the host
hwen Output Asserted during a write of data from the host to the target
ack Input Asserted when the addressed device has completed its operation

The processor has three control inputs, shown on the left-hand side of Figure 1.2. The clock input is a
periodic square wave (of a fewMHz in the 1970s). The reset input causes the program counter to be
set to a hardwired value called the reset vector (typically all zeros). An interrupt inputmakes it save
the current program counter and load another hardwired vector that is the entry point for an

4

Chapter 1 | Introduction to System-on-Chip

interrupt service routine (ISR). Typically, the processor hardware will set an interrupt disable bit in
the status word at the same time. It is the programmer’s responsibility to ensure that the interrupt
input is de-asserted before it clears the interrupt disable bit.

Given the definition of a simplemicroprocessor, we can proceedwith the definition of a full
microcomputer. Althoughwe expect the readers of this book to be thoroughly familiar with this
material in hardware terms, the simultaneous presentation of TLMmay be new.

1.1.3 Full Netlist andMemoryMap for aMicrocomputer

Control
Unit

Execution
Unit

+ ALU

Memory

Static RAM

16 kByte

UART
Serial Port

Address bus
(16 bits)

Data bus
(8 bits)

Microprocessor

RS232 serial connection

Register File
(including PC)

D0-7

D0-7

D0-7

Clock

Memory Map
decoder circuit.

The `glue' logic

Often a PAL
single chip device.

A15

A14

A13

wen

ren

A0-13

enb

enb

enb

1 K Byte ROM
Read Only Memory

A0-9

A0-2

ROM_ENABLE_BAR

UART_ENABLE_BAR

RAM_ENABLE_BAR

D0-7

wen

ren

Main Memory

RAM

ROM
for booting

I/O Device

ren

In
te

rr
u

p
t

Reset

Figure 1.3 A simple A16D8microcomputer structure. A microprocessor initiates all transactions on a bidirectional/tri-state data bus, which is connected to
all other components

Figure 1.3 shows the inter-chip wiring of a basic microcomputer (i.e. a computer based on a
microprocessor). The allocation of the 64 kbytes of addressable space to hardware resources is called
thememorymap. Table 1.3 is thememorymap generated by the logic of Figure 1.4. The glue logic can
be implementedwith two invertors and three NAND gates as shown. It is also described in the
following RTL:

5

Modern SoCDesign

The C++ code fragments on the right in Figure 1.1 would be executed by an instruction set simulator
(ISS, Section 5.5) model of the processor when executing load and store instructions using
register-indirect addressing. The array Rmodels the processor register file.

1.1.2 SimpleMicroprocessor Net-level Connections
Figure 1.2 shows a basic A16D8microprocessor with a tri-state bus. A single set of data wires are
used, bidirectionally, to alternately send data to and from the processor. At most, only one source can
enable its tri-state buffers at a time, otherwise a heavy current will arise in a bus fight, during which
two sources disagree on the value of data bits. Microcomputers of the 1970s and 1980s used a
tri-state bus. This microprocessor uses the net-level connections shown in Table 1.2 for its bus
transactions.

Address

Data
8

16

System Clock

Reset Input

Interrupt Request
I

R

Microprocessor

hren
hwen
ack

Figure 1.2 Schematic symbol and external connections for a tri-state version of a simple microprocessor

The processor puts its address (and also data for a write) on the busses, asserts hwen or hren
depending onwhether it is a write or read andwaits for ack. For a read, the data present on the data
bus when ack is asserted is accepted by the processor. This is the essence of the bus protocol. We
later define the protocol more thoroughly using separate read andwrite data busses (Section 1.1.4).
Having just one bus protocol that is used by all interconnected blocks is a key part in facilitating SoC
integration at scale. Large real-world SoCs inevitably use several protocols, but eachmust be justified
by its performance, power use or other capabilities.

Table 1.2 Net-level connections

Connection Direction Use
data[7:0] I/O Bidirectional data bus
addr[15:0] Output Selection of internal address; not all 32 bits are used
hren Output Asserted during a data read from the target to the host
hwen Output Asserted during a write of data from the host to the target
ack Input Asserted when the addressed device has completed its operation

The processor has three control inputs, shown on the left-hand side of Figure 1.2. The clock input is a
periodic square wave (of a fewMHz in the 1970s). The reset input causes the program counter to be
set to a hardwired value called the reset vector (typically all zeros). An interrupt inputmakes it save
the current program counter and load another hardwired vector that is the entry point for an

4

Chapter 1 | Introduction to System-on-Chip

interrupt service routine (ISR). Typically, the processor hardware will set an interrupt disable bit in
the status word at the same time. It is the programmer’s responsibility to ensure that the interrupt
input is de-asserted before it clears the interrupt disable bit.

Given the definition of a simplemicroprocessor, we can proceedwith the definition of a full
microcomputer. Althoughwe expect the readers of this book to be thoroughly familiar with this
material in hardware terms, the simultaneous presentation of TLMmay be new.

1.1.3 Full Netlist andMemoryMap for aMicrocomputer

Control
Unit

Execution
Unit

+ ALU

Memory

Static RAM

16 kByte

UART
Serial Port

Address bus
(16 bits)

Data bus
(8 bits)

Microprocessor

RS232 serial connection

Register File
(including PC)

D0-7

D0-7

D0-7

Clock

Memory Map
decoder circuit.

The `glue' logic

Often a PAL
single chip device.

A15

A14

A13

wen

ren

A0-13

enb

enb

enb

1 K Byte ROM
Read Only Memory

A0-9

A0-2

ROM_ENABLE_BAR

UART_ENABLE_BAR

RAM_ENABLE_BAR

D0-7

wen

ren

Main Memory

RAM

ROM
for booting

I/O Device

ren

In
te

rr
u

p
t

Reset

Figure 1.3 A simple A16D8microcomputer structure. A microprocessor initiates all transactions on a bidirectional/tri-state data bus, which is connected to
all other components

Figure 1.3 shows the inter-chip wiring of a basic microcomputer (i.e. a computer based on a
microprocessor). The allocation of the 64 kbytes of addressable space to hardware resources is called
thememorymap. Table 1.3 is thememorymap generated by the logic of Figure 1.4. The glue logic can
be implementedwith two invertors and three NAND gates as shown. It is also described in the
following RTL:

5

Modern SoCDesign

module address_decode(abus, rom_cs, ram_cs, uart_cs); // Glue logic for address decode
input [15:14] abus;
output rom_cs, ram_cs, uart_cs;
assign rom_cs = !(abus == 2'b00); // 0x0000
assign ram_cs = !(abus == 2'b01); // 0x4000
assign uart_cs = !(abus == 2'b11); // 0xC000

endmodule

Table 1.3Memory map

Start End Resource
0000 03FF ROM (1 kbytes)
0400 3FFF Unused images of ROM
4000 7FFF RAM (16 kbytes)
8000 BFFF Unused
C000 C007 Registers (8) in the UART
C008 FFFF Unused images of the UART

ROM /CS

RAM /CS

UART /CS

A14

A15

Glue logic

Figure 1.4 Connections to memory

For a thorough equivalent example today, run cat /proc/iomem on any Linuxmachine to see its
address map.

In our simple example, the 64-kbytememorymap of the processor has been allocated to the three
addressable resources, as shown in thememorymap table. The high-order address bits are decoded
to create chip enable signals for each of the connected peripherals, which are the RAM (Section 2.6.1),
ROM (Section 2.6.2) and universal asynchronous receiver and transmitter (UART, Section 2.7.1). The
memorymapmust be allocated without overlapping the resources. The ROMneeds to bemapped so
that it encompasses the reset vector, which is where the processor starts executing fromwhen it is
reset. It is commonly zero, as assumed here. In such a simple computer, the full memorymapmust be
known at the time the code for the ROM is compiled. This requires agreement between the hardware
and software engineers. Modern SoCs tend to use programmedmemorymap discovery techniques so
that the software is portable over a variety of hardware devices to accommodate various orderings of
pluggable peripherals (Section 3.1.7).

In the early days, the static memorymapwas written on a blackboard so that all engineers (hardware
and software) could see it. For amodern SoC, there can be up to 100 devices in thememorymap and a
complex device could have several hundred internal registers and fields within such registers. Each
register or field will have a protocol update policy (e.g. read/write, read-only etc.) andmay ormay not
change through its own volition. Automatic tooling tomanage and document amemorymap is vital.
Virtualisation and security considerations dictate that some registers have alternative views and
access policies. An XML representation called IP-XACT (Section 6.8.2) is one standard that has been
adopted for machine-generatedmemorymaps. It allows the glue logic and all the interconnect wiring
to be generated automatically.

6

Chapter 1 | Introduction to System-on-Chip

1.1.4 Separate Read andWrite Data Busses
Our example so far used a tri-state bus. These are still commonly used for chip-to-chip interconnects
on printed circuit boards (PCBs). However, modern SoCs do not use tri-states on-chip. A lower
switched-capacitance solution is achieved using point-to-point wiring, which also avoids wasting the
leakage energy in logic gates where the input is floating between logic levels (Section 4.6.2). In this
book, for simple reference designs wewill initially use a reference bus that we call MSOC1. This uses
separate read andwrite busses instead of a single data bus. Elsewhere, we use real-world busses, like
AXI and CHI. For subsequent examples, wewill default to using an A32D32 systemwith separate read
andwrite busses.

hren

hwen

addr

rdata

ack

clk

wdata

read try write idlewrite

read addr write addr

write data

read
data

Figure 1.5MSOC1 reference bus protocol, with read and write examples

Figure 1.5 shows two example cycles for ourMSOC1 reference bus. It is a synchronous bus with
transactions occurring on the positive clock edge. Each instance of anMSOC1 port in an A32D32
system uses the the net-level connections listed in Table 1.4.

Table 1.4 Net-level connections of anMSOC1 port in an A32D32 system

Connection Direction Use
addr[31:0] Output Selection of internal address; not all 32 bits are used
hwen Input Asserted during a write from the host to the target
hren Input Asserted during a read from the target to the host
wdata[31:0] Input Data to a target whenwriting or storing
rdata[31:0] Output Data read from a target when reading or loading

The signal directions shown are for a target. On an initiator, the net directions are reversed. A read
transaction occurs on any clock cycle when both hren and ack are asserted. Awrite occurs on any

7

Modern SoCDesign

module address_decode(abus, rom_cs, ram_cs, uart_cs); // Glue logic for address decode
input [15:14] abus;
output rom_cs, ram_cs, uart_cs;
assign rom_cs = !(abus == 2'b00); // 0x0000
assign ram_cs = !(abus == 2'b01); // 0x4000
assign uart_cs = !(abus == 2'b11); // 0xC000

endmodule

Table 1.3Memory map

Start End Resource
0000 03FF ROM (1 kbytes)
0400 3FFF Unused images of ROM
4000 7FFF RAM (16 kbytes)
8000 BFFF Unused
C000 C007 Registers (8) in the UART
C008 FFFF Unused images of the UART

ROM /CS

RAM /CS

UART /CS

A14

A15

Glue logic

Figure 1.4 Connections to memory

For a thorough equivalent example today, run cat /proc/iomem on any Linuxmachine to see its
address map.

In our simple example, the 64-kbytememorymap of the processor has been allocated to the three
addressable resources, as shown in thememorymap table. The high-order address bits are decoded
to create chip enable signals for each of the connected peripherals, which are the RAM (Section 2.6.1),
ROM (Section 2.6.2) and universal asynchronous receiver and transmitter (UART, Section 2.7.1). The
memorymapmust be allocated without overlapping the resources. The ROMneeds to bemapped so
that it encompasses the reset vector, which is where the processor starts executing fromwhen it is
reset. It is commonly zero, as assumed here. In such a simple computer, the full memorymapmust be
known at the time the code for the ROM is compiled. This requires agreement between the hardware
and software engineers. Modern SoCs tend to use programmedmemorymap discovery techniques so
that the software is portable over a variety of hardware devices to accommodate various orderings of
pluggable peripherals (Section 3.1.7).

In the early days, the static memorymapwas written on a blackboard so that all engineers (hardware
and software) could see it. For amodern SoC, there can be up to 100 devices in thememorymap and a
complex device could have several hundred internal registers and fields within such registers. Each
register or field will have a protocol update policy (e.g. read/write, read-only etc.) andmay ormay not
change through its own volition. Automatic tooling tomanage and document amemorymap is vital.
Virtualisation and security considerations dictate that some registers have alternative views and
access policies. An XML representation called IP-XACT (Section 6.8.2) is one standard that has been
adopted for machine-generatedmemorymaps. It allows the glue logic and all the interconnect wiring
to be generated automatically.

6

Chapter 1 | Introduction to System-on-Chip

1.1.4 Separate Read andWrite Data Busses
Our example so far used a tri-state bus. These are still commonly used for chip-to-chip interconnects
on printed circuit boards (PCBs). However, modern SoCs do not use tri-states on-chip. A lower
switched-capacitance solution is achieved using point-to-point wiring, which also avoids wasting the
leakage energy in logic gates where the input is floating between logic levels (Section 4.6.2). In this
book, for simple reference designs wewill initially use a reference bus that we call MSOC1. This uses
separate read andwrite busses instead of a single data bus. Elsewhere, we use real-world busses, like
AXI and CHI. For subsequent examples, wewill default to using an A32D32 systemwith separate read
andwrite busses.

hren

hwen

addr

rdata

ack

clk

wdata

read try write idlewrite

read addr write addr

write data

read
data

Figure 1.5MSOC1 reference bus protocol, with read and write examples

Figure 1.5 shows two example cycles for ourMSOC1 reference bus. It is a synchronous bus with
transactions occurring on the positive clock edge. Each instance of anMSOC1 port in an A32D32
system uses the the net-level connections listed in Table 1.4.

Table 1.4 Net-level connections of anMSOC1 port in an A32D32 system

Connection Direction Use
addr[31:0] Output Selection of internal address; not all 32 bits are used
hwen Input Asserted during a write from the host to the target
hren Input Asserted during a read from the target to the host
wdata[31:0] Input Data to a target whenwriting or storing
rdata[31:0] Output Data read from a target when reading or loading

The signal directions shown are for a target. On an initiator, the net directions are reversed. A read
transaction occurs on any clock cycle when both hren and ack are asserted. Awrite occurs on any

7

Modern SoCDesign

clock cycle when both hwen and ack are asserted. The example waveforms show a read followed by a
write. The write is extended by a clock cycle since the ack signal was not present on the first positive
edgewhen hwenwas asserted.

The protocol is said to execute a handshakewith external devices using the hren/hwen signals, which
are the request nets. The ack net is an acknowledge. In Chapter 2, wewill present the essence of
common peripheral blocks using RTL examples. If a device can respond immediately, no ack signal is
required, as an equivalent can be generatedwith anOR of the hren and hwen nets. In practice,
contention, cachemisses and operations on slow busses delay responses to the processor. Simple
processors stall entirely during this period, whereas advanced cores carry onwith other work and can
process responses received out of order.

In Chapter 2, the examples mostly assume that no acknowledgement signal is required, meaning that
every addressed target must respond in one clock cycle with no exceptions. Also we assume that only
completewords are stored. The stores are alwaysword aligned, so no lane qualifiers for bytes and half
words are needed. Amisaligned access spans two adjacent word addresses, such as reading or
writing a 16-bit word at an odd-byte address.

1.2 Microcontrollers
The term ‘microcontroller’ briefly denoted an industrial controller based on amicroprocessor, as
would be used for sequencing and control of a small plant or production line, such as amicrobrewery.
Microprocessors integrated two of the historical quadrants on one piece of silicon (Table 1.1). As VLSI
capabilities grew, the remaining two quadrants – themainmemory (primary storage) and themajority
of I/O devices – could also be included. This was then called amicrocontroller. It has all the system
parts on one piece of silicon. It is a SoC.

One of themost famousmicrocontrollers is the Intel 8051 family, introduced in 1980. Such
microcontrollers differed from other microprocessors of the time because they had a rich set of
instructions for setting, clearing, toggling and testing individual bits in I/O space. These were useful in
that they did not destroy register contents andwere faster than the three-instruction sequence (load,
operate and store) that would otherwise be needed. Today’s SoCs hardly benefit from such
instructions since the CPU rate is much faster than normally needed for bit-oriented device control.

Figure 1.6 is a block diagram of a first-generationmicrocontroller, like the one illustrated in Figure 1.7.
The device contains an entire computer, requiring externally only a power supply, an external clock
and reset components. All the remaining pins are usable for I/O, such as general-purpose I/O
(GPIO, Section 2.7.3). A bus bond-out modewas also supported by some devices so that
memory-mapped devices can be connected externally.

Like amicrocomputer, program codewas stored permanently in the ROM. PROMand EPROMwere
available in the original devices, as well as masked ROM. Today, a three-stage chain is often used for
booting, in which amask-programmed ROM reads code from a low-performance flashmemory into

8

Chapter 1 | Introduction to System-on-Chip

internal RAM. The code thus loaded can be themain application itself, but is often just a bootloader,
which itself loads themain operating system (Section 9.1).

Microprocessor
(8-bit originally)

RAM
(e.g. 2 Kbytes)

OTP
(one-time

programmable)
PROM

(programmable
 read-only
memory)

(e.g. 8 Kbytes)

Clock
oscillator

Power-on
reset

Programmable I/O Pins
(GPIO)Counters and

Timers
UART

I/O wires OR external bus

Reset capacitor
Clock

(crystal oscillator)

Serial TX and RX

Internal A and D busses

Figure 1.6 Structure of a typical microcontroller, a single-chip microcomputer

Figure 1.7 Hitachi HD614080microcontroller chip from 1980. Such devices were often in very large, dual in-line (DIL) packages to make a large number of
GPIO pins available

AUARTwas themost advanced peripheral implemented in the early microcontrollers. Also
commonly foundwere pulse-widthmodulation (PWM) generators and pulse counters (Section 2.7.4).
These are still found on today’s SoCs, but are being used less and less, with USB and Ethernet taking
over in many applications.

Chip-and-pin smart cards contain amicrocontroller. Many of these run a cut-down integer-only Java
virtual machine (VM). Figure 1.8 shows the contact plate. Clock, reset and power are provided
externally and all communication uses a protocol on the bidirectional data pin. Early variants required

9

Modern SoCDesign

clock cycle when both hwen and ack are asserted. The example waveforms show a read followed by a
write. The write is extended by a clock cycle since the ack signal was not present on the first positive
edgewhen hwenwas asserted.

The protocol is said to execute a handshakewith external devices using the hren/hwen signals, which
are the request nets. The ack net is an acknowledge. In Chapter 2, wewill present the essence of
common peripheral blocks using RTL examples. If a device can respond immediately, no ack signal is
required, as an equivalent can be generatedwith anOR of the hren and hwen nets. In practice,
contention, cachemisses and operations on slow busses delay responses to the processor. Simple
processors stall entirely during this period, whereas advanced cores carry onwith other work and can
process responses received out of order.

In Chapter 2, the examples mostly assume that no acknowledgement signal is required, meaning that
every addressed target must respond in one clock cycle with no exceptions. Also we assume that only
completewords are stored. The stores are alwaysword aligned, so no lane qualifiers for bytes and half
words are needed. Amisaligned access spans two adjacent word addresses, such as reading or
writing a 16-bit word at an odd-byte address.

1.2 Microcontrollers
The term ‘microcontroller’ briefly denoted an industrial controller based on amicroprocessor, as
would be used for sequencing and control of a small plant or production line, such as amicrobrewery.
Microprocessors integrated two of the historical quadrants on one piece of silicon (Table 1.1). As VLSI
capabilities grew, the remaining two quadrants – themainmemory (primary storage) and themajority
of I/O devices – could also be included. This was then called amicrocontroller. It has all the system
parts on one piece of silicon. It is a SoC.

One of themost famousmicrocontrollers is the Intel 8051 family, introduced in 1980. Such
microcontrollers differed from other microprocessors of the time because they had a rich set of
instructions for setting, clearing, toggling and testing individual bits in I/O space. These were useful in
that they did not destroy register contents andwere faster than the three-instruction sequence (load,
operate and store) that would otherwise be needed. Today’s SoCs hardly benefit from such
instructions since the CPU rate is much faster than normally needed for bit-oriented device control.

Figure 1.6 is a block diagram of a first-generationmicrocontroller, like the one illustrated in Figure 1.7.
The device contains an entire computer, requiring externally only a power supply, an external clock
and reset components. All the remaining pins are usable for I/O, such as general-purpose I/O
(GPIO, Section 2.7.3). A bus bond-out modewas also supported by some devices so that
memory-mapped devices can be connected externally.

Like amicrocomputer, program codewas stored permanently in the ROM. PROMand EPROMwere
available in the original devices, as well as masked ROM. Today, a three-stage chain is often used for
booting, in which amask-programmed ROM reads code from a low-performance flashmemory into

8

Chapter 1 | Introduction to System-on-Chip

internal RAM. The code thus loaded can be themain application itself, but is often just a bootloader,
which itself loads themain operating system (Section 9.1).

Microprocessor
(8-bit originally)

RAM
(e.g. 2 Kbytes)

OTP
(one-time

programmable)
PROM

(programmable
 read-only
memory)

(e.g. 8 Kbytes)

Clock
oscillator

Power-on
reset

Programmable I/O Pins
(GPIO)Counters and

Timers
UART

I/O wires OR external bus

Reset capacitor
Clock

(crystal oscillator)

Serial TX and RX

Internal A and D busses

Figure 1.6 Structure of a typical microcontroller, a single-chip microcomputer

Figure 1.7 Hitachi HD614080microcontroller chip from 1980. Such devices were often in very large, dual in-line (DIL) packages to make a large number of
GPIO pins available

AUARTwas themost advanced peripheral implemented in the early microcontrollers. Also
commonly foundwere pulse-widthmodulation (PWM) generators and pulse counters (Section 2.7.4).
These are still found on today’s SoCs, but are being used less and less, with USB and Ethernet taking
over in many applications.

Chip-and-pin smart cards contain amicrocontroller. Many of these run a cut-down integer-only Java
virtual machine (VM). Figure 1.8 shows the contact plate. Clock, reset and power are provided
externally and all communication uses a protocol on the bidirectional data pin. Early variants required

9

Modern SoCDesign

an external programming supply, on contact C6, but today’s devices have an on-chip voltage generator
and so there is now a spare pin on the contact plate (Section 8.6.1).

C1 - VCC supply

C2 - Reset

C3 - Clock

C5 - Ground

C6 - (Vpp)

C7 - Data In/Out

Figure 1.8 Contact plate for a smart card. The card reader supplies VCC power, clock and reset. Inputs and outputs are then made via the 1-bit bidirectional
data pin

1.3 Later Chapters
Chapter 2, ‘Processors, Memory and IP Blocks’, is a tour of themany basic building blocks on a SoC.
These are known as intellectual property (IP) blocks. Theymay be bespoke or off-the-shelf and
includememory, peripherals (I/O devices) and processors.

Chapter 3, ‘SoC Interconnect’, reviews various approaches to connecting the IP blocks together, taking
into account the required throughput and latency requirements tomeet the target SoC performance.

Chapter 4, ‘SystemDesign Considerations’, reviews the basic principles of traffic engineering and
design techniques. These are important for guiding the design process and understanding the
expected effect of a design change. Debugging and security are also discussed.

Chapter 5, ‘Electronic System-LevelModelling’, explains the reasons and techniques for building and
using a high-level model of a SoC. This is called an electronic system-level (ESL)model. It can be used
to estimate performance and energy use and to develop the software that will run inside the SoC.

Chapter 6, ‘Architectural Design Exploration’, considers various approaches to implementing a given
function, including using custom processors and hardware accelerators. Advanced hardware design
tools are also discussed.

Chapter 7, ‘FormalMethods and Assertion-based Design’, examinesmechanisms for avoiding
mistakes in chip design, comparing simulations with a formal proof of correctness.

Chapter 8, ‘Fabrication and Production’, presents the back-end steps in chipmaking, during which
synthesisable RTL is converted tomasks for fabrication. It discusses techniques for squeezing
performance out of silicon and ensuring reliable operation despite variations in wafer processing,
supply voltage and operating temperature (PVT variations).

Chapter 9, ‘Putting Everything Together’, rounds up the book. It discusses bootstrapping the code into
a new SoC and getting a product ready for consumer use.

10

Chapter 1 | Introduction to System-on-Chip

1.4 SoCDesign Flows
SoC design flow uses a tower of abstractions. Each component is represented at multiple levels with
an increasing amount of detail for lower levels. Figure 1.9 illustrates this for an invertor. Components
that are generated by synthesis tools, such as for signal buffering or repipelining, do not appear at all
in the higher levels.

A Y

0
1

1
0

Truth table Logic Symbol Schematic Diagram

Polygon Layout

A Y

A Y

VDD

GND

A Y

VDD

GND

Verilog Continuous Assign

wire Y = !A;

Figure 1.9 An invertor viewed at various levels of abstraction

The design of a SoC requires tens of man years of effort, for even just a variation of a previous SoC. A
totally new design requires orders of magnitude greater effort and even then, it makes extensive use
of pre-existing blocks, known as intellectual property (IP) blocks. As will become clear in the chapter
on fabrication, Chapter 8, a new SoC requires half a dozen teams of engineers, each with a different
focus, such as hardware, software, packaging, documentation, physical design, verification and
testing. Figure 1.10 is an abstract view of the front end of the SoC design flow. This view starts with
the functional requirements determined by themarketing department of the company designing the
SoC and stops at the level of synthesisable RTL (Section 8.3.8).

1.4.1 FunctionalModel
A SoC begins with a functional specification. This typically comes from themarketing team at an
electronics company in the form of a product requirements document (PRD). The design aims are
specified in terms of high-level requirements that cover functionality, throughput, power
consumption and cost.

Numerous tools exist for capturing andmanaging requirements. Examples are IBMEngineering
RequirementsManagement DOORSNext, Orcanos and various tools that support Jenkins, SysML
andUML. These support hypertext links between various sub-documents stored in a revision control
system and various consistency checks. Ultimately, the design concept and performance needs are
transferred from themarketing person’s mind, the back of an envelope or a word processor document
intomachine-readable form.

11

Modern SoCDesign

an external programming supply, on contact C6, but today’s devices have an on-chip voltage generator
and so there is now a spare pin on the contact plate (Section 8.6.1).

C1 - VCC supply

C2 - Reset

C3 - Clock

C5 - Ground

C6 - (Vpp)

C7 - Data In/Out

Figure 1.8 Contact plate for a smart card. The card reader supplies VCC power, clock and reset. Inputs and outputs are then made via the 1-bit bidirectional
data pin

1.3 Later Chapters
Chapter 2, ‘Processors, Memory and IP Blocks’, is a tour of themany basic building blocks on a SoC.
These are known as intellectual property (IP) blocks. Theymay be bespoke or off-the-shelf and
includememory, peripherals (I/O devices) and processors.

Chapter 3, ‘SoC Interconnect’, reviews various approaches to connecting the IP blocks together, taking
into account the required throughput and latency requirements tomeet the target SoC performance.

Chapter 4, ‘SystemDesign Considerations’, reviews the basic principles of traffic engineering and
design techniques. These are important for guiding the design process and understanding the
expected effect of a design change. Debugging and security are also discussed.

Chapter 5, ‘Electronic System-LevelModelling’, explains the reasons and techniques for building and
using a high-level model of a SoC. This is called an electronic system-level (ESL)model. It can be used
to estimate performance and energy use and to develop the software that will run inside the SoC.

Chapter 6, ‘Architectural Design Exploration’, considers various approaches to implementing a given
function, including using custom processors and hardware accelerators. Advanced hardware design
tools are also discussed.

Chapter 7, ‘FormalMethods and Assertion-based Design’, examinesmechanisms for avoiding
mistakes in chip design, comparing simulations with a formal proof of correctness.

Chapter 8, ‘Fabrication and Production’, presents the back-end steps in chipmaking, during which
synthesisable RTL is converted tomasks for fabrication. It discusses techniques for squeezing
performance out of silicon and ensuring reliable operation despite variations in wafer processing,
supply voltage and operating temperature (PVT variations).

Chapter 9, ‘Putting Everything Together’, rounds up the book. It discusses bootstrapping the code into
a new SoC and getting a product ready for consumer use.

10

Chapter 1 | Introduction to System-on-Chip

1.4 SoCDesign Flows
SoC design flow uses a tower of abstractions. Each component is represented at multiple levels with
an increasing amount of detail for lower levels. Figure 1.9 illustrates this for an invertor. Components
that are generated by synthesis tools, such as for signal buffering or repipelining, do not appear at all
in the higher levels.

A Y

0
1

1
0

Truth table Logic Symbol Schematic Diagram

Polygon Layout

A Y

A Y

VDD

GND

A Y

VDD

GND

Verilog Continuous Assign

wire Y = !A;

Figure 1.9 An invertor viewed at various levels of abstraction

The design of a SoC requires tens of man years of effort, for even just a variation of a previous SoC. A
totally new design requires orders of magnitude greater effort and even then, it makes extensive use
of pre-existing blocks, known as intellectual property (IP) blocks. As will become clear in the chapter
on fabrication, Chapter 8, a new SoC requires half a dozen teams of engineers, each with a different
focus, such as hardware, software, packaging, documentation, physical design, verification and
testing. Figure 1.10 is an abstract view of the front end of the SoC design flow. This view starts with
the functional requirements determined by themarketing department of the company designing the
SoC and stops at the level of synthesisable RTL (Section 8.3.8).

1.4.1 FunctionalModel
A SoC begins with a functional specification. This typically comes from themarketing team at an
electronics company in the form of a product requirements document (PRD). The design aims are
specified in terms of high-level requirements that cover functionality, throughput, power
consumption and cost.

Numerous tools exist for capturing andmanaging requirements. Examples are IBMEngineering
RequirementsManagement DOORSNext, Orcanos and various tools that support Jenkins, SysML
andUML. These support hypertext links between various sub-documents stored in a revision control
system and various consistency checks. Ultimately, the design concept and performance needs are
transferred from themarketing person’s mind, the back of an envelope or a word processor document
intomachine-readable form.

11

Modern SoCDesign

Requirements from Marketing Team

Previous
similar designs

Functional Model

Architectural partition, co-design and
coding, automated co-synthesis

and HLS

Back-end procedures: logic synthesis, place, route, fabrication.

Performance
estimates

Memory-accurate
Electronic System

(ESL) model

Register Transfer
RTL Implementation

Architectural
exporation

Network synthesis,
Floorplanning,

PreliminaryTiming Evaluation

IP Block
Libraries

Energy
estimates

Performance
estimates

Energy
estimates

Desired
output

Figure 1.10 Front-end flow in SoC design

Any particular field of application or discipline will adopt its own approach at this level, but in general,
creating software to produce the desired output is a useful starting point. For instance, if the SoC is to
drive themechanisms of an inkjet printer, then the desired output is the required signal waveforms
for the various stepper motors and ink cartridges. The desired output is shown in yellow on
Figure 1.10. The software used to generate the desired output is called a functional model. It is the
highest level model. Such a programwill have little in commonwith the final product, except that it
produces the same desired output. The lower-level models and implementations should generate an
identical functional output and are progressively closer to the final product.

Often, we need to design a product with a total silicon area of under 100mm2. This is a good size for a
SoC (as discussed in Section 8.11.1). In the past, there were significant obstacles when integrating
various forms of electronics on one chip. Difficulties arise, since analogue functions, low-noise
amplifiers, optronics and high-density memory have their own optimumwafer recipe for processing
the silicon. Progress hasmade this integration easier. Nonetheless, our example for this chapter, an
ADSL broadbandmodem, is from around 2008, when integration was not as mature.

12

Chapter 1 | Introduction to System-on-Chip

Figure 1.11 shows themain circuit board of a broadbandmodem hubmade by Belkin. Figure 1.12 is a
block diagram at the board level. Themain components are a power supply, aWi-Fi subsystem, a
four-port Ethernet switch and an ADSLmodem. There is also a USB port, about eight LED indicators
and two push switches.

Figure 1.11Main PCB of an ADSL homemodem

Ethernet RJ45 x 4 USB Telephone RJ11

WiFi

Status LEDs

Reset
switch

DC
power
jack

Xtal

Xtal

Ethernet
MAC

Ethernet Mags

Main
SoC

Flash DRAM

Ethernet Mags

WiFi
antenna

Status LEDsWPS Switch

Connectors

Power Supply
Regulator

Balun

Filters

Hybrid
Xformer

WiFi
analogue

under shielding
plate

Figure 1.12Main PCB structure of an ADSL homemodem

In a product made todaywith identical functionality, theWi-Fi subsystemwould have far less PCB
area. Much of its functionality would be on themain SoC. Also, either the flash or the DRAM could be
on themain SoC, or perhaps die-stacked on top of it. All other aspects of the designwould be the same.

13

Modern SoCDesign

Requirements from Marketing Team

Previous
similar designs

Functional Model

Architectural partition, co-design and
coding, automated co-synthesis

and HLS

Back-end procedures: logic synthesis, place, route, fabrication.

Performance
estimates

Memory-accurate
Electronic System

(ESL) model

Register Transfer
RTL Implementation

Architectural
exporation

Network synthesis,
Floorplanning,

PreliminaryTiming Evaluation

IP Block
Libraries

Energy
estimates

Performance
estimates

Energy
estimates

Desired
output

Figure 1.10 Front-end flow in SoC design

Any particular field of application or discipline will adopt its own approach at this level, but in general,
creating software to produce the desired output is a useful starting point. For instance, if the SoC is to
drive themechanisms of an inkjet printer, then the desired output is the required signal waveforms
for the various stepper motors and ink cartridges. The desired output is shown in yellow on
Figure 1.10. The software used to generate the desired output is called a functional model. It is the
highest level model. Such a programwill have little in commonwith the final product, except that it
produces the same desired output. The lower-level models and implementations should generate an
identical functional output and are progressively closer to the final product.

Often, we need to design a product with a total silicon area of under 100mm2. This is a good size for a
SoC (as discussed in Section 8.11.1). In the past, there were significant obstacles when integrating
various forms of electronics on one chip. Difficulties arise, since analogue functions, low-noise
amplifiers, optronics and high-density memory have their own optimumwafer recipe for processing
the silicon. Progress hasmade this integration easier. Nonetheless, our example for this chapter, an
ADSL broadbandmodem, is from around 2008, when integration was not as mature.

12

Chapter 1 | Introduction to System-on-Chip

Figure 1.11 shows themain circuit board of a broadbandmodem hubmade by Belkin. Figure 1.12 is a
block diagram at the board level. Themain components are a power supply, aWi-Fi subsystem, a
four-port Ethernet switch and an ADSLmodem. There is also a USB port, about eight LED indicators
and two push switches.

Figure 1.11Main PCB of an ADSL homemodem

Ethernet RJ45 x 4 USB Telephone RJ11

WiFi

Status LEDs

Reset
switch

DC
power
jack

Xtal

Xtal

Ethernet
MAC

Ethernet Mags

Main
SoC

Flash DRAM

Ethernet Mags

WiFi
antenna

Status LEDsWPS Switch

Connectors

Power Supply
Regulator

Balun

Filters

Hybrid
Xformer

WiFi
analogue

under shielding
plate

Figure 1.12Main PCB structure of an ADSL homemodem

In a product made todaywith identical functionality, theWi-Fi subsystemwould have far less PCB
area. Much of its functionality would be on themain SoC. Also, either the flash or the DRAM could be
on themain SoC, or perhaps die-stacked on top of it. All other aspects of the designwould be the same.

13

Modern SoCDesign

1.4.2 Architectural Partition
The collection of algorithms and functional requirements must be implemented using one ormore
pieces of silicon. Eachmajor piece of silicon contains one ormore custom or standard
microprocessors. Some of the silicon has a custom design, some of it has a design common to different
devices in a product line, some of it has a standard design and some of it has a third-party design. A
breakdown of themajor categories of integrated circuit is presented in Section 8.4. Chapter 4
explores the design partition problem.

The result of the first-pass architectural design process is a mapping of the design into physical
components. Certain electronic requirements, such as high voltage, microwave radio frequencies and
optimummemory bit density, are still fulfilled with optimised silicon (or GaAs) processes, but today,
almost everything is either a standard part or else can bemapped onto a single SoC. Beyond the
fundamental properties of silicon, a design partitionmust take into account non-technical aspects,
such as the stability of the requirements, the design lifetime, ease of reuse and other market forces,
such as whether all the required parts will continue to be available during the envisioned production
run. It is common for an end customer to require that there is a second-source supplier for any part to
prevent a shortage from significantly interrupting a production run. This second supplier may either
already bemaking an equivalent part or have signed the required contracts andwarranties to ensure
it can start production at short notice.

When designing a subsystem, wemust choose what to have as hardware, what to have as software
andwhether custom or standard processors are needed. When designing the complete SoC, wemust
think about sharing the subsystem load over the processors chosen. Estimates of the instruction fetch
and data bandwidth for each processor are neededwhen deciding howmanymemories to instantiate
andwhich processors operate out of whichmemories. The envisioned system data flow between
subsystems is another important consideration, affecting how the busses are interconnected and
whether a network-on-chip (NoC) is justified. For a SoC intended for a single target application, there
is greater certainty about the likely data flow comparedwith a general-purpose chip. Although the
transistor count is not a significant design constraint in modern VLSI, hardwired data paths aremore
efficient than switched structures. Moreover, wiring length and hence, energy areminimised if less
area is used. A solution providing a non-blocking full-crossbar interconnection (Section 3.2.3) will
generally be over-engineered for all applications.

Energy efficiency is also often a critical consideration. Whether for a battery-powered device or a
server farm, low-power design principles are applicable and power control mechanisms affect the
design at all levels.

The functional requirements for the broadbandmodem are, essentially, its hardware and software
feature set. Theremay be requirements relating to its power consumption and throughput, but these
are likely to be of low concern because the unit is mains powered and performance is limited by the
low-speed interfaces (ADSL andWi-Fi). Theremay be a requirement for the wired Ethernet to handle
local traffic at a full line rate of 100Mbps per port full-duplex, but this wouldmore than likely be
relaxed for a low-cost residential unit in favour of cost of goods.

14

Chapter 1 | Introduction to System-on-Chip

The cost of goods is the total amount paid by themanufacturer for all the parts that go into a product.
It includes the component costs, case costs and cost of the cardboard box, and is always amajor
concern for a consumer product. Assembly and testing costs are also a consideration. Most digital
products are quite easy to test, since they can embody sophisticated self-test mechanisms.

The hardware features are all obvious from the final hardware design. TheWi-Fi has a diversity
antenna, which was a strong selling point in 2008, albeit for a considerable increase in cost of goods.
Today, all but themost basic designs havemultiple antennae to overcome fading arising from
reflections and standing waves.

The software features include a firewall and DHCP server, internal web-basedmanagement HTML
server and so on. Wewill not cover these in this book. However, one significant feature that the
software needs to provide is a degree of flexibility against future changes. Changes could be protocol
or security enhancements, or perhaps regional variations to address parts of the world not originally
provisioned. A SoC designmust anticipate such changes as far as possible by providing sufficient
hooks and general-purpose internal interfaces.

Another output available when all of the requirements and proposed algorithms are captured in a
high-level software implementation is the total memory and execution cycle budget. The cycle budget
might typically be for a serial single-threaded implementation and hence, knowing the target clock
frequency for the SoC, the degree of parallelism required in the final implementation can be
estimated. Although these figuresmay vary by perhaps±30 per cent from the figure for the final SoC
target, insights at this high level can form a basis for feedback to themarketing team regarding the
likely final silicon cost and power consumption.

1.4.3 Architectural Partition and Co-design
Given the design requirements, an initial allocation of design features to pieces of silicon and IP blocks
within those chips must bemade. Normally, we aim to create one SoC and supplement it with as few
standard parts as possible to form a board-level product.

There are two principal ways to solve the design partition problem:

1. Co-design: Implementing amanual partition between custom hardware and software for various
processors.

2. Co-synthesis: Automatically creating simple ‘device drivers’ and inter-blockmessage formats to
match the automated partitioning decisions.

The partitioning decisions can, in theory, be automated. This is the co-synthesis approach. For
well-defined tasks, such as when the whole system functionality is fully described by a single
high-level application program, automatic partitioning works. It has been demonstrated in various
academic projects and is working today in cloud-based FPGA accelerators (Section 6.4). However,

15

Modern SoCDesign

1.4.2 Architectural Partition
The collection of algorithms and functional requirements must be implemented using one ormore
pieces of silicon. Eachmajor piece of silicon contains one ormore custom or standard
microprocessors. Some of the silicon has a custom design, some of it has a design common to different
devices in a product line, some of it has a standard design and some of it has a third-party design. A
breakdown of themajor categories of integrated circuit is presented in Section 8.4. Chapter 4
explores the design partition problem.

The result of the first-pass architectural design process is a mapping of the design into physical
components. Certain electronic requirements, such as high voltage, microwave radio frequencies and
optimummemory bit density, are still fulfilled with optimised silicon (or GaAs) processes, but today,
almost everything is either a standard part or else can bemapped onto a single SoC. Beyond the
fundamental properties of silicon, a design partitionmust take into account non-technical aspects,
such as the stability of the requirements, the design lifetime, ease of reuse and other market forces,
such as whether all the required parts will continue to be available during the envisioned production
run. It is common for an end customer to require that there is a second-source supplier for any part to
prevent a shortage from significantly interrupting a production run. This second supplier may either
already bemaking an equivalent part or have signed the required contracts andwarranties to ensure
it can start production at short notice.

When designing a subsystem, wemust choose what to have as hardware, what to have as software
andwhether custom or standard processors are needed. When designing the complete SoC, wemust
think about sharing the subsystem load over the processors chosen. Estimates of the instruction fetch
and data bandwidth for each processor are neededwhen deciding howmanymemories to instantiate
andwhich processors operate out of whichmemories. The envisioned system data flow between
subsystems is another important consideration, affecting how the busses are interconnected and
whether a network-on-chip (NoC) is justified. For a SoC intended for a single target application, there
is greater certainty about the likely data flow comparedwith a general-purpose chip. Although the
transistor count is not a significant design constraint in modern VLSI, hardwired data paths aremore
efficient than switched structures. Moreover, wiring length and hence, energy areminimised if less
area is used. A solution providing a non-blocking full-crossbar interconnection (Section 3.2.3) will
generally be over-engineered for all applications.

Energy efficiency is also often a critical consideration. Whether for a battery-powered device or a
server farm, low-power design principles are applicable and power control mechanisms affect the
design at all levels.

The functional requirements for the broadbandmodem are, essentially, its hardware and software
feature set. Theremay be requirements relating to its power consumption and throughput, but these
are likely to be of low concern because the unit is mains powered and performance is limited by the
low-speed interfaces (ADSL andWi-Fi). Theremay be a requirement for the wired Ethernet to handle
local traffic at a full line rate of 100Mbps per port full-duplex, but this wouldmore than likely be
relaxed for a low-cost residential unit in favour of cost of goods.

14

Chapter 1 | Introduction to System-on-Chip

The cost of goods is the total amount paid by themanufacturer for all the parts that go into a product.
It includes the component costs, case costs and cost of the cardboard box, and is always amajor
concern for a consumer product. Assembly and testing costs are also a consideration. Most digital
products are quite easy to test, since they can embody sophisticated self-test mechanisms.

The hardware features are all obvious from the final hardware design. TheWi-Fi has a diversity
antenna, which was a strong selling point in 2008, albeit for a considerable increase in cost of goods.
Today, all but themost basic designs havemultiple antennae to overcome fading arising from
reflections and standing waves.

The software features include a firewall and DHCP server, internal web-basedmanagement HTML
server and so on. Wewill not cover these in this book. However, one significant feature that the
software needs to provide is a degree of flexibility against future changes. Changes could be protocol
or security enhancements, or perhaps regional variations to address parts of the world not originally
provisioned. A SoC designmust anticipate such changes as far as possible by providing sufficient
hooks and general-purpose internal interfaces.

Another output available when all of the requirements and proposed algorithms are captured in a
high-level software implementation is the total memory and execution cycle budget. The cycle budget
might typically be for a serial single-threaded implementation and hence, knowing the target clock
frequency for the SoC, the degree of parallelism required in the final implementation can be
estimated. Although these figuresmay vary by perhaps±30 per cent from the figure for the final SoC
target, insights at this high level can form a basis for feedback to themarketing team regarding the
likely final silicon cost and power consumption.

1.4.3 Architectural Partition and Co-design
Given the design requirements, an initial allocation of design features to pieces of silicon and IP blocks
within those chips must bemade. Normally, we aim to create one SoC and supplement it with as few
standard parts as possible to form a board-level product.

There are two principal ways to solve the design partition problem:

1. Co-design: Implementing amanual partition between custom hardware and software for various
processors.

2. Co-synthesis: Automatically creating simple ‘device drivers’ and inter-blockmessage formats to
match the automated partitioning decisions.

The partitioning decisions can, in theory, be automated. This is the co-synthesis approach. For
well-defined tasks, such as when the whole system functionality is fully described by a single
high-level application program, automatic partitioning works. It has been demonstrated in various
academic projects and is working today in cloud-based FPGA accelerators (Section 6.4). However,

15

Modern SoCDesign

such techniques cannot yet replace human-guided partitioning for typical SoC projects, mainly due to
the lack of characterisation of the vast potential design space. There are also problemswith
hard-to-quantify or intangible advantages of particular design decisions and theirmutual interactions.

Industry today uses co-design, in which a senior engineer, the system architect, makes the
partitioning decisions.

In either approach, early and rapid feedback of energy and execution performance is needed. This
must bemore accurate than the first indications from our initial software functional model. Only a
basic or moderate level of accuracy is needed initially, but the polarity of the derivatives is critically
important (Section 6.6). A basic level of accuracy is needed for comparing vastly different designs.
Accuracy in the polarity of the derivatives indicates whether an incremental change is for the better
or the worse. Incremental changesmight be, for example, doubling a cache size, doubling the number
of cores or doubling the width of a data bus. We compare successive variants of the high-level
structure of a system in a process called architectural exploration (Section 6.2). If the power and
performance partial derivatives have the correct polarity for all major partitioning decisions, then
architectural exploration will lead to a good design point.

Typically, an ESLmodel is used for architectural exploration. We explore ESLmodelling in Chapter 5.
Another name for such amodel is a virtual platform. Thesemodels can accurately run the software
for the embedded cores with zero or veryminormodification to the software. Multiple ESLmodels of
target system components are commonly used. These vary in their level of detail andmodelling
performance. Various whole-systemmodels can then be put together using different levels of
modelling for the various subsystems. The level of detail selected for a subsystem depends onwhat
performancemetric or behavioural feature is currently of interest.

An important aspect of an ESLmodel is ease of editing and reconfiguration. Themost popular
language for ESLmodels is C++ using the SystemC coding style (Section 5.3). After each edit, static
information, such as silicon area and standby power results, are recomputed. Then a test workload is
run on themodel, and data are collected on dynamic performance and energy use.

1.4.4 IP Blocks
A SoC consists of an assembly of intellectual property (IP) blocks. The same is true for its high-level
ESLmodel. IP blocks are designed to be reusable over a large number of designs. They include CPUs,
RAMs and standard I/O devices such as for USB, Ethernet and UART. These will often be provided
with a per-use licence by an external supplier, notably Arm or Cadence. The IP blocks in a SoC also
include custom blocks that are locally generated specifically for the current application.

An IP block is supplied in various forms in parallel. Amachine-readable data sheet has static
information, such as silicon area and the power consumption for various activation levels. A high-level
model is provided for the ESL. A synthesisable model or cycle-accuratemodel is provided for net-level
simulations, and a hardmacro for the layout may be provided for critical high-performance

16

Chapter 1 | Introduction to System-on-Chip

subsystems such as RAMs and CPUs. A test programme and documentation are also provided.
Chapter 2 is an in-depth review of IP blocks.

In architectural exploration, different combinations of processors, memory and bus structures are
considered in an attempt to find an implementation with good power and load balancing. A loosely
timed high-level model is sufficient for computing the performance of an architecture.

In detailed design, we select IP providers for all the functional blocks. Alternatively, previous in-house
designs can be usedwithout paying a licence fee, or they can be freshly written.

1.4.5 Synthesis
As shown in the lower half of Figure 1.10, once an architecture has been chosen, implementation can
start. Implementation at this level needs to interconnect all the blocks that make up the design. This
will involve the final selection of standard parts for the board-level design and generating RTL for
custom IP blocks that have so far beenmodelled only at a high ESL level.

Synthesis is the process of automatically converting a high-level description of something into a
lower-level form. A number of synthesis tools are typically used at this stage:

A network synthesis tool is often used to generatememorymaps and all the bus structures or
NoCs for interconnecting the IP blocks (Section 3.9).

Amemory synthesiser tool generates memories with the required number of bits and port
structure (Section 8.3.10).

AnHLS compiler is sometimes used to generate RTL designs from parts of the high-level model
(Section 6.9).

A logic synthesiser is used to convert the RTL to net-level circuits (Section 8.3.8), but much of the
simulation is run on the behavioural RTLmodel. The net-level synthesis is considered to be part of
the back-end flow.

In practice, the whole proceduremay be iterative, with detailed results from a lower level of
implementation sometimes requiring changes at the architectural level, such as the size of scratchpad
RAMs.

1.4.6 Simulation
Different types of simulation are used at different levels of representation. Since synthesis steps
always expand the level of detail, it is faster to simulate the input level than the output level.

A synthesisable RTLmodel of the complete SoC can, in principle, be simulated with an RTL simulator
(Section 8.3.3). This will be slow. However, it should seldom be necessary, if most of the system can be

17

Modern SoCDesign

such techniques cannot yet replace human-guided partitioning for typical SoC projects, mainly due to
the lack of characterisation of the vast potential design space. There are also problemswith
hard-to-quantify or intangible advantages of particular design decisions and theirmutual interactions.

Industry today uses co-design, in which a senior engineer, the system architect, makes the
partitioning decisions.

In either approach, early and rapid feedback of energy and execution performance is needed. This
must bemore accurate than the first indications from our initial software functional model. Only a
basic or moderate level of accuracy is needed initially, but the polarity of the derivatives is critically
important (Section 6.6). A basic level of accuracy is needed for comparing vastly different designs.
Accuracy in the polarity of the derivatives indicates whether an incremental change is for the better
or the worse. Incremental changesmight be, for example, doubling a cache size, doubling the number
of cores or doubling the width of a data bus. We compare successive variants of the high-level
structure of a system in a process called architectural exploration (Section 6.2). If the power and
performance partial derivatives have the correct polarity for all major partitioning decisions, then
architectural exploration will lead to a good design point.

Typically, an ESLmodel is used for architectural exploration. We explore ESLmodelling in Chapter 5.
Another name for such amodel is a virtual platform. Thesemodels can accurately run the software
for the embedded cores with zero or veryminormodification to the software. Multiple ESLmodels of
target system components are commonly used. These vary in their level of detail andmodelling
performance. Various whole-systemmodels can then be put together using different levels of
modelling for the various subsystems. The level of detail selected for a subsystem depends onwhat
performancemetric or behavioural feature is currently of interest.

An important aspect of an ESLmodel is ease of editing and reconfiguration. Themost popular
language for ESLmodels is C++ using the SystemC coding style (Section 5.3). After each edit, static
information, such as silicon area and standby power results, are recomputed. Then a test workload is
run on themodel, and data are collected on dynamic performance and energy use.

1.4.4 IP Blocks
A SoC consists of an assembly of intellectual property (IP) blocks. The same is true for its high-level
ESLmodel. IP blocks are designed to be reusable over a large number of designs. They include CPUs,
RAMs and standard I/O devices such as for USB, Ethernet and UART. These will often be provided
with a per-use licence by an external supplier, notably Arm or Cadence. The IP blocks in a SoC also
include custom blocks that are locally generated specifically for the current application.

An IP block is supplied in various forms in parallel. Amachine-readable data sheet has static
information, such as silicon area and the power consumption for various activation levels. A high-level
model is provided for the ESL. A synthesisable model or cycle-accuratemodel is provided for net-level
simulations, and a hardmacro for the layout may be provided for critical high-performance

16

Chapter 1 | Introduction to System-on-Chip

subsystems such as RAMs and CPUs. A test programme and documentation are also provided.
Chapter 2 is an in-depth review of IP blocks.

In architectural exploration, different combinations of processors, memory and bus structures are
considered in an attempt to find an implementation with good power and load balancing. A loosely
timed high-level model is sufficient for computing the performance of an architecture.

In detailed design, we select IP providers for all the functional blocks. Alternatively, previous in-house
designs can be usedwithout paying a licence fee, or they can be freshly written.

1.4.5 Synthesis
As shown in the lower half of Figure 1.10, once an architecture has been chosen, implementation can
start. Implementation at this level needs to interconnect all the blocks that make up the design. This
will involve the final selection of standard parts for the board-level design and generating RTL for
custom IP blocks that have so far beenmodelled only at a high ESL level.

Synthesis is the process of automatically converting a high-level description of something into a
lower-level form. A number of synthesis tools are typically used at this stage:

A network synthesis tool is often used to generatememorymaps and all the bus structures or
NoCs for interconnecting the IP blocks (Section 3.9).

Amemory synthesiser tool generates memories with the required number of bits and port
structure (Section 8.3.10).

AnHLS compiler is sometimes used to generate RTL designs from parts of the high-level model
(Section 6.9).

A logic synthesiser is used to convert the RTL to net-level circuits (Section 8.3.8), but much of the
simulation is run on the behavioural RTLmodel. The net-level synthesis is considered to be part of
the back-end flow.

In practice, the whole proceduremay be iterative, with detailed results from a lower level of
implementation sometimes requiring changes at the architectural level, such as the size of scratchpad
RAMs.

1.4.6 Simulation
Different types of simulation are used at different levels of representation. Since synthesis steps
always expand the level of detail, it is faster to simulate the input level than the output level.

A synthesisable RTLmodel of the complete SoC can, in principle, be simulated with an RTL simulator
(Section 8.3.3). This will be slow. However, it should seldom be necessary, if most of the system can be

17

Modern SoCDesign

simulated at a high level with an ESLmodel. In that case, an RTL implementation is used for only one
or two subsystems of interest.

Test bench components need to be coded before simulations can be run. These can be behavioural
models that are also suitable for ESLmodelling. Sometimes they use data files collected from the real
world, such as signals from a telephone line in our broadbandmodem example.

Logic synthesis converts from behavioural RTL to structural RTL (Section 8.3.8). This results in at least
one further order of magnitude increase in detail and hence, simulations of the resulting netlist will
run 10× slower. Table 5.2 shows typical simulation speeds.

Apart from the input RTL, the other main input to logic synthesis is the chosen target technology
library and directives about what to optimise (area, power or performance). A target technology
library is normally a machine-readable semi-custom standard cell library (Section 8.4.1). It has an
associated fabrication geometry (e.g. 28 nm) and supply voltage range (e.g. 0.9 to 1.1V).

1.4.7 Back-end Flow
System Requirement (marketing)

Architectural
Modelling

Design Possibilities

IP Provision

Third
party

Legacy
in-house

New Write
in-house

Assertions

Structure
Behavioural
H/W Desc

Design Database

RTL

SystemC Models

Instruction Set
 Simulator(s)

Regression
tests database

Gate-level
RTL simulation

Formal Equiv
Checking

Back Annotation

Timing Closure
Path

MASK MAKING

Annotated RTL
simulation

Circuit
equivalence

Foundry fabrication
(e.g. TSMC)

Silicon Chips

Firmware Application
Code

APIs

RTL
design
path

System
Architecture

Design Decisions

Formal
Checking

BEHAVIOURAL RTL

STRUCTURAL RTL NETLIST

Target Technology
Cell Library

ANNOTATED RTL NETLIST

PASS/FAIL

PASS/FAIL

PASS/FAIL

Test bench
items

Non-synth
high-level models

 ...
AND2 g102(o23, w3, r[4]);
OR2 g103(o24, o23, r[5]);
DFF d99(o25, clk, rst, o24);
...

always @(posedge clk) begin
 r1 <= r1 + 2;
 if (r3 > 4) r2 <= 0;
...
end

 ...
AND2 #12 g102(o23, w3, r[4]);
OR2 #31 g103(o24, o23, r[5]);
DFF #121d99(o25, clk, rst, o24);
...

Static-timing
analyser (STA)

RTL
Simulation

PASS/FAIL

Behavioural
H/W Desc

LAYOUT
PLACE AND ROUTE

RTL SYNTHESIS
aka

LOGIC SYNTHESIS

HIGH-LEVEL
SYNTHESIS

PackagingBack-end flow

Front-end flow

Timing
signoff

Physical DRC
+ verification

Figure 1.13 Overall design andmanufacturing flow for a SoC

18

Chapter 1 | Introduction to System-on-Chip

Figure 1.13 shows a typical overall design andmanufacturing flow from design capture to
application-specific integrated circuit (ASIC) fabrication. This might take 6months and 50man years.
A small FPGAflow (Section 8.5.2), on the other hand, can be executed in just a few days by one person.

Once the design is in synthesisable RTL form, the so-called back-end flows commence. Apart from
preliminary logic synthesis, a back-end flow is normally handled by a separate design team. Parts of
the back-end flowmay be outsourced to other companies. Maskmaking and foundry services are
nearly always outsourced, although certain very large players can do everything in-house (e.g. Intel
and Samsung). The back-end steps are discussed in Chapter 8. However, often changes are required
at the front end due to discoveries made in the back end. Most notable is timing closure
(Section 8.12.16) and testability (Section 8.8.2). Timing closure refers tomaking sure that each
subsystem can clock at its target frequency in all PVT conditions (Section 8.4.4). Modern on-chip bus
protocols are designed to tolerate issues arising frommeeting timing closure withminimal redesign,
albeit with aminor increase in latency and perhaps loss in throughput (Section 4.4.2 and Section 3.1.3).

The output fromRTL synthesis is a structural netlist that uses a target technology library. In other
words, it is almost the complete circuit diagram of the SoC in terms of individual logic gates. It is not
the entire circuit diagram, since components such as CPU cores are typically supplied in hardmacro
form (Section 8.4.2). Essentially, they look likemassive logic gates. The internal circuits for the logic
gates in a library are normally available under a library licence, but this may not be possible for hard
macros.

The placement step gives a 2-D coordinate to each component. This is often guided by an engineer
whomakes a high-level floor plan, which divides a SoC into tens of regions. Placement is then
automatic within each region and is performed tominimise wiring length. If multiple power voltages
and domains are used (Section 4.6.10), placementmust normally aim to put blocks with common
power supplies close to each other for ease of wiring.

The routing step selects the route taken by each net. Normally digital nets are on the lowest two
layers of metal, one being for predominantly vertical runs and the other for predominantly horizontal
runs. Interlayer vias are installed if a net needs to change direction. Areas with toomany nets may not
be routable and amodified placementmay be needed. Beyond that goal, minimising the wiring length
and the number of layer swaps are secondary goals. The upper layers of metal are used for power
distribution. Again, the routing tool will design these layers. A very important net is the clock for each
subsystem. The router may use a layer just for clock nets, since this makes it easy to deliver a clock
with low skew (Section 4.9.5).

Once routing is complete, an annotated netlistmay be extracted by another tool. This tool calculates
the actual load capacitance on each net. This is important both for power estimation and timing
closure, since the performance of a gate degrades as the length of its output net is increased
(Section 4.6.4). The RTL can then be back-annotated with actual implementation gate delays to
provide a fairly precise power and performancemodel. Design changes are needed if performance is

19

Modern SoCDesign

simulated at a high level with an ESLmodel. In that case, an RTL implementation is used for only one
or two subsystems of interest.

Test bench components need to be coded before simulations can be run. These can be behavioural
models that are also suitable for ESLmodelling. Sometimes they use data files collected from the real
world, such as signals from a telephone line in our broadbandmodem example.

Logic synthesis converts from behavioural RTL to structural RTL (Section 8.3.8). This results in at least
one further order of magnitude increase in detail and hence, simulations of the resulting netlist will
run 10× slower. Table 5.2 shows typical simulation speeds.

Apart from the input RTL, the other main input to logic synthesis is the chosen target technology
library and directives about what to optimise (area, power or performance). A target technology
library is normally a machine-readable semi-custom standard cell library (Section 8.4.1). It has an
associated fabrication geometry (e.g. 28 nm) and supply voltage range (e.g. 0.9 to 1.1V).

1.4.7 Back-end Flow
System Requirement (marketing)

Architectural
Modelling

Design Possibilities

IP Provision

Third
party

Legacy
in-house

New Write
in-house

Assertions

Structure
Behavioural
H/W Desc

Design Database

RTL

SystemC Models

Instruction Set
 Simulator(s)

Regression
tests database

Gate-level
RTL simulation

Formal Equiv
Checking

Back Annotation

Timing Closure
Path

MASK MAKING

Annotated RTL
simulation

Circuit
equivalence

Foundry fabrication
(e.g. TSMC)

Silicon Chips

Firmware Application
Code

APIs

RTL
design
path

System
Architecture

Design Decisions

Formal
Checking

BEHAVIOURAL RTL

STRUCTURAL RTL NETLIST

Target Technology
Cell Library

ANNOTATED RTL NETLIST

PASS/FAIL

PASS/FAIL

PASS/FAIL

Test bench
items

Non-synth
high-level models

 ...
AND2 g102(o23, w3, r[4]);
OR2 g103(o24, o23, r[5]);
DFF d99(o25, clk, rst, o24);
...

always @(posedge clk) begin
 r1 <= r1 + 2;
 if (r3 > 4) r2 <= 0;
...
end

 ...
AND2 #12 g102(o23, w3, r[4]);
OR2 #31 g103(o24, o23, r[5]);
DFF #121d99(o25, clk, rst, o24);
...

Static-timing
analyser (STA)

RTL
Simulation

PASS/FAIL

Behavioural
H/W Desc

LAYOUT
PLACE AND ROUTE

RTL SYNTHESIS
aka

LOGIC SYNTHESIS

HIGH-LEVEL
SYNTHESIS

PackagingBack-end flow

Front-end flow

Timing
signoff

Physical DRC
+ verification

Figure 1.13 Overall design andmanufacturing flow for a SoC

18

Chapter 1 | Introduction to System-on-Chip

Figure 1.13 shows a typical overall design andmanufacturing flow from design capture to
application-specific integrated circuit (ASIC) fabrication. This might take 6months and 50man years.
A small FPGAflow (Section 8.5.2), on the other hand, can be executed in just a few days by one person.

Once the design is in synthesisable RTL form, the so-called back-end flows commence. Apart from
preliminary logic synthesis, a back-end flow is normally handled by a separate design team. Parts of
the back-end flowmay be outsourced to other companies. Maskmaking and foundry services are
nearly always outsourced, although certain very large players can do everything in-house (e.g. Intel
and Samsung). The back-end steps are discussed in Chapter 8. However, often changes are required
at the front end due to discoveries made in the back end. Most notable is timing closure
(Section 8.12.16) and testability (Section 8.8.2). Timing closure refers tomaking sure that each
subsystem can clock at its target frequency in all PVT conditions (Section 8.4.4). Modern on-chip bus
protocols are designed to tolerate issues arising frommeeting timing closure withminimal redesign,
albeit with aminor increase in latency and perhaps loss in throughput (Section 4.4.2 and Section 3.1.3).

The output fromRTL synthesis is a structural netlist that uses a target technology library. In other
words, it is almost the complete circuit diagram of the SoC in terms of individual logic gates. It is not
the entire circuit diagram, since components such as CPU cores are typically supplied in hardmacro
form (Section 8.4.2). Essentially, they look likemassive logic gates. The internal circuits for the logic
gates in a library are normally available under a library licence, but this may not be possible for hard
macros.

The placement step gives a 2-D coordinate to each component. This is often guided by an engineer
whomakes a high-level floor plan, which divides a SoC into tens of regions. Placement is then
automatic within each region and is performed tominimise wiring length. If multiple power voltages
and domains are used (Section 4.6.10), placementmust normally aim to put blocks with common
power supplies close to each other for ease of wiring.

The routing step selects the route taken by each net. Normally digital nets are on the lowest two
layers of metal, one being for predominantly vertical runs and the other for predominantly horizontal
runs. Interlayer vias are installed if a net needs to change direction. Areas with toomany nets may not
be routable and amodified placementmay be needed. Beyond that goal, minimising the wiring length
and the number of layer swaps are secondary goals. The upper layers of metal are used for power
distribution. Again, the routing tool will design these layers. A very important net is the clock for each
subsystem. The router may use a layer just for clock nets, since this makes it easy to deliver a clock
with low skew (Section 4.9.5).

Once routing is complete, an annotated netlistmay be extracted by another tool. This tool calculates
the actual load capacitance on each net. This is important both for power estimation and timing
closure, since the performance of a gate degrades as the length of its output net is increased
(Section 4.6.4). The RTL can then be back-annotated with actual implementation gate delays to
provide a fairly precise power and performancemodel. Design changes are needed if performance is

19

Modern SoCDesign

insufficient. For instance, a gate driving a long net could be changed to a similar gate with increased
drive power, but with slightly greater area, so that a row of adjacent gates becomes slightly displaced.

Fabricatingmasks is commonly themost expensive single step of the design flow (e.g. £1million), so
must be correct first time. Asmentioned, fabricating silicon dies is performed in-house by large
companies, but most companies use third-party foundries, notably UMC and TSMC. The foundries
can also test chips (Section 8.8).

At all stages of the design flow (both front end and back end), a huge library of bespoke tests is run
every night and any changes that cause a previously successful test to fail (regressions) are
automatically reported to the project manager. Many systems can automatically determine which
engineer most likely made the edit that caused the regression andwill send them an email to ask them
to review it (Section 7.2.3).

1.4.8 Example: A Cell Phone

Main camera

Battery
connector

Micro SD
slot

RF Power
Amp

Antenna
connector

3.5mm
jack Front

cameraTop
microphone

Loudspeaker
USB

connector
Bottom

microphone

Screening
cans

Vibrator

Ear
phone

Main
camera Video

processor

Push
buttons

Radio
baseband

& AFE

Main circuit board front side

Main circuit board
rear side

G
en

er
al

 in
te

rn
al

 v
ie

w

Main SoC

XG626
baseband
modem

Memory
MCM

MAX8997
PSU IC

N
ea

r f
ie

ld
, W

iF
i a

nd
 G

PS
 ra

di
os

WiFi, Bluetooth and
GPS antenna

connection

Figure 1.14 General internal view of a mobile phone (left) and views of both sides of the main circuit board (centre and right). Highlighted in red are the main
SoC, which contains several Arm processors, and a multi-chip module containing several memory chips (a proprietary mix of DRAM, SRAM and flash)

Amodernmobile phone contains eight or more radio transceivers, including the various cell phone
standards, GPS,Wi-Fi, near-field and Bluetooth. Figure 1.14 shows the internals of a typical phone.
Themain circuit board contains more than 50 pieces of silicon to support the various radio standards.
These are on both sides of themain board and are coveredwith shielding cans, which have been lifted

20

Chapter 1 | Introduction to System-on-Chip

off for the photo. The largest chip package is amulti-chipmodule (MCM) (Section 8.9.1) containing
several memory devices. The second largest device is themain SoC.

The bill of materials (BoM) for amodern smartphone has the following components:

main SoC: the application processor with die-stacked or nearby SRAM, flash andDRAM

display with integrated capacitive touchscreen (instead of an older physical keypad) and
miscellaneous push buttons

haptic vibrator, audio ringers, loudspeaker, earphones andmicrophones in noise-cancelling pairs or
arrays

multimedia codecs (audiovisual capture and replay in several formats with hardware
acceleration, Section 6.4)

radio interfaces: GSM (three or four bands), Bluetooth, IEEE 802.11, GPS, near-field (contactless
ticketing and payments), etc., plus antennas for each (some shared)

powermanagement: battery charger and regulator, contactless charging through near-field
antenna, processor speed governor, die temperature sensor(s), on, off, and flight modes

infrared IrDA port (older units), magnetic compass, barometer, gravity direction sensor and
accelerometer

front and rear cameras, fingerprint camera, torch and ambient light sensor

memory card slot and SIM card slot

physical connectors: USB, power and headset

case, main battery, secondary battery and PCBs

Java or Dalvik VM, operating system, bundled applications, security certificates, etc.

1.4.9 SoC Example: Helium 210
A platform chip is a SoC that is used in a number of products although chunks of it might be turned off
for a particular application. For example, the USB port might not be available on a portable media
player despite being on the core chip. A platform chip is themodern equivalent of amicrocontroller. It
is a flexible chip that can be programmed for a number of embedded applications. The set of
components is the same as for amicrocontroller, but each has far more complexity, for example there
could be a 32-bit processor instead of an 8-bit one. In addition, rather than putting amicrocontroller

21

Modern SoCDesign

insufficient. For instance, a gate driving a long net could be changed to a similar gate with increased
drive power, but with slightly greater area, so that a row of adjacent gates becomes slightly displaced.

Fabricatingmasks is commonly themost expensive single step of the design flow (e.g. £1million), so
must be correct first time. Asmentioned, fabricating silicon dies is performed in-house by large
companies, but most companies use third-party foundries, notably UMC and TSMC. The foundries
can also test chips (Section 8.8).

At all stages of the design flow (both front end and back end), a huge library of bespoke tests is run
every night and any changes that cause a previously successful test to fail (regressions) are
automatically reported to the project manager. Many systems can automatically determine which
engineer most likely made the edit that caused the regression andwill send them an email to ask them
to review it (Section 7.2.3).

1.4.8 Example: A Cell Phone

Main camera

Battery
connector

Micro SD
slot

RF Power
Amp

Antenna
connector

3.5mm
jack Front

cameraTop
microphone

Loudspeaker
USB

connector
Bottom

microphone

Screening
cans

Vibrator

Ear
phone

Main
camera Video

processor

Push
buttons

Radio
baseband

& AFE

Main circuit board front side

Main circuit board
rear side

G
en

er
al

 in
te

rn
al

 v
ie

w

Main SoC

XG626
baseband
modem

Memory
MCM

MAX8997
PSU IC

N
ea

r f
ie

ld
, W

iF
i a

nd
 G

PS
 ra

di
os

WiFi, Bluetooth and
GPS antenna

connection

Figure 1.14 General internal view of a mobile phone (left) and views of both sides of the main circuit board (centre and right). Highlighted in red are the main
SoC, which contains several Arm processors, and a multi-chip module containing several memory chips (a proprietary mix of DRAM, SRAM and flash)

Amodernmobile phone contains eight or more radio transceivers, including the various cell phone
standards, GPS,Wi-Fi, near-field and Bluetooth. Figure 1.14 shows the internals of a typical phone.
Themain circuit board contains more than 50 pieces of silicon to support the various radio standards.
These are on both sides of themain board and are coveredwith shielding cans, which have been lifted

20

Chapter 1 | Introduction to System-on-Chip

off for the photo. The largest chip package is amulti-chipmodule (MCM) (Section 8.9.1) containing
several memory devices. The second largest device is themain SoC.

The bill of materials (BoM) for amodern smartphone has the following components:

main SoC: the application processor with die-stacked or nearby SRAM, flash andDRAM

display with integrated capacitive touchscreen (instead of an older physical keypad) and
miscellaneous push buttons

haptic vibrator, audio ringers, loudspeaker, earphones andmicrophones in noise-cancelling pairs or
arrays

multimedia codecs (audiovisual capture and replay in several formats with hardware
acceleration, Section 6.4)

radio interfaces: GSM (three or four bands), Bluetooth, IEEE 802.11, GPS, near-field (contactless
ticketing and payments), etc., plus antennas for each (some shared)

powermanagement: battery charger and regulator, contactless charging through near-field
antenna, processor speed governor, die temperature sensor(s), on, off, and flight modes

infrared IrDA port (older units), magnetic compass, barometer, gravity direction sensor and
accelerometer

front and rear cameras, fingerprint camera, torch and ambient light sensor

memory card slot and SIM card slot

physical connectors: USB, power and headset

case, main battery, secondary battery and PCBs

Java or Dalvik VM, operating system, bundled applications, security certificates, etc.

1.4.9 SoC Example: Helium 210
A platform chip is a SoC that is used in a number of products although chunks of it might be turned off
for a particular application. For example, the USB port might not be available on a portable media
player despite being on the core chip. A platform chip is themodern equivalent of amicrocontroller. It
is a flexible chip that can be programmed for a number of embedded applications. The set of
components is the same as for amicrocontroller, but each has far more complexity, for example there
could be a 32-bit processor instead of an 8-bit one. In addition, rather than putting amicrocontroller

21

Modern SoCDesign

on a PCB as the heart of the system, the whole system is placed on the same piece of silicon as the
platform components. This gives us a SoC.

The example illustrated in Figure 1.15 has two Arm processors and twoDSP processors. Each Arm
has a local cache and both store their programs and data in the same off-chip DRAM. In the block
diagram of this in Figure 1.16 the left-hand Arm is used as an I/O processor and so is connected to a
variety of standard peripherals. In a typical application, many of the peripherals are unused and so
held in a powered-downmode. The right-hand Arm is the system controller. It can access all the chip’s
resources over various bus bridges. It can access off-chip devices, such as an LCD display or keyboard
via a general-purpose analogue-to-digital local bus.

Figure 1.15 An Apple SoC with two Arm and three GPU cores. It was made by arch-rival Samsung

Bus bridgesmap part of one processor’s memorymap into that of another so that cycles can be
executed in the other’s space, albeit with some delay and loss of performance. A FIFO bus bridge
contains its own transaction queue of read or write operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such SRAMmay dominate the die area of
the chip. If both are fetching instructions from the same port of the same RAM, then they have to
execute the same program in lockstep or else have their own local cache to avoid a huge loss of
performance due to bus contention.

The rest of the system is normally swept up onto the same piece of silicon and this is denotedwith the
special function peripheral. This is the sole part of the design that varies from product to product. The
same core set of components can be be used for all sorts of different products, such as iPods, digital
cameras and ADSLmodems, as shown in Figure 1.17.

22

Chapter 1 | Introduction to System-on-Chip

Counter
Timer
Block

Ethernet
block

USB
block

UART(s)

PCI bus
interface

I/O
Processor

Arm 6

DSP
processor

Special peripheral
function

DRAM
Interface

DRAM

Cache

Local
RAM

for DSP

Local
IO/BUS

To miscellaneous peripherals
on the same PCB

AtoD
channels

DtoA
channels

Bus
Bridge

FIFO Bus Bridge

DRAM
Interface

10/100
Ethernet

USB

Serial lines

PCI Bus

I/O pins
for special
peripheral
function

Analog Input

Analog Output
(e.g.) L/R audio

PSU
and test logic

etc

Control
Processor

Arm 6

Cache

Counter
Timer
Block

Bus
Bridge

GPIO

DSP
processor DMA

Controller

A D R/W

GPIO

Figure 1.16 A platform chip example: the Virata Helium 210, as used in many ADSLmodems

Figure 1.17 Helium chip as part of a home gateway ADSLmodem (partially masked by the 802.11module)

At the architectural design stage of an application-specific SoC, to save the cost of a full crossbar
matrix interconnect, devices can be allocated to busses, if we know the expected access and traffic
patterns. Commonly there is onemain busmaster per bus. The busmaster is the device that
generates the address for the next datamovement (read or write operation). The Helium chip
illustrates this design pattern.

23

Modern SoCDesign

on a PCB as the heart of the system, the whole system is placed on the same piece of silicon as the
platform components. This gives us a SoC.

The example illustrated in Figure 1.15 has two Arm processors and twoDSP processors. Each Arm
has a local cache and both store their programs and data in the same off-chip DRAM. In the block
diagram of this in Figure 1.16 the left-hand Arm is used as an I/O processor and so is connected to a
variety of standard peripherals. In a typical application, many of the peripherals are unused and so
held in a powered-downmode. The right-hand Arm is the system controller. It can access all the chip’s
resources over various bus bridges. It can access off-chip devices, such as an LCD display or keyboard
via a general-purpose analogue-to-digital local bus.

Figure 1.15 An Apple SoC with two Arm and three GPU cores. It was made by arch-rival Samsung

Bus bridgesmap part of one processor’s memorymap into that of another so that cycles can be
executed in the other’s space, albeit with some delay and loss of performance. A FIFO bus bridge
contains its own transaction queue of read or write operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such SRAMmay dominate the die area of
the chip. If both are fetching instructions from the same port of the same RAM, then they have to
execute the same program in lockstep or else have their own local cache to avoid a huge loss of
performance due to bus contention.

The rest of the system is normally swept up onto the same piece of silicon and this is denotedwith the
special function peripheral. This is the sole part of the design that varies from product to product. The
same core set of components can be be used for all sorts of different products, such as iPods, digital
cameras and ADSLmodems, as shown in Figure 1.17.

22

Chapter 1 | Introduction to System-on-Chip

Counter
Timer
Block

Ethernet
block

USB
block

UART(s)

PCI bus
interface

I/O
Processor

Arm 6

DSP
processor

Special peripheral
function

DRAM
Interface

DRAM

Cache

Local
RAM

for DSP

Local
IO/BUS

To miscellaneous peripherals
on the same PCB

AtoD
channels

DtoA
channels

Bus
Bridge

FIFO Bus Bridge

DRAM
Interface

10/100
Ethernet

USB

Serial lines

PCI Bus

I/O pins
for special
peripheral
function

Analog Input

Analog Output
(e.g.) L/R audio

PSU
and test logic

etc

Control
Processor

Arm 6

Cache

Counter
Timer
Block

Bus
Bridge

GPIO

DSP
processor DMA

Controller

A D R/W

GPIO

Figure 1.16 A platform chip example: the Virata Helium 210, as used in many ADSLmodems

Figure 1.17 Helium chip as part of a home gateway ADSLmodem (partially masked by the 802.11module)

At the architectural design stage of an application-specific SoC, to save the cost of a full crossbar
matrix interconnect, devices can be allocated to busses, if we know the expected access and traffic
patterns. Commonly there is onemain busmaster per bus. The busmaster is the device that
generates the address for the next datamovement (read or write operation). The Helium chip
illustrates this design pattern.

23

Modern SoCDesign

Busses are connected to bridges, but crossing a bridge has latency and also uses up bandwidth on
both busses. Devices should be allocated to busses so that inter-bus traffic is minimised based on a
priori knowledge of likely access patterns. Lower-speed busses may go off-chip.

SoC Example: Tablet or Display Panel Device
Another example of a platform chip is illustrated in Figure 1.18. This device was used in a wide variety
of consumer devices, ranging from fire alarm control panels to low-end tablets. It integrates two
400-MHz Arm cores and a large number of DMA-capable peripheral controllers using a central bus
matrix. For this component, the wide variety of application scenarios implies that traffic flow patterns
are not accurately known at design time. This motivates the use of a central switchingmatrix.

L1 $

LCD

WDT

GPIO

Power
Charge
Temp

PHY

SD
Card

Pe
rip

he
ra

l B
us

 1 Scratchpad
SRAM

L2 Cache

Bluetooth

GPU 1

DRAM
Ctrl

RTC

UID

Ethernet

DMA DMA
DMA

USB HDMI

DMA

CODEC

Boot
ROM

DMA

Radio

Arm

PWM
4 Ch

SPI

I2C 2

I2C 1

UART
2 Ch

SIM
Card

Central switching fabric

WiFi

Pe
rip

he
ra

l B
us

 2

Touch
screen

ZBT
SRAM

Debug
Port

Framestore

PHY

To LCD Display

SD

JTAGStatic RAM
Dynamic

RAM

Gyroscope,
Barometer

Compass, etc..

Debug/
development

only.

L1 $

Arm

Figure 1.18 Another platform chip intended for use in thin-client display devices, such as a tablet

Both examples demonstrate that DRAM is always an important component that is generally off-chip
as a dedicated part. Today, some on-chip DRAM is used, either on the SoC itself or die-stacked
(Section 8.9.1).

1.5 SoC Technology
In 1965, GordonMoore predicted that the number of transistors on a silicon chip would double every
two years. Figure 1.19 reproduces one of themany scatter plots of chip sizes against dates that litter
the Internet. These demonstrate that his vision was roughly correct. This phenomenon is nowwell
known asMoore’s law (Section 8.2).

24

Chapter 1 | Introduction to System-on-Chip

Figure 1.19Moore’s law (Section 8.2)

Themost common implementation technique for SoCs is called semi-custom and uses a standard cell
library (Section 8.4.1). The other main alternative is the Field Programmable Gate Array (FPGA),
where, instead of being hard-coded in themanufacturingmasks, the user’s logic is downloaded into
the silicon into programmable logic at power-up time (Section 8.5.2).

Hybrid devices, known as super-FPGAs, are also available. In these the silicon area is partitioned
between a large number of everyday IP blocks and general purpose, programmable logic.

For such hardware, we use the terms ‘hard’ and ‘soft’ to differentiate between those functions that
are determined by the fabricationmasks and those that are loaded into the programmable fabric.
Before super-FPGAs, it was common to put so-called soft CPU cores in the programmable logic, but
this is not an efficient use of silicon or electricity for everyday cores. The super-FPGA always has
processors, caches, the DRAM controller and a selection of network interfaces as hard IP blocks,
since these are always needed.

The high cost of ASICmasks nowmakes FPGAs suitable for most medium-volume production runs
(e.g. sub 10000 units), which includesmost recording studio equipment and passenger-in-the-road
detection for high-end cars. The dark silicon trendmeans we can put all the IP blocks onto one chip,
providedwe leave themmostly turned off.

25

Modern SoCDesign

Busses are connected to bridges, but crossing a bridge has latency and also uses up bandwidth on
both busses. Devices should be allocated to busses so that inter-bus traffic is minimised based on a
priori knowledge of likely access patterns. Lower-speed busses may go off-chip.

SoC Example: Tablet or Display Panel Device
Another example of a platform chip is illustrated in Figure 1.18. This device was used in a wide variety
of consumer devices, ranging from fire alarm control panels to low-end tablets. It integrates two
400-MHz Arm cores and a large number of DMA-capable peripheral controllers using a central bus
matrix. For this component, the wide variety of application scenarios implies that traffic flow patterns
are not accurately known at design time. This motivates the use of a central switchingmatrix.

L1 $

LCD

WDT

GPIO

Power
Charge
Temp

PHY

SD
Card

Pe
rip

he
ra

l B
us

 1 Scratchpad
SRAM

L2 Cache

Bluetooth

GPU 1

DRAM
Ctrl

RTC

UID

Ethernet

DMA DMA
DMA

USB HDMI

DMA

CODEC

Boot
ROM

DMA

Radio

Arm

PWM
4 Ch

SPI

I2C 2

I2C 1

UART
2 Ch

SIM
Card

Central switching fabric

WiFi

Pe
rip

he
ra

l B
us

 2

Touch
screen

ZBT
SRAM

Debug
Port

Framestore

PHY

To LCD Display

SD

JTAGStatic RAM
Dynamic

RAM

Gyroscope,
Barometer

Compass, etc..

Debug/
development

only.

L1 $

Arm

Figure 1.18 Another platform chip intended for use in thin-client display devices, such as a tablet

Both examples demonstrate that DRAM is always an important component that is generally off-chip
as a dedicated part. Today, some on-chip DRAM is used, either on the SoC itself or die-stacked
(Section 8.9.1).

1.5 SoC Technology
In 1965, GordonMoore predicted that the number of transistors on a silicon chip would double every
two years. Figure 1.19 reproduces one of themany scatter plots of chip sizes against dates that litter
the Internet. These demonstrate that his vision was roughly correct. This phenomenon is nowwell
known asMoore’s law (Section 8.2).

24

Chapter 1 | Introduction to System-on-Chip

Figure 1.19Moore’s law (Section 8.2)

Themost common implementation technique for SoCs is called semi-custom and uses a standard cell
library (Section 8.4.1). The other main alternative is the Field Programmable Gate Array (FPGA),
where, instead of being hard-coded in themanufacturingmasks, the user’s logic is downloaded into
the silicon into programmable logic at power-up time (Section 8.5.2).

Hybrid devices, known as super-FPGAs, are also available. In these the silicon area is partitioned
between a large number of everyday IP blocks and general purpose, programmable logic.

For such hardware, we use the terms ‘hard’ and ‘soft’ to differentiate between those functions that
are determined by the fabricationmasks and those that are loaded into the programmable fabric.
Before super-FPGAs, it was common to put so-called soft CPU cores in the programmable logic, but
this is not an efficient use of silicon or electricity for everyday cores. The super-FPGA always has
processors, caches, the DRAM controller and a selection of network interfaces as hard IP blocks,
since these are always needed.

The high cost of ASICmasks nowmakes FPGAs suitable for most medium-volume production runs
(e.g. sub 10000 units), which includesmost recording studio equipment and passenger-in-the-road
detection for high-end cars. The dark silicon trendmeans we can put all the IP blocks onto one chip,
providedwe leave themmostly turned off.

25

Modern SoCDesign

1.6 Summary
This chapter has reviewed the basic concepts of digital computers and chip technology. We have
introduced some terminology that will be discussed further in the following chapters. A SoC
essentially consists of a collection of IP blocks and an associated interconnect. Many of the IP blocks
are used in several SoC designs, and they are sourced from IP block vendors. Others are
application-specific and embody proprietary IP.

The next chapter will review three classes of IP block: processors, memory and everything else. The
chapter after that will discuss how to interconnect IP blocks.

1.6.1 Exercises
1. What is the addressable space of an A32D32 processor in terms of bytes andwords?

2. Why is the register space of an I/O device typically mapped so that its base address is a multiple of
its length?

3. What are the differences between a PC, a microprocessor, a SoC and amicrocontroller? Are they
clearly distinct?

4. Howwould you estimate with a spreadsheet the external DRAMbandwidth needed by a SoC?

5. How could some peripheral devices bemade unaddressable by some cores (Section 7.7)?

26

Chapter 2
Processors, Memory
and IP Blocks

Modern SoCDesign

1.6 Summary
This chapter has reviewed the basic concepts of digital computers and chip technology. We have
introduced some terminology that will be discussed further in the following chapters. A SoC
essentially consists of a collection of IP blocks and an associated interconnect. Many of the IP blocks
are used in several SoC designs, and they are sourced from IP block vendors. Others are
application-specific and embody proprietary IP.

The next chapter will review three classes of IP block: processors, memory and everything else. The
chapter after that will discuss how to interconnect IP blocks.

1.6.1 Exercises
1. What is the addressable space of an A32D32 processor in terms of bytes andwords?

2. Why is the register space of an I/O device typically mapped so that its base address is a multiple of
its length?

3. What are the differences between a PC, a microprocessor, a SoC and amicrocontroller? Are they
clearly distinct?

4. Howwould you estimate with a spreadsheet the external DRAMbandwidth needed by a SoC?

5. How could some peripheral devices bemade unaddressable by some cores (Section 7.7)?

26

Chapter 2
Processors, Memory
and IP Blocks

Modern SoCDesign

Asmentioned in the introduction, a SoC is essentially an assembly of IP blocks. IP blocks may be
reusable over a large number of designs. Theymay include CPUs, RAMs and standard I/O devices
such as USB, Ethernet and UART. This chapter will review all of thesemain forms of IP block in terms
of functionality and the external connections they need. We provide illustrative TLM diagrams and
RTL code fragments for many of themore simple ones. Bus fabric components are covered in detail in
a subsequent chapter (Chapter 3).

2.1 Processor Cores
A SoC typically contains at least one general-purpose CPU. It may be supplied in synthesisable or a
hardmacro form (Section 8.4.2). In low-performance designs, the unit of instantiation is just a
cacheless CPU. The basic system, ignoring I/O, is then as shown in Figure 2.1(a). The CPU just needs to
be connected to themainmemory. A single cache for both data and instruction is illustrated in
Figure 2.1(b), but for mainstream and high-performance systems, the split between the instruction
cache (I-cache) and data cache (D-cache) of Figure 2.1(c) is nowmore common.

CPU
Primary
storage CPU

Primary
storage

C
ache

CPU
0

Primary
storage

I$

D$

CPU Primary
storage

I$

D$
CPU

1

I$

D$

L2 C
ache

a) b)

c) d)

Figure 2.1 TLM connection diagrams for CPU andmemory configurations: (a) direct connection, (b) with a cache, (c) with a split cache and (d) two cores with
a shared L2 cache. The fan-in to the TLM socket denotes that the bandwidth is shared. In reality, debug andmanagements ports also need to be connected

With both instructions and data being stored in the samememory andwith only oneword being
transferable at a time over the interface, the architecture of Figure 2.1(a) has an intrinsic structural
hazard (Section 6.3). This hazard is called the vonNeumann bottleneck. It raises no issues for
register-to-register operations, but can affect any form of load or store instruction. The advantage of
a split cache is called theHarvard advantage, which arises from holding programs and data in
different memories, as did the early computers constructed at Harvard. The British computers
constructed atManchester and Cambridge used the vonNeumann architecture with onememory for
both. Twominor disadvantages of the Harvard architecture are: (1) that any form of program loader
or self-modifying code needs a back door to be able to write to programmemory and (2) that a static
partition of memory resources reduces the effective capacity since onewill always run out before the
other (see statistical multiplexing gain, Section 4.3.3). Further advantages of having separate I- and
D-caches are that each can be physically located near where their data will be used, reducing wiring

28

Chapter 2 | Processors, Memory and IP Blocks

distance and eliminating amultiplexing stage for the address input. The I-cache is next to the
instruction decode logic and the D-cache next to the ALU.

The first-level or L1 instruction and data caches are often tightly coupled to the CPU. The composition
is known as aCPU core or just a core for short. Such a core is then the unit of instantiation at the SoC
level. This is like Figure 2.1(a) from the system integrator’s point of view. The coremay also have a
memorymanagement unit (MMU; Section 2.2.1) or other memory protection units with any
associated translation lookaside buffers (TLBs; Section 2.2.1). A tightly coupled coprocessor, such as a
floating point unit (FPU; Section 6.4) or a custom accelerator (Section 6.4), can also be included in the
instantiated component. As well as being atomic from the system integrator’s point of view, these
components are also tightly coupled in the sense that they aremutually optimised for performance.
The clock distribution network (Section 4.9.5) is shared, and critical interconnections, such as the byte
alignment logic on the data cache read port, may potentially have been optimised using full-custom
techniques (Section 8.4). However, for maximumflexibility in SoC design, the coprocessor
connections can bewired using the general IP interconnection tooling. This is shown in Figure 2.2.
Apart from accelerators, another way to increase processor functionality is by extending the custom
instruction set (Section 2.1.3).

Primary
storage

CoPro2
CPU

I$

D$

CoPro1

CoPro0

Figure 2.2 TLM diagrams for a CPU core with integrated first-level caches and external coprocessor connections

The level-2 (L2) caches and associated snoop controllers for cache consistency (Section 2.4.1) are
likely to be instantiated as separate IP blocks, as shown in Figure 2.1(d). This gives the SoC designer
the freedom to experiment with cache structures and bus bandwidths. In these TLM diagrams, where
two arrows connect to one TLM port of a component, this is normally taken to denote that the bus
bandwidth at that point is shared, but not always (as will be explained in Section 5.4.5). Having a
dedicated L2 per core is also a sensible design, as explored in Section 6.6.1.

As well as access to primary storage, a SoC designer needs to implement a number of other
connections, including clock, reset, interrupts and a debug port. The debug port provides back door
access to the CPU for register inspection, single stepping, triggering and trace logging (Section 4.7).

29

Modern SoCDesign

Asmentioned in the introduction, a SoC is essentially an assembly of IP blocks. IP blocks may be
reusable over a large number of designs. Theymay include CPUs, RAMs and standard I/O devices
such as USB, Ethernet and UART. This chapter will review all of thesemain forms of IP block in terms
of functionality and the external connections they need. We provide illustrative TLM diagrams and
RTL code fragments for many of themore simple ones. Bus fabric components are covered in detail in
a subsequent chapter (Chapter 3).

2.1 Processor Cores
A SoC typically contains at least one general-purpose CPU. It may be supplied in synthesisable or a
hardmacro form (Section 8.4.2). In low-performance designs, the unit of instantiation is just a
cacheless CPU. The basic system, ignoring I/O, is then as shown in Figure 2.1(a). The CPU just needs to
be connected to themainmemory. A single cache for both data and instruction is illustrated in
Figure 2.1(b), but for mainstream and high-performance systems, the split between the instruction
cache (I-cache) and data cache (D-cache) of Figure 2.1(c) is nowmore common.

CPU
Primary
storage CPU

Primary
storage

C
ache

CPU
0

Primary
storage

I$

D$

CPU Primary
storage

I$

D$
CPU

1

I$

D$

L2 C
ache

a) b)

c) d)

Figure 2.1 TLM connection diagrams for CPU andmemory configurations: (a) direct connection, (b) with a cache, (c) with a split cache and (d) two cores with
a shared L2 cache. The fan-in to the TLM socket denotes that the bandwidth is shared. In reality, debug andmanagements ports also need to be connected

With both instructions and data being stored in the samememory andwith only oneword being
transferable at a time over the interface, the architecture of Figure 2.1(a) has an intrinsic structural
hazard (Section 6.3). This hazard is called the vonNeumann bottleneck. It raises no issues for
register-to-register operations, but can affect any form of load or store instruction. The advantage of
a split cache is called theHarvard advantage, which arises from holding programs and data in
different memories, as did the early computers constructed at Harvard. The British computers
constructed atManchester and Cambridge used the vonNeumann architecture with onememory for
both. Twominor disadvantages of the Harvard architecture are: (1) that any form of program loader
or self-modifying code needs a back door to be able to write to programmemory and (2) that a static
partition of memory resources reduces the effective capacity since onewill always run out before the
other (see statistical multiplexing gain, Section 4.3.3). Further advantages of having separate I- and
D-caches are that each can be physically located near where their data will be used, reducing wiring

28

Chapter 2 | Processors, Memory and IP Blocks

distance and eliminating amultiplexing stage for the address input. The I-cache is next to the
instruction decode logic and the D-cache next to the ALU.

The first-level or L1 instruction and data caches are often tightly coupled to the CPU. The composition
is known as aCPU core or just a core for short. Such a core is then the unit of instantiation at the SoC
level. This is like Figure 2.1(a) from the system integrator’s point of view. The coremay also have a
memorymanagement unit (MMU; Section 2.2.1) or other memory protection units with any
associated translation lookaside buffers (TLBs; Section 2.2.1). A tightly coupled coprocessor, such as a
floating point unit (FPU; Section 6.4) or a custom accelerator (Section 6.4), can also be included in the
instantiated component. As well as being atomic from the system integrator’s point of view, these
components are also tightly coupled in the sense that they aremutually optimised for performance.
The clock distribution network (Section 4.9.5) is shared, and critical interconnections, such as the byte
alignment logic on the data cache read port, may potentially have been optimised using full-custom
techniques (Section 8.4). However, for maximumflexibility in SoC design, the coprocessor
connections can bewired using the general IP interconnection tooling. This is shown in Figure 2.2.
Apart from accelerators, another way to increase processor functionality is by extending the custom
instruction set (Section 2.1.3).

Primary
storage

CoPro2
CPU

I$

D$

CoPro1

CoPro0

Figure 2.2 TLM diagrams for a CPU core with integrated first-level caches and external coprocessor connections

The level-2 (L2) caches and associated snoop controllers for cache consistency (Section 2.4.1) are
likely to be instantiated as separate IP blocks, as shown in Figure 2.1(d). This gives the SoC designer
the freedom to experiment with cache structures and bus bandwidths. In these TLM diagrams, where
two arrows connect to one TLM port of a component, this is normally taken to denote that the bus
bandwidth at that point is shared, but not always (as will be explained in Section 5.4.5). Having a
dedicated L2 per core is also a sensible design, as explored in Section 6.6.1.

As well as access to primary storage, a SoC designer needs to implement a number of other
connections, including clock, reset, interrupts and a debug port. The debug port provides back door
access to the CPU for register inspection, single stepping, triggering and trace logging (Section 4.7).

29

Modern SoCDesign

2.1.1 ISAs
Any processor family is defined by its programmer’s view (PV) instruction set architecture (ISA). The
PV includes the registers andmemories that a low-level software programmer needs to know about
andwhich theymanipulate with instructions. It does not include any details of themicroarchitecture,
like the registers used for pipelining or present only in some particular hardware implementation of
the ISA. The ISA defines both the user-visible registers and the set of available instructions. The two
most prevalent ISAs used today are Arm and x86, but both of these have numerous variations. For
instance, early Arm architectures supported only 8- and 32-bit data with 16-bit support being added
in a later variant. Most recently, the ArmAArch64 architecture with 64-bit addresses was released.

Within each variation of an ISA, multiple implementations usefully co-exist. An ISA can be
implementedwith different microarchitectures that vary in area, energy and performance. Power
consumption tends to be proportional to area, but performance always grows sublinearly. In other
words, doubling the processor complexity gives less than a factor of 2 improvement in throughput.
Pollack’s rule of thumb, which is widely quoted, gives the exponent as 0.5. Two cores give twice the
performance for twice the power, but, following Pollack, getting twice the performance from a single
core requires 4× the power. Hence, if a program can bemade to run onmultiple cores, then this is
better than using fewer but more complex cores.

However, automatic parallelisation of existing programs is difficult. This is often a result of the way
they were coded and the programming languages used. Hence, to achieve high performance with
legacy code, so-called ‘brawny’ cores are needed [1]. They have high complexity but are inmainstream
use, predominantly using the x86 architecture. Note that the total energy used by the system is
divided over thememory system and the cores, whichmay use roughly equal amounts of energy in
some systems. The energy cost of moving data between thememory and core is increasingly
significant. The amount of memory traffic for an application is not altered by the processor design (to
a first approximation, ignoring prefetches andmispredicts); hence, the core complexity affects less
than half the power budget. Indeed, the energy used for memory and communication is becoming
increasingly dominant.

These topics are explored further in Section 6.6.2.

High-performance implementations of cores may have powerful but less-frequently used instructions
in hardware; the same instructions are emulated on the lower-performance implementations. If such
an instruction is missing from the implemented set, an emulation exception is raised and tightly
coupledmachine code ormicrocode is executed to provide the functionality. Examples are
vector-processing instructions.

Early devices relied on complex instruction set computing (CISC). Such ISAs had complex and
powerful instructions that helpedminimise code size but whose execution logic extended the critical
path (Section 4.4.2) and hence, reduced the clock frequency. Also, many of these instructions were
seldom used. This is not a good design since it penalises the performance of the frequently used
instructions. As a result, so-called reduced instruction set computing (RISC) was introduced,

30

Chapter 2 | Processors, Memory and IP Blocks

primarily in the early 1980s (although IBM had a RISC project in the 1960s). As well as a streamlined
instruction set, RISC aimed to achieve one instruction per clock cycle (IPC). Hence, bus protocols that
can transfer aword every clock cyclewere needed and a split cachewas also deployed tomaintain IPC
at unity during loads and stores. Famous RISC designs from that period were produced byMIPS,
SPARC and Arm, with the first Arm silicon in operation in 1985.

Modern implementations of CISC generally use a conversion phase that expands a CISC instruction to
one ormore RISC-like instructions. There are three places in which the translation can be performed:

1. In software as part of the compiler or in the operating system loader.

2. In hardware, pre-instruction cache: An instruction is expanded on cachemiss; however, this adds
an overhead to branch target identification and checkpointing during exception handling.

3. Post-instruction cache: The expansion is handled usingmicrocode.

The third option is most commonly used in CISC implementations. An expanded CISC instruction is
often called a uop ormicro-operation, especially in the context of x86 architectures. Simple CISC
instructions, such as a register transfer, are converted to a single uop, whereasmore complex
instructions, such as a blockmove or a division, are converted to entry points into amicrocode ROM,
which stores a programwith 2 to 20 or so uops. Such cores translate each CISC instruction every time
it is used. Assuming an unchanged 95 per cent hit rate in the instruction cache, only 5 per cent of that
energy would be needed under option 2 and none at all under option 1. The primary explanation for
the world being stuck with these relatively poor designs is market inertia.

2.1.2 Vector Instructions
The energy used by high-performance core implementations is dominated by instruction fetch,
decode and scheduling. The actual computation energy in ALUs and register files is typically a small
percentage (5–10 per cent). This is the fundamental reasonwhy hardwired accelerators perform so
muchmore efficiently (Section 6.4). It is also a fundamental motivation for vector-processing ISA
extensions.

A vector instruction is also known as a SIMD instruction, since a single instruction operates on
multiple data words. Vector instructions implementmassively parallel operations on the normal
register file, manipulatingmany registers at once. Alternatively, they operate on additional registers
in the PV. (However, register renaming in super-scalar CPUs clouds this distinction (Section 2.2).) The
register file can typically be treated asmultiple, shorter registers. For instance a swathe of a 32-bit
register file might be treated as 4× asmany 8-bit registers. By operating on, for example, 16 or 32
registers at once, the fetch-execute overhead is amortised by the same factor. Hence, vector
arithmetic of this nature can approach the efficiency of custom accelerators. If a processor has
load-multiple and store-multiple instructions, like the Arm family, a multi-register block of data can be
transferred to and from thememory system in one instruction.

31

Modern SoCDesign

2.1.1 ISAs
Any processor family is defined by its programmer’s view (PV) instruction set architecture (ISA). The
PV includes the registers andmemories that a low-level software programmer needs to know about
andwhich theymanipulate with instructions. It does not include any details of themicroarchitecture,
like the registers used for pipelining or present only in some particular hardware implementation of
the ISA. The ISA defines both the user-visible registers and the set of available instructions. The two
most prevalent ISAs used today are Arm and x86, but both of these have numerous variations. For
instance, early Arm architectures supported only 8- and 32-bit data with 16-bit support being added
in a later variant. Most recently, the ArmAArch64 architecture with 64-bit addresses was released.

Within each variation of an ISA, multiple implementations usefully co-exist. An ISA can be
implementedwith different microarchitectures that vary in area, energy and performance. Power
consumption tends to be proportional to area, but performance always grows sublinearly. In other
words, doubling the processor complexity gives less than a factor of 2 improvement in throughput.
Pollack’s rule of thumb, which is widely quoted, gives the exponent as 0.5. Two cores give twice the
performance for twice the power, but, following Pollack, getting twice the performance from a single
core requires 4× the power. Hence, if a program can bemade to run onmultiple cores, then this is
better than using fewer but more complex cores.

However, automatic parallelisation of existing programs is difficult. This is often a result of the way
they were coded and the programming languages used. Hence, to achieve high performance with
legacy code, so-called ‘brawny’ cores are needed [1]. They have high complexity but are inmainstream
use, predominantly using the x86 architecture. Note that the total energy used by the system is
divided over thememory system and the cores, whichmay use roughly equal amounts of energy in
some systems. The energy cost of moving data between thememory and core is increasingly
significant. The amount of memory traffic for an application is not altered by the processor design (to
a first approximation, ignoring prefetches andmispredicts); hence, the core complexity affects less
than half the power budget. Indeed, the energy used for memory and communication is becoming
increasingly dominant.

These topics are explored further in Section 6.6.2.

High-performance implementations of cores may have powerful but less-frequently used instructions
in hardware; the same instructions are emulated on the lower-performance implementations. If such
an instruction is missing from the implemented set, an emulation exception is raised and tightly
coupledmachine code ormicrocode is executed to provide the functionality. Examples are
vector-processing instructions.

Early devices relied on complex instruction set computing (CISC). Such ISAs had complex and
powerful instructions that helpedminimise code size but whose execution logic extended the critical
path (Section 4.4.2) and hence, reduced the clock frequency. Also, many of these instructions were
seldom used. This is not a good design since it penalises the performance of the frequently used
instructions. As a result, so-called reduced instruction set computing (RISC) was introduced,

30

Chapter 2 | Processors, Memory and IP Blocks

primarily in the early 1980s (although IBM had a RISC project in the 1960s). As well as a streamlined
instruction set, RISC aimed to achieve one instruction per clock cycle (IPC). Hence, bus protocols that
can transfer aword every clock cyclewere needed and a split cachewas also deployed tomaintain IPC
at unity during loads and stores. Famous RISC designs from that period were produced byMIPS,
SPARC and Arm, with the first Arm silicon in operation in 1985.

Modern implementations of CISC generally use a conversion phase that expands a CISC instruction to
one ormore RISC-like instructions. There are three places in which the translation can be performed:

1. In software as part of the compiler or in the operating system loader.

2. In hardware, pre-instruction cache: An instruction is expanded on cachemiss; however, this adds
an overhead to branch target identification and checkpointing during exception handling.

3. Post-instruction cache: The expansion is handled usingmicrocode.

The third option is most commonly used in CISC implementations. An expanded CISC instruction is
often called a uop ormicro-operation, especially in the context of x86 architectures. Simple CISC
instructions, such as a register transfer, are converted to a single uop, whereasmore complex
instructions, such as a blockmove or a division, are converted to entry points into amicrocode ROM,
which stores a programwith 2 to 20 or so uops. Such cores translate each CISC instruction every time
it is used. Assuming an unchanged 95 per cent hit rate in the instruction cache, only 5 per cent of that
energy would be needed under option 2 and none at all under option 1. The primary explanation for
the world being stuck with these relatively poor designs is market inertia.

2.1.2 Vector Instructions
The energy used by high-performance core implementations is dominated by instruction fetch,
decode and scheduling. The actual computation energy in ALUs and register files is typically a small
percentage (5–10 per cent). This is the fundamental reasonwhy hardwired accelerators perform so
muchmore efficiently (Section 6.4). It is also a fundamental motivation for vector-processing ISA
extensions.

A vector instruction is also known as a SIMD instruction, since a single instruction operates on
multiple data words. Vector instructions implementmassively parallel operations on the normal
register file, manipulatingmany registers at once. Alternatively, they operate on additional registers
in the PV. (However, register renaming in super-scalar CPUs clouds this distinction (Section 2.2).) The
register file can typically be treated asmultiple, shorter registers. For instance a swathe of a 32-bit
register file might be treated as 4× asmany 8-bit registers. By operating on, for example, 16 or 32
registers at once, the fetch-execute overhead is amortised by the same factor. Hence, vector
arithmetic of this nature can approach the efficiency of custom accelerators. If a processor has
load-multiple and store-multiple instructions, like the Arm family, a multi-register block of data can be
transferred to and from thememory system in one instruction.

31

Modern SoCDesign

2.1.3 Custom Instructions
Processors are either placed on a SoC as hardmacros (Section 8.4.2) or in synthesisable form. A hard
macro is carefully optimised by the IP supplier and cannot be changed by the SoC designer. However,
so-called soft cores are supplied in RTL form and can be changed in various ways by the SoC designer,
although parts of the RTLmay be encrypted or obfuscated to protect IP. One change, commonly
supported, is for the SoC designer to add one ormore custom instructions [2]. These share the
instruction fetch and decode logic of the standard instructions, but can access new registers, ALUs or
custom resources. Themapping for the instruction set opcode typically has various gaps where new
operations can be added. The assembler, debugger and other parts of the tool chain can likewise be
augmented to exploit new instructions. The benefits of custom instructions are explored alongside
custom coprocessors in Section 6.4.1.

2.1.4 The Classic Five-stage Pipeline

ALU

I-Cache

IF ID1
or
RF

EX MA WB

PC

Dual-port
Register

File

WB
register

PC
adder

D-Cache

Instruction pipeline

A0 A1 AW P0

P1

PW

4

Load dataStore data

Filled
only via

backside
on miss.

A

A

ID0

Figure 2.3Main data paths in a generic five-stage RISCmicroarchitecture, excluding the back sides of the cache andMMU. Instruction field bit-extracts to
control the multiplexes and ALU are not shown

Figure 2.3 is a diagram of a generic microarchitecture for the classic five-stage pipeline. It actually
shows six stages, since both the ID0 and ID1 stages are used. Getting back to five involves combining
the ID0 and ID1 stages, but there are various specific ways of doing this, such asmaking themain
register file combinational for reads or using single-cycle cache access. The five pipeline stages are:

32

Chapter 2 | Processors, Memory and IP Blocks

Instruction fetch (IF): The next instruction is fetched from the I-cache, which behaves like a
synchronous SRAM (Section 2.6.4), in that the address must be provided at least one cycle before
the instruction comes out. Figure 2.3 shows read operations with a latency of two for both caches.

Instruction decode (ID) or register fetch (RF): Designs vary according to how the instruction
decode is precisely pipelined, but there is at least one cycle between the instruction arriving and
the register data being input into the ALU.

Execute (EX): The ALU combines the operands from the register file. The register on the arithmetic
and logic unit (ALU) result busmakes this a pipeline stage.

Memory access (MA): Again, since read access to the data cache has a latency of two, thememory
access pipeline stage actually takes two cycles. However, in some designs, this is a single-cycle
operation.

Writeback (WB): The writeback stage is just padding to equalise the delay from the output of the
ALU for the computed results with the data cache load delay (assuming a two-cycle data cache).
The padding ensures that load and arithmetic/logic instructions can be placed back-to-back and
that at most one register in themain file needs to bewritten per clock cycle.

These simple RISC designs have twomain types of pipeline hazard. A control hazard occurs when a
conditional branch predicate is not known at the time it is needed. Hence, there is a good chance that
incorrect instructions are fetched and decoded. This is overcome by suppressing the stores and
register file updates from such instructions so that they effectively behave as no-ops.

A data hazard occurs when the result of a computation or load is not in its intended place in the
register file until two cycles later. This is solved for ALU operations with the two forwarding paths
from the output of the ALU and the output of the writeback register. For loads, it cannot be solved for
immediate use and a pipeline bubble is needed (the compiler optimiser shouldminimise this use
pattern as far as possible), but it can be forwarded from two cycles before. The forwarding
multiplexors use simple patternmatching across successive stages of the instruction pipeline shown
at the top of the figure.

2.2 Super-scalar Processors
A super-scalar processor can executemore than one instruction per clock cycle (IPC). The average is
around 2 or 3with a peak of 6, depending on the nature of the program being run. However,
first-generationmicroprocessors required several clock cycles for each bus cycle. Since the average
number of cycles per instruction was at least one, performance wasmeasured in clock cycles per
instruction (CPI), which is the reciprocal of the IPC.

Figure 2.4 shows themain features of a super-scalar microarchitecture. Such a processor needs to be
able to readmultiple instructions from the instruction cache in one clock cycle. The diagram shows

33

Modern SoCDesign

2.1.3 Custom Instructions
Processors are either placed on a SoC as hardmacros (Section 8.4.2) or in synthesisable form. A hard
macro is carefully optimised by the IP supplier and cannot be changed by the SoC designer. However,
so-called soft cores are supplied in RTL form and can be changed in various ways by the SoC designer,
although parts of the RTLmay be encrypted or obfuscated to protect IP. One change, commonly
supported, is for the SoC designer to add one ormore custom instructions [2]. These share the
instruction fetch and decode logic of the standard instructions, but can access new registers, ALUs or
custom resources. Themapping for the instruction set opcode typically has various gaps where new
operations can be added. The assembler, debugger and other parts of the tool chain can likewise be
augmented to exploit new instructions. The benefits of custom instructions are explored alongside
custom coprocessors in Section 6.4.1.

2.1.4 The Classic Five-stage Pipeline

ALU

I-Cache

IF ID1
or
RF

EX MA WB

PC

Dual-port
Register

File

WB
register

PC
adder

D-Cache

Instruction pipeline

A0 A1 AW P0

P1

PW

4

Load dataStore data

Filled
only via

backside
on miss.

A

A

ID0

Figure 2.3Main data paths in a generic five-stage RISCmicroarchitecture, excluding the back sides of the cache andMMU. Instruction field bit-extracts to
control the multiplexes and ALU are not shown

Figure 2.3 is a diagram of a generic microarchitecture for the classic five-stage pipeline. It actually
shows six stages, since both the ID0 and ID1 stages are used. Getting back to five involves combining
the ID0 and ID1 stages, but there are various specific ways of doing this, such asmaking themain
register file combinational for reads or using single-cycle cache access. The five pipeline stages are:

32

Chapter 2 | Processors, Memory and IP Blocks

Instruction fetch (IF): The next instruction is fetched from the I-cache, which behaves like a
synchronous SRAM (Section 2.6.4), in that the address must be provided at least one cycle before
the instruction comes out. Figure 2.3 shows read operations with a latency of two for both caches.

Instruction decode (ID) or register fetch (RF): Designs vary according to how the instruction
decode is precisely pipelined, but there is at least one cycle between the instruction arriving and
the register data being input into the ALU.

Execute (EX): The ALU combines the operands from the register file. The register on the arithmetic
and logic unit (ALU) result busmakes this a pipeline stage.

Memory access (MA): Again, since read access to the data cache has a latency of two, thememory
access pipeline stage actually takes two cycles. However, in some designs, this is a single-cycle
operation.

Writeback (WB): The writeback stage is just padding to equalise the delay from the output of the
ALU for the computed results with the data cache load delay (assuming a two-cycle data cache).
The padding ensures that load and arithmetic/logic instructions can be placed back-to-back and
that at most one register in themain file needs to bewritten per clock cycle.

These simple RISC designs have twomain types of pipeline hazard. A control hazard occurs when a
conditional branch predicate is not known at the time it is needed. Hence, there is a good chance that
incorrect instructions are fetched and decoded. This is overcome by suppressing the stores and
register file updates from such instructions so that they effectively behave as no-ops.

A data hazard occurs when the result of a computation or load is not in its intended place in the
register file until two cycles later. This is solved for ALU operations with the two forwarding paths
from the output of the ALU and the output of the writeback register. For loads, it cannot be solved for
immediate use and a pipeline bubble is needed (the compiler optimiser shouldminimise this use
pattern as far as possible), but it can be forwarded from two cycles before. The forwarding
multiplexors use simple patternmatching across successive stages of the instruction pipeline shown
at the top of the figure.

2.2 Super-scalar Processors
A super-scalar processor can executemore than one instruction per clock cycle (IPC). The average is
around 2 or 3with a peak of 6, depending on the nature of the program being run. However,
first-generationmicroprocessors required several clock cycles for each bus cycle. Since the average
number of cycles per instruction was at least one, performance wasmeasured in clock cycles per
instruction (CPI), which is the reciprocal of the IPC.

Figure 2.4 shows themain features of a super-scalar microarchitecture. Such a processor needs to be
able to readmultiple instructions from the instruction cache in one clock cycle. The diagram shows

33

Modern SoCDesign

I-Cache

PC

PC
adder

D-Cache12 Load
data

Store
data

Filled
only via

backside
on miss.

A

A

Store

ALU

Virtual register pool and Score-boarding Structure
Instruction

FIFO

Branch
Predictor

Load

Address
Data

Load

Address
Data

Address
Data

Lanes

Result

ALU

Result

FPU

Result

AWA

Retirement
Register

File

Retired PC
ALU

Result

Reservation
station
filling

Reservation
stations

Figure 2.4 Key components of a super-scalar CPU core, excluding the back sides of the cache andMMU

three, but a power of 2 is more common. A branch target is not normally aligned to the instruction
width of the I-cache, so realignment is typically needed. Using a FIFO for this can help overcome other
sources of pipeline bubble.

The execution unit consists of some number of reservation stations. These can be identical in
structure, but often are specialised to some degree. The diagram shows four types: load, store,
integer ALU and floating-point ALU, but designs vary greatly in detail. Although essential for the
instruction cache, it is usual for the data cache to also support super-scalar operation. The diagram
shows paths for three transactions on the data cache per clock cycle. This total does not include the
back-side cache load/evict operations.

Instructions are placed in empty reservation stations. Complexmatching logic triggers a reservation
station to execute its saved instruction as soon as its operands are ready. Execution will typically take
several clock cycles for a complex instruction, such as a 64-bit multiply or floating-point add. A
reservation station is not typically fully pipelined (Section 6.3), so that it is busy until the result is
ready. The provisioningmix of reservation stationsmust match themix of instructions commonly
found in programs. For a design to have a balanced throughput, this mixmust be weighted by how
long a reservation station is busy per operation. Generally, every fifth instruction is a branch and
every third is a load or store. Loads are at least twice as common as stores.

When a result is ready, the reservation station or stations that depend on the new result become
ready to run. These will not necessarily be the next instructions in the original program sequence.
Hence, we achieve out-of-order instruction execution. In general, the execution times for different
instructions are neither equal nor predictable. Load and store stations have a variable execution time
due to the complex behaviour of caches andDRAM. By executing an instruction as soon as its
operands are ready, the hardware dynamically adapts to the behaviour of memory. Certain

34

Chapter 2 | Processors, Memory and IP Blocks

operations at a reservation station can have a variable latency as well. For example, for a division, the
number of cycles depends on the bit position of themost significant 1, because, in a typical
mainstream division algorithm, the denominatormust be left-shifted until it is greater than or equal to
the numerator (which takes forever when dividing by zero!).

Reservation stations operate on virtual registers, not the physical PV registers. A PV register could be
updated several times within the window of instructions spread out within the core. This can often be
tens of instructions. This is possible only if several virtual registers alias one PV register, which is
called register renaming. Themapping at any instant is held in complex scoreboarding logic. Move
operations that merely transfer data between registers can be implemented as just an update to the
scoreboard structure, if is clear from the forward instruction window that only one copy needs to be
kept.

For an average branch instruction density of about one fifth, four basic blocks are processed
simultaneously for an instruction window of 20. This is possible without parallel speculation down
multiple flows of control by accurately predicting which way branches will go. The predictions are
made by a specialist branch direction cache that monitors the patterns of flow control. If this is
accurate to about 0.99 (a typical figure) then, with four branches in a window, the overall
misprediction ratio is 1−0.994 ≈0.04. Hence, 4 per cent of instruction executions are wasted and
their results must be discarded.

Keeping track of correct execution is handled using the retirement register file. This minimally
contains the retirement program counter (PC). It contains also either a copy of the PV at that PC value
or else a sufficient snapshot of the scoreboarding structure that describes which virtual registers
contain equivalent information. The retirement PC denotes the point at which all previous
instructions have been successfully executed along the correct control flow. For a branchmispredict
or another error, a super-scalar processor discards everything that is in flight and rolls back execution
by copying the retirement PC to the fetcher PC. Likewise, PV registers that are needed but not in
virtual registers are fetched from the retirement register file.

Themultiple ALUs and copies of registers in a super-scalar processor have a correspondingly larger
number of control inputs comparedwith a simple processor that only has one instance, or fewer
instances, of each component. Rather than on-the-fly parallelism discovery within a standard
instruction stream, themain alternative is to use a very long instructionword (VLIW) processor. In
these architectures, individual data-path components are explicitly driven in parallel using wide
instructions for which the concurrency has been statically optimised, at compile time, by the
assembler. Such architectures save energy and silicon area because the interleaving is done off-line.
Although it may seem that using fewer but wider instructions could achieve a roughly equivalent
instruction encoding efficiency, a naive design will give rise to a low entropy stream due to commonly
repeating patterns. Explicitly encoding something that can be readily inferred is bound to be
inefficient. As with high-level synthesis (HLS) (Section 6.9), a static schedule, generated at compile
time, cannot efficiently adapt to out-of-order data returned from today’s complexmemory systems.

35

Modern SoCDesign

I-Cache

PC

PC
adder

D-Cache12 Load
data

Store
data

Filled
only via

backside
on miss.

A

A

Store

ALU

Virtual register pool and Score-boarding Structure
Instruction

FIFO

Branch
Predictor

Load

Address
Data

Load

Address
Data

Address
Data

Lanes

Result

ALU

Result

FPU

Result

AWA

Retirement
Register

File

Retired PC
ALU

Result

Reservation
station
filling

Reservation
stations

Figure 2.4 Key components of a super-scalar CPU core, excluding the back sides of the cache andMMU

three, but a power of 2 is more common. A branch target is not normally aligned to the instruction
width of the I-cache, so realignment is typically needed. Using a FIFO for this can help overcome other
sources of pipeline bubble.

The execution unit consists of some number of reservation stations. These can be identical in
structure, but often are specialised to some degree. The diagram shows four types: load, store,
integer ALU and floating-point ALU, but designs vary greatly in detail. Although essential for the
instruction cache, it is usual for the data cache to also support super-scalar operation. The diagram
shows paths for three transactions on the data cache per clock cycle. This total does not include the
back-side cache load/evict operations.

Instructions are placed in empty reservation stations. Complexmatching logic triggers a reservation
station to execute its saved instruction as soon as its operands are ready. Execution will typically take
several clock cycles for a complex instruction, such as a 64-bit multiply or floating-point add. A
reservation station is not typically fully pipelined (Section 6.3), so that it is busy until the result is
ready. The provisioningmix of reservation stationsmust match themix of instructions commonly
found in programs. For a design to have a balanced throughput, this mixmust be weighted by how
long a reservation station is busy per operation. Generally, every fifth instruction is a branch and
every third is a load or store. Loads are at least twice as common as stores.

When a result is ready, the reservation station or stations that depend on the new result become
ready to run. These will not necessarily be the next instructions in the original program sequence.
Hence, we achieve out-of-order instruction execution. In general, the execution times for different
instructions are neither equal nor predictable. Load and store stations have a variable execution time
due to the complex behaviour of caches andDRAM. By executing an instruction as soon as its
operands are ready, the hardware dynamically adapts to the behaviour of memory. Certain

34

Chapter 2 | Processors, Memory and IP Blocks

operations at a reservation station can have a variable latency as well. For example, for a division, the
number of cycles depends on the bit position of themost significant 1, because, in a typical
mainstream division algorithm, the denominatormust be left-shifted until it is greater than or equal to
the numerator (which takes forever when dividing by zero!).

Reservation stations operate on virtual registers, not the physical PV registers. A PV register could be
updated several times within the window of instructions spread out within the core. This can often be
tens of instructions. This is possible only if several virtual registers alias one PV register, which is
called register renaming. Themapping at any instant is held in complex scoreboarding logic. Move
operations that merely transfer data between registers can be implemented as just an update to the
scoreboard structure, if is clear from the forward instruction window that only one copy needs to be
kept.

For an average branch instruction density of about one fifth, four basic blocks are processed
simultaneously for an instruction window of 20. This is possible without parallel speculation down
multiple flows of control by accurately predicting which way branches will go. The predictions are
made by a specialist branch direction cache that monitors the patterns of flow control. If this is
accurate to about 0.99 (a typical figure) then, with four branches in a window, the overall
misprediction ratio is 1−0.994 ≈0.04. Hence, 4 per cent of instruction executions are wasted and
their results must be discarded.

Keeping track of correct execution is handled using the retirement register file. This minimally
contains the retirement program counter (PC). It contains also either a copy of the PV at that PC value
or else a sufficient snapshot of the scoreboarding structure that describes which virtual registers
contain equivalent information. The retirement PC denotes the point at which all previous
instructions have been successfully executed along the correct control flow. For a branchmispredict
or another error, a super-scalar processor discards everything that is in flight and rolls back execution
by copying the retirement PC to the fetcher PC. Likewise, PV registers that are needed but not in
virtual registers are fetched from the retirement register file.

Themultiple ALUs and copies of registers in a super-scalar processor have a correspondingly larger
number of control inputs comparedwith a simple processor that only has one instance, or fewer
instances, of each component. Rather than on-the-fly parallelism discovery within a standard
instruction stream, themain alternative is to use a very long instructionword (VLIW) processor. In
these architectures, individual data-path components are explicitly driven in parallel using wide
instructions for which the concurrency has been statically optimised, at compile time, by the
assembler. Such architectures save energy and silicon area because the interleaving is done off-line.
Although it may seem that using fewer but wider instructions could achieve a roughly equivalent
instruction encoding efficiency, a naive design will give rise to a low entropy stream due to commonly
repeating patterns. Explicitly encoding something that can be readily inferred is bound to be
inefficient. As with high-level synthesis (HLS) (Section 6.9), a static schedule, generated at compile
time, cannot efficiently adapt to out-of-order data returned from today’s complexmemory systems.

35

Modern SoCDesign

A high-performancemicroprocessor requires muchmore from its memory system than the simple
read/write byte/word needs of a low-performance core. It will typically havemore than one load
station and also support vector instructions, both of which require greater data bandwidth from the
I-cache. It will also be able to exploit an out-of-order read service discipline. Out-of-order operation
also requires sequential consistency interlocks (Section 4.5) to ensure that reads andwrites to the
same address follow the correct logical ordering. Many of these details are hidden from the SoC
designer if the L1 cache is part of the same IP block as themicroprocessor. This is a motivation for
using the term ‘core’ to denote the combination of amicroprocessor and first-level caches, but other
authors use ‘core’ to denote just a cacheless microprocessor.

2.2.1 VirtualMemoryManagement Units: MMU and IOMMU
Amemorymanagement unit (MMU) translates virtual addresses into physical addresses. A simplistic
TLM diagram is shown in the top half of Figure 2.5. However, in reality, a decision has to bemade
about whether each cache operates on virtual or physical addresses. A common configuration is
shown in the bottom half of Figure 2.5. Here, the L1 caches operate on virtual addresses whereas the
L2 cache operates on physical addresses. The figure also shows the necessary secondary connection
to allow the control and configuration registers to be updated by the core. If an L1 cache operates on
virtual addresses, theMMU is not part of the performance-critical front-side operations. Using Arm
technology, such updates aremade via the coprocessor interface, so theMMUof a core appears as a
coprocessor.

CPU
Primary
storageMMU

Primary
storageI$

D$

L2 C
ache

a)

b)

MMUCPU

Figure 2.5 TLM connection diagrams for a CPU andmemory management unit (MMU): (a) naive view and (b) one possible cache arrangement

AnMMU contains a cache of recently translated addresses known as the translation lookaside buffer
(TLB). In most processor architectures, misses in this cache are serviced entirely using hardware
inside theMMU, which includes a root translation register and table walking logic that uses back-side
operations to load the TLB. The alternative, as used byMIPS processors, is for the TLB to be filledwith
software via a translation fault exception. Having physical addresses in the L2 cache is not always the
best design. The cachemiss performance penalty, whether pages are to bemappedmore than once
and how they are shared between cores must also be considered. Such decisions impact only to a
small extent the overall SoC design and vary according to the need for a cache-consistent DMA and
accelerators (Section 6.4).

36

Chapter 2 | Processors, Memory and IP Blocks

Recently, systems have started including an I/Omemorymanagement unit (IOMMU) for
input/output operations. It typically operates in two directions: it controls memorymapping of I/O
devices into a processor’s address space and it controls what regions of primary storage are
addressable by DMA from I/O devices.

Twomotivations for an IOMMUare virtualisation and pluggable devices. With the increased use of
hypervisors (Section 4.9) to enablemultiple operating systems to run at once on a computing device, a
layer below the operating system is required to virtualise the physical devices, so that, to some extent
at least, the device drivers for specialist devices are embodied above the virtualisation layer. With
DMA-capable pluggable devices, such as recent versions of Firewire and Thunderbolt, foreign
hardware can potentially have unrestricted access to the entirememory contents in the absence of an
IOMMU.

Low-power systemsmay use amemory protection unit (MPU) (Section 4.9) instead of anMMU to
provide some level of security.

2.3 Multi-core Processing
A chipmultiprocessor (CMP) hasmore than one CPU core on one piece of silicon. For a symmetric
multiprocessor (SMP), the cores are identical. Although the cores may be identical and see a global
flat address space for primary storage, eachmay have faster access to some local memory than to the
local memories of other cores or to centralisedmemory, which results in non-uniformmemory access
(NUMA).

Havingmore than one CPU core is an energy-efficient approach for increasing performance. Another
phrasing of Pollack’s rule, comparedwith that in Section 2.1.1, is to say that energy use in a von
Neumann CPU growswith the square of its IPC. However, usingmultiple cores can result in close to
linear growth. This contrasts with the increase in energy consumption, which is roughly linearly
proportional to the increase in complexity, which in this context refers to the amount of processor
logic, i.e. its area. Note that just clocking faster requires at least quadratic energy use (Section 4.6.8).

Computer architectures for parallel programming have converged on cache-consistent shared
memories. This is one practical implementation of a so-called parallel random access machine (PRAM;
Figure 2.6) [3]. Each processor operates in parallel and has random access to the entire primary store.
Thememory is partitioned into atomic units (cache lines in contemporary implementations), such that
writes of all bits occur together. The interconnect imposes somemodel of sequential consistency
(Section 4.5), which, in the baselinemodel, is that every change to a word is visible to every other
processor the cycle after it is written. A clock or orchestration unit keeps each processor in lockstep,
to some granularity. In the baselinemodel, reads alternate with writes and all cores stop when any
core executes a halt instruction. However, in bulk synchronous processing (BSP) [4], the granularity is
coarser, so that hundreds of instructionsmay be executed before the processors are synchronised.
These architectures are not mainstream, either in terms of implementation or high-level language
support. However, some CPU vendors have implemented hardware transactional memory, which is

37

Modern SoCDesign

A high-performancemicroprocessor requires muchmore from its memory system than the simple
read/write byte/word needs of a low-performance core. It will typically havemore than one load
station and also support vector instructions, both of which require greater data bandwidth from the
I-cache. It will also be able to exploit an out-of-order read service discipline. Out-of-order operation
also requires sequential consistency interlocks (Section 4.5) to ensure that reads andwrites to the
same address follow the correct logical ordering. Many of these details are hidden from the SoC
designer if the L1 cache is part of the same IP block as themicroprocessor. This is a motivation for
using the term ‘core’ to denote the combination of amicroprocessor and first-level caches, but other
authors use ‘core’ to denote just a cacheless microprocessor.

2.2.1 VirtualMemoryManagement Units: MMU and IOMMU
Amemorymanagement unit (MMU) translates virtual addresses into physical addresses. A simplistic
TLM diagram is shown in the top half of Figure 2.5. However, in reality, a decision has to bemade
about whether each cache operates on virtual or physical addresses. A common configuration is
shown in the bottom half of Figure 2.5. Here, the L1 caches operate on virtual addresses whereas the
L2 cache operates on physical addresses. The figure also shows the necessary secondary connection
to allow the control and configuration registers to be updated by the core. If an L1 cache operates on
virtual addresses, theMMU is not part of the performance-critical front-side operations. Using Arm
technology, such updates aremade via the coprocessor interface, so theMMUof a core appears as a
coprocessor.

CPU
Primary
storageMMU

Primary
storageI$

D$

L2 C
ache

a)

b)

MMUCPU

Figure 2.5 TLM connection diagrams for a CPU andmemory management unit (MMU): (a) naive view and (b) one possible cache arrangement

AnMMU contains a cache of recently translated addresses known as the translation lookaside buffer
(TLB). In most processor architectures, misses in this cache are serviced entirely using hardware
inside theMMU, which includes a root translation register and table walking logic that uses back-side
operations to load the TLB. The alternative, as used byMIPS processors, is for the TLB to be filledwith
software via a translation fault exception. Having physical addresses in the L2 cache is not always the
best design. The cachemiss performance penalty, whether pages are to bemappedmore than once
and how they are shared between cores must also be considered. Such decisions impact only to a
small extent the overall SoC design and vary according to the need for a cache-consistent DMA and
accelerators (Section 6.4).

36

Chapter 2 | Processors, Memory and IP Blocks

Recently, systems have started including an I/Omemorymanagement unit (IOMMU) for
input/output operations. It typically operates in two directions: it controls memorymapping of I/O
devices into a processor’s address space and it controls what regions of primary storage are
addressable by DMA from I/O devices.

Twomotivations for an IOMMUare virtualisation and pluggable devices. With the increased use of
hypervisors (Section 4.9) to enablemultiple operating systems to run at once on a computing device, a
layer below the operating system is required to virtualise the physical devices, so that, to some extent
at least, the device drivers for specialist devices are embodied above the virtualisation layer. With
DMA-capable pluggable devices, such as recent versions of Firewire and Thunderbolt, foreign
hardware can potentially have unrestricted access to the entirememory contents in the absence of an
IOMMU.

Low-power systemsmay use amemory protection unit (MPU) (Section 4.9) instead of anMMU to
provide some level of security.

2.3 Multi-core Processing
A chipmultiprocessor (CMP) hasmore than one CPU core on one piece of silicon. For a symmetric
multiprocessor (SMP), the cores are identical. Although the cores may be identical and see a global
flat address space for primary storage, eachmay have faster access to some local memory than to the
local memories of other cores or to centralisedmemory, which results in non-uniformmemory access
(NUMA).

Havingmore than one CPU core is an energy-efficient approach for increasing performance. Another
phrasing of Pollack’s rule, comparedwith that in Section 2.1.1, is to say that energy use in a von
Neumann CPU growswith the square of its IPC. However, usingmultiple cores can result in close to
linear growth. This contrasts with the increase in energy consumption, which is roughly linearly
proportional to the increase in complexity, which in this context refers to the amount of processor
logic, i.e. its area. Note that just clocking faster requires at least quadratic energy use (Section 4.6.8).

Computer architectures for parallel programming have converged on cache-consistent shared
memories. This is one practical implementation of a so-called parallel random access machine (PRAM;
Figure 2.6) [3]. Each processor operates in parallel and has random access to the entire primary store.
Thememory is partitioned into atomic units (cache lines in contemporary implementations), such that
writes of all bits occur together. The interconnect imposes somemodel of sequential consistency
(Section 4.5), which, in the baselinemodel, is that every change to a word is visible to every other
processor the cycle after it is written. A clock or orchestration unit keeps each processor in lockstep,
to some granularity. In the baselinemodel, reads alternate with writes and all cores stop when any
core executes a halt instruction. However, in bulk synchronous processing (BSP) [4], the granularity is
coarser, so that hundreds of instructionsmay be executed before the processors are synchronised.
These architectures are not mainstream, either in terms of implementation or high-level language
support. However, some CPU vendors have implemented hardware transactional memory, which is

37

Modern SoCDesign

similar; the processors can work onmultiple cache lines before atomically writing them all out to
primary store (raising an exception for any clashes).

Primary storage
(main memory)
illustrating
page
cache-line,
or word units
of atomicity

CPU 0

Orchestrator

Local
registers

or scratchpad

Stop/
read cycle/
write cycle

Clock

Memory
access ordering

and possible
delays

MP1

MPm

MP(m-1)

MP2

MP0

CPU 1

CPU n

Figure 2.6 A generalised PRAMmodel of computing. A number of synchronous processors, each with some private local store, make random access and read
and write operations on shared memory that has many atomic locations of some size. The interconnect implements some variant of coherence (value and
sequential consistency)

There is academic debate over whether cache consistency is really necessary in real-world systems.
For a largemajority of parallel programs and algorithms, the consistency information can be statically
known or easily checked explicitly at runtime. The same is true for operating systems and network
interfaces but, perhaps, to a lesser extent. Likewise, for the caches themselves, software-managed
scratchpads could instead be used. However, the fundamental advantage of multiple levels of storage
technology with different speed-to-density ratios is unquestionable and can be demonstrated
analytically (Section 6.6.1). Also, automatic and on-demand loading of data into caches provides
parallelism and allows the system to adapt to dynamic program behaviour. These are the principal
advantages of hardware-managed caches (except for hard real-time systems). Arguably, the cost of
cache consistency for hardware-managed caches (unlike scratchpadmemories) is a minimal further
overhead. Moreover, it is possible that software-managed scratchpads waste instruction bandwidth
by explicitly performing operations that could be inferred.

A scratchpadmemory is a small region of primary storage that is closely coupled to a CPU core. It is
normally implemented in SRAMandmay be tens to hundreds of kilobytes in size. Its access time is low
(similar to a L1 or L2 data cache) but also predictable, since cache effects areminimised and there is
no DRAMdelay. Two possible scratchpad configurations are shown in Figure 2.7. Non-determinate
cache effects are eliminated if the scratchpad is at the L1 level and small if at the L2 level. Use of
memory in scratchpads is managed in software and typically exploited only by hard real-time
singleton applications. A singleton application is one that is present at most once on a SoC, such as a
global manager for power, security or a specific I/O device.

38

Chapter 2 | Processors, Memory and IP Blocks

Primary
storage
(L3 or

DRAM)

I$

D$
CPU

L2 C
ache

Scratchpad
SRAM

Scratchpad
SRAM

Figure 2.7 Two possible configurations for scratchpadmemory

2.3.1 SimultaneousMultithreading
To increase the number of effective processor cores in a CMP, rather than adding further complete
cores, simultaneousmultithreading can be used. This adds further retirement register files to an
existing core, which has amuch lower area overhead than adding a full core with L1 caches. A thread
is defined by the presence of a program counter in each register file, but a full set of all architecturally
visible registers is needed. The set of reservation stations is shared over the threads within a
simultaneously multithreaded core. There are advantages and disadvantages. Apart from requiring
less silicon than a full new core, a new thread benefits from a statistical multiplexing gain
(Section 4.3.3) in the utilisation of reservation stations, since there is a higher chance that more of
themwill be in use at once. A potential disadvantage is that the L1 caches are shared. This potentially
leads to greater thrashing (capacity evictions) unless the simultaneously multithreaded cores are
running closely coupled parts of the same program.

2.4 Cache Design
In computer architecture, a cache contains key-value pairs. The key is an address and the value is a
cache line of typically four or eight 32-bit words. The capacity of a cache is the number of key-value
pairs it can hold and is typically expressed using the total number of bytes it can store in the value
fields. A simple cache has two logical ports: (1) The front side gives fast and frequent access to the
cache user. It is typically a CPU core or a faster cache. (2) The back side uses a wider and slower data
bus that connects to wherever the data are served from. The underlying implementation is typically
constructed from single-ported SRAMwith virtual dual-porting (Figure 4.19). Having levels of caching
means that memory components that have different trade-offs between logic speed, storage density
and energy use can be combined efficiently (Section 6.6.1). There is always at least an order of
magnitude difference in bandwidth, in terms of bits per second, between the front and back sides. A
component with the same bandwidth on both sides that merely converts from a narrow bus to a wide
bus with a lower clock frequency is called a gearbox or serialiser.

The bandwidth saving from a cache arises for two reasons:

1. With temporal locality, an item recently looked at is likely to be looked at again.

39

Modern SoCDesign

similar; the processors can work onmultiple cache lines before atomically writing them all out to
primary store (raising an exception for any clashes).

Primary storage
(main memory)
illustrating
page
cache-line,
or word units
of atomicity

CPU 0

Orchestrator

Local
registers

or scratchpad

Stop/
read cycle/
write cycle

Clock

Memory
access ordering

and possible
delays

MP1

MPm

MP(m-1)

MP2

MP0

CPU 1

CPU n

Figure 2.6 A generalised PRAMmodel of computing. A number of synchronous processors, each with some private local store, make random access and read
and write operations on shared memory that has many atomic locations of some size. The interconnect implements some variant of coherence (value and
sequential consistency)

There is academic debate over whether cache consistency is really necessary in real-world systems.
For a largemajority of parallel programs and algorithms, the consistency information can be statically
known or easily checked explicitly at runtime. The same is true for operating systems and network
interfaces but, perhaps, to a lesser extent. Likewise, for the caches themselves, software-managed
scratchpads could instead be used. However, the fundamental advantage of multiple levels of storage
technology with different speed-to-density ratios is unquestionable and can be demonstrated
analytically (Section 6.6.1). Also, automatic and on-demand loading of data into caches provides
parallelism and allows the system to adapt to dynamic program behaviour. These are the principal
advantages of hardware-managed caches (except for hard real-time systems). Arguably, the cost of
cache consistency for hardware-managed caches (unlike scratchpadmemories) is a minimal further
overhead. Moreover, it is possible that software-managed scratchpads waste instruction bandwidth
by explicitly performing operations that could be inferred.

A scratchpadmemory is a small region of primary storage that is closely coupled to a CPU core. It is
normally implemented in SRAMandmay be tens to hundreds of kilobytes in size. Its access time is low
(similar to a L1 or L2 data cache) but also predictable, since cache effects areminimised and there is
no DRAMdelay. Two possible scratchpad configurations are shown in Figure 2.7. Non-determinate
cache effects are eliminated if the scratchpad is at the L1 level and small if at the L2 level. Use of
memory in scratchpads is managed in software and typically exploited only by hard real-time
singleton applications. A singleton application is one that is present at most once on a SoC, such as a
global manager for power, security or a specific I/O device.

38

Chapter 2 | Processors, Memory and IP Blocks

Primary
storage
(L3 or

DRAM)

I$

D$
CPU

L2 C
ache

Scratchpad
SRAM

Scratchpad
SRAM

Figure 2.7 Two possible configurations for scratchpadmemory

2.3.1 SimultaneousMultithreading
To increase the number of effective processor cores in a CMP, rather than adding further complete
cores, simultaneousmultithreading can be used. This adds further retirement register files to an
existing core, which has amuch lower area overhead than adding a full core with L1 caches. A thread
is defined by the presence of a program counter in each register file, but a full set of all architecturally
visible registers is needed. The set of reservation stations is shared over the threads within a
simultaneously multithreaded core. There are advantages and disadvantages. Apart from requiring
less silicon than a full new core, a new thread benefits from a statistical multiplexing gain
(Section 4.3.3) in the utilisation of reservation stations, since there is a higher chance that more of
themwill be in use at once. A potential disadvantage is that the L1 caches are shared. This potentially
leads to greater thrashing (capacity evictions) unless the simultaneously multithreaded cores are
running closely coupled parts of the same program.

2.4 Cache Design
In computer architecture, a cache contains key-value pairs. The key is an address and the value is a
cache line of typically four or eight 32-bit words. The capacity of a cache is the number of key-value
pairs it can hold and is typically expressed using the total number of bytes it can store in the value
fields. A simple cache has two logical ports: (1) The front side gives fast and frequent access to the
cache user. It is typically a CPU core or a faster cache. (2) The back side uses a wider and slower data
bus that connects to wherever the data are served from. The underlying implementation is typically
constructed from single-ported SRAMwith virtual dual-porting (Figure 4.19). Having levels of caching
means that memory components that have different trade-offs between logic speed, storage density
and energy use can be combined efficiently (Section 6.6.1). There is always at least an order of
magnitude difference in bandwidth, in terms of bits per second, between the front and back sides. A
component with the same bandwidth on both sides that merely converts from a narrow bus to a wide
bus with a lower clock frequency is called a gearbox or serialiser.

The bandwidth saving from a cache arises for two reasons:

1. With temporal locality, an item recently looked at is likely to be looked at again.

39

Modern SoCDesign

2. With spatial locality, items stored in nearby locations are likely to be accessed. A performance gain
and saving in complexity are achieved by fetching a cache line that is larger than a single byte or
word. The performance increases because adjacent data are prefetched. The complexity is reduced
because the datamanagement overhead is amortised.

There are three principal organisation techniques for caches:

1. A fully associative cache allows any line to be stored anywhere in the cache. A parallel search of
the whole cache is used to determine whether an address is held, which tends to be too energy
expensive (except forMMUTLBs, Section 2.2.1).

2. A directly mapped cache has just one place where an address can be stored. That location is given
by a hash function on the address. The normal hash function, suitable when the cache size is a
power of two, is to ignore all higher-order address bits. A directly mapped cache has the advantage
that only one place needs to be searched to seewhether data are held. Moreover, those data can be
returned to the customer in parallel with its validity being checked. Themain disadvantage of a
directly mapped cache is the high degree of aliasing. Due to the birthday paradox, on average, too
much of the data that is concurrently needed is mapped on top of itself. This leads tomuchwasteful
thrashing. (The birthday paradox is the popular name for the fact that the probability of 30 people
all having different birthdays is surprisingly low).

3. The techniquemost commonly used is a set-associative cache. Each line is stored in a small set of
possible places (typically four or eight). When searching, only this small set needs to be checked,
which can be done in parallel with a small amount of hardware. However, the effect of the birthday
paradox is ameliorated: the chance that more than four lines will concurrently alias to the same set
is acceptably low. With eight, it is negligible. However, more ways are sometimes used in larger
caches (but this is to prevent the directly mapped bit field from becoming too large, such as bigger
than a virtual memory page).

If data are written to a cache but not yet synchronised with the next level of storage in thememory
hierarchy, then the cache line with the changes contains dirty data. In general, just a few bytes in the
whole cache linemay be dirty. Freeing up a cache line so that it can be used for entirely different data
is known as eviction. When dirty data are evicted, the cachemust save themodified data out of its
back side (to the next-level cache or primary store). This is the copyback policy for managing writes,
which is also known as awriteback. The alternative policy iswrite-through, in which all writes also
update subsequent levels as they happen. The disadvantage of a write-through is that bus bandwidth
is wasted in the common scenario of multiple, successive updates to the same variable. Moreover,
writes can stall the processor because they are slowed down to the rate supported by the next-level
cache by backpressure. To reduce the slowdown from backpressure, awrite buffer is sometimes
used. Awrite buffer holds one or two lines under the fully associative policy. Dirty data are stored in
the write buffer and the dirty words are tagged. The buffer performswrite coalescing of successive
writes to the same line. It can reduce back-side bandwidth use since only the dirty words need to be
written out to the next level. In this context, the width of a word is thewidth of the back-side data bus.

40

Chapter 2 | Processors, Memory and IP Blocks

A set-associative cache is efficient in terms of hit ratio for the degree of associativity and hence,
energy use. A disadvantage is that data can be returned only on the front side after the tagmatching
is complete. In some designs, an extramemory, called theway cache, improves performance by
remembering which waywas last successful in each directly mapped set and serving its data while the
tags are checked. A directly mapped cache can sometimes be improvedwith a victim store that holds
one or two additional lines under the fully associative policy. These are filled by lines evicted from the
main directly mapped array. This gives a small degree of full associativity.

A cache hit occurs when data are found in a cache. A cache needs to have a hit rate of above 80 per
cent to beworthwhile; typical hit rates in a data cache are often 95 per cent. They are even higher in
instruction caches at around 99 per cent, except for long straight-line code. Amiss occurs when the
data are not found. There are four reasons for amiss:

1. A compulsorymiss occurs if the data were never present in the cache. All data readmust have an
initial reading. This is unavoidable, regardless of cache size.

2. A capacitymiss arises when the data were present but have been evicted due to the need to reuse
the finite capacity.

3. A conflict miss arises due to cachemapping strategies. Fully associative caches do not suffer from
conflict misses. Instead, they occur because of enforced structures like direct mapping.

4. A sharingmiss arises from cache-consistency protocols operating between two ormore caches.
Under the copyback write policy, a cache linemay become dirty in one cache and so copies in other
caches need to be removed. This is called a cache line invalidate. If a local user tries to read the
data, a sharingmiss occurs.

If a new line needs to be loaded into an associative cache (fully associative or set-associative), the
systemmust decide where to store the new data using a replacement policy. The best replacement
policy is to evict the data that is not going to be used for the longest amount of time. In general, this
cannot be known, but certain characteristics can be dynamically learnedwith sufficient reliability to
be usefully exploited.

A common replacement policy is random replacement. No information is used to guide the decision.
Silicon testing is very difficult for logic with truly random behaviour, so it is avoided asmuch as
possible (Section 8.8.2). It is better to use a pseudorandom binary sequence (PRBS) generator. In
practice, a simple counter is sufficient.

The least-recently used (LRU) replacement policy has also been used. In a nominal implementation,
counters or timers exist for each cache line to keep track of when it was last used. It is assumed that
the line that was used the longest time agowill remain unused the furthest into the future and is, thus,
evicted.

41

Modern SoCDesign

2. With spatial locality, items stored in nearby locations are likely to be accessed. A performance gain
and saving in complexity are achieved by fetching a cache line that is larger than a single byte or
word. The performance increases because adjacent data are prefetched. The complexity is reduced
because the datamanagement overhead is amortised.

There are three principal organisation techniques for caches:

1. A fully associative cache allows any line to be stored anywhere in the cache. A parallel search of
the whole cache is used to determine whether an address is held, which tends to be too energy
expensive (except forMMUTLBs, Section 2.2.1).

2. A directly mapped cache has just one place where an address can be stored. That location is given
by a hash function on the address. The normal hash function, suitable when the cache size is a
power of two, is to ignore all higher-order address bits. A directly mapped cache has the advantage
that only one place needs to be searched to seewhether data are held. Moreover, those data can be
returned to the customer in parallel with its validity being checked. Themain disadvantage of a
directly mapped cache is the high degree of aliasing. Due to the birthday paradox, on average, too
much of the data that is concurrently needed is mapped on top of itself. This leads tomuchwasteful
thrashing. (The birthday paradox is the popular name for the fact that the probability of 30 people
all having different birthdays is surprisingly low).

3. The techniquemost commonly used is a set-associative cache. Each line is stored in a small set of
possible places (typically four or eight). When searching, only this small set needs to be checked,
which can be done in parallel with a small amount of hardware. However, the effect of the birthday
paradox is ameliorated: the chance that more than four lines will concurrently alias to the same set
is acceptably low. With eight, it is negligible. However, more ways are sometimes used in larger
caches (but this is to prevent the directly mapped bit field from becoming too large, such as bigger
than a virtual memory page).

If data are written to a cache but not yet synchronised with the next level of storage in thememory
hierarchy, then the cache line with the changes contains dirty data. In general, just a few bytes in the
whole cache linemay be dirty. Freeing up a cache line so that it can be used for entirely different data
is known as eviction. When dirty data are evicted, the cachemust save themodified data out of its
back side (to the next-level cache or primary store). This is the copyback policy for managing writes,
which is also known as awriteback. The alternative policy iswrite-through, in which all writes also
update subsequent levels as they happen. The disadvantage of a write-through is that bus bandwidth
is wasted in the common scenario of multiple, successive updates to the same variable. Moreover,
writes can stall the processor because they are slowed down to the rate supported by the next-level
cache by backpressure. To reduce the slowdown from backpressure, awrite buffer is sometimes
used. Awrite buffer holds one or two lines under the fully associative policy. Dirty data are stored in
the write buffer and the dirty words are tagged. The buffer performswrite coalescing of successive
writes to the same line. It can reduce back-side bandwidth use since only the dirty words need to be
written out to the next level. In this context, the width of a word is thewidth of the back-side data bus.

40

Chapter 2 | Processors, Memory and IP Blocks

A set-associative cache is efficient in terms of hit ratio for the degree of associativity and hence,
energy use. A disadvantage is that data can be returned only on the front side after the tagmatching
is complete. In some designs, an extramemory, called theway cache, improves performance by
remembering which waywas last successful in each directly mapped set and serving its data while the
tags are checked. A directly mapped cache can sometimes be improvedwith a victim store that holds
one or two additional lines under the fully associative policy. These are filled by lines evicted from the
main directly mapped array. This gives a small degree of full associativity.

A cache hit occurs when data are found in a cache. A cache needs to have a hit rate of above 80 per
cent to beworthwhile; typical hit rates in a data cache are often 95 per cent. They are even higher in
instruction caches at around 99 per cent, except for long straight-line code. Amiss occurs when the
data are not found. There are four reasons for amiss:

1. A compulsorymiss occurs if the data were never present in the cache. All data readmust have an
initial reading. This is unavoidable, regardless of cache size.

2. A capacitymiss arises when the data were present but have been evicted due to the need to reuse
the finite capacity.

3. A conflict miss arises due to cachemapping strategies. Fully associative caches do not suffer from
conflict misses. Instead, they occur because of enforced structures like direct mapping.

4. A sharingmiss arises from cache-consistency protocols operating between two ormore caches.
Under the copyback write policy, a cache linemay become dirty in one cache and so copies in other
caches need to be removed. This is called a cache line invalidate. If a local user tries to read the
data, a sharingmiss occurs.

If a new line needs to be loaded into an associative cache (fully associative or set-associative), the
systemmust decide where to store the new data using a replacement policy. The best replacement
policy is to evict the data that is not going to be used for the longest amount of time. In general, this
cannot be known, but certain characteristics can be dynamically learnedwith sufficient reliability to
be usefully exploited.

A common replacement policy is random replacement. No information is used to guide the decision.
Silicon testing is very difficult for logic with truly random behaviour, so it is avoided asmuch as
possible (Section 8.8.2). It is better to use a pseudorandom binary sequence (PRBS) generator. In
practice, a simple counter is sufficient.

The least-recently used (LRU) replacement policy has also been used. In a nominal implementation,
counters or timers exist for each cache line to keep track of when it was last used. It is assumed that
the line that was used the longest time agowill remain unused the furthest into the future and is, thus,
evicted.

41

Modern SoCDesign

The complexity of LRU grows exponentially with the degree of associativity. A naive approach that
stores a timer in each associative waywould have to comparemany timers for each decision, perhaps
using a heap for efficiency. A heap is a tree with themost promising candidate at the root. It has a
logarithmic update cost. There is a factorial number of relative age orderings over the associative
ways, which can be used to create amore compact implementation of LRU. For instance, for a
four-way associative cache, there are 4!=24 orderings, which can be enumerated in a 5-bit field. The
update function required when away is used can be implemented in a compact logic function or a
partially populated ROMof 5×5with a further two output bits to specify which way to use at each
step. For higher degrees of associativity, the factorial (exponential) complexity becomes infeasible
and similar logic functions are used to implement pseudo-LRU, which is cheaper but approximate.
However, such a noisy solution can have an advantage because certain regular access patterns, such
as a linear scan, which would thrash the cache under a perfect LRU, will retain some useful content.

Some designs implement the simple not recently used algorithm, which is also called the clock
algorithmwhen used in virtual memory paging. The clock algorithm uses a single bit per way, initially
clear, which is set when that way is used. Eviction selects a way using round-robin arbitration
(Section 4.2.1) from amongst those with clear bits. If setting a bit results in all bits being set in that
associative set, they are all cleared at that point. However, a true LRU policy is often useful for caches
if an access to the next level of store is expensive, such as for spinning disks or writes to solid-state
drives (SSDs).

Another policy variation is known as awrite allocate, which can evict existing data. A value that is
written while its line is not in the cache causes an allocation within the cache. If it is clear the data are
not going to be served from the cache, write allocate is awaste of time. Such situations include erasing
blocks of memory for security or initialisation or for sending data to other parts of a shared-memory
system. Certain bus protocols, such as AXI (Section 3.1.5), enable the writer to indicate whether to
write allocate or not, for every write.

TLB -- fully-
associative

Tags Values

==

MPX

Hit

PAVA

L1 -- virtual tags
4-way set associative

L2 -- physical tags
4-way set associative

Hit

Comparators

Tags Values

== == == ==

MPXComparators

Tags Values

== == == ==

MPX

Line
offset

Page
offset

Virtual
frame number

Virtual address structure

(Nominal path: data from primary store/main memory)

Ignored by cache

Hit

Data

Address

Client
port

5732-12

Figure 2.8 Typical arrangement of virtual and physical mapping with L1, TLB and L2. Data are served from L1 or L2, but are unlikely to be served directly
from primary storage. Instead, update mechanisms (not shown) are used. Four-way associativity is illustrated, but a higher degree is typically used, to
increase both the hit ratio and capacity, since it is generally required that the directly mapped axis is not wider than the virtual memory page size

42

Chapter 2 | Processors, Memory and IP Blocks

Figure 2.8 shows a particular arrangement of virtual and physical mapping with L1, L2 and TLB.
Numerous other arrangements can be used, but the advantage of having a virtually indexed L1 is that
the hits in it, which should be the vast majority of accesses, can be servedwithout lookup delays in the
TLB. Additionally, the L2 tag RAMs are accessed in parallel with the TLB lookup, so inputs to the four
L2 comparators arrive at roughly the same time.

Implementing a four-way set-associative cache is fairly straightforward. An associative RAM
macrocell is not needed. Instead, four sets of XOR gates are synthesised fromRTL using the ==
operator!

reg [31:0] data0 [0:32767], data1 [0:32767], data2 [0:32767], data3 [0:32767];
reg [14:0] tag0 [0:32767], tag1 [0:32767], tag2 [0:32767], tag3 [0:32767];

always @(posedge clk) begin
miss = 0;
if (tag0[addr[16:2]]==addr[31:17]) dout <= data0[addr[16:2]];
else if (tag1[addr[16:2]]==addr[31:17]) dout <= data1[addr[16:2]];
else if (tag2[addr[16:2]]==addr[31:17]) dout <= data2[addr[16:2]];
else if (tag3[addr[16:2]]==addr[31:17]) dout <= data3[addr[16:2]];
else miss = 1;
end

2.4.1 Snooping andOther Coherency Protocols
If multiple caches can store the same data, cache coherency is used to prevent copies becoming
unsynchronised. There are twomain aspects to cache coherency:

1. Data consistency ensures that all observers see the same data in the samememory location.

2. Sequential consistency ensures that observers see the same ordering of updates in different
memory locations.

The standard data consistency protocol isMESI, named after the states modified, exclusive, shared
and invalid:

An invalid (I) cache line is not in use.

An exclusive (E) line holds data that are not in any other cache at the same level. The datamay be in
caches at other levels.

A shared (S) line holds data that might also be present in other caches at the same level.

Amodified (M) line is the same as an exclusive line, but contains modified data. These dirty data
must be copied back at eviction.

Each cache line is in one of these states.

43

Modern SoCDesign

The complexity of LRU grows exponentially with the degree of associativity. A naive approach that
stores a timer in each associative waywould have to comparemany timers for each decision, perhaps
using a heap for efficiency. A heap is a tree with themost promising candidate at the root. It has a
logarithmic update cost. There is a factorial number of relative age orderings over the associative
ways, which can be used to create amore compact implementation of LRU. For instance, for a
four-way associative cache, there are 4!=24 orderings, which can be enumerated in a 5-bit field. The
update function required when away is used can be implemented in a compact logic function or a
partially populated ROMof 5×5with a further two output bits to specify which way to use at each
step. For higher degrees of associativity, the factorial (exponential) complexity becomes infeasible
and similar logic functions are used to implement pseudo-LRU, which is cheaper but approximate.
However, such a noisy solution can have an advantage because certain regular access patterns, such
as a linear scan, which would thrash the cache under a perfect LRU, will retain some useful content.

Some designs implement the simple not recently used algorithm, which is also called the clock
algorithmwhen used in virtual memory paging. The clock algorithm uses a single bit per way, initially
clear, which is set when that way is used. Eviction selects a way using round-robin arbitration
(Section 4.2.1) from amongst those with clear bits. If setting a bit results in all bits being set in that
associative set, they are all cleared at that point. However, a true LRU policy is often useful for caches
if an access to the next level of store is expensive, such as for spinning disks or writes to solid-state
drives (SSDs).

Another policy variation is known as awrite allocate, which can evict existing data. A value that is
written while its line is not in the cache causes an allocation within the cache. If it is clear the data are
not going to be served from the cache, write allocate is awaste of time. Such situations include erasing
blocks of memory for security or initialisation or for sending data to other parts of a shared-memory
system. Certain bus protocols, such as AXI (Section 3.1.5), enable the writer to indicate whether to
write allocate or not, for every write.

TLB -- fully-
associative

Tags Values

==

MPX

Hit

PAVA

L1 -- virtual tags
4-way set associative

L2 -- physical tags
4-way set associative

Hit

Comparators

Tags Values

== == == ==

MPXComparators

Tags Values

== == == ==

MPX

Line
offset

Page
offset

Virtual
frame number

Virtual address structure

(Nominal path: data from primary store/main memory)

Ignored by cache

Hit

Data

Address

Client
port

5732-12

Figure 2.8 Typical arrangement of virtual and physical mapping with L1, TLB and L2. Data are served from L1 or L2, but are unlikely to be served directly
from primary storage. Instead, update mechanisms (not shown) are used. Four-way associativity is illustrated, but a higher degree is typically used, to
increase both the hit ratio and capacity, since it is generally required that the directly mapped axis is not wider than the virtual memory page size

42

Chapter 2 | Processors, Memory and IP Blocks

Figure 2.8 shows a particular arrangement of virtual and physical mapping with L1, L2 and TLB.
Numerous other arrangements can be used, but the advantage of having a virtually indexed L1 is that
the hits in it, which should be the vast majority of accesses, can be servedwithout lookup delays in the
TLB. Additionally, the L2 tag RAMs are accessed in parallel with the TLB lookup, so inputs to the four
L2 comparators arrive at roughly the same time.

Implementing a four-way set-associative cache is fairly straightforward. An associative RAM
macrocell is not needed. Instead, four sets of XOR gates are synthesised fromRTL using the ==
operator!

reg [31:0] data0 [0:32767], data1 [0:32767], data2 [0:32767], data3 [0:32767];
reg [14:0] tag0 [0:32767], tag1 [0:32767], tag2 [0:32767], tag3 [0:32767];

always @(posedge clk) begin
miss = 0;
if (tag0[addr[16:2]]==addr[31:17]) dout <= data0[addr[16:2]];
else if (tag1[addr[16:2]]==addr[31:17]) dout <= data1[addr[16:2]];
else if (tag2[addr[16:2]]==addr[31:17]) dout <= data2[addr[16:2]];
else if (tag3[addr[16:2]]==addr[31:17]) dout <= data3[addr[16:2]];
else miss = 1;
end

2.4.1 Snooping andOther Coherency Protocols
If multiple caches can store the same data, cache coherency is used to prevent copies becoming
unsynchronised. There are twomain aspects to cache coherency:

1. Data consistency ensures that all observers see the same data in the samememory location.

2. Sequential consistency ensures that observers see the same ordering of updates in different
memory locations.

The standard data consistency protocol isMESI, named after the states modified, exclusive, shared
and invalid:

An invalid (I) cache line is not in use.

An exclusive (E) line holds data that are not in any other cache at the same level. The datamay be in
caches at other levels.

A shared (S) line holds data that might also be present in other caches at the same level.

Amodified (M) line is the same as an exclusive line, but contains modified data. These dirty data
must be copied back at eviction.

Each cache line is in one of these states.

43

Modern SoCDesign

System programmers need to be aware of several cache artefacts. Instruction caches are normally not
subject to consistencymechanisms, hence giving rise to a Harvard-like architecture. Self-modifying
code and loading new code are supported only with specific cache-flush instructions. The
programmermust include these instructions. Also, volatile memory areas, such as I/O device status
registers, must not be cached, since otherwise any polling-like operations (Section 2.7) will fail. This
can be overcome using a combination of uncacheable regions specifically denoted in theMMU
translation flags or additional attributes in the command field of a bus transaction, such as the AXI
uncacheable operation type (Section 3.1.5). Some ISAs contain special cache-bypassing load and store
instructions that a systems programmermust use. In general, all programmers really need to be aware
of how caches operate if they are to design efficient code and data structures.

Caches cooperating using theMESI protocol need to keep track of what is happening in the other
caches. For instance, a readmiss will result in a back-side load, but the resulting state will be either
exclusive or shared depending onwhether the data are already held in another cache. Likewise, a
store to a shared cache line needs to convert that cache line tomodified but also evict the line from
those other caches that had the line in a shared state.

For small-scale systems, the principal communication technique for achieving cache consistency is
based around snooping of the back-side bus. In early systems, the back-side bus was a physical bus
where a common set of conductors connected tomultiple caches. Owing to wiring capacitance, using
physical busses is no longer a good design point at the physical level (Section 1.1.4), but the term,
‘snooping’, and its related aspects persist. The important aspects of a logical bus are zero spatial ruse
of bandwidth (having atmost one active transmitter) and being able to simultaneously broadcast to all
connected devices. Structures using snoop filters and directory protocols are used for larger systems.
These are presented presented in Section 3.1.6, afterwe have discussed cache-coherent interconnect.

Figure 2.9 shows onemapping of snooping cache consistency into reusable IP blocks. The illustrated
snoop control unit (SCU) has eight target sockets that can connect to up to four cores. A ninth socket
is available for connecting cache-consistent accelerators or DMA units. On the back side, it has one or
two initiator sockets to the next level of storage. Illustrated are two L2 caches that serve different
parts of the physical address space using an address partitioning system inside the SCU. The partition
must be set up by the operating system at boot time. Alternatively, with this IP block, the two
back-side ports can be connected in parallel to a shared next-level memory system to give twice as
much bandwidth but without partitioning. Hard partitioning suffers from a loss of performance due to
statistical multiplexing (Section 4.3.3) whereas a parallel connection requires arbitration if both ports
address the same primary or next-level region. Note, the TLMmodel for this SCU is discussed in
Section 5.4.2. The setup in Figure 2.9 uses the backchannel inside the TLM sockets on the caches and
the snoop controller to initiate invalidate operations on the local data cache of a core (Section 6.7.1).

TheMESI protocol can be augmentedwith a fifth state, owned (O), for shared data that is dirty. The
cache is responsible for issuing a copyback before invalidating the line. As long as writes are

44

Chapter 2 | Processors, Memory and IP Blocks

Primary
storage
(bank 0)

I$
D$

L2 C
ache

CPU
0

Snoop C
ontrol U

nit (SC
U

)

I$
D$

CPU
1

I$
D$

CPU
2

I$
D$

CPU
3

Custom
accelerator

ACP
port

Primary
storage
(bank 1)

L2 C
ache

Figure 2.9 An example system using a snoop control IP block from Arm (Cortex A9 family)

communicated between a group of consistent caches, they can exchange dirty data between
themselves, thereby avoiding writing out a dirty line to the next level of storage, only to read it in
again. Only one cache is permitted to hold the line in the owned state, and others must hold it in the
shared state. On the penultimate eviction, a line becomesmodified again and the copyback to the next
level then occurs as usual on the final eviction from the group. This five-state protocol is called
MOESI. Figure 2.10 shows Arm’s equivalent toMOESI, as used in the AMBAACE and CHI coherency
protocols. The ACE protocol extends the regular AXI interface with snoop channels to enable
communications between peer caches andmaintain coherency.

Figure 2.10MOESI-like state diagram used in the Arm ACE and CHI protocols

If there are several levels of cache, it is sometimes necessary to ensure that a line cannot be evicted
from a cache unless it is missing from all (smaller and faster) caches on the front side. In other words,
each cached line is also present in all caches on the back side (which are typically larger and slower). A
cache level that maintains this policy is called an inclusive cache. Although this policy effectively
reduces the total number of different lines that can be stored in the cache system as a whole, it helps
with the scalability of coherency protocols (Section 3.1.6).

45

Modern SoCDesign

System programmers need to be aware of several cache artefacts. Instruction caches are normally not
subject to consistencymechanisms, hence giving rise to a Harvard-like architecture. Self-modifying
code and loading new code are supported only with specific cache-flush instructions. The
programmermust include these instructions. Also, volatile memory areas, such as I/O device status
registers, must not be cached, since otherwise any polling-like operations (Section 2.7) will fail. This
can be overcome using a combination of uncacheable regions specifically denoted in theMMU
translation flags or additional attributes in the command field of a bus transaction, such as the AXI
uncacheable operation type (Section 3.1.5). Some ISAs contain special cache-bypassing load and store
instructions that a systems programmermust use. In general, all programmers really need to be aware
of how caches operate if they are to design efficient code and data structures.

Caches cooperating using theMESI protocol need to keep track of what is happening in the other
caches. For instance, a readmiss will result in a back-side load, but the resulting state will be either
exclusive or shared depending onwhether the data are already held in another cache. Likewise, a
store to a shared cache line needs to convert that cache line tomodified but also evict the line from
those other caches that had the line in a shared state.

For small-scale systems, the principal communication technique for achieving cache consistency is
based around snooping of the back-side bus. In early systems, the back-side bus was a physical bus
where a common set of conductors connected tomultiple caches. Owing to wiring capacitance, using
physical busses is no longer a good design point at the physical level (Section 1.1.4), but the term,
‘snooping’, and its related aspects persist. The important aspects of a logical bus are zero spatial ruse
of bandwidth (having atmost one active transmitter) and being able to simultaneously broadcast to all
connected devices. Structures using snoop filters and directory protocols are used for larger systems.
These are presented presented in Section 3.1.6, afterwe have discussed cache-coherent interconnect.

Figure 2.9 shows onemapping of snooping cache consistency into reusable IP blocks. The illustrated
snoop control unit (SCU) has eight target sockets that can connect to up to four cores. A ninth socket
is available for connecting cache-consistent accelerators or DMA units. On the back side, it has one or
two initiator sockets to the next level of storage. Illustrated are two L2 caches that serve different
parts of the physical address space using an address partitioning system inside the SCU. The partition
must be set up by the operating system at boot time. Alternatively, with this IP block, the two
back-side ports can be connected in parallel to a shared next-level memory system to give twice as
much bandwidth but without partitioning. Hard partitioning suffers from a loss of performance due to
statistical multiplexing (Section 4.3.3) whereas a parallel connection requires arbitration if both ports
address the same primary or next-level region. Note, the TLMmodel for this SCU is discussed in
Section 5.4.2. The setup in Figure 2.9 uses the backchannel inside the TLM sockets on the caches and
the snoop controller to initiate invalidate operations on the local data cache of a core (Section 6.7.1).

TheMESI protocol can be augmentedwith a fifth state, owned (O), for shared data that is dirty. The
cache is responsible for issuing a copyback before invalidating the line. As long as writes are

44

Chapter 2 | Processors, Memory and IP Blocks

Primary
storage
(bank 0)

I$
D$

L2 C
ache

CPU
0

Snoop C
ontrol U

nit (SC
U

)

I$
D$

CPU
1

I$
D$

CPU
2

I$
D$

CPU
3

Custom
accelerator

ACP
port

Primary
storage
(bank 1)

L2 C
ache

Figure 2.9 An example system using a snoop control IP block from Arm (Cortex A9 family)

communicated between a group of consistent caches, they can exchange dirty data between
themselves, thereby avoiding writing out a dirty line to the next level of storage, only to read it in
again. Only one cache is permitted to hold the line in the owned state, and others must hold it in the
shared state. On the penultimate eviction, a line becomesmodified again and the copyback to the next
level then occurs as usual on the final eviction from the group. This five-state protocol is called
MOESI. Figure 2.10 shows Arm’s equivalent toMOESI, as used in the AMBAACE and CHI coherency
protocols. The ACE protocol extends the regular AXI interface with snoop channels to enable
communications between peer caches andmaintain coherency.

Figure 2.10MOESI-like state diagram used in the Arm ACE and CHI protocols

If there are several levels of cache, it is sometimes necessary to ensure that a line cannot be evicted
from a cache unless it is missing from all (smaller and faster) caches on the front side. In other words,
each cached line is also present in all caches on the back side (which are typically larger and slower). A
cache level that maintains this policy is called an inclusive cache. Although this policy effectively
reduces the total number of different lines that can be stored in the cache system as a whole, it helps
with the scalability of coherency protocols (Section 3.1.6).

45

Modern SoCDesign

2.5 Interrupts and the Interrupt Controller

CPU

Primary
storage

(etc)

Interrupt
controller

D0

D1

D2

Figure 2.11 Three I/O blocks connected to a CPU,
memory and an interrupt controller

CORE
0

Primary
storage

(etc)

Interrupt
distributor

D0

D1

D2

Bus
fabricCORE

1

CORE
2

Interrupt req + ack

Figure 2.12 Three I/O blocks with flexible interrupt distribution in a
multi-core system

Interrupt priorities andwiring can be hardwired at the SoC level or PCB level, or may be
programmable, completely or to some degree. Figure 2.11 shows the typical interrupt structure of a
SoC. The single core uses three I/O devices, each of which is a bus target for programmed I/O (PIO)
read andwrite transactions. They can also generate an interrupt for the CPU. An interrupt controller
can be as simple as a three-input OR gate or it could be programmable, as discussed here.

With only a single interrupt wire to the processor, all interrupt sources share it and the processor
must poll each interrupt to find the device that needs attention. An enhancement is to use a vectored
interrupt that makes the processor branch to a device-specific location. However, there is very little
difference in execution cost between having hardware and software handler tables, since an interrupt
controller contains a unary-to-binary priority encoder that can be interpreted by interrupt software
or hardware. Amore important distinction is that interrupts can also be associated with priorities, so
that interrupts with a level higher than currently being runwill pre-empt.

At the processor core level, a higher-priority interrupt is one that can pre-empt a lower one. Processor
cores typically support more than one level of interrupt priority. For instance, theMotorola 68000
had seven. Arm cores typically had only two levels, called IRQ and FIQ, with FIQ being higher. The
number of effective levels of priority can be augmented outside the core in the interrupt controller.

Generally, manymore devices can raise an interrupt than the number of interrupt priority levels
supported by the cores. Hence, a degree of sharing of levels is needed. Those that share a processor
priority level can have their own relative priority implemented inside the interrupt controller using a
standard priority encoder, as just mentioned. Alternatively, a round-robin arbitration policy can be

46

Chapter 2 | Processors, Memory and IP Blocks

supported inside the controller. This requires keeping a state for which source was last served
(Section 4.2.1).

With only a single core, all interrupts must be routed to that core. The only remaining degree of
freedom is then deciding what priority to allocate to each interrupt. Asmentioned, this could be a pair
of priorities: the core priority and the priority amongst those share a core priority.

Withmultiple cores, there aremanymore possibilities. Themain new policy decision is whether
individual cores should be strongly associated with a given interrupt source or whether to use
dynamic allocation of cores to interrupts. Figure 2.12 shows themost generic setup. This is embodied
in products such as Arm’s generic interrupt controller (GIC). Interrupts can be routed statically to a
core or dynamically dispatched based on a core being available that is not already interrupted or that
is running a lower-priority interrupt. These policies are controlled by the boot-up core, which sets the
values in tens of configuration registers (Section 9.1) [5].

Two nets, an interrupt request and an acknowledge run bidirectionally between the core and the
controller. Although the coremay not implement interrupt priorities, the controller can implement
pre-emption by having the core re-enable interrupts as soon as it has acknowledged an interrupt from
the controller and then relying on the controller to interrupt the core again only if there is
higher-priority work.

2.5.1 Interrupt StructureWithin a Device

Control
Register

Interrupt
Enable or Mask

Other interrupt
sources

Processor

Device

interrupt

wdata

Local logic

wdata

hwen

ce
D Q

Request Ack

hren

Figure 2.13 Interrupt generation: general structure within a device and at system level

When discussing I/O devices, the term host refers to the CPU or code that is looking after the device.
When a device is newly reset, it has not been configured. It should not generate interrupts until after
it has been set up by its device driver code running on the host. Moreover, interrupts need to be
turned off during operation if the device goes idle (especially transmit-ready interrupts, Section 2.7.1).
Although on/off control is possible inside the CPU and insidemost interrupt controllers, a device
typically has amaster interrupt enable control register bit that can be set and cleared by PIO by the
controlling processor. A PIO register that holds on/off control for an interrupt is called an interrupt

47

Modern SoCDesign

2.5 Interrupts and the Interrupt Controller

CPU

Primary
storage

(etc)

Interrupt
controller

D0

D1

D2

Figure 2.11 Three I/O blocks connected to a CPU,
memory and an interrupt controller

CORE
0

Primary
storage

(etc)

Interrupt
distributor

D0

D1

D2

Bus
fabricCORE

1

CORE
2

Interrupt req + ack

Figure 2.12 Three I/O blocks with flexible interrupt distribution in a
multi-core system

Interrupt priorities andwiring can be hardwired at the SoC level or PCB level, or may be
programmable, completely or to some degree. Figure 2.11 shows the typical interrupt structure of a
SoC. The single core uses three I/O devices, each of which is a bus target for programmed I/O (PIO)
read andwrite transactions. They can also generate an interrupt for the CPU. An interrupt controller
can be as simple as a three-input OR gate or it could be programmable, as discussed here.

With only a single interrupt wire to the processor, all interrupt sources share it and the processor
must poll each interrupt to find the device that needs attention. An enhancement is to use a vectored
interrupt that makes the processor branch to a device-specific location. However, there is very little
difference in execution cost between having hardware and software handler tables, since an interrupt
controller contains a unary-to-binary priority encoder that can be interpreted by interrupt software
or hardware. Amore important distinction is that interrupts can also be associated with priorities, so
that interrupts with a level higher than currently being runwill pre-empt.

At the processor core level, a higher-priority interrupt is one that can pre-empt a lower one. Processor
cores typically support more than one level of interrupt priority. For instance, theMotorola 68000
had seven. Arm cores typically had only two levels, called IRQ and FIQ, with FIQ being higher. The
number of effective levels of priority can be augmented outside the core in the interrupt controller.

Generally, manymore devices can raise an interrupt than the number of interrupt priority levels
supported by the cores. Hence, a degree of sharing of levels is needed. Those that share a processor
priority level can have their own relative priority implemented inside the interrupt controller using a
standard priority encoder, as just mentioned. Alternatively, a round-robin arbitration policy can be

46

Chapter 2 | Processors, Memory and IP Blocks

supported inside the controller. This requires keeping a state for which source was last served
(Section 4.2.1).

With only a single core, all interrupts must be routed to that core. The only remaining degree of
freedom is then deciding what priority to allocate to each interrupt. Asmentioned, this could be a pair
of priorities: the core priority and the priority amongst those share a core priority.

Withmultiple cores, there aremanymore possibilities. Themain new policy decision is whether
individual cores should be strongly associated with a given interrupt source or whether to use
dynamic allocation of cores to interrupts. Figure 2.12 shows themost generic setup. This is embodied
in products such as Arm’s generic interrupt controller (GIC). Interrupts can be routed statically to a
core or dynamically dispatched based on a core being available that is not already interrupted or that
is running a lower-priority interrupt. These policies are controlled by the boot-up core, which sets the
values in tens of configuration registers (Section 9.1) [5].

Two nets, an interrupt request and an acknowledge run bidirectionally between the core and the
controller. Although the coremay not implement interrupt priorities, the controller can implement
pre-emption by having the core re-enable interrupts as soon as it has acknowledged an interrupt from
the controller and then relying on the controller to interrupt the core again only if there is
higher-priority work.

2.5.1 Interrupt StructureWithin a Device

Control
Register

Interrupt
Enable or Mask

Other interrupt
sources

Processor

Device

interrupt

wdata

Local logic

wdata

hwen

ce
D Q

Request Ack

hren

Figure 2.13 Interrupt generation: general structure within a device and at system level

When discussing I/O devices, the term host refers to the CPU or code that is looking after the device.
When a device is newly reset, it has not been configured. It should not generate interrupts until after
it has been set up by its device driver code running on the host. Moreover, interrupts need to be
turned off during operation if the device goes idle (especially transmit-ready interrupts, Section 2.7.1).
Although on/off control is possible inside the CPU and insidemost interrupt controllers, a device
typically has amaster interrupt enable control register bit that can be set and cleared by PIO by the
controlling processor. A PIO register that holds on/off control for an interrupt is called an interrupt

47

Modern SoCDesign

mask. As well as this master flag, a device commonly has further interrupt masks for specific local
causes of interrupts. Its output is just ANDedwith the local interrupt source. This is shown in
Figure 2.13. This is illustrated for the UART device driver, which turns off transmit interrupts when
there is nothing to send (Section 2.7.1).

PIO uses the write-enable (hwen) signal to protect the transfer of data from themain data bus into the
control register. A hren signal is used for reading back a stored value.

The widely used pattern of interrupt programming is demonstrated for the UART device driver code
in Section 2.7.1:

The receiving side keeps the interrupt always enabled. The device then interrupts when received
data are ready.

The sending side enables the interrupt only when the driver’s software output queue is not empty.
The device then interrupts when the hardware output queue is ready, but not if there is nothing to
send.

These two general patterns arise with all I/O devices. Moreover, if DMA is used (Section 2.7.5), the
same principle still applies, but thememory pools used for DMA now logically belong to the device
and interrupts occur when these pools need a service from the host.

2.6 Memory Technology
More than half the silicon area of nearly every SoC consists of memory, mainly SRAM (Table 2.1).
Memory is always a bus target and, with its details abstracted, can be thought of as quite simple.
However, a memory subsystemmay embody error detection and correction, in which case it usefully
needs to have a fault indication output for uncorrectable errors. It may also have a built-in self-test
(BIST) (Section 4.7.6), in which case it will have test modes and control inputs. Certain
error-correctingmemory requires that scrub commands are executed periodically (Section 4.7.6).
DRAMneeds to be refreshed and ideally put into a low power state if about to become idle. Flash
needs wear levelling and bulk erase control, so memory can have a significant amount of complexity.

Table 2.1 Principal characteristics of memory technologies currently used for booting, caches, primary storage and secondary storage

Memory Volatile Main applications Implementation
ROM No Booting, coefficients Content set by a tapeout mask
SRAM Yes Caches, scratchpads, FIFO buffers One bistable (invertor pair) per bit
DRAM Yes Primary storage Capacitor charge storage
EA-ROM No Secondary storage Floating-gate FET charge storage
Memristive No Next generation Electrically induced resistance changes

Figure 2.14 illustrates the relative dominance ofmemory arrays in area terms. For a high performance
processor [6], the L1 and L2 cachememory arrayswere placed on a separate piece of silicon from all of

48

Chapter 2 | Processors, Memory and IP Blocks

the other logic. Both dies were 10× 10mmusing 7 nm FinFET transistors, and the two dies were
stacked (Section 8.9.1). The instruction and data L1 caches are each 64KB, set associative. The L2
cache size is 1MB using two banks. The two dies were designed in close conjunction, as required for
inter-chip bonding using the third dimension, and to avoid vertically aligned hot spots. Thememory
array area has dominated the overall chip size, since that die is fully filled, whereas the coloured logic
layer can be seen to not need all of its die. Hencemore than 50% of the silicon area is memory.

Figure 2.14 Floorplan visualisation of a 3D implementation of the ArmNeoverse N1 design using two chips, vertically stacked. The cache memories are
placed on the lower piece of silicon, shown in monochrome, whereas the logic for the ALUs, register files and everything else is shown in colour on top. The
1MB L2 label is the L2 logic and not L2memory arrays

2.6.1 Logical and Physical Layouts
Most typical applications of ROMand RAM require both the number of address bits and the number
of data bits to be in the tens. The widest data words typically encounteredmight be 4×8×9=288,
corresponding to four 64-bit words with error correction (Section 4.7.6). However, the number of bits
stored is exponential in the number of address bits and linear in the number of data bits. So evenwith
a wide word, this leads to a very long and skinny logical arrangement. For instance, a 16k-word RAM
with 16 address bits and 256 data bits is said to have an arrangement of 65536×256. Designing a
memorymacro of this shapewill be impractical, since its performance would be very poor due to the
high capacitance of the long nets. A low aspect ratio (square-like) array of bit cells is desirable for a
balanced floor plan (Section 8.6) and leads to lower power operation (Section 4.6).

The total number of bits can factorised in a close-to-square way using Napier’s rule:

216×28 =224 =212×212

49

Modern SoCDesign

mask. As well as this master flag, a device commonly has further interrupt masks for specific local
causes of interrupts. Its output is just ANDedwith the local interrupt source. This is shown in
Figure 2.13. This is illustrated for the UART device driver, which turns off transmit interrupts when
there is nothing to send (Section 2.7.1).

PIO uses the write-enable (hwen) signal to protect the transfer of data from themain data bus into the
control register. A hren signal is used for reading back a stored value.

The widely used pattern of interrupt programming is demonstrated for the UART device driver code
in Section 2.7.1:

The receiving side keeps the interrupt always enabled. The device then interrupts when received
data are ready.

The sending side enables the interrupt only when the driver’s software output queue is not empty.
The device then interrupts when the hardware output queue is ready, but not if there is nothing to
send.

These two general patterns arise with all I/O devices. Moreover, if DMA is used (Section 2.7.5), the
same principle still applies, but thememory pools used for DMA now logically belong to the device
and interrupts occur when these pools need a service from the host.

2.6 Memory Technology
More than half the silicon area of nearly every SoC consists of memory, mainly SRAM (Table 2.1).
Memory is always a bus target and, with its details abstracted, can be thought of as quite simple.
However, a memory subsystemmay embody error detection and correction, in which case it usefully
needs to have a fault indication output for uncorrectable errors. It may also have a built-in self-test
(BIST) (Section 4.7.6), in which case it will have test modes and control inputs. Certain
error-correctingmemory requires that scrub commands are executed periodically (Section 4.7.6).
DRAMneeds to be refreshed and ideally put into a low power state if about to become idle. Flash
needs wear levelling and bulk erase control, so memory can have a significant amount of complexity.

Table 2.1 Principal characteristics of memory technologies currently used for booting, caches, primary storage and secondary storage

Memory Volatile Main applications Implementation
ROM No Booting, coefficients Content set by a tapeout mask
SRAM Yes Caches, scratchpads, FIFO buffers One bistable (invertor pair) per bit
DRAM Yes Primary storage Capacitor charge storage
EA-ROM No Secondary storage Floating-gate FET charge storage
Memristive No Next generation Electrically induced resistance changes

Figure 2.14 illustrates the relative dominance ofmemory arrays in area terms. For a high performance
processor [6], the L1 and L2 cachememory arrayswere placed on a separate piece of silicon from all of

48

Chapter 2 | Processors, Memory and IP Blocks

the other logic. Both dies were 10× 10mmusing 7 nm FinFET transistors, and the two dies were
stacked (Section 8.9.1). The instruction and data L1 caches are each 64KB, set associative. The L2
cache size is 1MB using two banks. The two dies were designed in close conjunction, as required for
inter-chip bonding using the third dimension, and to avoid vertically aligned hot spots. Thememory
array area has dominated the overall chip size, since that die is fully filled, whereas the coloured logic
layer can be seen to not need all of its die. Hencemore than 50% of the silicon area is memory.

Figure 2.14 Floorplan visualisation of a 3D implementation of the ArmNeoverse N1 design using two chips, vertically stacked. The cache memories are
placed on the lower piece of silicon, shown in monochrome, whereas the logic for the ALUs, register files and everything else is shown in colour on top. The
1MB L2 label is the L2 logic and not L2memory arrays

2.6.1 Logical and Physical Layouts
Most typical applications of ROMand RAM require both the number of address bits and the number
of data bits to be in the tens. The widest data words typically encounteredmight be 4×8×9=288,
corresponding to four 64-bit words with error correction (Section 4.7.6). However, the number of bits
stored is exponential in the number of address bits and linear in the number of data bits. So evenwith
a wide word, this leads to a very long and skinny logical arrangement. For instance, a 16k-word RAM
with 16 address bits and 256 data bits is said to have an arrangement of 65536×256. Designing a
memorymacro of this shapewill be impractical, since its performance would be very poor due to the
high capacitance of the long nets. A low aspect ratio (square-like) array of bit cells is desirable for a
balanced floor plan (Section 8.6) and leads to lower power operation (Section 4.6).

The total number of bits can factorised in a close-to-square way using Napier’s rule:

216×28 =224 =212×212

49

Modern SoCDesign

Wewould, therefore, use a square array with 4096 bits on a side, or perhaps 2048 rows of 8192
columns, or vice versa, depending on the details of the target technology, whichmaymarginally prefer
rows to columns. For arrays that require a number of rows or columns beyondwhat can be supported
with appropriate noisemargins, thenmultiple smaller arrays are used. For example, multiple arrays
are illustrated in the DRAMmicrograph of Figure 2.21.

High address bits

Low address bits

Word line
binary-to-unary

decoder

Input/output multiplexor (mux)

WL0

WL(R-1)

2log (C)

(R)2log

Data in/out
M

WL1

wen (write enable)

BLB0 BL0

bit
cell

bit
cell

bit
cell

BLB1 BL1

bit
cell

bit
cell

bit
cell

BLB(W-1) BL(W-1)

bit
cell

bit
cell

bit
cell

Sense
amplifier

Tri-state
buffer

W=M.C

(R)2log +N=

2log (C)

Figure 2.15 Low-aspect-ratio RAM array showing the shared peripheral circuitry, which includes the word-line decoder, sense amplifiers, tri-state buffers
and I/Omultiplexor. Externally it offers 2N words of M bits where N= log2(R)+ log2(C). Internally it uses R rows each with (M×C)-bit cells

For a single-array design, the general setup is illustrated in Figure 2.15. TheN address bits are
presented externally in binary format and address 2N locations ofM bits. N− log2(C) bits of the
address field are fed to the binary-to-unary row decoder, which raises one active row line. This
horizontal net is also called a word-line net as, on assertion, it selects the appropriate bit array word,
which is one row. The values stored in all cells of the word are simultaneously read out to the vertical
nets, which are called bit lines. The remaining address bits are used to select whichM-bit word to
update or to deliver externally. The write-enable input controls the operation on the word. For a read,
the appropriate bits are delivered on the data in/out nets, whereas for a write, the data received on
these nets are forwarded byM enabled tri-state buffers to the bit cell (Figure 2.17).

To reduce noise and to facilitate writing in RAM, the bit lines are present in true and negated form, so
there are twice as many of them as bit cells in the row. ROMoften uses a single bit line per bit.

Memory access timing is composed of the address decoder delay, the word-line delay and the bit-line
delay. With technology scaling, word-line and bit-line parasitic resistance has increasedmanifold and
now these components dominate thememory access time.

50

Chapter 2 | Processors, Memory and IP Blocks

Non-volatile memory retains its value when the power is removed. This is essential for secondary
storage. Classically, themain forms of secondary storage have been tapes and disks. For booting, it is
critical to have a non-volatile store in the boot ROM (Section 9.1). Non-volatile stores were used as
primary storage in ferrite corememories of the 1960s, and there has been some resurgence with the
use of flash andOptane (©Intel), but most current non-volatile technologies cannot replace SRAMor
DRAM for primary data storage due to limitations in access times andwrite endurance.

2.6.2 Mask-programmed ROM

High address bits

Low address bits

Word line
binary-to-unary

decoder

Output multiplexor (mux)

WL0

WL1

WL(R-1)

BL0 BL1 BL(W-1)

2log (C)

(R)2log

BL2

VDD

Dout

Weak pullup
or precharge

Transistor absent for
a logic one bit.

0 1 01

0 1 0 1

01 00

Transistor present for
a logic zero bit.

M

W = M.C

(R)2log +N=
2log (C)

Address
input

Figure 2.16Mask-programmed NMOS ROM structure with a capacity of 2N locations, each holding anM-bit word

Read-onlymemory (ROM) is non-volatile and has restrictions on how it can bewritten. Themost
simple bit cell of all memory types is found inmask-programmed ROM, as illustrated in Figure 2.16. A
zero is represented by the presence of a transistor in the bit-cell array and a one by the absence of a
transistor. The contents (stored data) must be known at tapeout (Section 8.7.7), which is when the
photolithographic masks aremade for production. They cannot be changed post-fabrication. In a SoC
design, such ROM is used for bootstrap code, secret keys (Section 9.1.1) and coefficient tables in
certain accelerators.

An NMOS structure is shown in the figure. It uses a weak pull-up transistor for each bit line. An
alternative is dynamic logic, which is also commonly used. Dynamic logic uses the two phases of a
clock. The bit lines are precharged, usually to VDD on one phase, and then allowed to float. Using the
high address bits, the row address is decoded and an entire word is selected by the assertion of the
corresponding word line on the other phase of the clock. Depending upon the value stored in each
cell, bit lines are either pulled low or not as the charge on the line discharges through the bit cell. The
externally required bit or word ofM bits is selected for output using the remaining (low) bits of the
address field.

51

Modern SoCDesign

Wewould, therefore, use a square array with 4096 bits on a side, or perhaps 2048 rows of 8192
columns, or vice versa, depending on the details of the target technology, whichmaymarginally prefer
rows to columns. For arrays that require a number of rows or columns beyondwhat can be supported
with appropriate noisemargins, thenmultiple smaller arrays are used. For example, multiple arrays
are illustrated in the DRAMmicrograph of Figure 2.21.

High address bits

Low address bits

Word line
binary-to-unary

decoder

Input/output multiplexor (mux)

WL0

WL(R-1)

2log (C)

(R)2log

Data in/out
M

WL1

wen (write enable)

BLB0 BL0

bit
cell

bit
cell

bit
cell

BLB1 BL1

bit
cell

bit
cell

bit
cell

BLB(W-1) BL(W-1)

bit
cell

bit
cell

bit
cell

Sense
amplifier

Tri-state
buffer

W=M.C

(R)2log +N=

2log (C)

Figure 2.15 Low-aspect-ratio RAM array showing the shared peripheral circuitry, which includes the word-line decoder, sense amplifiers, tri-state buffers
and I/Omultiplexor. Externally it offers 2N words of M bits where N= log2(R)+ log2(C). Internally it uses R rows each with (M×C)-bit cells

For a single-array design, the general setup is illustrated in Figure 2.15. TheN address bits are
presented externally in binary format and address 2N locations ofM bits. N− log2(C) bits of the
address field are fed to the binary-to-unary row decoder, which raises one active row line. This
horizontal net is also called a word-line net as, on assertion, it selects the appropriate bit array word,
which is one row. The values stored in all cells of the word are simultaneously read out to the vertical
nets, which are called bit lines. The remaining address bits are used to select whichM-bit word to
update or to deliver externally. The write-enable input controls the operation on the word. For a read,
the appropriate bits are delivered on the data in/out nets, whereas for a write, the data received on
these nets are forwarded byM enabled tri-state buffers to the bit cell (Figure 2.17).

To reduce noise and to facilitate writing in RAM, the bit lines are present in true and negated form, so
there are twice as many of them as bit cells in the row. ROMoften uses a single bit line per bit.

Memory access timing is composed of the address decoder delay, the word-line delay and the bit-line
delay. With technology scaling, word-line and bit-line parasitic resistance has increasedmanifold and
now these components dominate thememory access time.

50

Chapter 2 | Processors, Memory and IP Blocks

Non-volatile memory retains its value when the power is removed. This is essential for secondary
storage. Classically, themain forms of secondary storage have been tapes and disks. For booting, it is
critical to have a non-volatile store in the boot ROM (Section 9.1). Non-volatile stores were used as
primary storage in ferrite corememories of the 1960s, and there has been some resurgence with the
use of flash andOptane (©Intel), but most current non-volatile technologies cannot replace SRAMor
DRAM for primary data storage due to limitations in access times andwrite endurance.

2.6.2 Mask-programmed ROM

High address bits

Low address bits

Word line
binary-to-unary

decoder

Output multiplexor (mux)

WL0

WL1

WL(R-1)

BL0 BL1 BL(W-1)

2log (C)

(R)2log

BL2

VDD

Dout

Weak pullup
or precharge

Transistor absent for
a logic one bit.

0 1 01

0 1 0 1

01 00

Transistor present for
a logic zero bit.

M

W = M.C

(R)2log +N=
2log (C)

Address
input

Figure 2.16Mask-programmed NMOS ROM structure with a capacity of 2N locations, each holding anM-bit word

Read-onlymemory (ROM) is non-volatile and has restrictions on how it can bewritten. Themost
simple bit cell of all memory types is found inmask-programmed ROM, as illustrated in Figure 2.16. A
zero is represented by the presence of a transistor in the bit-cell array and a one by the absence of a
transistor. The contents (stored data) must be known at tapeout (Section 8.7.7), which is when the
photolithographic masks aremade for production. They cannot be changed post-fabrication. In a SoC
design, such ROM is used for bootstrap code, secret keys (Section 9.1.1) and coefficient tables in
certain accelerators.

An NMOS structure is shown in the figure. It uses a weak pull-up transistor for each bit line. An
alternative is dynamic logic, which is also commonly used. Dynamic logic uses the two phases of a
clock. The bit lines are precharged, usually to VDD on one phase, and then allowed to float. Using the
high address bits, the row address is decoded and an entire word is selected by the assertion of the
corresponding word line on the other phase of the clock. Depending upon the value stored in each
cell, bit lines are either pulled low or not as the charge on the line discharges through the bit cell. The
externally required bit or word ofM bits is selected for output using the remaining (low) bits of the
address field.

51

Modern SoCDesign

2.6.3 Static RandomAccessMemory
The size and number of ports of static RAM (SRAM) vary. Single-ported SRAM is themost important
andmost simple resource. It can be connected to a bus as an addressable scratchpad target. It is also
used inside caches for tags and data.

Figure 2.17 Transistor-level view of a standard six-transistor (6T) SRAM cell. M1, M2, M3 andM4 are used for storage. M5 andM6 are used to access the
cell for read and write operations

An SRAM cell is shown in Figure 2.17. Data are stored in a pair of cross-coupled invertors (M1 toM4)
that form a bistable. Two access transistors (M5 andM6) are used for read andwrite operations on
the cell. The transfer function of the cross-coupled invertors has three equilibrium points, two of
which are stable (Section 3.7.2), giving a standard bistable.

A simple bistable consumes a few per cent of the area of a full edge-triggered flip-flop. Theword
‘static’ in SRAMdenotes that data are retained in thememory for as long as its powered on (in
contrast to DRAM, Section 2.6.6). The ‘random access’ in SRAMdenotes that the ordering in which
data are stored does not affect the access time. The ‘RAM’ in DRAMmeans the same thing, but, as we
explain, access times vary with DRAMdepending onwhat was last accessed. Shift registers, FIFO
buffers and, historically, drum drives are examples of non-random access memory. If thememory
system is complex, the different RAMdevices will be at different distances from the point of access,
resulting in an architecture with non-uniformmemory access (NUMA).

The read operation for SRAM is the same as described for ROM. The only caveat is that the
capacitance of the bit lines must be sufficiently small to avoid upsetting the tiny RAM cell when
connected to the bit line. This is the read-disturb problem. It is preferable to precharge all bit lines to
aminimally disruptive voltage in advance of asserting the row line. Certainly, they should be
precharged to the same voltage to avoid a bias that will tend to flip the RAM cell content. SRAM and
DRAMboth require a precharge time between operations. Although this does not affect the read
latency, it does extend the total read cycle time.

52

Chapter 2 | Processors, Memory and IP Blocks

For the bit cells that are to be updated by a write operation, BL and BL are driven to VDD andGND,
respectively, or vice versa, depending upon the data to bewritten. Again, the row address is decoded,
and an entire word is selected by asserting the correspondingWL. If the data to bewritten are
different fromwhat is already stored in the cell, the BL and BL pair overpower the feedback of the
cross-coupled invertor to flip the cell to its new value.

Due to RAM fabrication overheads, RAMbelow a few hundred bits should typically be implemented
as register filesmade of flip-flops. However, larger RAMhas better density and power consumption
than arrays of flip-flops.

SRAMNoiseMargins
The noisemargin for a net is the voltage offset it can sustain before correct operation of the circuit is
compromised. TheDC noisemargin is the offset before a zero is interpreted as a one or vice versa.
TheAC noisemargin is the offset before the circuit moves from a gain less than unity to greater than
unity. If a circuit is operating above its AC noisemargin, random noise is amplified instead of being
attenuated and the fundamental digitalness of the system is lost. The noise voltage offsets can
equivalently be in the supply rails or the signal nets.

For amanufacturing process node (Section 8.2.1), the wiring capacitance for a given length is
predetermined. The only freedom the RAMdesigner has is setting the size of the transistors. These
considerations determine themaximum column length possible. An SRAM cell has a ratioed logic
design: the transistors must be sized carefully for correct operation. It is also very important to
consider the spatial variation, as typically a memory array hasmillions of cells and each bit cell must
work correctly. The variations become larger with process and voltage scaling (Section 8.4.4). This
degrades the SRAMnoisemargins, which is the key challenge in SRAMdesign for advanced
semiconductor process nodes.

2.6.4 Synchronous Static RAM
Although RAMbit cells do not require a clock, it is common towrap up themain bit array within a
synchronous wrapper, resulting in synchronous static RAM (SSRAM), as shown in Figure 2.18.
SSRAMhas at least one clock cycle of read latency, which arises by putting a broadside register on the
data output. A second cycle of latency arises if there is an input register as well in the binary-to-unary
row decoder. Suchmemorymay be denoted as SSRAM2. The designmust be aware of the read
pipeline delay. This was illustrated on the front side of the two caches in the five-stage RISC in
Figure 2.3. For writes, there is no pipeline effect, as the write-enable, write-data andwrite-address
are all presented in the same clock cycle.

The RAM illustrated has a read latency of one clock cycle. Note thanwhen awrite occurs, the old
value at the addressed location is still read out, which is commonly a useful feature. The en input
signal is not strictly needed since the RAM could deliver read data on all cycles. However, not having it
would waste power.

53

Modern SoCDesign

2.6.3 Static RandomAccessMemory
The size and number of ports of static RAM (SRAM) vary. Single-ported SRAM is themost important
andmost simple resource. It can be connected to a bus as an addressable scratchpad target. It is also
used inside caches for tags and data.

Figure 2.17 Transistor-level view of a standard six-transistor (6T) SRAM cell. M1, M2, M3 andM4 are used for storage. M5 andM6 are used to access the
cell for read and write operations

An SRAM cell is shown in Figure 2.17. Data are stored in a pair of cross-coupled invertors (M1 toM4)
that form a bistable. Two access transistors (M5 andM6) are used for read andwrite operations on
the cell. The transfer function of the cross-coupled invertors has three equilibrium points, two of
which are stable (Section 3.7.2), giving a standard bistable.

A simple bistable consumes a few per cent of the area of a full edge-triggered flip-flop. Theword
‘static’ in SRAMdenotes that data are retained in thememory for as long as its powered on (in
contrast to DRAM, Section 2.6.6). The ‘random access’ in SRAMdenotes that the ordering in which
data are stored does not affect the access time. The ‘RAM’ in DRAMmeans the same thing, but, as we
explain, access times vary with DRAMdepending onwhat was last accessed. Shift registers, FIFO
buffers and, historically, drum drives are examples of non-random access memory. If thememory
system is complex, the different RAMdevices will be at different distances from the point of access,
resulting in an architecture with non-uniformmemory access (NUMA).

The read operation for SRAM is the same as described for ROM. The only caveat is that the
capacitance of the bit lines must be sufficiently small to avoid upsetting the tiny RAM cell when
connected to the bit line. This is the read-disturb problem. It is preferable to precharge all bit lines to
aminimally disruptive voltage in advance of asserting the row line. Certainly, they should be
precharged to the same voltage to avoid a bias that will tend to flip the RAM cell content. SRAM and
DRAMboth require a precharge time between operations. Although this does not affect the read
latency, it does extend the total read cycle time.

52

Chapter 2 | Processors, Memory and IP Blocks

For the bit cells that are to be updated by a write operation, BL and BL are driven to VDD andGND,
respectively, or vice versa, depending upon the data to bewritten. Again, the row address is decoded,
and an entire word is selected by asserting the correspondingWL. If the data to bewritten are
different fromwhat is already stored in the cell, the BL and BL pair overpower the feedback of the
cross-coupled invertor to flip the cell to its new value.

Due to RAM fabrication overheads, RAMbelow a few hundred bits should typically be implemented
as register filesmade of flip-flops. However, larger RAMhas better density and power consumption
than arrays of flip-flops.

SRAMNoiseMargins
The noisemargin for a net is the voltage offset it can sustain before correct operation of the circuit is
compromised. TheDC noisemargin is the offset before a zero is interpreted as a one or vice versa.
TheAC noisemargin is the offset before the circuit moves from a gain less than unity to greater than
unity. If a circuit is operating above its AC noisemargin, random noise is amplified instead of being
attenuated and the fundamental digitalness of the system is lost. The noise voltage offsets can
equivalently be in the supply rails or the signal nets.

For amanufacturing process node (Section 8.2.1), the wiring capacitance for a given length is
predetermined. The only freedom the RAMdesigner has is setting the size of the transistors. These
considerations determine themaximum column length possible. An SRAM cell has a ratioed logic
design: the transistors must be sized carefully for correct operation. It is also very important to
consider the spatial variation, as typically a memory array hasmillions of cells and each bit cell must
work correctly. The variations become larger with process and voltage scaling (Section 8.4.4). This
degrades the SRAMnoisemargins, which is the key challenge in SRAMdesign for advanced
semiconductor process nodes.

2.6.4 Synchronous Static RAM
Although RAMbit cells do not require a clock, it is common towrap up themain bit array within a
synchronous wrapper, resulting in synchronous static RAM (SSRAM), as shown in Figure 2.18.
SSRAMhas at least one clock cycle of read latency, which arises by putting a broadside register on the
data output. A second cycle of latency arises if there is an input register as well in the binary-to-unary
row decoder. Suchmemorymay be denoted as SSRAM2. The designmust be aware of the read
pipeline delay. This was illustrated on the front side of the two caches in the five-stage RISC in
Figure 2.3. For writes, there is no pipeline effect, as the write-enable, write-data andwrite-address
are all presented in the same clock cycle.

The RAM illustrated has a read latency of one clock cycle. Note thanwhen awrite occurs, the old
value at the addressed location is still read out, which is commonly a useful feature. The en input
signal is not strictly needed since the RAM could deliver read data on all cycles. However, not having it
would waste power.

53

Modern SoCDesign

en

wen

addr
rdata

Synchronous

Static

RAM

(SSRAM)

clk

nA

nD

nD

rdata

wdata

wen

addr

Word width = nD

Capacity = nD * (2 ^ nA) bits.

en

wdata

module SSRAM(input clk,

 input en, input wen,

 input [nD-1:0] wdata,

 input [nA-1:0] addr,

 output reg [nD-1:0] rdata);

 reg [nD-1:0] darray [2^nA-1:0];

 always @(posedge clk) begin

 if (en) rdata <= darray[addr];

 if (en&wen) darray[addr] <= wdata;

 end

endmodule

Figure 2.18 SSRAMwith a single port, showing the logic symbol (left) and internal RTL model (right)

2.6.5 Dual-ported Static RAM
Manymemories need to be accessed frommany different places within the SoC. This is possible using
multiplexers in the SoC interconnect (Chapter 3), but having two physical sets of wiring to the bit cells
is also quite often used for SRAM. A bit cell for SRAMwith two complete sets of row and column logic
is shown in Figure 2.19. One version of such a dual-ported SRAM contains eight transistors instead of
the usual six. The corresponding logic symbol is shown in Figure 2.20. This shows a single clock input,
but having two clock inputs, one per port, is also common and useful for sharing data between clock
domains.

Figure 2.19 8T SRAM cell with true dual-porting

en

wen

addr
rdataDual-Port

Synchronous
Static
RAM

(DP-SSRAM)

nA

nD

nD

rdata0

wdata0
wen0
addr0
en0

wdata

nA

nD
wdata1
wen1
addr1
en1 rdata1

clk

nD

wen

wdata

en

addr
rdata

Figure 2.20 Dual-ported SSRAM logic symbol

An 8T dual-ported SRAM cell is not as dense as a 6T SRAM. Furthermore, the internal node of the cell
has greater capacitive loading due to its connections tomultiple access transistors, which leads to
greater latency and power use. Another design implication is that such amemory needs collision
circuitry to avoidmultiple writes of different data to the same cell. A collision detector will tacitly give
priority to one port, but in principle, the output from a collision detector could bemade available for
system-level use.

2.6.6 Dynamic RAM
Theword ‘dynamic’ indynamicRAM (DRAM) denotes that it uses charge as themechanismof storage.
Charge is used in both DRAMand flashmemory, but in DRAM there is leakage and this charge needs
to be refreshed at a few hundred hertz or else the DRAM cell will lose its content. Figure 2.21 shows a
micrograph of a DRAM chip. Externally, this device is accessedwith row and column addresses of ten

54

Chapter 2 | Processors, Memory and IP Blocks

Figure 2.21Micrograph of a simple DRAM chip circa 1994. This is a Micron TechnologyMT4C1024 device with organisation 1024x1024x1 (source:
ZeptoBars 2012. Reproduced under the terms of the Creative Commons Attribution Licence, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>)

bits each, so logically it is organised as a single array of 1024 columns of 1024 bits. But themicrograph
shows the physical layout uses sixteen sub-arrays. The physical layout is selected for optimum noise
margin reasons (Section 2.6.3). Also visible are the 24 orange-looking bond pads, 12 on each side.

Figure 2.22-left shows the external connectionswhere the 24 bond pads are connected to 20 external
pins. The difference arises since several bond padsmay be connected in parallel to the VSS and VDD
supply pins for reduced inductance and resistance.

As shown on the right of Figure 2.22 each bit cell consists of a capacitor, which stores the state of one
bit, and an access transistor. For maximum density, these are normally vertically organised with the
transistor on top of the capacitor. The capacitor may actually be a reverse-biased diodewith a large

Din

~WE

~RAS

(Test)

NC

A0

A1

A2

A3

Vcc A4

A5

A6

A7

A8

A9

NC

~CAS

Qout

Vss

20/26-pin
small outline

J-leaded
package

(SOJ)

Row
address

Column address

Row address
latch and

binary-to-unary
decoder

Line prechargers, sense amplifiers
and write back logic.

WL0

WL1

WL(R-1)

Qout

Bit lines
Word line

Din
Write enable

Column
address
strobe

Row address strobe
~RAS

~CAS

A0-9

~WE

Figure 2.22 Left: pinout for a typical asynchronous DRAM, such as theMT4C1024 pictured above, that is controlled by the RAS and CAS signals instead of a
having a clock input. Right: basic internal structure schematic. This device only has a single bank so there are no bank address inputs

55

Modern SoCDesign

en

wen

addr
rdata

Synchronous

Static

RAM

(SSRAM)

clk

nA

nD

nD

rdata

wdata

wen

addr

Word width = nD

Capacity = nD * (2 ^ nA) bits.

en

wdata

module SSRAM(input clk,

 input en, input wen,

 input [nD-1:0] wdata,

 input [nA-1:0] addr,

 output reg [nD-1:0] rdata);

 reg [nD-1:0] darray [2^nA-1:0];

 always @(posedge clk) begin

 if (en) rdata <= darray[addr];

 if (en&wen) darray[addr] <= wdata;

 end

endmodule

Figure 2.18 SSRAMwith a single port, showing the logic symbol (left) and internal RTL model (right)

2.6.5 Dual-ported Static RAM
Manymemories need to be accessed frommany different places within the SoC. This is possible using
multiplexers in the SoC interconnect (Chapter 3), but having two physical sets of wiring to the bit cells
is also quite often used for SRAM. A bit cell for SRAMwith two complete sets of row and column logic
is shown in Figure 2.19. One version of such a dual-ported SRAM contains eight transistors instead of
the usual six. The corresponding logic symbol is shown in Figure 2.20. This shows a single clock input,
but having two clock inputs, one per port, is also common and useful for sharing data between clock
domains.

Figure 2.19 8T SRAM cell with true dual-porting

en

wen

addr
rdataDual-Port

Synchronous
Static
RAM

(DP-SSRAM)

nA

nD

nD

rdata0

wdata0
wen0
addr0
en0

wdata

nA

nD
wdata1
wen1
addr1
en1 rdata1

clk

nD

wen

wdata

en

addr
rdata

Figure 2.20 Dual-ported SSRAM logic symbol

An 8T dual-ported SRAM cell is not as dense as a 6T SRAM. Furthermore, the internal node of the cell
has greater capacitive loading due to its connections tomultiple access transistors, which leads to
greater latency and power use. Another design implication is that such amemory needs collision
circuitry to avoidmultiple writes of different data to the same cell. A collision detector will tacitly give
priority to one port, but in principle, the output from a collision detector could bemade available for
system-level use.

2.6.6 Dynamic RAM
Theword ‘dynamic’ in dynamicRAM (DRAM) denotes that it uses charge as themechanismof storage.
Charge is used in both DRAMand flashmemory, but in DRAM there is leakage and this charge needs
to be refreshed at a few hundred hertz or else the DRAM cell will lose its content. Figure 2.21 shows a
micrograph of a DRAM chip. Externally, this device is accessedwith row and column addresses of ten

54

Chapter 2 | Processors, Memory and IP Blocks

Figure 2.21Micrograph of a simple DRAM chip circa 1994. This is a Micron TechnologyMT4C1024 device with organisation 1024x1024x1 (source:
ZeptoBars 2012. Reproduced under the terms of the Creative Commons Attribution Licence, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>)

bits each, so logically it is organised as a single array of 1024 columns of 1024 bits. But themicrograph
shows the physical layout uses sixteen sub-arrays. The physical layout is selected for optimum noise
margin reasons (Section 2.6.3). Also visible are the 24 orange-looking bond pads, 12 on each side.

Figure 2.22-left shows the external connectionswhere the 24 bond pads are connected to 20 external
pins. The difference arises since several bond padsmay be connected in parallel to the VSS and VDD
supply pins for reduced inductance and resistance.

As shown on the right of Figure 2.22 each bit cell consists of a capacitor, which stores the state of one
bit, and an access transistor. For maximum density, these are normally vertically organised with the
transistor on top of the capacitor. The capacitor may actually be a reverse-biased diodewith a large

Din

~WE

~RAS

(Test)

NC

A0

A1

A2

A3

Vcc A4

A5

A6

A7

A8

A9

NC

~CAS

Qout

Vss

20/26-pin
small outline

J-leaded
package

(SOJ)

Row
address

Column address

Row address
latch and

binary-to-unary
decoder

Line prechargers, sense amplifiers
and write back logic.

WL0

WL1

WL(R-1)

Qout

Bit lines
Word line

Din
Write enable

Column
address
strobe

Row address strobe
~RAS

~CAS

A0-9

~WE

Figure 2.22 Left: pinout for a typical asynchronous DRAM, such as theMT4C1024 pictured above, that is controlled by the RAS and CAS signals instead of a
having a clock input. Right: basic internal structure schematic. This device only has a single bank so there are no bank address inputs

55

Modern SoCDesign

junction area or it may be a stacked arrangement with interleaved conducting fingers. The capacitor
can be in either a charged or discharged state, which denotes a logical 1 or 0, respectively.

DRAM is slower but muchmore compact than a six-transistor SRAM cell. DRAM is principally used as
the primary storage (mainmemory) of SoC systems. Manufacturing capacitive structures in silicon
that are compact yet highly capacitive is difficult and needs a specialised process. However, this
process is not good for most other forms of logic and this is one reasonwhyDRAM is normally on a
separate piece of silicon, die-stacked or nearby on the printed-circuit board (PCB). Another reason is
the area versus yield trade-off (Section 8.11.1). Moreover, DRAM is a commodity device rather than
application-specific (Figure 8.31).

DRAM: Activate, Read andWrite
TheDRAM read cycle is based on the row-activate operation, which is the lowest-level DRAM
operation, with all other significant operations being built on top. In a row-activate operation, the row
address is decoded from binary to unary and the correspondingword line then becomes asserted. The
bit lines must first have been precharged, usually to VDD, and then allowed to float. The bit-line
capacitance will generally be larger than that of a bit cell capacitor, but as the word line is asserted,
the bit line shares charge with the cell capacitor and the bit line will change in voltage by a sufficient
amount to be reliably detected. If a row has its row line asserted, the row is said to be open and that
row is called the open page.

Unlike SRAM, a row-activate operation is destructive: the charge redistribution causes a large change
in the original value of the charge stored on the capacitor so that a follow-on readwill fail. Hence, any
readmust be followed by awriteback when the row is closed (deactivated). To perform thewriteback,
the bit line is driven to the value of the data to bewritten. This value is then transferred onto the
capacitor of the cell through the access transistor before the word line is de-asserted.

As with SRAM, the values detected on bit lines of interest are selected by the remaining address bits
(called the column address) and read out from the chip. It is common for external logic to successively
supply multiple column addresses from the active row. The system-level hardware and software are
optimised tomake use of the random access available within a row once it is activated.

A refresh operation is a row activation without any column address being supplied. The row closure
writes the data back, ameliorating the effect of leakage. Every rowmust have been activated and
closed, within a prescribed period of a fewmilliseconds. A counter is provided on the DRAM chip that
selects which rowwill next be refreshed. If there are 1024 rows in the bit cell array, then a refresh
operation is needed every fewmicroseconds on average. This presents a low overhead considering
that hundreds of activations per microsecond are typically supported (see the timing figures in the
next section). Often the refresh can be entirely hiddenwith a line in one bit-cell array being refreshed
while another bit-cell array is being used for a read or write.

A DRAMwrite operation is a further variation of the row-activate operation. The values written back
are different from those read out in the places where write operations have been performed.

56

Chapter 2 | Processors, Memory and IP Blocks

DRAM: Banks, Ranks and Channels
Table 2.2 shows the data organisation in a typical DRAM channel that uses four dual in-linememory
modules (DIMMs) eachwith 16DRAM chips. The chips are shown in Figure 2.24. The address is
provided via 3 bank bits and 14 address bits. Only 12 of those are usedwhen the row address is being
provided. (Note, for clarity, Figure 2.24 shows only two bank bits.) ADRAMchannel is the set of nets
between aDRAMcontroller. It raises a structural hazard (Section 6.3) in terms of simultaneous access
to each rank. A rank is a set of DRAM chips with their data, address and enable signals in common.
This is also true for a DIMM, but a rank enables a physical DIMM to host some number (two or four) of
logical DIMMs on the same PCB.

Table 2.2 DRAM address terminology and hierarchy with typical sizes

Quantity Aggregate capacity Description
1 channel 16GB A physical bus: 64 data bits, 3 bank bits and 14 address bits
4 DIMMs 16GB Multiple DIMMs are connected on the PCB to one channel
1 rank 4GB A number of logical DIMMswithin a physical DIMM
16 chips 16× 0.5 = 4GB This DIMMuses 16 4-bit chips making a 64-bit word
Lanes/chip 4 bit lanes = 1GB Each chip serves a word 4 bits wide
8 banks 214+12+8 = 0.5Gbit Each bank has its own bit-cell arrays (simultaneously open)
212 rows 64Mbit A page or row is one row of bit cells in an array
(Burst) 8 words = 64bytes The unit of transfer over the channel
214 columns 16 kbit The data read/write line to a bit cell

Figure 2.23 4-Gbyte DRAM dual in-line memory module (DIMM) for a laptop computer. Eight chips are mounted on a small PCB, four on each side. A label
on the back says ‘1600 11-11-11’. More detailed information, including the supply voltage, is stored electronically in a small serial presence detect (SPD)
ROM in the centre of the DIMM

Amodern DRAM chip contains multiple bit-cell arrays, not only to providemulti-bit words and
guarantee noisemargins, but also to offerDRAMbanks. Banks are very useful. If pages are in
different banks, a DRAM chip can havemultiple pages open at once. To ensure performance, a good
closure policy must be implemented in the DRAM controller. It can be premature to close a page
immediately after a read or write operation because the next read or write may be to the same page
and the pagewill have to be reopened. However, if the next operation for a bank is on a different page,
leaving the bank open on the last page will delay access since the open pagewill have to be closed
before the required page can be opened. Moreover, a writeback needs to bemade and the bit lines
need to be precharged between any close and the next open on a bank. Getting the controller to delay

57

Modern SoCDesign

junction area or it may be a stacked arrangement with interleaved conducting fingers. The capacitor
can be in either a charged or discharged state, which denotes a logical 1 or 0, respectively.

DRAM is slower but muchmore compact than a six-transistor SRAM cell. DRAM is principally used as
the primary storage (mainmemory) of SoC systems. Manufacturing capacitive structures in silicon
that are compact yet highly capacitive is difficult and needs a specialised process. However, this
process is not good for most other forms of logic and this is one reasonwhyDRAM is normally on a
separate piece of silicon, die-stacked or nearby on the printed-circuit board (PCB). Another reason is
the area versus yield trade-off (Section 8.11.1). Moreover, DRAM is a commodity device rather than
application-specific (Figure 8.31).

DRAM: Activate, Read andWrite
TheDRAM read cycle is based on the row-activate operation, which is the lowest-level DRAM
operation, with all other significant operations being built on top. In a row-activate operation, the row
address is decoded from binary to unary and the correspondingword line then becomes asserted. The
bit lines must first have been precharged, usually to VDD, and then allowed to float. The bit-line
capacitance will generally be larger than that of a bit cell capacitor, but as the word line is asserted,
the bit line shares charge with the cell capacitor and the bit line will change in voltage by a sufficient
amount to be reliably detected. If a row has its row line asserted, the row is said to be open and that
row is called the open page.

Unlike SRAM, a row-activate operation is destructive: the charge redistribution causes a large change
in the original value of the charge stored on the capacitor so that a follow-on readwill fail. Hence, any
readmust be followed by awriteback when the row is closed (deactivated). To perform thewriteback,
the bit line is driven to the value of the data to bewritten. This value is then transferred onto the
capacitor of the cell through the access transistor before the word line is de-asserted.

As with SRAM, the values detected on bit lines of interest are selected by the remaining address bits
(called the column address) and read out from the chip. It is common for external logic to successively
supply multiple column addresses from the active row. The system-level hardware and software are
optimised tomake use of the random access available within a row once it is activated.

A refresh operation is a row activation without any column address being supplied. The row closure
writes the data back, ameliorating the effect of leakage. Every rowmust have been activated and
closed, within a prescribed period of a fewmilliseconds. A counter is provided on the DRAM chip that
selects which rowwill next be refreshed. If there are 1024 rows in the bit cell array, then a refresh
operation is needed every fewmicroseconds on average. This presents a low overhead considering
that hundreds of activations per microsecond are typically supported (see the timing figures in the
next section). Often the refresh can be entirely hiddenwith a line in one bit-cell array being refreshed
while another bit-cell array is being used for a read or write.

A DRAMwrite operation is a further variation of the row-activate operation. The values written back
are different from those read out in the places where write operations have been performed.

56

Chapter 2 | Processors, Memory and IP Blocks

DRAM: Banks, Ranks and Channels
Table 2.2 shows the data organisation in a typical DRAM channel that uses four dual in-linememory
modules (DIMMs) eachwith 16DRAM chips. The chips are shown in Figure 2.24. The address is
provided via 3 bank bits and 14 address bits. Only 12 of those are usedwhen the row address is being
provided. (Note, for clarity, Figure 2.24 shows only two bank bits.) ADRAMchannel is the set of nets
between aDRAMcontroller. It raises a structural hazard (Section 6.3) in terms of simultaneous access
to each rank. A rank is a set of DRAM chips with their data, address and enable signals in common.
This is also true for a DIMM, but a rank enables a physical DIMM to host some number (two or four) of
logical DIMMs on the same PCB.

Table 2.2 DRAM address terminology and hierarchy with typical sizes

Quantity Aggregate capacity Description
1 channel 16GB A physical bus: 64 data bits, 3 bank bits and 14 address bits
4 DIMMs 16GB Multiple DIMMs are connected on the PCB to one channel
1 rank 4GB A number of logical DIMMswithin a physical DIMM
16 chips 16 × 0.5 = 4GB This DIMMuses 16 4-bit chips making a 64-bit word
Lanes/chip 4 bit lanes = 1GB Each chip serves a word 4 bits wide
8 banks 214+12+8 = 0.5Gbit Each bank has its own bit-cell arrays (simultaneously open)
212 rows 64Mbit A page or row is one row of bit cells in an array
(Burst) 8 words = 64bytes The unit of transfer over the channel
214 columns 16 kbit The data read/write line to a bit cell

Figure 2.23 4-Gbyte DRAM dual in-line memory module (DIMM) for a laptop computer. Eight chips are mounted on a small PCB, four on each side. A label
on the back says ‘1600 11-11-11’. More detailed information, including the supply voltage, is stored electronically in a small serial presence detect (SPD)
ROM in the centre of the DIMM

Amodern DRAM chip contains multiple bit-cell arrays, not only to providemulti-bit words and
guarantee noisemargins, but also to offerDRAMbanks. Banks are very useful. If pages are in
different banks, a DRAM chip can havemultiple pages open at once. To ensure performance, a good
closure policy must be implemented in the DRAM controller. It can be premature to close a page
immediately after a read or write operation because the next read or write may be to the same page
and the pagewill have to be reopened. However, if the next operation for a bank is on a different page,
leaving the bank open on the last page will delay access since the open pagewill have to be closed
before the required page can be opened. Moreover, a writeback needs to bemade and the bit lines
need to be precharged between any close and the next open on a bank. Getting the controller to delay

57

Modern SoCDesign

a write does not affect system performance and can even increase it due to write coalescing.
However, the customer of a delayed readwill be held up by the increased access time latency. Hence,
althoughDRAM is called random access memory, it has very non-uniform access times depending on
what state a requested page is in.

Bi-directional
data, double-rate

data bus.

DQ0-3

Lane
qualifier

4 bit
planesMultiplexed

address

Configuration
registers

Termination
control

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

(16386x4096x4)

Column
data steering.

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

Column
data steering.

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

Column
data steering.

Burst
deserialiser

Delay
build-out

Delay
build-out

Burst
serialser

Input pads

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

Column
data steering.

Column
register (col)

BK0-1

MA0-13
14

2

Bank select

Refresh
counter

Refresh
counter

Refresh
counter

Refresh
counter

Bank0 Bank1

Bank2 Bank3

RAS-

CAS-

WE-

CS-

32

32

Clock

Bank
decoder

2 to 4
3 to 8

etc

To data serialisers

WQ

14

14 14
col

14
col

14
col

One page
(one row)

16386 bits
per plane.

16386

4096

DJG

Figure 2.24 Internal block diagram of a 4-bit-wide DRAM device. There are four banks, although eight are normal. (The data strobe (DS) signal is omitted for
clarity)

DRAMs for use in PCs aremounted on single-in-linememorymodules (SIMMs) or DIMMs. However,
for embedded applications, they are typically just soldered onto themain PCB. Normally, one DRAM
chip (or pair of chips tomakeD=32) is shared overmany subsystems in, say, a mobile phone. SoC
DRAM compatibility might be a generation behind workstation DRAM. For example, a SoCmay use
DDR3 instead of DDR4. Also, themost recent SoCs embed someDRAMon themain die or
flip-chip/die-stack the DRAMdirectly on top of the SoC die in the same package as amulti-chip
module (MCM) (Section 8.9.1). Table 2.3 gives the pin connections for a typical DIMM.

DRAMPerformance
The design and provisioning of a DRAM subsystem is one of themost critical aspects of a SoC.More
than oneDRAM channel is used in high-performance desktopworkstations and supercomputers, but

58

Chapter 2 | Processors, Memory and IP Blocks

Table 2.3 Typical DIMM connections

Clock± Clock (400MHz)
RAS- Row address strobe
CAS- Column address strobe
WE- Write enable
DQ[63:0] Data in/out
Reset Power-on reset
WQ[7:0] Write-lane qualifiers

DS[7:0] Data strobes
DM[7:0] Datamasks
CS- Chip select
MAddr[15:0] Address input
BK[2:0] Bank select
spd[3:0] Serial presence detect

for everyday laptops, cellphones and embedded systems, a single DRAMchannel is used. Also, a single
rank is used, whether in DIMM form or on the PCB orMCM. Themid-range laptop DRAM in
Figure 2.23was specified as 1600 11-11-11. This denotes the effective clock frequency inMHz and
the number of clock cycles for row addressing, column addressing and precharge. This is a double
data rate (DDR) DRAM so the physical clock net runs at half the quoted clock frequency and is,
therefore, 800MHz, since both clock edges are used to transfer data.

Themaximum throughput of a DRAM is often quoted inMT/s or million transfers per second. For a
low-performancememory system, the data bus width and clock frequency are themain performance
parameters. The bottom end is 16 bits at around 200MHz. Using both edges of the clock, we can
achieve 400MT/s but due to the narrow bus, this is only 0.8 gigabytes per second (GB/s). This is
suitable for an inexpensive smartphone. For high-performancememory systems, a 2.166-GHz clock
might be used, giving 4.3GT/s on a 64-bit bus, making 34GB/s. This is suitable for a server cloud
blade. For further performance, several such channels are connected to one CMP (Section 2.3).

Themaximum transfer rate of a data bus cannot be sustained except when reading all the data from a
row before activating the next row. The provision of the column address within the row is overlapped
with the actual data access, but if there are 11 clock cycles for the column address operation, the data
burst size needs to be sufficiently large to exploit the overlap. Reading an entire row is infrequent,
since a row stores more than a cache line. Themaximum throughput is degraded by the need to close
rows and open other rows.

With higher clock rates, the row and column clock counts also tend to increase, so become
comparatively longer while staying similar in real terms. A high-performance DRAMmay be specified
as 19-21-21. In the worst case, if this DRAM is currently open on the wrong row, 61 clock cycles are
then needed to change to the new location. Roughly the same number of clock cycles again will be
used in pipeline stages through the variousmemory hierarchy levels of the controller.

There is a further description of DRAM configuration and controllers in Section 4.5.0.

2.6.7 Electrically Alterable ROMs
An electrically alterable ROM (EA-ROM) is non-volatile, but its contents can be changed by applying
electric fields or currents. One of the earliest forms usedmetallic fusible links that can bemeltedwith
a heavy current. These still have limited use during post-fabrication testing for speed binning

59

Modern SoCDesign

a write does not affect system performance and can even increase it due to write coalescing.
However, the customer of a delayed readwill be held up by the increased access time latency. Hence,
althoughDRAM is called random access memory, it has very non-uniform access times depending on
what state a requested page is in.

Bi-directional
data, double-rate

data bus.

DQ0-3

Lane
qualifier

4 bit
planesMultiplexed

address

Configuration
registers

Termination
control

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

(16386x4096x4)

Column
data steering.

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

Column
data steering.

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

Column
data steering.

Burst
deserialiser

Delay
build-out

Delay
build-out

Burst
serialser

Input pads

Sense amplifiers.
Line drivers.

Row
register

and
unary

decoder

Bit-cell
array

Column
data steering.

Column
register (col)

BK0-1

MA0-13
14

2

Bank select

Refresh
counter

Refresh
counter

Refresh
counter

Refresh
counter

Bank0 Bank1

Bank2 Bank3

RAS-

CAS-

WE-

CS-

32

32

Clock

Bank
decoder

2 to 4
3 to 8

etc

To data serialisers

WQ

14

14 14
col

14
col

14
col

One page
(one row)

16386 bits
per plane.

16386

4096

DJG

Figure 2.24 Internal block diagram of a 4-bit-wide DRAM device. There are four banks, although eight are normal. (The data strobe (DS) signal is omitted for
clarity)

DRAMs for use in PCs aremounted on single-in-linememorymodules (SIMMs) or DIMMs. However,
for embedded applications, they are typically just soldered onto themain PCB. Normally, one DRAM
chip (or pair of chips tomakeD=32) is shared overmany subsystems in, say, a mobile phone. SoC
DRAM compatibility might be a generation behind workstation DRAM. For example, a SoCmay use
DDR3 instead of DDR4. Also, themost recent SoCs embed someDRAMon themain die or
flip-chip/die-stack the DRAMdirectly on top of the SoC die in the same package as amulti-chip
module (MCM) (Section 8.9.1). Table 2.3 gives the pin connections for a typical DIMM.

DRAMPerformance
The design and provisioning of a DRAM subsystem is one of themost critical aspects of a SoC.More
than oneDRAM channel is used in high-performance desktopworkstations and supercomputers, but

58

Chapter 2 | Processors, Memory and IP Blocks

Table 2.3 Typical DIMM connections

Clock± Clock (400MHz)
RAS- Row address strobe
CAS- Column address strobe
WE- Write enable
DQ[63:0] Data in/out
Reset Power-on reset
WQ[7:0] Write-lane qualifiers

DS[7:0] Data strobes
DM[7:0] Datamasks
CS- Chip select
MAddr[15:0] Address input
BK[2:0] Bank select
spd[3:0] Serial presence detect

for everyday laptops, cellphones and embedded systems, a single DRAMchannel is used. Also, a single
rank is used, whether in DIMM form or on the PCB orMCM. Themid-range laptop DRAM in
Figure 2.23was specified as 1600 11-11-11. This denotes the effective clock frequency inMHz and
the number of clock cycles for row addressing, column addressing and precharge. This is a double
data rate (DDR) DRAM so the physical clock net runs at half the quoted clock frequency and is,
therefore, 800MHz, since both clock edges are used to transfer data.

Themaximum throughput of a DRAM is often quoted inMT/s or million transfers per second. For a
low-performancememory system, the data bus width and clock frequency are themain performance
parameters. The bottom end is 16 bits at around 200MHz. Using both edges of the clock, we can
achieve 400MT/s but due to the narrow bus, this is only 0.8 gigabytes per second (GB/s). This is
suitable for an inexpensive smartphone. For high-performancememory systems, a 2.166-GHz clock
might be used, giving 4.3GT/s on a 64-bit bus, making 34GB/s. This is suitable for a server cloud
blade. For further performance, several such channels are connected to one CMP (Section 2.3).

Themaximum transfer rate of a data bus cannot be sustained except when reading all the data from a
row before activating the next row. The provision of the column address within the row is overlapped
with the actual data access, but if there are 11 clock cycles for the column address operation, the data
burst size needs to be sufficiently large to exploit the overlap. Reading an entire row is infrequent,
since a row stores more than a cache line. Themaximum throughput is degraded by the need to close
rows and open other rows.

With higher clock rates, the row and column clock counts also tend to increase, so become
comparatively longer while staying similar in real terms. A high-performance DRAMmay be specified
as 19-21-21. In the worst case, if this DRAM is currently open on the wrong row, 61 clock cycles are
then needed to change to the new location. Roughly the same number of clock cycles again will be
used in pipeline stages through the variousmemory hierarchy levels of the controller.

There is a further description of DRAM configuration and controllers in Section 4.5.0.

2.6.7 Electrically Alterable ROMs
An electrically alterable ROM (EA-ROM) is non-volatile, but its contents can be changed by applying
electric fields or currents. One of the earliest forms usedmetallic fusible links that can bemeltedwith
a heavy current. These still have limited use during post-fabrication testing for speed binning

59

Modern SoCDesign

(Section 8.8.4) and redundancy zapping (Section 8.8.4). Most forms today use charge stored on a
floating gate.

High address bits

Low address bits

Word line
binary-to-unary

decoder

Output multiplexor (mux)

WL0

WL1

WL(R-1)

BL0 BL1 BL(C-1)

2log (C)

(R)2log

BL2

VDD

Dout

~WL0

~WL1

BL
(to mux)

~WL(R-1)

VDD

Weak pullup
or precharge

Floating-gate
transistor

Figure 2.25 NOR ROMblock diagram (left) with capacity 2(R+C) bits and alternative NAND ROM array detail (right). For a ROMmore than 1 bit wide, the
Dout connection is a bus of widthM and the low address bus width is reduced by log2(M) bits

Figure 2.25 shows the two basic configurations of ROMarrays. Only the transistors in one polarity of
the bit cell programming are present. Both forms use aweakNMOS pull-up on the bit lines, which acts
like a resistor, but a dynamic precharge to VDD can also serve and trade off static and dynamic power
(Section 4.6.1).

A NORROM resembles a NOR logic gate since the NMOS transistors are connected in parallel to the
output bit line. A logic zero is produced if a word line is asserted (taken high) and a transistor is
actively preset to pull down the bit line. The absence of a transistor means the bit line will remain
undisturbed at 1.

NANDROMoperation uses negatedword lines, which are normally high. The row binary-to-unary
decodermakes one of them low. Since, initially all word lines are high, the default output value of bit
lines is 0. The presence of an active NMOS transistor in the bit cell turns off the NMOS stack, enabling
the bit line to go high. If there is no cell transistor, the top and bottom of the cell are effectively joined
by a wire, although this is a permanently on transistor in a NANDEA-ROM.

NORROMs are fast, as the pull-down stack has only a single NMOS compared to the series of NMOS
devices in a NANDROM.On the other hand, a NAND cell is more compact as it does not require a
groundwire or the associated contacts for connecting to the bit line and ground. Thewhole stack of
transistor channels can bemade as a single, contiguous channel polygon in the fabricationmasks.

60

Chapter 2 | Processors, Memory and IP Blocks

2.6.8 Floating-gate EA-ROMs and Flash
Most EA-ROM technology uses a floating-gate transistor, which is like a regularMOS transistor
except that it has an extra layer in its gate structure. Instead of one polysilicon gate, it has two
polysilicon gates, one on top of the other. This is shown as part of Figure 2.27. The upper gate
connects to the word line or ground, while the lower is completely floating, since it is surrounded by
gate oxide on all sides. In electronics, a floating conductor is disconnected from anything that alters
its electrical potential. The key idea is that the threshold of a floating-gate transistor is altered by the
static charge stored on the floating gate. By adjusting this charge, the transistor can be changed from
being always on, always off or behaving normally. Moreover, by applying a high voltage at the
connected gate, charge is moved onto the floating gate through hot carrier injection (Section 8.12.15)
or electron tunnelling. The trapped charge on the floating gate can be retained for decades, thereby
making the bit cells non-volatile.

Two directions of chargemovement are needed to change the value stored in a floating-gate
transistor, depending on its current state. Different mechanisms are used for the two directions of
transfer, with one direction generally taking orders of magnitude longer than the other. The fast
direction is commonly not any slower than a read operation.

The first generation of floating-gate devices were for erasable programmable read-onlymemory
(EPROM). The erase procedure for these devices required them to be placed inside a sealed boxwith
a high-intensity ultraviolet light source. As shown in Figure 2.26, the chip package had a glass window
in the top to let the light in. Such a packagewas expensive. For production runswhere reprogramming
was never expected, the same chip was also available in opaque plastic packages. The first EPROM
chips used by the author required three supply rails for normal operation (+5,−5 and+12V) and a
fourth supply (+27V) during programming. Today’s devices generate all the required voltages on-chip
from a single external supply of 3.3V.

Figure 2.26 EPROM device from the 1980s. The silicon die is visible through the top window

In contrast to the single-transistor bit cell shown in Figure 2.25, Figure 2.27 shows a two-transistor bit
cell. The design is tolerant to largemargins in the lower transistor since it just has to be always on or
always off. Single-transistor designs are widely used; the word line is connected to the floating-gate
transistor’s non-floating gate. A one-transistor cell requires more careful erasing since the floating
chargemust be brought back into the rangewhere the transistor operates normally. NOR andNAND
structures, as illustrated for the EA-ROM in Figure 2.25, are commonly usedwith floating-gate ROMs.

61

Modern SoCDesign

(Section 8.8.4) and redundancy zapping (Section 8.8.4). Most forms today use charge stored on a
floating gate.

High address bits

Low address bits

Word line
binary-to-unary

decoder

Output multiplexor (mux)

WL0

WL1

WL(R-1)

BL0 BL1 BL(C-1)

2log (C)

(R)2log

BL2

VDD

Dout

~WL0

~WL1

BL
(to mux)

~WL(R-1)

VDD

Weak pullup
or precharge

Floating-gate
transistor

Figure 2.25 NOR ROMblock diagram (left) with capacity 2(R+C) bits and alternative NAND ROM array detail (right). For a ROMmore than 1 bit wide, the
Dout connection is a bus of widthM and the low address bus width is reduced by log2(M) bits

Figure 2.25 shows the two basic configurations of ROMarrays. Only the transistors in one polarity of
the bit cell programming are present. Both forms use aweakNMOS pull-up on the bit lines, which acts
like a resistor, but a dynamic precharge to VDD can also serve and trade off static and dynamic power
(Section 4.6.1).

A NORROM resembles a NOR logic gate since the NMOS transistors are connected in parallel to the
output bit line. A logic zero is produced if a word line is asserted (taken high) and a transistor is
actively preset to pull down the bit line. The absence of a transistor means the bit line will remain
undisturbed at 1.

NANDROMoperation uses negatedword lines, which are normally high. The row binary-to-unary
decodermakes one of them low. Since, initially all word lines are high, the default output value of bit
lines is 0. The presence of an active NMOS transistor in the bit cell turns off the NMOS stack, enabling
the bit line to go high. If there is no cell transistor, the top and bottom of the cell are effectively joined
by a wire, although this is a permanently on transistor in a NANDEA-ROM.

NORROMs are fast, as the pull-down stack has only a single NMOS compared to the series of NMOS
devices in a NANDROM.On the other hand, a NAND cell is more compact as it does not require a
groundwire or the associated contacts for connecting to the bit line and ground. Thewhole stack of
transistor channels can bemade as a single, contiguous channel polygon in the fabricationmasks.

60

Chapter 2 | Processors, Memory and IP Blocks

2.6.8 Floating-gate EA-ROMs and Flash
Most EA-ROM technology uses a floating-gate transistor, which is like a regularMOS transistor
except that it has an extra layer in its gate structure. Instead of one polysilicon gate, it has two
polysilicon gates, one on top of the other. This is shown as part of Figure 2.27. The upper gate
connects to the word line or ground, while the lower is completely floating, since it is surrounded by
gate oxide on all sides. In electronics, a floating conductor is disconnected from anything that alters
its electrical potential. The key idea is that the threshold of a floating-gate transistor is altered by the
static charge stored on the floating gate. By adjusting this charge, the transistor can be changed from
being always on, always off or behaving normally. Moreover, by applying a high voltage at the
connected gate, charge is moved onto the floating gate through hot carrier injection (Section 8.12.15)
or electron tunnelling. The trapped charge on the floating gate can be retained for decades, thereby
making the bit cells non-volatile.

Two directions of chargemovement are needed to change the value stored in a floating-gate
transistor, depending on its current state. Different mechanisms are used for the two directions of
transfer, with one direction generally taking orders of magnitude longer than the other. The fast
direction is commonly not any slower than a read operation.

The first generation of floating-gate devices were for erasable programmable read-onlymemory
(EPROM). The erase procedure for these devices required them to be placed inside a sealed boxwith
a high-intensity ultraviolet light source. As shown in Figure 2.26, the chip package had a glass window
in the top to let the light in. Such a packagewas expensive. For production runswhere reprogramming
was never expected, the same chip was also available in opaque plastic packages. The first EPROM
chips used by the author required three supply rails for normal operation (+5,−5 and+12V) and a
fourth supply (+27V) during programming. Today’s devices generate all the required voltages on-chip
from a single external supply of 3.3V.

Figure 2.26 EPROM device from the 1980s. The silicon die is visible through the top window

In contrast to the single-transistor bit cell shown in Figure 2.25, Figure 2.27 shows a two-transistor bit
cell. The design is tolerant to largemargins in the lower transistor since it just has to be always on or
always off. Single-transistor designs are widely used; the word line is connected to the floating-gate
transistor’s non-floating gate. A one-transistor cell requires more careful erasing since the floating
chargemust be brought back into the rangewhere the transistor operates normally. NOR andNAND
structures, as illustrated for the EA-ROM in Figure 2.25, are commonly usedwith floating-gate ROMs.

61

Modern SoCDesign

Figure 2.27 Schematic of a possible bit cell for EPROM and EEPROM. There is a kink on the top of the extra gate of this floating-gate transistor to denote
that tunnelling is possible

Amajor step forward was electrically erasable programmable read-onlymemory (EEPROM). In such
devices, bits can be programmed in not just one, but both directions, by electron tunnelling and/or
carrier injection. The predominant EA-ROMused today is flashmemory. Programming is performed
on a per-bit basis and is fast, but erasing is done on a large block basis, with the silicon die typically
having eight erase regions. Erasing a region takesmilliseconds. These devices use internal timers and
measurementmechanisms to apply just the right amount of reverse charge. Erasing does not
eliminate all the stored charge, so eventually suchmemory will fail. It is guaranteed for some finite
number of erase cycles per block, such as onemillion.

Solid-state drives (SSD)swith EEPROMare replacing spinningmagnetic disks. Flash USBmemory
sticks use the same technology. Although these devices give the impression that writing either
polarity of data is equally easy, internally they include additional, unadvertised storage, some of which
is kept erased and dynamically mapped into thememorymap as appropriate. They alsomaintain
counters forwear levelling to ensure that, whatever the application’s use patterns, there is a balanced
pattern of erase operations over the physical erase regions.

2.6.9 EmergingMemory Technologies
Today’s memory technologies are having trouble keeping upwith ever-increasing demands on density,
access time and energy use. Although performance continues to rise by using ever smaller
geometries, noise margins are being eroded. SRAM faces challenges from increased process variation
and the degradation of noisemargins. Shrinking a DRAM capacitor means that the stored charge is
more susceptible to noise and disturbance from nearby rows and columns. A lower capacitor charge
alsomeans less charge is shared and the voltage swing is reduced, which is a problem for reliable
sensing. Also, the contact resistance between the cell capacitor and the access transistor is higher.
The resistivity of a smaller cell transistor impacts DRAM speed. Moreover, flash is reaching the
fundamental limits for device size. Thus, accidentally losing even a few electrons from a floating gate
can result in data retention issues. Besides, write endurance has becomeworse as the electric field
stress during programming is higher for smaller geometries.

62

Chapter 2 | Processors, Memory and IP Blocks

The secondmajor problem is standby power. An SRAM cell is a four-transistor bistable that consumes
static leakage power. These cells must always be powered on to retain their state, even if they are idle.
Onemitigation is to drop the supply voltage if the bit array has not been accessed recently. This
retains data but the cell is no longer powerful enough to be read reliably. If the cell transistor in
DRAM ismade smaller, its leakage grows. Combinedwith the smaller cell capacitance due to
shrinking, the reliable retention time is reduced. As a result, refreshesmust be performedmore
frequently and energy use due to refreshing contributes more to the system power budget.

There is commercial interest in newmemory technologies that sit betweenDRAMand SRAM in terms
of density and access time. Three-dimensional, non-volatile memory is one possibility. Intel and
Micron released one form of this, brandedOptane. It usesmemristive technology, in which arrays of
resistors made from special compounds aremeasuredwith a small electrical current andmodified
with a higher current. Suchmemories are non-volatile and have zero standby power. The number of
write cycles and the speed of writing are both significantly improvedwith respect to floating-gate
EA-ROM.Motherboards with slots for suchmemories became available, but many of the products
were cancelled in early 2021 [7]. Moreover, the long-established distinction between primary and
secondary storage is being challenged by such technologies, so fully exploiting themwill be highly
disruptive.

2.6.10 Processor Speed versusMemory Speed
The speed of processors has doubled every two years, whether by increasing the clock frequency or
by using amulti-core design. Memory density has likewise roughly doubled every two years. Both
trends have lead to increasingly powerful and affordable computers. However, thememory access
latency decreases at only half this rate.

This ever-expanding gap betweenmainmemory and CPU performance is known as thememorywall,
as it is a barrier to further progress. Figure 2.28 illustrates thememorywall issue. It plots the increase
in single-threaded performance as cache sizes are increased above a baseline value. Each data point
represents the average performance of SPEC-Integer-2006, a well established benchmarking suite
[8]. Increasing the number of cores does not benefit workloads with few options for parallelism
(Section 4.2), so increasing the size and complexity of caches are themain solutions. This essentially
brings the computation closer to the data that are being operated on, which is a basic form of
near-data processing [9].

Babbage’s twomain computer architectures differed in that the ALU associated with each storage
location in his Difference Engine was replacedwith a centralised resource in his Analytical Engine.
Themotivation was cost. Today, it would be inexpensive to distribute tens of thousands of ALUs
throughout amemory device, so a return towards Babbage’s original design is potentially feasible.
However, this results in a radically new computing architecture. DRAM and high-performance logic
would have to bemixed by the same silicon process, which raises new fabrication challenges
(Section 6.1). It is possible such approaches will gain commercial traction within a decade, but such
ideas are currently just academic.

63

Modern SoCDesign

Figure 2.27 Schematic of a possible bit cell for EPROM and EEPROM. There is a kink on the top of the extra gate of this floating-gate transistor to denote
that tunnelling is possible

Amajor step forward was electrically erasable programmable read-onlymemory (EEPROM). In such
devices, bits can be programmed in not just one, but both directions, by electron tunnelling and/or
carrier injection. The predominant EA-ROMused today is flashmemory. Programming is performed
on a per-bit basis and is fast, but erasing is done on a large block basis, with the silicon die typically
having eight erase regions. Erasing a region takesmilliseconds. These devices use internal timers and
measurementmechanisms to apply just the right amount of reverse charge. Erasing does not
eliminate all the stored charge, so eventually suchmemory will fail. It is guaranteed for some finite
number of erase cycles per block, such as onemillion.

Solid-state drives (SSD)swith EEPROMare replacing spinningmagnetic disks. Flash USBmemory
sticks use the same technology. Although these devices give the impression that writing either
polarity of data is equally easy, internally they include additional, unadvertised storage, some of which
is kept erased and dynamically mapped into thememorymap as appropriate. They alsomaintain
counters forwear levelling to ensure that, whatever the application’s use patterns, there is a balanced
pattern of erase operations over the physical erase regions.

2.6.9 EmergingMemory Technologies
Today’s memory technologies are having trouble keeping upwith ever-increasing demands on density,
access time and energy use. Although performance continues to rise by using ever smaller
geometries, noise margins are being eroded. SRAM faces challenges from increased process variation
and the degradation of noisemargins. Shrinking a DRAM capacitor means that the stored charge is
more susceptible to noise and disturbance from nearby rows and columns. A lower capacitor charge
alsomeans less charge is shared and the voltage swing is reduced, which is a problem for reliable
sensing. Also, the contact resistance between the cell capacitor and the access transistor is higher.
The resistivity of a smaller cell transistor impacts DRAM speed. Moreover, flash is reaching the
fundamental limits for device size. Thus, accidentally losing even a few electrons from a floating gate
can result in data retention issues. Besides, write endurance has becomeworse as the electric field
stress during programming is higher for smaller geometries.

62

Chapter 2 | Processors, Memory and IP Blocks

The secondmajor problem is standby power. An SRAM cell is a four-transistor bistable that consumes
static leakage power. These cells must always be powered on to retain their state, even if they are idle.
Onemitigation is to drop the supply voltage if the bit array has not been accessed recently. This
retains data but the cell is no longer powerful enough to be read reliably. If the cell transistor in
DRAM ismade smaller, its leakage grows. Combinedwith the smaller cell capacitance due to
shrinking, the reliable retention time is reduced. As a result, refreshesmust be performedmore
frequently and energy use due to refreshing contributes more to the system power budget.

There is commercial interest in newmemory technologies that sit betweenDRAMand SRAM in terms
of density and access time. Three-dimensional, non-volatile memory is one possibility. Intel and
Micron released one form of this, brandedOptane. It usesmemristive technology, in which arrays of
resistors made from special compounds aremeasuredwith a small electrical current andmodified
with a higher current. Suchmemories are non-volatile and have zero standby power. The number of
write cycles and the speed of writing are both significantly improvedwith respect to floating-gate
EA-ROM.Motherboards with slots for suchmemories became available, but many of the products
were cancelled in early 2021 [7]. Moreover, the long-established distinction between primary and
secondary storage is being challenged by such technologies, so fully exploiting themwill be highly
disruptive.

2.6.10 Processor Speed versusMemory Speed
The speed of processors has doubled every two years, whether by increasing the clock frequency or
by using amulti-core design. Memory density has likewise roughly doubled every two years. Both
trends have lead to increasingly powerful and affordable computers. However, thememory access
latency decreases at only half this rate.

This ever-expanding gap betweenmainmemory and CPU performance is known as thememorywall,
as it is a barrier to further progress. Figure 2.28 illustrates thememorywall issue. It plots the increase
in single-threaded performance as cache sizes are increased above a baseline value. Each data point
represents the average performance of SPEC-Integer-2006, a well established benchmarking suite
[8]. Increasing the number of cores does not benefit workloads with few options for parallelism
(Section 4.2), so increasing the size and complexity of caches are themain solutions. This essentially
brings the computation closer to the data that are being operated on, which is a basic form of
near-data processing [9].

Babbage’s twomain computer architectures differed in that the ALU associated with each storage
location in his Difference Engine was replacedwith a centralised resource in his Analytical Engine.
Themotivation was cost. Today, it would be inexpensive to distribute tens of thousands of ALUs
throughout amemory device, so a return towards Babbage’s original design is potentially feasible.
However, this results in a radically new computing architecture. DRAM and high-performance logic
would have to bemixed by the same silicon process, which raises new fabrication challenges
(Section 6.1). It is possible such approaches will gain commercial traction within a decade, but such
ideas are currently just academic.

63

Modern SoCDesign

Figure 2.28 Typical increase in benchmark performance in response to L3 cache size enlargement for L2=64KB (blue), L2=128KB (yellow) and L2=256KB
(red)

2.7 SoC I/O Blocks
In this section, we review some common I/O standards and associated IP blocks used for I/O inmany
SoCs. Another term for an I/O device is a peripheral device. I/O is always performed in one of three
ways:

1. Under polled I/O, a processor periodically inspects the status register of an I/O device to see
whether any data have arrived or whether it is ready to send new data. Polling wastes processor
cycles and is normally avoided. It is used only in very simple bootloaders and error handlers when
themain operating system is not running.

2. Under interrupt-driven I/O, a device raises an interrupt request signal when it requires service.
The processor then saves what it was doing and inspects the status registers, as with polling.
However, the periodic overhead is avoided.

3. Under direct memory access (DMA) I/O, the device itself initiates transactions on the bus and can
load and store its data to primary storage. Interrupts are raised only when a newmemory region
needs oto be provided or serviced by the processor. For further details, see Section 2.7.5.

The first two of these are known as programmed I/O (PIO), since the processor moves the data.

A complex SoCmay havemany hundreds of device registers. Processors with a narrow address bus,
such as the A16microprocessors mentioned in Section 1.1.1, generally provide write and read
instructions for transferring data to and from I/O devices. These access a different address space
from primary storage. It is called the I/O space. This avoids using up primary address space with I/O
device registers. A32 processors have such a large primary space (4Gbyte) that the overhead of
hundreds of device registers is insignificant. So, such processors, like the Arm architecture, do not
have I/O instructions. Instead, they access devices withmemory store and load instructions. This is
calledmemory-mapped I/O.

64

Chapter 2 | Processors, Memory and IP Blocks

2.7.1 Universal Asynchronous Receiver-Transmitter (UART)
A universal asynchronous receiver-transmitter (UART) is the IP block associated with the RS-232
serial port. UARTswere widely used in the 20th century for character I/O devices (telepritners,
printers and dumb terminals). They are still commonly used in practical SoC designs since they are
some of themost simple and easy devices to get working. The first test that nearly any newly
developed SoC runs is to print ‘Hello, world’ from its UART. UARTs are also found in virtualised form
entirely inside a SoC. For instance, it might be used instead of a bus connection to a ZigBee IP block.

Figure 2.29 Typical I/O ports. Shown are two serial ports, one parallel port, one Ethernet port, two USB ports and three audio ports

DO D1 D2 D3 D4 D5 D6 D7
LOGIC 1

LOGIC 0

Start
Bit

(zero)

Stop
Bit

(one)

Serial Input

Serial Output

Interrupt

Voltage
convertors 9-pole

D connector

hren

wdata

rdata

hwen

address
UART

Universal
Asynchronous

Receiver
and

Transmitter

Serial port protocol:

Baud
rate

clock

Second
UART

USB
device

interface

USB
connection

to workstation.

Old wiring: RS232/V24

New wiring: serial dongle

Figure 2.30 Two typical configurations for a serial port using a UART. Inset: Serial port timing diagram. The old wiring to a D9 connector for an RS-232 port
is today often replaced with a very short connection to a second UART inside a USB dongle for connecting to a laptop

A serial port uses two independent simplex channels, one for output and one for input, to make a full
duplex channel. A nine-pin D-connector is used for the serial ports in Figure 2.29, but only onewire is
needed in each direction, as shown in Figure 2.30. The two data directions plus a ground pinmean
that only three out of the nine pins are actually used. The additional connections are sometimes used
to indicate device ready status and to implementXon/Xoff flow control (Section 3.4.4). Data are sent
serially at a pre-agreed baud rate. The baud rate is themaximum number of transitions per second on
one of the signals. The effective data rate is less than the baud rate due to the overhead of the start
and stop bits. The baud rate and number of bits per wordmust be pre-agreed at each end, such as
19200bps and 8bits. The device internally contains status and control registers and transmit and

65

Modern SoCDesign

Figure 2.28 Typical increase in benchmark performance in response to L3 cache size enlargement for L2=64KB (blue), L2=128KB (yellow) and L2=256KB
(red)

2.7 SoC I/O Blocks
In this section, we review some common I/O standards and associated IP blocks used for I/O inmany
SoCs. Another term for an I/O device is a peripheral device. I/O is always performed in one of three
ways:

1. Under polled I/O, a processor periodically inspects the status register of an I/O device to see
whether any data have arrived or whether it is ready to send new data. Polling wastes processor
cycles and is normally avoided. It is used only in very simple bootloaders and error handlers when
themain operating system is not running.

2. Under interrupt-driven I/O, a device raises an interrupt request signal when it requires service.
The processor then saves what it was doing and inspects the status registers, as with polling.
However, the periodic overhead is avoided.

3. Under direct memory access (DMA) I/O, the device itself initiates transactions on the bus and can
load and store its data to primary storage. Interrupts are raised only when a newmemory region
needs oto be provided or serviced by the processor. For further details, see Section 2.7.5.

The first two of these are known as programmed I/O (PIO), since the processor moves the data.

A complex SoCmay havemany hundreds of device registers. Processors with a narrow address bus,
such as the A16microprocessors mentioned in Section 1.1.1, generally provide write and read
instructions for transferring data to and from I/O devices. These access a different address space
from primary storage. It is called the I/O space. This avoids using up primary address space with I/O
device registers. A32 processors have such a large primary space (4Gbyte) that the overhead of
hundreds of device registers is insignificant. So, such processors, like the Arm architecture, do not
have I/O instructions. Instead, they access devices withmemory store and load instructions. This is
calledmemory-mapped I/O.

64

Chapter 2 | Processors, Memory and IP Blocks

2.7.1 Universal Asynchronous Receiver-Transmitter (UART)
A universal asynchronous receiver-transmitter (UART) is the IP block associated with the RS-232
serial port. UARTswere widely used in the 20th century for character I/O devices (telepritners,
printers and dumb terminals). They are still commonly used in practical SoC designs since they are
some of themost simple and easy devices to get working. The first test that nearly any newly
developed SoC runs is to print ‘Hello, world’ from its UART. UARTs are also found in virtualised form
entirely inside a SoC. For instance, it might be used instead of a bus connection to a ZigBee IP block.

Figure 2.29 Typical I/O ports. Shown are two serial ports, one parallel port, one Ethernet port, two USB ports and three audio ports

DO D1 D2 D3 D4 D5 D6 D7
LOGIC 1

LOGIC 0

Start
Bit

(zero)

Stop
Bit

(one)

Serial Input

Serial Output

Interrupt

Voltage
convertors 9-pole

D connector

hren

wdata

rdata

hwen

address
UART

Universal
Asynchronous

Receiver
and

Transmitter

Serial port protocol:

Baud
rate
clock

Second
UART

USB
device

interface

USB
connection

to workstation.

Old wiring: RS232/V24

New wiring: serial dongle

Figure 2.30 Two typical configurations for a serial port using a UART. Inset: Serial port timing diagram. The old wiring to a D9 connector for an RS-232 port
is today often replaced with a very short connection to a second UART inside a USB dongle for connecting to a laptop

A serial port uses two independent simplex channels, one for output and one for input, to make a full
duplex channel. A nine-pin D-connector is used for the serial ports in Figure 2.29, but only onewire is
needed in each direction, as shown in Figure 2.30. The two data directions plus a ground pinmean
that only three out of the nine pins are actually used. The additional connections are sometimes used
to indicate device ready status and to implementXon/Xoff flow control (Section 3.4.4). Data are sent
serially at a pre-agreed baud rate. The baud rate is themaximum number of transitions per second on
one of the signals. The effective data rate is less than the baud rate due to the overhead of the start
and stop bits. The baud rate and number of bits per wordmust be pre-agreed at each end, such as
19200bps and 8bits. The device internally contains status and control registers and transmit and

65

Modern SoCDesign

receive data FIFO buffers. In essence, any byte stored in the transmit FIFO buffer is converted to
serial form and sent. Received data are converted back to parallel form and stored in the receive FIFO
buffer. Interrupts are generatedwhen the transmit FIFO buffer is empty or the receive FIFO buffer is
not empty.

Interrupt-driven UARTDevice Driver
A device driver is a piece of software that connects an I/O device to the operating system. Although
devices vary greatly in structure and detail, a homogeneous interface is needed for the operating
system. At the lowest level, Linux and Unix have only two device types: character and block.
Higher-level classifications split devices into classes such as printers, storage devices, network
interfaces, cameras, keyboards and so on, but these classifications are for ease of management and do
not effect the device driver interface. A UART is a character device, since it nominally presents one
byte at a time. Ethernet and disks are block devices, since the unit of data transfer is an array of bytes.
The characters from a character device are normally aggregated to some extent to amortise handling
overheads. For instance, a write system call may transfer a buffer of characters to a UART, but no
semantic boundary is introduced.

The device driver code starts with a definition of the registers accessible by PIO. Device drivers are
normally written in C. Here is C preprocessor code to define the I/O locations in use by a simple UART
device:

// Macro definitions for C preprocessor enable a C program to access a hardware
// UART using PIO or interrupts.

#define IO_BASE 0xFFFC1000 // or whatever

#define U_SEND 0x10
#define U_RECEIVE 0x14
#define U_CONTROL 0x18
#define U_STATUS 0x1C

#define UART_SEND() \
(*((volatile char *)(IO_BASE+U_SEND)))

#define UART_RECEIVE() \
(*((volatile char *)(IO_BASE+U_RECEIVE)))

#define UART_CONTROL() \
(*((volatile char *)(IO_BASE+U_CONTROL)))

#define UART_STATUS() \
(*((volatile char *)(IO_BASE+U_STATUS)))

#define UART_STATUS_RX_EMPTY (0x80)
#define UART_STATUS_TX_EMPTY (0x40)

#define UART_CONTROL_RX_INT_ENABLE (0x20)
#define UART_CONTROL_TX_INT_ENABLE (0x10)

The following code implements a polled receiver. It spins until the empty flag in the status register
goes away. Reading the data register makes the status register go empty again. The actual hardware

66

Chapter 2 | Processors, Memory and IP Blocks

devicemay have a receive FIFO buffer, so instead of going empty, the next character from the FIFO
buffer would become available straight away:

char uart_polled_read()
{

while (UART_STATUS() &
UART_STATUS_RX_EMPTY) continue;

return UART_RECEIVE();
}

The output function is exactly the same in principle, except it spins while the device is still busy with
any data previously written:

uart_polled_write(char d)
{

while (!(UART_STATUS()&
UART_STATUS_TX_EMPTY)) continue;

UART_SEND() = d;
}

Here is an interrupt-driven UART device driver:

char rx_buffer[256];
volatile int rx_inptr, rx_outptr;

void uart_reset()
{ rx_inptr = 0; tx_inptr = 0;

rx_output = 0; tx_outptr = 0;
UART_CONTROL() |= UART_CONTROL_RX_INT_ENABLE;

}
// Here we call wait() instead of `continue' in case the scheduler has something else to run
char uart_read() // called by application
{ while (rx_inptr==rx_outptr) wait(); // Spin

char r = buffer[rx_outptr];
rx_outptr = (rx_outptr + 1)&255;
return r;

}

char uart_rx_isr() // interrupt service routine
{ while (1)

{
if (UART_STATUS()&UART_STATUS_RX_EMPTY) return;
rx_buffer[rx_inptr] = UART_RECEIVE();
rx_inptr = (rx_inptr + 1)&255;

}
}

uart_write(char c) // called by the application
{ while (tx_inptr==tx_outptr) wait(); // Block if full

buffer[tx_inptr] = c;

67

Modern SoCDesign

receive data FIFO buffers. In essence, any byte stored in the transmit FIFO buffer is converted to
serial form and sent. Received data are converted back to parallel form and stored in the receive FIFO
buffer. Interrupts are generatedwhen the transmit FIFO buffer is empty or the receive FIFO buffer is
not empty.

Interrupt-driven UARTDevice Driver
A device driver is a piece of software that connects an I/O device to the operating system. Although
devices vary greatly in structure and detail, a homogeneous interface is needed for the operating
system. At the lowest level, Linux and Unix have only two device types: character and block.
Higher-level classifications split devices into classes such as printers, storage devices, network
interfaces, cameras, keyboards and so on, but these classifications are for ease of management and do
not effect the device driver interface. A UART is a character device, since it nominally presents one
byte at a time. Ethernet and disks are block devices, since the unit of data transfer is an array of bytes.
The characters from a character device are normally aggregated to some extent to amortise handling
overheads. For instance, a write system call may transfer a buffer of characters to a UART, but no
semantic boundary is introduced.

The device driver code starts with a definition of the registers accessible by PIO. Device drivers are
normally written in C. Here is C preprocessor code to define the I/O locations in use by a simple UART
device:

// Macro definitions for C preprocessor enable a C program to access a hardware
// UART using PIO or interrupts.

#define IO_BASE 0xFFFC1000 // or whatever

#define U_SEND 0x10
#define U_RECEIVE 0x14
#define U_CONTROL 0x18
#define U_STATUS 0x1C

#define UART_SEND() \
(*((volatile char *)(IO_BASE+U_SEND)))

#define UART_RECEIVE() \
(*((volatile char *)(IO_BASE+U_RECEIVE)))

#define UART_CONTROL() \
(*((volatile char *)(IO_BASE+U_CONTROL)))

#define UART_STATUS() \
(*((volatile char *)(IO_BASE+U_STATUS)))

#define UART_STATUS_RX_EMPTY (0x80)
#define UART_STATUS_TX_EMPTY (0x40)

#define UART_CONTROL_RX_INT_ENABLE (0x20)
#define UART_CONTROL_TX_INT_ENABLE (0x10)

The following code implements a polled receiver. It spins until the empty flag in the status register
goes away. Reading the data register makes the status register go empty again. The actual hardware

66

Chapter 2 | Processors, Memory and IP Blocks

devicemay have a receive FIFO buffer, so instead of going empty, the next character from the FIFO
buffer would become available straight away:

char uart_polled_read()
{

while (UART_STATUS() &
UART_STATUS_RX_EMPTY) continue;

return UART_RECEIVE();
}

The output function is exactly the same in principle, except it spins while the device is still busy with
any data previously written:

uart_polled_write(char d)
{

while (!(UART_STATUS()&
UART_STATUS_TX_EMPTY)) continue;

UART_SEND() = d;
}

Here is an interrupt-driven UART device driver:

char rx_buffer[256];
volatile int rx_inptr, rx_outptr;

void uart_reset()
{ rx_inptr = 0; tx_inptr = 0;

rx_output = 0; tx_outptr = 0;
UART_CONTROL() |= UART_CONTROL_RX_INT_ENABLE;

}
// Here we call wait() instead of `continue' in case the scheduler has something else to run
char uart_read() // called by application
{ while (rx_inptr==rx_outptr) wait(); // Spin

char r = buffer[rx_outptr];
rx_outptr = (rx_outptr + 1)&255;
return r;

}

char uart_rx_isr() // interrupt service routine
{ while (1)

{
if (UART_STATUS()&UART_STATUS_RX_EMPTY) return;
rx_buffer[rx_inptr] = UART_RECEIVE();
rx_inptr = (rx_inptr + 1)&255;

}
}

uart_write(char c) // called by the application
{ while (tx_inptr==tx_outptr) wait(); // Block if full

buffer[tx_inptr] = c;

67

Modern SoCDesign

tx_inptr = (tx_inptr + 1)&255;
UART_CONTROL() |= UART_CONTROL_TX_INT_ENABLE;

}

char uart_tx_isr() // interrupt service routine
{ while (tx_inptr != tx_outptr)

{
if (!(UART_STATUS()&UART_STATUS_TX_EMPTY)) return;
UART_SEND() = tx_buffer[tx_outptr];
tx_outptr = (tx_outptr + 1)&255;

}
UART_CONTROL() &= 255-UART_CONTROL_TX_INT_ENABLE;

}

This code fragment illustrates the complete set of five software routines needed tomanage a pair of
circular buffers for input and output to a UART using interrupts. If a UART has a single interrupt
output for both send and receive events, then two of the five routines are combinedwith a software
dispatch between their bodies. Not shown is that the interrupt service routine (ISR)must be prefixed
and postfixedwith code that saves and restores the processor state (this is normally written in
assembler and provided by the operating system).

2.7.2 Parallel Ports Using General-purpose I/O

DATA

Strobe

DATA

Ack

Parallel port
protocol

target device.

Strobe

Ack

Figure 2.31 Timing diagram for an asynchronous four-phase handshake

The second connector in Figure 2.29 is a parallel port. Although parallel ports are hardly used these
days, they provide a useful example for explaining general-purpose I/O (GPIO) blocks. They also
demonstrates a class of very important asynchronous protocols. A parallel port is simplex: it carries
data in one direction only. It is asynchronous and its protocol is suitable for clock-domain crossing
within a SoC (Section 3.7.3). It follows the initiator/target paradigmwith data being transferred from
the initiator to the target. The parallel port protocol defined originally by Centronics uses a total of
three handshakewires, but this is not necessary. Here we present the standard four-phase
handshake protocol, which uses a single control wire in each direction. The protocol is illustrated in
Figure 2.31. The initiator first puts a word on the data bus, then raises the strobe signal. When the

68

Chapter 2 | Processors, Memory and IP Blocks

target notices the strobe and is ready to accept the data, it raises its ack signal. The initiator then
de-asserts the strobe, ready for the next cycle. This makes a total of four phases. Note that the
various wires from the initiator to the target may vary slightly in length and stray capacitance.
Therefore, the initiator must pause for a de-skewing delay between setting the data on the data bus
for longer than the likely difference in any signal propagation time in the wires. This guarantees that
the data are valid at the target when the target sees the strobe.

A variation of the four-phase handshake is the two-phase handshake protocol. The third and fourth
phases are not used. The initiator places the data on the data bus, waits for the de-skewing delay, and
then toggles the strobewire. It thenwaits for the target to toggle the ackwire. A toggle is a change of
state: one to zero or zero to one.

2.7.3 General-purpose Input/Output Pins
A parallel port can be implemented using a GPIO block, which has a number of GPIO pins. Such pins
can be for an input or an output that can be sensed, set or cleared under software control. GPIO pins
are commonly used for connecting to simple LED indicators and push switches. Commonly, they can
also generate interrupts. As noted above (2.7.1), a UART device requires two I/O pins, one for input
and one for output. These are for special-purpose I/O. A SoCmay have two or four UART devices, but
not all of them are used in every design. The special-purpose I/O pins for unused I/O blocks can
normally be put into GPIOmode and used for GPIO.Wewill illustrate the details.

Figure 2.32 shows the general structure of a GPIO block schematically and in RTL. The block connects
to ourMSOC1 bus fromChapter 1. All the internal registers are accessible from the host using PIO.
Each pinmay be for either input or output as controlled by the corresponding bit in the data direction
register. When an output, the special function register enables it to be controlled from either the
GPIO block or a special function block, such as the UART, which is not shown. When a pin is GPIO
output, the data bit is whatever was stored in the data register by PIO. Interrupt polarity andmasks
are available on a per-pin basis for received events. Amaster interrupt enable mask is also provided.

Other features typically found, but not illustrated, include a programmable pull-up or pull-down
resistor and slew rate control. The voltage gradient when changing from zero to one or back again is
called the slew rate. Many applications do not require a high transition rate, such as an LED. Low slew
rates, such as under 10V permicrosecond, minimise radio-frequency interference (RFI) (Section 9.2)
and save energy too.

Using GPIO for a Parallel Port
The four-phase protocol can simply be implemented using polling andGPIO. Such code has often been
used to connect to Centronics-style printers. The data-direction register is initialised with nine
output bits for the strobe and data and one input bit for the ack signal. The code then proceeds as
described in Section 5.4.8.

69

Modern SoCDesign

tx_inptr = (tx_inptr + 1)&255;
UART_CONTROL() |= UART_CONTROL_TX_INT_ENABLE;

}

char uart_tx_isr() // interrupt service routine
{ while (tx_inptr != tx_outptr)

{
if (!(UART_STATUS()&UART_STATUS_TX_EMPTY)) return;
UART_SEND() = tx_buffer[tx_outptr];
tx_outptr = (tx_outptr + 1)&255;

}
UART_CONTROL() &= 255-UART_CONTROL_TX_INT_ENABLE;

}

This code fragment illustrates the complete set of five software routines needed tomanage a pair of
circular buffers for input and output to a UART using interrupts. If a UART has a single interrupt
output for both send and receive events, then two of the five routines are combinedwith a software
dispatch between their bodies. Not shown is that the interrupt service routine (ISR)must be prefixed
and postfixedwith code that saves and restores the processor state (this is normally written in
assembler and provided by the operating system).

2.7.2 Parallel Ports Using General-purpose I/O

DATA

Strobe

DATA

Ack

Parallel port
protocol

target device.

Strobe

Ack

Figure 2.31 Timing diagram for an asynchronous four-phase handshake

The second connector in Figure 2.29 is a parallel port. Although parallel ports are hardly used these
days, they provide a useful example for explaining general-purpose I/O (GPIO) blocks. They also
demonstrates a class of very important asynchronous protocols. A parallel port is simplex: it carries
data in one direction only. It is asynchronous and its protocol is suitable for clock-domain crossing
within a SoC (Section 3.7.3). It follows the initiator/target paradigmwith data being transferred from
the initiator to the target. The parallel port protocol defined originally by Centronics uses a total of
three handshakewires, but this is not necessary. Here we present the standard four-phase
handshake protocol, which uses a single control wire in each direction. The protocol is illustrated in
Figure 2.31. The initiator first puts a word on the data bus, then raises the strobe signal. When the

68

Chapter 2 | Processors, Memory and IP Blocks

target notices the strobe and is ready to accept the data, it raises its ack signal. The initiator then
de-asserts the strobe, ready for the next cycle. This makes a total of four phases. Note that the
various wires from the initiator to the target may vary slightly in length and stray capacitance.
Therefore, the initiator must pause for a de-skewing delay between setting the data on the data bus
for longer than the likely difference in any signal propagation time in the wires. This guarantees that
the data are valid at the target when the target sees the strobe.

A variation of the four-phase handshake is the two-phase handshake protocol. The third and fourth
phases are not used. The initiator places the data on the data bus, waits for the de-skewing delay, and
then toggles the strobewire. It thenwaits for the target to toggle the ackwire. A toggle is a change of
state: one to zero or zero to one.

2.7.3 General-purpose Input/Output Pins
A parallel port can be implemented using a GPIO block, which has a number of GPIO pins. Such pins
can be for an input or an output that can be sensed, set or cleared under software control. GPIO pins
are commonly used for connecting to simple LED indicators and push switches. Commonly, they can
also generate interrupts. As noted above (2.7.1), a UART device requires two I/O pins, one for input
and one for output. These are for special-purpose I/O. A SoCmay have two or four UART devices, but
not all of them are used in every design. The special-purpose I/O pins for unused I/O blocks can
normally be put into GPIOmode and used for GPIO.Wewill illustrate the details.

Figure 2.32 shows the general structure of a GPIO block schematically and in RTL. The block connects
to ourMSOC1 bus fromChapter 1. All the internal registers are accessible from the host using PIO.
Each pinmay be for either input or output as controlled by the corresponding bit in the data direction
register. When an output, the special function register enables it to be controlled from either the
GPIO block or a special function block, such as the UART, which is not shown. When a pin is GPIO
output, the data bit is whatever was stored in the data register by PIO. Interrupt polarity andmasks
are available on a per-pin basis for received events. Amaster interrupt enable mask is also provided.

Other features typically found, but not illustrated, include a programmable pull-up or pull-down
resistor and slew rate control. The voltage gradient when changing from zero to one or back again is
called the slew rate. Many applications do not require a high transition rate, such as an LED. Low slew
rates, such as under 10V permicrosecond, minimise radio-frequency interference (RFI) (Section 9.2)
and save energy too.

Using GPIO for a Parallel Port
The four-phase protocol can simply be implemented using polling andGPIO. Such code has often been
used to connect to Centronics-style printers. The data-direction register is initialised with nine
output bits for the strobe and data and one input bit for the ack signal. The code then proceeds as
described in Section 5.4.8.

69

Modern SoCDesign

GPIO

wdata

hwen

ce
D Q

I/O PAD
Tristate
Buffer

Address
decoder

addr ce
D Q

ce
D Q

ce
D Q

ce

D Q

ddr

dout

imask

ipol

int_enable

D
Q

rdata

interrupt

32 similar
pads

Other
bits

Example
bit

ce
D Q sfunction

Special Function
// Programming model
reg [31:0] ddr; // Data direction reg
reg [31:0] sfunction; // Special mode
reg [31:0] dout; // Output register
reg [31:0] imask; // Interrupt mask
reg [31:0] ipol; // Interrupt polarities
reg [31:0] pins_r; // Registered pin data

reg int_enable;// Master int enable (for all bits)

always @(posedge clk) begin
pins_r <= pins;
if (hwen && addr==0) ddr <= wdata;
if (hwen && addr==4) sfunction <= wdata;
if (hwen && addr==8) dout <= wdata;
if (hwen && addr==12) imask <= wdata;
if (hwen && addr==16) ipol <= wdata;
if (hwen && addr==20) int_enable <= wdata[0];
end

// Tri-state buffers.
bufif b0(pins[0],

sfunction[0]?special[0]:dout[0], ddr[0]);
... // 30 others here
bufif b31(pins[31],

sfunction[1]?special[31]dout[31], ddr[31]);

// Generally the programmer can read all the
// programming model registers but not here
assign rdata = pins_r;

// Interrupt masking
wire int_pending = (|((pins_r ^ ipol)&imask));
assign interrupt = int_pending && int_enable;

Figure 2.32 Schematic and RTL implementation of 32 GPIO bits connected to anMSOC1 bus

2.7.4 Counter/Timer Blocks
Various counter/timer blocks are found in SoCs. Such a block can contain several independent timers
and counters, which are known as channels. A versatile channel can operate in several different
modes. Four to eight, versatile, configurable counter/timer channels are generally provided in one IP
block. The timermode counts clock cycles and can generate periodic events, such as interrupts. The
counter mode counts events on an external input or measures clock pulses seenwhile the external
input is at a particular logic level. Timers are used as the basis of operating system timeouts and the
periodic context switch in an operating system, such as 10 or 100ms. Counters, for example, are used
with certain types of shaft encoder applications such as a car rev counter. One of the channels is often
dedicated as the systemwatchdog timer (WDT), which performs a hard reboot if it is not serviced
within some time by the CPU (e.g. 500ms).

A channel may operate in a thirdmode, acting as a pulse-widthmodulation (PWM) generator.
Channels in this mode produce a square wave of adjustable frequency and adjustable duty cycle.
PWMcontrollers are often used to control heaters, the brightness of LEDs or the colour of a
multi-colour LED. The frequency is relatively unimportant, but the duty cycle alters the brightness or
colour.

70

Chapter 2 | Processors, Memory and IP Blocks

Counter/Timer
block

wdata

hwen

addr

rdata

interrupt

hren

External Event 0

External Event1

PWM 0

32

32

5

PWM 1

watchdog reset WDT

CH0

CH1

CH2

CH3

// RTL for one channel of a typical timer

// Programmers' model state
reg int_enable, int_pending;

reg [31:0] prescaler;
reg [31:0] reload;

// Programmer-invisible internal state
reg ovf;
reg [31:0] counter, prescale;

// Host write operations
always @(posedge clk) begin

if (hwen && addr==0) int_enable <= wdata[0];
if (hwen && addr==4) prescaler <= wdata;
if (hwen && addr==8) reload <= wdata;
// Write to addr==12 to clear the interrupt
end

wire irq_clr = hwen && addr == 12;

// Host read operations
assign rdata =

(addr==0) ? {int_pending, int_enable}:
(addr==4) ? prescaler:
(addr==8) ? reload: 0;

// A timer counts system clock cycles
// A counter counts transitions from an external input
always @(posedge clk) begin

ovf <= (prescale == prescaler);
prescale <= (ovf) ? 0: prescale+1;
if (ovf) counter <= counter -1;
if (counter == 0) begin

int_pending <= 1;
counter <= reload;
end

if (irq_clr) int_pending <= 0;
end

// Interrupt generation
assign interrupt = int_pending && int_enable;

Figure 2.33 Schematic symbol for a counter/timer block and internal RTL for one timer function

All forms of channel are essentially a counter that counts internal clock pulses or external events. A
channel can either interrupt the processor on a certain count value or toggle its output wire. An
automatic reload register accommodates poor interrupt latency, so that the processor does not need
to reload the counter quickly before the next event. In PWM, the output line is driven by a comparator
that checks whether the counter is above a parameter register written by PIO.

The timermode channel illustrated in the RTL of Figure 2.33 counts a prescaled system clock. All
registers are configured as bus slave read/write resources for PIO. The SoC system clock can be
100–600MHz, so the prescaler is a simple divider that brings it down to amore useful frequency.
Instead of the prescaler, a counter counts cycles of an external input, as shown on the schematic
symbol. In this example, the interrupt is cleared by host PIOwhen it accesses a location that does not
provide any data at offset 12.

71

Modern SoCDesign

GPIO

wdata

hwen

ce
D Q

I/O PAD
Tristate
Buffer

Address
decoder

addr ce
D Q

ce
D Q

ce
D Q

ce

D Q

ddr

dout

imask

ipol

int_enable

D
Q

rdata

interrupt

32 similar
pads

Other
bits

Example
bit

ce
D Q sfunction

Special Function
// Programming model
reg [31:0] ddr; // Data direction reg
reg [31:0] sfunction; // Special mode
reg [31:0] dout; // Output register
reg [31:0] imask; // Interrupt mask
reg [31:0] ipol; // Interrupt polarities
reg [31:0] pins_r; // Registered pin data

reg int_enable;// Master int enable (for all bits)

always @(posedge clk) begin
pins_r <= pins;
if (hwen && addr==0) ddr <= wdata;
if (hwen && addr==4) sfunction <= wdata;
if (hwen && addr==8) dout <= wdata;
if (hwen && addr==12) imask <= wdata;
if (hwen && addr==16) ipol <= wdata;
if (hwen && addr==20) int_enable <= wdata[0];
end

// Tri-state buffers.
bufif b0(pins[0],

sfunction[0]?special[0]:dout[0], ddr[0]);
... // 30 others here
bufif b31(pins[31],

sfunction[1]?special[31]dout[31], ddr[31]);

// Generally the programmer can read all the
// programming model registers but not here
assign rdata = pins_r;

// Interrupt masking
wire int_pending = (|((pins_r ^ ipol)&imask));
assign interrupt = int_pending && int_enable;

Figure 2.32 Schematic and RTL implementation of 32 GPIO bits connected to anMSOC1 bus

2.7.4 Counter/Timer Blocks
Various counter/timer blocks are found in SoCs. Such a block can contain several independent timers
and counters, which are known as channels. A versatile channel can operate in several different
modes. Four to eight, versatile, configurable counter/timer channels are generally provided in one IP
block. The timermode counts clock cycles and can generate periodic events, such as interrupts. The
counter mode counts events on an external input or measures clock pulses seenwhile the external
input is at a particular logic level. Timers are used as the basis of operating system timeouts and the
periodic context switch in an operating system, such as 10 or 100ms. Counters, for example, are used
with certain types of shaft encoder applications such as a car rev counter. One of the channels is often
dedicated as the systemwatchdog timer (WDT), which performs a hard reboot if it is not serviced
within some time by the CPU (e.g. 500ms).

A channel may operate in a thirdmode, acting as a pulse-widthmodulation (PWM) generator.
Channels in this mode produce a square wave of adjustable frequency and adjustable duty cycle.
PWMcontrollers are often used to control heaters, the brightness of LEDs or the colour of a
multi-colour LED. The frequency is relatively unimportant, but the duty cycle alters the brightness or
colour.

70

Chapter 2 | Processors, Memory and IP Blocks

Counter/Timer
block

wdata

hwen

addr

rdata

interrupt

hren

External Event 0

External Event1

PWM 0

32

32

5

PWM 1

watchdog reset WDT

CH0

CH1

CH2

CH3

// RTL for one channel of a typical timer

// Programmers' model state
reg int_enable, int_pending;

reg [31:0] prescaler;
reg [31:0] reload;

// Programmer-invisible internal state
reg ovf;
reg [31:0] counter, prescale;

// Host write operations
always @(posedge clk) begin

if (hwen && addr==0) int_enable <= wdata[0];
if (hwen && addr==4) prescaler <= wdata;
if (hwen && addr==8) reload <= wdata;
// Write to addr==12 to clear the interrupt
end

wire irq_clr = hwen && addr == 12;

// Host read operations
assign rdata =

(addr==0) ? {int_pending, int_enable}:
(addr==4) ? prescaler:
(addr==8) ? reload: 0;

// A timer counts system clock cycles
// A counter counts transitions from an external input
always @(posedge clk) begin

ovf <= (prescale == prescaler);
prescale <= (ovf) ? 0: prescale+1;
if (ovf) counter <= counter -1;
if (counter == 0) begin

int_pending <= 1;
counter <= reload;
end

if (irq_clr) int_pending <= 0;
end

// Interrupt generation
assign interrupt = int_pending && int_enable;

Figure 2.33 Schematic symbol for a counter/timer block and internal RTL for one timer function

All forms of channel are essentially a counter that counts internal clock pulses or external events. A
channel can either interrupt the processor on a certain count value or toggle its output wire. An
automatic reload register accommodates poor interrupt latency, so that the processor does not need
to reload the counter quickly before the next event. In PWM, the output line is driven by a comparator
that checks whether the counter is above a parameter register written by PIO.

The timermode channel illustrated in the RTL of Figure 2.33 counts a prescaled system clock. All
registers are configured as bus addressable read/write resources for PIO. The SoC system clock can
be 100–600MHz, so the prescaler is a simple divider that brings it down to amore useful frequency.
Instead of the prescaler, a counter counts cycles of an external input, as shown on the schematic
symbol. In this example, the interrupt is cleared by host PIOwhen it accesses a location that does not
provide any data at offset 12.

71

Modern SoCDesign

2.7.5 DMAControllers

DMA Controller

wdata

hwen

addr

rdata

interrupt

hren

Target port
(completer port)

Initiator port
(requester port)

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

CORE
0 Primary

storage
(etc)

DMA
controller 0

D0

D1

Bus
fabric

CORE
1

DMA
controller 1

// State for programmers' model
reg [31:0] count, src, dest;
reg int_enable, active;

// Other local state
reg [31:0] datareg;
reg intt, rwbar;

always @(posedge clk) begin // Target
if (hwen && addr==0) begin

{ int_enable, active } <= wdata[1:0];
intt <= 0; rwbar <= 1;
end

if (hwen && addr==4) count <= wdata;
if (hwen && addr==8) src <= wdata;
if (hwen && addr==12) dest <= wdata;
end

assign rdata = ...// Target readbacks

always @(posedge clk) begin // Initiator
if (active && rwbar && m_ack) begin

datareg <= m_rdata;
rwbar <= 0;
src <= src + 4;
end

if (active && !rwbar && m_ack) begin
rwbar <= 1;
dest <= dest + 4;
count <= count - 1;
end

if (count==1 && active && !rwbar) begin
active <= 0;
intt <= 1;
end

end
assign m_wdata = datareg;
assign m_ren = active && rwbar;
assign m_wen = active && !rwbar;
assign m_addr = (rwbar) ? src:dest;
assign interrupt = intt && int_enable;

Figure 2.34 A simple DMA controller: schematic symbol, example TLMwiring and RTL for one channel

ADMA controller makes direct memory access transfers. DMA controllers are either stand-alone, as
illustrated in Figure 2.34, or built in to other I/O devices, such as a streamingmedia device
(Section 2.7.6). Theymove blocks of data from one part of the system to another. A DMA controller
needs to be both a bus target (so that it can be programmed by the host CPU) and also a bus initiator
(so that it canmanipulate primary storage). The schematic symbol shows that it has two complete sets
of bus connections. Note the reversal in the direction of all nets on the initiator port. The TLM
diagram in the figure shows the bus connections required for a small systemwith two CPUs and two
DMA controllers. These four devices are initiators for bus transactions.

Our simple DMA controller has one channel, which can perform only one operation. Real-world DMA
controllers tend to havemultiple channels, which is semantically the same as havingmultiple
single-channel DMA controllers, give or take amaster control register for interrupts etc. The
illustrated RTL for the controller can just make block copies. It uses source and destination pointer
registers, whichmust be set up by the host CPU. Likewise, the block length is set in a third register.

72

Chapter 2 | Processors, Memory and IP Blocks

Finally, a status/control register controls interrupts and kicks off the procedure. Real-world DMA
controllers are oftenmore complex. For instance, they can load the blockmove parameter registers
frommeta-blocks set up inmemory by the host CPU and can follow linked lists of suchmeta-blocks.

The RTL code for the controller is relatively straightforward. Much of it is dedicated to providing the
target-side PIO access to each register. The active RTL code that embodies the function of the DMA
controller is contained in the two blocks qualifiedwith the active net in their conjunct. A concrete
TLMmodel of this sameDMA controller is given in Section 5.5.2 and can be downloaded from the
supportingmaterial.

The figure shows two simple target I/O devices, D0 andD1. Quite often thesemay have data registers
such that a packet or block is formed using successive words written or read to a single data-register
location. In these cases, the DMA controller needs amode in which either the destination or source
pointer is not adjusted inside the loop, depending onwhether it is sending or receiving, respectively.
For instance, to play audio out of a sound card, the destination address could be set to the PIO address
of the output register for audio samples and set not to increment. The block size would need to be
smaller than the device’s staging FIFO buffer (Section 2.7.6).

Another processor core can be used instead of a DMA controller. If the processor ‘runs out of’ (i.e.
fetches its instructions from) a small local instruction RAMor cache, then the code reads will not
impact themainmemory bus bandwidth. The silicon area of a very basic processor is not necessarily
much larger than that of a DMA controller.

2.7.6 Network and StreamingMedia Devices
Network devices, such as Ethernet, USB, Firewire and IEEE 802.11, are similar to streamingmedia
devices, such as audio, andmodem devices. All such devices commonly have embeddedDMA
controllers. Only low-throughput devices, such as a UART, are likely not to use DMA.

Figure 2.35 shows a schematic symbol of a network or streamingmedia device. It is the same as the
DMA controller in Figure 2.34 except for additional device-specific functionality andwiring. In
particular, there is a physical-layer interface to the external medium. The physical medium is generally
glass fibre, copper or wireless. Wireless interfaces are illustrated inmore detail in Figure 6.1. Each
type of media requires specialised circuitry to drive it. This is called the PHY or analogue front end
(AFE). Sometimes this circuitry can be fully embedded on themain SoC chip (which is very common
for USB) and other times it cannot, due to voltage swings, the operating frequency or noise levels
(Section 8.4). Copper cables, such as used for the Ethernet CAT5 RJ45 shown on the right-hand side
of Figure 2.29, require electrical isolation andminiature transformers. Further transformers, known
as baluns (balanced-to-unbalanced transformers) and further inductors can suppress
radio-frequency interference (RFI). This entire block is known as the PHYmagnetics and is often
integrated inside the RJ45 connector.

A network interface IP block is known as a network interface card (NIC). However, for SoC use, a
better acronymwould be network interface controller since it is integrated on the chip instead of

73

Modern SoCDesign

2.7.5 DMAControllers

DMA Controller

wdata

hwen

addr

rdata

interrupt

hren

Target
(slave)

Port

Initiator
(master)

Port

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

CORE
0 Primary

storage
(etc)

DMA
controller 0

D0

D1

Bus
fabric

CORE
1

DMA
controller 1

// State for programmers' model
reg [31:0] count, src, dest;
reg int_enable, active;

// Other local state
reg [31:0] datareg;
reg intt, rwbar;

always @(posedge clk) begin // Target
if (hwen && addr==0) begin

{ int_enable, active } <= wdata[1:0];
intt <= 0; rwbar <= 1;
end

if (hwen && addr==4) count <= wdata;
if (hwen && addr==8) src <= wdata;
if (hwen && addr==12) dest <= wdata;
end

assign rdata = ...// Target readbacks

always @(posedge clk) begin // Initiator
if (active && rwbar && m_ack) begin

datareg <= m_rdata;
rwbar <= 0;
src <= src + 4;
end

if (active && !rwbar && m_ack) begin
rwbar <= 1;
dest <= dest + 4;
count <= count - 1;
end

if (count==1 && active && !rwbar) begin
active <= 0;
intt <= 1;
end

end
assign m_wdata = datareg;
assign m_ren = active && rwbar;
assign m_wen = active && !rwbar;
assign m_addr = (rwbar) ? src:dest;
assign interrupt = intt && int_enable;

Figure 2.34 A simple DMA controller: schematic symbol, example TLMwiring and RTL for one channel

ADMA controller makes direct memory access transfers. DMA controllers are either stand-alone, as
illustrated in Figure 2.34, or built in to other I/O devices, such as a streamingmedia device
(Section 2.7.6). Theymove blocks of data from one part of the system to another. A DMA controller
needs to be both a bus target (so that it can be programmed by the host CPU) and also a bus initiator
(so that it canmanipulate primary storage). The schematic symbol shows that it has two complete sets
of bus connections. Note the reversal in the direction of all nets on the initiator port. The TLM
diagram in the figure shows the bus connections required for a small systemwith two CPUs and two
DMA controllers. These four devices are initiators for bus transactions.

Our simple DMA controller has one channel, which can perform only one operation. Real-world DMA
controllers tend to havemultiple channels, which is semantically the same as havingmultiple
single-channel DMA controllers, give or take amaster control register for interrupts etc. The
illustrated RTL for the controller can just make block copies. It uses source and destination pointer
registers, whichmust be set up by the host CPU. Likewise, the block length is set in a third register.

72

Chapter 2 | Processors, Memory and IP Blocks

Finally, a status/control register controls interrupts and kicks off the procedure. Real-world DMA
controllers are oftenmore complex. For instance, they can load the blockmove parameter registers
frommeta-blocks set up inmemory by the host CPU and can follow linked lists of suchmeta-blocks.

The RTL code for the controller is relatively straightforward. Much of it is dedicated to providing the
target-side PIO access to each register. The active RTL code that embodies the function of the DMA
controller is contained in the two blocks qualifiedwith the active net in their conjunct. A concrete
TLMmodel of this sameDMA controller is given in Section 5.5.2 and can be downloaded from the
supportingmaterial.

The figure shows two simple target I/O devices, D0 andD1. Quite often thesemay have data registers
such that a packet or block is formed using successive words written or read to a single data-register
location. In these cases, the DMA controller needs amode in which either the destination or source
pointer is not adjusted inside the loop, depending onwhether it is sending or receiving, respectively.
For instance, to play audio out of a sound card, the destination address could be set to the PIO address
of the output register for audio samples and set not to increment. The block size would need to be
smaller than the device’s staging FIFO buffer (Section 2.7.6).

Another processor core can be used instead of a DMA controller. If the processor ‘runs out of’ (i.e.
fetches its instructions from) a small local instruction RAMor cache, then the code reads will not
impact themainmemory bus bandwidth. The silicon area of a very basic processor is not necessarily
much larger than that of a DMA controller.

2.7.6 Network and StreamingMedia Devices
Network devices, such as Ethernet, USB, Firewire and IEEE 802.11, are similar to streamingmedia
devices, such as audio, andmodem devices. All such devices commonly have embeddedDMA
controllers. Only low-throughput devices, such as a UART, are likely not to use DMA.

Figure 2.35 shows a schematic symbol of a network or streamingmedia device. It is the same as the
DMA controller in Figure 2.34 except for additional device-specific functionality andwiring. In
particular, there is a physical-layer interface to the external medium. The physical medium is generally
glass fibre, copper or wireless. Wireless interfaces are illustrated inmore detail in Figure 6.1. Each
type of media requires specialised circuitry to drive it. This is called the PHY or analogue front end
(AFE). Sometimes this circuitry can be fully embedded on themain SoC chip (which is very common
for USB) and other times it cannot, due to voltage swings, the operating frequency or noise levels
(Section 8.4). Copper cables, such as used for the Ethernet CAT5 RJ45 shown on the right-hand side
of Figure 2.29, require electrical isolation andminiature transformers. Further transformers, known
as baluns (balanced-to-unbalanced transformers) and further inductors can suppress
radio-frequency interference (RFI). This entire block is known as the PHYmagnetics and is often
integrated inside the RJ45 connector.

A network interface IP block is known as a network interface card (NIC). However, for SoC use, a
better acronymwould be network interface controller since it is integrated on the chip instead of

73

Modern SoCDesign

Network Device
wdata

hwen

addr

rdata

interrupt

hren

Target port
(completer port)

Initiator port
(requester port)

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

Physical Layer
Interface

PHY
or

AFE

Magnetics

Connector

MAC

Data FIFOs

Figure 2.35 Net-level schematic symbol for a DMA-capable network interface IP block

being a pluggable card. A NIC contains a block known as themedia access controller (MAC), which
handles the framing preambles, postambles and CRCs. It also decides when to transmit, using a
protocol such as carrier-sensemultiple access with collision detection (CSMA-CD) for Ethernet.

For streamingmedia with hard real-time characteristics, such as audio, video andmodem devices,
small staging FIFO buffers are needed in the device because the initiator port may experience latency
when it is serviced by the bus fabric. The embeddedDMA controller then initiates the next burst in its
transfer when the local FIFO buffer reaches a trigger depth. Using DMA offloads work from themain
processor, but, equally importantly, using DMA requires less data-staging RAMor FIFO buffering in a
device. For themajority of SoC designs, RAM is the dominant cost in terms of SoC area. If the staging
FIFO buffer is too small, then overruns or under-runs can occur. An overrun occurs when toomuch
data are received and thememory system is not responsive enough for the data to be saved before
the staging FIFO buffer overflows. The datamust be deleted, causing knock-on effects (such as audio
artefacts or packet retransmissions). Likewise, an under-run occurs when the sending FIFO buffer
becomes empty because thememory system has not been fast enough in servicing it. This can also
cause glitches in hard real-timemedia, such as audio, but may be less of a problemwith packet-based
network interfaces that allow gaps between packets.

A DMA controller in a network or streamingmedia device can often follow elaborate data structures
set up by the host CPU, such as linking and delinking buffer pointers from a central pool. Due to the
virtualisation requirements for a NIC in cloud computing, for server-grade NICs, the DMA system
may be able to demultiplex packets based on VLAN number and store them in different buffers.

74

Chapter 2 | Processors, Memory and IP Blocks

2.7.7 Video Controllers and Frame Stores
A bit-mapped frame store or video controller presents each word in its memory as a different pixel on
a screen. For monochrome, the words can be 1bit wide, denoting black or white. The designs of video
interfaces have evolved along with the history of television. Today’s flat panel displays use essentially
the same signal set and protocols as an analogue videomonitor from 1950. A frame store reads out
the contents of its frame buffer over and over again at the frame refresh rate, which is commonly
60Hz.

A 3-bit RGBword can render the eight basic saturated colours: black, white, magenta, cyan, red etc.
To show other colours, a video digital-to-analogue convertor (DAC) is used to drive the red, green
and blue primary colour signals. In modern DVI andHDMI ports, the DAC is at the display end of the
monitor cable, which is then digital. A DAC is typically integrated into the driver ICs that directly
connect to the transparent conductors within the panel.

In our simple reference implementation of Figure 2.36, thememory is implemented in a Verilog array,
which has two address ports. Another approach is to have a single address port and for the RAM to be
simply ‘stolen’ from the output devicewhen the hostmakes awrite to it. This causes noticeable display
artefacts if writes are frequent. Real-world implementations use pseudo-dual-porting (Figure 4.19).
This frame store has a fixed resolution and frame rate, but real ones have programmable values read
from registers set up by the host CPU under PIO instead of the fixed numbers 230 and 110. This
frame store is an output-only device that never becomes busy or ready, so it generates no interrupts.
The device driver needs to know themapping of RAM addresses to screen pixels and has zeroed the
locations read out during horizontal and vertical synchronisation. Real implementations do not waste
memory in this way and pause the supply of video data during the blanking intervals. A secondary link
is included in contemporary video cables so that the display size can be read from an electronic data
sheet stored in serial ROM inside the display. This is called a display data channel (DDC).

Framestorewdata

hwen

haddr
hsynch

vsynch

video

hsynch

vsynch

video

LCD Panel
or CRT

reg [2:0] framestore[32767:0];
reg [7:0] hptr, vptr;
output reg [2:0] rgb_video;
output reg hsynch, vsynch;

always @(posedge clk) begin
hptr <= (hsynch) ? 0: hptr + 1;
hsynch <= (hptr >= 230)
if (hsynch) vptr <= (vsynch) ? 0: vptr + 1;
vsynch <= (vptr == 110)

if (hwen) framestore[haddr]<= wdata[2:0];
/*else*/ rgb_video <= framestore[{vptr[6:0], hptr}];

end

Figure 2.36 Structure of a simple frame store, RTL implementation and generated timing waveforms

75

Modern SoCDesign

Network Device
wdata

hwen

addr

rdata

interrupt

hren

Target
(slave)

Port

Initiator
(master)

Port

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

Physical Layer
Interface

PHY
or

AFE

Magnetics

Connector

MAC

Data FIFOs

Figure 2.35 Net-level schematic symbol for a DMA-capable network interface IP block

being a pluggable card. A NIC contains a block known as themedia access controller (MAC), which
handles the framing preambles, postambles and CRCs. It also decides when to transmit, using a
protocol such as carrier-sensemultiple access with collision detection (CSMA-CD) for Ethernet.

For streamingmedia with hard real-time characteristics, such as audio, video andmodem devices,
small staging FIFO buffers are needed in the device because the initiator port may experience latency
when it is serviced by the bus fabric. The embeddedDMA controller then initiates the next burst in its
transfer when the local FIFO buffer reaches a trigger depth. Using DMA offloads work from themain
processor, but, equally importantly, using DMA requires less data-staging RAMor FIFO buffering in a
device. For themajority of SoC designs, RAM is the dominant cost in terms of SoC area. If the staging
FIFO buffer is too small, then overruns or under-runs can occur. An overrun occurs when toomuch
data are received and thememory system is not responsive enough for the data to be saved before
the staging FIFO buffer overflows. The datamust be deleted, causing knock-on effects (such as audio
artefacts or packet retransmissions). Likewise, an under-run occurs when the sending FIFO buffer
becomes empty because thememory system has not been fast enough in servicing it. This can also
cause glitches in hard real-timemedia, such as audio, but may be less of a problemwith packet-based
network interfaces that allow gaps between packets.

A DMA controller in a network or streamingmedia device can often follow elaborate data structures
set up by the host CPU, such as linking and delinking buffer pointers from a central pool. Due to the
virtualisation requirements for a NIC in cloud computing, for server-grade NICs, the DMA system
may be able to demultiplex packets based on VLAN number and store them in different buffers.

74

Chapter 2 | Processors, Memory and IP Blocks

2.7.7 Video Controllers and Frame Stores
A bit-mapped frame store or video controller presents each word in its memory as a different pixel on
a screen. For monochrome, the words can be 1bit wide, denoting black or white. The designs of video
interfaces have evolved along with the history of television. Today’s flat panel displays use essentially
the same signal set and protocols as an analogue videomonitor from 1950. A frame store reads out
the contents of its frame buffer over and over again at the frame refresh rate, which is commonly
60Hz.

A 3-bit RGBword can render the eight basic saturated colours: black, white, magenta, cyan, red etc.
To show other colours, a video digital-to-analogue convertor (DAC) is used to drive the red, green
and blue primary colour signals. In modern DVI andHDMI ports, the DAC is at the display end of the
monitor cable, which is then digital. A DAC is typically integrated into the driver ICs that directly
connect to the transparent conductors within the panel.

In our simple reference implementation of Figure 2.36, thememory is implemented in a Verilog array,
which has two address ports. Another approach is to have a single address port and for the RAM to be
simply ‘stolen’ from the output devicewhen the hostmakes awrite to it. This causes noticeable display
artefacts if writes are frequent. Real-world implementations use pseudo-dual-porting (Figure 4.19).
This frame store has a fixed resolution and frame rate, but real ones have programmable values read
from registers set up by the host CPU under PIO instead of the fixed numbers 230 and 110. This
frame store is an output-only device that never becomes busy or ready, so it generates no interrupts.
The device driver needs to know themapping of RAM addresses to screen pixels and has zeroed the
locations read out during horizontal and vertical synchronisation. Real implementations do not waste
memory in this way and pause the supply of video data during the blanking intervals. A secondary link
is included in contemporary video cables so that the display size can be read from an electronic data
sheet stored in serial ROM inside the display. This is called a display data channel (DDC).

Framestorewdata

hwen

haddr
hsynch

vsynch

video

hsynch

vsynch

video

LCD Panel
or CRT

reg [2:0] framestore[32767:0];
reg [7:0] hptr, vptr;
output reg [2:0] rgb_video;
output reg hsynch, vsynch;

always @(posedge clk) begin
hptr <= (hsynch) ? 0: hptr + 1;
hsynch <= (hptr >= 230)
if (hsynch) vptr <= (vsynch) ? 0: vptr + 1;
vsynch <= (vptr == 110)

if (hwen) framestore[haddr]<= wdata[2:0];
/*else*/ rgb_video <= framestore[{vptr[6:0], hptr}];

end

Figure 2.36 Structure of a simple frame store, RTL implementation and generated timing waveforms

75

Modern SoCDesign

The frame store in this example has its own local RAM. This reduces RAMbandwidth costs on themain
RAMbut usesmore silicon area, a delicate trade-off. Video adaptors in PCs have their own local RAM
or DRAMand also a local graphical processing unit (GPU) that performs polygon shading and so on.

2.7.8 Doorbell andMailbox Blocks
An inter-core interrupt (ICI) facility is needed for basic synchronisation between separate cores
within a SoC, for instance, if one CPU has placed amessage in a sharedmemory region for another to
read. The ISA for a processor may have a specialist ICI instruction, but this instructionmay not work
between different types of processor. An external IP block is then needed. The ICI function could be
included in the interrupt distributor, which allows any device interrupt to be routed to any core with
any priority (Section 2.5). Alternatively, a bespoke doorbell andmailbox block can be used.

Such a device offers multiple target interfaces, one per client bus. Figure 2.37 shows a dual-port
device, but n-way can be deployed as required. The basic operational sequence is for one core towrite
a register in the interrupt that asserts an interrupt net connected to another core. The ISR of the
interrupted core reads or writes another register in the interrupter to clear the interrupt.

wdata

hwen

addr

rdata

hren

Target
port A
(completer)

Target
port B

(completer)

wdata

hwen

addr

rdata

hren

m_ackm_ack

Dual Port Interrupter
(further target ports sometimes exist)

interrupt interrupt
Pigeon hole registers
on Mailbox variant.

Figure 2.37 Doorbell and mailbox block

Themailbox variant supports message passing using a small internal FIFO buffer or scratchpad RAM
inside the device. The interrupt is then generated after themessage has been entered into the
internal storage. Likewise, it is cleared as the receiver reads out themessage.

2.7.9 PerformanceManagement Units
A performancemanagement unit (PMU) contains counters that can be programmed to count
architectural features, such as instruction fetches and cachemisses. A typical PMU has a small set of
event counters, usually at least 10× fewer than the number of possible event sources. Hence, a
programmable event routingmatrix is needed tomap events to counters. Moreover, the event
counters may be limited in range, such as to 32bits. To reduce any overflows at the expense of
precision, the prescalers can be programmed so that the readable counter is incremented only after,
say, 1024 real events have occurred. Even so, the counters may still overflow and it is not uncommon
to use an operating system daemon, such as oprofile in Linux, to convey the hardware counts to
softwaremirrors at a rate of 10 to 100Hz.

76

Chapter 2 | Processors, Memory and IP Blocks

For a core, events typically include page table misses, branchmispredicts, instructions retired, cycles
out of halt mode or at various privilege levels, loads, stores, stalls and interrupts. For a cache, the
number of hits, the number of sharing evictions and each type of miss may be recorded, although
compulsory and capacity misses cannot be distinguished by the hardware.

2.8 Summary
A simple processor consists of a register file, an arithmetic and logic unit (ALU) and a control unit. The
register file and ALU collectively form the execution unit. A SoC typically contains multiple
processors, perhaps of different specialised types. A processor, together with any dedicated cache
and coprocessors is known as a core. At reset, one of the cores, the boot-up core, starts execution,
which initiates the start-up of the other cores (Section 9.1).

Memory systems are complex, especially if there aremultiple initiators of bus transactions, such as
multiple processor cores andDMA engines that all need tomove data around. The designer needs to
select which initiators can access whichmemory resources andwhether cache consistency is
worthwhile. The whole of thememory system, including its caches, is normally placed on themain
SoC, except for the DRAM. DRAMmay be placed in the same chip package as anMCM (Section 8.9.1).

As well as thememory system, numerous I/O peripherals and other IP blocks are placed on the SoC.
Some are general purpose (such as USB) and others application-specific, such as a printer mechanism
controller. Arranging a DRAMand designing its controller are very important. These are discussed
later in Section 4.5, after we have discussed interconnects in the next chapter.

2.8.1 Exercises
Note: The exercises in this chapter are somewhat different from those in other chapters, since they
assume a broad basic knowledge of processor architecture and assembly language programming.
Theymay require materials not presented here.

1. Give examples of assembly language programs for a simple in-order processor that could suffer
from each of the following problems and describe hardware or softwaremitigations: (i) a control
hazard, (ii) a hazard arising from the ALU being pipelined and (iii) a load hazard, even though the
data are in the cache.

2. If the front side of a cache has the same throughput as the back side, since it has half the word
width and twice the clock frequency, for what sort of data access pattern will the cache provide
low performance?

3. If a super-scalar processor shares FPUs between several hyper-threads, whenwould this enhance
system energy use and throughput andwhenwill it hinder them?

77

Modern SoCDesign

The frame store in this example has its own local RAM. This reduces RAMbandwidth costs on themain
RAMbut usesmore silicon area, a delicate trade-off. Video adaptors in PCs have their own local RAM
or DRAMand also a local graphical processing unit (GPU) that performs polygon shading and so on.

2.7.8 Doorbell andMailbox Blocks
An inter-core interrupt (ICI) facility is needed for basic synchronisation between separate cores
within a SoC, for instance, if one CPU has placed amessage in a sharedmemory region for another to
read. The ISA for a processor may have a specialist ICI instruction, but this instructionmay not work
between different types of processor. An external IP block is then needed. The ICI function could be
included in the interrupt distributor, which allows any device interrupt to be routed to any core with
any priority (Section 2.5). Alternatively, a bespoke doorbell andmailbox block can be used.

Such a device offers multiple target interfaces, one per client bus. Figure 2.37 shows a dual-port
device, but n-way can be deployed as required. The basic operational sequence is for one core towrite
a register in the interrupt that asserts an interrupt net connected to another core. The ISR of the
interrupted core reads or writes another register in the interrupter to clear the interrupt.

wdata

hwen

addr

rdata

hren

Target
(slave)
port A

Target
(slave)
port B

wdata

hwen

addr

rdata

hren

m_ackm_ack

Dual Port Interrupter
(further target ports sometimes exist)

interrupt interrupt

Pigeon hole registers
on Mailbox variant.

Figure 2.37 Doorbell and mailbox block

Themailbox variant supports message passing using a small internal FIFO buffer or scratchpad RAM
inside the device. The interrupt is then generated after themessage has been entered into the
internal storage. Likewise, it is cleared as the receiver reads out themessage.

2.7.9 PerformanceManagement Units
A performancemanagement unit (PMU) contains counters that can be programmed to count
architectural features, such as instruction fetches and cachemisses. A typical PMU has a small set of
event counters, usually at least 10× fewer than the number of possible event sources. Hence, a
programmable event routingmatrix is needed tomap events to counters. Moreover, the event
counters may be limited in range, such as to 32bits. To reduce any overflows at the expense of
precision, the prescalers can be programmed so that the readable counter is incremented only after,
say, 1024 real events have occurred. Even so, the counters may still overflow and it is not uncommon
to use an operating system daemon, such as oprofile in Linux, to convey the hardware counts to
softwaremirrors at a rate of 10 to 100Hz.

76

Chapter 2 | Processors, Memory and IP Blocks

For a core, events typically include page table misses, branchmispredicts, instructions retired, cycles
out of halt mode or at various privilege levels, loads, stores, stalls and interrupts. For a cache, the
number of hits, the number of sharing evictions and each type of miss may be recorded, although
compulsory and capacity misses cannot be distinguished by the hardware.

2.8 Summary
A simple processor consists of a register file, an arithmetic and logic unit (ALU) and a control unit. The
register file and ALU collectively form the execution unit. A SoC typically contains multiple
processors, perhaps of different specialised types. A processor, together with any dedicated cache
and coprocessors is known as a core. At reset, one of the cores, the boot-up core, starts execution,
which initiates the start-up of the other cores (Section 9.1).

Memory systems are complex, especially if there aremultiple initiators of bus transactions, such as
multiple processor cores andDMA engines that all need tomove data around. The designer needs to
select which initiators can access whichmemory resources andwhether cache consistency is
worthwhile. The whole of thememory system, including its caches, is normally placed on themain
SoC, except for the DRAM. DRAMmay be placed in the same chip package as anMCM (Section 8.9.1).

As well as thememory system, numerous I/O peripherals and other IP blocks are placed on the SoC.
Some are general purpose (such as USB) and others application-specific, such as a printer mechanism
controller. Arranging a DRAMand designing its controller are very important. These are discussed
later in Section 4.5, after we have discussed interconnects in the next chapter.

2.8.1 Exercises
Note: The exercises in this chapter are somewhat different from those in other chapters, since they
assume a broad basic knowledge of processor architecture and assembly language programming.
Theymay require materials not presented here.

1. Give examples of assembly language programs for a simple in-order processor that could suffer
from each of the following problems and describe hardware or softwaremitigations: (i) a control
hazard, (ii) a hazard arising from the ALU being pipelined and (iii) a load hazard, even though the
data are in the cache.

2. If the front side of a cache has the same throughput as the back side, since it has half the word
width and twice the clock frequency, for what sort of data access pattern will the cache provide
low performance?

3. If a super-scalar processor shares FPUs between several hyper-threads, whenwould this enhance
system energy use and throughput andwhenwill it hinder them?

77

Modern SoCDesign

4. Why has serial communication been increasingly used, comparedwith parallel communication?
Compare the parallel ATAPI bus with the serial SATA connection in your answer.

5. Assume a processor has one level of caching and one TLB. Explain, in as much detail as possible,
the arrangement of data in the cache and TLB for both a virtually mapped and a physically
mapped cache. If a physical page is in more than one virtual address, what precautions could
ensure consistency in the presence of aliases? Assume the data cache is set associative and the
TLB is fully associative.

6. What are the advantages and disadvantages of dynamically mapping a device interrupt to a
processor core? What should be used as the inputs to themapping function?

7. If a new variant of amicrocontroller uses a single non-volatilememory technology to replace both
the static RAM andmask-programmed ROM, what are the possible advantages and
disadvantages? Is this even possible?

8. Some PCmotherboards now have slots for high-performance non-volatile memory cards. How
can these be used for primary or secondary storage? Should computers continue to distinguish
between these forms in their architecture?

9. Briefly describe the code andwiring needed for a seven-segment display to count the number of
presses on an external push button accurately. Note that mechanical buttons suffer from contact
bounce. Use polling for your first implementation. Howwould you adapt this to use a
counter/timer block and interrupts? What are the advantages of the button and the display?

10. A SoC is required to have frame stores for video input and output. Could these follow essentially
the same design withminor differences? Would it be sensible to support a number of
dual-purpose frame stores that can operate as either an input or output?

References
[1] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time. Technical report, Google, 2010.
[2] Lauranne Choquin. Arm custom instructions: Enabling innovation and greater flexibility on Arm.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-wp.pdf,
2020.

[3] Joseph F. JaJa. PRAM (parallel random access machines). In David Padua, editor, Encyclopedia of Parallel
Computing, pages 1608–1615. Springer US, Boston,MA, 2011. ISBN 978-0-387-09766-4. doi:
10.1007/978-0-387-09766-4_23. URL https://doi.org/10.1007/978-0-387-09766-4_23.

[4] Leslie G. Valiant. A bridgingmodel for parallel computation. Commun. ACM, 33(8):103–111, August 1990.
ISSN 0001-0782. doi: 10.1145/79173.79181. URL https://doi.org/10.1145/79173.79181.

[5] Arm Ltd. The ArmCoreLink generic interrupt controllers. https://developer.arm.com/ip-products/
system-ip/system-controllers/interrupt-controllers, 2021.

78

Chapter 2 | Processors, Memory and IP Blocks

[6] R.Mathur, C. Chao, R. Liu, N. Tadepalli, P. Chandupatla, S. Hung, X. Xu, S. Sinha, and J. Kulkarni. Thermal
analysis of a 3D stacked high-performance commercial microprocessor using face-to-face wafer bonding
technology. In IEEE 70th Electronic Components and Technology Conference (ECTC), pages 541–547, 2020.

[7] Brad Chacos. “Intel quietly kills its face-melting Optane desktop SSDs,” [Online]. Available: https://www.
pcworld.com/article/3604093/intel-quietly-kills-its-face-melting-optane-desktop-ssds.html, January 2021.

[8] Standard Performance Evaluation Corporation. Spec CPU 2006. https://www.spec.org/cpu2006/, 2006.
[9] M. Gao, G. Ayers, and C. Kozyrakis. Practical near-data processing for in-memory analytics frameworks. In

International Conference on Parallel Architecture and Compilation (PACT), pages 113–124, 2015. doi:
10.1109/PACT.2015.22.

79

Modern SoCDesign

4. Why has serial communication been increasingly used, comparedwith parallel communication?
Compare the parallel ATAPI bus with the serial SATA connection in your answer.

5. Assume a processor has one level of caching and one TLB. Explain, in as much detail as possible,
the arrangement of data in the cache and TLB for both a virtually mapped and a physically
mapped cache. If a physical page is in more than one virtual address, what precautions could
ensure consistency in the presence of aliases? Assume the data cache is set associative and the
TLB is fully associative.

6. What are the advantages and disadvantages of dynamically mapping a device interrupt to a
processor core? What should be used as the inputs to themapping function?

7. If a new variant of amicrocontroller uses a single non-volatilememory technology to replace both
the static RAM andmask-programmed ROM, what are the possible advantages and
disadvantages? Is this even possible?

8. Some PCmotherboards now have slots for high-performance non-volatile memory cards. How
can these be used for primary or secondary storage? Should computers continue to distinguish
between these forms in their architecture?

9. Briefly describe the code andwiring needed for a seven-segment display to count the number of
presses on an external push button accurately. Note that mechanical buttons suffer from contact
bounce. Use polling for your first implementation. Howwould you adapt this to use a
counter/timer block and interrupts? What are the advantages of the button and the display?

10. A SoC is required to have frame stores for video input and output. Could these follow essentially
the same design withminor differences? Would it be sensible to support a number of
dual-purpose frame stores that can operate as either an input or output?

References
[1] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time. Technical report, Google, 2010.
[2] Lauranne Choquin. Arm custom instructions: Enabling innovation and greater flexibility on Arm.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-wp.pdf,
2020.

[3] Joseph F. JaJa. PRAM (parallel random access machines). In David Padua, editor, Encyclopedia of Parallel
Computing, pages 1608–1615. Springer US, Boston,MA, 2011. ISBN 978-0-387-09766-4. doi:
10.1007/978-0-387-09766-4_23. URL https://doi.org/10.1007/978-0-387-09766-4_23.

[4] Leslie G. Valiant. A bridgingmodel for parallel computation. Commun. ACM, 33(8):103–111, August 1990.
ISSN 0001-0782. doi: 10.1145/79173.79181. URL https://doi.org/10.1145/79173.79181.

[5] Arm Ltd. The ArmCoreLink generic interrupt controllers. https://developer.arm.com/ip-products/
system-ip/system-controllers/interrupt-controllers, 2021.

78

Chapter 2 | Processors, Memory and IP Blocks

[6] R.Mathur, C. Chao, R. Liu, N. Tadepalli, P. Chandupatla, S. Hung, X. Xu, S. Sinha, and J. Kulkarni. Thermal
analysis of a 3D stacked high-performance commercial microprocessor using face-to-face wafer bonding
technology. In IEEE 70th Electronic Components and Technology Conference (ECTC), pages 541–547, 2020.

[7] Brad Chacos. “Intel quietly kills its face-melting Optane desktop SSDs,” [Online]. Available: https://www.
pcworld.com/article/3604093/intel-quietly-kills-its-face-melting-optane-desktop-ssds.html, January 2021.

[8] Standard Performance Evaluation Corporation. Spec CPU 2006. https://www.spec.org/cpu2006/, 2006.
[9] M. Gao, G. Ayers, and C. Kozyrakis. Practical near-data processing for in-memory analytics frameworks. In

International Conference on Parallel Architecture and Compilation (PACT), pages 113–124, 2015. doi:
10.1109/PACT.2015.22.

79

Chapter 3
SoC Interconnect

Chapter 3
SoC Interconnect

Modern SoCDesign

3.1 Interconnect Requirements
As discussed in the previous chapter, a SoC contains a large number of reusable IP (intellectual
property) blocks. These need to bewired together by a SoC interconnect, which is the subject of this
chapter. An interconnect primarily carries transactions that are started by a transaction initiator
(also known as the requester ormanager) and served by a target (also known as the completer or
subordinate). The interconnect conveys the command from an initiating IP block to a target block and
a response back again.

The traditional way to connect such blocks is to use a so-called bus, but, as we explain here, the term
has evolved inmeaning and is now pretty much amisnomer. In all but themost basic SoC designs,
more than one initiator needs to be supported. As well as CPUs, direct memory access (DMA)
controllers and other devices that performDMA are initiators. Contention (competition) for
resources can arise. Arbitration is required tomanage how they are shared. There are twomain forms
of contention – fabric and target – as discussed in Section 4.2.1. So, an important aspect of designing
an interconnect is providing sufficient bandwidth and implementingmanagement techniques that
allocate what is available.

In modern SoC flows, we expect all of the interconnect details to be designed by one ormore system
interconnect generator tools, which also generate documentation, device driver header files and test
software (Section 6.8.2). An interconnect generator will ideally use the same architectural design files
as used in the high-level ESLmodels used in the virtual platform (Chapter 5).

The transaction types typically provided by an interconnect can be classified as follows:

1. Single-word reads and single-wordwrites are the smallest individual operations or transactions.
Data aremoved from the initiator to the target for a write or store operation and in the other
direction for a read or load operation. The initiator is typically a processor (or the back side of a
cache) and the target is typically a memory or peripheral device. Wordwrites are often
accompanied with lane flags so that only certain bytes within the word are updated. The flags are
usedwhen storing bytes and half words and for unalignedwrites that straddle word boundaries.

2. Uncached reads andwrites are also commonly required for I/O devices (when anMMU is not
being used to definewhat is cacheable). For instance, the AMBAAXI protocol supports 12
different read andwrite semantics for the detailed interactions with caches, just for read and
write data (e.g. write-through, write-allocate, write-back, etc.) [1].

3. Since individual reads andwrites have toomuch overheadwhenmore data needs to bemoved,
most forms of interconnect support block or burst transfers, in which larger quantities of data
(128bytes to 4 kB) aremoved as a single transaction.

4. Broadcast andmulticast transactions allow the same data word to bewritten tomore than one
destination at a time. A similar transaction type is pseudoDMA, in which data aremoved between
two target devices, one reading and the other writing, while the initiating CPU core ignores the

82

Chapter 3 | SoC Interconnect

data on the bus. Real DMA can follow the same pattern (Section 2.7.5), the difference being that
the initiator is a dedicated controller instead of a CPU core that is executing a dummy read
transaction.

5. Atomic operations are needed in all multiprocessor systems. The conventional operations are
test-and-set and compare-and-swap. These require two successive operations on an addressed
location without pre-emption. This does not scale well to multi-initiator systems, so load-linked
and store-conditional single-word operations are, typically, more common today (Section 3.1.7).

6. If the order of delivery of the data is critical (which is the normal case), the interconnect must
observe sequential consistency primitives ormemory fences (Section 4.5). For instance, the
arguments to a device commandmust arrive at an I/O device before the go command is received.
An interconnect that supports transaction buffering can allow transactions to arrive out of order,
unless sequential consistency is managed implicitly or through explicit fence operations.

7. Cache consistency or data coherencymessages are also conveyed between components that
perform caching to ensure that out-of-date data are not erroneously served for a read (e.g. the
AMBAACE protocol).

8. It is common for an interconnect to carry read-ahead orwarm-up traffic. These are read cycles
whose results might not be needed but allow data to be loaded speculatively so that the data are
available with lower latency if needed.

9. There will frequently be a completely separate interconnect network for debug transactions
(Section 4.7). One advantage of a separate network is its unobtrusiveness, since certain bugs are
hard to track down if the bug’s behaviour changes when debug instrumentation is enabled. Also,
theremay be a considerable amount of datamoving over the debug network if intensive logging of
themain network traffic is enabled. The dark silicon argument (Section 8.2) enables the provision
of extensive, yet seldom-used, additional infrastructure at costs lower thanmight be expected.

10. Configuration operations, such as presence probing and other miscellaneous operations, must
also be conveyed in some systems. For instance, several instances of an identical IP block need to
be given different base addresses. Alternatively, the operating systemwould need to determine
which IP blocks are present on the platform it is running on. When the base address is not
hardwired at SoC tapeout (Section 8.7.7), theremust be transactions to configure the base
address before normal programmed I/O can proceed. These can alsomake device drivers more
generic (Section 3.1.7).

11. Secure systems, such as those using hardware capabilities or which otherwise track ownership of
the data using hardware (Section 3.1.4), need to convey tagged data. Tags are also used for
associating transactions with their responses in some bus protocols that wewill cover. These tags
are generated by the hardware and not visible to the programmer.

83

Modern SoCDesign

3.1 Interconnect Requirements
As discussed in the previous chapter, a SoC contains a large number of reusable IP (intellectual
property) blocks. These need to bewired together by a SoC interconnect, which is the subject of this
chapter. An interconnect primarily carries transactions that are started by a transaction initiator
(also known as the requester ormanager) and served by a target (also known as the completer or
subordinate). The interconnect conveys the command from an initiating IP block to a target block and
a response back again.

The traditional way to connect such blocks is to use a so-called bus, but, as we explain here, the term
has evolved inmeaning and is now pretty much amisnomer. In all but themost basic SoC designs,
more than one initiator needs to be supported. As well as CPUs, direct memory access (DMA)
controllers and other devices that performDMA are initiators. Contention (competition) for
resources can arise. Arbitration is required tomanage how they are shared. There are twomain forms
of contention – fabric and target – as discussed in Section 4.2.1. So, an important aspect of designing
an interconnect is providing sufficient bandwidth and implementingmanagement techniques that
allocate what is available.

In modern SoC flows, we expect all of the interconnect details to be designed by one ormore system
interconnect generator tools, which also generate documentation, device driver header files and test
software (Section 6.8.2). An interconnect generator will ideally use the same architectural design files
as used in the high-level ESLmodels used in the virtual platform (Chapter 5).

The transaction types typically provided by an interconnect can be classified as follows:

1. Single-word reads and single-wordwrites are the smallest individual operations or transactions.
Data aremoved from the initiator to the target for a write or store operation and in the other
direction for a read or load operation. The initiator is typically a processor (or the back side of a
cache) and the target is typically a memory or peripheral device. Wordwrites are often
accompanied with lane flags so that only certain bytes within the word are updated. The flags are
usedwhen storing bytes and half words and for unalignedwrites that straddle word boundaries.

2. Uncached reads andwrites are also commonly required for I/O devices (when anMMU is not
being used to definewhat is cacheable). For instance, the AMBAAXI protocol supports 12
different read andwrite semantics for the detailed interactions with caches, just for read and
write data (e.g. write-through, write-allocate, write-back, etc.) [1].

3. Since individual reads andwrites have toomuch overheadwhenmore data needs to bemoved,
most forms of interconnect support block or burst transfers, in which larger quantities of data
(128bytes to 4 kB) aremoved as a single transaction.

4. Broadcast andmulticast transactions allow the same data word to bewritten tomore than one
destination at a time. A similar transaction type is pseudoDMA, in which data aremoved between
two target devices, one reading and the other writing, while the initiating CPU core ignores the

82

Chapter 3 | SoC Interconnect

data on the bus. Real DMA can follow the same pattern (Section 2.7.5), the difference being that
the initiator is a dedicated controller instead of a CPU core that is executing a dummy read
transaction.

5. Atomic operations are needed in all multiprocessor systems. The conventional operations are
test-and-set and compare-and-swap. These require two successive operations on an addressed
location without pre-emption. This does not scale well to multi-initiator systems, so load-linked
and store-conditional single-word operations are, typically, more common today (Section 3.1.7).

6. If the order of delivery of the data is critical (which is the normal case), the interconnect must
observe sequential consistency primitives ormemory fences (Section 4.5). For instance, the
arguments to a device commandmust arrive at an I/O device before the go command is received.
An interconnect that supports transaction buffering can allow transactions to arrive out of order,
unless sequential consistency is managed implicitly or through explicit fence operations.

7. Cache consistency or data coherencymessages are also conveyed between components that
perform caching to ensure that out-of-date data are not erroneously served for a read (e.g. the
AMBAACE protocol).

8. It is common for an interconnect to carry read-ahead orwarm-up traffic. These are read cycles
whose results might not be needed but allow data to be loaded speculatively so that the data are
available with lower latency if needed.

9. There will frequently be a completely separate interconnect network for debug transactions
(Section 4.7). One advantage of a separate network is its unobtrusiveness, since certain bugs are
hard to track down if the bug’s behaviour changes when debug instrumentation is enabled. Also,
theremay be a considerable amount of datamoving over the debug network if intensive logging of
themain network traffic is enabled. The dark silicon argument (Section 8.2) enables the provision
of extensive, yet seldom-used, additional infrastructure at costs lower thanmight be expected.

10. Configuration operations, such as presence probing and other miscellaneous operations, must
also be conveyed in some systems. For instance, several instances of an identical IP block need to
be given different base addresses. Alternatively, the operating systemwould need to determine
which IP blocks are present on the platform it is running on. When the base address is not
hardwired at SoC tapeout (Section 8.7.7), theremust be transactions to configure the base
address before normal programmed I/O can proceed. These can alsomake device drivers more
generic (Section 3.1.7).

11. Secure systems, such as those using hardware capabilities or which otherwise track ownership of
the data using hardware (Section 3.1.4), need to convey tagged data. Tags are also used for
associating transactions with their responses in some bus protocols that wewill cover. These tags
are generated by the hardware and not visible to the programmer.

83

Modern SoCDesign

Interruptsmust also be conveyed from devices to processors (Section 2.5). Interrupt wiring was
traditionally part of the ‘bus’ standard when child boards were plugged into amotherboard bus.
However, for SoC design within the ASIC, interrupts are typically conveyed by separate wiring that is
not related to the nets carrying transaction data. The same goes for powermanagement signals that
ensure that a peripheral is suitably able to handle a request (Section 3.7.5). The system integration
tool must instantiate these nets as it configures the interconnect.

A read transaction clearly requires a response that contains the data. A write transaction does not
strictly require a response. The initiator may proceed optimistically, assuming success. This is known
aswrite posting. However, it is normal practice for all transactions to receive an acknowledgement
containing a response code. Since an interconnect is designed to be reliable, the standard assumption
for simplemicrocontroller systems is that there are no errors in the hardware. Hence, transactions
always complete successfully and no fault handlers are required (except for a watchdog timer
(Section 2.7.4)). However, a number of possible errors can arise in modern SoC designs and these
need to be handled appropriately, which could be a retry in hardware or an exception interrupt being
raised for software handlers to deal with.

Sources of bad response codes include:

The addressed target may be powered down, disconnected or otherwise not ready for the
operation.

Unused address: No device is mapped at the target address.

Address translate error: The address translation unit (or I/OMMU) does not contain an entry for
the initiator-supplied address.

Parity, CRC or ECC failure: A data integrity error was encountered in the interconnect circuits or
else a checkedmemory target was addressed and thememory parity or CRC check failed
(Section 4.7.6).

Store-conditional fail: The atomic operation was pre-empted (Section 3.1.7).

A dirty data failure arises in some cache consistency protocols (Section 2.4.1).

A single-event upset arises from a burst of radiation or an alpha particle hitting the silicon
(Section 8.2.1). This may be detected or corrected using parity or ECCmechanisms, or it may be an
undetected error at the interconnect level.

An interconnect standard defines a set of nets and a net-level protocol that together support the
various transactions. An example is the nets and protocol ofMSOC1 in Figure 1.5. According to the
context, we normally use the short word ‘bus’ interchangeably for ‘interconnect standard’ and
elsewhere for all of the components that make up the interconnect of a particular SoC. Preferably, the

84

Chapter 3 | SoC Interconnect

various IP blocksmust all be designed according to the interconnect standard. Theymay havemore
than one port, but each port follows the standard. SoC assembly is easiest if all IP blocks use the same
interconnect standard. Modern interconnect standards, such as AXI, have defined functional profiles
in which a subset of the full functionality is present within a profile. Having predefined functional
profiles makes it easy also to provide a set of protocol adaptors that map between the profiles.

3.1.1 Protocol Adaptors
For each parameterisable bus standard, an exponentially large number of protocol adaptors and bus
bridges is required. There is a small number of basic operations, such as FIFObuffering, policing, width
converting, domain crossing, multiplexing and demultiplexing. Some set of these functions needs to
be deployed in a protocol adaptor. The number of ports, the direction of the ports, port widths,
protocol profile (e.g. the Lite variant) also vary. Enumerating all possibilities as library components is
not practical. Hence, a tool that generates efficient RTL implementations is generally required.

Given the required functionality, further variation arises from the order of composition of the basic
operations. For example, a simplex demultiplexer that also converts the bus width and embodies a
short FIFO buffer can be constructed inmanyways. Four of the six basic permutations are shown in
Figure 3.1. Although these vary in terms of head-of-line blocking behaviour (Section 4.3.2), they
otherwise behave almost identically provided the re-arbitration points are appropriately constrained
to avoidmisinterleaving of transaction beats for a burst transaction (e.g. AXI has the LAST signal for
this purpose but AXI-Lite handles only single-beat transfers).

Serialiser
32 8

Serialiser
32 8

FIFO

FIFO

FIFO

Demultiplexor

8

Serialiser
8

832

FIFO

Demultiplexor

Serialiser
32 8

Serialiser
32 8

32

Demultiplexor

32

Demultiplexor

Serialiser
32 8

Serialiser
32 8

FIFO

FIFO

32

8

8

a) b)

c) d)

Figure 3.1 Four of six permutations that implement a simplex protocol adaptor. Each has the same signature of one input and two output ports of 32 and
8 bits, respectively. More typically, duplex implementations are required

Design Considerations and Physical Constraints
The aim of an interconnect design is to be as unobtrusive as possible, both at design time and in use.
Broadly speaking, these are themost fundamental parameters for an interconnect:

The baseline connectivitymatrix recordswhich initiators need to communicatewithwhich targets.

The throughput is the amount of data it canmove per unit time, normally measured inMB/s
(megabytes per second). For instance, in 2005, a bus that was 128 bits wide and had a clock

85

Modern SoCDesign

Interruptsmust also be conveyed from devices to processors (Section 2.5). Interrupt wiring was
traditionally part of the ‘bus’ standard when child boards were plugged into amotherboard bus.
However, for SoC design within the ASIC, interrupts are typically conveyed by separate wiring that is
not related to the nets carrying transaction data. The same goes for powermanagement signals that
ensure that a peripheral is suitably able to handle a request (Section 3.7.5). The system integration
tool must instantiate these nets as it configures the interconnect.

A read transaction clearly requires a response that contains the data. A write transaction does not
strictly require a response. The initiator may proceed optimistically, assuming success. This is known
aswrite posting. However, it is normal practice for all transactions to receive an acknowledgement
containing a response code. Since an interconnect is designed to be reliable, the standard assumption
for simplemicrocontroller systems is that there are no errors in the hardware. Hence, transactions
always complete successfully and no fault handlers are required (except for a watchdog timer
(Section 2.7.4)). However, a number of possible errors can arise in modern SoC designs and these
need to be handled appropriately, which could be a retry in hardware or an exception interrupt being
raised for software handlers to deal with.

Sources of bad response codes include:

The addressed target may be powered down, disconnected or otherwise not ready for the
operation.

Unused address: No device is mapped at the target address.

Address translate error: The address translation unit (or I/OMMU) does not contain an entry for
the initiator-supplied address.

Parity, CRC or ECC failure: A data integrity error was encountered in the interconnect circuits or
else a checkedmemory target was addressed and thememory parity or CRC check failed
(Section 4.7.6).

Store-conditional fail: The atomic operation was pre-empted (Section 3.1.7).

A dirty data failure arises in some cache consistency protocols (Section 2.4.1).

A single-event upset arises from a burst of radiation or an alpha particle hitting the silicon
(Section 8.2.1). This may be detected or corrected using parity or ECCmechanisms, or it may be an
undetected error at the interconnect level.

An interconnect standard defines a set of nets and a net-level protocol that together support the
various transactions. An example is the nets and protocol ofMSOC1 in Figure 1.5. According to the
context, we normally use the short word ‘bus’ interchangeably for ‘interconnect standard’ and
elsewhere for all of the components that make up the interconnect of a particular SoC. Preferably, the

84

Chapter 3 | SoC Interconnect

various IP blocks must all be designed according to the interconnect standard. Theymay havemore
than one port, but each port follows the standard. SoC assembly is easiest if all IP blocks use the same
interconnect standard. Modern interconnect standards, such as AXI, have defined functional profiles
in which a subset of the full functionality is present within a profile. Having predefined functional
profiles makes it easy also to provide a set of protocol adaptors that map between the profiles.

3.1.1 Protocol Adaptors
For each parameterisable bus standard, an exponentially large number of protocol adaptors and bus
bridges is required. There is a small number of basic operations, such as FIFObuffering, policing, width
converting, domain crossing, multiplexing and demultiplexing. Some set of these functions needs to
be deployed in a protocol adaptor. The number of ports, the direction of the ports, port widths,
protocol profile (e.g. the Lite variant) also vary. Enumerating all possibilities as library components is
not practical. Hence, a tool that generates efficient RTL implementations is generally required.

Given the required functionality, further variation arises from the order of composition of the basic
operations. For example, a simplex demultiplexer that also converts the bus width and embodies a
short FIFO buffer can be constructed inmanyways. Four of the six basic permutations are shown in
Figure 3.1. Although these vary in terms of head-of-line blocking behaviour (Section 4.3.2), they
otherwise behave almost identically provided the re-arbitration points are appropriately constrained
to avoidmisinterleaving of transaction beats for a burst transaction (e.g. AXI has the LAST signal for
this purpose but AXI-Lite handles only single-beat transfers).

Serialiser
32 8

Serialiser
32 8

FIFO

FIFO

FIFO

Demultiplexor

8

Serialiser
8

832

FIFO

Demultiplexor

Serialiser
32 8

Serialiser
32 8

32

Demultiplexor

32

Demultiplexor

Serialiser
32 8

Serialiser
32 8

FIFO

FIFO

32

8

8

a) b)

c) d)

Figure 3.1 Four of six permutations that implement a simplex protocol adaptor. Each has the same signature of one input and two output ports of 32 and
8 bits, respectively. More typically, duplex implementations are required

Design Considerations and Physical Constraints
The aim of an interconnect design is to be as unobtrusive as possible, both at design time and in use.
Broadly speaking, these are themost fundamental parameters for an interconnect:

The baseline connectivitymatrix recordswhich initiators need to communicatewithwhich targets.

The throughput is the amount of data it canmove per unit time, normally measured inMB/s
(megabytes per second). For instance, in 2005, a bus that was 128 bits wide and had a clock

85

Modern SoCDesign

frequency of 200MHz could convey a peak of 3200MB/s, or roughly 3 GB/s. A typical application
processor todaymay use a 1 GHz clock for cross-bar interconnect and up to 2 GHz for mesh or ring
interconnect. Hence throughputs five or ten times greater are typical.

The latency is the time a transaction takes to complete. For many applications, a transaction
cannot be initiated until the previous transaction has returned its result, such as when following a
linked-list structure. Hence, latency is very important.

A quantified version of the connectivity matrix records the expected traffic pattern in terms of
peak and average bandwidth needs between each end point. Ideally, an interconnect is planned and
dimensioned using this information. Both the throughput and the latency will tend to degrade if the
actual traffic patterns vary significantly from the expected use pattern, unless the interconnect
supports a high degree of connectedness such that all possible patterns of use are equally well
served. However, this can lead to over-engineering.

The energy consumption of an interconnect is also very important in modern SoCs. Energy use is
proportional to the distance that datamoves across the chip (Section 4.6), whichmay depend on
the amount of deviation from the planned traffic flow.

Support for real-time trafficwith a guaranteed quality of service (QoS), is commonly needed. The
QoS can be quantified, as discussed in Section 4.3, and recorded in the connectivity matrix. QoS
mechanismswithin an interconnect ensure that tasks can be completed by relevant deadlines while
avoiding starvation for lower-priority traffic.

All types of interconnect tend to contain loops. They could be in the forward and reverse
handshaking logic on a simple path, or composed of multiple switched segments in amesh. Such
loops are liable to become deadlocked. A deadlock is a ring of components eachwaiting on the next.
The need to avoid deadlocks restricts the interconnect design space andmust always be taken into
account (Section 3.4.3).

Physical Constraints
Today, it is not sensible to send data at a high rate from one side of a chip to the other using just wiring.
Buffering and re-timing are needed. The normal approach today for a single clock domain (CD) is to
add a pipeline stage (Section 4.4.2) to all nets of the bus. The protocol must tolerate this. A pipeline
stagemay also be needed in the reverse flow direction.

Crossing CDs requires domain-crossing logic. If the clocks originate from the samemaster source,
they are synchronous (harmonically locked) and domain crossing can be relatively simple and
efficient. If the clocks are asynchronous, then the logic must be carefully designed to avoid signal
sampling issues, such asmetastability (Section 3.7.1). Transmitting data consumes energy and incurs a
delay. In the absence of electrical resistance, the speed of propagation of an electrical signal c

86

Chapter 3 | SoC Interconnect

depends on the dielectric constants of thematerials. The speed is also the product of the wavelength
and frequency:

c= 1�
ϵ0µ0ϵrµr

=λf

The propagation constant relevant for silicon chips is the relative permittivity since there are no
magnetic effects from any of thematerials in use. For silicon dioxide, ϵr =3.9, whichmeans signals are
limited to 1/

�
3.9, which is about half the speed of light in a vacuum. The capacitance per unit length

of a conductor that is spaced a diameter away from the next one is approximately 83 pF/m. The
inductance of conductors that aremuch longer than their diameter (e.g. 500 times longer) is about
1.4 µH/m. To achieve a propagation speed that is half the speed of light, which is 150m/µs, means that
for a clock frequency of 2GHz, thewavelengthmust be 7.5 cm. The clockwill be 180◦ out of phase (i.e.
inverted) within 3.75 cm, even in the absence of resistance. However, the principal idea of digital logic
modelling (Section 4.6.4) is that all parts of a net are at the same voltage. This is approximately true
for up to 1/10th of a wavelength, so the speed of light limits the length of a conductor to 75mm, which
is less than the diagonal of many SoCs.

L and C are independent of manufacturing geometry and their ratio remains constant with technology
scaling. Resistance is a different matter. Aluminium nets have a conductivity of about 2.7×10−8Ωm.
Their resistance per unit length increases as they aremade thinner. The wiring pitch for the finest
nets is typically about 5λ and their thickness and height are both about 2.5λ, where λ is now not the
wavelength, but ameasure of the the fabrication geometry (Section 8.2). Because both height and
width have beenmade finer and finer over recent decades, there has been a near quadratic growth in
resistance (the height has not been reduced asmuch as the width). This increase in electrical
resistance creates an RC propagation delay that now reduces propagation speeds well beyond the LC
transmission line (speed-of-light) delay.

Figure 3.2 plots the RC delay against net length for fine-pitched nets made in 45nm and 16nm
processes. These are computed using the simple Elmore delaymodel (Section 4.9.5) that ignores
inductance. Also shown is the transmission line delay for a lossless LC line, which should be included
when significant. System design rules based on these figures dictate how frequently a signal needs
regenerating as it traverses a chip. Clearly, several D-types are needed if it passes from one corner of
even a small 8mm SoC to the opposite corner. For any geometry, the design rule used for timing
closure (Section 8.12.16) must be conservative. The plot shows a simple linear bound of 1600nm/µs,
as used in a recent 16 nm tapeout. Since any net that is required to be faster than this conservative
bound violates the rule, it must be redesigned. The delay, as given by the Elmore curve, will exceed the
delay anticipated by the simple linear rule for long-distance nets, but such nets are either not allowed
by other design rules or else routed on higher metal layers with perhaps twice the width and
thickness, and hence, 4× less delay.

The signal restoration and amplification considerations are the samewhether a signal is conveyed
across the chip using combinational or synchronous buffers. Digital signal restoration is the process
of removing noise and ensuring the voltage falls properly within the logic margins that define a zero or
one. As explained in Section 2.6.3, the logic margin is how far the signal is below themaximum

87

Modern SoCDesign

frequency of 200MHz could convey a peak of 3200MB/s, or roughly 3 GB/s. A typical application
processor todaymay use a 1 GHz clock for cross-bar interconnect and up to 2 GHz for mesh or ring
interconnect. Hence throughputs five or ten times greater are typical.

The latency is the time a transaction takes to complete. For many applications, a transaction
cannot be initiated until the previous transaction has returned its result, such as when following a
linked-list structure. Hence, latency is very important.

A quantified version of the connectivity matrix records the expected traffic pattern in terms of
peak and average bandwidth needs between each end point. Ideally, an interconnect is planned and
dimensioned using this information. Both the throughput and the latency will tend to degrade if the
actual traffic patterns vary significantly from the expected use pattern, unless the interconnect
supports a high degree of connectedness such that all possible patterns of use are equally well
served. However, this can lead to over-engineering.

The energy consumption of an interconnect is also very important in modern SoCs. Energy use is
proportional to the distance that datamoves across the chip (Section 4.6), whichmay depend on
the amount of deviation from the planned traffic flow.

Support for real-time trafficwith a guaranteed quality of service (QoS), is commonly needed. The
QoS can be quantified, as discussed in Section 4.3, and recorded in the connectivity matrix. QoS
mechanismswithin an interconnect ensure that tasks can be completed by relevant deadlines while
avoiding starvation for lower-priority traffic.

All types of interconnect tend to contain loops. They could be in the forward and reverse
handshaking logic on a simple path, or composed of multiple switched segments in amesh. Such
loops are liable to become deadlocked. A deadlock is a ring of components eachwaiting on the next.
The need to avoid deadlocks restricts the interconnect design space andmust always be taken into
account (Section 3.4.3).

Physical Constraints
Today, it is not sensible to send data at a high rate from one side of a chip to the other using just wiring.
Buffering and re-timing are needed. The normal approach today for a single clock domain (CD) is to
add a pipeline stage (Section 4.4.2) to all nets of the bus. The protocol must tolerate this. A pipeline
stagemay also be needed in the reverse flow direction.

Crossing CDs requires domain-crossing logic. If the clocks originate from the samemaster source,
they are synchronous (harmonically locked) and domain crossing can be relatively simple and
efficient. If the clocks are asynchronous, then the logic must be carefully designed to avoid signal
sampling issues, such asmetastability (Section 3.7.1). Transmitting data consumes energy and incurs a
delay. In the absence of electrical resistance, the speed of propagation of an electrical signal c

86

Chapter 3 | SoC Interconnect

depends on the dielectric constants of thematerials. The speed is also the product of the wavelength
and frequency:

c= 1�
ϵ0µ0ϵrµr

=λf

The propagation constant relevant for silicon chips is the relative permittivity since there are no
magnetic effects from any of thematerials in use. For silicon dioxide, ϵr =3.9, whichmeans signals are
limited to 1/

�
3.9, which is about half the speed of light in a vacuum. The capacitance per unit length

of a conductor that is spaced a diameter away from the next one is approximately 83 pF/m. The
inductance of conductors that aremuch longer than their diameter (e.g. 500 times longer) is about
1.4 µH/m. To achieve a propagation speed that is half the speed of light, which is 150m/µs, means that
for a clock frequency of 2GHz, thewavelengthmust be 7.5 cm. The clockwill be 180◦ out of phase (i.e.
inverted) within 3.75 cm, even in the absence of resistance. However, the principal idea of digital logic
modelling (Section 4.6.4) is that all parts of a net are at the same voltage. This is approximately true
for up to 1/10th of a wavelength, so the speed of light limits the length of a conductor to 75mm, which
is less than the diagonal of many SoCs.

L and C are independent of manufacturing geometry and their ratio remains constant with technology
scaling. Resistance is a different matter. Aluminium nets have a conductivity of about 2.7×10−8Ωm.
Their resistance per unit length increases as they aremade thinner. The wiring pitch for the finest
nets is typically about 5λ and their thickness and height are both about 2.5λ, where λ is now not the
wavelength, but ameasure of the the fabrication geometry (Section 8.2). Because both height and
width have beenmade finer and finer over recent decades, there has been a near quadratic growth in
resistance (the height has not been reduced asmuch as the width). This increase in electrical
resistance creates an RC propagation delay that now reduces propagation speeds well beyond the LC
transmission line (speed-of-light) delay.

Figure 3.2 plots the RC delay against net length for fine-pitched nets made in 45nm and 16nm
processes. These are computed using the simple Elmore delaymodel (Section 4.9.5) that ignores
inductance. Also shown is the transmission line delay for a lossless LC line, which should be included
when significant. System design rules based on these figures dictate how frequently a signal needs
regenerating as it traverses a chip. Clearly, several D-types are needed if it passes from one corner of
even a small 8mm SoC to the opposite corner. For any geometry, the design rule used for timing
closure (Section 8.12.16) must be conservative. The plot shows a simple linear bound of 1600nm/µs,
as used in a recent 16 nm tapeout. Since any net that is required to be faster than this conservative
bound violates the rule, it must be redesigned. The delay, as given by the Elmore curve, will exceed the
delay anticipated by the simple linear rule for long-distance nets, but such nets are either not allowed
by other design rules or else routed on higher metal layers with perhaps twice the width and
thickness, and hence, 4× less delay.

The signal restoration and amplification considerations are the samewhether a signal is conveyed
across the chip using combinational or synchronous buffers. Digital signal restoration is the process
of removing noise and ensuring the voltage falls properly within the logic margins that define a zero or
one. As explained in Section 2.6.3, the logic margin is how far the signal is below themaximum

87

Modern SoCDesign

 0

 50

 100

 150

 200

 250

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Pr
op

ag
at

io
n

D
el

ay
 (p

s)

Net Length (mm)

LC Transmission Line
RC Elmore Delay 45 nm
RC Elmore Delay 16 nm

Design Rule for 16 nm

Figure 3.2 Comparison of speed-of-light (LC) and RC-based Elmore delay models for propagation along a net. Also shown is a real-world design rule for
16-nm geometry

specified logic zero voltage or how far above theminimum logic one voltage it is. A plot of output
voltage against input voltage for a logic gate is called its voltage transfer characteristic. All logic gates
have an amplification factor (gain) of well less than unity within the logic zero and logic one input
regions, with a high gain region in between (Figure 3.33). If this were not the case, digital logic would
lose its fundamental property of keeping the zeros and ones properly distinct. The circuit noise will
become amplified if the signal is in a region with an absolute gain greater than unity.

Two extreme approaches to sending a signal a long way over a chip are:

1. Usemany low-power buffers spaced evenly along the signal path.

2. Use one powerful buffer at the start of a single piece of metal track.

Neither of these is good. A large buffer will have wide transistors and a large input capacitance.
Moreover, invertors are far more efficient than buffers in CMOS, so having two invertors with a
section of wire between them is better than a buffer. Generally, spacing out four invertors can be a
good design for a long net. If these have different drive strengths (Section 8.4.1), the lowest power
invertor is placed at the start of the chain. If the net has to fan out tomultiple destinations, the best
structure can bemanually determined using logical effort analysis [2], or simply left to a logic
synthesiser tool (Section 8.3.8).

Another physical constraint for an interconnect is its wiring density. Wiring congestion is an issue for
crossbar interconnects (Section 3.2.3) or narrow routing channels (Section 8.3.12). However, the
wiring problem has been reduced to a large extent with newer interconnect technologies, such as a
network-on-chip (NoC), unless the channels are very narrow. Thewiring density on the lowest levels
of metallisation is similar to the transistor size, but it becomes coarser at the higher levels. The
highest levels are always reserved for power distribution, since this requires the lowest fidelity. Any

88

Chapter 3 | SoC Interconnect

modern technology can support thousands of nets per millimetre per layer. Hence, busses 128bits
wide orwider, whichwould cause layout difficulties for PCB design, are not a serious concern for VLSI,
although the area penalty of turning 90◦ at a corner is not trivial. As mentioned, very thin nets have a
high resistance, which can be a consideration for exceptionally dense wiring owing to the increase in
the RC signal delay.

The ability to use wide busses and the need to use delay-tolerant protocols have led the industry
towards bus protocols that are optimised for large transactions. For a given data rate, a wider data
busmeans a lower transaction frequency. Architectural design approaches reflect this. For instance,
the traffic at the back side of a cache has a patternmuchmore like this than the front-side traffic.

3.1.2 On-chip Protocol Classes
On-chip interconnects can be broadly classed as circuit switched or packet switched. A basic
circuit-switched configurationmakes an electronic connection between a number of wiring segments
to form an initiator-to-target connection that lasts for the duration of a transaction. OurMSOC1
protocol is an example (Section 1.1.4). Most modern forms of interconnect decouple the initiation and
response phases of a transaction but retain the circuit-switching concept for each half, certainly for
short distances. The wiring segments are joined bymultiplexer structures. The presence of D-type
re-timing (pipeline stages) at the joints does not alter the classification because, to a first
approximation, all of the bus resources used for the transaction (or transaction phase) are tied up for
the duration and cannot be concurrently used by other transactions.

On the other hand, in a packet-switched configuration, each interconnect resource is tied up only
while it is forwarding part of the transaction to the next interconnect resource. A transaction typically
has a longer duration than the involvement of any interconnect component in handling that
transaction. This forms the basis for one type of NoC that we discuss in Section 3.4.

3.1.3 Simple Bus Structures
Leaving aside bridged bus andNoC structures, the following taxonomy is useful for discussing
protocols for simple bus structures. These simple structures also form the baseline for discussing
individual links in a NoCmesh.

1. Reciprocally degrading busses: The throughput is inversely proportional to the target latency in
terms of clock cycles, such as the four-phase handshake (described next) and AHB (described
below).

2. Split-port busses: These have separate request and acknowledge channels that carry different
transaction phaseswith independent timing. (Note: A different use of the word ‘split’ describes a
burst transaction that is temporarily pausedwhile a higher-priority operation takes place.)

89

Modern SoCDesign

 0

 50

 100

 150

 200

 250

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Pr
op

ag
at

io
n

D
el

ay
 (p

s)

Net Length (mm)

LC Transmission Line
RC Elmore Delay 45 nm
RC Elmore Delay 16 nm

Design Rule for 16 nm

Figure 3.2 Comparison of speed-of-light (LC) and RC-based Elmore delay models for propagation along a net. Also shown is a real-world design rule for
16-nm geometry

specified logic zero voltage or how far above theminimum logic one voltage it is. A plot of output
voltage against input voltage for a logic gate is called its voltage transfer characteristic. All logic gates
have an amplification factor (gain) of well less than unity within the logic zero and logic one input
regions, with a high gain region in between (Figure 3.33). If this were not the case, digital logic would
lose its fundamental property of keeping the zeros and ones properly distinct. The circuit noise will
become amplified if the signal is in a region with an absolute gain greater than unity.

Two extreme approaches to sending a signal a long way over a chip are:

1. Usemany low-power buffers spaced evenly along the signal path.

2. Use one powerful buffer at the start of a single piece of metal track.

Neither of these is good. A large buffer will have wide transistors and a large input capacitance.
Moreover, invertors are far more efficient than buffers in CMOS, so having two invertors with a
section of wire between them is better than a buffer. Generally, spacing out four invertors can be a
good design for a long net. If these have different drive strengths (Section 8.4.1), the lowest power
invertor is placed at the start of the chain. If the net has to fan out tomultiple destinations, the best
structure can bemanually determined using logical effort analysis [2], or simply left to a logic
synthesiser tool (Section 8.3.8).

Another physical constraint for an interconnect is its wiring density. Wiring congestion is an issue for
crossbar interconnects (Section 3.2.3) or narrow routing channels (Section 8.3.12). However, the
wiring problem has been reduced to a large extent with newer interconnect technologies, such as a
network-on-chip (NoC), unless the channels are very narrow. Thewiring density on the lowest levels
of metallisation is similar to the transistor size, but it becomes coarser at the higher levels. The
highest levels are always reserved for power distribution, since this requires the lowest fidelity. Any

88

Chapter 3 | SoC Interconnect

modern technology can support thousands of nets per millimetre per layer. Hence, busses 128bits
wide orwider, whichwould cause layout difficulties for PCB design, are not a serious concern for VLSI,
although the area penalty of turning 90◦ at a corner is not trivial. As mentioned, very thin nets have a
high resistance, which can be a consideration for exceptionally dense wiring owing to the increase in
the RC signal delay.

The ability to use wide busses and the need to use delay-tolerant protocols have led the industry
towards bus protocols that are optimised for large transactions. For a given data rate, a wider data
busmeans a lower transaction frequency. Architectural design approaches reflect this. For instance,
the traffic at the back side of a cache has a patternmuchmore like this than the front-side traffic.

3.1.2 On-chip Protocol Classes
On-chip interconnects can be broadly classed as circuit switched or packet switched. A basic
circuit-switched configurationmakes an electronic connection between a number of wiring segments
to form an initiator-to-target connection that lasts for the duration of a transaction. OurMSOC1
protocol is an example (Section 1.1.4). Most modern forms of interconnect decouple the initiation and
response phases of a transaction but retain the circuit-switching concept for each half, certainly for
short distances. The wiring segments are joined bymultiplexer structures. The presence of D-type
re-timing (pipeline stages) at the joints does not alter the classification because, to a first
approximation, all of the bus resources used for the transaction (or transaction phase) are tied up for
the duration and cannot be concurrently used by other transactions.

On the other hand, in a packet-switched configuration, each interconnect resource is tied up only
while it is forwarding part of the transaction to the next interconnect resource. A transaction typically
has a longer duration than the involvement of any interconnect component in handling that
transaction. This forms the basis for one type of NoC that we discuss in Section 3.4.

3.1.3 Simple Bus Structures
Leaving aside bridged bus andNoC structures, the following taxonomy is useful for discussing
protocols for simple bus structures. These simple structures also form the baseline for discussing
individual links in a NoCmesh.

1. Reciprocally degrading busses: The throughput is inversely proportional to the target latency in
terms of clock cycles, such as the four-phase handshake (described next) and AHB (described
below).

2. Split-port busses: These have separate request and acknowledge channels that carry different
transaction phaseswith independent timing. (Note: A different use of the word ‘split’ describes a
burst transaction that is temporarily pausedwhile a higher-priority operation takes place.)

89

Modern SoCDesign

3. Delay-tolerant busses, such as AXI4-Lite (Section 3.1.5) and BVCI (described below): New
commandsmay be issuedwhile awaiting responses from earlier commands.

4. Reorder-tolerant busses: Responses can be returned in a different order from the transaction
commands. This is highly beneficial for DRAMaccess and is needed for advancedNoC
architectures (Section 3.1.4). Examples include full AXI (Section 3.1.5).

A simple bus provides datamovement, addressing and flow control. A simplex connection sends data
in one direction only. A half-duplex connection sends data in both directions, but only in one direction
at a time. Another name for half-duplex is time-division duplex. A full-duplex connection can send
data in both directions at the same time. A streaming connection does not include any addressing
capabilities. It is often simplex. A pair of streaming connections, one in each direction, can be used to
form a duplex streaming connection. For instance, the AXI4-Stream port is essentially the same as one
direction of a standard AXI port but without the address bus. It is like the standard synchronous
interface (see below). The AXI bus is described in Section 3.1.5.

For lossless reliable behaviour, a busmust also provide flow control, so that, on average, the rate at
which data or transactions are generated at the initiators exactly meets the rate at which they are
processed at the targets. If a destination (target) is slow, or not ready, it applies backpressure on the
source (initiator), so that new transactions or data are not generated until it is ready. If the source
cannot generate its next transaction because that transaction depends on the response to the current
transaction, we have a data hazard (Section 6.3). This is a common situation. The overall system
throughput, in terms of transactions per second, then depends on the round-trip latency, which is the
time between issuing a transaction and receiving the response.

Four-phase Handshake
Bus protocols vary in themaximumnumber of outstanding transactions they support. This is a key
metric that affects how throughput degrades as latency is increased. The simplest protocols allow
only one outstanding transaction.

A four-phase handshake (Figure 3.3) provides flow control for a parallel data channel of any number
of bits. It supports a simplex, in-order, lossless, infinite sequence of wordwrites. It was used on
parallel printer ports from the 1950s until replacedwith USB. It has at most one transaction in flight,
so its throughput is inversely proportional to the round-trip latency. It is normally implemented
without a clock net and so is asynchronous. We cite it here as an important historic example. It also
serves as the basis for an asynchronous CD-crossing bridge (Section 3.7.3). The two-phase variant
transfers data on both edges of the strobe signal.

MSOC1 and AHBProtocols
As established in Section 3.1.1, nets can no longer pass a significant distance over a chip without
buffering. Registering (passing through a D-type pipeline stage) is the best form of buffering within a
CD, since it enables a higher clock frequency (Section 4.4.2). Hence, wemust use protocols that are
tolerant to being registered onmodern SoCs. Within a clock domain, it is always appropriate to use

90

Chapter 3 | SoC Interconnect

Figure 3.3 Timing diagram for AHB bus write cycle with one wait state

synchronous bus protocols. However, older synchronous bus protocols either intrinsically cannot
tolerate additional pipeline stages as their definition requires a response within some predefined
number of clock cycles (normally 1 or 2) or if they can tolerate it, tend also to suffer from the
reciprocal degrading problem. OurMSOC1 reference protocol (Figure 1.5) suffers in this way.

A real-world example is the AHB bus. This protocol was defined in the 1990s. Figure 3.3 shows the
principal nets used for a data write. The clock is shared by all participants. The address, write guard
and data are generated by the initiator and the HREADY signal is the handshake response from the
target. The figure shows that onewait state arising from the addressed target (or some intermediate
fabric part) is not ready for the write data. Hence, HREADY is de-asserted until progress can resume.

DATA

Strobe

DATA

Ack

Parallel port
protocol

target device.

Strobe

Ack

Figure 3.4 Timing diagram for an asynchronous four-phase handshake

In a basic AHB implementation, only one transactionmay be outstanding at one time and the bus nets
are idle in wait states. This is wasteful. However, unlike our simpleMSOC1, AHB supports burst
transactions, in whichmultiple data words can be sent or receivedwithout re-arbitration. A full AHB
implementation that supported interruptible transactions with long bursts and retry mechanismswas
developed. Its retry mechanism enabled a target to reject a transaction with a request for it to be
started again. Themechanisms for bursts and interruptible transactions were similar in how they
extended the baseline protocol and its implementation. Overall, the complexities arising from
supporting a complex set of behaviours became undesirable and unnecessary as SoC and VLSI
technology advanced. The preferable way to attain high performance is always to use split port
transactions and, optionally, to use simplerMSOC1-like protocols for lower-performance I/O

91

Modern SoCDesign

3. Delay-tolerant busses, such as AXI4-Lite (Section 3.1.5) and BVCI (described below): New
commandsmay be issuedwhile awaiting responses from earlier commands.

4. Reorder-tolerant busses: Responses can be returned in a different order from the transaction
commands. This is highly beneficial for DRAMaccess and is needed for advancedNoC
architectures (Section 3.1.4). Examples include full AXI (Section 3.1.5).

A simple bus provides datamovement, addressing and flow control. A simplex connection sends data
in one direction only. A half-duplex connection sends data in both directions, but only in one direction
at a time. Another name for half-duplex is time-division duplex. A full-duplex connection can send
data in both directions at the same time. A streaming connection does not include any addressing
capabilities. It is often simplex. A pair of streaming connections, one in each direction, can be used to
form a duplex streaming connection. For instance, the AXI4-Stream port is essentially the same as one
direction of a standard AXI port but without the address bus. It is like the standard synchronous
interface (see below). The AXI bus is described in Section 3.1.5.

For lossless reliable behaviour, a busmust also provide flow control, so that, on average, the rate at
which data or transactions are generated at the initiators exactly meets the rate at which they are
processed at the targets. If a destination (target) is slow, or not ready, it applies backpressure on the
source (initiator), so that new transactions or data are not generated until it is ready. If the source
cannot generate its next transaction because that transaction depends on the response to the current
transaction, we have a data hazard (Section 6.3). This is a common situation. The overall system
throughput, in terms of transactions per second, then depends on the round-trip latency, which is the
time between issuing a transaction and receiving the response.

Four-phase Handshake
Bus protocols vary in themaximumnumber of outstanding transactions they support. This is a key
metric that affects how throughput degrades as latency is increased. The simplest protocols allow
only one outstanding transaction.

A four-phase handshake (Figure 3.3) provides flow control for a parallel data channel of any number
of bits. It supports a simplex, in-order, lossless, infinite sequence of wordwrites. It was used on
parallel printer ports from the 1950s until replacedwith USB. It has at most one transaction in flight,
so its throughput is inversely proportional to the round-trip latency. It is normally implemented
without a clock net and so is asynchronous. We cite it here as an important historic example. It also
serves as the basis for an asynchronous CD-crossing bridge (Section 3.7.3). The two-phase variant
transfers data on both edges of the strobe signal.

MSOC1 and AHBProtocols
As established in Section 3.1.1, nets can no longer pass a significant distance over a chip without
buffering. Registering (passing through a D-type pipeline stage) is the best form of buffering within a
CD, since it enables a higher clock frequency (Section 4.4.2). Hence, wemust use protocols that are
tolerant to being registered onmodern SoCs. Within a clock domain, it is always appropriate to use

90

Chapter 3 | SoC Interconnect

Figure 3.3 Timing diagram for AHB bus write cycle with one wait state

synchronous bus protocols. However, older synchronous bus protocols either intrinsically cannot
tolerate additional pipeline stages as their definition requires a response within some predefined
number of clock cycles (normally 1 or 2) or if they can tolerate it, tend also to suffer from the
reciprocal degrading problem. OurMSOC1 reference protocol (Figure 1.5) suffers in this way.

A real-world example is the AHB bus. This protocol was defined in the 1990s. Figure 3.3 shows the
principal nets used for a data write. The clock is shared by all participants. The address, write guard
and data are generated by the initiator and the HREADY signal is the handshake response from the
target. The figure shows that onewait state arising from the addressed target (or some intermediate
fabric part) is not ready for the write data. Hence, HREADY is de-asserted until progress can resume.

DATA

Strobe

DATA

Ack

Parallel port
protocol

target device.

Strobe

Ack

Figure 3.4 Timing diagram for an asynchronous four-phase handshake

In a basic AHB implementation, only one transactionmay be outstanding at one time and the bus nets
are idle in wait states. This is wasteful. However, unlike our simpleMSOC1, AHB supports burst
transactions, in whichmultiple data words can be sent or receivedwithout re-arbitration. A full AHB
implementation that supported interruptible transactions with long bursts and retry mechanismswas
developed. Its retry mechanism enabled a target to reject a transaction with a request for it to be
started again. Themechanisms for bursts and interruptible transactions were similar in how they
extended the baseline protocol and its implementation. Overall, the complexities arising from
supporting a complex set of behaviours became undesirable and unnecessary as SoC and VLSI
technology advanced. The preferable way to attain high performance is always to use split port
transactions and, optionally, to use simplerMSOC1-like protocols for lower-performance I/O

91

Modern SoCDesign

subsystemswhere appropriate. A real-world simple bus example is theAMBAperipheral bus (APB)
standard defined by Arm. Overall, reciprocally degrading protocols are not suitable for modern SoCs
in which net pipelining and registering are needed to traverse any distance over the chip.

The Standard Synchronous Handshake
The four-phase handshake, as described above, is suitable for asynchronous interfaces. On the other
hand, a very common paradigm for synchronous flow control of a simplex bus is to have a handshake
net in each direction with bus data being qualified as valid on any positive clock edgewhere both
handshake nets are asserted. This protocol is called the standard synchronous handshake. A simplex
bus is unidirectional: all data lines go in the same direction. The handshake nets are typically called
‘valid’ and ‘ready’, with valid being in the direction from the initiator to the target and ready in the
opposite direction. For simplex interfaces, the data source is nominally denoted the initiator. This
paradigm forms the essence of the LocalLink protocol fromXilinx and is used inmany other
synchronous protocols, such as for each channel of the AXI protocol (Section 3.1.5). Timing diagrams
are shown in Figure 3.5. The interface nets for an 8-bit transmit-side LocalLink port are:

input clk;
output [7:0] data; // The data word - here just a byte but any size is possible
output src_rdy_n; // This is the `valid' signal
input dst_rdy_n; // The reverse-direction `ready' signal
output sof_n; // Start of frame
output eof_n; // End of frame

data

sof_n

eof_n

src_rdy_n

dst_rdy_n

clk

D0 D1 D2 D3 D4 data

sof_n

eof_n

src_rdy_n

dst_rdy_n

clk

D0 D1 D2 D3 D4

Figure 3.5 Timing diagrams for the synchronous LocalLink protocol. Left: Back-to-back transfer of words because the destination is always ready. Right:
Pauses to match the acceptance rate of the destination. Note that all control signals are active low (denoted with the _n RTL suffix) in LocalLink

Aswell as word-level handshake signals, LocalLink defines start-of-frame and end-of-frame signals.
These provide a packet delineation layer that is ‘above’ the word-level protocol in that the framing
nets are qualified by the conjunction of ready and valid, alongside the data nets. Having both start and
end frame delimiters is technically redundant, as discussed in Section 7.5, but can simplify arbitration
circuits, for instance, in amultiplexor that should not switch between sources mid-frame. An ESL
model for LocalLink is presented in Section 5.4.9.

A feature of the standard synchronous handshake is that both sides can freely assert and de-assert
their handshake net at will. Sometimes, in an implementation, one side will wait for the other side to
assert its handshake net. Suchwaiting should be avoidedwhere possible since it adds to the delay. It is
very bad if both sides wait in this way, either synchronously or combinationally, since we have an

92

Chapter 3 | SoC Interconnect

instant deadlock. Any instance of this communication paradigmmust eliminate potential deadlock
scenarios by specifying permitted and illegal dependencies.

Note, adding a pipeline stage to the standard synchronous handshake is not amatter of just putting a
broadside register across all of the nets: the handshake nets travel in both directions, so re-timing one
or both will disrupt their points of conjunction. As described in Section 3.4.4, this is one reason to use
credit-based flow control instead.

Multiple Outstanding Transaction Protocols
To overcome the round-trip latency arising from the pipeline stages, protocols that can keepmultiple
transactions in flight are needed. These generally usemultiphase transactions in which the request
and response phases are conveyed over different channels that together form a bus port. A
multiphase transaction (aka split transaction) has a temporal separation between the issuing of the
command and the receipt of the result. Multiple outstanding transactions are then possible and arise
if further commands are issued before the results are received. Likewise, interconnect components
are free to operate in a streaming pipelinedmode, as they can handle the next transaction before the
current transaction is complete.

This shift in bus protocol design went hand-in-handwith a related shift in how bus arbitration was
performed (Section 4.2.1). The principal interconnect definition now relates to the port on the IP
block. Bus arbitration signals are no longer defined as part of the port and the system integrator is
given complete freedom over the actual bus topology. Hence, an IP block can be connected to a NoC
or a simple bus without (substantially) changing its interface.

If multiple outstanding transactions are supported, the option arises for responses to be received out
of order. We consider this in Section 3.1.4, but first, we look at the BVCI protocol, which does not
support out-of-order responses. The BVCI protocol, defined as part of theOpen Core Connect (OCP)
standard [3], was a popular alternative to the AHB protocol because it supports multiple outstanding
transactions and does not tie up interconnect resources for the duration of a transaction.

BVCI has separate command and response channels and each channel uses an instance of the
standard synchronous handshake. As well as being amenable to larger delays over the interconnect, a
multiphase protocol can tolerate varying delays, as arise when crossing CDs (Section 3.7.3).
Older-style single-channel protocols, in which the targets had to respondwithin a prescribed number
of clock cycles, cannot be used in these situations.

The standard synchronous handshake in each channel guards all of the other nets in that channel.
Data are transferred on any positive edge of the clock where both are asserted. If a block is both an
initiator and a target, such as the DMA controller example from Section 2.7.5, then there are two
complete instances of the port in an IP block. However, BVCI requests and responsesmust be
preserved in their respective order at any given port, whether that is an initiator or a target.

93

Modern SoCDesign

subsystemswhere appropriate. A real-world simple bus example is theAMBAperipheral bus (APB)
standard defined by Arm. Overall, reciprocally degrading protocols are not suitable for modern SoCs
in which net pipelining and registering are needed to traverse any distance over the chip.

The Standard Synchronous Handshake
The four-phase handshake, as described above, is suitable for asynchronous interfaces. On the other
hand, a very common paradigm for synchronous flow control of a simplex bus is to have a handshake
net in each direction with bus data being qualified as valid on any positive clock edgewhere both
handshake nets are asserted. This protocol is called the standard synchronous handshake. A simplex
bus is unidirectional: all data lines go in the same direction. The handshake nets are typically called
‘valid’ and ‘ready’, with valid being in the direction from the initiator to the target and ready in the
opposite direction. For simplex interfaces, the data source is nominally denoted the initiator. This
paradigm forms the essence of the LocalLink protocol fromXilinx and is used inmany other
synchronous protocols, such as for each channel of the AXI protocol (Section 3.1.5). Timing diagrams
are shown in Figure 3.5. The interface nets for an 8-bit transmit-side LocalLink port are:

input clk;
output [7:0] data; // The data word - here just a byte but any size is possible
output src_rdy_n; // This is the `valid' signal
input dst_rdy_n; // The reverse-direction `ready' signal
output sof_n; // Start of frame
output eof_n; // End of frame

data

sof_n

eof_n

src_rdy_n

dst_rdy_n

clk

D0 D1 D2 D3 D4 data

sof_n

eof_n

src_rdy_n

dst_rdy_n

clk

D0 D1 D2 D3 D4

Figure 3.5 Timing diagrams for the synchronous LocalLink protocol. Left: Back-to-back transfer of words because the destination is always ready. Right:
Pauses to match the acceptance rate of the destination. Note that all control signals are active low (denoted with the _n RTL suffix) in LocalLink

Aswell as word-level handshake signals, LocalLink defines start-of-frame and end-of-frame signals.
These provide a packet delineation layer that is ‘above’ the word-level protocol in that the framing
nets are qualified by the conjunction of ready and valid, alongside the data nets. Having both start and
end frame delimiters is technically redundant, as discussed in Section 7.5, but can simplify arbitration
circuits, for instance, in amultiplexor that should not switch between sources mid-frame. An ESL
model for LocalLink is presented in Section 5.4.9.

A feature of the standard synchronous handshake is that both sides can freely assert and de-assert
their handshake net at will. Sometimes, in an implementation, one side will wait for the other side to
assert its handshake net. Suchwaiting should be avoidedwhere possible since it adds to the delay. It is
very bad if both sides wait in this way, either synchronously or combinationally, since we have an

92

Chapter 3 | SoC Interconnect

instant deadlock. Any instance of this communication paradigmmust eliminate potential deadlock
scenarios by specifying permitted and illegal dependencies.

Note, adding a pipeline stage to the standard synchronous handshake is not amatter of just putting a
broadside register across all of the nets: the handshake nets travel in both directions, so re-timing one
or both will disrupt their points of conjunction. As described in Section 3.4.4, this is one reason to use
credit-based flow control instead.

Multiple Outstanding Transaction Protocols
To overcome the round-trip latency arising from the pipeline stages, protocols that can keepmultiple
transactions in flight are needed. These generally usemultiphase transactions in which the request
and response phases are conveyed over different channels that together form a bus port. A
multiphase transaction (aka split transaction) has a temporal separation between the issuing of the
command and the receipt of the result. Multiple outstanding transactions are then possible and arise
if further commands are issued before the results are received. Likewise, interconnect components
are free to operate in a streaming pipelinedmode, as they can handle the next transaction before the
current transaction is complete.

This shift in bus protocol design went hand-in-handwith a related shift in how bus arbitration was
performed (Section 4.2.1). The principal interconnect definition now relates to the port on the IP
block. Bus arbitration signals are no longer defined as part of the port and the system integrator is
given complete freedom over the actual bus topology. Hence, an IP block can be connected to a NoC
or a simple bus without (substantially) changing its interface.

If multiple outstanding transactions are supported, the option arises for responses to be received out
of order. We consider this in Section 3.1.4, but first, we look at the BVCI protocol, which does not
support out-of-order responses. The BVCI protocol, defined as part of theOpen Core Connect (OCP)
standard [3], was a popular alternative to the AHB protocol because it supports multiple outstanding
transactions and does not tie up interconnect resources for the duration of a transaction.

BVCI has separate command and response channels and each channel uses an instance of the
standard synchronous handshake. As well as being amenable to larger delays over the interconnect, a
multiphase protocol can tolerate varying delays, as arise when crossing CDs (Section 3.7.3).
Older-style single-channel protocols, in which the targets had to respondwithin a prescribed number
of clock cycles, cannot be used in these situations.

The standard synchronous handshake in each channel guards all of the other nets in that channel.
Data are transferred on any positive edge of the clock where both are asserted. If a block is both an
initiator and a target, such as the DMA controller example from Section 2.7.5, then there are two
complete instances of the port in an IP block. However, BVCI requests and responsesmust be
preserved in their respective order at any given port, whether that is an initiator or a target.

93

Modern SoCDesign

For BVCI core nets (Figure 3.6):

All IP blocks can support this interface.

There are separate request and response channels.

Data are valid if there is an overlap of req and ack.

The temporal decoupling of directions allows pipeline delays for crossing switch fabrics or crossing
CDs.

Sideband signals, such as interrupts, errors and resets, vary per block.

Two complete instances of the port are needed if the block is both an initiator and a target.

cmd[2:0]

cmdval
cmdack

eop

addr[31:0]
be[3:0]

wdata[31:0]

rspval

rerror
rdata[31:0]
reop

rspack

plen[7:0]

Command
channel

Response
channel

Command

Response

Figure 3.6 BVCI core nets. Arrows indicate signal directions on the initiator. All of these are reversed for the target

clk

cmd

cmdreq

cmdack

addr

wdata

plen

cmdeop

(implied) (implied)

Figure 3.7 BVCI protocol: Command phase timing diagram

BVCI supports burst transactions, in whichmultiple consecutive reads or writes are performed as a
single transaction with subsequent addresses being treated as offsets from the first address. Figure

94

Chapter 3 | SoC Interconnect

3.7 shows awrite transaction where three words are stored. The implied addresses maywrapmodulo
some pre-agreed basis, such as the cache line size. This allows a complete cache line to be retrieved,
but with the first-needed offset being served first. Because the standard synchronous handshake
allows back-to-back transactions without wasting clock cycles, there is no protocol-level performance
advantage to supporting a burst facility with this bus structure. However, target devices, especially
DRAM subsystems (Section 4.5), are highly optimised for burst operations. Hence, a burst must be
maintained as an ordered sequence over the interconnect.

Figure 3.8 shows a response to a read request that was also for three words.

Figure 3.8 BVCI protocol: Response phase timing diagram. Operations are qualified with the conjunction of req and ack. Response and acknowledge cycles
maintain their respective ordering. Bursts are common. Successive addressing may be implied

3.1.4 Ordered andUnordered Interconnects
Some initiators, particularly out-of-order CPU cores (Section 2.2) andmassively parallel accelerators
(Section 6.4), issuemultiple outstanding reads and can do useful work as soon as any of these are
serviced. Some targets, particularly DRAM, can perform better by servicing requests out of order.
Some bus fabrics, especially those withmultiple paths, can perform better if they are not constrained
to deliver messages in order. Thus, it is clear that an interconnect that supports an out-of-order
service is useful. However, there aremany occasions when orderingmust be controlled so that
sequential consistency is preserved (Section 4.5).

Importantly, if wemultiplex a pair of in-order busses onto a common bus, yet tag all of the traffic from
each bus on the common bus according to its in-order initiator, we have a tagged out-of-order bus.
This is illustrated in Figure 3.9. A transaction tag is a positive integer that associates either a
commandwith a response or a group of consecutive commandswith a group of consecutive responses
in the same order. The semantics are that for any given tag, the requests and replies must be kept in
order. The devices on the left may be separate initiator blocks, like processors andDMA controllers,
theymay be different load/store stations (Section 2.2) on a common IP block or, in theory, theymay be
anymix. For the targets on the right, there is no difference between demultiplexing to separate
in-order targets and using a single target that understands tags.

95

Modern SoCDesign

For BVCI core nets (Figure 3.6):

All IP blocks can support this interface.

There are separate request and response channels.

Data are valid if there is an overlap of req and ack.

The temporal decoupling of directions allows pipeline delays for crossing switch fabrics or crossing
CDs.

Sideband signals, such as interrupts, errors and resets, vary per block.

Two complete instances of the port are needed if the block is both an initiator and a target.

cmd[2:0]

cmdval
cmdack

eop

addr[31:0]
be[3:0]

wdata[31:0]

rspval

rerror
rdata[31:0]
reop

rspack

plen[7:0]

Command
channel

Response
channel

Command

Response

Figure 3.6 BVCI core nets. Arrows indicate signal directions on the initiator. All of these are reversed for the target

clk

cmd

cmdreq

cmdack

addr

wdata

plen

cmdeop

(implied) (implied)

Figure 3.7 BVCI protocol: Command phase timing diagram

BVCI supports burst transactions, in whichmultiple consecutive reads or writes are performed as a
single transaction with subsequent addresses being treated as offsets from the first address. Figure

94

Chapter 3 | SoC Interconnect

3.7 shows awrite transaction where three words are stored. The implied addresses maywrapmodulo
some pre-agreed basis, such as the cache line size. This allows a complete cache line to be retrieved,
but with the first-needed offset being served first. Because the standard synchronous handshake
allows back-to-back transactions without wasting clock cycles, there is no protocol-level performance
advantage to supporting a burst facility with this bus structure. However, target devices, especially
DRAM subsystems (Section 4.5), are highly optimised for burst operations. Hence, a burst must be
maintained as an ordered sequence over the interconnect.

Figure 3.8 shows a response to a read request that was also for three words.

Figure 3.8 BVCI protocol: Response phase timing diagram. Operations are qualified with the conjunction of req and ack. Response and acknowledge cycles
maintain their respective ordering. Bursts are common. Successive addressing may be implied

3.1.4 Ordered andUnordered Interconnects
Some initiators, particularly out-of-order CPU cores (Section 2.2) andmassively parallel accelerators
(Section 6.4), issuemultiple outstanding reads and can do useful work as soon as any of these are
serviced. Some targets, particularly DRAM, can perform better by servicing requests out of order.
Some bus fabrics, especially those withmultiple paths, can perform better if they are not constrained
to deliver messages in order. Thus, it is clear that an interconnect that supports an out-of-order
service is useful. However, there aremany occasions when orderingmust be controlled so that
sequential consistency is preserved (Section 4.5).

Importantly, if wemultiplex a pair of in-order busses onto a common bus, yet tag all of the traffic from
each bus on the common bus according to its in-order initiator, we have a tagged out-of-order bus.
This is illustrated in Figure 3.9. A transaction tag is a positive integer that associates either a
commandwith a response or a group of consecutive commandswith a group of consecutive responses
in the same order. The semantics are that for any given tag, the requests and replies must be kept in
order. The devices on the left may be separate initiator blocks, like processors andDMA controllers,
theymay be different load/store stations (Section 2.2) on a common IP block or, in theory, theymay be
anymix. For the targets on the right, there is no difference between demultiplexing to separate
in-order targets and using a single target that understands tags.

95

Modern SoCDesign

Bus 0

Bus 1

In-order

initiating

Device 0

In-order

initiating

Device 1

Virtual target 0

Virtual target 1

Bus 0
Mux Demux

Commands are now tagged

as they pass over main bus.

Requests and acknowledgements are out-of-order

in general, but in-order w.r.t. any given tag value.

Multiplexer tags transactions with source I/D

Demux demultiplexes on basis of tags.

Bus 1

Figure 3.9 Out-of-order bus formed from a pair of in-order busses with added tags (blue)

The tag sizemust be large enough to distinguish between different initiators that aremultiplexed
together and also to support themaximum number of differently numbered outstanding transactions
generated by an initiator. For an interconnect that maintains order within a tag value, any number of
transactions with a given number can be safely outstanding. The simplest management technique is
for each individual source to generate tags with a width sufficient to enumerate its number of
load/store stations and for the command tag width to be extended at eachmultiplexing point by
concatenating the source port number with the source’s tag. This is illustrated in Figure 3.10. In
demultiplexing stages, the tag widthmay be unchanged, with an end point preserving the widest form
of the tag to send back to the originator. The reverse approach provides simple demultiplexing of
responses back to the appropriate source. A tag will then never get reusedwhile it is in use because
each originating load/store station has a unique encoding and such a station will not issue a new
commandwhile it has a request outstanding.

s0s1s2s3Y
X

Initiator with 16 load/store stations
(requires four tag bits)

0 1

15

Tag at point A

s0s1s2s3x1 x0

s0s1s2s3x1 x0y1 y0

A

B
C

Tag at point B

Tag at point C

Figure 3.10 Augmenting the tag width through successive multiplexing stages

The tagmechanism just described is sufficient to correlate results to replies over an out-of-order bus.
However, to preserve sequential consistency (Section 4.5) between, say, separate load/store stations
on a CPU, which would have their own IDs, amemory fencemechanism is also needed. With so-called
weakmemory orderingmodels, the physical memory operates deterministically, but the
interconnect or memory controller allowsmessages to overtake each other. Fences, also known as
barriers, preserve RaW andWaWorderings: no transaction is allowed to overtake others in a way
that wouldmake it jump over a fence in the time domain. A programmermust insert fences in their

96

Chapter 3 | SoC Interconnect

software to sequence requests correctly to different addresses, as illustrated in Figure 4.17. In a
variant of theOCP/BVCI bus, tag numbers were used in a different way fromAXI: a fence was implied
when an initiator increased a tag number.

3.1.5 AMBAAXI Interconnect
The firstAdvanced eXtensible Interface (AXI) standard was defined by Arm in 2003. This marked a
move away from a conventional bus by defining the interface to a compatible IP block. It uses
multiphase transactions and hence, enables an arbitrary number of clock cycles to be consumed as
trafficmoves across the interconnect. The standard also hasmany other freedoms. For example, the
data bus width can change inside the interconnect (using a resizer Section 3.6) and the clock
frequency can vary, for either a harmonic or an asynchronous clock (Section 3.7.1).

As shown in Figure 3.11, one AXI port has five separate channels. Each channel has its own standard
synchronous handshaking using a contra-directional READY/VALID pair with all the other nets
running in the VALID direction and qualified by the conjunction of ready and valid on a clock edge.

BVCI has two independent channels, which is theminimum required for multiple in-flight
transactions. The number is increased in AXI by first completely separating the read andwrite
transactions into independent channel groups and second, by splitting the write group further using
separate address and data channels. Using separate channels for reads andwrites not only increases
the bandwidth owing to the spatial reuse principle (Section 3.2), it also tends to reduce the complexity
of the implementation of the logic overall, but at the expense of wiring area. The interface is simple
because the data aremoving in only one direction in each of the channels. No additional energy is
needed by the additional wiring area (principally two address busses instead of one), indeed the
number of transitions on the split address busses can typically be lower than on a shared bus owing to
the spatial locality of access.

The complete decoupling of the read andwrite aspects immediately raises the prospect of
uncontrolled RaWandWaR hazards and related sequential consistency problems (Section 4.5). These
hazards arise if themost recent data are not read back after a write has nominally occurred. The AXI
protocol lays down no ordering requirements between read andwrite transactions over the separate
channels. Same-address RaW/WaWhazards are generally handled in hardware, either by detecting
and stalling a request that is to the same address as an outstanding write or by serving it from the
write queue.

Tomaintain sequential consistency, fences have been deprecatedwithin the AXI specification because
fences aremore efficiently handled within the initiator. Supporting fences within the interconnect
requires a significant amount of state storage and goes against modern interconnect design
techniques in which components are designed to be simple so that they are easy to verify and can run
at a high frequency. Hence, for AXI systems, an initiator must wait for all outstanding responses to
come back before issuing a transaction on any of its load/store ports, which needs to be after a fence.

97

Modern SoCDesign

Bus 0

Bus 1

In-order

initiating

Device 0

In-order

initiating

Device 1

Virtual target 0

Virtual target 1

Bus 0
Mux Demux

Commands are now tagged

as they pass over main bus.

Requests and acknowledgements are out-of-order

in general, but in-order w.r.t. any given tag value.

Multiplexer tags transactions with source I/D

Demux demultiplexes on basis of tags.

Bus 1

Figure 3.9 Out-of-order bus formed from a pair of in-order busses with added tags (blue)

The tag sizemust be large enough to distinguish between different initiators that aremultiplexed
together and also to support themaximum number of differently numbered outstanding transactions
generated by an initiator. For an interconnect that maintains order within a tag value, any number of
transactions with a given number can be safely outstanding. The simplest management technique is
for each individual source to generate tags with a width sufficient to enumerate its number of
load/store stations and for the command tag width to be extended at eachmultiplexing point by
concatenating the source port number with the source’s tag. This is illustrated in Figure 3.10. In
demultiplexing stages, the tag widthmay be unchanged, with an end point preserving the widest form
of the tag to send back to the originator. The reverse approach provides simple demultiplexing of
responses back to the appropriate source. A tag will then never get reusedwhile it is in use because
each originating load/store station has a unique encoding and such a station will not issue a new
commandwhile it has a request outstanding.

s0s1s2s3Y
X

Initiator with 16 load/store stations
(requires four tag bits)

0 1

15

Tag at point A

s0s1s2s3x1 x0

s0s1s2s3x1 x0y1 y0

A

B
C

Tag at point B

Tag at point C

Figure 3.10 Augmenting the tag width through successive multiplexing stages

The tagmechanism just described is sufficient to correlate results to replies over an out-of-order bus.
However, to preserve sequential consistency (Section 4.5) between, say, separate load/store stations
on a CPU, which would have their own IDs, amemory fencemechanism is also needed. With so-called
weakmemory orderingmodels, the physical memory operates deterministically, but the
interconnect or memory controller allowsmessages to overtake each other. Fences, also known as
barriers, preserve RaW andWaWorderings: no transaction is allowed to overtake others in a way
that wouldmake it jump over a fence in the time domain. A programmermust insert fences in their

96

Chapter 3 | SoC Interconnect

software to sequence requests correctly to different addresses, as illustrated in Figure 4.17. In a
variant of theOCP/BVCI bus, tag numbers were used in a different way fromAXI: a fence was implied
when an initiator increased a tag number.

3.1.5 AMBAAXI Interconnect
The firstAdvanced eXtensible Interface (AXI) standard was defined by Arm in 2003. This marked a
move away from a conventional bus by defining the interface to a compatible IP block. It uses
multiphase transactions and hence, enables an arbitrary number of clock cycles to be consumed as
trafficmoves across the interconnect. The standard also hasmany other freedoms. For example, the
data bus width can change inside the interconnect (using a resizer Section 3.6) and the clock
frequency can vary, for either a harmonic or an asynchronous clock (Section 3.7.1).

As shown in Figure 3.11, one AXI port has five separate channels. Each channel has its own standard
synchronous handshaking using a contra-directional READY/VALID pair with all the other nets
running in the VALID direction and qualified by the conjunction of ready and valid on a clock edge.

BVCI has two independent channels, which is theminimum required for multiple in-flight
transactions. The number is increased in AXI by first completely separating the read andwrite
transactions into independent channel groups and second, by splitting the write group further using
separate address and data channels. Using separate channels for reads andwrites not only increases
the bandwidth owing to the spatial reuse principle (Section 3.2), it also tends to reduce the complexity
of the implementation of the logic overall, but at the expense of wiring area. The interface is simple
because the data aremoving in only one direction in each of the channels. No additional energy is
needed by the additional wiring area (principally two address busses instead of one), indeed the
number of transitions on the split address busses can typically be lower than on a shared bus owing to
the spatial locality of access.

The complete decoupling of the read andwrite aspects immediately raises the prospect of
uncontrolled RaWandWaR hazards and related sequential consistency problems (Section 4.5). These
hazards arise if themost recent data are not read back after a write has nominally occurred. The AXI
protocol lays down no ordering requirements between read andwrite transactions over the separate
channels. Same-address RaW/WaWhazards are generally handled in hardware, either by detecting
and stalling a request that is to the same address as an outstanding write or by serving it from the
write queue.

Tomaintain sequential consistency, fences have been deprecatedwithin the AXI specification because
fences aremore efficiently handled within the initiator. Supporting fences within the interconnect
requires a significant amount of state storage and goes against modern interconnect design
techniques in which components are designed to be simple so that they are easy to verify and can run
at a high frequency. Hence, for AXI systems, an initiator must wait for all outstanding responses to
come back before issuing a transaction on any of its load/store ports, which needs to be after a fence.

97

Modern SoCDesign

ARADDR[31:2]

RDATA[31:0]

WDATA[31:0]

AWADDR[31:2]

BRESP

AW-SIZE/LEN/BURST

WLAST

AR-SIZE/LEN/BURST

RRESP

WVALID

RREADY

RVALID

ARVALID

ARREADY

WREADY

RLAST

AWVALID

AWREADY

BREADY

BVALID

W
rit

e

In
iti

at
or

R
ea

d

In
iti

at
or

30

32

32

2

30

2

3+4+3

3+4+3

Figure 3.11 The baseline port structure for an A32D32 AXI standard initiator showing the five temporally floating channels, two for reads and three for
writes. Parity bits may be present on any of the busses. Writing an address and writing data operate close to lockstep for single-word writes, but are split to
support multi-word bursts. Signal directions are reversed for a target

The AMBAAXI and ACE specification includesmajor revisions (3, 4 and 5) and interface variants, e.g.
AXI4-Lite and ACE5-Lite, as summarised in Table 3.1. Each row in the table definesmultiple possible
forms due to further parametrisation being used to define the address, data, tag and other bit widths.
AXI can be usedwith a tag width (Section 3.1.4) of any size. A size of zero bits is allowed, which gives
an untagged port. The AXI3 and AXI4 protocols are very similar. Both support burst transfers.
However, for both reads andwrites, a burst transaction sends only one address to accompany
multiple data words, with the addresses incrementing according to one of several predefined
patterns. AXI4 extended themaximum number of data beats in a burst transaction from 16 to 256. A
beat is a clock cycle during which a data word is transferred. It also added aQoS dimension
(Section 4.3) and a richer set of commands and protection levels. The Lite variant of AXI4 is cut down,
as it has no tags or byte lanes and a burst size always of one beat. AXI5-Lite bridges the gap between
AXI5 and AXI4-Lite by permitting response reordering but with single-beat transactions.

98

Chapter 3 | SoC Interconnect

Table 3.1Major predefined AMBA AXI bus standards and profiles. Within each profile, there can be variations in address, data, tag and other bus widths per
instance

Profile Channels Other nets Description
AXI3 AR+R, AW+W+B Tag ID,WLanes Bursts 1–16 beats
AXI4 AR+R, AW+W+B Tag ID,WLanes, QoS Bursts 1–256 beats

AXI4-Lite AR+R, AW+W+B No burst transfers. No byte lanes
AXI4-Stream W Simplex. No addressing. Unrestricted length
AXI ACE All of AXI4 AC+CR+CD Cache coherency extensions
ACE5-Lite All of AXI4 AC+CR+CD Single beat. Out-of-order responses

AXI Coherency Extensions (ACE)
TheAXI Coherency Extensions (ACE) protocol extends AXI with three further channels to support
cache consistency. It defines themessages required on these channels to keepmultiple caches
consistent with each other, usingMESI-like protocols (Section 2.4.1). The new channels are:

1. AC: The snoop address channel is an input to a cachedmaster that provides the address and
associated control information for snoop transactions. This supports operations such as reading,
cleaning or invalidating lines. If the snoop hits a line in the cache, the linemay have to change state.
The type of snoop transaction informs the cachewhich states it is permitted to change to.

2. CR: The snoop response channel is an output channel from a cachedmaster that provides a
response to a snoop transaction. Every snoop transaction has a single response associated with it.
The snoop response indicates whether an associated data transfer is expected on the CD channel.

3. CD: The snoop data channel is an optional output channel that passes snoop data out from a
master. Typically, this occurs for a read or clean snoop transaction when themaster being snooped
has a copy of the data available to return.

With ACE, the AXI bus has evolved into a total of eight channels. As will be discussed in Section 3.4,
this is a bit cumbersome for a NoC. A protocol like AMBACHI (Section 3.4.5) is more appropriate,
since a single ‘link’ carries all the relevant information between one interconnected component and
the next. Havingmany channels is not necessarily bad (especially in low-leakage technology
Section 4.6.3): many channels meansmore nets, whichmeansmore bandwidth. Provided these nets
see reasonable utilisation, bridge or hub-based AXI remains a sensible interconnect system for
medium-complexity systems.

3.1.6 Directory-based Coherence
The snooping approach to cache consistency was presented in Section 2.4.1. For a single level of
caching, snooping suffers from a quadratic growth in energy as the number of initiators (cores) is
increased because on each cachemiss, all the other cachesmust be checked to see if they contain the
line in question. Moreover, the traffic load on a broadcast snoop bus grows linearly andwill eventually
saturate. One solution is to usemulti-level caches and another is to use a directory-based system.

99

Modern SoCDesign

ARADDR[31:2]

RDATA[31:0]

WDATA[31:0]

AWADDR[31:2]

BRESP

AW-SIZE/LEN/BURST

WLAST

AR-SIZE/LEN/BURST

RRESP

WVALID

RREADY

RVALID

ARVALID

ARREADY

WREADY

RLAST

AWVALID

AWREADY

BREADY

BVALID

W
rit

e

In
iti

at
or

R
ea

d

In
iti

at
or

30

32

32

2

30

2

3+4+3

3+4+3

Figure 3.11 The baseline port structure for an A32D32 AXI standard initiator showing the five temporally floating channels, two for reads and three for
writes. Parity bits may be present on any of the busses. Writing an address and writing data operate close to lockstep for single-word writes, but are split to
support multi-word bursts. Signal directions are reversed for a target

The AMBAAXI and ACE specification includesmajor revisions (3, 4 and 5) and interface variants, e.g.
AXI4-Lite and ACE5-Lite, as summarised in Table 3.1. Each row in the table definesmultiple possible
forms due to further parametrisation being used to define the address, data, tag and other bit widths.
AXI can be usedwith a tag width (Section 3.1.4) of any size. A size of zero bits is allowed, which gives
an untagged port. The AXI3 and AXI4 protocols are very similar. Both support burst transfers.
However, for both reads andwrites, a burst transaction sends only one address to accompany
multiple data words, with the addresses incrementing according to one of several predefined
patterns. AXI4 extended themaximum number of data beats in a burst transaction from 16 to 256. A
beat is a clock cycle during which a data word is transferred. It also added aQoS dimension
(Section 4.3) and a richer set of commands and protection levels. The Lite variant of AXI4 is cut down,
as it has no tags or byte lanes and a burst size always of one beat. AXI5-Lite bridges the gap between
AXI5 and AXI4-Lite by permitting response reordering but with single-beat transactions.

98

Chapter 3 | SoC Interconnect

Table 3.1Major predefined AMBA AXI bus standards and profiles. Within each profile, there can be variations in address, data, tag and other bus widths per
instance

Profile Channels Other nets Description
AXI3 AR+R, AW+W+B Tag ID,WLanes Bursts 1–16 beats
AXI4 AR+R, AW+W+B Tag ID,WLanes, QoS Bursts 1–256 beats

AXI4-Lite AR+R, AW+W+B No burst transfers. No byte lanes
AXI4-Stream W Simplex. No addressing. Unrestricted length
AXI ACE All of AXI4 AC+CR+CD Cache coherency extensions
ACE5-Lite All of AXI4 AC+CR+CD Single beat. Out-of-order responses

AXI Coherency Extensions (ACE)
TheAXI Coherency Extensions (ACE) protocol extends AXI with three further channels to support
cache consistency. It defines themessages required on these channels to keepmultiple caches
consistent with each other, usingMESI-like protocols (Section 2.4.1). The new channels are:

1. AC: The snoop address channel is an input to a cachedmaster that provides the address and
associated control information for snoop transactions. This supports operations such as reading,
cleaning or invalidating lines. If the snoop hits a line in the cache, the linemay have to change state.
The type of snoop transaction informs the cachewhich states it is permitted to change to.

2. CR: The snoop response channel is an output channel from a cachedmaster that provides a
response to a snoop transaction. Every snoop transaction has a single response associated with it.
The snoop response indicates whether an associated data transfer is expected on the CD channel.

3. CD: The snoop data channel is an optional output channel that passes snoop data out from a
master. Typically, this occurs for a read or clean snoop transaction when themaster being snooped
has a copy of the data available to return.

With ACE, the AXI bus has evolved into a total of eight channels. As will be discussed in Section 3.4,
this is a bit cumbersome for a NoC. A protocol like AMBACHI (Section 3.4.5) is more appropriate,
since a single ‘link’ carries all the relevant information between one interconnected component and
the next. Havingmany channels is not necessarily bad (especially in low-leakage technology
Section 4.6.3): many channels meansmore nets, whichmeansmore bandwidth. Provided these nets
see reasonable utilisation, bridge or hub-based AXI remains a sensible interconnect system for
medium-complexity systems.

3.1.6 Directory-based Coherence
The snooping approach to cache consistency was presented in Section 2.4.1. For a single level of
caching, snooping suffers from a quadratic growth in energy as the number of initiators (cores) is
increased because on each cachemiss, all the other cachesmust be checked to see if they contain the
line in question. Moreover, the traffic load on a broadcast snoop bus grows linearly andwill eventually
saturate. One solution is to usemulti-level caches and another is to use a directory-based system.

99

Modern SoCDesign

Havingmultiple levels of cache, either with successively higher density or lower performance, is good
in terms of energy use, as is well known and demonstrated in Section 6.6.1. In addition, it also helps
with saturation of the snoop bus. Having caches arranged in an inclusive cache tree is also good. The
root of the tree is themainmemory. It is accessed by some subsystems, each with a local cache and
with snooping used between these caches. However, the structure repeats inside each subsystem
with the snooping being localised to each subsystem. Nesting this structure generates the tree. Every
cache is inclusive, so that if a line is present, it is also present in every other cache on the path to the
root. Suppose that all the caches have a good hit rate of 95 per cent and a front-to-back clock ratio
of 2 to 1 and that the bus width increases with line size. In this case, they will have a transaction rate
of 10 to 1 between their front and back sides. Thus, having 4 or 8 subsystems in a snoop group is quite
feasible.

Although cache trees scale quite well in terms of coherency andmain data bandwidth, their latency
increases with the tree depth. The rapid exchange of cache lines between initiators that are a long
way apart in the tree is slow. This use case can occur, dependant on operating system policy and
software structure. The number of feasible RAMdensities and clock frequencies in a silicon process is
typically at most three, so havingmore than three levels of caching to span the gap is not necessary.
However, thememory capacity and bandwidthmust be continually increased due to the ITRS
roadmap andmarket pressure. With the end of Dennard scaling (Section 8.2), the processor clock
frequency is no longer the driving force, so that the number of cores on a SoC has had to increase.
Havingmore cores motivates a wider cache tree. However, using only three or four levels of cache
tree requires awider fanning out at each level, which is not possible since a buswider than a cache line
does not help, and hence, system growth is limited.

Snooping-based coherency can be extendedwith a snoop filter [4]. A snoop filter block reduces the
amount of snoop traffic by not forwarding consistencymessages that are clearly redundant. The filter
can operate in an approximatemanner, provided that it does not remove essential messages. Various
forms of approximation are possible, including those based onmemory addresses or replicated data
structures that are not necessarily up-to-date. In general, different cores can havewidely disjoint
memory footprints, which can be distinguished adequately just by looking at a few bits of the physical
address. Combining several different bit fields or hashes from the physical address gives theBloom
filter an advantage [5]. Like a set-associative filter, a Bloom filter overcomes the birthday paradox
(Section 2.4) by using a number of parallel hash functions, so that the chances of an entry aliasing with
another under all the functions is reasonably low.

Themain alternative approach is to usemultiple independent caches under directory-based
coherence. Thememorymap is hashed to some directory servers using bit-fieldmasking. TheMOESI
status and relevant cache list for a cache line are stored in its directory server. This approach is ideal
for NoC-basedmultiprocessor systems. Cachemisses are served by sending an inquiry to the
appropriate directory. For a simple read, the server can send its reply to the relevant cache, which can
then forward on the data to the reader, minimising latency. Every situation requires a bespoke set of
messages to be exchanged, but these are relatively straightforward to implement. The internal data
structure of a directory needs to be designed carefully to handle cases where a large number of

100

Chapter 3 | SoC Interconnect

caches hold the same line. Solutions to this problemwere presented in the seminal paper ‘An
economical solution to the cache coherence problem’ [6].

One option is tomake an approximate directory. For example, instead of keeping a list of all the caches
that hold a line, the directory records one cache, which has the line, and a flag, which indicates
whether the line is also in another cache somewhere. If the flag is set, then all cacheswould need to be
snooped. This can be an efficient implementation in a common use case wheremost lines reside in
only one processor’s cache at a time. However, directories rely on caches indicating when they
allocate and evict lines, whereas with snooping, a clean line can be silently evicted. So, directories
suffer from an overhead in signalling these events.

With themove from defining complete bus standards to just standardising the interconnect port on
an IP block, a wide variety of innovative hybrids of snooping and directory-based approaches can be
implementedwithout upsetting other aspects of the system design. Open-standard protocols, like
ACE and CHI, enable innovations to bemade in cache structures and offer a better degree of
future-proofing.

3.1.7 Further BusOperations
The list of bus operations in Section 3.1 includedmuchmore than just simple single-word and burst
read andwrite transactions. Today, the vocabulary of operations has expanded, with an opcode space
of 32 possible commands becoming commonplace.

Load-linked and Store-conditional Instructions
Older generation atomic instructions, such as test-and-set or compare-and-swap, involve both a read
and awrite operation. If implemented as separate bus transactions, to avoid pre-emption, the
relevant memory system had to be locked for the duration. This restricted the concurrency and could
leave amemory bank permanently locked under certain transient failures.

A new approach to providing exclusion between load and store instructions to the sameword is
provided by the load-linked (LL) and store-conditional (SC) instruction pair. These can be equivalently
implemented in the cache system, the TLB or thememory system. The semantics for amemory-based
implementation are that an initiator (CPU core) performs an LL on amemory address. As with a
normal load, this retrieves thememory contents at that location, but as a side effect, it also stores the
initiator identifier (core number) and the address, rounded to some number of bytes, in some hidden
register pair associated with thememory region or bank concerned. The same core then performs an
SC to the same address, perhaps attempting to acquire amutex by placing a onewhere a zero was
found (the test-and-set operation). However, hardwarematchingmakes sure the SC succeeds only if
the initiator’s identifier and the same address remain held in the hidden pair. When SC fails, no write is
made and the initiator is given an appropriate return code. In the Arm architecture, the success or fail
return code is loaded into an extra register specified as an operand to the strex instruction.

If any other initiator attempts anymemory access on the same address, the first core’s ID is removed
and replacedwith a null value. Similarly, if any other initiator attempts an LL instruction on the region

101

Modern SoCDesign

Havingmultiple levels of cache, either with successively higher density or lower performance, is good
in terms of energy use, as is well known and demonstrated in Section 6.6.1. In addition, it also helps
with saturation of the snoop bus. Having caches arranged in an inclusive cache tree is also good. The
root of the tree is themainmemory. It is accessed by some subsystems, each with a local cache and
with snooping used between these caches. However, the structure repeats inside each subsystem
with the snooping being localised to each subsystem. Nesting this structure generates the tree. Every
cache is inclusive, so that if a line is present, it is also present in every other cache on the path to the
root. Suppose that all the caches have a good hit rate of 95 per cent and a front-to-back clock ratio
of 2 to 1 and that the bus width increases with line size. In this case, they will have a transaction rate
of 10 to 1 between their front and back sides. Thus, having 4 or 8 subsystems in a snoop group is quite
feasible.

Although cache trees scale quite well in terms of coherency andmain data bandwidth, their latency
increases with the tree depth. The rapid exchange of cache lines between initiators that are a long
way apart in the tree is slow. This use case can occur, dependant on operating system policy and
software structure. The number of feasible RAMdensities and clock frequencies in a silicon process is
typically at most three, so havingmore than three levels of caching to span the gap is not necessary.
However, thememory capacity and bandwidthmust be continually increased due to the ITRS
roadmap andmarket pressure. With the end of Dennard scaling (Section 8.2), the processor clock
frequency is no longer the driving force, so that the number of cores on a SoC has had to increase.
Havingmore cores motivates a wider cache tree. However, using only three or four levels of cache
tree requires awider fanning out at each level, which is not possible since a buswider than a cache line
does not help, and hence, system growth is limited.

Snooping-based coherency can be extendedwith a snoop filter [4]. A snoop filter block reduces the
amount of snoop traffic by not forwarding consistencymessages that are clearly redundant. The filter
can operate in an approximatemanner, provided that it does not remove essential messages. Various
forms of approximation are possible, including those based onmemory addresses or replicated data
structures that are not necessarily up-to-date. In general, different cores can havewidely disjoint
memory footprints, which can be distinguished adequately just by looking at a few bits of the physical
address. Combining several different bit fields or hashes from the physical address gives theBloom
filter an advantage [5]. Like a set-associative filter, a Bloom filter overcomes the birthday paradox
(Section 2.4) by using a number of parallel hash functions, so that the chances of an entry aliasing with
another under all the functions is reasonably low.

Themain alternative approach is to usemultiple independent caches under directory-based
coherence. Thememorymap is hashed to some directory servers using bit-fieldmasking. TheMOESI
status and relevant cache list for a cache line are stored in its directory server. This approach is ideal
for NoC-basedmultiprocessor systems. Cachemisses are served by sending an inquiry to the
appropriate directory. For a simple read, the server can send its reply to the relevant cache, which can
then forward on the data to the reader, minimising latency. Every situation requires a bespoke set of
messages to be exchanged, but these are relatively straightforward to implement. The internal data
structure of a directory needs to be designed carefully to handle cases where a large number of

100

Chapter 3 | SoC Interconnect

caches hold the same line. Solutions to this problemwere presented in the seminal paper ‘An
economical solution to the cache coherence problem’ [6].

One option is tomake an approximate directory. For example, instead of keeping a list of all the caches
that hold a line, the directory records one cache, which has the line, and a flag, which indicates
whether the line is also in another cache somewhere. If the flag is set, then all cacheswould need to be
snooped. This can be an efficient implementation in a common use case wheremost lines reside in
only one processor’s cache at a time. However, directories rely on caches indicating when they
allocate and evict lines, whereas with snooping, a clean line can be silently evicted. So, directories
suffer from an overhead in signalling these events.

With themove from defining complete bus standards to just standardising the interconnect port on
an IP block, a wide variety of innovative hybrids of snooping and directory-based approaches can be
implementedwithout upsetting other aspects of the system design. Open-standard protocols, like
ACE and CHI, enable innovations to bemade in cache structures and offer a better degree of
future-proofing.

3.1.7 Further BusOperations
The list of bus operations in Section 3.1 includedmuchmore than just simple single-word and burst
read andwrite transactions. Today, the vocabulary of operations has expanded, with an opcode space
of 32 possible commands becoming commonplace.

Load-linked and Store-conditional Instructions
Older generation atomic instructions, such as test-and-set or compare-and-swap, involve both a read
and awrite operation. If implemented as separate bus transactions, to avoid pre-emption, the
relevant memory system had to be locked for the duration. This restricted the concurrency and could
leave amemory bank permanently locked under certain transient failures.

A new approach to providing exclusion between load and store instructions to the sameword is
provided by the load-linked (LL) and store-conditional (SC) instruction pair. These can be equivalently
implemented in the cache system, the TLB or thememory system. The semantics for amemory-based
implementation are that an initiator (CPU core) performs an LL on amemory address. As with a
normal load, this retrieves thememory contents at that location, but as a side effect, it also stores the
initiator identifier (core number) and the address, rounded to some number of bytes, in some hidden
register pair associated with thememory region or bank concerned. The same core then performs an
SC to the same address, perhaps attempting to acquire amutex by placing a onewhere a zero was
found (the test-and-set operation). However, hardwarematchingmakes sure the SC succeeds only if
the initiator’s identifier and the same address remain held in the hidden pair. When SC fails, no write is
made and the initiator is given an appropriate return code. In the Arm architecture, the success or fail
return code is loaded into an extra register specified as an operand to the strex instruction.

If any other initiator attempts anymemory access on the same address, the first core’s ID is removed
and replacedwith a null value. Similarly, if any other initiator attempts an LL instruction on the region

101

Modern SoCDesign

of addresses that shares the hidden register pair, the first core’s ID is overwritten by the new core’s ID.
Either way, the LL/SC sequence fails for the first core. This is called optimistic concurrency control. It
requires clients to retry on failure. Another possible problem is periods of livelock, during which two
ormore clients compete for the samemutex, each causing another to fail and retry. In a
well-engineered system, failure should be rare and causeminimal overhead.

Rather than being implemented in thememory as described, the LL/SCmechanisms can be efficiently
implemented in the data cache or address TLBwhere present (but not in microcontrollers for
instance). A data cache implementation of LL loads a cache line as usual, but the line is placed in the
MOESI ‘exclusive’ state (Section 2.4.1). The core IDmay be intrinsic to the physical cache slot or may
already be held for a shared L2 cache as part of the exclusive tagging. Likewise, the effective address
is in the cache tag, save for the last few bits, which will alias. Existing coherencymechanisms, such as
snoop requests, can then be used to erase the exclusive state should another core attempt to access
the samememory location. Using C structs with padding, or whatever, the programmer should pad
out mutex and semaphore variables so that they do not alias by sharing a cache line. Sharing would
lead to unnecessary SC failures.

Atomic Interconnect Effects
LL/SC is one option for atomic operations. Concurrency control is tricky because an operation is
performed at the initiator but needs to have the semantics of an atomic operation at the target. The
obvious alternative is to implement the atomic operation close to the actual storage. This is called
near-data processing (NDP), and often has the advantage that a computation can be performedwith
less datamovement, which is the greatest energy user in modern VLSI.

Many atomic operations have hazard-free and commutable effects. By ‘effects’, wemean side effects:
i.e. imperativemutations of the surrounding state. By ‘hazard-free’ and ‘commutable’, wemean that
the order of application is unimportant. For an effect to be commutable, the operator does not need
to be commutative since there is no loss of control of operand order. Instead, the operator needs to be
associative and cumulative. Standard far atomic operations include XOR, MAX, MIN, ADD, BIT-CLR and
BIT-SET. Each of thesemutates a location held in memory using an immediate operand. Increment,
decrement and subtract can all be implemented via the generic ADD command. There can be both
signed and unsigned variants of MAX and MIN. The final result frommost sequences of these commands
is the same, regardless of the order in which the sequence is applied. However, for instance, BIT-SET
and ADD cannot be permuted in a sequence, so effects reside in classes within which their order is
unimportant. Moreover, test-and-set (or compare-and-swap) operations, despite being atomic, are
not commutable: they not only cause side effects, but they also return a result that alters the caller’s
behaviour.

A simple yet useful atomic operation is a multi-word read or write. If write data uses a separate
channel from thewrite command and address, as is the case with AXI and CHI, a store zero or
multi-wordmemory clear operation can be usefully implemented. This does not need an operation on
the write data channel.

102

Chapter 3 | SoC Interconnect

Erasure Data Channels and Poison
Within a SoC, data can be corrupted by a variety of effects, such as nearby electric sparks or atomic
radiation, which can cause a single-event upset (SEU) (Section 8.2.1). This is typically detectedwhen a
parity or an error-correcting code (ECC) check fails to tally properly. An automatic repeat request
(ARQ) is typically usedwhen errors are detected by an on-chip interconnect. This results in the
initiator reattempting the transaction. For large burst transfers or streaming channels, either the
latency overhead from a retry is intolerable or retries are infeasible. Forward error correction and
error concealment are then the only possible options. ARQ is also occasionally known as backward
error correction.

With forward error correction (FEC), check digits are added to the data such that if a small amount of
data is corrupt, any errors can be found and corrected from the redundant information. One of the
most common FEC techniques isReed–Solomon coding. The additional check digits are very easy to
generate in hardware using shift registers and XOR gates. Checking and correcting are also relatively
easy for an erasure channel. In an erasure channel, the location of corrupt data aremarked. These
parts of the data are treated simply as beingmissing, instead of being corrupt. One technique for
marking erased data uses poison bits. For instance, in the AXI standard, for each 64bits of a data bus,
an additional poison bit may be conveyed tomark a data erasure. Clearly, it is better to check the data
near the final receiver than to check it close to the source and then convey the poison flags a long
distance, as the poison flagsmay become corrupt.

If data have errors to the point where these cannot be corrected or if no FEC check information is
present, error concealment is used instead. This is widely used for audio and video data.
Concealment techniques typically repeat the last accurately conveyed data or fall back to a
lower-resolution copy that was also conveyed in case of error. However, concealment is
application-specific and should not be embodied in general-purpose hardware.

Persistent Operations
When a non-volatile store is used for secondary storage, such as SSD (Section 2.6.1
and Section 2.6.8), memory transfers aremade by a specific device driver as part of the operating
system’s file system. However, increasingly, especially in smartphones and embedded systems,
non-volatile memory is used as the primary store and operated on, via the cache hierarchy, by the
everyday instruction fetch and load/store operations. Eachmemory location has a point in the
hierarchy at which data can be relied upon to be persistent when power is removed. This is known as
the point of persistence (PoP). A write instruction that is supposed to update a persistent store will
often be buffered (Section 2.4). This improves performance in general and also reduces write wear on
memories that have a limited write lifetime (Section 2.6.8). A persistent write transaction is a write
that flushes itself to the PoP. It is similar to the sync system call in an operating system, which results
in softwarewriting out the buffer cache to disk. In contrast, a persistent write transaction operates on
the primary store and the implementation is in hardware: write buffers and dirty cache lines are
propagated to their persistent store.

103

Modern SoCDesign

of addresses that shares the hidden register pair, the first core’s ID is overwritten by the new core’s ID.
Either way, the LL/SC sequence fails for the first core. This is called optimistic concurrency control. It
requires clients to retry on failure. Another possible problem is periods of livelock, during which two
ormore clients compete for the samemutex, each causing another to fail and retry. In a
well-engineered system, failure should be rare and causeminimal overhead.

Rather than being implemented in thememory as described, the LL/SCmechanisms can be efficiently
implemented in the data cache or address TLBwhere present (but not in microcontrollers for
instance). A data cache implementation of LL loads a cache line as usual, but the line is placed in the
MOESI ‘exclusive’ state (Section 2.4.1). The core IDmay be intrinsic to the physical cache slot or may
already be held for a shared L2 cache as part of the exclusive tagging. Likewise, the effective address
is in the cache tag, save for the last few bits, which will alias. Existing coherencymechanisms, such as
snoop requests, can then be used to erase the exclusive state should another core attempt to access
the samememory location. Using C structs with padding, or whatever, the programmer should pad
out mutex and semaphore variables so that they do not alias by sharing a cache line. Sharing would
lead to unnecessary SC failures.

Atomic Interconnect Effects
LL/SC is one option for atomic operations. Concurrency control is tricky because an operation is
performed at the initiator but needs to have the semantics of an atomic operation at the target. The
obvious alternative is to implement the atomic operation close to the actual storage. This is called
near-data processing (NDP), and often has the advantage that a computation can be performedwith
less datamovement, which is the greatest energy user in modern VLSI.

Many atomic operations have hazard-free and commutable effects. By ‘effects’, wemean side effects:
i.e. imperativemutations of the surrounding state. By ‘hazard-free’ and ‘commutable’, wemean that
the order of application is unimportant. For an effect to be commutable, the operator does not need
to be commutative since there is no loss of control of operand order. Instead, the operator needs to be
associative and cumulative. Standard far atomic operations include XOR, MAX, MIN, ADD, BIT-CLR and
BIT-SET. Each of thesemutates a location held in memory using an immediate operand. Increment,
decrement and subtract can all be implemented via the generic ADD command. There can be both
signed and unsigned variants of MAX and MIN. The final result frommost sequences of these commands
is the same, regardless of the order in which the sequence is applied. However, for instance, BIT-SET
and ADD cannot be permuted in a sequence, so effects reside in classes within which their order is
unimportant. Moreover, test-and-set (or compare-and-swap) operations, despite being atomic, are
not commutable: they not only cause side effects, but they also return a result that alters the caller’s
behaviour.

A simple yet useful atomic operation is a multi-word read or write. If write data uses a separate
channel from thewrite command and address, as is the case with AXI and CHI, a store zero or
multi-wordmemory clear operation can be usefully implemented. This does not need an operation on
the write data channel.

102

Chapter 3 | SoC Interconnect

Erasure Data Channels and Poison
Within a SoC, data can be corrupted by a variety of effects, such as nearby electric sparks or atomic
radiation, which can cause a single-event upset (SEU) (Section 8.2.1). This is typically detectedwhen a
parity or an error-correcting code (ECC) check fails to tally properly. An automatic repeat request
(ARQ) is typically usedwhen errors are detected by an on-chip interconnect. This results in the
initiator reattempting the transaction. For large burst transfers or streaming channels, either the
latency overhead from a retry is intolerable or retries are infeasible. Forward error correction and
error concealment are then the only possible options. ARQ is also occasionally known as backward
error correction.

With forward error correction (FEC), check digits are added to the data such that if a small amount of
data is corrupt, any errors can be found and corrected from the redundant information. One of the
most common FEC techniques isReed–Solomon coding. The additional check digits are very easy to
generate in hardware using shift registers and XOR gates. Checking and correcting are also relatively
easy for an erasure channel. In an erasure channel, the location of corrupt data aremarked. These
parts of the data are treated simply as beingmissing, instead of being corrupt. One technique for
marking erased data uses poison bits. For instance, in the AXI standard, for each 64bits of a data bus,
an additional poison bit may be conveyed tomark a data erasure. Clearly, it is better to check the data
near the final receiver than to check it close to the source and then convey the poison flags a long
distance, as the poison flagsmay become corrupt.

If data have errors to the point where these cannot be corrected or if no FEC check information is
present, error concealment is used instead. This is widely used for audio and video data.
Concealment techniques typically repeat the last accurately conveyed data or fall back to a
lower-resolution copy that was also conveyed in case of error. However, concealment is
application-specific and should not be embodied in general-purpose hardware.

Persistent Operations
When a non-volatile store is used for secondary storage, such as SSD (Section 2.6.1
and Section 2.6.8), memory transfers aremade by a specific device driver as part of the operating
system’s file system. However, increasingly, especially in smartphones and embedded systems,
non-volatile memory is used as the primary store and operated on, via the cache hierarchy, by the
everyday instruction fetch and load/store operations. Eachmemory location has a point in the
hierarchy at which data can be relied upon to be persistent when power is removed. This is known as
the point of persistence (PoP). A write instruction that is supposed to update a persistent store will
often be buffered (Section 2.4). This improves performance in general and also reduces write wear on
memories that have a limited write lifetime (Section 2.6.8). A persistent write transaction is a write
that flushes itself to the PoP. It is similar to the sync system call in an operating system, which results
in softwarewriting out the buffer cache to disk. In contrast, a persistent write transaction operates on
the primary store and the implementation is in hardware: write buffers and dirty cache lines are
propagated to their persistent store.

103

Modern SoCDesign

CacheMaintenanceOperations
Normally, the caches present in amemory system are designed to offer transparent performance
gains without programmers or the software being aware. An interconnect carries various forms of
cachemaintenance operation (CMO). These aremostly generated automatically by hardware, such
as an evictionmessage between caches when a line needs to bemoved to the exclusive state.
However, others are generated explicitly by software. For instance, instruction cache coherence is not
generally implemented in hardware, so with self-modifying code, such as when a dynamically linked
library is loaded by the operating system loader, an instruction cache flush CMOmust be issued.

A remote cachewrite or cache stash enables an initiator to update the local cache of another
component [7]. This is essentially a store instruction, issued by one core, that behaves as though it was
issued by another. In simple terms, it does not matter which core issues a store, given that it is issued
at least somewhere, since ultimately the target address will be updated accordingly. However, due to
write buffering, as discussed above, a store is often not written out to its ultimate destination,
especially if another store writes fresher data before the writeback occurs. In many inter-core
communication patterns, the cachewould behavemuch better if the core that is to receive amessage
had stored it in the first place. This is what a remote cachewrite enables. The data that the receiver
wants to examine is already in its cache. The receiver remains free to overwrite it or ignore it, or
anything in between. Often, nomainmemory traffic is needed to support the complete transaction.

Alternatively TranslatedOperations
A simple SoCmay have virtual address spaces for each core and one homogeneous physical address
space for everything else. In more complex designs, theMMU(s) may bewithin the interconnect and
multiple address spacesmay share the same physical bus segment, especially in a NoC. A common
requirement is for a core to issue a load or store instruction that is not translated or which is
translated with amapping that is not the current mapping of that core. A common example is a
user-space linked list in an operating system kernel or a smart DMA engine. Hence, an interconnect
must support various alternatively translated transactions.

It is common for a system to employ distributedMMUs using a common set of translations. This
enables a task to run seamlessly on any one of a set of processors. MMUs cache translations in their
local TLBs, fetching a translation frommemory only if it is not present in their TLB. If a change to a
page table must be applied to all MMUs, then these TLB entries must be invalidated.

Peripheral ProbeOperations
The job of allocating programmed-I/O (PIO) base addresses (Section 1.1.3) for each peripheral is not
very difficult to automate for a single SoC. However, for a family of similar products, whichmay have
evolved over decades, and for multiple release of the operating system, static management of the
memorymap is cumbersome. For the cost of very little logic, it is possible to support dynamic device
discovery so that a software build can find the I/O devices present on the platform it hits. A variety of
techniques is possible, including putting a device data sheet in a ROMat a well-known location.
However, this cannot easily copewith pluggable upgrades. If a peripheral’s internal register space
starts with a few read-only locations, these can easily contain themodel and version number of that IP

104

Chapter 3 | SoC Interconnect

block. Theymight even contain a URL for downloading the device driver. This solves the peripheral
identification problem. However, a boot-time prober or hardware abstraction layer (HAL) needs a
lightweight presence-detect read operation so that it can attempt to read the identifying information
from likely places. Instead of a bus-error interrupt being raised in response to reading from an
undecoded address space, a probe read instruction will return a well-known value, such as
0xDEADBEEF.

NoCMaintenanceOperations
Most NoC designs require a certain level of management by a control processor. Although PIO to
dedicated register files is always the preferred interface for low-level management and configuration,
some configurationmay be required before everyday PIO can operate. Operationsmay be needed to
establish routingmaps (Section 3.4.1) and flow control credit may need to be distributedmanually
(Section 3.4.4). Null transactions that have no response and null responses that have no command are
also commonly needed. These can be used to return one spare credit to a destination node.

3.2 Basic Interconnect Topologies
In an ideal SoC design flow, the topology of the interconnect should be one of the last high-level
design decisions. The design should be automated or semi-automated from a traffic flowmatrix
collected from high-level models. Once the topology is chosen, a system interconnect generator can
create all of the RTL, which contains all the component IP blocks and fabric IP blocks (such as bus
adaptors and bus bridges) (Section 6.8.2). In this section, we review basic topologies that use
arbitrated busses and bus bridges. NoC topologies will be considered in Section 3.5.

The bus in early microcomputers (Section 1.1.3) was a true bus in the sense that data could get on and
off at multiple places. SoCs do not use tri-states, but, as mentioned earlier, we still use the term ‘bus’
to describe the point-to-point connections used today between IP blocks. OurMSOC1 protocol
(Figure 1.5) is more practical because there are separate read andwrite data busses.

One feature that largely remains from the older definition is a lack of spatial reuse. Spatial reuse
occurs when different busses are simultaneously active with different transactions. For instance, a
traditional 32-bit data bus with a clock frequency of 100MHz can convey 400MB/s. Owing to the
original tri-state nature, such a bus is half-duplex, meaning that reading andwriting cannot happen
simultaneously. The total read andwrite bandwidth is limited to 400MB/s. Today’s SoC busses are
largely full-duplex, with separate nets carrying the read andwrite data, so the throughput would
approach 800MB/s if there were an evenmix of loads and stores. (In reality, the store ratemight
typically be 25 per cent or less of all transactions.) In all cases, as more devices are attached to a bus,
sharing reduces the average amount of bandwidth available per device. This is in contrast to the
switched networks we present later (Section 3.2.3), which enable genuine spatial reuse of the data
bus segments. With NoCs (Section 3.5), the available bandwidth increases sincemore of the
interconnect is deployed.

In contrast to a traditional PCB-level bus, interrupt signals do not need to be considered alongside bus
topologies. In a small to medium-sized SoC, they can just be dedicated wires running from device to

105

Modern SoCDesign

CacheMaintenanceOperations
Normally, the caches present in amemory system are designed to offer transparent performance
gains without programmers or the software being aware. An interconnect carries various forms of
cachemaintenance operation (CMO). These aremostly generated automatically by hardware, such
as an evictionmessage between caches when a line needs to bemoved to the exclusive state.
However, others are generated explicitly by software. For instance, instruction cache coherence is not
generally implemented in hardware, so with self-modifying code, such as when a dynamically linked
library is loaded by the operating system loader, an instruction cache flush CMOmust be issued.

A remote cachewrite or cache stash enables an initiator to update the local cache of another
component [7]. This is essentially a store instruction, issued by one core, that behaves as though it was
issued by another. In simple terms, it does not matter which core issues a store, given that it is issued
at least somewhere, since ultimately the target address will be updated accordingly. However, due to
write buffering, as discussed above, a store is often not written out to its ultimate destination,
especially if another store writes fresher data before the writeback occurs. In many inter-core
communication patterns, the cachewould behavemuch better if the core that is to receive amessage
had stored it in the first place. This is what a remote cachewrite enables. The data that the receiver
wants to examine is already in its cache. The receiver remains free to overwrite it or ignore it, or
anything in between. Often, nomainmemory traffic is needed to support the complete transaction.

Alternatively TranslatedOperations
A simple SoCmay have virtual address spaces for each core and one homogeneous physical address
space for everything else. In more complex designs, theMMU(s) may bewithin the interconnect and
multiple address spacesmay share the same physical bus segment, especially in a NoC. A common
requirement is for a core to issue a load or store instruction that is not translated or which is
translated with amapping that is not the current mapping of that core. A common example is a
user-space linked list in an operating system kernel or a smart DMA engine. Hence, an interconnect
must support various alternatively translated transactions.

It is common for a system to employ distributedMMUs using a common set of translations. This
enables a task to run seamlessly on any one of a set of processors. MMUs cache translations in their
local TLBs, fetching a translation frommemory only if it is not present in their TLB. If a change to a
page table must be applied to all MMUs, then these TLB entries must be invalidated.

Peripheral ProbeOperations
The job of allocating programmed-I/O (PIO) base addresses (Section 1.1.3) for each peripheral is not
very difficult to automate for a single SoC. However, for a family of similar products, whichmay have
evolved over decades, and for multiple release of the operating system, static management of the
memorymap is cumbersome. For the cost of very little logic, it is possible to support dynamic device
discovery so that a software build can find the I/O devices present on the platform it hits. A variety of
techniques is possible, including putting a device data sheet in a ROMat a well-known location.
However, this cannot easily copewith pluggable upgrades. If a peripheral’s internal register space
starts with a few read-only locations, these can easily contain themodel and version number of that IP

104

Chapter 3 | SoC Interconnect

block. Theymight even contain a URL for downloading the device driver. This solves the peripheral
identification problem. However, a boot-time prober or hardware abstraction layer (HAL) needs a
lightweight presence-detect read operation so that it can attempt to read the identifying information
from likely places. Instead of a bus-error interrupt being raised in response to reading from an
undecoded address space, a probe read instruction will return a well-known value, such as
0xDEADBEEF.

NoCMaintenanceOperations
Most NoC designs require a certain level of management by a control processor. Although PIO to
dedicated register files is always the preferred interface for low-level management and configuration,
some configurationmay be required before everyday PIO can operate. Operationsmay be needed to
establish routingmaps (Section 3.4.1) and flow control credit may need to be distributedmanually
(Section 3.4.4). Null transactions that have no response and null responses that have no command are
also commonly needed. These can be used to return one spare credit to a destination node.

3.2 Basic Interconnect Topologies
In an ideal SoC design flow, the topology of the interconnect should be one of the last high-level
design decisions. The design should be automated or semi-automated from a traffic flowmatrix
collected from high-level models. Once the topology is chosen, a system interconnect generator can
create all of the RTL, which contains all the component IP blocks and fabric IP blocks (such as bus
adaptors and bus bridges) (Section 6.8.2). In this section, we review basic topologies that use
arbitrated busses and bus bridges. NoC topologies will be considered in Section 3.5.

The bus in early microcomputers (Section 1.1.3) was a true bus in the sense that data could get on and
off at multiple places. SoCs do not use tri-states, but, as mentioned earlier, we still use the term ‘bus’
to describe the point-to-point connections used today between IP blocks. OurMSOC1 protocol
(Figure 1.5) is more practical because there are separate read andwrite data busses.

One feature that largely remains from the older definition is a lack of spatial reuse. Spatial reuse
occurs when different busses are simultaneously active with different transactions. For instance, a
traditional 32-bit data bus with a clock frequency of 100MHz can convey 400MB/s. Owing to the
original tri-state nature, such a bus is half-duplex, meaning that reading andwriting cannot happen
simultaneously. The total read andwrite bandwidth is limited to 400MB/s. Today’s SoC busses are
largely full-duplex, with separate nets carrying the read andwrite data, so the throughput would
approach 800MB/s if there were an evenmix of loads and stores. (In reality, the store ratemight
typically be 25 per cent or less of all transactions.) In all cases, as more devices are attached to a bus,
sharing reduces the average amount of bandwidth available per device. This is in contrast to the
switched networks we present later (Section 3.2.3), which enable genuine spatial reuse of the data
bus segments. With NoCs (Section 3.5), the available bandwidth increases sincemore of the
interconnect is deployed.

In contrast to a traditional PCB-level bus, interrupt signals do not need to be considered alongside bus
topologies. In a small to medium-sized SoC, they can just be dedicated wires running from device to

105

Modern SoCDesign

device. However, like other parts of a bus configuration, they need representation in higher-level
descriptive files. Moreover, the allocation and naming of interrupts need to bemanaged in the same
way as the data resources in amemory space.

As systems become larger withmore processors, the sheer number of interrupt lines becomes
difficult to route across a large SoC. Also, off-chip processors may require interrupts to be
communicated between chips, although signal pins are at a premium. For these applications,
message-signalled interrupts (MSI) can be used. InMSI, interrupts are communicated using packets
similar to data. In a general NoC implementation, theymight use the same interconnect as other
traffic, but caremust be taken tomeet the system’s latency requirements for an interrupt.

Wewill, first, review the area, energy, throughput and latency for various simple interconnect
topologies.

3.2.1 Simple BuswithOne Initiator
Themost simple interconnect topology uses just one bus. Figure 3.12 shows such a bus with one
initiator and three targets. The initiator does not need to arbitrate for the bus since it has no
competitors. Bus operations are just reads or writes of single 32-bit words. Unbuffered wiring can
potentially serve for the write and address busses/channels, whereasmultiplexers are needed for
read data and other response codes. Following the physical constraints outlined in Section 3.1.1,
buffering is needed in all directions for busses that go a long way over the chip. The network
generator tool must instantiate multiplexers for the response data paths. As explained
in Section 1.1.4, tri-states are not used on a SoC: themultiplexers are fully active or, in some localised
cases, may use pass transistors (Section 8.5.1). In a practical setting, the bus capacity might be 32bits
× 200MHz = 6.4Gb/s. This figure can be thought of as unity (i.e. one word per clock tick) in
comparison with other configurations that wewill consider.

3.2.2 Shared BuswithMultiple Initiators
A single busmay havemultiple initiators, so additional multiplexors route commands, addresses and
write data from the currently active initiator to drive the shared parts of the bus, as shown in
Figure 3.13. Withmultiple initiators, the busmay be busy when a new initiator wants to use it. This
requires arbitration between contending initiators, as discussed in Section 4.2.1. Themaximum bus
throughput of unity is now shared amongst the potential initiators. If a device is both an initiator and a
target, such as device 2 in the figure, it has two complete sets of connections to the network.

When granted access to the bus, an initiator may performmultiple transactions before releasing it.
Onemotivation for this is to support atomic actions, as discussed in Section 3.1.7. The busmay ormay
not support burst transactions or the burst size supportedmay be insufficient for the amount of data
that needs to bemoved. As explained in Section 4.3.1, the real-time performance of the system can
fall if the bus is not shared sufficiently finely. A system-widemaximum bus holding timemay be
specified tomitigate this.

106

Chapter 3 | SoC Interconnect

Device 1

Device 2

Device 4
Initiator

Target

Target

Device 3

Target

wdata

rdata

addr

Read Mux
WD

ADDR

RD
WD

ADDR

RD

WD

ADDR

RD

WD

ADDR

RD

Control
Decoder

Logic

hwen
hren
hwen

hren
hwen
hren

D
evice 1

D
evice 2

D
evice 4

BU
SInitiator

Target

Target

D
evice 3

Target

Figure 3.12 A basic SoC bus structure for theMSOC1 protocol. One initiator addresses three targets (high-level view and detailed wiring)

Device 2

Device 2

Device 4
Initiator

Port

Target
Port

Target

Device 3

Target

wdata

rdata

addr

Read MuxWD

ADDR

RD
WD

ADDR

RD

WD

ADDR

RD

WD

ADDR

RDControl
Decoder

Logic

hwen
hren
hwen

hren
hwen
hren

D
evice 1

D
evice 2

D
evice 4

BU
SInitiator

Target
&

Initiator

Target

D
evice 3

Target

Device 1

Initiator
WD

ADDR

RD

Wdata Mux

Addr Mux

Control
 Mux

Bus
Arbiter

Initiator
Requests

Addr Mux

Figure 3.13 Example where one of the targets is also an initiator (e.g. a DMA controller)

3.2.3 Bridged Bus Structures
Two busses can be joined by a bus bridge, which potentially allows them to operate independently if
traffic is not crossing. Essentially, bus operations received on one side of a bus bridge are reinitiated
on the other side. The bridge need not be symmetric: CDs, clock speeds, protocols and data widths
can differ on each side. However, in some circumstances, especially when bridging down to a slower
bus, theremay be no initiator on one side, so that that side never actually operates independently and

107

Modern SoCDesign

device. However, like other parts of a bus configuration, they need representation in higher-level
descriptive files. Moreover, the allocation and naming of interrupts need to bemanaged in the same
way as the data resources in amemory space.

As systems become larger withmore processors, the sheer number of interrupt lines becomes
difficult to route across a large SoC. Also, off-chip processors may require interrupts to be
communicated between chips, although signal pins are at a premium. For these applications,
message-signalled interrupts (MSI) can be used. InMSI, interrupts are communicated using packets
similar to data. In a general NoC implementation, theymight use the same interconnect as other
traffic, but caremust be taken tomeet the system’s latency requirements for an interrupt.

Wewill, first, review the area, energy, throughput and latency for various simple interconnect
topologies.

3.2.1 Simple BuswithOne Initiator
Themost simple interconnect topology uses just one bus. Figure 3.12 shows such a bus with one
initiator and three targets. The initiator does not need to arbitrate for the bus since it has no
competitors. Bus operations are just reads or writes of single 32-bit words. Unbuffered wiring can
potentially serve for the write and address busses/channels, whereasmultiplexers are needed for
read data and other response codes. Following the physical constraints outlined in Section 3.1.1,
buffering is needed in all directions for busses that go a long way over the chip. The network
generator tool must instantiate multiplexers for the response data paths. As explained
in Section 1.1.4, tri-states are not used on a SoC: themultiplexers are fully active or, in some localised
cases, may use pass transistors (Section 8.5.1). In a practical setting, the bus capacity might be 32bits
× 200MHz = 6.4Gb/s. This figure can be thought of as unity (i.e. one word per clock tick) in
comparison with other configurations that wewill consider.

3.2.2 Shared BuswithMultiple Initiators
A single busmay havemultiple initiators, so additional multiplexors route commands, addresses and
write data from the currently active initiator to drive the shared parts of the bus, as shown in
Figure 3.13. Withmultiple initiators, the busmay be busy when a new initiator wants to use it. This
requires arbitration between contending initiators, as discussed in Section 4.2.1. Themaximum bus
throughput of unity is now shared amongst the potential initiators. If a device is both an initiator and a
target, such as device 2 in the figure, it has two complete sets of connections to the network.

When granted access to the bus, an initiator may performmultiple transactions before releasing it.
Onemotivation for this is to support atomic actions, as discussed in Section 3.1.7. The busmay ormay
not support burst transactions or the burst size supportedmay be insufficient for the amount of data
that needs to bemoved. As explained in Section 4.3.1, the real-time performance of the system can
fall if the bus is not shared sufficiently finely. A system-widemaximum bus holding timemay be
specified tomitigate this.

106

Chapter 3 | SoC Interconnect

Device 1

Device 2

Device 4
Initiator

Target

Target

Device 3

Target

wdata

rdata

addr

Read Mux
WD

ADDR

RD
WD

ADDR

RD

WD

ADDR

RD

WD

ADDR

RD

Control
Decoder

Logic

hwen
hren
hwen

hren
hwen
hren

D
evice 1

D
evice 2

D
evice 4

BU
SInitiator

Target

Target

D
evice 3

Target

Figure 3.12 A basic SoC bus structure for theMSOC1 protocol. One initiator addresses three targets (high-level view and detailed wiring)

Device 2

Device 2

Device 4
Initiator

Port

Target
Port

Target

Device 3

Target

wdata

rdata

addr

Read MuxWD

ADDR

RD
WD

ADDR

RD

WD

ADDR

RD

WD

ADDR

RDControl
Decoder

Logic

hwen
hren
hwen

hren
hwen
hren

D
evice 1

D
evice 2

D
evice 4

BU
SInitiator

Target
&

Initiator

Target

D
evice 3

Target

Device 1

Initiator
WD

ADDR

RD

Wdata Mux

Addr Mux

Control
 Mux

Bus
Arbiter

Initiator
Requests

Addr Mux

Figure 3.13 Example where one of the targets is also an initiator (e.g. a DMA controller)

3.2.3 Bridged Bus Structures
Two busses can be joined by a bus bridge, which potentially allows them to operate independently if
traffic is not crossing. Essentially, bus operations received on one side of a bus bridge are reinitiated
on the other side. The bridge need not be symmetric: CDs, clock speeds, protocols and data widths
can differ on each side. However, in some circumstances, especially when bridging down to a slower
bus, theremay be no initiator on one side, so that that side never actually operates independently and

107

Modern SoCDesign

a unidirectional bridge is all that is needed. In amulti-socket system, bridgesmay interconnect busses
on different pieces of silicon.

Two busses potentially means twice the throughput (spatial reuse principle). However, when an
initiator on one bus requires access to a target on the other bus, the bridge will convey the
transaction. This transaction consumes bandwidth on both busses.

Figure 3.14 shows a systemwith threemain busses and one lower-speed bus, all joined by bridges. To
make full use of the additional capacity from themultiple busses, theremust be at least onemain
initiator for each bus that uses it most of the time. Hence, knowledge of the expected traffic flow is
needed at design time. However, a low-speed busmight not have its own initiators, as it is just a
subordinate bus to the other busses. The slow busmay also use a lower-performance
lower-complexity protocol, such as the APB standard. Themaximum throughput in such systems is
the sum of that of all the busses that have their own initiators. However, the throughput realised will
be lower if the bridges are used a lot, since a bridged cycle consumes bandwidth on both sides.

Initiator 1
D

evice 2
D

evice 4

D
evice

BB

BB

BB

Initiator 3

Initiator 2

D
evice

Slow
er Speed D

evices

DRAM

Device arrows denote
initiating direction.

All paths are bi-directional
(support read and write).

Figure 3.14 A system design using three bridged busses. Each main bus has its own primary initiator (pink), which is typically a CPU, but the bus bridges
(green) also initiate transactions

There is a wide potential design space for a bus bridge, but the external connections, shown in
Figure 3.15, remain the same. A bus bridgemaymake address space translations using simple
arithmetic. Alternatively, logical functionsmay be applied to the address bus values. The SoC as a
wholemight be definedwith a unified global address space, but with non-uniform (i.e. different)
access times between various pairs of initiators and targets. This gives a non-uniformmemory access
(NUMA) architecture (Section 2.3). For debugging and testing, it is generally helpful to maintain a flat
address space and to implement paths that are not likely to be used in normal operation, even if there
is a separate debug bus (Section 4.7). However, for A32 systems (with an address buswidth of 32 bits),
the address spacemay not be large enough to hold a flat address space. For secure systems, a flat
address space increases the attack space. A bus bridgemight implement write posting using an
internal FIFO buffer. However, generally it must block when reading. Asmentioned earlier,

108

Chapter 3 | SoC Interconnect

write posting is where the initiator does not wait for a successful response indication from awrite
transaction. This reduces the amount of time that multiple busses are occupied in old busses. Split
busses, with separate command and response ports, do not suffer from this. For cache-coherent
buses, the bus bridgemay carry coherency traffic or else consistency resolutionmay be left to the
system programmer.

A bus bridge with different bus parametrisations or bus standards on each side acts as a bus resizer or
protocol converter. A bridge withmore than two target ports may be called a hub, but this term is
also used loosely for a demultiplexer with just one target port. By usingmultiphase protocols, a
demultiplexer for commands acts as amultiplexor for responses.

wdata

hwen

addr

rdata

hren

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

m_ack

Bus Half-Bridge (simplex).

Subordinate
(target)

Port

Bus Half-Bridge (simplex).

Bus Half-Bridge (simplex).

Manager
(initiator)

Port

wdata

hwen

addr

rdata

hren

m_wdata

m_wen

m_addr

m_rdata

m_ren

m_ack

m_ackBus Half-Bridge (simplex).

Subordinate
(target)

Port

Manager
(initiator)

Port

Figure 3.15 Bidirectional bus bridge for theMSOC1 protocol. It has a pair of back-to-back simplex bridges. It could be a single IP block on a single chip, or
the two halves could be on different chips with a SERDES (Section 3.8) serial link between them

Figure 2.12 shows an abstract centralised hub labelled the bus fabric. This could represent a
multi-port bus bridge or a NoC. A crossbar switching element enables any input to be connected to
any output and for every input to be connected to an output at once, provided at most one input is
connected to any output. Figure 3.16 illustrates various circuit structures that achieve crossbar
switching. The number of inputs and the number outputs,N=4. The left-hand panel shows a
time-divisionmultiplexed (TDM) bus that must have a bandwidth ofN times the input bandwidth by
using a faster clock. Instead of increasing the clock rate, the bit width can be increased by a factor ofN.
This gives the central and right circuits, which are twoways of depicting the same circuit. In the centre
diagram,N2 basic crossbar elements are used. A basic crossbar element can either be in the bar state
(shown pink), in which signals are routed from top to bottom and left to right, or be in the cross state
(shown green), in which a horizontal signal is redirected to the vertical nets. In the right-hand panel, a
broadcaster at each input sends a copy to each output and amultiplexer selects one of the arriving
inputs. The broadcasters may be just passive wiring if noisemargins can be satisfied (Section 2.6.3).

109

Modern SoCDesign

a unidirectional bridge is all that is needed. In amulti-socket system, bridgesmay interconnect busses
on different pieces of silicon.

Two busses potentially means twice the throughput (spatial reuse principle). However, when an
initiator on one bus requires access to a target on the other bus, the bridge will convey the
transaction. This transaction consumes bandwidth on both busses.

Figure 3.14 shows a systemwith threemain busses and one lower-speed bus, all joined by bridges. To
make full use of the additional capacity from themultiple busses, theremust be at least onemain
initiator for each bus that uses it most of the time. Hence, knowledge of the expected traffic flow is
needed at design time. However, a low-speed busmight not have its own initiators, as it is just a
subordinate bus to the other busses. The slow busmay also use a lower-performance
lower-complexity protocol, such as the APB standard. Themaximum throughput in such systems is
the sum of that of all the busses that have their own initiators. However, the throughput realised will
be lower if the bridges are used a lot, since a bridged cycle consumes bandwidth on both sides.

Initiator 1
D

evice 2
D

evice 4

D
evice

BB

BB

BB

Initiator 3

Initiator 2

D
evice

Slow
er Speed D

evices

DRAM

Device arrows denote
initiating direction.

All paths are bi-directional
(support read and write).

Figure 3.14 A system design using three bridged busses. Each main bus has its own primary initiator (pink), which is typically a CPU, but the bus bridges
(green) also initiate transactions

There is a wide potential design space for a bus bridge, but the external connections, shown in
Figure 3.15, remain the same. A bus bridgemaymake address space translations using simple
arithmetic. Alternatively, logical functionsmay be applied to the address bus values. The SoC as a
wholemight be definedwith a unified global address space, but with non-uniform (i.e. different)
access times between various pairs of initiators and targets. This gives a non-uniformmemory access
(NUMA) architecture (Section 2.3). For debugging and testing, it is generally helpful to maintain a flat
address space and to implement paths that are not likely to be used in normal operation, even if there
is a separate debug bus (Section 4.7). However, for A32 systems (with an address buswidth of 32 bits),
the address spacemay not be large enough to hold a flat address space. For secure systems, a flat
address space increases the attack space. A bus bridgemight implement write posting using an
internal FIFO buffer. However, generally it must block when reading. Asmentioned earlier,

108

Chapter 3 | SoC Interconnect

write posting is where the initiator does not wait for a successful response indication from awrite
transaction. This reduces the amount of time that multiple busses are occupied in old busses. Split
busses, with separate command and response ports, do not suffer from this. For cache-coherent
buses, the bus bridgemay carry coherency traffic or else consistency resolutionmay be left to the
system programmer.

A bus bridge with different bus parametrisations or bus standards on each side acts as a bus resizer or
protocol converter. A bridge withmore than two target ports may be called a hub, but this term is
also used loosely for a demultiplexer with just one target port. By usingmultiphase protocols, a
demultiplexer for commands acts as amultiplexor for responses.

wdata

hwen

addr

rdata

hren

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

m_ack

Bus Half-Bridge (simplex).

Subordinate
(target)

Port

Bus Half-Bridge (simplex).

Bus Half-Bridge (simplex).

Manager
(initiator)

Port

wdata

hwen

addr

rdata

hren

m_wdata

m_wen

m_addr

m_rdata

m_ren

m_ack

m_ackBus Half-Bridge (simplex).

Subordinate
(target)

Port

Manager
(initiator)

Port

Figure 3.15 Bidirectional bus bridge for theMSOC1 protocol. It has a pair of back-to-back simplex bridges. It could be a single IP block on a single chip, or
the two halves could be on different chips with a SERDES (Section 3.8) serial link between them

Figure 2.12 shows an abstract centralised hub labelled the bus fabric. This could represent a
multi-port bus bridge or a NoC. A crossbar switching element enables any input to be connected to
any output and for every input to be connected to an output at once, provided at most one input is
connected to any output. Figure 3.16 illustrates various circuit structures that achieve crossbar
switching. The number of inputs and the number outputs,N=4. The left-hand panel shows a
time-divisionmultiplexed (TDM) bus that must have a bandwidth ofN times the input bandwidth by
using a faster clock. Instead of increasing the clock rate, the bit width can be increased by a factor ofN.
This gives the central and right circuits, which are twoways of depicting the same circuit. In the centre
diagram,N2 basic crossbar elements are used. A basic crossbar element can either be in the bar state
(shown pink), in which signals are routed from top to bottom and left to right, or be in the cross state
(shown green), in which a horizontal signal is redirected to the vertical nets. In the right-hand panel, a
broadcaster at each input sends a copy to each output and amultiplexer selects one of the arriving
inputs. The broadcasters may be just passive wiring if noise margins can be satisfied (Section 2.6.3).

109

Modern SoCDesign

In 0

In 1

In 2

In 3

Out 0

Out 1

Out 2

Out 3

In 0

In 1

In 2

In 3

Out 0

Out 1

Out 2

Out 3

In 0

In 1

In 2

In 3

Out 0 Out 1 Out 2 Out 3

Figure 3.16 Crossbar 4×4 connectivity implemented in three different ways: with a high-capacity TDM bus (left), crossbar elements (centre) and
multiplexors (right)

A crossbar does not suffer from fabric contention (defined in Section 4.2.1), but the limit of one input
connected to each output inevitably leads to output port contention. Analytically, the saturated
throughput per port for balanced random traffic is 1/e, but real SoC traffic patterns are never
balanced. We return to network dimensioning in Section 3.9 and Chapter 6.

The standard analysis for output port contention is given by

Maximum throughput =1−
(N−1

N
)N

This is simply a binomial distribution applied to the probability that, for an output port, no input queue
has a packet at its head destined for it, given that all inputs have something at the head of their line.
Counter-intuitively, this gets progressively worse for larger crossbars. For one input, the throughput
evaluates to unity, which is not surprising. For two inputs, it is 0.75, which is obvious, since half the
time the two inputs will select the same output and the other output will be idle. For three inputs, it is
0.740 and for arbitrarily large switches, the limit is 1/e≈0.632.

3.3 Simple Packet-Switched Interconnect
Asmentioned, protocols such as AXI are classed as circuit-switched. However, if we have different
channels for requests and responses and themessages are shorter than the time-of-flight along the
channel, the distinction between a circuit-switched bus and a packet-switchedNoC becomes blurred.

Figure 3.17 shows the essential structure of a demultiplexer for amultiphase bus protocol along with
the remultiplexer necessarily required to route responses back to the appropriate initiator. It shows a
radix-2 component, but typically there will be several inputs, sayN. Moreover, theremay beM such
demultiplexers in anN×M bus fabric hub (multi-way bus bridge).

There are twomain approaches for controlling the remultiplexor. In the tagged-bus approach
(Section 3.1.4), the tag width can be expanded (or introduced if not already present), so that the
transaction carries the reverse routing information with it. This is stripped off when used. Hence, this
is a form of source routing (Section 3.4.1), which is perversely introduced by the target of the
transaction andwhich has disappeared by the time the response gets back to the transaction source.

110

Chapter 3 | SoC Interconnect

Initiator 0

Initiator 1

MUX

DEMUX

Req

Resp

Req

Resp

Req
Resp

Initiator 0

Initiator 1
HUB

Target 0

Target 1

Target 2

Figure 3.17Multiphase (split transaction) bus demultiplexor and remultiplexor for responses (left). Three of these structures could be used to implement the
2×3 bus fabric hub (right)

The other way, as shown, is to rely on the order of requests and responses being preserved and to
store the routing information in a local FIFO buffer. The depth of the FIFO buffer must be sufficient
for the number of outstanding transactions expected downstream of this point, but when the
requested channel is full, backpressure can be used to hold off further load.

3.3.1 Multi-access SoC and Inter-chip Interconnect
Multi-access techniques, as used in first-generation local-area networks (LANs), use only source
queuing. The lack of queues in the switching elements reduces hardware costs. Such structures are
sometimes used in SoCs or between SoCs for a high-performance interconnect. The twomain
topologies are the ring and the folded bus. Ringmedia access protocols include register insertion,
slotted ring and token ring. The links of the network are a shared resource. These different protocols
moderate access to the resource, bymaking traffic wait at the initiator until it can be served. Hence,
no further logic is required to implement flow control for the interconnect. Messages are packetised
with a header that contains the destination address. Receivers see all traffic and selectively filter it
based on the address. Broadcast andmulticast are also trivial to implement due to the underlying
broadcast nature of themedium.

Themulti-access technique can level the delivered load, by limiting themaximum delivery rate at a
destination. Beyond that, fine resolution throttling of the bandwidth for a destination is possible using
a virtual channel (VC) overlay on the slot structure. For instance, a dynamic yet predictable mapping
of slots to VCs can be used as presented in Section 4.6.6 of [8]. Each receiver is permanently allocated
a particular VC and arrivals at the receiver are limited by the capacity of that VC, which was
established during the design of themapping function.

Since each receiver is allocated a VC number, it needs to look only in slots that have that channel. The
mapping establishes the density of slots and hence, themaximum delivery rate to a receiver.
Transmitters must use the correct channel number for the addressed receiver. Themapping can be as
simple as alternately labelling slots odd and even, to provide two channels and get a 50 per cent
throttling of bandwidth. Alternatively, themapping can be a carefully constructedmany-to-one hash
function, based on labelling slots using a pseudorandom binary sequence (PRBS) (Section 3.8).

111

Modern SoCDesign

In 0

In 1

In 2

In 3

Out 0

Out 1

Out 2

Out 3

In 0

In 1

In 2

In 3

Out 0

Out 1

Out 2

Out 3

In 0

In 1

In 2

In 3

Out 0 Out 1 Out 2 Out 3

Figure 3.16 Crossbar 4×4 connectivity implemented in three different ways: with a high-capacity TDM bus (left), crossbar elements (centre) and
multiplexors (right)

A crossbar does not suffer from fabric contention (defined in Section 4.2.1), but the limit of one input
connected to each output inevitably leads to output port contention. Analytically, the saturated
throughput per port for balanced random traffic is 1/e, but real SoC traffic patterns are never
balanced. We return to network dimensioning in Section 3.9 and Chapter 6.

The standard analysis for output port contention is given by

Maximum throughput =1−
(N−1

N
)N

This is simply a binomial distribution applied to the probability that, for an output port, no input queue
has a packet at its head destined for it, given that all inputs have something at the head of their line.
Counter-intuitively, this gets progressively worse for larger crossbars. For one input, the throughput
evaluates to unity, which is not surprising. For two inputs, it is 0.75, which is obvious, since half the
time the two inputs will select the same output and the other output will be idle. For three inputs, it is
0.740 and for arbitrarily large switches, the limit is 1/e≈0.632.

3.3 Simple Packet-Switched Interconnect
Asmentioned, protocols such as AXI are classed as circuit-switched. However, if we have different
channels for requests and responses and themessages are shorter than the time-of-flight along the
channel, the distinction between a circuit-switched bus and a packet-switchedNoC becomes blurred.

Figure 3.17 shows the essential structure of a demultiplexer for amultiphase bus protocol along with
the remultiplexer necessarily required to route responses back to the appropriate initiator. It shows a
radix-2 component, but typically there will be several inputs, sayN. Moreover, theremay beM such
demultiplexers in anN×M bus fabric hub (multi-way bus bridge).

There are twomain approaches for controlling the remultiplexor. In the tagged-bus approach
(Section 3.1.4), the tag width can be expanded (or introduced if not already present), so that the
transaction carries the reverse routing information with it. This is stripped off when used. Hence, this
is a form of source routing (Section 3.4.1), which is perversely introduced by the target of the
transaction andwhich has disappeared by the time the response gets back to the transaction source.

110

Chapter 3 | SoC Interconnect

Initiator 0

Initiator 1

MUX

DEMUX

Req

Resp

Req

Resp

Req
Resp

Initiator 0

Initiator 1
HUB

Target 0

Target 1

Target 2

Figure 3.17Multiphase (split transaction) bus demultiplexor and remultiplexor for responses (left). Three of these structures could be used to implement the
2×3 bus fabric hub (right)

The other way, as shown, is to rely on the order of requests and responses being preserved and to
store the routing information in a local FIFO buffer. The depth of the FIFO buffer must be sufficient
for the number of outstanding transactions expected downstream of this point, but when the
requested channel is full, backpressure can be used to hold off further load.

3.3.1 Multi-access SoC and Inter-chip Interconnect
Multi-access techniques, as used in first-generation local-area networks (LANs), use only source
queuing. The lack of queues in the switching elements reduces hardware costs. Such structures are
sometimes used in SoCs or between SoCs for a high-performance interconnect. The twomain
topologies are the ring and the folded bus. Ringmedia access protocols include register insertion,
slotted ring and token ring. The links of the network are a shared resource. These different protocols
moderate access to the resource, bymaking traffic wait at the initiator until it can be served. Hence,
no further logic is required to implement flow control for the interconnect. Messages are packetised
with a header that contains the destination address. Receivers see all traffic and selectively filter it
based on the address. Broadcast andmulticast are also trivial to implement due to the underlying
broadcast nature of themedium.

Themulti-access technique can level the delivered load, by limiting themaximum delivery rate at a
destination. Beyond that, fine resolution throttling of the bandwidth for a destination is possible using
a virtual channel (VC) overlay on the slot structure. For instance, a dynamic yet predictable mapping
of slots to VCs can be used as presented in Section 4.6.6 of [8]. Each receiver is permanently allocated
a particular VC and arrivals at the receiver are limited by the capacity of that VC, which was
established during the design of themapping function.

Since each receiver is allocated a VC number, it needs to look only in slots that have that channel. The
mapping establishes the density of slots and hence, themaximum delivery rate to a receiver.
Transmitters must use the correct channel number for the addressed receiver. Themapping can be as
simple as alternately labelling slots odd and even, to provide two channels and get a 50 per cent
throttling of bandwidth. Alternatively, themapping can be a carefully constructedmany-to-one hash
function, based on labelling slots using a pseudorandom binary sequence (PRBS) (Section 3.8).

111

Modern SoCDesign

Suchmulti-access techniques are ideal for applications where the destination has a guaranteed
throughput. However, if lossless operation is to be preserved, additional end-to-end flow control is
required if the response times of the receiver can vary. The network can carry a response indicating
whether amessage was properly received, but traffic to a busy destination needs to be retried again
by the originator as there is no intermediate storage in the network. This means delivery latencies are
multiples of the round-trip time. This also requires considering the ordering if multiple transactions
are in progress.

A slotted ring has its sequential delay (the number of clock cycles to traverse it) formatted into a fixed
number of slots. Eachmay be full or empty. A transmitter waits for an empty slot and fills it. The
receiver may free up the slot or use it for a response to the transmitter. The pass-on-free rule, if used,
requires the transmitter to empty the slot and pass it on to the next potential transmitter, making
sharing fair. If the transmitter directly reuses the slot or the receiver reissues the response, other
access control protocols are needed [9]. The Knights’ Corner processor from Intel, andmany
succeeding designs, notably used a pair of counterrotating slotted rings for cache consistency.

A register-insertion ring places its message in a shift register that it inserts into the ring to send the
message. When themessage has rotated all the way around, it can be removed. A token ring passes a
specific non-data word around the ring. A transmitter that needs to send, holds the token and sends
its message instead, putting the token at the end of themessage.

Ring networks are suited well to simple broadside pipeline register stages, as ring links do not require
low-level flow control due to themedia access protocol. If it is known that it is rare for a destination to
be busy, instead of making the transmitter send again, a simple alternative is to stall the whole ring for
one ormore clock cycles. Sadly, this can lead to a deadlock if the reason for the destination being busy
is not going to go awaywhile the whole ring is stalled. A better multi-access network in this respect is
a folded bus.

3.3.2 Multi-access Folded Bus
Figure 3.18 shows two topologies for a folded-busmulti-access network. The basic behaviour is very
similar to that of the ring topology. Themulti-access sharedmedium has a transmit region that feeds
into a receive region at the fold, with any amount of simple broadside registering being allowable in
each branch, except for the tree-form transmit region, which requires a backwards handshake net.
The switching elements forward traffic from either input that is not idle. In the linear form, the
elements typically give priority to existing traffic over new traffic from the local end point. In the tree
form, the elements may use round-robin arbitration. A higher priority will then be given to any
transmitting station that is closer to the root if an unbalanced tree is used.

Without hop-by-hop flow control along the transmitting half of the linear form, sources furthest from
the fold would effectively have priority, since they see less competition for bandwidth. Switching
elements are, by design, not allowed to buffer traffic and cannot stop it from arriving. The tree form,
however, typically uses backpressure, but the paths are logarithmic only in length and this path can

112

Chapter 3 | SoC Interconnect

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

Fold
Fold

Figure 3.18 Two folded busses that have similar component counts. For each, the number of switching elements grows linearly with the number of end
points (EP). The linear form (left) is suitable for multi-chip use, but the tree form (right) has lower latency. The receive half of the tree form often has a tree
structure running exactly parallel to the transmit half, but here it is shown flattened to almost a bus

tolerate some delay through synchronous logic, without the network losing performance overall. This
approachwas used in the reliable Hubnet LAN [10]. It avoids excessive combinational path build-up.
Alternatively, fully registered FIFO stages can be added to break the paths (Section 6.3.4). For the
linear form, media access control, if needed, is typically achieved using request tokens piggybacked on
the forward traffic to establish a path for higher stations to instruct lower stations to defer sending.
This was the basis for the Dual-Queue/Dual-Bus LAN standard [11].

A folded bus has twice as muchwiring as a simple ring, but the presence of the break enables any part
of the transmit half of the bus to be stalled without interrupting the delivery of traffic to the receiving
side. This eliminates amajor form of deadlock, as discussed in Section 6.6.3.

3.4 Network-on-Chip
A network-on-chip (NoC) consists of end points, switching elements, domain-crossing elements and
bus resizers. These are interconnected by nets known as NoC links. Themain forms are listed
in Section 3.6. If cache coherence and virtual memory (VM) are required, quite a large set of different
types of data have to be conveyed. As well as both logical and physical addressed data transactions,
cache coherency traffic and additional transactions are needed just to set up andmanage the NoC.
Circuit-switched architectures use spatial isolation with separate busses for each of these traffic
types, whereas NoC designsmultiplex all forms of data onto a few channel types. This means caches
and VM translation units (Section 2.2.1) can be freely connected to the NoC along with traditional IP
blocks, such as CPU cores andmemory.

Above a certain minimum size, NoCs lead to scaling gains over circuit-switched busses. The principal
advantage of packetised communication is better utilisation of the physical channels while still
providing data isolation andQoS guarantees. VCs (Section 3.4.2) are commonly used, leading to even
better utilisation of the physical nets and an ability to handle disparate traffic requirements without
deadlock.

113

Modern SoCDesign

Suchmulti-access techniques are ideal for applications where the destination has a guaranteed
throughput. However, if lossless operation is to be preserved, additional end-to-end flow control is
required if the response times of the receiver can vary. The network can carry a response indicating
whether amessage was properly received, but traffic to a busy destination needs to be retried again
by the originator as there is no intermediate storage in the network. This means delivery latencies are
multiples of the round-trip time. This also requires considering the ordering if multiple transactions
are in progress.

A slotted ring has its sequential delay (the number of clock cycles to traverse it) formatted into a fixed
number of slots. Eachmay be full or empty. A transmitter waits for an empty slot and fills it. The
receiver may free up the slot or use it for a response to the transmitter. The pass-on-free rule, if used,
requires the transmitter to empty the slot and pass it on to the next potential transmitter, making
sharing fair. If the transmitter directly reuses the slot or the receiver reissues the response, other
access control protocols are needed [9]. The Knights’ Corner processor from Intel, andmany
succeeding designs, notably used a pair of counterrotating slotted rings for cache consistency.

A register-insertion ring places its message in a shift register that it inserts into the ring to send the
message. When themessage has rotated all the way around, it can be removed. A token ring passes a
specific non-data word around the ring. A transmitter that needs to send, holds the token and sends
its message instead, putting the token at the end of themessage.

Ring networks are suited well to simple broadside pipeline register stages, as ring links do not require
low-level flow control due to themedia access protocol. If it is known that it is rare for a destination to
be busy, instead of making the transmitter send again, a simple alternative is to stall the whole ring for
one ormore clock cycles. Sadly, this can lead to a deadlock if the reason for the destination being busy
is not going to go awaywhile the whole ring is stalled. A better multi-access network in this respect is
a folded bus.

3.3.2 Multi-access Folded Bus
Figure 3.18 shows two topologies for a folded-busmulti-access network. The basic behaviour is very
similar to that of the ring topology. Themulti-access sharedmedium has a transmit region that feeds
into a receive region at the fold, with any amount of simple broadside registering being allowable in
each branch, except for the tree-form transmit region, which requires a backwards handshake net.
The switching elements forward traffic from either input that is not idle. In the linear form, the
elements typically give priority to existing traffic over new traffic from the local end point. In the tree
form, the elements may use round-robin arbitration. A higher priority will then be given to any
transmitting station that is closer to the root if an unbalanced tree is used.

Without hop-by-hop flow control along the transmitting half of the linear form, sources furthest from
the fold would effectively have priority, since they see less competition for bandwidth. Switching
elements are, by design, not allowed to buffer traffic and cannot stop it from arriving. The tree form,
however, typically uses backpressure, but the paths are logarithmic only in length and this path can

112

Chapter 3 | SoC Interconnect

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

Fold
Fold

Figure 3.18 Two folded busses that have similar component counts. For each, the number of switching elements grows linearly with the number of end
points (EP). The linear form (left) is suitable for multi-chip use, but the tree form (right) has lower latency. The receive half of the tree form often has a tree
structure running exactly parallel to the transmit half, but here it is shown flattened to almost a bus

tolerate some delay through synchronous logic, without the network losing performance overall. This
approachwas used in the reliable Hubnet LAN [10]. It avoids excessive combinational path build-up.
Alternatively, fully registered FIFO stages can be added to break the paths (Section 6.3.4). For the
linear form, media access control, if needed, is typically achieved using request tokens piggybacked on
the forward traffic to establish a path for higher stations to instruct lower stations to defer sending.
This was the basis for the Dual-Queue/Dual-Bus LAN standard [11].

A folded bus has twice as muchwiring as a simple ring, but the presence of the break enables any part
of the transmit half of the bus to be stalled without interrupting the delivery of traffic to the receiving
side. This eliminates amajor form of deadlock, as discussed in Section 6.6.3.

3.4 Network-on-Chip
A network-on-chip (NoC) consists of end points, switching elements, domain-crossing elements and
bus resizers. These are interconnected by nets known as NoC links. Themain forms are listed
in Section 3.6. If cache coherence and virtual memory (VM) are required, quite a large set of different
types of data have to be conveyed. As well as both logical and physical addressed data transactions,
cache coherency traffic and additional transactions are needed just to set up andmanage the NoC.
Circuit-switched architectures use spatial isolation with separate busses for each of these traffic
types, whereas NoC designsmultiplex all forms of data onto a few channel types. This means caches
and VM translation units (Section 2.2.1) can be freely connected to the NoC along with traditional IP
blocks, such as CPU cores andmemory.

Above a certain minimum size, NoCs lead to scaling gains over circuit-switched busses. The principal
advantage of packetised communication is better utilisation of the physical channels while still
providing data isolation andQoS guarantees. VCs (Section 3.4.2) are commonly used, leading to even
better utilisation of the physical nets and an ability to handle disparate traffic requirements without
deadlock.

113

Modern SoCDesign

In a complex SoC, quite often parts of the SoCwill have their own local interconnect. Such a local
interconnect follows traditional design patterns and is not part of the NoC architecture. Protocol
adaptors are needed tomap circuit-switched busses, such as AXI, on and off the NoC. This is a strict
requirement if IP blocks have AXI ports, but increasingly, IP blocks have native NoC ports that
conform to a standard such as AMBACHI (Section 3.4.5).

Input buffer
(3 flits)

32

Credit
return

Vaid

Data

Dlast

Input buffer
(3 flits)

32

Vaid

Data

Dlast
128

Credit
return

Output buffer
 (1 flit)

32

Output credit
counter (2 bits) Credit

return

Vaid

Data

Dlast

Output buffer
 (1 flit)

32
Output credit

counter (2 bits) Credit
return

Vaid

Data

Dlast

Input buffer
(3 flits)

Output buffer
 (1 flit)

In and Out
counters (2x2 bits)

32 32

Output credit
counter (2 bits)Credit

return

Vaid

Data

Dlast

Credit
return

Vaid

Data

Dlast128

128x3
Mux

Ar
bi

te
r a

nd
w

or
m

ho
le

 lo
ck

s
In and Out
counters (2x2 bits)

In and Out
counters (2x2 bits)

Filter

Filter

Filter

Figure 3.19 A radix-3 switching element for a NoC using a broadcast bus at 4× the link bandwidth and credit-based flow control

Based on a broadcast bus implemented as a crossbar (left-hand structure in Figure 3.16), Figure 3.19
shows a simple switching element for a baseline NoC. The element is 3×3 and uses 128-bit flits on
32-bit busses. A flit is a unit of flow control, where the 128 bits would be conveyed in 4 back-to-back
words on the 32-bit bus. (All the terms in this illustrative summary are defined elsewhere in this
section.) The element has an input buffer with three flits’ worth of input storage per port. Each output
port has 2-bit credit counters to hold the credit available (0–3) in the successive inputs. No VCs are
used in this simple example, but per VC output credit would be needed if VCs are used. The input
queues are organised as ring buffers with 2-bit in and out pointers. Wormhole routing is used
(Section 3.4.1), so that routing is locked until the last word of a flit is indicated with the Dlast signal.
The routing locks and arbitration logic are in the central block. Switching is performedwith a 128-bit
bus that has four times the bandwidth of each input port, whichmight look as though it is more than
enough for full throughput. The bus width is sufficient for a whole flit to be transferred atomically.
However, the throughput will be degraded (under theoretical random traffic) by output port
contention to 0.704×4/3=0.938 of the full load, assuming an infinite output queue size. A finite
output buffer can reduce this slightly, but this is negligible comparedwith the intrinsic inaccuracy of
the random traffic destination assumption. (The illustrated output buffer has oneword pending and
oneword currently being serialised, so its capacity is one or two depending on how you count it.)

Figure 3.20 illustrates a 2-D unidirectional torus topology fabricated with radix-3 elements. This is
intrinsically deadlock free, since traffic can turn in only one direction (anticlockwise at bottom left).

114

Chapter 3 | SoC Interconnect

The input buffers that are directly connected to end points will likely be simplified in reality, with the
queue structures shared between the element and the end point.

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

1 N+1 N*(M-1)

2

3

N

N+2

N+3

2N N*M

Figure 3.20 Example of a NoC fabric using radix-3 switching in a unidirectional torus mesh

The aim of a NoC design is low latency. If the parallelism available in an application is limited, which is
often the case, the application performance degrades reciprocally as latency is increased. However,
pipeline stages are required to close timing for the longer links within the design (Section 8.12.16).
Hence, the links of a NoCmust be designed to attain efficient re-timing stages. As explained
in Section 3.4.4, this leads to a preference for credit-based flow control instead of the standard
synchronous interface used in AXI. Different parts of a NoC have different traffic densities, and the
width of themost appropriate data busmay vary accordingly. Hence, resizers, which either increase
or decrease the width of a physical bus (aka channel), are needed at various points, perhaps
associatedwith CD and power domain (PD) crossing. There are a large number of feasible designs and
arrangements of the building blocks. These need to be connected and configured appropriately to
give a solution with the desired power, performance and area (PPA) (Section 5.6). NoC design
optimisation is discussed in Section 3.5 and Section 6.2.

3.4.1 NoCRouting and Switching
Conventional busses essentially route traffic based on an address. There is notionally one address
space associated with a bus (Section 1.1.1). The same address will denote the same device or location,
regardless of which busmaster issues the request to that bus. However, the same address issued to
different busses maywell have different meanings. At a higher level of system design, such reuse of

115

Modern SoCDesign

In a complex SoC, quite often parts of the SoCwill have their own local interconnect. Such a local
interconnect follows traditional design patterns and is not part of the NoC architecture. Protocol
adaptors are needed tomap circuit-switched busses, such as AXI, on and off the NoC. This is a strict
requirement if IP blocks have AXI ports, but increasingly, IP blocks have native NoC ports that
conform to a standard such as AMBACHI (Section 3.4.5).

Input buffer
(3 flits)

32

Credit
return

Vaid

Data

Dlast

Input buffer
(3 flits)

32

Vaid

Data

Dlast
128

Credit
return

Output buffer
 (1 flit)

32

Output credit
counter (2 bits) Credit

return

Vaid

Data

Dlast

Output buffer
 (1 flit)

32
Output credit

counter (2 bits) Credit
return

Vaid

Data

Dlast

Input buffer
(3 flits)

Output buffer
 (1 flit)

In and Out
counters (2x2 bits)

32 32

Output credit
counter (2 bits)Credit

return

Vaid

Data

Dlast

Credit
return

Vaid

Data

Dlast128

128x3
Mux

Ar
bi

te
r a

nd
w

or
m

ho
le

 lo
ck

s

In and Out
counters (2x2 bits)

In and Out
counters (2x2 bits)

Filter

Filter

Filter

Figure 3.19 A radix-3 switching element for a NoC using a broadcast bus at 4× the link bandwidth and credit-based flow control

Based on a broadcast bus implemented as a crossbar (left-hand structure in Figure 3.16), Figure 3.19
shows a simple switching element for a baseline NoC. The element is 3×3 and uses 128-bit flits on
32-bit busses. A flit is a unit of flow control, where the 128 bits would be conveyed in 4 back-to-back
words on the 32-bit bus. (All the terms in this illustrative summary are defined elsewhere in this
section.) The element has an input buffer with three flits’ worth of input storage per port. Each output
port has 2-bit credit counters to hold the credit available (0–3) in the successive inputs. No VCs are
used in this simple example, but per VC output credit would be needed if VCs are used. The input
queues are organised as ring buffers with 2-bit in and out pointers. Wormhole routing is used
(Section 3.4.1), so that routing is locked until the last word of a flit is indicated with the Dlast signal.
The routing locks and arbitration logic are in the central block. Switching is performedwith a 128-bit
bus that has four times the bandwidth of each input port, whichmight look as though it is more than
enough for full throughput. The bus width is sufficient for a whole flit to be transferred atomically.
However, the throughput will be degraded (under theoretical random traffic) by output port
contention to 0.704×4/3=0.938 of the full load, assuming an infinite output queue size. A finite
output buffer can reduce this slightly, but this is negligible comparedwith the intrinsic inaccuracy of
the random traffic destination assumption. (The illustrated output buffer has oneword pending and
oneword currently being serialised, so its capacity is one or two depending on how you count it.)

Figure 3.20 illustrates a 2-D unidirectional torus topology fabricated with radix-3 elements. This is
intrinsically deadlock free, since traffic can turn in only one direction (anticlockwise at bottom left).

114

Chapter 3 | SoC Interconnect

The input buffers that are directly connected to end points will likely be simplified in reality, with the
queue structures shared between the element and the end point.

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

1 N+1 N*(M-1)

2

3

N

N+2

N+3

2N N*M

Figure 3.20 Example of a NoC fabric using radix-3 switching in a unidirectional torus mesh

The aim of a NoC design is low latency. If the parallelism available in an application is limited, which is
often the case, the application performance degrades reciprocally as latency is increased. However,
pipeline stages are required to close timing for the longer links within the design (Section 8.12.16).
Hence, the links of a NoCmust be designed to attain efficient re-timing stages. As explained
in Section 3.4.4, this leads to a preference for credit-based flow control instead of the standard
synchronous interface used in AXI. Different parts of a NoC have different traffic densities, and the
width of themost appropriate data busmay vary accordingly. Hence, resizers, which either increase
or decrease the width of a physical bus (aka channel), are needed at various points, perhaps
associatedwith CD and power domain (PD) crossing. There are a large number of feasible designs and
arrangements of the building blocks. These need to be connected and configured appropriately to
give a solution with the desired power, performance and area (PPA) (Section 5.6). NoC design
optimisation is discussed in Section 3.5 and Section 6.2.

3.4.1 NoCRouting and Switching
Conventional busses essentially route traffic based on an address. There is notionally one address
space associated with a bus (Section 1.1.1). The same address will denote the same device or location,
regardless of which busmaster issues the request to that bus. However, the same address issued to
different busses maywell have different meanings. At a higher level of system design, such reuse of

115

Modern SoCDesign

the address spacemay increase the complexity of management and cause potential confusion during
debugging. The advice for A64 systems is to avoid such reuse, unless it is really needed for efficiency.

For a NoC, it may be unavoidable to havemultiple active address spaces. Moreover, not all
transactions or transaction phases carry a conventional address. Address spaces can be virtual or
physical, and there can be considerable overlap in the addresses used in different address spaces.
Hence, for NoC routing, every destination on the NoC has its own network identifier (NoC ID). The
initiator of a transactionmust have a way to select the target NoC ID. This can be hardwired or held in
a local map implemented as a few PIO registers or a small RAM.

Routing is the process of deciding the path across the NoC that a transaction will take. Switching is
the process of physically conveying the transaction and its response over the NoC. Routingmay be
performed in one of four main ways:

1. With static destination routing, the transaction carries its destination NoC ID. Each switching
element can apply a simple function, such as bit-field extraction, on the destination address, which
specifies which output link to use.

2. With dynamic destination routing, the transaction again carries its destination NoC ID, but
switching elements have greater freedom over route selection. For instance, a message going
north-east can sensibly be forwarded north or east at the next step. The choice is typically
determined bywhich output port is currently idle or is based on amaximal matching of input to
output ports for the next time slot.

3. With source routing, the route is explicitly put in the transaction by the source as a list of
intermediate nodes or output port numbers for an element. Each switching element then removes
an item from the node list and follows that item.

4. With virtual-circuit routing, a route is set up and stored in the switching elements. The transaction
carries a virtual circuit number or locally scoped routing tag, which is looked up at each switching
element and used to select the next step of the path. Although virtual-circuit routing is not
commonly used for on-chip networks, it is mentioned here to emphasise that it is not the same as a
VC, which is defined shortly.

If there is only one path between the source and the destination, the routing decision is moot. In
dynamic routing, there can be an ordering issue for legacy protocols in which order must be
preserved. Super-scalar architectures, however, exploit the additional performance available by
ignoring order and deploy specificmechanisms, such asmemory fences, where necessary.

In reality, many current NoC designs are comparatively simple. They use only one address space and
use static routing based on bit-field extraction of the target address. This results in minimal hardware
complexity and is optimised well during logic synthesis (Section 8.3.8). Response routing is based on
similar direct decodes of the source NoC ID that was placed in the command by the initiating bridge.

116

Chapter 3 | SoC Interconnect

Although very wide busses are relatively common inmodern VLSI, certain transactions require
multi-word transfers over a bus. These could be large payload reads andwrites or any transaction
that crosses a narrow bus (e.g. of 32 bits or less). As a result, a phase of a transaction (request,
response, snoop, etc.) can quite often takemultiple clock cycles to be delivered. A large transaction
will always be split up intomultiple flow-control units known as flits. These are the atomic units of
exchange between switching elements. However, even one flit can contain more bits than the bus
width. By definition, a flit is deliveredwithout pre-emption by another (on the sameVC). Amulti-word
flit is typically forwarded between switching elements using cut-through orwormhole routing.
Figure 3.21 (left) illustrates cut-through operation. Cut-throughmeans that the head of a flit has
already left the element on the egress port before the tail has fully arrived. Alternatively, the
elements can be store-and-forward elements, meaning that the entire flit is received into an internal
buffer before its head emerges from the element. This results in a packet-switched network like the
Internet. Store-and-forwarding increases latency and buffer requirements, but suffers less from
deadlocks. A NoC design generally does not use store-and-forward elements but instead solves the
deadlock problem. Both types of routing experience a structural hazard in that two flits cannot share
the same link (without VCs) at once. Figure 3.21 (right) illustrates that link contention can lead to a
deadlock, as will be discussed shortly.

SE

SE

SE

SE

SE SE

SE

blocked

SE

SE

SE

SE

SE

SE

SE

SE

SE

Figure 3.21 Illustration of cut-through routing on a 2-Dmesh NoC (left), wormhole operation (centre) and potentially deadlocking routes (right). The thin
black lines are the NoC links, which are bidirectional. The thick coloured lines are the routes chosen for a packet. The white marks indicates the end of a
packet

Cut-through cannot apply for flits that are just one bus word in length, and a registered switching
element will intrinsically use store-and-forwarding. For longer flits, the routing information needs to
be at the start. Withwormhole routing, as shown in Figure 3.21 (centre), the switching element loads
an active path register when the head of the flit is encountered. The value persists while the
remainder of the flit is forwarded. The path register is cleared at the end of the flit (shownwith a
white marker). Hence, the routing is not pre-empted and the flit is never split. It is not necessary for
the unit of flow control to be the unit of wormhole routing. Another common design point is for the
wormhole to last for the duration of a phase of a transaction.

117

Modern SoCDesign

the address spacemay increase the complexity of management and cause potential confusion during
debugging. The advice for A64 systems is to avoid such reuse, unless it is really needed for efficiency.

For a NoC, it may be unavoidable to havemultiple active address spaces. Moreover, not all
transactions or transaction phases carry a conventional address. Address spaces can be virtual or
physical, and there can be considerable overlap in the addresses used in different address spaces.
Hence, for NoC routing, every destination on the NoC has its own network identifier (NoC ID). The
initiator of a transactionmust have a way to select the target NoC ID. This can be hardwired or held in
a local map implemented as a few PIO registers or a small RAM.

Routing is the process of deciding the path across the NoC that a transaction will take. Switching is
the process of physically conveying the transaction and its response over the NoC. Routingmay be
performed in one of four main ways:

1. With static destination routing, the transaction carries its destination NoC ID. Each switching
element can apply a simple function, such as bit-field extraction, on the destination address, which
specifies which output link to use.

2. With dynamic destination routing, the transaction again carries its destination NoC ID, but
switching elements have greater freedom over route selection. For instance, a message going
north-east can sensibly be forwarded north or east at the next step. The choice is typically
determined bywhich output port is currently idle or is based on amaximal matching of input to
output ports for the next time slot.

3. With source routing, the route is explicitly put in the transaction by the source as a list of
intermediate nodes or output port numbers for an element. Each switching element then removes
an item from the node list and follows that item.

4. With virtual-circuit routing, a route is set up and stored in the switching elements. The transaction
carries a virtual circuit number or locally scoped routing tag, which is looked up at each switching
element and used to select the next step of the path. Although virtual-circuit routing is not
commonly used for on-chip networks, it is mentioned here to emphasise that it is not the same as a
VC, which is defined shortly.

If there is only one path between the source and the destination, the routing decision is moot. In
dynamic routing, there can be an ordering issue for legacy protocols in which order must be
preserved. Super-scalar architectures, however, exploit the additional performance available by
ignoring order and deploy specificmechanisms, such asmemory fences, where necessary.

In reality, many current NoC designs are comparatively simple. They use only one address space and
use static routing based on bit-field extraction of the target address. This results in minimal hardware
complexity and is optimised well during logic synthesis (Section 8.3.8). Response routing is based on
similar direct decodes of the source NoC ID that was placed in the command by the initiating bridge.

116

Chapter 3 | SoC Interconnect

Although very wide busses are relatively common inmodern VLSI, certain transactions require
multi-word transfers over a bus. These could be large payload reads andwrites or any transaction
that crosses a narrow bus (e.g. of 32 bits or less). As a result, a phase of a transaction (request,
response, snoop, etc.) can quite often takemultiple clock cycles to be delivered. A large transaction
will always be split up intomultiple flow-control units known as flits. These are the atomic units of
exchange between switching elements. However, even one flit can contain more bits than the bus
width. By definition, a flit is deliveredwithout pre-emption by another (on the sameVC). Amulti-word
flit is typically forwarded between switching elements using cut-through orwormhole routing.
Figure 3.21 (left) illustrates cut-through operation. Cut-throughmeans that the head of a flit has
already left the element on the egress port before the tail has fully arrived. Alternatively, the
elements can be store-and-forward elements, meaning that the entire flit is received into an internal
buffer before its head emerges from the element. This results in a packet-switched network like the
Internet. Store-and-forwarding increases latency and buffer requirements, but suffers less from
deadlocks. A NoC design generally does not use store-and-forward elements but instead solves the
deadlock problem. Both types of routing experience a structural hazard in that two flits cannot share
the same link (without VCs) at once. Figure 3.21 (right) illustrates that link contention can lead to a
deadlock, as will be discussed shortly.

SE

SE

SE

SE

SE SE

SE

blocked

SE

SE

SE

SE

SE

SE

SE

SE

SE

Figure 3.21 Illustration of cut-through routing on a 2-Dmesh NoC (left), wormhole operation (centre) and potentially deadlocking routes (right). The thin
black lines are the NoC links, which are bidirectional. The thick coloured lines are the routes chosen for a packet. The white marks indicates the end of a
packet

Cut-through cannot apply for flits that are just one bus word in length, and a registered switching
element will intrinsically use store-and-forwarding. For longer flits, the routing information needs to
be at the start. Withwormhole routing, as shown in Figure 3.21 (centre), the switching element loads
an active path register when the head of the flit is encountered. The value persists while the
remainder of the flit is forwarded. The path register is cleared at the end of the flit (shownwith a
white marker). Hence, the routing is not pre-empted and the flit is never split. It is not necessary for
the unit of flow control to be the unit of wormhole routing. Another common design point is for the
wormhole to last for the duration of a phase of a transaction.

117

Modern SoCDesign

3.4.2 Virtual Channels
A virtual channel (VC) is a time-divisionmultiplexed (TDM) slice of a physical channel or link. The
physical linkmight carry two to ten VCs. These normally share a resource using round-robin
arbitration (Section 4.2.1) rather than statically allocating slots, which would be toowasteful. To allow
demultiplexing, the wordwidth can be extendedwith the VC number that is active. For amulti-word
flit, an additional field is added.

VCs, when used judiciously, help in improving performance and optimising wire utilisation. Different
VCs can be used to provide fine-grained sharing of the fabric (sub-transaction level). They commonly
support a differential QoS and can help to prevent deadlocks. VCs preserve isolation, both between
separate classes of traffic and between requests and responses. The isolation of requests from
responses also helps to avoid deadlocks, as explained in Section 3.4.3. However, the use of VCs, in
general, leads to an increased number of buffers, which, in turn, increases the silicon area and power
consumption. An inefficient VC assignment can lead to NoCs that are at least an order of magnitude
inferior in terms of PPA. Hence, an optimal allocation of VCs is crucial in NoC design and an important
part of NoC synthesis.

A crucial step when designing an interconnect is to assign VCs to traffic classes so that its PPAmeets
the design objectives while also avoiding deadlocks. The VC assignment problem for a NoC is tightly
coupled with topology generation and routing. However, combining VC assignment with topology
generation further complicates an already complex problem, and it is difficult to solve both effectively.
Traditional methods for VCmapping usually involve a greedy algorithm or use a different VC for each
QoS level. Thesemethods are inefficient. If we have to use a constructive design approach, which
cannot iterate (Section 6.2), it is better to performVC assignment after topology generation [12, 13].
However, generating a topology without partitioning the traffic into VC classes usually results in a
NoC that has a suboptimal PPA, as both the silicon area and net count will be higher. The
co-dependent nature of these twoNP-hard problems poses amajor challenge in creating efficient
solutions for both of them, so, as withmost aspects of design space exploration, an iterative
optimisation technique is applied (Section 6.2).

3.4.3 NoCDeadlocks
An interconnect can experience various forms of deadlock. A deadlock arises when a path with a
circular dependency is activated such that each participant is waiting for the next to do something.
Figure 3.22 shows one typical pattern that can arise with wormhole and cut-through routing. This is a
fabric deadlock since two (or more) messages, both present in the NoC switching fabric, are stopping
each other from being delivered. The figure shows radix-3 switching elements in a 2-D grid. The
bidirectional links between each pair of elements either do not use VCs or else both the red and green
transactions are using the same channel. Hence, there is structural contention (Section 6.3), as at
most one transaction phase can be active on each direction of a link. The red and the green
transactions are deadlocked: each is blocked by the other at the parts shown as dashed lines. Red is
waiting for green at element B0 and green is waiting for red at element A1. The example is small and

118

Chapter 3 | SoC Interconnect

A0 B0

A1 B1

Figure 3.22 Four elements in a 2-Dmesh. Two transactions, red and green, are in a fabric deadlock, since unconstrained cut-through switching with
wormhole routing has allowed each to block the other. The dashed parts cannot complete

both transactions are taking unusually circuitous routes, but it demonstrates how the problem can
arise with unconstrained routing.

Themainmechanism for aviding deadlocks in current interconnect designs is restricted-turn routing
[14]. Figure 3.23 (left) shows the eight named turns possible in a 2-Dmesh. Four are clockwise turns
and four are anticlockwise turns. A clockwise cyclic dependency cannot form unless all four clockwise
turns are used. Similarly, an anticlockwise cycle requires all four anticlockwise turns. A simple blanket
prohibition on certain patterns of turns is typically used. There aremany possible policies that vary in
complexity and suitability for different numbers of dimensions. Examples are:

Dimension-ordered routing: The various dimensions of movement aremade in an overall order.
For instance, in 2-D, traffic should alwaysmove as far as it needs in the Y (north/south) direction
beforemoving any distance in the X (east/west) direction. Figure 3.23 (centre) shows the four turn
directions then allowed. This is known asManhattan routing. The turn direction can also be
restricted in torus-like topologies, such asmaking negativemovements first.

2-D spanning-tree routing: A spanning tree is imposed over themesh. Only links that are part of
the tree are used. This is very wasteful (albeit widely used for LANs), but is potentially useful due to
redundancy, as the tree can be recomputed after a failure. A variation is up–down routing, in which
a rooted spanning tree is imposed over themesh. Trafficmust alwaysmove first along up links
(towards the root) and then only along down links.

2-D three-turn routing: In each of the clockwise and anticlockwise turn sets, one possible turn is
prohibited. This allows a dynamic choice from a richer set of paths comparedwith the static routing
of dimension-ordered routing.

119

Modern SoCDesign

3.4.2 Virtual Channels
A virtual channel (VC) is a time-divisionmultiplexed (TDM) slice of a physical channel or link. The
physical linkmight carry two to ten VCs. These normally share a resource using round-robin
arbitration (Section 4.2.1) rather than statically allocating slots, which would be toowasteful. To allow
demultiplexing, the wordwidth can be extendedwith the VC number that is active. For amulti-word
flit, an additional field is added.

VCs, when used judiciously, help in improving performance and optimising wire utilisation. Different
VCs can be used to provide fine-grained sharing of the fabric (sub-transaction level). They commonly
support a differential QoS and can help to prevent deadlocks. VCs preserve isolation, both between
separate classes of traffic and between requests and responses. The isolation of requests from
responses also helps to avoid deadlocks, as explained in Section 3.4.3. However, the use of VCs, in
general, leads to an increased number of buffers, which, in turn, increases the silicon area and power
consumption. An inefficient VC assignment can lead to NoCs that are at least an order of magnitude
inferior in terms of PPA. Hence, an optimal allocation of VCs is crucial in NoC design and an important
part of NoC synthesis.

A crucial step when designing an interconnect is to assign VCs to traffic classes so that its PPAmeets
the design objectives while also avoiding deadlocks. The VC assignment problem for a NoC is tightly
coupled with topology generation and routing. However, combining VC assignment with topology
generation further complicates an already complex problem, and it is difficult to solve both effectively.
Traditional methods for VCmapping usually involve a greedy algorithm or use a different VC for each
QoS level. Thesemethods are inefficient. If we have to use a constructive design approach, which
cannot iterate (Section 6.2), it is better to performVC assignment after topology generation [12, 13].
However, generating a topology without partitioning the traffic into VC classes usually results in a
NoC that has a suboptimal PPA, as both the silicon area and net count will be higher. The
co-dependent nature of these twoNP-hard problems poses amajor challenge in creating efficient
solutions for both of them, so, as withmost aspects of design space exploration, an iterative
optimisation technique is applied (Section 6.2).

3.4.3 NoCDeadlocks
An interconnect can experience various forms of deadlock. A deadlock arises when a path with a
circular dependency is activated such that each participant is waiting for the next to do something.
Figure 3.22 shows one typical pattern that can arise with wormhole and cut-through routing. This is a
fabric deadlock since two (or more) messages, both present in the NoC switching fabric, are stopping
each other from being delivered. The figure shows radix-3 switching elements in a 2-D grid. The
bidirectional links between each pair of elements either do not use VCs or else both the red and green
transactions are using the same channel. Hence, there is structural contention (Section 6.3), as at
most one transaction phase can be active on each direction of a link. The red and the green
transactions are deadlocked: each is blocked by the other at the parts shown as dashed lines. Red is
waiting for green at element B0 and green is waiting for red at element A1. The example is small and

118

Chapter 3 | SoC Interconnect

A0 B0

A1 B1

Figure 3.22 Four elements in a 2-Dmesh. Two transactions, red and green, are in a fabric deadlock, since unconstrained cut-through switching with
wormhole routing has allowed each to block the other. The dashed parts cannot complete

both transactions are taking unusually circuitous routes, but it demonstrates how the problem can
arise with unconstrained routing.

Themainmechanism for aviding deadlocks in current interconnect designs is restricted-turn routing
[14]. Figure 3.23 (left) shows the eight named turns possible in a 2-Dmesh. Four are clockwise turns
and four are anticlockwise turns. A clockwise cyclic dependency cannot form unless all four clockwise
turns are used. Similarly, an anticlockwise cycle requires all four anticlockwise turns. A simple blanket
prohibition on certain patterns of turns is typically used. There aremany possible policies that vary in
complexity and suitability for different numbers of dimensions. Examples are:

Dimension-ordered routing: The various dimensions of movement aremade in an overall order.
For instance, in 2-D, traffic should alwaysmove as far as it needs in the Y (north/south) direction
beforemoving any distance in the X (east/west) direction. Figure 3.23 (centre) shows the four turn
directions then allowed. This is known asManhattan routing. The turn direction can also be
restricted in torus-like topologies, such asmaking negativemovements first.

2-D spanning-tree routing: A spanning tree is imposed over themesh. Only links that are part of
the tree are used. This is very wasteful (albeit widely used for LANs), but is potentially useful due to
redundancy, as the tree can be recomputed after a failure. A variation is up–down routing, in which
a rooted spanning tree is imposed over themesh. Trafficmust alwaysmove first along up links
(towards the root) and then only along down links.

2-D three-turn routing: In each of the clockwise and anticlockwise turn sets, one possible turn is
prohibited. This allows a dynamic choice from a richer set of paths comparedwith the static routing
of dimension-ordered routing.

119

Modern SoCDesign

General prohibition: Given a regular topology with any number of dimensions or an arbitrary
topology, the allowable set of turns at any given element is judiciously chosen using static analysis
such that full connectivity is retained. Thus, certain turns are removed from each element. In the
absence of VCs, this does not involve storing additional information at an element. On the contrary,
it involves removing themultiplexor inputs and nets that would have provided that turn. An
advanced approachwould take the trafficmatrix (Section 3.5.1) into account and implement
different restrictions for different VCs.

A deadlock can also arise at higher levels. All deadlock-avoidance strategies are based on
understanding the dependencies between various actions. Themost direct way to avoid a higher-level
deadlock is to use physically separate interconnect resources for conveying traffic that might
interfere. VCs provide logical separation instead, which is also sufficient. The interconnect is then
logically composed of a number of independent subnetworks. The individual subnetworks need to be
deadlock free, to avoid a fabric deadlock, but, as just described, this can be determined by a static
analysis of each in isolation andwithout knowledge of how the traffic on different VCs is correlated.

The next higher source of deadlocks is due to phase dependency. Multiphase transactions have
separate command and response phases in which the response phase is triggered by a command. AXI
(Section 3.1.5) is predominantly a request–response protocol wherein there is an implicit dependency
between the request receipt at the egress port and the triggered response from the same port. With
AXI onwide NoC links, either the command or the response can bemulti-word. The command is
multi-word for burst writes and the response is multi-word for burst reads. However, it is never
multi-word for both. Moreover, the response is generated only after full receipt of the command. An
interphase deadlock on uncached AXI is, therefore, unlikely. A protocol that supports long burst reads
with explicit instead of implied addresses would have overlapping command and response phases and
could potentially allow phase-dependent deadlocks.

Figure 3.23 (right) shows how phase dependency can becomemanifest as an illegal turn, despite strict
north–south first routing being used. We show two transactions between four peers. Both the
request and response phases are quite long, giving significant opportunity for interference. The red
path shows initiator I1 at s00making a two-phase transaction on target T1 in the opposite corner. The
response is shown in green. However, before the response arrives, a second initiator, I2, starts to use
the required link between s22 and s21. Its traffic is shown in blue. The link is now tied up since
wormhole routing is being used and the requests and responses are not on separate VCs. Moreover,
this second transaction also becomes blocked since target T2 needs to use the link from s01 to s02 for
its response, but that link will not become free until initiator I1 has sent the end of the first
transaction. Inevitably, limited buffering is available in the switching elements and targets, so a
deadlock arises as soon as every resource along the contending paths is occupied.

The essence of the problem is that the targets have effectively implemented a bottom right
anticlockwise (BRA) turn, thus defeating the north–south first policy, which does not allowBRA.Many
application programs avoid deadlocks by chance, due to their traffic routing patterns or short

120

Chapter 3 | SoC Interconnect

TLA TRA

BLA BRA

TRC

BLC BRC

BRC

TLCTRA

BLA

Eight possible turns Y-before-X subset

TLC

T1

I1

T2

I2

s10s00 s20

s11s01 s21

s12s02 s22

s13s03 s23

Blocking
response

from T1 to I1Blocking
response

from
T2 to I2

TRA

BRA!BLA

TRA

BRA!

Figure 3.23 The eight possible 2-D turns (left), the allowable 2-D turns with Y-before-X (north–south first) routing (centre) and an example set of turns used
by two transactions that obey the north–south first global policy but still manage to deadlock owing to interference between requests and responses. The
turns that violate the global policy are marked with an exclamation mark. BLA: bottom left anticlockwise; BRA: bottom right anticlockwise; TRA: top right
anticlockwise; TLA: top left anticlockwise; BLC: bottom left clockwise; BRC: bottom right clockwise; TRC: top right clockwise; TLC: top left clockwise

transaction lengths, but a small edit to their code, or just running alongside another incompatible
application, could lead to a deadlock.

As well as between the phases of a transaction, dependencies can arise when complete transactions
need to be cascaded, such as when the front and back sides of a data cache or TLB (Section 2.2.1)
share the same fabric. Cachemiss operations typically require a fresh transaction to be issued and
need to complete before the triggering transaction completes. To remove this next higher level of
potential deadlock, we use a behavioural traffic specification, such as the one in Figure 3.24. This
shows a dependency between two ports, since the receipt of the read phase of a transaction at port
u_S0 triggers a new read transaction at u_M0. It is important to note that one transaction triggering
another transaction is not the same as a transaction needing a further transaction to complete before
it can complete itself. The former is common and does not lead to a deadlock of the first transaction
since it has completed. The latter must be captured as an explicit inter-transaction phase dependency
and considered during deadlock avoidance.

Fully factoring all the higher-level phase and cascade transaction constraints into a scheme like turn
restriction can become fragile or infeasible. The resulting design can be highly sensitive to an
undocumented dependency. The approach often preferred is to use different VCs for the different
phases of transactions. Given that many transactions are fairly simple client–server operations, the
universal use of a large number of VCs could seem extravagant. However, the set of potentially active
VCs on a hardware link is easy to collate statically given the routing basis. Hence, post-processing to

121

Modern SoCDesign

General prohibition: Given a regular topology with any number of dimensions or an arbitrary
topology, the allowable set of turns at any given element is judiciously chosen using static analysis
such that full connectivity is retained. Thus, certain turns are removed from each element. In the
absence of VCs, this does not involve storing additional information at an element. On the contrary,
it involves removing themultiplexor inputs and nets that would have provided that turn. An
advanced approachwould take the trafficmatrix (Section 3.5.1) into account and implement
different restrictions for different VCs.

A deadlock can also arise at higher levels. All deadlock-avoidance strategies are based on
understanding the dependencies between various actions. Themost direct way to avoid a higher-level
deadlock is to use physically separate interconnect resources for conveying traffic that might
interfere. VCs provide logical separation instead, which is also sufficient. The interconnect is then
logically composed of a number of independent subnetworks. The individual subnetworks need to be
deadlock free, to avoid a fabric deadlock, but, as just described, this can be determined by a static
analysis of each in isolation andwithout knowledge of how the traffic on different VCs is correlated.

The next higher source of deadlocks is due to phase dependency. Multiphase transactions have
separate command and response phases in which the response phase is triggered by a command. AXI
(Section 3.1.5) is predominantly a request–response protocol wherein there is an implicit dependency
between the request receipt at the egress port and the triggered response from the same port. With
AXI onwide NoC links, either the command or the response can bemulti-word. The command is
multi-word for burst writes and the response is multi-word for burst reads. However, it is never
multi-word for both. Moreover, the response is generated only after full receipt of the command. An
interphase deadlock on uncached AXI is, therefore, unlikely. A protocol that supports long burst reads
with explicit instead of implied addresses would have overlapping command and response phases and
could potentially allow phase-dependent deadlocks.

Figure 3.23 (right) shows how phase dependency can becomemanifest as an illegal turn, despite strict
north–south first routing being used. We show two transactions between four peers. Both the
request and response phases are quite long, giving significant opportunity for interference. The red
path shows initiator I1 at s00making a two-phase transaction on target T1 in the opposite corner. The
response is shown in green. However, before the response arrives, a second initiator, I2, starts to use
the required link between s22 and s21. Its traffic is shown in blue. The link is now tied up since
wormhole routing is being used and the requests and responses are not on separate VCs. Moreover,
this second transaction also becomes blocked since target T2 needs to use the link from s01 to s02 for
its response, but that link will not become free until initiator I1 has sent the end of the first
transaction. Inevitably, limited buffering is available in the switching elements and targets, so a
deadlock arises as soon as every resource along the contending paths is occupied.

The essence of the problem is that the targets have effectively implemented a bottom right
anticlockwise (BRA) turn, thus defeating the north–south first policy, which does not allowBRA.Many
application programs avoid deadlocks by chance, due to their traffic routing patterns or short

120

Chapter 3 | SoC Interconnect

TLA TRA

BLA BRA

TRC

BLC BRC

BRC

TLCTRA

BLA

Eight possible turns Y-before-X subset

TLC

T1

I1

T2

I2

s10s00 s20

s11s01 s21

s12s02 s22

s13s03 s23

Blocking
response

from T1 to I1Blocking
response

from
T2 to I2

TRA

BRA!BLA

TRA

BRA!

Figure 3.23 The eight possible 2-D turns (left), the allowable 2-D turns with Y-before-X (north–south first) routing (centre) and an example set of turns used
by two transactions that obey the north–south first global policy but still manage to deadlock owing to interference between requests and responses. The
turns that violate the global policy are marked with an exclamation mark. BLA: bottom left anticlockwise; BRA: bottom right anticlockwise; TRA: top right
anticlockwise; TLA: top left anticlockwise; BLC: bottom left clockwise; BRC: bottom right clockwise; TRC: top right clockwise; TLC: top left clockwise

transaction lengths, but a small edit to their code, or just running alongside another incompatible
application, could lead to a deadlock.

As well as between the phases of a transaction, dependencies can arise when complete transactions
need to be cascaded, such as when the front and back sides of a data cache or TLB (Section 2.2.1)
share the same fabric. Cachemiss operations typically require a fresh transaction to be issued and
need to complete before the triggering transaction completes. To remove this next higher level of
potential deadlock, we use a behavioural traffic specification, such as the one in Figure 3.24. This
shows a dependency between two ports, since the receipt of the read phase of a transaction at port
u_S0 triggers a new read transaction at u_M0. It is important to note that one transaction triggering
another transaction is not the same as a transaction needing a further transaction to complete before
it can complete itself. The former is common and does not lead to a deadlock of the first transaction
since it has completed. The latter must be captured as an explicit inter-transaction phase dependency
and considered during deadlock avoidance.

Fully factoring all the higher-level phase and cascade transaction constraints into a scheme like turn
restriction can become fragile or infeasible. The resulting design can be highly sensitive to an
undocumented dependency. The approach often preferred is to use different VCs for the different
phases of transactions. Given that many transactions are fairly simple client–server operations, the
universal use of a large number of VCs could seem extravagant. However, the set of potentially active
VCs on a hardware link is easy to collate statically given the routing basis. Hence, post-processing to

121

Modern SoCDesign

1 Profiles:
2 t0: { src: u_M0, type: readRequest, avg: 10, peak: 100, req_beats: 1,
3 resp_beats: 4, qos: 0, lc: false, dst: u_S0 }
4 t1: { src: u_M0, type: writeRequest, avg: 10, peak: 94.3, req_beats: 4,
5 resp_beats: 1, qos: 0, lc: false, dst: u_S0 }
6 Dependencies:
7 # Receipt of readRequest at u_S0, triggers a transaction at u_M0
8 d0: { from: u_S0.readRequest, to: u_M0.readRequest }
9

Figure 3.24 Sample behavioural traffic specification containing a load profile and a transaction phase dependency

remove support for unused VC code points on a link can be applied as a design optimisation step. Of
course, VCs also provideQoS isolation.

No amount of interconnect engineering can stop a programmerwriting software that deadlocks.
Hardware support for this highest level of deadlock typically amounts to a bus timeout on a
transaction, implemented at the initiator. More heavy-handed is the watchdog timer (Section 2.7.4)!

3.4.4 Credit-based FlowControl
Flow control is the process of matching sending and receiving rates between components
(Section 3.1.3). As mentioned, for a NoC, the unit of flow control is called a flit. This term is loosely
used for other units of transfer over a NoC, such as a unit that is routed homogeneously or a unit that
is not pre-empted by any other.

Also, as pointed out in Section 3.1.3, the standard synchronous interface cannot be re-pipelined with
just the addition of a broadside register since the forward and reverse handshake nets will be offset in
opposite directions in the time domain. Instead, a FIFO structuremust be used, which is more
complex than a simple broadside register owing to the presence of handshake logic. Moreover,
various FIFO designs exist, which either introduce bubbles, waste capacity or introduce undesirable
combinational chains of handshake logic. A FIFO bubble is a clock cycle where data could potentially
move in or out of the FIFO, but is not allowed to owing to the desire to avoid combinational paths
through the control circuitry (Section 6.3.4). For instance, if new data were enabled to enter a long
FIFO chain structure as soon as a wordwas read out at the far end, there would have to be a
combinational reverse path from the output handshake back to the input ready signal.

Long combinational paths reduce the achievable clock frequency (Section 4.4.2). Thus, the hardware
complexity can become troublesome and it is difficult to select a good balance between FIFO
complexity, the potential for bubbles and combinational path delays in the handshake logic.

Instead, manyNoC designs use credit-based flow control. In this type of control, the source keeps
track of howmuch receive buffer space is available at the destination. A source cannot send a flit
unless it has at least one credit. When links are activated, each receiver must provide at least one

122

Chapter 3 | SoC Interconnect

credit to each sender that might send to it. A receiver must guarantee that it can accept all the flits for
which it has issued credits.

Credit-based flow control can be operated hop by hop (link-level) only, but also end to end for a
source/destination pair. If multiple senders share one receiver, the receiver may dynamically
reallocate the available credits according to priority or observed recent behaviour, but each sender
must be granted at least one credit or else a separate request-for-credit mechanismmust exist. Under
end-to-end flow control, a sender that sends tomultiple destinations will maintain separate credit
accounts for each destination, whether the traffic shares a common egress VC or not.

A basic hop-by-hop setup is illustrated in Figure 3.25. An up/down counter at the sending end of a link
(the source) is initially loadedwith a count value, known as the credit. This is equal to the capacity of
the sink to receive data without overruns. The sinkmust have an effective FIFO buffer or equivalent
of that capacity. Data forwarded between the components is simply qualified by a valid net, but the
sourcemay send only when it has credit greater than zero. The source decrements its credit count for
each word sent. A credit-returnmechanism notifies the sender when it may increment its counter.
This can be a single net in the return direction, as shown, or a piggyback field in traffic that is returning
in the other direction. However, relying on traffic in the other direction can cause cyclic dependencies
and hence, a fabric deadlock, so suchmechanismsmust be designedwith great care. An explicit
backward flit can also be used to establish the initial credit or retract it.

Up/Down
counter

Source Sink

ValidValid

Data

n n

Credit
return

FIFO

DEC

INC

>0

Not-emptyEnq

Deq

Credit
return

Interconnect
pipeline stages

Figure 3.25 One possible structure using link-level credit-based flow control, showing tolerance to pipeline stages in the interconnect nets. The forward and
return paths need not be matched in delay terms

In the above description, the unit of flow control, the flit, was a word, equal in width to the data bus. If
a flit has more than oneword, it retains that fixed size and a fixed-size packet containing the several
words are sent per credit.

A crude form of flow control that also avoids combinational paths is calledXon/Xoff flow control. A
binary value is conveyed over the return path, which turns the source on or off. This technique is also
commonly used on RS-232 serial ports (Section 2.7.1). Both on-SoC and for the serial port, the reverse
path can be either a physical wire or a token sent via piggyback in the reverse direction traffic (if

123

Modern SoCDesign

1 Profiles:
2 t0: { src: u_M0, type: readRequest, avg: 10, peak: 100, req_beats: 1,
3 resp_beats: 4, qos: 0, lc: false, dst: u_S0 }
4 t1: { src: u_M0, type: writeRequest, avg: 10, peak: 94.3, req_beats: 4,
5 resp_beats: 1, qos: 0, lc: false, dst: u_S0 }
6 Dependencies:
7 # Receipt of readRequest at u_S0, triggers a transaction at u_M0
8 d0: { from: u_S0.readRequest, to: u_M0.readRequest }
9

Figure 3.24 Sample behavioural traffic specification containing a load profile and a transaction phase dependency

remove support for unused VC code points on a link can be applied as a design optimisation step. Of
course, VCs also provideQoS isolation.

No amount of interconnect engineering can stop a programmerwriting software that deadlocks.
Hardware support for this highest level of deadlock typically amounts to a bus timeout on a
transaction, implemented at the initiator. More heavy-handed is the watchdog timer (Section 2.7.4)!

3.4.4 Credit-based FlowControl
Flow control is the process of matching sending and receiving rates between components
(Section 3.1.3). As mentioned, for a NoC, the unit of flow control is called a flit. This term is loosely
used for other units of transfer over a NoC, such as a unit that is routed homogeneously or a unit that
is not pre-empted by any other.

Also, as pointed out in Section 3.1.3, the standard synchronous interface cannot be re-pipelined with
just the addition of a broadside register since the forward and reverse handshake nets will be offset in
opposite directions in the time domain. Instead, a FIFO structuremust be used, which is more
complex than a simple broadside register owing to the presence of handshake logic. Moreover,
various FIFO designs exist, which either introduce bubbles, waste capacity or introduce undesirable
combinational chains of handshake logic. A FIFO bubble is a clock cycle where data could potentially
move in or out of the FIFO, but is not allowed to owing to the desire to avoid combinational paths
through the control circuitry (Section 6.3.4). For instance, if new data were enabled to enter a long
FIFO chain structure as soon as a wordwas read out at the far end, there would have to be a
combinational reverse path from the output handshake back to the input ready signal.

Long combinational paths reduce the achievable clock frequency (Section 4.4.2). Thus, the hardware
complexity can become troublesome and it is difficult to select a good balance between FIFO
complexity, the potential for bubbles and combinational path delays in the handshake logic.

Instead, manyNoC designs use credit-based flow control. In this type of control, the source keeps
track of howmuch receive buffer space is available at the destination. A source cannot send a flit
unless it has at least one credit. When links are activated, each receiver must provide at least one

122

Chapter 3 | SoC Interconnect

credit to each sender that might send to it. A receiver must guarantee that it can accept all the flits for
which it has issued credits.

Credit-based flow control can be operated hop by hop (link-level) only, but also end to end for a
source/destination pair. If multiple senders share one receiver, the receiver may dynamically
reallocate the available credits according to priority or observed recent behaviour, but each sender
must be granted at least one credit or else a separate request-for-credit mechanismmust exist. Under
end-to-end flow control, a sender that sends tomultiple destinations will maintain separate credit
accounts for each destination, whether the traffic shares a common egress VC or not.

A basic hop-by-hop setup is illustrated in Figure 3.25. An up/down counter at the sending end of a link
(the source) is initially loadedwith a count value, known as the credit. This is equal to the capacity of
the sink to receive data without overruns. The sinkmust have an effective FIFO buffer or equivalent
of that capacity. Data forwarded between the components is simply qualified by a valid net, but the
sourcemay send only when it has credit greater than zero. The source decrements its credit count for
each word sent. A credit-returnmechanism notifies the sender when it may increment its counter.
This can be a single net in the return direction, as shown, or a piggyback field in traffic that is returning
in the other direction. However, relying on traffic in the other direction can cause cyclic dependencies
and hence, a fabric deadlock, so suchmechanismsmust be designedwith great care. An explicit
backward flit can also be used to establish the initial credit or retract it.

Up/Down
counter

Source Sink

ValidValid

Data

n n

Credit
return

FIFO

DEC

INC

>0

Not-emptyEnq

Deq

Credit
return

Interconnect
pipeline stages

Figure 3.25 One possible structure using link-level credit-based flow control, showing tolerance to pipeline stages in the interconnect nets. The forward and
return paths need not be matched in delay terms

In the above description, the unit of flow control, the flit, was a word, equal in width to the data bus. If
a flit has more than oneword, it retains that fixed size and a fixed-size packet containing the several
words are sent per credit.

A crude form of flow control that also avoids combinational paths is calledXon/Xoff flow control. A
binary value is conveyed over the return path, which turns the source on or off. This technique is also
commonly used on RS-232 serial ports (Section 2.7.1). Both on-SoC and for the serial port, the reverse
path can be either a physical wire or a token sent via piggyback in the reverse direction traffic (if

123

Modern SoCDesign

duplex). Comparedwith credit-based control, Xon/Xoff requires receiver buffering proportional to
the round-trip delay. Since it is coarse-grained, it can also increase the burstiness of the data.
Nonetheless, it is used in someNoC designs.

3.4.5 AMBA5CHI
The AXI family of protocols is not ideal for a NoC. AXI has a different structure for reading andwriting
whereas a homogeneous NoC fabric is symmetric. Thus, the same data nets should equally well be
able to carry write data from an initiator on the left of the chip as read data to an initiator on the right
of the chip. Arm designed theAMBACoherent Hub Interface (CHI) protocol for NoC applications,
although it can also be used for an over-engineered point-to-point connection. CHI uses credit-based
flow control.

Comparedwith AXI, CHI was a fresh start at a bus definition. It provides greater support for NoC
systems. It has a four-layer protocol stack, as shown in Figure 3.26. The top layer, called the protocol
layer, generates and processes transactions at end points and implements end-to-end flow control.
The network or routing layer packetises protocol messages into flits andmanages routing over the
NoC. The second-bottom layer is the link layer. It provides hop-by-hop flow control between
connected components (end points or switching elements). The bottom layer is the physical layer,
which controls the nets between components. Commonly the flit size in bits is somemultiple, N, of the
physical bus width. Each flit must then be transferred as N separate words over the bus. These are
called phits.

Physical

Protocol

Routing

Link

Messages

Packets

Flits

Phits Physical

Link

Physical

Link

Physical

Protocol

Routing

Link

Routing

End point End pointSwitching element (router)

Figure 3.26 Two end points interconnected via some number of switching elements. The AMBA 5 CHI protocol layers are shown

In CHI, each NoC component that is connected to a neighbour has a so-called link in each direction.
The links are simplex and consist of CHI channels. All channels can operate at once, so overall we have
a full-duplex bidirectional port. Credit accounts operate for each individual channel, so that a
transmitting channel cannot send a flit unless it has a credit. A single link carries all forms of
transaction, whether reads, writes or any other type listed in Section 3.1.

The left-hand panel of Figure 3.27 shows aminimal CHI implementation, connecting a requester
(initiator) to a completer (target). Transactions are issued on the request channel (TX-REQ). If an issued
transaction has associated data, such as the data for a write transaction, those data are conveyed over
the TX-DAT channel. Responses to transactions are received on the response (RX-RSP) channel. If the
responses have data, such as a read, the data are conveyed over the RX-DAT channel. These four
channels are sufficient for a simple initiator or target that does not participate in cache coherency.

124

Chapter 3 | SoC Interconnect

TXREQ_FLITPEND
TXREQ_FLITV
TXREQ_FLIT

TXREQ_LCRDV

TXDAT_FLITPEND
TXDAT_FLITV
TXDAT_FLIT

TXDAT_LCRDV

RXRESP_FLITPEND
RXRESP_FLITV
RXRESP_FLIT

RXRESP_LCRDV

RXDAT_FLITPEND
RXDAT_FLITV
RXDAT_FLIT

RXDAT_LCRDV

RX DAT
channel

RX RSP
channel

TX DAT
channel

TX REQ
channel

C
om

pl
et

er
 N

od
e

(T
ar

ge
t)

RX DAT
channel

RX RSP
channel

TX DAT
channel

TX REQ
channel

R
eq

ue
st

er
 N

od
e

(In
iti

at
or

)

RN CN

TXSACTIVE
RXSACTIVE

TXLINKACTIVEREQ
TXLINKACTIVEACK

TXREQ_FLITPEND
TXREQ_FLITV
TXREQ_FLIT
TXREQ_LCRDV

TXRSP_FLITPEND
TXRSP_FLITV
TXRSP_FLIT
TXRSP_LCRDV

RXRESP_FLITPEND
RXRESP_FLITV
RXRESP_FLIT
RXRESP_LCRDV

RXDAT_FLITPEND
RXDAT_FLITV
RXDAT_FLIT
RXDAT_LCRDV

RX DAT
channel

RX RSP
channel

TX RSP
channel

TX REQ
channel

R
eq

ue
st

er
 N

od
e

(In
iti

at
or

)

TXDAT_FLITPEND
TXDAT_FLITV
TXDAT_FLIT
TXDAT_LCRDV

TX DAT
channel

RXSNP_FLITPEND
RXSNP_FLITV
RXSNP_FLIT
RXSNP_LCRDV

RX SNP
channel

RXLINKACTIVEREQ
RXLINKACTIVEACK

O
ut

bo
un

d
po

rt
In

bo
un

d
po

rt

RN

Figure 3.27 Aminimal application of the AMBA 5 CHI specification between a requester and a completer (left) and full net-level details of the six channels
found on amore-typical request node (RN) (right)

The right-hand panel of Figure 3.27 shows the full port found on a typical CHI requester node (RN).
The top two nets form part of a start/stop protocol that is exercised as a port joins or leaves the NoC.
When a credit-controlled channel is being activated or deactivated, caremust be takenwith the credit
tokens. Each channel of the port has a further pair of nets to implement the start/stop protocol. On
activation, the transmittermust be granted some credit. On deactivation of a transmitter, credit might
be lost and a buffer space in the receiver might become permanently wasted. An explicit deactivate
phase in the linkmanagement protocol avoids this problem. During deactivation, a transmitter sends
NOP flits until it has run out of credit. The receiver should not issue credit returns during that phase.
The figure shows six channels. The transmit (TX) group has request (TX-REQ), response (TX-RSP) and
data (TX-DAT) channels. All three channels transmit data. The receive (RX) side, likewise, contains
three receiving channels, called response (RX-RSP), data (RX-DAT) and snoop (RX-SNP).

Each direction of a link hasmore than one channel for three principal reasons:

1. Deadlock avoidance: Application-level transaction dependencies are complex and varying. They
can be statically enumerated for simple IP blocks, such as a PIO register file. Thus, it is theoretically

125

Modern SoCDesign

duplex). Comparedwith credit-based control, Xon/Xoff requires receiver buffering proportional to
the round-trip delay. Since it is coarse-grained, it can also increase the burstiness of the data.
Nonetheless, it is used in someNoC designs.

3.4.5 AMBA5CHI
The AXI family of protocols is not ideal for a NoC. AXI has a different structure for reading andwriting
whereas a homogeneous NoC fabric is symmetric. Thus, the same data nets should equally well be
able to carry write data from an initiator on the left of the chip as read data to an initiator on the right
of the chip. Arm designed theAMBACoherent Hub Interface (CHI) protocol for NoC applications,
although it can also be used for an over-engineered point-to-point connection. CHI uses credit-based
flow control.

Comparedwith AXI, CHI was a fresh start at a bus definition. It provides greater support for NoC
systems. It has a four-layer protocol stack, as shown in Figure 3.26. The top layer, called the protocol
layer, generates and processes transactions at end points and implements end-to-end flow control.
The network or routing layer packetises protocol messages into flits andmanages routing over the
NoC. The second-bottom layer is the link layer. It provides hop-by-hop flow control between
connected components (end points or switching elements). The bottom layer is the physical layer,
which controls the nets between components. Commonly the flit size in bits is somemultiple, N, of the
physical bus width. Each flit must then be transferred as N separate words over the bus. These are
called phits.

Physical

Protocol

Routing

Link

Messages

Packets

Flits

Phits Physical

Link

Physical

Link

Physical

Protocol

Routing

Link

Routing

End point End pointSwitching element (router)

Figure 3.26 Two end points interconnected via some number of switching elements. The AMBA 5 CHI protocol layers are shown

In CHI, each NoC component that is connected to a neighbour has a so-called link in each direction.
The links are simplex and consist of CHI channels. All channels can operate at once, so overall we have
a full-duplex bidirectional port. Credit accounts operate for each individual channel, so that a
transmitting channel cannot send a flit unless it has a credit. A single link carries all forms of
transaction, whether reads, writes or any other type listed in Section 3.1.

The left-hand panel of Figure 3.27 shows aminimal CHI implementation, connecting a requester
(initiator) to a completer (target). Transactions are issued on the request channel (TX-REQ). If an issued
transaction has associated data, such as the data for a write transaction, those data are conveyed over
the TX-DAT channel. Responses to transactions are received on the response (RX-RSP) channel. If the
responses have data, such as a read, the data are conveyed over the RX-DAT channel. These four
channels are sufficient for a simple initiator or target that does not participate in cache coherency.

124

Chapter 3 | SoC Interconnect

TXREQ_FLITPEND
TXREQ_FLITV
TXREQ_FLIT

TXREQ_LCRDV

TXDAT_FLITPEND
TXDAT_FLITV
TXDAT_FLIT

TXDAT_LCRDV

RXRESP_FLITPEND
RXRESP_FLITV
RXRESP_FLIT

RXRESP_LCRDV

RXDAT_FLITPEND
RXDAT_FLITV
RXDAT_FLIT

RXDAT_LCRDV

RX DAT
channel

RX RSP
channel

TX DAT
channel

TX REQ
channel

C
om

pl
et

er
 N

od
e

(T
ar

ge
t)

RX DAT
channel

RX RSP
channel

TX DAT
channel

TX REQ
channel

R
eq

ue
st

er
 N

od
e

(In
iti

at
or

)

RN CN

TXSACTIVE
RXSACTIVE

TXLINKACTIVEREQ
TXLINKACTIVEACK

TXREQ_FLITPEND
TXREQ_FLITV
TXREQ_FLIT
TXREQ_LCRDV

TXRSP_FLITPEND
TXRSP_FLITV
TXRSP_FLIT
TXRSP_LCRDV

RXRESP_FLITPEND
RXRESP_FLITV
RXRESP_FLIT
RXRESP_LCRDV

RXDAT_FLITPEND
RXDAT_FLITV
RXDAT_FLIT
RXDAT_LCRDV

RX DAT
channel

RX RSP
channel

TX RSP
channel

TX REQ
channel

R
eq

ue
st

er
 N

od
e

(In
iti

at
or

)

TXDAT_FLITPEND
TXDAT_FLITV
TXDAT_FLIT
TXDAT_LCRDV

TX DAT
channel

RXSNP_FLITPEND
RXSNP_FLITV
RXSNP_FLIT
RXSNP_LCRDV

RX SNP
channel

RXLINKACTIVEREQ
RXLINKACTIVEACK

O
ut

bo
un

d
po

rt
In

bo
un

d
po

rt

RN

Figure 3.27 Aminimal application of the AMBA 5 CHI specification between a requester and a completer (left) and full net-level details of the six channels
found on amore-typical request node (RN) (right)

The right-hand panel of Figure 3.27 shows the full port found on a typical CHI requester node (RN).
The top two nets form part of a start/stop protocol that is exercised as a port joins or leaves the NoC.
When a credit-controlled channel is being activated or deactivated, caremust be takenwith the credit
tokens. Each channel of the port has a further pair of nets to implement the start/stop protocol. On
activation, the transmittermust be granted some credit. On deactivation of a transmitter, credit might
be lost and a buffer space in the receiver might become permanently wasted. An explicit deactivate
phase in the linkmanagement protocol avoids this problem. During deactivation, a transmitter sends
NOP flits until it has run out of credit. The receiver should not issue credit returns during that phase.
The figure shows six channels. The transmit (TX) group has request (TX-REQ), response (TX-RSP) and
data (TX-DAT) channels. All three channels transmit data. The receive (RX) side, likewise, contains
three receiving channels, called response (RX-RSP), data (RX-DAT) and snoop (RX-SNP).

Each direction of a link hasmore than one channel for three principal reasons:

1. Deadlock avoidance: Application-level transaction dependencies are complex and varying. They
can be statically enumerated for simple IP blocks, such as a PIO register file. Thus, it is theoretically

125

Modern SoCDesign

possible to undertake awhole-system deadlock analysis, but this is generally infeasible for anything
other than small systemswith simple components. Moreover, the analysis may have to include the
behaviour of the application code, which is highly undesirable. It is much better if the hardware
works as expected for any application code. Hence, as explained in Section 3.4.3, it is better to keep
transaction phase responses separate from the request phases, so that static deadlock avoidance
mechanisms can be deployed for each separately, without having to worry about how they interact
with each other. Themultiple physical channels in CHI are not sufficient to avoid all deadlock
scenarios, so theymust be augmentedwith amoderate degree of phase separation using VCs.

2. Loose coupling: The data phase for a burst read or write transaction is much longer than the
request or response phase of a typical transaction. Some transactions are data-less (e.g. a reset
command). Loose coupling between phasesmaximises the available parallelism (this is the same
reason that write data andwrite addresses have separate channels in AXI).

3. Spatial reuse: Havingmore channels increases the throughput for a prescribedmaximumword
width. The sizes of the data busses for each channel can be precisely tuned to the widest word they
need to carry.

Looking at the net level, FLIT is themain data-carrying bus of a channel. For the data channels, its
fundamental width is 128, 256 or 512bits, augmentedwith about 50 further protocol bits plus any
additional parity and poison bits. For the other channels, the FLIT bus tends to be in the ballpark of
100bits wide. This will depend on the NoC topology andwill be higher for larger NoCswith larger
node indexes. Implementationsmay also add furtherAXI user sideband bits as required.

Going in the same direction as a FLIT are the FLITPEND and FLITV nets. Each channel also has a LCRDV
net that sends signals in the reverse direction. FLITV is the forward data qualifier net. It holds true in
any clock cycle when FLIT has a valid word. The FLITPEND signal is asserted one clock cycle in advance
of FLITV. It wakes up the clock gating (Section 4.6.9) at the receiving end of the link. LCRDV is the
credit-return net. It operates as illustrated in Figure 3.25, by returning a credit token to the sending
end on each clock edgewhere the link credit is asserted.

3.5 Advanced Interconnect Topologies
Designing an interconnect involves choosing a topology and then deploying the various interconnect
canvas components and configuring them by choosing bus widths. An important first decision is
whether to use a NoC, a centralised hub or one ormore bridged busses. Often a combination of all
approaches will be used. The design will be greatly influenced by the floor plan of the chip
(Section 8.6) and the needs of the PD and CD.

Over the past decade, on-chip communication networks have seen rapid changes. These have been
mostly driven by a desire to customise on-chip interconnects to enhance PPA (Section 5.6). However,
optimising the PPA has becomemore complicated due to themany changes in communication
requirements across generations of chips along with pressure on time-to-market (TTM). While

126

Chapter 3 | SoC Interconnect

bus-based and centralised fabric designs have been the traditional approaches for on-chip
communications, due to the demands for scalable solutions with tight PPA and quick TTM, designing
such systems has become complicated. The problem is further compounded by the unavailability of
tools and the use of back-of-an-envelope and heuristic solutions, which lead to poor PPA and
over-engineering.

Whether designing a custom bridged-bus structure or a NoC, the same traffic engineeringmodels and
synthesis procedures broadly apply. A combination of manual and automatic tooling is possible at all
levels, from choosing the overall topology to settingminor configuration options for each
interconnect component. Manual design typically uses an IP-XACT based GUI editor (Section 6.8.2).
The Socrates tool fromArm is an example. One procedure for automatically generating the topology
is presented in Section 3.9. However, in modern SoC flows, whatever themixture of automatic and
manual design, we expect the output fromeach automated tooling level to be amendable in a graphical
editor. Regardless of how the high-level design was created, we certainly expect all the interconnect
details to be designed by a system interconnect generator that also generates documentation and
device driver header files and automatically configures the test procedures (Section 8.8.1).

3.5.1 Traffic FlowMatrix
Standard NoC topologies based on geometric shapes, such as a ring or torus, are briefly reviewed at
the end of this section, but with today’s tools, the only reason for using a standard shape is a lack of
prior knowledge of the expected traffic flowmatrix. This use case still arises for certain
general-purpose chips, such as accelerators for scientific computing (Section 6.4).

A traffic flowmatrix contains the actual bandwidth and burstiness of traffic between each initiator
and target IP block. It will not generally be symmetric since, for instance, a typical memory location is
read three timesmore often than it is written. Moreover, some cores will not interact with some
peripherals. If traffic flows share a common resource, the burstiness is used to compute the effective
bandwidth (Section 4.3.3). Policers (Section 4.3.4) can be installed as canvas components if the link
bandwidth that would have to provisioned to otherwise avoid starvation and under-runs would be
very high. For any interconnect design, the performance is highly dependent on the characteristics of
the offered traffic load. Although important as the basis for design, a traffic flowmatrix is not
sufficient for simulating or verifying a design. Instead, synthetic traffic generators and real
applications can be used to create an actual workload. The traffic generated can bemeasured and
combined to form or refine the traffic flowmatrix. If a design is to handle all loads envisaged, the
maximum throughput and burstiness for these loads should be used at each point where traffic flows
meet and contend.

Although adding pipeline stages enables higher clock frequencies and hence, a higher interconnect
throughput, pipeline stages also add to the latency. It is important to include a synthetic workload to
model closed-queue systems (Section 4.3), in which a task is performed by a fixed number of threads
or a fixed super-scalar factor (Section 2.2) and the offered load decreases as the round-trip latency
increases. This is because each closed-systemworker will not create a new interconnect transaction

127

Modern SoCDesign

possible to undertake awhole-system deadlock analysis, but this is generally infeasible for anything
other than small systemswith simple components. Moreover, the analysis may have to include the
behaviour of the application code, which is highly undesirable. It is much better if the hardware
works as expected for any application code. Hence, as explained in Section 3.4.3, it is better to keep
transaction phase responses separate from the request phases, so that static deadlock avoidance
mechanisms can be deployed for each separately, without having to worry about how they interact
with each other. Themultiple physical channels in CHI are not sufficient to avoid all deadlock
scenarios, so theymust be augmentedwith amoderate degree of phase separation using VCs.

2. Loose coupling: The data phase for a burst read or write transaction is much longer than the
request or response phase of a typical transaction. Some transactions are data-less (e.g. a reset
command). Loose coupling between phasesmaximises the available parallelism (this is the same
reason that write data andwrite addresses have separate channels in AXI).

3. Spatial reuse: Havingmore channels increases the throughput for a prescribedmaximumword
width. The sizes of the data busses for each channel can be precisely tuned to the widest word they
need to carry.

Looking at the net level, FLIT is themain data-carrying bus of a channel. For the data channels, its
fundamental width is 128, 256 or 512bits, augmentedwith about 50 further protocol bits plus any
additional parity and poison bits. For the other channels, the FLIT bus tends to be in the ballpark of
100bits wide. This will depend on the NoC topology andwill be higher for larger NoCswith larger
node indexes. Implementationsmay also add furtherAXI user sideband bits as required.

Going in the same direction as a FLIT are the FLITPEND and FLITV nets. Each channel also has a LCRDV
net that sends signals in the reverse direction. FLITV is the forward data qualifier net. It holds true in
any clock cycle when FLIT has a valid word. The FLITPEND signal is asserted one clock cycle in advance
of FLITV. It wakes up the clock gating (Section 4.6.9) at the receiving end of the link. LCRDV is the
credit-return net. It operates as illustrated in Figure 3.25, by returning a credit token to the sending
end on each clock edgewhere the link credit is asserted.

3.5 Advanced Interconnect Topologies
Designing an interconnect involves choosing a topology and then deploying the various interconnect
canvas components and configuring them by choosing bus widths. An important first decision is
whether to use a NoC, a centralised hub or one ormore bridged busses. Often a combination of all
approaches will be used. The design will be greatly influenced by the floor plan of the chip
(Section 8.6) and the needs of the PD and CD.

Over the past decade, on-chip communication networks have seen rapid changes. These have been
mostly driven by a desire to customise on-chip interconnects to enhance PPA (Section 5.6). However,
optimising the PPA has becomemore complicated due to themany changes in communication
requirements across generations of chips along with pressure on time-to-market (TTM). While

126

Chapter 3 | SoC Interconnect

bus-based and centralised fabric designs have been the traditional approaches for on-chip
communications, due to the demands for scalable solutions with tight PPA and quick TTM, designing
such systems has become complicated. The problem is further compounded by the unavailability of
tools and the use of back-of-an-envelope and heuristic solutions, which lead to poor PPA and
over-engineering.

Whether designing a custom bridged-bus structure or a NoC, the same traffic engineeringmodels and
synthesis procedures broadly apply. A combination of manual and automatic tooling is possible at all
levels, from choosing the overall topology to settingminor configuration options for each
interconnect component. Manual design typically uses an IP-XACT based GUI editor (Section 6.8.2).
The Socrates tool fromArm is an example. One procedure for automatically generating the topology
is presented in Section 3.9. However, in modern SoC flows, whatever themixture of automatic and
manual design, we expect the output fromeach automated tooling level to be amendable in a graphical
editor. Regardless of how the high-level design was created, we certainly expect all the interconnect
details to be designed by a system interconnect generator that also generates documentation and
device driver header files and automatically configures the test procedures (Section 8.8.1).

3.5.1 Traffic FlowMatrix
Standard NoC topologies based on geometric shapes, such as a ring or torus, are briefly reviewed at
the end of this section, but with today’s tools, the only reason for using a standard shape is a lack of
prior knowledge of the expected traffic flowmatrix. This use case still arises for certain
general-purpose chips, such as accelerators for scientific computing (Section 6.4).

A traffic flowmatrix contains the actual bandwidth and burstiness of traffic between each initiator
and target IP block. It will not generally be symmetric since, for instance, a typical memory location is
read three timesmore often than it is written. Moreover, some cores will not interact with some
peripherals. If traffic flows share a common resource, the burstiness is used to compute the effective
bandwidth (Section 4.3.3). Policers (Section 4.3.4) can be installed as canvas components if the link
bandwidth that would have to provisioned to otherwise avoid starvation and under-runs would be
very high. For any interconnect design, the performance is highly dependent on the characteristics of
the offered traffic load. Although important as the basis for design, a traffic flowmatrix is not
sufficient for simulating or verifying a design. Instead, synthetic traffic generators and real
applications can be used to create an actual workload. The traffic generated can bemeasured and
combined to form or refine the traffic flowmatrix. If a design is to handle all loads envisaged, the
maximum throughput and burstiness for these loads should be used at each point where traffic flows
meet and contend.

Although adding pipeline stages enables higher clock frequencies and hence, a higher interconnect
throughput, pipeline stages also add to the latency. It is important to include a synthetic workload to
model closed-queue systems (Section 4.3), in which a task is performed by a fixed number of threads
or a fixed super-scalar factor (Section 2.2) and the offered load decreases as the round-trip latency
increases. This is because each closed-systemworker will not create a new interconnect transaction

127

Modern SoCDesign

before its previous transaction is complete. Without this, it is easy to think that a high throughput
design that also has high latency (e.g. because traffic is using otherwise free, circuitous paths) will
performwell.

Trafficmodels that can comprehensively capture all possible traffic behaviour in on-chip networks
across any design are critical for rapid development and for meeting TTM requirements. However,
there are several challenges in designing trafficmodels and generating network traces for the detailed
analysis of NoC performance that is need to achieve an optimal design.

The synthetic trafficmodels typically used for NoCmodelling generate uniform random flows,
bit-reversal flows, transpose flows and so on. These are abstractions of communicationmechanisms
across a broad class of applications. They exercise the interconnect using regular, predetermined and
predictable patterns. Although they tend to be simplistic, they are valuable for stress-testing a
network.

Table 3.2 Some (simplified) synthetic traffic generation vectors and their descriptions

No. Name Description
1. Rate: open loop

Flows: all to all
Length: 8
Spacing: Regular

Average rate injection from all ingress ports to all egress ports of 8 byte payloads, with no burstiness

2. Rate: open loop
Flows: all to one
Length: 8
Spacing: Regular

Average rate injection from all ingress ports to one egress port, with no burstiness.

3. Rate: saturated
Flows: all to all
Length: 8
Spacing: Regular

Injection at peak capacity from all ingress ports to all egress ports, with no burstiness.

4. Rate: open loop
Flows: all to all
Length: 8
Spacing: Random

Average injection rate with random delays between injections, from all ingress ports to all egress ports.

5. Rate: open loop
Flows: all to all
Length: Variable
Spacing: Regular

Average injection rate from all ingress ports to all egress ports, with variable length packets.

6. Rate: closed loop
Flows: all to all
Length: 32
Spacing: Regular

Ingress port only generates a newmessage after previous response. All packets are long (32 bytes).

Example synthetic scenario vectors and their descriptions are presented in Table 3.2. These embody
key spatio-temporal characteristics using four independent control parameters: injection rate, flow
matrix, payload size distribution and ingress burstiness. These parameters may be set to generate a
wide range of traffic profiles. A saturated source is one that generates a new transaction as soon as
enabled by the handshakemechanisms. A closed-loop source has somemaximum number of
transactions outstanding andwhen this is reached, it waits for a previous transaction to complete

128

Chapter 3 | SoC Interconnect

before generating any further work. An open-loop source generates traffic at a prescribed average
rate, λ, as described in Section 4.3.

A generation framework can simultaneously apply any number of vectors. Its parameters are
dependent onminimal and abstract input information about the system-level design, available even in
the early phases of network design. The input mainly comprises network end points and the
communications between end points. It is agnostic to system design and its interconnect topology.

On the other hand, there are few realistic traffic traces for any chip architecture, especially with the
rapid pace of chip development. Most standard application benchmarks are suitable only for
large-scale homogeneous architectures. These include realistic traffic benchmarks like SPLASH-2
[15], Parsec [16] andMediaBench [17], which can simulate traces from actual applications. Processing
systemsmeeting diverse application requirements are being developed. These have highly
application-specific architectures and organisations. The associated NoC infrastructures, traffic
characteristics and volumes are significantly affected by the design goals. However, to record the
matrix, these applications can be run on instrumented ESL virtual models of the SoC (Chapter 5).

D
evice

Slow
er Speed D

evices

InitiatorTarget

D
evice InitiatorTarget

D
evice

InitiatorTarget

D
evice

Target

unused

Target

unused

D
evice

D
evice

unused

Bus bridge or
protocol adaptor

Figure 3.28 A ring network. This is a low-complexity NoC structure

Network-on-chip: Simple Ring
Figure 3.28 shows a unidirectional ring topology. The closed loop has two-by-two switching
elements. Each switching element is registered; hence, the ring network can easily span the chip. It
can go off-chip aswell, provided it comes back on again. A higher-radix switching element allowsmore
devices to be connected at a station. A ‘station’ is the traditional name for an access node on a ring.
Alternatively, several stations can be placed together. A protocol-converting bridge is needed to
adapt to a conventional bus.

Ring switching elements give priority to traffic already on the ring. They use cut-through switching to
minimise latency (Section 3.4.1). A ring has local arbitration in each element. Global policies are

129

Modern SoCDesign

before its previous transaction is complete. Without this, it is easy to think that a high throughput
design that also has high latency (e.g. because traffic is using otherwise free, circuitous paths) will
performwell.

Trafficmodels that can comprehensively capture all possible traffic behaviour in on-chip networks
across any design are critical for rapid development and for meeting TTM requirements. However,
there are several challenges in designing trafficmodels and generating network traces for the detailed
analysis of NoC performance that is need to achieve an optimal design.

The synthetic trafficmodels typically used for NoCmodelling generate uniform random flows,
bit-reversal flows, transpose flows and so on. These are abstractions of communicationmechanisms
across a broad class of applications. They exercise the interconnect using regular, predetermined and
predictable patterns. Although they tend to be simplistic, they are valuable for stress-testing a
network.

Table 3.2 Some (simplified) synthetic traffic generation vectors and their descriptions

No. Name Description
1. Rate: open loop

Flows: all to all
Length: 8
Spacing: Regular

Average rate injection from all ingress ports to all egress ports of 8 byte payloads, with no burstiness

2. Rate: open loop
Flows: all to one
Length: 8
Spacing: Regular

Average rate injection from all ingress ports to one egress port, with no burstiness.

3. Rate: saturated
Flows: all to all
Length: 8
Spacing: Regular

Injection at peak capacity from all ingress ports to all egress ports, with no burstiness.

4. Rate: open loop
Flows: all to all
Length: 8
Spacing: Random

Average injection rate with random delays between injections, from all ingress ports to all egress ports.

5. Rate: open loop
Flows: all to all
Length: Variable
Spacing: Regular

Average injection rate from all ingress ports to all egress ports, with variable length packets.

6. Rate: closed loop
Flows: all to all
Length: 32
Spacing: Regular

Ingress port only generates a newmessage after previous response. All packets are long (32 bytes).

Example synthetic scenario vectors and their descriptions are presented in Table 3.2. These embody
key spatio-temporal characteristics using four independent control parameters: injection rate, flow
matrix, payload size distribution and ingress burstiness. These parameters may be set to generate a
wide range of traffic profiles. A saturated source is one that generates a new transaction as soon as
enabled by the handshakemechanisms. A closed-loop source has somemaximum number of
transactions outstanding andwhen this is reached, it waits for a previous transaction to complete

128

Chapter 3 | SoC Interconnect

before generating any further work. An open-loop source generates traffic at a prescribed average
rate, λ, as described in Section 4.3.

A generation framework can simultaneously apply any number of vectors. Its parameters are
dependent onminimal and abstract input information about the system-level design, available even in
the early phases of network design. The input mainly comprises network end points and the
communications between end points. It is agnostic to system design and its interconnect topology.

On the other hand, there are few realistic traffic traces for any chip architecture, especially with the
rapid pace of chip development. Most standard application benchmarks are suitable only for
large-scale homogeneous architectures. These include realistic traffic benchmarks like SPLASH-2
[15], Parsec [16] andMediaBench [17], which can simulate traces from actual applications. Processing
systemsmeeting diverse application requirements are being developed. These have highly
application-specific architectures and organisations. The associated NoC infrastructures, traffic
characteristics and volumes are significantly affected by the design goals. However, to record the
matrix, these applications can be run on instrumented ESL virtual models of the SoC (Chapter 5).

D
evice

Slow
er Speed D

evices

InitiatorTarget

D
evice InitiatorTarget

D
evice

InitiatorTarget

D
evice

Target

unused

Target

unused

D
evice

D
evice

unused

Bus bridge or
protocol adaptor

Figure 3.28 A ring network. This is a low-complexity NoC structure

Network-on-chip: Simple Ring
Figure 3.28 shows a unidirectional ring topology. The closed loop has two-by-two switching
elements. Each switching element is registered; hence, the ring network can easily span the chip. It
can go off-chip aswell, provided it comes back on again. A higher-radix switching element allowsmore
devices to be connected at a station. A ‘station’ is the traditional name for an access node on a ring.
Alternatively, several stations can be placed together. A protocol-converting bridge is needed to
adapt to a conventional bus.

Ring switching elements give priority to traffic already on the ring. They use cut-through switching to
minimise latency (Section 3.4.1). A ring has local arbitration in each element. Global policies are

129

Modern SoCDesign

required to avoid deadlocks and starvation or else tokens and slot-full markers can be carried on the
ring, like the first generation of local-area networks (LANs). Like those LANs, a ring will typically use
source buffering and backpressure: a source is held up until there is sufficient network capacity to
send amessage. Hence, there is not always a requirement for queuing in an element. However, there
are significantly different consequences between holding up a request and holding up the
acknowledgement parts of a split transaction. Holding up a requesting channel with backpressure
reduces the applied load and overall throughput. This is a good aspect. However, holding up a
response can lead to a deadlock (Section 3.4.3); hence, it is generally necessary to consider the static
priority of responses over requests.

For a simple unidirectional ring, traffic will travel halfway round the ring on average, so the
throughput comparedwith a simple bus is 2×. Counter-rotating rings are sometimes used. Each link is
bidirectional and two separate rings operate at once, one in each direction. Traffic is then sent in the
ring direction with the shortest number of stations to the destination. Traffic will now travel one
quarter of the way round the ring, so the bandwidthmultiple is 4×.

A two-level hierarchy of bridged rings is sometimes a sweet spot for SoC design. For example, the Cell
Broadband Engine uses dual rings [18]. Atmoderate size, using a fat ring (wide bus links) is better than
a thin crossbar design for the same throughput in terms of power consumption and area use, as shown
in Section 6.6.3.

Network-on-chip: Torus Topology
A rectangular mesh network that wraps at the top to the bottom and at the right edge to the left edge
has, mathematically speaking, a torus topology. A unidirectional torus is illustrated in Figure 3.20. It
can be constructed in the sameway as a ring. Indeed, a ring is a degenerate torus with one dimension
set to unity. The switching elements in a bidirectional torus need to be radix 5, with connections for
the local traffic andmesh connections north, south, east andwest.

Network-on-chip: Hypercube Topologies
Another interconnection topology used, especially in a supercomputer interconnect, is an
n-dimensional cube, also known as a hypercube. A 2-D square when logically extended to 3-D
becomes a cube. As shown in Figure 3.29, a cube projected to 4-D becomes a tesseract. The nodes in a
square have two edges; those in a cube have three edges and those in a tesseract have four edges.
Such hypercube structures provide defined relationships between the number of nodes and the
average number of hops to get to a random other node. The diameter growswith a low exponent
(such as a square root) in the number of dimensions, while the number of nodes grows exponentially,
such as squaring with the hypercube. A hypercube has the smallest diameter for the number of nodes.

High-dimensionality hypercubes are not too hard to wire up at the supercomputer rack scale due to
the freedom of the 3-Dworld. However, a silicon chip is essentially 2-Dwith a little bit of extension
into the third dimension frommultiple wiring layers. Hence, pragmatic regular on-chip topologies
tend to use a torus structure with a low density of long links that spanmultiple mesh hops in one step.
These tend to approximate a hypercube of dimensionality 2.25.

130

Chapter 3 | SoC Interconnect

1D-Line 2D-Square 3D-Cube 4D
Tesseract

Figure 3.29 Regular cubic structures with 1, 2, 3 or 4 dimensions. 5-D and above are hard to draw

Network-on-chip: Classic Switching Structures
Classic network switching theory was developed for telephone networks, but exactly the same
approaches can be used on-chip. Using a complete crossbar network to connect n inputs to n outputs
has area cost n2 and is prohibitive abovemoderate values of n. There are a number of well-known
switch wiring schemes, with names such as Benes, Banyan, Clos, delta, express mesh and butterfly.
These vary in terms of the complexity and fabric contention factor (also known as blocking factor)
(Section 4.2.1). Each network pattern consists of approximately n log(n)/k switching elements, where
there are n inputs, the same number of outputs, and each switching element is a crossbar of radix k×k.
The butterfly pattern, also known as a shuffle network, is illustrated in Figure 3.30 (and also
Figure 6.50 for the fast Fourier transform).

I0
I1

I2
I3

I4
I5

I6
I7

I8
I9

I10
I11

I12
I13

I14
I15

E0
E1

E2
E3

E4
E5

E6
E7

E8
E9

E10
E11

E12
E13

E14
E15

E0
E1

E2
E3

E4
E5

E6
E7

E8
E9

E10
E11

E12
E13

E14
E15

I0
I1

I2
I3

I4
I5

I6
I7

I8
I9

I10
I11

I12
I13

I14
I15

Figure 3.30 The butterfly (or shuffle) network topology (left) and a flattened version (right), with some example paths highlighted for comparison. The
vertical links in the flattened form are bidirectional

Figure 3.31 illustrates the delta wiring pattern. The figure shows 12 switching elements, each of
which would contain two 2-input multiplexers; hence, the total cost is 24multiplexers. A crossbar
would require 7 equivalent multiplexers for each output, making a total of 56. (You could argue that
higher-radix multiplexers should be used for a crossbar, but multiplexer fan-in is bounded in any

131

Modern SoCDesign

required to avoid deadlocks and starvation or else tokens and slot-full markers can be carried on the
ring, like the first generation of local-area networks (LANs). Like those LANs, a ring will typically use
source buffering and backpressure: a source is held up until there is sufficient network capacity to
send amessage. Hence, there is not always a requirement for queuing in an element. However, there
are significantly different consequences between holding up a request and holding up the
acknowledgement parts of a split transaction. Holding up a requesting channel with backpressure
reduces the applied load and overall throughput. This is a good aspect. However, holding up a
response can lead to a deadlock (Section 3.4.3); hence, it is generally necessary to consider the static
priority of responses over requests.

For a simple unidirectional ring, traffic will travel halfway round the ring on average, so the
throughput comparedwith a simple bus is 2×. Counter-rotating rings are sometimes used. Each link is
bidirectional and two separate rings operate at once, one in each direction. Traffic is then sent in the
ring direction with the shortest number of stations to the destination. Traffic will now travel one
quarter of the way round the ring, so the bandwidthmultiple is 4×.

A two-level hierarchy of bridged rings is sometimes a sweet spot for SoC design. For example, the Cell
Broadband Engine uses dual rings [18]. Atmoderate size, using a fat ring (wide bus links) is better than
a thin crossbar design for the same throughput in terms of power consumption and area use, as shown
in Section 6.6.3.

Network-on-chip: Torus Topology
A rectangular mesh network that wraps at the top to the bottom and at the right edge to the left edge
has, mathematically speaking, a torus topology. A unidirectional torus is illustrated in Figure 3.20. It
can be constructed in the sameway as a ring. Indeed, a ring is a degenerate torus with one dimension
set to unity. The switching elements in a bidirectional torus need to be radix 5, with connections for
the local traffic andmesh connections north, south, east andwest.

Network-on-chip: Hypercube Topologies
Another interconnection topology used, especially in a supercomputer interconnect, is an
n-dimensional cube, also known as a hypercube. A 2-D square when logically extended to 3-D
becomes a cube. As shown in Figure 3.29, a cube projected to 4-D becomes a tesseract. The nodes in a
square have two edges; those in a cube have three edges and those in a tesseract have four edges.
Such hypercube structures provide defined relationships between the number of nodes and the
average number of hops to get to a random other node. The diameter growswith a low exponent
(such as a square root) in the number of dimensions, while the number of nodes grows exponentially,
such as squaring with the hypercube. A hypercube has the smallest diameter for the number of nodes.

High-dimensionality hypercubes are not too hard to wire up at the supercomputer rack scale due to
the freedom of the 3-Dworld. However, a silicon chip is essentially 2-Dwith a little bit of extension
into the third dimension frommultiple wiring layers. Hence, pragmatic regular on-chip topologies
tend to use a torus structure with a low density of long links that spanmultiple mesh hops in one step.
These tend to approximate a hypercube of dimensionality 2.25.

130

Chapter 3 | SoC Interconnect

1D-Line 2D-Square 3D-Cube 4D
Tesseract

Figure 3.29 Regular cubic structures with 1, 2, 3 or 4 dimensions. 5-D and above are hard to draw

Network-on-chip: Classic Switching Structures
Classic network switching theory was developed for telephone networks, but exactly the same
approaches can be used on-chip. Using a complete crossbar network to connect n inputs to n outputs
has area cost n2 and is prohibitive abovemoderate values of n. There are a number of well-known
switch wiring schemes, with names such as Benes, Banyan, Clos, delta, express mesh and butterfly.
These vary in terms of the complexity and fabric contention factor (also known as blocking factor)
(Section 4.2.1). Each network pattern consists of approximately n log(n)/k switching elements, where
there are n inputs, the same number of outputs, and each switching element is a crossbar of radix k×k.
The butterfly pattern, also known as a shuffle network, is illustrated in Figure 3.30 (and also
Figure 6.50 for the fast Fourier transform).

I0
I1

I2
I3

I4
I5

I6
I7

I8
I9

I10
I11

I12
I13

I14
I15

E0
E1

E2
E3

E4
E5

E6
E7

E8
E9

E10
E11

E12
E13

E14
E15

E0
E1

E2
E3

E4
E5

E6
E7

E8
E9

E10
E11

E12
E13

E14
E15

I0
I1

I2
I3

I4
I5

I6
I7

I8
I9

I10
I11

I12
I13

I14
I15

Figure 3.30 The butterfly (or shuffle) network topology (left) and a flattened version (right), with some example paths highlighted for comparison. The
vertical links in the flattened form are bidirectional

Figure 3.31 illustrates the delta wiring pattern. The figure shows 12 switching elements, each of
which would contain two 2-input multiplexers; hence, the total cost is 24multiplexers. A crossbar
would require 7 equivalent multiplexers for each output, making a total of 56. (You could argue that
higher-radix multiplexers should be used for a crossbar, but multiplexer fan-in is bounded in any

131

Modern SoCDesign

technology and eventually the full crossbar becomes infeasible.) Hence, the delta pattern provides
full complexity at the cost of some fabric contention. For instance, the links highlighted in bluemake it
clear that there is only one path bywhich initiators 1 and 6 can reach targets 6 and 7; hence, both
routes cannot be active at once. A switch controller is aware of these constraints and can take them
into account as a side condition when creating a schedule (succession of I/Omatchings) that
overcomes themain problem of output port contention (Section 4.2.1), which arises even for a full
crossbar. The delta and butterfly have theminimumnumber of elements for full connectivity, whereas
richer patterns, such as Clos, folded Clos and Benes (not illustrated), have at least one additional layer
of switching elements to provide routing diversity [19]. This reduces fabric contention.

Initiator 0

Initiator 7

Target 0

Target 7

Initiator 1 Target 1

Target 6

Initiator 2

Initiator 3

Initiator 4

Initiator 5

Initiator 6

Target 5

Target 4

Target 3

Target 2

Figure 3.31 Example of an 8×8 switching fabric that uses radix-2 elements and the delta wiring pattern. Interchanging the initiators and targets is equally
valid

In real-world use, elements with a radix greater than two are typically used. The sub-quadratic
growth yields greater return for larger n. These regular structures provide asmany inputs as outputs,
but a NoC typically does not need asmany initiators as targets, so a symmetric switch system can be
over-provisioned for small networks, but they scale upwell [20]. The overall interconnect may use a
hierarchy, with local crossbars interconnecting low-latency clusters. Arm has theCoherentMesh
Network (CMN) product family [21]. A typical use would interconnect eight local clusters, each with
eight Arm-8 cores. Multiple clusters can be interconnected using CXIX and CCX links (Section 3.8.2)
withmemory coherency spanning the whole system.

The physical layout of a switching network does not have tomatch its logical topology. Clearly this is
impossible for more than three dimensions. For a torus, a 2-D layout is relatively easy, but the flyback
wiring arising from a straightforward 2-Dmesh projection, as was shown in Figure 3.20, is
undesirable. The solution is to apply an interleaved logical to physical mapping, such as 1, 7, 2, 6, 3, 5
or 4. Coalescing several switching elements into one higher-order element can also be a good idea.
Figure 3.30 shows a butterfly network (left) that is implemented (right) from large blocks that

132

Chapter 3 | SoC Interconnect

combine a complete row of elements. This is called a flattened butterfly topology [22]. That paper,
although quite old now, contains a good introduction to switching network design.

3.6 Interconnect Building Blocks
SoC interconnect uses various building blocks, such as switching elements, width resizers, FIFO
buffers, policers, protocol bridges, power and clock domain converters (PCDCs), pipeline elements
and so on. These are collectively called canvas components. Many of them are generated by synthesis
tools that macro-generate specific instances from stored templates or synthesise them from protocol
specifications [23]. Each canvas component has some ports that accord to a parametrised instance of
the relevant bus or port standard. Design rules prescribe what sort of inter-port wiring is allowed. For
any given bus standard, a modular kit-of-parts approach is normally taken, so that virtually any
component can be connected directly to any other, subject to design rules and appropriate
reparametrisation. The two common patterns are one-to-one (e.g. initiator to target) and
single-sourcemultiple-destination broadcast.

Specifically for a NoC, themain interconnect components are as follows:

1. Switching element: A typical NoC switching element (aka router) is a crossbar. Hence, it has no
internal fabric blocking but suffers from output port contention. It has a strictly limited amount of
flit buffer and hence, buffer allocation schemesmust also be carefully implemented. A switching
element arbitrates at two levels: packet and link. At the packet level, which is the upper level, an
incoming packet must be routed to a pair composed of an output port and a VC number. Using
wormhole routing, once a VC is locked after arbitrating, it stays locked until the end of the packet.
The lower level is the link level. In a per-output VCmultiplexer, this level chooses which VCwill
send next. The two levels interact and decisionsmust be based on the available credit, priority and
possibly other QoS and traffic shaping factors. At the higher level, higher priority traffic should be
given an expedited service, i.e. served first (Section 4.3.2). However, the lower level of arbitration
can often be implemented as simple round-robin arbitration over the available VCs that are ready
to send because the granularity of sharing is much finer, which largely overcomes head-of-line
blocking.

2. Protocol bridge: These convert one protocol to another. For a NoC, the outside world protocol is
typically circuit-switched (e.g. AXI) or some other protocol. It will tend to have a different behaviour
and flow control paradigm comparedwith the internal NoC protocol, which is packetised. A specific
protocol bridge adapts between theNoC and external protocols. For a protocol withmore than one
channel in a given direction, like AXI, thesemaymap to the same VC (e.g. write data sharing with
write address). Like a switching element, a protocol bridgemaymake scheduling decisions, but the
search space is much smaller or zero, owing to the lack of output port contention.

The processing of credits is also different. In some implementations, credit is available for
consumption in the same cycle in which it arrives. Others avoid combinational timing paths by
delaying credit use or by returning it within a clock cycle.

133

Modern SoCDesign

technology and eventually the full crossbar becomes infeasible.) Hence, the delta pattern provides
full complexity at the cost of some fabric contention. For instance, the links highlighted in bluemake it
clear that there is only one path bywhich initiators 1 and 6 can reach targets 6 and 7; hence, both
routes cannot be active at once. A switch controller is aware of these constraints and can take them
into account as a side condition when creating a schedule (succession of I/Omatchings) that
overcomes themain problem of output port contention (Section 4.2.1), which arises even for a full
crossbar. The delta and butterfly have theminimumnumber of elements for full connectivity, whereas
richer patterns, such as Clos, folded Clos and Benes (not illustrated), have at least one additional layer
of switching elements to provide routing diversity [19]. This reduces fabric contention.

Initiator 0

Initiator 7

Target 0

Target 7

Initiator 1 Target 1

Target 6

Initiator 2

Initiator 3

Initiator 4

Initiator 5

Initiator 6

Target 5

Target 4

Target 3

Target 2

Figure 3.31 Example of an 8×8 switching fabric that uses radix-2 elements and the delta wiring pattern. Interchanging the initiators and targets is equally
valid

In real-world use, elements with a radix greater than two are typically used. The sub-quadratic
growth yields greater return for larger n. These regular structures provide asmany inputs as outputs,
but a NoC typically does not need asmany initiators as targets, so a symmetric switch system can be
over-provisioned for small networks, but they scale upwell [20]. The overall interconnect may use a
hierarchy, with local crossbars interconnecting low-latency clusters. Arm has theCoherentMesh
Network (CMN) product family [21]. A typical use would interconnect eight local clusters, each with
eight Arm-8 cores. Multiple clusters can be interconnected using CXIX and CCX links (Section 3.8.2)
withmemory coherency spanning the whole system.

The physical layout of a switching network does not have tomatch its logical topology. Clearly this is
impossible for more than three dimensions. For a torus, a 2-D layout is relatively easy, but the flyback
wiring arising from a straightforward 2-Dmesh projection, as was shown in Figure 3.20, is
undesirable. The solution is to apply an interleaved logical to physical mapping, such as 1, 7, 2, 6, 3, 5
or 4. Coalescing several switching elements into one higher-order element can also be a good idea.
Figure 3.30 shows a butterfly network (left) that is implemented (right) from large blocks that

132

Chapter 3 | SoC Interconnect

combine a complete row of elements. This is called a flattened butterfly topology [22]. That paper,
although quite old now, contains a good introduction to switching network design.

3.6 Interconnect Building Blocks
SoC interconnect uses various building blocks, such as switching elements, width resizers, FIFO
buffers, policers, protocol bridges, power and clock domain converters (PCDCs), pipeline elements
and so on. These are collectively called canvas components. Many of them are generated by synthesis
tools that macro-generate specific instances from stored templates or synthesise them from protocol
specifications [23]. Each canvas component has some ports that accord to a parametrised instance of
the relevant bus or port standard. Design rules prescribe what sort of inter-port wiring is allowed. For
any given bus standard, a modular kit-of-parts approach is normally taken, so that virtually any
component can be connected directly to any other, subject to design rules and appropriate
reparametrisation. The two common patterns are one-to-one (e.g. initiator to target) and
single-sourcemultiple-destination broadcast.

Specifically for a NoC, themain interconnect components are as follows:

1. Switching element: A typical NoC switching element (aka router) is a crossbar. Hence, it has no
internal fabric blocking but suffers from output port contention. It has a strictly limited amount of
flit buffer and hence, buffer allocation schemesmust also be carefully implemented. A switching
element arbitrates at two levels: packet and link. At the packet level, which is the upper level, an
incoming packet must be routed to a pair composed of an output port and a VC number. Using
wormhole routing, once a VC is locked after arbitrating, it stays locked until the end of the packet.
The lower level is the link level. In a per-output VCmultiplexer, this level chooses which VCwill
send next. The two levels interact and decisionsmust be based on the available credit, priority and
possibly other QoS and traffic shaping factors. At the higher level, higher priority traffic should be
given an expedited service, i.e. served first (Section 4.3.2). However, the lower level of arbitration
can often be implemented as simple round-robin arbitration over the available VCs that are ready
to send because the granularity of sharing is much finer, which largely overcomes head-of-line
blocking.

2. Protocol bridge: These convert one protocol to another. For a NoC, the outside world protocol is
typically circuit-switched (e.g. AXI) or some other protocol. It will tend to have a different behaviour
and flow control paradigm comparedwith the internal NoC protocol, which is packetised. A specific
protocol bridge adapts between theNoC and external protocols. For a protocol withmore than one
channel in a given direction, like AXI, thesemaymap to the same VC (e.g. write data sharing with
write address). Like a switching element, a protocol bridgemaymake scheduling decisions, but the
search space is much smaller or zero, owing to the lack of output port contention.

The processing of credits is also different. In some implementations, credit is available for
consumption in the same cycle in which it arrives. Others avoid combinational timing paths by
delaying credit use or by returning it within a clock cycle.

133

Modern SoCDesign

3. Resizer: These convert between links with differing bus widths. One design approach is that a flit is
always oneword on the parallel bus, whatever width is locally in use. Hence, a flit will contain a
different number of bits on different-sized busses. Moreover, the resizer must also do a currency
conversion for credit-based flow control. A similar situation arises whenmoving to a different clock
frequency with the samewordwidth. Alternatively, a flit can contain a fixed number of bits across
the SoC and occupymultiple consecutive words on all but the widest busses. Also, the flit sizes in
different channels, such as request and response, are independent.

In certain designs, the resizing logic is within a switching element. The resizing operation can
potentially be placed on either the input or the output port of the element. As discussed
in Section 4.3.2, an input-buffered switch has intrinsically lower performance than other designs,
but this can bemitigated by using a higher bandwidth through themultiplexers that perform the
actual switching. The best site for a resizer that transitions to a faster link rate is on the input to the
element. This again accelerates the transfer rate through the switch, potentially freeing up the
output VC for arbitration earlier. However, such a designmay limit themaximum clock frequency at
which the element can operate in a real design. Hence, an alternative design of having separate
resizing logic is also used.

4. Pipeline elements: These are inserted in a credit-based NoC to ensure timing closure on long
paths. These are often uncredited buffer stages, which operate at the same clock on both sides and
act as store-and-forward elements in each cycle. There are three design approaches:

Unbudgeted simple pipeline stage: A broadside register across all forward nets is shown in
Figure 3.25. Independently, the reverse pathmay ormay not be pipelined. The correctness is
unaltered by either of these steps, which was a primary advantage of the credit-based approach.
Although this stage ensures timing closure, the round-trip latency is extended by one or two
clock cycles: one for data and one for the credit return. The higher latency will degrade the
throughput if there is insufficient credit available. If the total issued credit is C and the number of
clock cycles in the round-trip loop is RTT, then themaximum average throughput of single-word
flits on the link is C/RTT. Unbudgeted pipeline stages do not necessarily degrade link
performance, however. Typical traffic is bursty. The peak rate is unaffected by credit-based flow
control and themean can often be considerably less than the peak. Moreover, for multi-word
flits, the parameter RTT needs to be divided by the flit length, so that a single pipeline stage has
proportionally less effect.

Budgeted simple pipeline stage: The performance degradation compared to the sustained
average rate from an unbudgeted pipeline stage can be alleviated by supplying additional credit.
However, the initial credit cannot be simply increasedwithout penalty: it must bematchedwith
an additional flit buffer at the receiver. This replication of the additional logic is not a severe
consideration in practice: the distance that the datamoves is almost unaltered and hence, energy
use hardly increases.

134

Chapter 3 | SoC Interconnect

Fully credited stage: A FIFO stage that lends its capacity to the surrounding credit loop is shown
in Figure 3.32. The output side behaves like any credit-controlled source, with its associated
up/down counter to hold its credit. As always, the stage can send data only when it has credit.
However, the stage passes this credit back to earlier flow points and issues credit for its own
capacity. This example has a capacity of unity, so its initial credit of one is held in a single
synchronous S/R stage that is set during a system reset. The credit is passed backwards after a
reset. If there is an optional D-type in the credit-return path, this FIFO stage is fully registered.

Although a fully credited stage is themost complex, it solves all the problems. Moreover, the
complexity it adds can largely be removed from the final receiver. In effect, the logic at the receiver
is spread out over the forward path. The buffering is distributed across a wider physical region,
whichmakes it more tractable for the P&R tool tomeet the timing. The number of stages to include
will be finalised during design optimisation and revisited after the negative slack analysis
(Section 4.9.6). The spreading of the stages can be controlled during placement with the same
algorithms used for D-typemigration (Section 4.4.2). These use force-directed techniques where
the number of stages is the quanta of force. The switching-element port assignment can also be
remapped under the same framework tominimise wire crossing. A two-place fully credited FIFO
buffer has lower complexity than two one-place FIFO buffers due to the shared credit counter, but
this might mean the difference between 2×3=6 and 1×4=4 flip-flops, which, even considering
supporting gates, is hardly significant.

Credited FIFO Stage

Valid

Data

n ce

Valid

Data

n

Up/Down
counter

DEC

INC

>0

S

R

Credit
return

Credit
return

Initial credit
S

R

Reset

Logged

(optional)

Figure 3.32 A one-place pipelined FIFO stage using credit-based flow control. A multi-place FIFO stage would replace the synchronous S/R flops used for the
initial credit and backlogged state with counters, which result in better density than cascading one-place stages. (The vertical line on the S input denotes
that setting has priority over resetting when both are asserted)

135

Modern SoCDesign

3. Resizer: These convert between links with differing bus widths. One design approach is that a flit is
always oneword on the parallel bus, whatever width is locally in use. Hence, a flit will contain a
different number of bits on different-sized busses. Moreover, the resizer must also do a currency
conversion for credit-based flow control. A similar situation arises whenmoving to a different clock
frequency with the samewordwidth. Alternatively, a flit can contain a fixed number of bits across
the SoC and occupymultiple consecutive words on all but the widest busses. Also, the flit sizes in
different channels, such as request and response, are independent.

In certain designs, the resizing logic is within a switching element. The resizing operation can
potentially be placed on either the input or the output port of the element. As discussed
in Section 4.3.2, an input-buffered switch has intrinsically lower performance than other designs,
but this can bemitigated by using a higher bandwidth through themultiplexers that perform the
actual switching. The best site for a resizer that transitions to a faster link rate is on the input to the
element. This again accelerates the transfer rate through the switch, potentially freeing up the
output VC for arbitration earlier. However, such a designmay limit themaximum clock frequency at
which the element can operate in a real design. Hence, an alternative design of having separate
resizing logic is also used.

4. Pipeline elements: These are inserted in a credit-based NoC to ensure timing closure on long
paths. These are often uncredited buffer stages, which operate at the same clock on both sides and
act as store-and-forward elements in each cycle. There are three design approaches:

Unbudgeted simple pipeline stage: A broadside register across all forward nets is shown in
Figure 3.25. Independently, the reverse pathmay ormay not be pipelined. The correctness is
unaltered by either of these steps, which was a primary advantage of the credit-based approach.
Although this stage ensures timing closure, the round-trip latency is extended by one or two
clock cycles: one for data and one for the credit return. The higher latency will degrade the
throughput if there is insufficient credit available. If the total issued credit is C and the number of
clock cycles in the round-trip loop is RTT, then themaximum average throughput of single-word
flits on the link is C/RTT. Unbudgeted pipeline stages do not necessarily degrade link
performance, however. Typical traffic is bursty. The peak rate is unaffected by credit-based flow
control and themean can often be considerably less than the peak. Moreover, for multi-word
flits, the parameter RTT needs to be divided by the flit length, so that a single pipeline stage has
proportionally less effect.

Budgeted simple pipeline stage: The performance degradation compared to the sustained
average rate from an unbudgeted pipeline stage can be alleviated by supplying additional credit.
However, the initial credit cannot be simply increasedwithout penalty: it must bematchedwith
an additional flit buffer at the receiver. This replication of the additional logic is not a severe
consideration in practice: the distance that the datamoves is almost unaltered and hence, energy
use hardly increases.

134

Chapter 3 | SoC Interconnect

Fully credited stage: A FIFO stage that lends its capacity to the surrounding credit loop is shown
in Figure 3.32. The output side behaves like any credit-controlled source, with its associated
up/down counter to hold its credit. As always, the stage can send data only when it has credit.
However, the stage passes this credit back to earlier flow points and issues credit for its own
capacity. This example has a capacity of unity, so its initial credit of one is held in a single
synchronous S/R stage that is set during a system reset. The credit is passed backwards after a
reset. If there is an optional D-type in the credit-return path, this FIFO stage is fully registered.

Although a fully credited stage is themost complex, it solves all the problems. Moreover, the
complexity it adds can largely be removed from the final receiver. In effect, the logic at the receiver
is spread out over the forward path. The buffering is distributed across a wider physical region,
whichmakes it more tractable for the P&R tool tomeet the timing. The number of stages to include
will be finalised during design optimisation and revisited after the negative slack analysis
(Section 4.9.6). The spreading of the stages can be controlled during placement with the same
algorithms used for D-typemigration (Section 4.4.2). These use force-directed techniques where
the number of stages is the quanta of force. The switching-element port assignment can also be
remapped under the same framework tominimise wire crossing. A two-place fully credited FIFO
buffer has lower complexity than two one-place FIFO buffers due to the shared credit counter, but
this might mean the difference between 2×3=6 and 1×4=4 flip-flops, which, even considering
supporting gates, is hardly significant.

Credited FIFO Stage

Valid

Data

n ce

Valid

Data

n

Up/Down
counter

DEC

INC

>0

S

R

Credit
return

Credit
return

Initial credit
S

R

Reset

Logged

(optional)

Figure 3.32 A one-place pipelined FIFO stage using credit-based flow control. A multi-place FIFO stage would replace the synchronous S/R flops used for the
initial credit and backlogged state with counters, which result in better density than cascading one-place stages. (The vertical line on the S input denotes
that setting has priority over resetting when both are asserted)

135

Modern SoCDesign

3.7 Long-distance Interconnects
A long-distance interconnect spansmultiple CDs and PDs and can span between chips using gigabit
links. A long-distance interconnect that supports remote initiators or other forms of DMA is often
required to be cache consistent.

3.7.1 Domain Crossing
A power domain (PD) is a region of logic that is adjusted in supply voltage or power gated together. A
clock domain (CD) is a region of synchronous logic with exactly one clock. A domain boundary arises
where either of these changes. Sometimes they both change on the same boundary. The SoC floor
plan (Section 8.6) defines which component instances are in which domain. Nets cannot simply pass
between domains without care. PDs are either explicitly managed by the SoC user or managed
automatically in hardware (Section 3.7.5). On the other hand, CD crossing, which we discuss first, is
always expected to be automatic between any powered-up regions.

Multiple CDs are used for twomain reasons:

1. Power and performance folding: Above a certain frequency, high-frequency logic requires more
power than lower-frequency logic. Hence, a good design often has a larger amount of lower-speed
logic than needed for a compact alternative that is clocked faster. This is part of the folding in time
versus folding in space argument presented in Section 4.4.2. A good example is the L1 and L2 cache
system of a processor; the trade-off is analysed in Section 6.6.1. Hence, it is energy efficient to
operate parts of a circuit with a lower-frequency clock than is needed elsewhere. Another example
is the DRAM subsystem. DRAM chips are available at standard clock frequencies that may not be
appropriate for themain SoC. Alternatively, the desired DRAMsmay not be available during the
factory production window and substitution with a DRAMwith a slightly different frequency is
forced, but this needs to be donewithout changing the frequencies for the rest of the design.

2. Physically separate clocks: Systemsmust continue to operate when networking cables, such as
Ethernet, are disconnected. Thus, each such system has its own clock generator. Data are normally
driven down a networking cable (or fibre or radio link) using the local clock of the transmitter.
Hence, it will not be accurately synchronised with the local clock at the receiving end. Quartz
crystal oscillators are generally used as local clocks (Section 4.9.4). Two crystals each nominally of
10MHzwill actually be different by tens of hertz and the error will drift with temperature, supply
voltage and crystal age.1 As explained in Section 3.8, a transmitter’s clock is recovered at the
receiving end using some amount of digital logic. Hence, there are two CDs in the receiver and the
received datamust be re-timed against the local transmit clock.

1. Atomic clocks are far better, of course. Their accuracy is higher than one part in 1012, but they are still not accu-
rate enough to avoid rapidmetastable failure. Moreover, it is infeasible to incorporate an atomic clock in everyday
equipment.

136

Chapter 3 | SoC Interconnect

The second situation is genuinely asynchronous, whereas the first is often handled using harmonic
clocks, as explained shortly (Section 3.7.4).

3.7.2 Metastability Theory
An input from an asynchronous CD is bound to violate the registers in the receiving CD from time to
time. This cannot be avoided, but it must bemitigated. As will be illustrated in the flip-flop timing
parameter Figure 4.12, a transparent latch or D-typemust not be clockedwhen its input is changing.

A system that is balanced so that it will not move under its own volition, but which will locomote
(move under its own power) when slightly disturbed, is said to bemetastable. A pencil exactly
balancing on a razor’s edge is a typical example, as illustrated in Figure 3.33 (left). We expect it to flop
to one side or the other, but how long this will take depends on how finely balanced it was initially. A
bistable device is essentially two invertors connected in a ring. It has two stable states, but there is
also ametastable state. The three states are where the transfer function (the heavy line in Figure 3.33
centre) intersects the y= x line (blue line). Themetastable state is themiddle one.

The further the pencil leans
over to the right, the greater
the turning moment.

Razor edge

Pencil

Vertical
reference

Solid Base

Vin Vout

Vout

Vin

Two Inverters

One Inverter Vin=Vout

D
Enable signal

Enable
signal

Vout

Output
signal

Figure 3.33Metastability illustrated by a pencil balancing on a razor’s edge (left). The essential structure of a transparent bistable (latch) and a transfer
function (centre). The gate signal and measured responses from a transparent latch with an input wired to a voltage source close to the metastable point
(right)

If themetastable behaviour takesmore than a clock cycle to resolve in a receiving flop, further flops
connected to its output have the potential, in theory, to becomemetastable too. The principal
mitigating technique is to use a high-gain flip-flop to receive asynchronous signals but not to look at
their output until one whole clock cycle later. With a fast transition band (high gain) in the transfer
function, the probability that the next flopwill be violated can be reduced tomake it unlikely in the
lifetime of the universe. This is sufficiently reliable.

137

Modern SoCDesign

3.7 Long-distance Interconnects
A long-distance interconnect spansmultiple CDs and PDs and can span between chips using gigabit
links. A long-distance interconnect that supports remote initiators or other forms of DMA is often
required to be cache consistent.

3.7.1 Domain Crossing
A power domain (PD) is a region of logic that is adjusted in supply voltage or power gated together. A
clock domain (CD) is a region of synchronous logic with exactly one clock. A domain boundary arises
where either of these changes. Sometimes they both change on the same boundary. The SoC floor
plan (Section 8.6) defines which component instances are in which domain. Nets cannot simply pass
between domains without care. PDs are either explicitly managed by the SoC user or managed
automatically in hardware (Section 3.7.5). On the other hand, CD crossing, which we discuss first, is
always expected to be automatic between any powered-up regions.

Multiple CDs are used for twomain reasons:

1. Power and performance folding: Above a certain frequency, high-frequency logic requires more
power than lower-frequency logic. Hence, a good design often has a larger amount of lower-speed
logic than needed for a compact alternative that is clocked faster. This is part of the folding in time
versus folding in space argument presented in Section 4.4.2. A good example is the L1 and L2 cache
system of a processor; the trade-off is analysed in Section 6.6.1. Hence, it is energy efficient to
operate parts of a circuit with a lower-frequency clock than is needed elsewhere. Another example
is the DRAM subsystem. DRAM chips are available at standard clock frequencies that may not be
appropriate for themain SoC. Alternatively, the desired DRAMsmay not be available during the
factory production window and substitution with a DRAMwith a slightly different frequency is
forced, but this needs to be donewithout changing the frequencies for the rest of the design.

2. Physically separate clocks: Systemsmust continue to operate when networking cables, such as
Ethernet, are disconnected. Thus, each such system has its own clock generator. Data are normally
driven down a networking cable (or fibre or radio link) using the local clock of the transmitter.
Hence, it will not be accurately synchronised with the local clock at the receiving end. Quartz
crystal oscillators are generally used as local clocks (Section 4.9.4). Two crystals each nominally of
10MHzwill actually be different by tens of hertz and the error will drift with temperature, supply
voltage and crystal age.1 As explained in Section 3.8, a transmitter’s clock is recovered at the
receiving end using some amount of digital logic. Hence, there are two CDs in the receiver and the
received datamust be re-timed against the local transmit clock.

1. Atomic clocks are far better, of course. Their accuracy is higher than one part in 1012, but they are still not accu-
rate enough to avoid rapidmetastable failure. Moreover, it is infeasible to incorporate an atomic clock in everyday
equipment.

136

Chapter 3 | SoC Interconnect

The second situation is genuinely asynchronous, whereas the first is often handled using harmonic
clocks, as explained shortly (Section 3.7.4).

3.7.2 Metastability Theory
An input from an asynchronous CD is bound to violate the registers in the receiving CD from time to
time. This cannot be avoided, but it must bemitigated. As will be illustrated in the flip-flop timing
parameter Figure 4.12, a transparent latch or D-typemust not be clockedwhen its input is changing.

A system that is balanced so that it will not move under its own volition, but which will locomote
(move under its own power) when slightly disturbed, is said to bemetastable. A pencil exactly
balancing on a razor’s edge is a typical example, as illustrated in Figure 3.33 (left). We expect it to flop
to one side or the other, but how long this will take depends on how finely balanced it was initially. A
bistable device is essentially two invertors connected in a ring. It has two stable states, but there is
also ametastable state. The three states are where the transfer function (the heavy line in Figure 3.33
centre) intersects the y= x line (blue line). Themetastable state is themiddle one.

The further the pencil leans
over to the right, the greater
the turning moment.

Razor edge

Pencil

Vertical
reference

Solid Base

Vin Vout

Vout

Vin

Two Inverters

One Inverter Vin=Vout

D
Enable signal

Enable
signal

Vout

Output
signal

Figure 3.33Metastability illustrated by a pencil balancing on a razor’s edge (left). The essential structure of a transparent bistable (latch) and a transfer
function (centre). The gate signal and measured responses from a transparent latch with an input wired to a voltage source close to the metastable point
(right)

If themetastable behaviour takesmore than a clock cycle to resolve in a receiving flop, further flops
connected to its output have the potential, in theory, to becomemetastable too. The principal
mitigating technique is to use a high-gain flip-flop to receive asynchronous signals but not to look at
their output until one whole clock cycle later. With a fast transition band (high gain) in the transfer
function, the probability that the next flopwill be violated can be reduced tomake it unlikely in the
lifetime of the universe. This is sufficiently reliable.

137

Modern SoCDesign

The oscillogram on the right of Figure 3.33 showsmetastable waveforms at the output of a
transparent latch whose input is approximately at themetastable voltage. If a D-type is violated by
clockingwhile the input is changing, it can likewise be set close to its metastable state. It will then drift
off to one level or the other, but, sometimes, it will take a fair fraction of a clock period to settle. The
settling times are given by an exponential distribution and could, in theory, last many clock cycles.

A related problem is that a parallel bus that crosses between CDswill have a skew. It cannot be
guaranteed that all receiving flopswill make the same decision aboutwhether it has changed since the
last receiver clock edge.

3.7.3 CD-crossing Bridge
Therefore, a domain-crossing bridge is needed between CDs. This is often called aCD-crossing
bridge (CBRI). The generic name for either a power or clock bridge is a PCDC bridge. The basic
domain-crossing technique is the samewhether implemented as part of an asynchronous FIFO buffer,
a bus bridge or inside an IP block (e.g. network receive front end to network core logic). Figure 3.34
illustrates the key design aspects for crossing in one direction, but generally these details will be
wrapped up into a carefully designed library block, like the domain-crossing FIFO buffer described
elsewhere (Section 6.3.4 and Figure 6.7). Data signals can also suffer frommetastability, but the
multiplexer ensures that thesemetastable values never propagate into themain logic of the receiving
domain.

Receive clock domainTransmit clock domain

TX clock RX clock

Guard signal

Command or
data bus

N

mux

R0 R1T0

TD RD

req

data

Figure 3.34 Generic structure of a simplex CBRI. Parallel data are reliably sent between CDs

Figure 3.34 demonstrates the following CBRI design principles:

Use a one-bit request signal whose transition is a guard or qualifier signal for all the data signals
going in that direction.

Make sure all the data signals (from TD to TR) are changed one cycle in advance of the guard.

Pass the guard signal through two registers (R0 and R1) before using it (metastability avoidance).

Use an expandedwidth data bus (largeN) because crossing operations cannot occur every cycle.

138

Chapter 3 | SoC Interconnect

Here is the receiver-side RTL:

input clk; // Receiving domain clock

input [31..0] data;
input req;
output reg ack;

reg [31:0] RB;
reg R0, R1;
always @(posedge clk) begin

R0 <= req;
R1 <= R0;
ack <= R1;
if (R1 && !ack) RB <= data;
// ack typically not sent back to sender

An asynchronous signal should be registered in exactly one flip-flop and its output should be further
registered before being fanned out or otherwise used.

A simplex CD-crossing bridge carries information in only one direction. Carrying data in both
directions is commonly required, so a duplex CBRI is formed by a pair of contra-directional simplex
clock bridges. Because the saturated symbol rates are not equal on each side, we need a protocol with
insertable and deletable padding states. These are known as justification symbols, and they have no
semantic meaning. For a processor interconnect, this typically means that the protocol must have
elidable idle states between or within transactions. The elidable symbols in Figure 3.34 are nominally
conveyed in every clock cycle in either domain where the request net does not transition from zero to
one. For the standard synchronous protocol, the justification symbols are simply the clock cycles
where either ready or valid is deasserted.

3.7.4 Harmonic Clocks
When crossing truly asynchronous CDs, 100 per cent utilisation is impossible. The simple four-phase
handshake outlined in the RTL above limits utilisation to 25 per cent at best. A two-phase protocol,
where data are transferred each time the guard net is toggled, restores this to closer to 50 per cent.
Other protocols can get arbitrarily close to saturating one side or the other, provided themaximum
tolerance in the nominal clock rates is known. However, since the clock frequencies are different,
100 per cent of one side is either less than 100 per cent of the other or else overloaded. Hence, some
overhead in justification symbols is always required. Their minimal density can be computed from the
maximum clock tolerances. Latency remains an issue due to the need for additional register delays to
overcomemetastability. With a 1:1 clock ratio, in many real designs the domain-crossing latency can
be as high as 3 or 4 cycles in one direction. Lower-latency domain crossing, down to one cycle, can be
achieved using harmonically locked clocks. These are also known as ratioed clocks.

139

Modern SoCDesign

The oscillogram on the right of Figure 3.33 showsmetastable waveforms at the output of a
transparent latch whose input is approximately at themetastable voltage. If a D-type is violated by
clockingwhile the input is changing, it can likewise be set close to its metastable state. It will then drift
off to one level or the other, but, sometimes, it will take a fair fraction of a clock period to settle. The
settling times are given by an exponential distribution and could, in theory, last many clock cycles.

A related problem is that a parallel bus that crosses between CDswill have a skew. It cannot be
guaranteed that all receiving flopswill make the same decision aboutwhether it has changed since the
last receiver clock edge.

3.7.3 CD-crossing Bridge
Therefore, a domain-crossing bridge is needed between CDs. This is often called aCD-crossing
bridge (CBRI). The generic name for either a power or clock bridge is a PCDC bridge. The basic
domain-crossing technique is the samewhether implemented as part of an asynchronous FIFO buffer,
a bus bridge or inside an IP block (e.g. network receive front end to network core logic). Figure 3.34
illustrates the key design aspects for crossing in one direction, but generally these details will be
wrapped up into a carefully designed library block, like the domain-crossing FIFO buffer described
elsewhere (Section 6.3.4 and Figure 6.7). Data signals can also suffer frommetastability, but the
multiplexer ensures that thesemetastable values never propagate into themain logic of the receiving
domain.

Receive clock domainTransmit clock domain

TX clock RX clock

Guard signal

Command or
data bus

N

mux

R0 R1T0

TD RD

req

data

Figure 3.34 Generic structure of a simplex CBRI. Parallel data are reliably sent between CDs

Figure 3.34 demonstrates the following CBRI design principles:

Use a one-bit request signal whose transition is a guard or qualifier signal for all the data signals
going in that direction.

Make sure all the data signals (from TD to TR) are changed one cycle in advance of the guard.

Pass the guard signal through two registers (R0 and R1) before using it (metastability avoidance).

Use an expandedwidth data bus (largeN) because crossing operations cannot occur every cycle.

138

Chapter 3 | SoC Interconnect

Here is the receiver-side RTL:

input clk; // Receiving domain clock

input [31..0] data;
input req;
output reg ack;

reg [31:0] RB;
reg R0, R1;
always @(posedge clk) begin

R0 <= req;
R1 <= R0;
ack <= R1;
if (R1 && !ack) RB <= data;
// ack typically not sent back to sender

An asynchronous signal should be registered in exactly one flip-flop and its output should be further
registered before being fanned out or otherwise used.

A simplex CD-crossing bridge carries information in only one direction. Carrying data in both
directions is commonly required, so a duplex CBRI is formed by a pair of contra-directional simplex
clock bridges. Because the saturated symbol rates are not equal on each side, we need a protocol with
insertable and deletable padding states. These are known as justification symbols, and they have no
semantic meaning. For a processor interconnect, this typically means that the protocol must have
elidable idle states between or within transactions. The elidable symbols in Figure 3.34 are nominally
conveyed in every clock cycle in either domain where the request net does not transition from zero to
one. For the standard synchronous protocol, the justification symbols are simply the clock cycles
where either ready or valid is deasserted.

3.7.4 Harmonic Clocks
When crossing truly asynchronous CDs, 100 per cent utilisation is impossible. The simple four-phase
handshake outlined in the RTL above limits utilisation to 25 per cent at best. A two-phase protocol,
where data are transferred each time the guard net is toggled, restores this to closer to 50 per cent.
Other protocols can get arbitrarily close to saturating one side or the other, provided themaximum
tolerance in the nominal clock rates is known. However, since the clock frequencies are different,
100 per cent of one side is either less than 100 per cent of the other or else overloaded. Hence, some
overhead in justification symbols is always required. Their minimal density can be computed from the
maximum clock tolerances. Latency remains an issue due to the need for additional register delays to
overcomemetastability. With a 1:1 clock ratio, in many real designs the domain-crossing latency can
be as high as 3 or 4 cycles in one direction. Lower-latency domain crossing, down to one cycle, can be
achieved using harmonically locked clocks. These are also known as ratioed clocks.

139

Modern SoCDesign

Clock
generator

D D

D D

FC

SC

200 MHz 300 MHz
600 MHz

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2

FC

SC

F0

F0

StoF

FtoS

Figure 3.35 Timing diagram (top) and a basic structure for two systems that use harmonically locked clocks (bottom). Relative edge timings that require tight
phase control are highlighted

Figure 3.35 shows the timing pattern and hardware arrangement for two CDs that have harmonically
locked clocks. In this example, these have a prescribed ratio of exactly 3:2 with no relative error.
Hence, there is no relative phase progression and the timing pattern is fixed. Other natural number
ratios are commonly used, each with its own repeating pattern of relative phases. A ratio of 3:2 can
also be quoted as 1.5 to 1. For instance, an Arm 9 snoop-control unit (SCU) specifies ratios such as 1,
1.5 and 2.5 to 1 as the clock ratio between the L1 and L2 caches.

The clocks for each domain are locked to amaster source. Our diagram shows an oscillator at the
lowest-common-multiple frequency, but alternatives based on phase-locked loops (Section 4.9.5) are
commonly used to avoid the need for excessively highmaster clocks. Even though theremay be a
frequency error in the primary reference clock, a common reference results in zero relative frequency
error in the derived clocks: the ratio is exact.

As well as having an accurate frequency, the generator outputs need to be tightly controlled in terms
of relative phase for simple domain crossing. Data can be transferred on every active edge of the
lower-speed clock. The blue and red arrows show pattern offsets at which data can easily be
transferred in the fast-to-slow and slow-to-fast directions, respectively. The green arrow shows a
pattern offset where data are being transferred in both directions at once, but this requires very tight
phasemargins to bemaintained, akin to the level of clock skew tolerable in a single domain to avoid
shoot-through (Section 4.6.9).

An alternative to having tight phasemargins in the generator and distributor is for the crossing logic
to select dynamically the best phase of its clock edge to use for the transfer. This is a long-term
decisionmade at boot time or when clock frequencies are adjusted. Changing the clock edge can alter

140

Chapter 3 | SoC Interconnect

the effective number of pipeline stages in the path, so protocols that are amenable to this, like AXI and
CHI, must be used, and the change of edgemade only when the bus is idle.

Although significant design care is needed, with harmonically locked domains, the risks of
metastability are eliminated and domain crossing can be achievedwith a lower latency because there
is no need to separate the guard and the qualified signals into different clock cycles.

3.7.5 PDCrossing
Aswell as crossing CDs, an interconnect encounters PDs, where, at any instant, some parts of the SoC
can physically be turned off (Section 4.6.10) or be in a sleep state. Data cannot be forwarded through
powered-down regions, so an interconnect structuremust be aware of PD control policies. There are
two styles of operation:

1. The powered-down structure is brought up before transactions are issued.

2. The transactions are issued and this brings up the powered-down structures.

The former is typically managed by a software programmerwho is aware of the requirements. In case
amistake is made, the hardware should be structured tomake the bus transaction abort. The power
isolation barrier will return a failed transaction code, which will raise an interrupt on the issuing core.
The latter can be handled by Arm’s P-channel protocol, or the power disconnect protocol that
accompanies BVCI as part of theOCP family.

The P-channel andQ-channel protocols fromArm [24] use an asynchronous four-phase handshake
(Section 3.1.3) to request a subsystem to change its powermode. Figure 3.36 shows the nets for the
P-channel variant. The PACTIVE output bus from a device reflects its current powermode. Typically,
only a fewmodes are supported, such as off, sleep and active, so only a few bits are needed. A request
to transfer to a new powermode starts with the power controller encoding the requestedmode on
the PSTATE nets and asserting PREQ, as the first two steps in a four-phase handshake. The device then
responds with an active state on either of PACCEPT or PDENY. This response is held until the controller
removes the request. Because only one handshake net transitions at a time, independent of any clock,
the P interface can be implemented safely between CDs.

PACTIVE[N-1:0]

PSTATE[M-1:0]

PREQ

PACCEPT

PDENY

Power controller

Device

PACTIVE[N-1:0]

PSTATE[M-1:0]

PREQ

PACCEPT

PDENY

M

N

Figure 3.36 Net-level view of the AMBA P-channel interface for device power control

141

Modern SoCDesign

Clock
generator

D D

D D

FC

SC

200 MHz 300 MHz
600 MHz

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2

FC

SC

F0

F0

StoF

FtoS

Figure 3.35 Timing diagram (top) and a basic structure for two systems that use harmonically locked clocks (bottom). Relative edge timings that require tight
phase control are highlighted

Figure 3.35 shows the timing pattern and hardware arrangement for two CDs that have harmonically
locked clocks. In this example, these have a prescribed ratio of exactly 3:2 with no relative error.
Hence, there is no relative phase progression and the timing pattern is fixed. Other natural number
ratios are commonly used, each with its own repeating pattern of relative phases. A ratio of 3:2 can
also be quoted as 1.5 to 1. For instance, an Arm 9 snoop-control unit (SCU) specifies ratios such as 1,
1.5 and 2.5 to 1 as the clock ratio between the L1 and L2 caches.

The clocks for each domain are locked to amaster source. Our diagram shows an oscillator at the
lowest-common-multiple frequency, but alternatives based on phase-locked loops (Section 4.9.5) are
commonly used to avoid the need for excessively highmaster clocks. Even though theremay be a
frequency error in the primary reference clock, a common reference results in zero relative frequency
error in the derived clocks: the ratio is exact.

As well as having an accurate frequency, the generator outputs need to be tightly controlled in terms
of relative phase for simple domain crossing. Data can be transferred on every active edge of the
lower-speed clock. The blue and red arrows show pattern offsets at which data can easily be
transferred in the fast-to-slow and slow-to-fast directions, respectively. The green arrow shows a
pattern offset where data are being transferred in both directions at once, but this requires very tight
phasemargins to bemaintained, akin to the level of clock skew tolerable in a single domain to avoid
shoot-through (Section 4.6.9).

An alternative to having tight phasemargins in the generator and distributor is for the crossing logic
to select dynamically the best phase of its clock edge to use for the transfer. This is a long-term
decisionmade at boot time or when clock frequencies are adjusted. Changing the clock edge can alter

140

Chapter 3 | SoC Interconnect

the effective number of pipeline stages in the path, so protocols that are amenable to this, like AXI and
CHI, must be used, and the change of edgemade only when the bus is idle.

Although significant design care is needed, with harmonically locked domains, the risks of
metastability are eliminated and domain crossing can be achievedwith a lower latency because there
is no need to separate the guard and the qualified signals into different clock cycles.

3.7.5 PDCrossing
Aswell as crossing CDs, an interconnect encounters PDs, where, at any instant, some parts of the SoC
can physically be turned off (Section 4.6.10) or be in a sleep state. Data cannot be forwarded through
powered-down regions, so an interconnect structuremust be aware of PD control policies. There are
two styles of operation:

1. The powered-down structure is brought up before transactions are issued.

2. The transactions are issued and this brings up the powered-down structures.

The former is typically managed by a software programmerwho is aware of the requirements. In case
amistake is made, the hardware should be structured tomake the bus transaction abort. The power
isolation barrier will return a failed transaction code, which will raise an interrupt on the issuing core.
The latter can be handled by Arm’s P-channel protocol, or the power disconnect protocol that
accompanies BVCI as part of theOCP family.

The P-channel andQ-channel protocols fromArm [24] use an asynchronous four-phase handshake
(Section 3.1.3) to request a subsystem to change its powermode. Figure 3.36 shows the nets for the
P-channel variant. The PACTIVE output bus from a device reflects its current powermode. Typically,
only a fewmodes are supported, such as off, sleep and active, so only a few bits are needed. A request
to transfer to a new powermode starts with the power controller encoding the requestedmode on
the PSTATE nets and asserting PREQ, as the first two steps in a four-phase handshake. The device then
responds with an active state on either of PACCEPT or PDENY. This response is held until the controller
removes the request. Because only one handshake net transitions at a time, independent of any clock,
the P interface can be implemented safely between CDs.

PACTIVE[N-1:0]

PSTATE[M-1:0]

PREQ

PACCEPT

PDENY

Power controller

Device

PACTIVE[N-1:0]

PSTATE[M-1:0]

PREQ

PACCEPT

PDENY

M

N

Figure 3.36 Net-level view of the AMBA P-channel interface for device power control

141

Modern SoCDesign

For an automatic power-up when a transaction is approaching, the P-channel can be driven in
hardware. The device will be brought to a sufficient state to handle the bus transaction. For instance,
a PIOwrite to a configuration register does not require the whole device to be awake. There could be
orders of magnitude difference in power use for a subsystem, such as a Gigabit Ethernet interface. A
powerwake-up increases transaction latency. If both PD andCD crossing are needed and the target is
asleep, an overhead of tens of clock cycles will be required.

TheAMBAQ-channel protocol is a simpler variant that can only ask a device to go quiescent. The
QACTIVE output is high if it is running or may havemore work to do. When low, the devicemay be
prepared to go to sleep (power down) if requested. In this interface, several of the nets are active low.
These polarities are chosen so that, in the quiescent state, all nets are logic zero. This facilitates
simple default isolation rules.

3.8 Serialiser andDeserialiser: SERDES
Figure 3.37 shows themain components of a serialiser/deserialiser (SERDES). At the transmitter,
parallel data are converted to bit-serial form for inter-chip communication. They are converted back
to parallel form at the receiver. This kind of structure is used for the serial AT attachment (SATA)
interface to disks, each channel of PCIe, Gigabit Ethernet and as the basis of many other links. A very
small amount of logic needs to operate at the serial data rate. Careful design, using balanced delay
lines and structures like a Johnson counter (Section 4.4.2), enables standard CMOS processes to
achieve a serial clock frequency of 10 or 20 times the rate used for general logic.

Line
driver

Amplifier
+

equaliser

Clock
recovery

Tx word
clock

Line
coder

Serialiser De-
serialiser

Decision
flip-flop Line

decoder

Parallel
data

Frame
alignment

control

Parallel
data

Rx word
clockTx bit

clock

Word
clock

divider

D

Channel

8 10 8

10

ReceiverTransmitter

Figure 3.37Main components of an 8b10b, block-coded SERDES (serialiser/deserialiser) transceiver (transmitter/receiver) operating over a twisted-pair
channel

The figure shows the details for 8b10b block coding, where eight user data bits are transmitted
serially as 10 bits on the channel using a clock frequency 10 times higher. Block coding is an example
line code. There are numerous line codes, each suitable for different types of media. For instance, on a
DVD, the optical channel can carry consecutive groups of ones and zeros with high accuracy, but the
minimum run length of either digit must be above aminimum number, such as 3, or else themark will
not bemade on themedia. For most binary channels, the line codemust be balanced, meaning that
the average number of zeros and ones should be the same. This means it can be AC coupled and
passed through transformers. Often binary channels need to use polarity-insensitive coding,
especially over twisted pairs, where the twowires might be interchanged. This can be accomplished
using non-return-to-zero invert-on-ones (NRZI) coding where a one is transmitted as a change in the

142

Chapter 3 | SoC Interconnect

channel polarity and zero as a no-change. Transformers (not shown in the figure) provide galvanic
isolation. This prevents ground loops being created between equipment and is recommended for
inter-building data wiring. Fibre optic transceivers can be used instead, without any design changes to
the SERDES logic. These also provide electrical isolation since fibre does not conduct.

Most short-distance digital links use low-voltage differential signalling (LVDS). The advantage of
differential transmission is common-mode rejection. The signal is represented by the difference in
voltage between the two conductors and this is unaffected by any noise voltage or ground potential
mismatch that is suffered equally by both wires. The differential pair is terminated at the receiving
endwith a resistor equal to the characteristic impedance of the pair, which prevents reflections and
standing waves. LVDS is a baseband digital signal. Higher-frequency elements of the square waves
that make up a digital signal are severely attenuated, mainly due to the skin effect in electrical
conductors, since higher frequencies are carried only on the outside of the conductor and hence,
experience higher electrical resistance than lower frequencies, which can use all of it. At the receiver,
equalisation is required. Equalisation is the process of amplifying different frequencies by different
amounts to restore the original pulse shape.

After equalisation, the signal is converted to digital form by the decision flip-flop. This is a high-quality
component that internally has high gain and fast transistors. The clock-recovery unit must ensure that
the new clock has a suitable phase for tidy clocking by the decision flip-flop. It must be clocked at the
precise phase where the signal-to-noise ratio is best. This is known as the optimum eye opening. A
poor phase will lead to bit errors along the link and can causemetastable violations (Section 3.7.2).

The receiver regenerates the transmitter’s clock using a clock-recovery unit. The transmit clock can
be recovered from the transitions in the equalised signal provided they are sufficiently common for
the recovery unit not to have drifted so far as tomiss the correct bit cell delineation. Using NRZI
encoding, this relates to not having long runs of zeros in the unencoded data, since a one is
communicated as a transition.

Sufficient transition density is ensured using a scrambler, block coding or bit stuffing. With the
illustrated 8b10b block code, only 256 of the possible 1024 ten-bit patterns are used. These are
selected to chose a codebook of only those that have a high density of ones. It is also possible to
maintain the short-termDC balance bymonitoring the history and selecting from alternatives that
decode to the same value but which have an odd or even number of ones, according towhich direction
of balancing is required. On the other hand, a scrambler exclusive-ORs the data with a hash of the
data generated by a pseudorandom binary sequence (PRBS) generator, which ensures DC balance
and the transition density probabilistically. A PRBS generator is a shift register and XOR arrangement
that generates a random-looking stream of bits based on irreducible polynomial theory [25]. This has
the advantage that the 25 per cent overhead of 8b10b block coding is not encountered, but the
disadvantage that a bit pattern that encounters a communication error due to the way it hashes will
deterministically fail on a retry. Bit stuffing detects a long run of consecutive bits and then inserts a
transition and a further bit to indicatewhether the transition arose from genuine data or stuffing. This
is efficient, but has the disadvantage that the data rate varies slightly according to the data sent.

143

Modern SoCDesign

For an automatic power-up when a transaction is approaching, the P-channel can be driven in
hardware. The device will be brought to a sufficient state to handle the bus transaction. For instance,
a PIOwrite to a configuration register does not require the whole device to be awake. There could be
orders of magnitude difference in power use for a subsystem, such as a Gigabit Ethernet interface. A
powerwake-up increases transaction latency. If both PD andCD crossing are needed and the target is
asleep, an overhead of tens of clock cycles will be required.

TheAMBAQ-channel protocol is a simpler variant that can only ask a device to go quiescent. The
QACTIVE output is high if it is running or may havemore work to do. When low, the devicemay be
prepared to go to sleep (power down) if requested. In this interface, several of the nets are active low.
These polarities are chosen so that, in the quiescent state, all nets are logic zero. This facilitates
simple default isolation rules.

3.8 Serialiser andDeserialiser: SERDES
Figure 3.37 shows themain components of a serialiser/deserialiser (SERDES). At the transmitter,
parallel data are converted to bit-serial form for inter-chip communication. They are converted back
to parallel form at the receiver. This kind of structure is used for the serial AT attachment (SATA)
interface to disks, each channel of PCIe, Gigabit Ethernet and as the basis of many other links. A very
small amount of logic needs to operate at the serial data rate. Careful design, using balanced delay
lines and structures like a Johnson counter (Section 4.4.2), enables standard CMOS processes to
achieve a serial clock frequency of 10 or 20 times the rate used for general logic.

Line
driver

Amplifier
+

equaliser

Clock
recovery

Tx word
clock

Line
coder

Serialiser De-
serialiser

Decision
flip-flop Line

decoder

Parallel
data

Frame
alignment

control

Parallel
data

Rx word
clockTx bit

clock

Word
clock

divider

D

Channel

8 10 8

10

ReceiverTransmitter

Figure 3.37Main components of an 8b10b, block-coded SERDES (serialiser/deserialiser) transceiver (transmitter/receiver) operating over a twisted-pair
channel

The figure shows the details for 8b10b block coding, where eight user data bits are transmitted
serially as 10 bits on the channel using a clock frequency 10 times higher. Block coding is an example
line code. There are numerous line codes, each suitable for different types of media. For instance, on a
DVD, the optical channel can carry consecutive groups of ones and zeros with high accuracy, but the
minimum run length of either digit must be above aminimum number, such as 3, or else themark will
not bemade on themedia. For most binary channels, the line codemust be balanced, meaning that
the average number of zeros and ones should be the same. This means it can be AC coupled and
passed through transformers. Often binary channels need to use polarity-insensitive coding,
especially over twisted pairs, where the twowires might be interchanged. This can be accomplished
using non-return-to-zero invert-on-ones (NRZI) coding where a one is transmitted as a change in the

142

Chapter 3 | SoC Interconnect

channel polarity and zero as a no-change. Transformers (not shown in the figure) provide galvanic
isolation. This prevents ground loops being created between equipment and is recommended for
inter-building data wiring. Fibre optic transceivers can be used instead, without any design changes to
the SERDES logic. These also provide electrical isolation since fibre does not conduct.

Most short-distance digital links use low-voltage differential signalling (LVDS). The advantage of
differential transmission is common-mode rejection. The signal is represented by the difference in
voltage between the two conductors and this is unaffected by any noise voltage or ground potential
mismatch that is suffered equally by both wires. The differential pair is terminated at the receiving
endwith a resistor equal to the characteristic impedance of the pair, which prevents reflections and
standing waves. LVDS is a baseband digital signal. Higher-frequency elements of the square waves
that make up a digital signal are severely attenuated, mainly due to the skin effect in electrical
conductors, since higher frequencies are carried only on the outside of the conductor and hence,
experience higher electrical resistance than lower frequencies, which can use all of it. At the receiver,
equalisation is required. Equalisation is the process of amplifying different frequencies by different
amounts to restore the original pulse shape.

After equalisation, the signal is converted to digital form by the decision flip-flop. This is a high-quality
component that internally has high gain and fast transistors. The clock-recovery unit must ensure that
the new clock has a suitable phase for tidy clocking by the decision flip-flop. It must be clocked at the
precise phase where the signal-to-noise ratio is best. This is known as the optimum eye opening. A
poor phase will lead to bit errors along the link and can causemetastable violations (Section 3.7.2).

The receiver regenerates the transmitter’s clock using a clock-recovery unit. The transmit clock can
be recovered from the transitions in the equalised signal provided they are sufficiently common for
the recovery unit not to have drifted so far as tomiss the correct bit cell delineation. Using NRZI
encoding, this relates to not having long runs of zeros in the unencoded data, since a one is
communicated as a transition.

Sufficient transition density is ensured using a scrambler, block coding or bit stuffing. With the
illustrated 8b10b block code, only 256 of the possible 1024 ten-bit patterns are used. These are
selected to chose a codebook of only those that have a high density of ones. It is also possible to
maintain the short-termDC balance bymonitoring the history and selecting from alternatives that
decode to the same value but which have an odd or even number of ones, according towhich direction
of balancing is required. On the other hand, a scrambler exclusive-ORs the data with a hash of the
data generated by a pseudorandom binary sequence (PRBS) generator, which ensures DC balance
and the transition density probabilistically. A PRBS generator is a shift register and XOR arrangement
that generates a random-looking stream of bits based on irreducible polynomial theory [25]. This has
the advantage that the 25 per cent overhead of 8b10b block coding is not encountered, but the
disadvantage that a bit pattern that encounters a communication error due to the way it hashes will
deterministically fail on a retry. Bit stuffing detects a long run of consecutive bits and then inserts a
transition and a further bit to indicatewhether the transition arose from genuine data or stuffing. This
is efficient, but has the disadvantage that the data rate varies slightly according to the data sent.

143

Modern SoCDesign

Hence, block coding is most commonly used in SoC applications. Old-fashionedManchester coding is
a 1b2b code.

When the receiver deserialises 8b10b data, ten different phase offsets are possible. Only one is
correct. The receiver needs to acquire the correct frame alignment at start-up, but should not
thereafter lose synchronisation. A variety of techniques can be used. If not correctly synchronised,
the patterns receivedwill lie outside the codebook and can be flagged as coding violations. The
receiver can keep adjusting its phase until there are no or a very small number of violations. More
commonly, an idle symbol is also defined, using an extra entry in the codebook. This allows data
qualifiedwith a clock-enable to be conveyed. When there is noword to send, the idle character is sent.
The idle character can be chosen so that it has a unique signature under all cyclic bit rotations and
hence, also serves as a frame-alignment word (FAW) to indicate the correct receiver phase [26]. The
receiving circuit will typically generate a ‘link active’ status output once it has correctly locked at the
bit andword level. It can also report the link quality based on the rate of codebook violations.

3.8.1 PCIe and SATA
The switch away from parallel busses for board-level interconnects is best exemplified by the
peripheral component interconnect express (PCIe) family of bus standards. These use a bonded
serial interconnect, in which a number of so-called serial lanes run in parallel. Although the skew
across lanes can bemultiple bit times, this has no effect when the data are converted back to parallel
form at the deserialiser, since the worst skew is less than oneword time. Although totally different in
hardware structure from the parallel bus implementations of PCI, PCIe wasmade to appear exactly
the same to device configuration and driver software.

PCIe slots are commonly available with different configurations, denoted as×1,×4,×8,×16 and×32,
where the natural number denotes the number of lanes. Each lane has a pair of simplex channels in
each direction. Different generations of PCIe have successively increased the throughput per lane.
The first generation used LVDS at a baud rate (Section 2.7.1) of 2.5GHz and 8b10b coding, giving a
throughput of 250MB/s per lane. Subsequent generationsmoved to 128b130b, with a lower coding
overhead. Themost recent generations usemulti-level signalling, givingmultiple bits per baud.
Combinedwith an increase in baud rate, lane data rates have increased by a factor of 16 for the fifth
generation, with further increases envisioned.

3.8.2 CCIX, CXL andNVLink
PCIe has no cache coherence protocol, so explicit cache evict and clear operationsmust be
implemented by device drivers. The physical layer for PCIe has recently served as the basis for various
cache-coherent accelerator connections (Section 6.4). A different transaction-level protocol is carried
over the same serial technology. Two examples from competing trade consortia areCompute Express
Link (CXL) and cache-coherent interconnect for accelerators (CCIX). Both effectively implement a
distributedMOESI protocol (Section 2.4.1). Currently CXL only supports unidirectional coherency,
whereas CCIX supports bi-directional, symmetrical coherency. Comparedwith a NoC interconnect,

144

Chapter 3 | SoC Interconnect

which can use wide busses, these accelerator interconnects inevitably havemuch higher latency. This
arises from the longer distances travelled and deserialisation delays of at least oneword. However,
every trick possible is used tominimise latency, such as using harmonic clocks (Section 3.7.4) instead
of operating asynchronously.

TheNVLink board-level mesh network fromNvidia also has SERDES channels using 128b130b. This
was developed for GPU interconnections. There are opposingmarket forces, since system integrators
want as few board-level interconnect standards as possible whereas technology providers want to
enforce lock-ins to their own particular variant.

3.9 Automatic Topology Synthesis
The goal of topology generation is to deploy switching elements, bus resizers and various other
canvas elements tomeet the PPA targets. Several well-known algorithms in graph theory aid in
topology generation. However, none of these is directly applicable. The topology generation problem
consists of multiple NP-hard (Section 6.2) sub-problems. Thesemust be solved in turn and then, as
with all aspects of architectural exploration, the procedure is iterated. The same principles apply to
designing and dimensioning the debug network in Section 4.7.

Here we present one topology generation procedure. The approach is to start by creating a Steiner
tree and then successively refining the solution tomeet the PPA objectives. From graph theory, a
minimum Steiner tree [27] is a tree that connects a set of terminals using the lowest number of
connecting nodes. For a NoC, a node is a switching element. A Steiner tree is intrinsically singly
connected, meaning that there is exactly one route from each point to every other point.

A Steiner tree is generated on a canvas that is overlaid on the user-supplied floor plan (Section 8.6).
The NoC provides connectivity between protocol bridges and other directly connected end points
whose position the user has also provided. The canvas defines the locations of switching elements
(routers). For ameshNoC, the canvas is a rectangular grid. The end points are connected to all
adjacent routers and the Steiner tree is then computed on themesh. Note that there are still unused
links in the underlying grid. We then compute the shortest paths on the Steiner tree andmake an
allocation of flows to VCs. The VC allocationmust provide full connectivity but not involve edges
prohibited by deadlock considerations, such as via the turn-restriction algorithms presented
in Section 3.4.3. At the end of route generation, the NoC is functional but not optimised. It is also the
tightest topology, since a Steiner tree was used.

3.9.1 Domain Assignment
Once a candidate NoC topology has been generated, the connectivity, routes and VC assignment are
all known. The CD and PD for each switching elementmust then be determined. Domain-crossing
bridges (Section 3.7.1) will later be inserted at every boundary.

145

Modern SoCDesign

Hence, block coding is most commonly used in SoC applications. Old-fashionedManchester coding is
a 1b2b code.

When the receiver deserialises 8b10b data, ten different phase offsets are possible. Only one is
correct. The receiver needs to acquire the correct frame alignment at start-up, but should not
thereafter lose synchronisation. A variety of techniques can be used. If not correctly synchronised,
the patterns receivedwill lie outside the codebook and can be flagged as coding violations. The
receiver can keep adjusting its phase until there are no or a very small number of violations. More
commonly, an idle symbol is also defined, using an extra entry in the codebook. This allows data
qualifiedwith a clock-enable to be conveyed. When there is noword to send, the idle character is sent.
The idle character can be chosen so that it has a unique signature under all cyclic bit rotations and
hence, also serves as a frame-alignment word (FAW) to indicate the correct receiver phase [26]. The
receiving circuit will typically generate a ‘link active’ status output once it has correctly locked at the
bit andword level. It can also report the link quality based on the rate of codebook violations.

3.8.1 PCIe and SATA
The switch away from parallel busses for board-level interconnects is best exemplified by the
peripheral component interconnect express (PCIe) family of bus standards. These use a bonded
serial interconnect, in which a number of so-called serial lanes run in parallel. Although the skew
across lanes can bemultiple bit times, this has no effect when the data are converted back to parallel
form at the deserialiser, since the worst skew is less than oneword time. Although totally different in
hardware structure from the parallel bus implementations of PCI, PCIe wasmade to appear exactly
the same to device configuration and driver software.

PCIe slots are commonly available with different configurations, denoted as×1,×4,×8,×16 and×32,
where the natural number denotes the number of lanes. Each lane has a pair of simplex channels in
each direction. Different generations of PCIe have successively increased the throughput per lane.
The first generation used LVDS at a baud rate (Section 2.7.1) of 2.5GHz and 8b10b coding, giving a
throughput of 250MB/s per lane. Subsequent generationsmoved to 128b130b, with a lower coding
overhead. Themost recent generations usemulti-level signalling, givingmultiple bits per baud.
Combinedwith an increase in baud rate, lane data rates have increased by a factor of 16 for the fifth
generation, with further increases envisioned.

3.8.2 CCIX, CXL andNVLink
PCIe has no cache coherence protocol, so explicit cache evict and clear operationsmust be
implemented by device drivers. The physical layer for PCIe has recently served as the basis for various
cache-coherent accelerator connections (Section 6.4). A different transaction-level protocol is carried
over the same serial technology. Two examples from competing trade consortia areCompute Express
Link (CXL) and cache-coherent interconnect for accelerators (CCIX). Both effectively implement a
distributedMOESI protocol (Section 2.4.1). Currently CXL only supports unidirectional coherency,
whereas CCIX supports bi-directional, symmetrical coherency. Comparedwith a NoC interconnect,

144

Chapter 3 | SoC Interconnect

which can use wide busses, these accelerator interconnects inevitably havemuch higher latency. This
arises from the longer distances travelled and deserialisation delays of at least oneword. However,
every trick possible is used tominimise latency, such as using harmonic clocks (Section 3.7.4) instead
of operating asynchronously.

TheNVLink board-level mesh network fromNvidia also has SERDES channels using 128b130b. This
was developed for GPU interconnections. There are opposingmarket forces, since system integrators
want as few board-level interconnect standards as possible whereas technology providers want to
enforce lock-ins to their own particular variant.

3.9 Automatic Topology Synthesis
The goal of topology generation is to deploy switching elements, bus resizers and various other
canvas elements tomeet the PPA targets. Several well-known algorithms in graph theory aid in
topology generation. However, none of these is directly applicable. The topology generation problem
consists of multiple NP-hard (Section 6.2) sub-problems. Thesemust be solved in turn and then, as
with all aspects of architectural exploration, the procedure is iterated. The same principles apply to
designing and dimensioning the debug network in Section 4.7.

Here we present one topology generation procedure. The approach is to start by creating a Steiner
tree and then successively refining the solution tomeet the PPA objectives. From graph theory, a
minimum Steiner tree [27] is a tree that connects a set of terminals using the lowest number of
connecting nodes. For a NoC, a node is a switching element. A Steiner tree is intrinsically singly
connected, meaning that there is exactly one route from each point to every other point.

A Steiner tree is generated on a canvas that is overlaid on the user-supplied floor plan (Section 8.6).
The NoC provides connectivity between protocol bridges and other directly connected end points
whose position the user has also provided. The canvas defines the locations of switching elements
(routers). For ameshNoC, the canvas is a rectangular grid. The end points are connected to all
adjacent routers and the Steiner tree is then computed on themesh. Note that there are still unused
links in the underlying grid. We then compute the shortest paths on the Steiner tree andmake an
allocation of flows to VCs. The VC allocationmust provide full connectivity but not involve edges
prohibited by deadlock considerations, such as via the turn-restriction algorithms presented
in Section 3.4.3. At the end of route generation, the NoC is functional but not optimised. It is also the
tightest topology, since a Steiner tree was used.

3.9.1 Domain Assignment
Once a candidate NoC topology has been generated, the connectivity, routes and VC assignment are
all known. The CD and PD for each switching elementmust then be determined. Domain-crossing
bridges (Section 3.7.1) will later be inserted at every boundary.

145

Modern SoCDesign

The domains for each switching element can, in principle, be set independently. A domain-assignment
algorithm starts from the end points and computes themost favourable domain at each of the
switching elements based on availability, certain metrics and the route. Once themost favourable
domain at each element has been computed, a second pass is made over the information tomake a
final allocation based onminimising the total number of domain-crossing bridges needed. The
domains for the remaining NoC components, which have exactly one input, such as policers, pipeline
stages and resizers, can default to that of the canvas component that drives them.

3.9.2 FIFOBuffer Sizing
Buffering can be placed in the source, switching elements or the destinations. Using the standard
synchronous handshake for flow control (Section 3.1.3), augmentedwith static deadlock avoidance at
the routing level, an interconnect will operate correctly without packet loss andwithout any queuing
at switching elements. It relies on source buffering (Section 3.5.1). Credit-based flow control, on the
other hand, must have some overt buffering since credit is issued proportional to buffer space, but
again this could be just one flit space per destination. However, this would lead to poor link utilisation.
Bufferingmust be provided in proportion to the delays in the flow control loop and the peak and
average bandwidth needs of each flow. Moreover, relying on source buffering causes unnecessary
head-of-line blocking (Section 4.3.2) and if there is only a small amount of source buffering, devices
will stall unnecessarily.

With credit-based flow control, the average sustainable bandwidth on a link is given by the ratio of
credit available to the round-trip time RTT, as described in Section 3.6. The peak rate is the rate of the
lowest throughput link on the path, which will be close to that link’s raw throughput when all traffic is
bursty. If a source generates highly bursty data, a source buffer may sensibly be added, but it should
be kept small with buffering preferably provided at the destination. The buffering in the switching
elements should also be kept small and rely on flow control instead to ensure congestion-free
operation.

The traffic flowmatrix, from Section 3.5.1, gives the expected bandwidth and burstiness of traffic
flowing from each point to every other point. As discussed in Section 4.3.3, it is then possible to
compute the effective bandwidth needed on each link of the NoC. Alternatively, since the aim here is
to generate a starting design for subsequent optimisation, various alternatives can be created, based
on peak, effective or mean traffic. Each design can be a seed point for design space exploration (DSE)
andNoC optimisation (Section 6.2.5). At this point, the round-trip time in clock cycles RTT is known,
the clock frequency fTX is known from the domain assignment and the throughput required g has been
estimated according to one of themodels. For each design point, the destination buffer depth (or total
amount of credit if there aremultiple budgeted stages in the loop) can be directly computed. Tomeet
the throughput, the depth needed is �RTT×g/fTX�. To serve bursty peaks for the greater-than-mean
allocation design points, the available credit needs also to be at least the burst size.

146

Chapter 3 | SoC Interconnect

3.9.3 Link Sizing
The final step is to select the width of each link, rounding up to a preferredword size. The link width in
bits is easy to compute based on the peak or average throughput, summed over all VCs that share the
link. Note that in dynamic TDM, such as round-robin arbitration over active VCs, the effective
bandwidth needed on a link is lower than the sum of the individual effective bandwidths of the VCs
due to a further statistical multiplexing gain. Moreover, bus width provisioning should use a clustering
approach to avoid deploying toomany resizers.

The resulting design will nearly alwaysmiss the PPA objectives, since it has only taken performance
into account. The tightest tree in terms of number of elements in the design is inherently suboptimal
when dynamic performance is considered due to the arbitration overhead, head-of-line losses
(Section 4.3.2), priority crosstalk and queuing delay. Thus, this is a multiple-objective combinational
optimisation problem. The design will then be subject to a sequence of automatic andmanual
refinements to explore performance improvements. This is discussed in the design space exploration
section (Section 6.2.5).

3.10 Summary
This chapter has traced the story of SoC interconnects from the early days of a single bus to today’s
highly-complex NoCs. Apart from the desire for ever-increasing bandwidth, themainmotivations for
change have been the increasing number of initiators and the increasing difficulty of sending a signal
all the way across the silicon die.

The fundamental requirement of an interconnect is to provide connectivity between initiating
components (processors, I/O, etc.) and target components (memory, peripherals, etc.). Not every
initiator requires access to every target and the optimal solutionmay be an irregular interconnect,
with asymmetric connectivity. Performance requirements will typically be known in advance. For
example:

1. A graphics processor might need a guaranteedmemory bandwidth to reach its frame rate target
for a given screen resolution and scene complexity.

2. A CPUmight have a hard deadline within which to service an interrupt. In this case, the
interconnect latency (time taken for a transaction to be serviced) could be critical in meeting its
requirements.

Themain factors that influence interconnect performance are topology, clock frequency, bus width,
bridge crossing, physical distance and congestion. Furthermore, these are all interlinked, so finding a
near-optimal solution for a set of requirements can be very difficult and time-consuming.

An application-specific SoCmay use bridged busses or a customNoC architecture whereas a
general-purpose SoC that embodies heterogeneous compute cores and accelerators will tend to use a
regular mesh NoC. Going forward, such a NoC is increasingly likely to be cache coherent, with L2 and

147

Modern SoCDesign

The domains for each switching element can, in principle, be set independently. A domain-assignment
algorithm starts from the end points and computes themost favourable domain at each of the
switching elements based on availability, certain metrics and the route. Once themost favourable
domain at each element has been computed, a second pass is made over the information tomake a
final allocation based onminimising the total number of domain-crossing bridges needed. The
domains for the remaining NoC components, which have exactly one input, such as policers, pipeline
stages and resizers, can default to that of the canvas component that drives them.

3.9.2 FIFOBuffer Sizing
Buffering can be placed in the source, switching elements or the destinations. Using the standard
synchronous handshake for flow control (Section 3.1.3), augmentedwith static deadlock avoidance at
the routing level, an interconnect will operate correctly without packet loss andwithout any queuing
at switching elements. It relies on source buffering (Section 3.5.1). Credit-based flow control, on the
other hand, must have some overt buffering since credit is issued proportional to buffer space, but
again this could be just one flit space per destination. However, this would lead to poor link utilisation.
Bufferingmust be provided in proportion to the delays in the flow control loop and the peak and
average bandwidth needs of each flow. Moreover, relying on source buffering causes unnecessary
head-of-line blocking (Section 4.3.2) and if there is only a small amount of source buffering, devices
will stall unnecessarily.

With credit-based flow control, the average sustainable bandwidth on a link is given by the ratio of
credit available to the round-trip time RTT, as described in Section 3.6. The peak rate is the rate of the
lowest throughput link on the path, which will be close to that link’s raw throughput when all traffic is
bursty. If a source generates highly bursty data, a source buffer may sensibly be added, but it should
be kept small with buffering preferably provided at the destination. The buffering in the switching
elements should also be kept small and rely on flow control instead to ensure congestion-free
operation.

The traffic flowmatrix, from Section 3.5.1, gives the expected bandwidth and burstiness of traffic
flowing from each point to every other point. As discussed in Section 4.3.3, it is then possible to
compute the effective bandwidth needed on each link of the NoC. Alternatively, since the aim here is
to generate a starting design for subsequent optimisation, various alternatives can be created, based
on peak, effective or mean traffic. Each design can be a seed point for design space exploration (DSE)
andNoC optimisation (Section 6.2.5). At this point, the round-trip time in clock cycles RTT is known,
the clock frequency fTX is known from the domain assignment and the throughput required g has been
estimated according to one of themodels. For each design point, the destination buffer depth (or total
amount of credit if there aremultiple budgeted stages in the loop) can be directly computed. Tomeet
the throughput, the depth needed is �RTT×g/fTX�. To serve bursty peaks for the greater-than-mean
allocation design points, the available credit needs also to be at least the burst size.

146

Chapter 3 | SoC Interconnect

3.9.3 Link Sizing
The final step is to select the width of each link, rounding up to a preferredword size. The link width in
bits is easy to compute based on the peak or average throughput, summed over all VCs that share the
link. Note that in dynamic TDM, such as round-robin arbitration over active VCs, the effective
bandwidth needed on a link is lower than the sum of the individual effective bandwidths of the VCs
due to a further statistical multiplexing gain. Moreover, bus width provisioning should use a clustering
approach to avoid deploying toomany resizers.

The resulting design will nearly alwaysmiss the PPA objectives, since it has only taken performance
into account. The tightest tree in terms of number of elements in the design is inherently suboptimal
when dynamic performance is considered due to the arbitration overhead, head-of-line losses
(Section 4.3.2), priority crosstalk and queuing delay. Thus, this is a multiple-objective combinational
optimisation problem. The design will then be subject to a sequence of automatic andmanual
refinements to explore performance improvements. This is discussed in the design space exploration
section (Section 6.2.5).

3.10 Summary
This chapter has traced the story of SoC interconnects from the early days of a single bus to today’s
highly-complex NoCs. Apart from the desire for ever-increasing bandwidth, themainmotivations for
change have been the increasing number of initiators and the increasing difficulty of sending a signal
all the way across the silicon die.

The fundamental requirement of an interconnect is to provide connectivity between initiating
components (processors, I/O, etc.) and target components (memory, peripherals, etc.). Not every
initiator requires access to every target and the optimal solutionmay be an irregular interconnect,
with asymmetric connectivity. Performance requirements will typically be known in advance. For
example:

1. A graphics processor might need a guaranteedmemory bandwidth to reach its frame rate target
for a given screen resolution and scene complexity.

2. A CPUmight have a hard deadline within which to service an interrupt. In this case, the
interconnect latency (time taken for a transaction to be serviced) could be critical in meeting its
requirements.

Themain factors that influence interconnect performance are topology, clock frequency, bus width,
bridge crossing, physical distance and congestion. Furthermore, these are all interlinked, so finding a
near-optimal solution for a set of requirements can be very difficult and time-consuming.

An application-specific SoCmay use bridged busses or a customNoC architecture whereas a
general-purpose SoC that embodies heterogeneous compute cores and accelerators will tend to use a
regular mesh NoC. Going forward, such a NoC is increasingly likely to be cache coherent, with L2 and

147

Modern SoCDesign

L3 caches connected to the network instead of directly connected to the cores they serve. Themesh
may have some number of longer links that are effectively in the third dimension. There is a much
greater exploitation of the physical third dimension for multi-chip tiles and stacks. For longer
distances, parallel interconnects have been replacedwith bonded serial channels, but DRAM
currently remains parallel and instead uses line termination and a buildout that is calibrated at boot
time.

An interconnect, as a whole, needs to convey a variety of different operations. As well as memory
reads andwrites, which are usually done in bursts, there are programmed I/O operations on
peripherals, which need to be non-cacheable. Again these are reads or writes, but they usually
transfer oneword at a timewhen initiated by a processor, otherwise DMA is used. Both occasionally
require atomic operations. A variety of broadcast messages also needs to be conveyed, especially for
cache and TLBmaintenance. Communications are also required for debug (Section 4.7) and interrupt
traffic. These can use separate wiring or else bemultiplexed over themain data plane.

An interconnect is normally synthesised automatically from specifications of the end points and their
trafficmatrix. SoCs can have circuit-switched or packet-switched structures and thesemay be
coherent or incoherent. Synthesis tools include the CMN-600 CoherentMeshNetwork Generator
fromArm [21], and a companion tool for a non-coherent interconnect [28]. These are typically
invoked from aGUI-based system integrator tool, as will be discussed in Section 6.8.2.

3.10.1 Exercises
1. What is the principal reason that protocols that fully complete one transaction before

commencing another have gone out of fashion? Estimate the throughput of a primitive
MSOC1-like bus protocol implementedwithmodern technology.

2. What affects interconnect energy consumption as the number of channels that make up a port is
increased from two (for BVCI) to five (for AXI)?

3. Why is a mix of coherent and non-coherent interconnects always found on a SoC?Why are some
peripheral devices connected to a special-purpose bus?

4. Sketch circuit diagrams for a registered pipeline stage inserted into an AXI channel and a CHI
channel. What design decisions arise in each case andwhat effect do they have on performance
and energy use?

5. Sketch the circuit for a bus width converter for an AXI channel if the same clock frequency is used
on each side. What are the differences from credit-based flow control? When credit-based flow
control traverses a bus width changer, what is themost sensible meaning for a credit token?

148

Chapter 3 | SoC Interconnect

6. A NoC uses static TDM to separate VCs on a link with the schedule fixed at tapeout. Should the
receiving link have a shared buffer pool or a pool that is statically partitioned for use by different
VCs?

7. Another NoC uses dynamic TDM. Additional nets convey a VC number that identifies the data on
the remainder of the data nets. Discuss the likely performance and energy differences compared
with static TDM. (You should be able to improve your answer after reading the next chapter!)

8. For what types of application does NoC latency affect system throughput?

9. What are the advantages of having fully automatic hardware support for memory coherency
comparedwith leaving it up to the programmer to insert special instructions?

10. A C programmerwrites pthread_mutex_t locks[32]. A friend says this will have very poor
cache performance. Whymight the friend say this? Are they correct?

References
[1] Arm Ltd. AMBAAXI and ACE protocol specification, version H. https://developer.arm.com/

documentation/ihi0022/h, 2020.
[2] I. Sutherland, R. F. Sproull, and D. Harris. Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann,

1999. ISBN 9781558605572.
[3] OCP-IP Association. Open Core Protocol Specification Release 1.0. http://www.ocpip.org, 2001.
[4] V. Salapura, M. Blumrich, and A. Gara. Design and implementation of the Blue Gene/P snoop filter. In 2008

IEEE 14th International Symposium on High Performance Computer Architecture, pages 5–14, 2008. doi:
10.1109/HPCA.2008.4658623.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):
422–426, July 1970. ISSN 0001-0782. doi: 10.1145/362686.362692. URL https://doi.org/10.1145/
362686.362692.

[6] James Archibald and Jean Loup Baer. An economical solution to the cache coherence problem. SIGARCH
Comput. Archit. News, 12(3):355–362, January 1984. ISSN 0163-5964. doi: 10.1145/773453.808205. URL
https://doi.org/10.1145/773453.808205.

[7] Meredydd Luff. Communication for programmability and performance onmulti-core processors. Technical
Report UCAM-CL-TR-831, University of Cambridge, Computer Laboratory, April 2013. URL https://www.
cl.cam.ac.uk/techreports/UCAM-CL-TR-831.pdf.

[8] David J. Greaves.Multi-Access Metropolitan Area Networks. PhD dissertation, University of Cambridge
Computer Laboratory, 1992. URL https://www.cl.cam.ac.uk/users/djg11/pubs/david-j-greaves-phd-
dissertation-dec-1992.pdf.

[9] David J. Greaves. The double-slot slotted ring protocol (DSR). In SBT/IEEE International Symposium on
Telecommunications, pages 238–242, 1990. doi: 10.1109/ITS.1990.175605.

149

Modern SoCDesign

L3 caches connected to the network instead of directly connected to the cores they serve. Themesh
may have some number of longer links that are effectively in the third dimension. There is a much
greater exploitation of the physical third dimension for multi-chip tiles and stacks. For longer
distances, parallel interconnects have been replacedwith bonded serial channels, but DRAM
currently remains parallel and instead uses line termination and a buildout that is calibrated at boot
time.

An interconnect, as a whole, needs to convey a variety of different operations. As well as memory
reads andwrites, which are usually done in bursts, there are programmed I/O operations on
peripherals, which need to be non-cacheable. Again these are reads or writes, but they usually
transfer oneword at a timewhen initiated by a processor, otherwise DMA is used. Both occasionally
require atomic operations. A variety of broadcast messages also needs to be conveyed, especially for
cache and TLBmaintenance. Communications are also required for debug (Section 4.7) and interrupt
traffic. These can use separate wiring or else bemultiplexed over themain data plane.

An interconnect is normally synthesised automatically from specifications of the end points and their
trafficmatrix. SoCs can have circuit-switched or packet-switched structures and thesemay be
coherent or incoherent. Synthesis tools include the CMN-600 CoherentMeshNetwork Generator
fromArm [21], and a companion tool for a non-coherent interconnect [28]. These are typically
invoked from aGUI-based system integrator tool, as will be discussed in Section 6.8.2.

3.10.1 Exercises
1. What is the principal reason that protocols that fully complete one transaction before

commencing another have gone out of fashion? Estimate the throughput of a primitive
MSOC1-like bus protocol implementedwithmodern technology.

2. What affects interconnect energy consumption as the number of channels that make up a port is
increased from two (for BVCI) to five (for AXI)?

3. Why is a mix of coherent and non-coherent interconnects always found on a SoC?Why are some
peripheral devices connected to a special-purpose bus?

4. Sketch circuit diagrams for a registered pipeline stage inserted into an AXI channel and a CHI
channel. What design decisions arise in each case andwhat effect do they have on performance
and energy use?

5. Sketch the circuit for a bus width converter for an AXI channel if the same clock frequency is used
on each side. What are the differences from credit-based flow control? When credit-based flow
control traverses a bus width changer, what is themost sensible meaning for a credit token?

148

Chapter 3 | SoC Interconnect

6. A NoC uses static TDM to separate VCs on a link with the schedule fixed at tapeout. Should the
receiving link have a shared buffer pool or a pool that is statically partitioned for use by different
VCs?

7. Another NoC uses dynamic TDM. Additional nets convey a VC number that identifies the data on
the remainder of the data nets. Discuss the likely performance and energy differences compared
with static TDM. (You should be able to improve your answer after reading the next chapter!)

8. For what types of application does NoC latency affect system throughput?

9. What are the advantages of having fully automatic hardware support for memory coherency
comparedwith leaving it up to the programmer to insert special instructions?

10. A C programmerwrites pthread_mutex_t locks[32]. A friend says this will have very poor
cache performance. Whymight the friend say this? Are they correct?

References
[1] Arm Ltd. AMBAAXI and ACE protocol specification, version H. https://developer.arm.com/

documentation/ihi0022/h, 2020.
[2] I. Sutherland, R. F. Sproull, and D. Harris. Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann,

1999. ISBN 9781558605572.
[3] OCP-IP Association. Open Core Protocol Specification Release 1.0. http://www.ocpip.org, 2001.
[4] V. Salapura, M. Blumrich, and A. Gara. Design and implementation of the Blue Gene/P snoop filter. In 2008

IEEE 14th International Symposium on High Performance Computer Architecture, pages 5–14, 2008. doi:
10.1109/HPCA.2008.4658623.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):
422–426, July 1970. ISSN 0001-0782. doi: 10.1145/362686.362692. URL https://doi.org/10.1145/
362686.362692.

[6] James Archibald and Jean Loup Baer. An economical solution to the cache coherence problem. SIGARCH
Comput. Archit. News, 12(3):355–362, January 1984. ISSN 0163-5964. doi: 10.1145/773453.808205. URL
https://doi.org/10.1145/773453.808205.

[7] Meredydd Luff. Communication for programmability and performance onmulti-core processors. Technical
Report UCAM-CL-TR-831, University of Cambridge, Computer Laboratory, April 2013. URL https://www.
cl.cam.ac.uk/techreports/UCAM-CL-TR-831.pdf.

[8] David J. Greaves.Multi-Access Metropolitan Area Networks. PhD dissertation, University of Cambridge
Computer Laboratory, 1992. URL https://www.cl.cam.ac.uk/users/djg11/pubs/david-j-greaves-phd-
dissertation-dec-1992.pdf.

[9] David J. Greaves. The double-slot slotted ring protocol (DSR). In SBT/IEEE International Symposium on
Telecommunications, pages 238–242, 1990. doi: 10.1109/ITS.1990.175605.

149

Modern SoCDesign

[10] E. Lee and P. Boulton. The Principles and Performance of Hubnet: A 50Mbit/s Glass Fiber Local Area
Network. IEEE Journal on Selected Areas in Communications, 1(5):711–720, 1983. doi: 10.1109/JSAC.
1983.1145990.

[11] IEEE Standards for Local andMetropolitan Area Networks: Supplement to Distributed Queue Dual Bus (DQDB)
Access Method and Physical Layer Specifications. Connection-Oriented Service on a Distributed Queue Dual Bus
(DQDB) Subnetwork of aMetropolitan Area Network (MAN). IEEE, 1995. Std 802.6j-1995.

[12] A. B. Kahng, B. Lin, K. Samadi, and R. S. Ramanujam. Trace-driven optimization of networks-on-chip
configurations. InDesign Automation Conference, pages 437–442, 2010. doi: 10.1145/1837274.1837384.

[13] G. N. Khan and A. Tino. Synthesis of NoC interconnects for customMPSoC architectures. In 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, pages 75–82, 2012. doi: 10.1109/NOCS.2012.16.

[14] David Starobinski, Mark Karpovsky, and Lev Zakrevski. Application of network calculus to general
topologies using turn-prohibition. IEEE/ACM Transactions on Networking, 11:411–421, 2002.

[15] Steven CameronWoo,Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and AnoopGupta. The splash-2
programs: Characterization andmethodological considerations. SIGARCH Comput. Archit. News, 23(2):
24–36,May 1995. ISSN 0163-5964. doi: 10.1145/225830.223990. URL https://doi.org/10.
1145/225830.223990.

[16] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC benchmark suite: Characterization and architectural
implications. In 2008 International Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 72–81, Los Alamitos, CA, USA, October 2008. IEEE Computer Society. URL https://doi.org/
10.1145/1454115.1454128.

[17] M. Potkonjak, C. Lee, andW.Mangione-Smith. Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, page 330, Los Alamitos, CA, USA, December 1997. IEEE Computer Society. doi:
10.1109/MICRO.1997.645830. URL https://doi.ieeecomputersociety.org/10.1109/MICRO.1997.645830.

[18] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor communication network: Built
for speed. IEEEMicro, 26:10–23, 2006. doi: 10.1109/MM.2006.49.

[19] C. Clos. A study of non-blocking switching networks. The Bell System Technical Journal, 32(2):406–424, 1953.
[20] A. Banerjee, R. Mullins, and S.Moore. A power and energy exploration of network-on-chip architectures. In

First International Symposium on Networks-on-Chip (NOCS’07), pages 163–172, 2007. doi: 10.1109/
NOCS.2007.6.

[21] Arm Ltd. Corelink CMN-600 coherent mesh network. https://developer.arm.com/ip-products/
system-ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600, 2020.

[22] John Kim,William J. Dally, and Dennis Abts. Flattened butterfly: A cost-efficient topology for high-radix
networks. In Proceedings of the 34th Annual International Symposium on Computer Architecture, ISCA ’07,
pages 126–137, NewYork, NY, USA, 2007. Association for ComputingMachinery. ISBN 9781595937063.
doi: 10.1145/1250662.1250679. URL https://doi.org/10.1145/1250662.1250679.

[23] David J. Greaves andM. J. Nam. Synthesis of glue logic, transactors, multiplexors and serialisors from
protocol specifications. IET Conference Proceedings, pages 171–177(6), January 2010. URL https://
digital-library.theiet.org/content/conferences/10.1049/ic.2010.0148.

[24] Arm Ltd. AMBA Low Power Interface Specification Q-Channel and P-Channel Interfaces. Arm Ltd., 2016.
[25] W.W. Peterson. Error Correcting Codes. M.I.T. Press, Cambridge, Mass, 1961. ISBN 9780262160063.
[26] David J. Greaves and S.Montgomery-Smith. Unforgeable marker sequences. https://www.researchgate.

net/publication/242390959_Unforgeable_Marker_Sequences, 01 1990.

150

Chapter 3 | SoC Interconnect

[27] M. Garey andDavid Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM Journal of Applied
Mathematics, 32:826–834, 1977. doi: 10.1137/0132071.

[28] Arm Ltd. ArmCoreLink NI-700Network-on-Chip Interconnect, Technical ReferenceManual.
https://developer.arm.com/documentation/101566/0100/Introduction/About-the-CoreLink-NI-
700-Network-on-Chip-Interconnect, 2020.

151

Modern SoCDesign

[10] E. Lee and P. Boulton. The Principles and Performance of Hubnet: A 50Mbit/s Glass Fiber Local Area
Network. IEEE Journal on Selected Areas in Communications, 1(5):711–720, 1983. doi: 10.1109/JSAC.
1983.1145990.

[11] IEEE Standards for Local andMetropolitan Area Networks: Supplement to Distributed Queue Dual Bus (DQDB)
Access Method and Physical Layer Specifications. Connection-Oriented Service on a Distributed Queue Dual Bus
(DQDB) Subnetwork of aMetropolitan Area Network (MAN). IEEE, 1995. Std 802.6j-1995.

[12] A. B. Kahng, B. Lin, K. Samadi, and R. S. Ramanujam. Trace-driven optimization of networks-on-chip
configurations. InDesign Automation Conference, pages 437–442, 2010. doi: 10.1145/1837274.1837384.

[13] G. N. Khan and A. Tino. Synthesis of NoC interconnects for customMPSoC architectures. In 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, pages 75–82, 2012. doi: 10.1109/NOCS.2012.16.

[14] David Starobinski, Mark Karpovsky, and Lev Zakrevski. Application of network calculus to general
topologies using turn-prohibition. IEEE/ACM Transactions on Networking, 11:411–421, 2002.

[15] Steven CameronWoo,Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and AnoopGupta. The splash-2
programs: Characterization andmethodological considerations. SIGARCH Comput. Archit. News, 23(2):
24–36,May 1995. ISSN 0163-5964. doi: 10.1145/225830.223990. URL https://doi.org/10.
1145/225830.223990.

[16] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC benchmark suite: Characterization and architectural
implications. In 2008 International Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 72–81, Los Alamitos, CA, USA, October 2008. IEEE Computer Society. URL https://doi.org/
10.1145/1454115.1454128.

[17] M. Potkonjak, C. Lee, andW.Mangione-Smith. Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, page 330, Los Alamitos, CA, USA, December 1997. IEEE Computer Society. doi:
10.1109/MICRO.1997.645830. URL https://doi.ieeecomputersociety.org/10.1109/MICRO.1997.645830.

[18] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor communication network: Built
for speed. IEEEMicro, 26:10–23, 2006. doi: 10.1109/MM.2006.49.

[19] C. Clos. A study of non-blocking switching networks. The Bell System Technical Journal, 32(2):406–424, 1953.
[20] A. Banerjee, R. Mullins, and S.Moore. A power and energy exploration of network-on-chip architectures. In

First International Symposium on Networks-on-Chip (NOCS’07), pages 163–172, 2007. doi: 10.1109/
NOCS.2007.6.

[21] Arm Ltd. Corelink CMN-600 coherent mesh network. https://developer.arm.com/ip-products/
system-ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600, 2020.

[22] John Kim,William J. Dally, and Dennis Abts. Flattened butterfly: A cost-efficient topology for high-radix
networks. In Proceedings of the 34th Annual International Symposium on Computer Architecture, ISCA ’07,
pages 126–137, NewYork, NY, USA, 2007. Association for ComputingMachinery. ISBN 9781595937063.
doi: 10.1145/1250662.1250679. URL https://doi.org/10.1145/1250662.1250679.

[23] David J. Greaves andM. J. Nam. Synthesis of glue logic, transactors, multiplexors and serialisors from
protocol specifications. IET Conference Proceedings, pages 171–177(6), January 2010. URL https://
digital-library.theiet.org/content/conferences/10.1049/ic.2010.0148.

[24] Arm Ltd. AMBA Low Power Interface Specification Q-Channel and P-Channel Interfaces. Arm Ltd., 2016.
[25] W.W. Peterson. Error Correcting Codes. M.I.T. Press, Cambridge, Mass, 1961. ISBN 9780262160063.
[26] David J. Greaves and S.Montgomery-Smith. Unforgeable marker sequences. https://www.researchgate.

net/publication/242390959_Unforgeable_Marker_Sequences, 01 1990.

150

Chapter 3 | SoC Interconnect

[27] M. Garey andDavid Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM Journal of Applied
Mathematics, 32:826–834, 1977. doi: 10.1137/0132071.

[28] Arm Ltd. ArmCoreLink NI-700Network-on-Chip Interconnect, Technical ReferenceManual.
https://developer.arm.com/documentation/101566/0100/Introduction/About-the-CoreLink-NI-
700-Network-on-Chip-Interconnect, 2020.

151

Chapter 4
SystemDesign
Considerations

Chapter 4
SystemDesign
Considerations

Modern SoCDesign

Good SoC design involves simultaneously optimising a number of performance targets. Some targets
are hard to quantify, such as howflexible the chosen solutionwill turn out to be for future applications
that are currently unforeseen. Others have quantitativemetrics whose values can generally be
predicted by analysis or from high-level electronic system-level (ESL)models of the solution and
accurately predicted by a low-level simulation where necessary. To avoid bottlenecks, SoC design
should instantiate a balanced set of resources. In this chapter, we present some theory and some
practical techniques behind thesemetrics. We discuss several principles of system design that are
widely applicable outside the sphere of SoCs, such as parallel processing theory, traffic theory and
queuing theory. We look at where the electrical energy goes and how to design secure and
debuggable chips.

4.1 DesignObjectives andMetrics
Themain design objectives for a SoC are as follow:

1. Performance: Traditionally, themost important parameter for computing systems is their
processing throughput, measured asmillion instructions per second (MIPS) or floating point
instructions per second (FLOPS). Although this remains a keymetric, it cannot be reduced to a
single figure in a complexmodern design, especially one that contains heterogeneous processors
and accelerators. For embedded andmobile applications, video processing rates are oftenmore
important thanmain processor performance. Video compression is especially challenging and the
design objective will be expressed usingmetrics such as frame rate and resolution.

2. Memory bandwidth: Directly related to processor performance is mainmemory bandwidth.
Generally, there is one DRAM channel and all the on-chip processors use it to a greater or lesser
extent. The data width and clock rate for thememory channel betweenDRAMand the SoC are
critical design decisions, both for performance and energy use. It is common to support more than
one point in this design space, with the final choices being based on the PCB orMCMassembly
time for data width and the boot time for the clock rate.

3. Energy use or battery life: Energy efficiency is, today, also often a critical consideration. Whether
for battery-operated devices or a server farm, low-power design principles are applicable. The
power control mechanisms selected affect the design at all levels. Electricity and cooling aremajor
costs for cloud servers and data centres, comparable to the depreciation costs of the hardware.
For portable equipment, battery life remains a design consideration despite significant advances
in battery power density in the last decade. Amobile phone should offer at least one day’s
operation between charges, whereas a ceiling-mounted smoke and intruder sensor may target a
10-year battery life.

4. Powermodes: A SoC as a whole will support various sleepmodes or standbymodes
(Section 4.6.10) and various regions of the SoC can be power gated to be on or off at any one time
(Section 4.6.10). When powered on, various clock rates and power supply voltagesmay be
dynamically selected by dynamic voltage and frequency scaling (DVFS) (Section 4.6.8).

154

Chapter 4 | SystemDesign Considerations

5. Production costs: The production cost for most SoCs with a particular geometry (technology
node) is a simple function of the silicon area. Cutting-edge silicon production, in which the
geometry is less than 10µm, is muchmore expensive than older lines producing 45µm. The
production lines for the larger geometry aremature and ultra reliable, whereas the newer ones
can have significant yield problems. For a geometry, the yield is inversely proportional to area
(S8.11.1). Expenses related to each chip are called recurring costs. Apart from silicon wafer
processing, they also include testing and packaging overheads (Section 8.8.3).

6. Design costs: The one-off costs in designing a SoC are called non-recurring expenses (NRE). As
discussed in Section 8.11, these include engineering time, computer time andmask-making costs.
Engineering time includes the creative aspects of hardware and software design and the extensive
effort required for design verification and test program generation. Pricing structures for IP block
licences depend on the supplier, but typically include both recurring and non-recurring
components.

7. Security: Increasingly, SoCs need to be secure. It is better if the design IP and embedded software
are relatively secure against reverse engineering. Also, boot-time and runtime security
mechanisms are increasingly important. Secret keys for various public-key infrastructure (PKI)
resources need to be held securely for secure booting (Section 9.1.1), digital rightsmanagement of
copyrightedmedia and secure applications, such as online purchases or unlocking doors. The
security architecture for a SoCmay includemultiple roots of trust, in which information isolation
follows a partial order different from the simple total ordering imposed by a traditional supervisor
mode privilege flag. For instance, the telephony API on a phonemay need to be insulated from
user applications before the network provider approves the platform. Moreover, the user’s files
should be protected from rogue network providers.

8. Observability: A devicemust be testable and debuggable, which conflicts with its security. Test
modes and a trace andmonitor infrastructuremust be deployed to capture behaviour so that
bugs, especially software bugs, can be found.

9. Flexibility: Due to the high NRE of a SoC design, it is normal to address a family of related
applications with one SoC. For instance, one design could be used for a printer, a scanner and a
printer/scanner. Certain parts of the SoCmay then never be used in the lifetime of themore
specialised products. The same goes for the broadbandmodem example in Figure 1.11, in which
themain SoCmight have twoUSB ports but zero, one or twomight be wired out on the PCB,
depending on the product. If a SoC is intended for a single target application, there is greater
certainty about the likely data flow between internal IP blocks comparedwith a general-purpose
chip. Although transistor count does not present a significant design constraint in modern VLSI,
hardwired data paths aremore efficient than switched structures: wiring length and hence,
energy are lower if less area is used. A solution providing a non-blocking full crossbar
interconnection will generally be over-engineered.

155

Modern SoCDesign

Good SoC design involves simultaneously optimising a number of performance targets. Some targets
are hard to quantify, such as howflexible the chosen solutionwill turn out to be for future applications
that are currently unforeseen. Others have quantitativemetrics whose values can generally be
predicted by analysis or from high-level electronic system-level (ESL)models of the solution and
accurately predicted by a low-level simulation where necessary. To avoid bottlenecks, SoC design
should instantiate a balanced set of resources. In this chapter, we present some theory and some
practical techniques behind thesemetrics. We discuss several principles of system design that are
widely applicable outside the sphere of SoCs, such as parallel processing theory, traffic theory and
queuing theory. We look at where the electrical energy goes and how to design secure and
debuggable chips.

4.1 DesignObjectives andMetrics
Themain design objectives for a SoC are as follow:

1. Performance: Traditionally, themost important parameter for computing systems is their
processing throughput, measured asmillion instructions per second (MIPS) or floating point
instructions per second (FLOPS). Although this remains a keymetric, it cannot be reduced to a
single figure in a complexmodern design, especially one that contains heterogeneous processors
and accelerators. For embedded andmobile applications, video processing rates are oftenmore
important thanmain processor performance. Video compression is especially challenging and the
design objective will be expressed usingmetrics such as frame rate and resolution.

2. Memory bandwidth: Directly related to processor performance is mainmemory bandwidth.
Generally, there is one DRAM channel and all the on-chip processors use it to a greater or lesser
extent. The data width and clock rate for thememory channel betweenDRAMand the SoC are
critical design decisions, both for performance and energy use. It is common to support more than
one point in this design space, with the final choices being based on the PCB orMCMassembly
time for data width and the boot time for the clock rate.

3. Energy use or battery life: Energy efficiency is, today, also often a critical consideration. Whether
for battery-operated devices or a server farm, low-power design principles are applicable. The
power control mechanisms selected affect the design at all levels. Electricity and cooling aremajor
costs for cloud servers and data centres, comparable to the depreciation costs of the hardware.
For portable equipment, battery life remains a design consideration despite significant advances
in battery power density in the last decade. Amobile phone should offer at least one day’s
operation between charges, whereas a ceiling-mounted smoke and intruder sensor may target a
10-year battery life.

4. Powermodes: A SoC as a whole will support various sleepmodes or standbymodes
(Section 4.6.10) and various regions of the SoC can be power gated to be on or off at any one time
(Section 4.6.10). When powered on, various clock rates and power supply voltagesmay be
dynamically selected by dynamic voltage and frequency scaling (DVFS) (Section 4.6.8).

154

Chapter 4 | SystemDesign Considerations

5. Production costs: The production cost for most SoCs with a particular geometry (technology
node) is a simple function of the silicon area. Cutting-edge silicon production, in which the
geometry is less than 10µm, is muchmore expensive than older lines producing 45µm. The
production lines for the larger geometry aremature and ultra reliable, whereas the newer ones
can have significant yield problems. For a geometry, the yield is inversely proportional to area
(S8.11.1). Expenses related to each chip are called recurring costs. Apart from silicon wafer
processing, they also include testing and packaging overheads (Section 8.8.3).

6. Design costs: The one-off costs in designing a SoC are called non-recurring expenses (NRE). As
discussed in Section 8.11, these include engineering time, computer time andmask-making costs.
Engineering time includes the creative aspects of hardware and software design and the extensive
effort required for design verification and test program generation. Pricing structures for IP block
licences depend on the supplier, but typically include both recurring and non-recurring
components.

7. Security: Increasingly, SoCs need to be secure. It is better if the design IP and embedded software
are relatively secure against reverse engineering. Also, boot-time and runtime security
mechanisms are increasingly important. Secret keys for various public-key infrastructure (PKI)
resources need to be held securely for secure booting (Section 9.1.1), digital rightsmanagement of
copyrightedmedia and secure applications, such as online purchases or unlocking doors. The
security architecture for a SoCmay includemultiple roots of trust, in which information isolation
follows a partial order different from the simple total ordering imposed by a traditional supervisor
mode privilege flag. For instance, the telephony API on a phonemay need to be insulated from
user applications before the network provider approves the platform. Moreover, the user’s files
should be protected from rogue network providers.

8. Observability: A devicemust be testable and debuggable, which conflicts with its security. Test
modes and a trace andmonitor infrastructuremust be deployed to capture behaviour so that
bugs, especially software bugs, can be found.

9. Flexibility: Due to the high NRE of a SoC design, it is normal to address a family of related
applications with one SoC. For instance, one design could be used for a printer, a scanner and a
printer/scanner. Certain parts of the SoCmay then never be used in the lifetime of themore
specialised products. The same goes for the broadbandmodem example in Figure 1.11, in which
themain SoCmight have twoUSB ports but zero, one or twomight be wired out on the PCB,
depending on the product. If a SoC is intended for a single target application, there is greater
certainty about the likely data flow between internal IP blocks comparedwith a general-purpose
chip. Although transistor count does not present a significant design constraint in modern VLSI,
hardwired data paths aremore efficient than switched structures: wiring length and hence,
energy are lower if less area is used. A solution providing a non-blocking full crossbar
interconnection will generally be over-engineered.

155

Modern SoCDesign

10. Safety and reliability: Functional safety levels need to be higher in some application areas than
others. To achieve high reliability, memory can have error correction (Section 4.7.6) and busses
can have parity bits. Processors can be duplicated andwork in lockstep for error detection, or
triplicated, giving triplemodular redundancy (TMR), which seeks amajority vote in most cases of
disagreement.

The threemajor metrics of power, performance and area are often considered together using the
acronym PPA.

4.2 Parallel Speedup Theory
In an ideal world, if work can be divided nways and performed in parallel, then an n-times speedup
should be achieved. Alternatively, for zero speedup, running a workload in parallel onmultiple slower
processors gives a considerable energy saving compared to a faster serial execution, with benefits
arising from both the CMOS speed law (Section 4.6.6) and Pollack’s rule of thumb (Section 2.1.1).
Hence, parallel processing is preferred, provided the workload can adequately expressed as parallel
tasks. In this section we present basic parallel processing theory.

Figure 4.1 illustrates a task consisting of 35 units of work using parallel processing arranged over four
processors. Likemany tasks, the work that can be done in parallel depends on a common core of work
that cannot easily be done in parallel. This is the initial, serial and start-up phase of four work units. A
further two serial units are shown at the end, typically to aggregate the final result. A dependency
arises when the input to a unit is computed by a previous unit. In general, the dependency graph can
have any structure, but one path (or several equal paths) between the start and finish will have the
maximal length. In our figure, this is 4+8+2=14, which is known as T∞. This is the fastest possible
execution time given sufficient parallel processors. Using four processors, the actual execution time is
the same: T4 = T∞ =14. Using three processors with a good interleaving of work that reflects the
dependencies allows the 5 units from the lower strand to be run as 2+2+1, which extends the central
region from 8 to 10 units, extending the execution time from 14 to 16 units. Finally, by using one
processor to run everything, the jobwould take T1 =35 units. It does notmatter which server runs the
serial part of the problem, as no context-switching work between processors can help. The speedup
achieved is 35/14=2.5. The available parallelism of the task is T1/T∞ =2.5. Since we achieved this
with four processors, adding a further processor would not help.

Start Finish

Serial 4
Parallel 8+8+8+5

Serial 2

Total work

4+29+2 = 35 units

x35

Figure 4.1 Example of parallel speedup. 35 units of work run across four servers, showing dependency arcs typical in themap-reduce design pattern. Arcs
implicitly exist between all adjacent work unit boxes

156

Chapter 4 | SystemDesign Considerations

It is worthwhile memorising the structure and behaviour of two formulae that are rather grandly
called laws. These formulae give fundamental insight into any system design, such as a SoC, where
parts of a task are to be acceleratedwith parallel or custom processing elements:

Amdahl’s law, which assumes that the problem size remains constant as the system grows

Gustafson’s law, which proposes that the problem size should scale while being bound by a fixed
amount of time.

Amdahl’s law gives the speedup of a job due to accelerating some fraction of it. The Amdahl speedup
arising from parallel processing is given by S+ (1−S)n, where S is the fraction of the job that cannot be
accelerated by parallel processing and n is the number of processors. For our example, n=4 and
S=6/35, so Amdahl’s formula gives 3.5. This is an upper bound for the speedup. The real speedupwas
lower due to dependencies within the parallel part of the task, which was not uniformly parallel.

An embarrassingly parallel problem is onewhere there is zero dependency betweenwork units that
can be done in parallel. An example is computing pixels in theMandelbrot set or the inverse DFT
computation when decompressing a JPEG. Each pixel or pixel tile can be processed fully
independently. Such problems should get close to a linear speedupwith parallel processing, whereas
typical examples, like that of Figure 4.1, have a sublinear speedup.

In general, as a system grows in computational power, the problems run on the system increase in size.
Gustafson’s law gives the effective speedup as parallelism is addedwhen the workload is increased so
that the overall time taken is unchanged:

speedup(n)= n+ (1−n)S

This law tends to describe real-world situations where users have a preferredmaximum processing
time andwant the best quality result for the number of available processors.

4.2.1 Contention and Arbitration
To create a balanced system, it is also critical to understand queuing and contention. Whenmultiple
clients wish to share a resource, we have contention and an arbiter is required. Typical shared
resources are busses, memory andmultipliers. At such amultiplexing point, an arbiter decides which
requester should be serviced next. In SoC design, we encounter two forms of contention:

Target contention occurs whenmultiple initiators desire access to the same target. Asmentioned
in Section 4.5, managing target contention for memory systems that share data between parallel
processing elements is one of themost critical design decisions.

Fabric contention occurs when initiators are accessing different targets but their flows of access
traffic interfere in the interconnect. Using additional or wider interconnect paths reduces fabric
contention, but over-engineering the interconnect wastes energy and requires more area, which
ultimately costs evenmore energy (Section 4.6.2).

157

Modern SoCDesign

10. Safety and reliability: Functional safety levels need to be higher in some application areas than
others. To achieve high reliability, memory can have error correction (Section 4.7.6) and busses
can have parity bits. Processors can be duplicated andwork in lockstep for error detection, or
triplicated, giving triplemodular redundancy (TMR), which seeks amajority vote in most cases of
disagreement.

The threemajor metrics of power, performance and area are often considered together using the
acronym PPA.

4.2 Parallel Speedup Theory
In an ideal world, if work can be divided nways and performed in parallel, then an n-times speedup
should be achieved. Alternatively, for zero speedup, running a workload in parallel onmultiple slower
processors gives a considerable energy saving compared to a faster serial execution, with benefits
arising from both the CMOS speed law (Section 4.6.6) and Pollack’s rule of thumb (Section 2.1.1).
Hence, parallel processing is preferred, provided the workload can adequately expressed as parallel
tasks. In this section we present basic parallel processing theory.

Figure 4.1 illustrates a task consisting of 35 units of work using parallel processing arranged over four
processors. Likemany tasks, the work that can be done in parallel depends on a common core of work
that cannot easily be done in parallel. This is the initial, serial and start-up phase of four work units. A
further two serial units are shown at the end, typically to aggregate the final result. A dependency
arises when the input to a unit is computed by a previous unit. In general, the dependency graph can
have any structure, but one path (or several equal paths) between the start and finish will have the
maximal length. In our figure, this is 4+8+2=14, which is known as T∞. This is the fastest possible
execution time given sufficient parallel processors. Using four processors, the actual execution time is
the same: T4 = T∞ =14. Using three processors with a good interleaving of work that reflects the
dependencies allows the 5 units from the lower strand to be run as 2+2+1, which extends the central
region from 8 to 10 units, extending the execution time from 14 to 16 units. Finally, by using one
processor to run everything, the jobwould take T1 =35 units. It does notmatter which server runs the
serial part of the problem, as no context-switching work between processors can help. The speedup
achieved is 35/14=2.5. The available parallelism of the task is T1/T∞ =2.5. Since we achieved this
with four processors, adding a further processor would not help.

Start Finish

Serial 4
Parallel 8+8+8+5

Serial 2

Total work

4+29+2 = 35 units

x35

Figure 4.1 Example of parallel speedup. 35 units of work run across four servers, showing dependency arcs typical in themap-reduce design pattern. Arcs
implicitly exist between all adjacent work unit boxes

156

Chapter 4 | SystemDesign Considerations

It is worthwhile memorising the structure and behaviour of two formulae that are rather grandly
called laws. These formulae give fundamental insight into any system design, such as a SoC, where
parts of a task are to be acceleratedwith parallel or custom processing elements:

Amdahl’s law, which assumes that the problem size remains constant as the system grows

Gustafson’s law, which proposes that the problem size should scale while being bound by a fixed
amount of time.

Amdahl’s law gives the speedup of a job due to accelerating some fraction of it. The Amdahl speedup
arising from parallel processing is given by S+ (1−S)n, where S is the fraction of the job that cannot be
accelerated by parallel processing and n is the number of processors. For our example, n=4 and
S=6/35, so Amdahl’s formula gives 3.5. This is an upper bound for the speedup. The real speedupwas
lower due to dependencies within the parallel part of the task, which was not uniformly parallel.

An embarrassingly parallel problem is onewhere there is zero dependency betweenwork units that
can be done in parallel. An example is computing pixels in theMandelbrot set or the inverse DFT
computation when decompressing a JPEG. Each pixel or pixel tile can be processed fully
independently. Such problems should get close to a linear speedupwith parallel processing, whereas
typical examples, like that of Figure 4.1, have a sublinear speedup.

In general, as a system grows in computational power, the problems run on the system increase in size.
Gustafson’s law gives the effective speedup as parallelism is addedwhen the workload is increased so
that the overall time taken is unchanged:

speedup(n)= n+ (1−n)S

This law tends to describe real-world situations where users have a preferredmaximum processing
time andwant the best quality result for the number of available processors.

4.2.1 Contention and Arbitration
To create a balanced system, it is also critical to understand queuing and contention. Whenmultiple
clients wish to share a resource, we have contention and an arbiter is required. Typical shared
resources are busses, memory andmultipliers. At such amultiplexing point, an arbiter decides which
requester should be serviced next. In SoC design, we encounter two forms of contention:

Target contention occurs whenmultiple initiators desire access to the same target. Asmentioned
in Section 4.5, managing target contention for memory systems that share data between parallel
processing elements is one of themost critical design decisions.

Fabric contention occurs when initiators are accessing different targets but their flows of access
traffic interfere in the interconnect. Using additional or wider interconnect paths reduces fabric
contention, but over-engineering the interconnect wastes energy and requires more area, which
ultimately costs evenmore energy (Section 4.6.2).

157

Modern SoCDesign

Contentionmust bemanaged by a combination of queuing and flow control. Unlike a packet-switched
network, such as the Internet, a SoC interconnect is normally designed to be lossless; hence, traffic
cannot simply be discarded at an overflowing queue. Another difference is that there is a relatively
low latency reverse path in terms of handshake nets or credit-returnmechanisms, whichmeans that it
is easier to provide lossless operation, but at the risk of a fabric deadlock (Section 3.4.3). The twomain
forms of flow control used for SoCs are:

Link-by-link handshakes, which cumulatively apply backpressure on an initiator or traffic source to
prevent it from introducing newwork into a congested system.

Transport protocols, typically based on credit-based flow control (CBFC), which is discussed in
Section 3.4.4.

The way amultiplex arbiter chooses which source to service next is called the arbiter service
discipline: Complex arbitration schemes can be created from three basic disciplines:

1. Static priority: Each source has a permanently allocated priority and the requesting source with
the highest priority is selected. The priority could be the port number. This is stateless.

2. First come, first served: This is a FIFO queuing discipline, in which work is maintained in its arrival
order.

3. Round robin: The sources are placed at points around a virtual circle and, alwaysmoving in the
same direction around the circle, service is granted to the next requester after the last-served
requester. A last-served state variable must bemaintained inside the arbiter.

A complex disciplinemight be to have sources classified into several levels of priority and for round
robin to be usedwithin a priority level. All disciplines can be considered a variant of priority service if
priorities are dynamically calculated based on various factors. For instance, the earliest-deadline-first
discipline uses hard real-time timing requirements as the basis for priority. Another major policy type
is pre-emptive, in which a granted resource is de-assignedwhile the request is still asserted. Complex
disciplines involve dynamic priorities based on use history to avoid starvation. Alternatively, they
implement amaximal matching between a number of requesters and a number of resources.

Arbiter Circuits
Arbiters can be implemented in software or as physical circuits. The circuits may be synchronous or
asynchronous. Figure 4.2 is a schematic of an example three-input arbiter with the RTL
implementation. It has three request inputs and three grant outputs. Figure 6.31 shows Chisel HDL,
which parametrically generates circuit arbiters with any number of inputs.

158

Chapter 4 | SystemDesign Considerations

3-Input, Synchronous Arbiter

Req0

Req1

Req2

Grant0

Grant1

Grant2

Clock

Reset

module arbiter(input clk,
input reset,
input [2:0] reqs,
output reg [2:0] grants);

always @(posedge clk) if (reset) grants <= 0;
else begin

grants[0] <= reqs[0]; // Highest static priority
grants[1] <= reqs[1] && !(reqs[0]);
grants[2] <= reqs[2] && !(reqs[0] || reqs[1]);

end

Figure 4.2 A schematic of a typical arbiter (left) and the RTL implementation (right) for a three-port synchronous example using static priority with
pre-emption. See also Figure 6.31

4.3 FIFOQueuing Theory andQoS
A SoC consists of many interacting subsystems. Work items generated by one subsystem are often
queuedwhile waiting to be served by another. These queues could be in-memory structures managed
by software or hardware FIFO buffers in the NoC interconnect with protocol adaptors. Queuing
analysis provides high-level insights into how a systemwill behave in terms of throughput and latency.
Such an analysis is essential whenworking out howmuchwaiting area to provide (FIFO depth) and
can influence the overall system design. In this section, we present the basic analytical models of open
queuing theory as applied to simple components. These give insights in their own right andwill also be
used further whenmaking abstractions for ESLmodels in Chapter 5.

Classical queuing theory applies where there is a FIFO queue between any two IP blocks in a SoC.
Each task or work item entering a queue is called a customer and each IP block that removes an item
from a queue is called a server. A queuing systemmay be open or closed. In a closed queuing system,
there is a finite number of customers, which continuously circulate between IP blocks. In the SoC
context, these can be analogous to threads running on in-order application processors that block
waiting for a read response before they can proceed.

The quality of service (QoS) that a customer receives depends on howmany other customers are
contending for a resource and the relative arbitration policies. QoS can be analysed in terms of
deadlines and fairness under normal and overloaded operating conditions. Using a static priority will
result in starvation of lower-priority classes during periods of heavy higher-priority traffic.

If traffic flows pass through a number of shared resources, providing fairness is generally
incompatible withmaximising system throughput. Variouswater-filling algorithms reconcile fairness
with throughput. A typical algorithm starts by nominally allocating zero resource to each flow and
gradually increasing the actual allocation to each flow in proportion to its target allocation. When
resources start to saturate, no further allocation is made to the flows that have become restricted.
This maximises the utilisation at pinch points while accurately tracking the desired relative weighting
between flows and allocating as much as possible.

159

Modern SoCDesign

Contentionmust bemanaged by a combination of queuing and flow control. Unlike a packet-switched
network, such as the Internet, a SoC interconnect is normally designed to be lossless; hence, traffic
cannot simply be discarded at an overflowing queue. Another difference is that there is a relatively
low latency reverse path in terms of handshake nets or credit-returnmechanisms, whichmeans that it
is easier to provide lossless operation, but at the risk of a fabric deadlock (Section 3.4.3). The twomain
forms of flow control used for SoCs are:

Link-by-link handshakes, which cumulatively apply backpressure on an initiator or traffic source to
prevent it from introducing newwork into a congested system.

Transport protocols, typically based on credit-based flow control (CBFC), which is discussed in
Section 3.4.4.

The way amultiplex arbiter chooses which source to service next is called the arbiter service
discipline: Complex arbitration schemes can be created from three basic disciplines:

1. Static priority: Each source has a permanently allocated priority and the requesting source with
the highest priority is selected. The priority could be the port number. This is stateless.

2. First come, first served: This is a FIFO queuing discipline, in which work is maintained in its arrival
order.

3. Round robin: The sources are placed at points around a virtual circle and, alwaysmoving in the
same direction around the circle, service is granted to the next requester after the last-served
requester. A last-served state variable must bemaintained inside the arbiter.

A complex disciplinemight be to have sources classified into several levels of priority and for round
robin to be usedwithin a priority level. All disciplines can be considered a variant of priority service if
priorities are dynamically calculated based on various factors. For instance, the earliest-deadline-first
discipline uses hard real-time timing requirements as the basis for priority. Another major policy type
is pre-emptive, in which a granted resource is de-assignedwhile the request is still asserted. Complex
disciplines involve dynamic priorities based on use history to avoid starvation. Alternatively, they
implement amaximal matching between a number of requesters and a number of resources.

Arbiter Circuits
Arbiters can be implemented in software or as physical circuits. The circuits may be synchronous or
asynchronous. Figure 4.2 is a schematic of an example three-input arbiter with the RTL
implementation. It has three request inputs and three grant outputs. Figure 6.31 shows Chisel HDL,
which parametrically generates circuit arbiters with any number of inputs.

158

Chapter 4 | SystemDesign Considerations

3-Input, Synchronous Arbiter

Req0

Req1

Req2

Grant0

Grant1

Grant2

Clock

Reset

module arbiter(input clk,
input reset,
input [2:0] reqs,
output reg [2:0] grants);

always @(posedge clk) if (reset) grants <= 0;
else begin

grants[0] <= reqs[0]; // Highest static priority
grants[1] <= reqs[1] && !(reqs[0]);
grants[2] <= reqs[2] && !(reqs[0] || reqs[1]);

end

Figure 4.2 A schematic of a typical arbiter (left) and the RTL implementation (right) for a three-port synchronous example using static priority with
pre-emption. See also Figure 6.31

4.3 FIFOQueuing Theory andQoS
A SoC consists of many interacting subsystems. Work items generated by one subsystem are often
queuedwhile waiting to be served by another. These queues could be in-memory structures managed
by software or hardware FIFO buffers in the NoC interconnect with protocol adaptors. Queuing
analysis provides high-level insights into how a systemwill behave in terms of throughput and latency.
Such an analysis is essential whenworking out howmuchwaiting area to provide (FIFO depth) and
can influence the overall system design. In this section, we present the basic analytical models of open
queuing theory as applied to simple components. These give insights in their own right andwill also be
used further whenmaking abstractions for ESLmodels in Chapter 5.

Classical queuing theory applies where there is a FIFO queue between any two IP blocks in a SoC.
Each task or work item entering a queue is called a customer and each IP block that removes an item
from a queue is called a server. A queuing systemmay be open or closed. In a closed queuing system,
there is a finite number of customers, which continuously circulate between IP blocks. In the SoC
context, these can be analogous to threads running on in-order application processors that block
waiting for a read response before they can proceed.

The quality of service (QoS) that a customer receives depends on howmany other customers are
contending for a resource and the relative arbitration policies. QoS can be analysed in terms of
deadlines and fairness under normal and overloaded operating conditions. Using a static priority will
result in starvation of lower-priority classes during periods of heavy higher-priority traffic.

If traffic flows pass through a number of shared resources, providing fairness is generally
incompatible withmaximising system throughput. Variouswater-filling algorithms reconcile fairness
with throughput. A typical algorithm starts by nominally allocating zero resource to each flow and
gradually increasing the actual allocation to each flow in proportion to its target allocation. When
resources start to saturate, no further allocation is made to the flows that have become restricted.
This maximises the utilisation at pinch points while accurately tracking the desired relative weighting
between flows and allocating as much as possible.

159

Modern SoCDesign

A complete systemwith a closed queuingmodel is normally too complex for an analysis with queuing
theory to beworthwhile. However, an ESLmodel may give sufficient insight. With super-scalar
processors or write posting (Section 3.2.3), the number of customers for the fabric and the targets are
dynamic, so closed queuing theory cannot be applied.

An open queuemodel is typically used to understand the behaviour of an individual queue in a
subsystem containing several queues and servers. In an open queuing system, customers randomly
enter the system and subsequently leave the system once they are processed. The random entries are
modelled using a standard customer generator with prescribed characteristics, such as themean
generation rate and the variance and distribution of inter-arrival times. By varying themean
generation rate, denoted λ, it is possible to explore the local behaviour of a subsystem and gain
insights into appropriate memory sizes and bus widths. However, wemust be aware that
finite-customer effects maymake themodelling incorrect. For instance, any queue that has a capacity
greater than the closed number of customers cannot overflow in reality. However, there would be a
finite probability of it overflowing under an openmodel with random arrivals.

4.3.1 Classical Single-server andOpenQueueModels
Figure 4.3 presents themost basic queue configuration. The average arrival rate of customers per
second is λ. The average service time for a customer at the server is 1/µ s, meaning that themaximum
sustainable service rate is µ jobs per second. The server utilisation is

ρ = Mean arrival rate
1/Mean service time = λ

µ

The utilisation is always less than unity in a stable system. If the long-term average arrival rate is
greater than themean service rate, the server will become overloaded and the queuewill overflow.

λ
1/µ

Mean service time
1/

Mean arrival rate
λ

Mean departure rateServerQueue

µ

Figure 4.3 General structure of a queue/server pair with mean customer rate λ andmean service rate µ

A FIFO queue is typically used tomatch the arrival process to the server. An implementation of a
queue always has a bounded capacityNmax, and so being able to estimate the average number of
customers waiting in the queue is critically important for queue dimensioning during system design.
The average timewaiting in the queueW and the average length of the queue (number of customers in
it)N are fundamentally connected by Little’s law: N=λW. Moreover, the overall time a customer is
delayed at this point in the systemD is the sum of its queuing timeW and its mean service time 1/µ, so
thatD=W+1/µ.

A FIFO queuewithN servers is often denoted using Kendall’s notation A/S/N. A and S indicate the
arrival and service delay distributions. Themost two common distributions (also known as disciplines

160

Chapter 4 | SystemDesign Considerations

in this context) areMarkovian (denoted asM) and deterministic (denoted asD). The behaviour of a
stochastic system can bemodelled with a random number generator. Themost important stochastic
source is aMarkovian generator, whose emissions have random, exponentially distributed spacing.
Themost quoted example is the spacing between Geiger counter clicks in radioactive decay. WhenD
is quoted, it generally means constant and fixed and not merely deterministic. Three basic queueing
configurations are illustrated in Figure 4.4. These are:

1. M/M/1: Markovian arrivals, Markovian service times, one server.

2. M/D/1: Uniform arrivals, uniform service times, one server. This has half the queuing time of
M/M/1.

3. D/D/1: Uniform arrivals, uniform service times, one server. This has a very flat delay until it jumps
to infinity when overloaded.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

N
um

be
r I

n
Sy

st
em

 (N
sy

st
em

)

Utilisation ()

M/M/1
M/D/1
D/D/1

Figure 4.4 Plots of the average number of customers in a system versus the utilisation ρ for three common arrival/service disciplines

Table 4.1 Formulae for Nsystem and NQ where Nsystem =NQ+Nserver

Discipline Nsystem NQ

M/M/1 ρ

1−ρ

ρ2
1−ρ

M/D/1 ρ2
2(1−ρ) +ρ

ρ2
2(1−ρ)

D/D/1 NQ+ρ ≈ 1
(1−ρ)∞

The formulae in Table 4.1 show the general trend that the delay goes up according to 1/(1−ρ).
Markovian systems have higher average delays than deterministic systems. The latter saturatemuch
more abruptly. When connecting two existing components together, we have no control over their
traffic patterns, but as we aggregate sources and servers, the patterns becomemoreMarkovian as a

161

Modern SoCDesign

A complete systemwith a closed queuingmodel is normally too complex for an analysis with queuing
theory to beworthwhile. However, an ESLmodel may give sufficient insight. With super-scalar
processors or write posting (Section 3.2.3), the number of customers for the fabric and the targets are
dynamic, so closed queuing theory cannot be applied.

An open queuemodel is typically used to understand the behaviour of an individual queue in a
subsystem containing several queues and servers. In an open queuing system, customers randomly
enter the system and subsequently leave the system once they are processed. The random entries are
modelled using a standard customer generator with prescribed characteristics, such as themean
generation rate and the variance and distribution of inter-arrival times. By varying themean
generation rate, denoted λ, it is possible to explore the local behaviour of a subsystem and gain
insights into appropriate memory sizes and bus widths. However, wemust be aware that
finite-customer effects maymake themodelling incorrect. For instance, any queue that has a capacity
greater than the closed number of customers cannot overflow in reality. However, there would be a
finite probability of it overflowing under an openmodel with random arrivals.

4.3.1 Classical Single-server andOpenQueueModels
Figure 4.3 presents themost basic queue configuration. The average arrival rate of customers per
second is λ. The average service time for a customer at the server is 1/µ s, meaning that themaximum
sustainable service rate is µ jobs per second. The server utilisation is

ρ = Mean arrival rate
1/Mean service time = λ

µ

The utilisation is always less than unity in a stable system. If the long-term average arrival rate is
greater than themean service rate, the server will become overloaded and the queuewill overflow.

λ
1/µ

Mean service time
1/

Mean arrival rate
λ

Mean departure rateServerQueue

µ

Figure 4.3 General structure of a queue/server pair with mean customer rate λ andmean service rate µ

A FIFO queue is typically used tomatch the arrival process to the server. An implementation of a
queue always has a bounded capacityNmax, and so being able to estimate the average number of
customers waiting in the queue is critically important for queue dimensioning during system design.
The average timewaiting in the queueW and the average length of the queue (number of customers in
it)N are fundamentally connected by Little’s law: N=λW. Moreover, the overall time a customer is
delayed at this point in the systemD is the sum of its queuing timeW and its mean service time 1/µ, so
thatD=W+1/µ.

A FIFO queuewithN servers is often denoted using Kendall’s notation A/S/N. A and S indicate the
arrival and service delay distributions. Themost two common distributions (also known as disciplines

160

Chapter 4 | SystemDesign Considerations

in this context) areMarkovian (denoted asM) and deterministic (denoted asD). The behaviour of a
stochastic system can bemodelled with a random number generator. Themost important stochastic
source is aMarkovian generator, whose emissions have random, exponentially distributed spacing.
Themost quoted example is the spacing between Geiger counter clicks in radioactive decay. WhenD
is quoted, it generally means constant and fixed and not merely deterministic. Three basic queueing
configurations are illustrated in Figure 4.4. These are:

1. M/M/1: Markovian arrivals, Markovian service times, one server.

2. M/D/1: Uniform arrivals, uniform service times, one server. This has half the queuing time of
M/M/1.

3. D/D/1: Uniform arrivals, uniform service times, one server. This has a very flat delay until it jumps
to infinity when overloaded.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

N
um

be
r I

n
Sy

st
em

 (N
sy

st
em

)

Utilisation ()

M/M/1
M/D/1
D/D/1

Figure 4.4 Plots of the average number of customers in a system versus the utilisation ρ for three common arrival/service disciplines

Table 4.1 Formulae for Nsystem and NQ where Nsystem =NQ+Nserver

Discipline Nsystem NQ

M/M/1 ρ

1−ρ

ρ2
1−ρ

M/D/1 ρ2
2(1−ρ) +ρ

ρ2
2(1−ρ)

D/D/1 NQ+ρ ≈ 1
(1−ρ)∞

The formulae in Table 4.1 show the general trend that the delay goes up according to 1/(1−ρ).
Markovian systems have higher average delays than deterministic systems. The latter saturatemuch
more abruptly. When connecting two existing components together, we have no control over their
traffic patterns, but as we aggregate sources and servers, the patterns becomemoreMarkovian as a

161

Modern SoCDesign

consequence of the central-limit theorem andwe benefit from the gain due to statistical multiplexing
(Section 4.3.3).

TheMarkovian approximation is often not a good approximation of reality, but it still gives highly
useful insights and has a number of beneficial properties:

1. Multiplexes ofMarkovian sources areMarkovian: If two ormoreMarkovian sources are
multiplexed, the resultant stream isMarkovian withmean arrival rate the sum of themeans.

2. Multiplexes of anything becomeMarkovian: Due to the central-limit theorem, if uncorrelated
arrivals are combined from any distribution, the composite arrival process isMarkovian.

3. Poisson arrivals: The number of customers arriving in any fixedmeasurement interval is given by a
Poisson distribution.

4. Demultiplexes areMarkovian: Splitting aMarkovian streamwith anyweighting or time-invariant
policy producesMarkovian child streams.

5. Memory-less property: The probability of an arrival in the next time unit is unaffected by how long
it has been since the last arrival.

6. Markovian arrivals see time averages: The PASTA theorem is that Poisson arrivals see time
averages. If aMarkovian source generates a customer, the expected state of the system it enters is
the average state.

Thememory-less property results in the paradox ofmean residual life. The residual life of a process is
how long it is expected to run into the future. For example, if omnibuses pass a bus stopwith a uniform
distribution of once per hour, then the average wait for a person randomly arriving at a bus stop is half
an hour. However, if the busses arrive with aMarkovian distribution with amean rate λ=1 per hour,
then the average wait is 1 hour!

The coefficient of variation for a component in a queueing system is the ratio of the standard
deviation to themean for its discipline. This is zero for a deterministic component and unity for a
Markovian (random) discipline. If we useG to denote a generalised discipline for which we know the
twomean service rates and the coefficients of variation ca, then theKingmanG/G/1 approximation
gives the average queuing delay and number in the queue as:

DQ ≈ ρ

2(1−ρ) (c2λ+c2µ)1
µ

NQ =DQλ≈ ρ2

2(1−ρ) (c2λ+c2µ)

For the equivalent totals for a queue-plus-server subsystem, the time and number in the server need
to be added to the queue figures, respectively, 1/µ and ρ.

There are numerous extensions to the basic Kendall form for describing a queue. Often arrivals or a
service are batched for some number of customers arriving or being served together. These are

162

Chapter 4 | SystemDesign Considerations

known as bulk arrival processes and batch servers. Equations are widely available for the average
queue length and loss probability for a given queue capacity and the 99th percentile of queue time.
The 99 percentile delay is important for real-timemedia, such as audio, since the playout buffer must
be dimensioned according to the tail of the delay distribution to avoid frequent under-runs.

4.3.2 Expedited Service Queuing
For systems that support traffic with different static priorities, it is usual to give an expedited service
to the higher priorities. This simply means serving them first. If the system is well designed, the
expedited traffic should experience very little priority crosstalk, which occurs when one flow alters
the service given to another. With strict priority, a flow should experience interference only from
higher priorities. Figure 4.5 shows a typical setup that uses two queues for two priorities. For
example, if work is being conveyed on an AXI4 streaming bus (Section 3.1.5), the priority can be
indicated in the AxQOS field. A work item arriving at a higher-priority queuewill not experience any
queuing delay from lower-priority traffic. The crosstalk it will experience is just themean residual life
of a single customer’s service on the server. Hence, provided individual service operations are short,
the higher-priority traffic will hardly see the lower-priority traffic. For this reason, longer operations
are often fragmented into smaller tasks with correspondingly shorter service times, so that they can
be effectively pre-empted. A good example of this is the use of flow-control elements (flits) in NoCs
(Section 3.4.4). Using two separate queues avoids priority crosstalk of a specific form known as
head-of-line (HoL) blocking, which occurs when higher-priority work is behind lower-priory work in a
queue and cannot be served straight away, due to the first come, first served dequeuing discipline of a
FIFO buffer.

λ
1/µ

Mean arrival rate

λ
Mean

departure rate

Server
High-Priority Queue

Low-Priority Queue

Priority
de-multiplexor

Priority
service

multiplexor

Figure 4.5 Separate queueing for high-priority and low-priority traffic gives an expedited service

If queues are implemented as part of a switching element that routes traffic from some number of
sources to various destinations, the queues (known as buffers) can physically be at the output or input
links. Figure 4.6 illustrates both types of queuing, though it is not necessary to have queuing at both
the input and the output. In an input-buffered switch (with queues only at the input ports), the data
rate in and out of the input queue is the same as the link rate, assuming that all links to and from the
switch are the same. On the other hand, for an output-buffered switch (with queues only at the
output ports), the data rate into the output queue can be, in the worst case, the sum of all the input
port rates. This creates a considerable design challenge for a switch with a large number of inputs.

163

Modern SoCDesign

consequence of the central-limit theorem andwe benefit from the gain due to statistical multiplexing
(Section 4.3.3).

TheMarkovian approximation is often not a good approximation of reality, but it still gives highly
useful insights and has a number of beneficial properties:

1. Multiplexes ofMarkovian sources areMarkovian: If two ormoreMarkovian sources are
multiplexed, the resultant stream isMarkovian withmean arrival rate the sum of themeans.

2. Multiplexes of anything becomeMarkovian: Due to the central-limit theorem, if uncorrelated
arrivals are combined from any distribution, the composite arrival process isMarkovian.

3. Poisson arrivals: The number of customers arriving in any fixedmeasurement interval is given by a
Poisson distribution.

4. Demultiplexes areMarkovian: Splitting aMarkovian streamwith anyweighting or time-invariant
policy producesMarkovian child streams.

5. Memory-less property: The probability of an arrival in the next time unit is unaffected by how long
it has been since the last arrival.

6. Markovian arrivals see time averages: The PASTA theorem is that Poisson arrivals see time
averages. If aMarkovian source generates a customer, the expected state of the system it enters is
the average state.

Thememory-less property results in the paradox ofmean residual life. The residual life of a process is
how long it is expected to run into the future. For example, if omnibuses pass a bus stopwith a uniform
distribution of once per hour, then the average wait for a person randomly arriving at a bus stop is half
an hour. However, if the busses arrive with aMarkovian distribution with amean rate λ=1 per hour,
then the average wait is 1 hour!

The coefficient of variation for a component in a queueing system is the ratio of the standard
deviation to themean for its discipline. This is zero for a deterministic component and unity for a
Markovian (random) discipline. If we useG to denote a generalised discipline for which we know the
twomean service rates and the coefficients of variation ca, then theKingmanG/G/1 approximation
gives the average queuing delay and number in the queue as:

DQ ≈ ρ

2(1−ρ) (c2λ+c2µ)1
µ

NQ =DQλ≈ ρ2

2(1−ρ) (c2λ+c2µ)

For the equivalent totals for a queue-plus-server subsystem, the time and number in the server need
to be added to the queue figures, respectively, 1/µ and ρ.

There are numerous extensions to the basic Kendall form for describing a queue. Often arrivals or a
service are batched for some number of customers arriving or being served together. These are

162

Chapter 4 | SystemDesign Considerations

known as bulk arrival processes and batch servers. Equations are widely available for the average
queue length and loss probability for a given queue capacity and the 99th percentile of queue time.
The 99 percentile delay is important for real-timemedia, such as audio, since the playout buffer must
be dimensioned according to the tail of the delay distribution to avoid frequent under-runs.

4.3.2 Expedited Service Queuing
For systems that support traffic with different static priorities, it is usual to give an expedited service
to the higher priorities. This simply means serving them first. If the system is well designed, the
expedited traffic should experience very little priority crosstalk, which occurs when one flow alters
the service given to another. With strict priority, a flow should experience interference only from
higher priorities. Figure 4.5 shows a typical setup that uses two queues for two priorities. For
example, if work is being conveyed on an AXI4 streaming bus (Section 3.1.5), the priority can be
indicated in the AxQOS field. A work item arriving at a higher-priority queuewill not experience any
queuing delay from lower-priority traffic. The crosstalk it will experience is just themean residual life
of a single customer’s service on the server. Hence, provided individual service operations are short,
the higher-priority traffic will hardly see the lower-priority traffic. For this reason, longer operations
are often fragmented into smaller tasks with correspondingly shorter service times, so that they can
be effectively pre-empted. A good example of this is the use of flow-control elements (flits) in NoCs
(Section 3.4.4). Using two separate queues avoids priority crosstalk of a specific form known as
head-of-line (HoL) blocking, which occurs when higher-priority work is behind lower-priory work in a
queue and cannot be served straight away, due to the first come, first served dequeuing discipline of a
FIFO buffer.

λ
1/µ

Mean arrival rate

λ
Mean

departure rate

Server
High-Priority Queue

Low-Priority Queue

Priority
de-multiplexor

Priority
service

multiplexor

Figure 4.5 Separate queueing for high-priority and low-priority traffic gives an expedited service

If queues are implemented as part of a switching element that routes traffic from some number of
sources to various destinations, the queues (known as buffers) can physically be at the output or input
links. Figure 4.6 illustrates both types of queuing, though it is not necessary to have queuing at both
the input and the output. In an input-buffered switch (with queues only at the input ports), the data
rate in and out of the input queue is the same as the link rate, assuming that all links to and from the
switch are the same. On the other hand, for an output-buffered switch (with queues only at the
output ports), the data rate into the output queue can be, in the worst case, the sum of all the input
port rates. This creates a considerable design challenge for a switch with a large number of inputs.

163

Modern SoCDesign

Switching
fabric.

(No queue
or buffer

storage in
fabric.)

Input 0

Input 1

Input N-1

Output 0

Output 1

Output N-1

Figure 4.6 Generic switch that includes both input and output buffering on the input and output ports, respectively, of a buffer-less switch fabric. Flow
control operates between the switch fabric and the buffers in the switch

Output buffering is the ideal design, since input-buffered switches have lower throughput owing to
HoL blocking in the input queues, which can leave the output ports idle while traffic is served in arrival
order from each input queue. Typical designs use additional levels of storage, virtual queues at the
input per output port or intermediate levels of store. A simpler approach is to use both input and
output buffers such that the transfer rate between the input and output buffers is 1.5 or 2 times the
link rate. If the switch ports use link-level flow control, one further design point is to rely entirely on
source buffering and have no buffers in the switch. This is how first-generationmulti-access LANs
operated, such as rings and shared-bus Ethernet designs.

4.3.3 StatisticalMultiplexing Gain
In terms of processing delay, a powerful, monolithic server with a single queue always performs better
than a number of queues that feed individual smaller servers if the smaller server capacities sum to
the same total as themonolithic server. This is due to statistical multiplexing gain. On the other hand,
a collection of smaller servers may require less energy in total (Section 2.1.1).

If a channel with a given bandwidth carries a number of traffic flows, the effective bandwidth of an
individual flow is the share of the channel bandwidth that is consumed by carrying it. The effective
bandwidth can also be defined as the amount of bandwidth that needs to be allocated for a flow to be
conveyedwithout experiencing excessive loss or delay. For uniform flows, the effective bandwidth is
just themean rate. If the sum of themean rates equals the channel capacity, no further traffic can be
conveyed, which is not surprising. However, for bursty traffic, in the absence of flow control or
backpressure, the effective bandwidth of a flow is greater than its mean and is closer to its peak rate.
Except for constant-ratemultimedia streams, computer-generated traffic is always bursty.

Figure 4.7(a) shows a concentrator that simply combines 10 flows. Each flow has an average rate of
100 kbps, so the combined flow has an average rate of 1Mbps. However, each flow has a peak rate of
100Mbps. The peak-to-mean ratio, known as the burstiness, is 1000. If the combined channel was
dimensioned to support all sources bursting at once, it would need to support 1Gbps. However this is
unnecessary. The probability of all flows bursting at once is 1 in 103×10. This situation would last for
one average burst time. Assuming this is 1ms, the all-bursting situationwould be expected every 1027
seconds, which is 1019 years. This can be ignored, since the lifetime of the universe is only 1010 years.

164

Chapter 4 | SystemDesign Considerations

Rates:
 Peak P=100 Mbps
 Average u=100 Kbps

Concentrator

If there are 10 data sources concentrated onto one channel,
what capacity does it need for 99.999 percent non-overloaded
operation?

Peak allocation: It needs NP = 1 Gbps
Average allocation: It needs Nu = 1 Mbps

Backhaul
channel

1

2

3

4

10

b) Separate Queues

c) Shared Queue

The probability of buffer overload
is high with static allocation
of memory to buffers.

For the same probability
of overload, much less memory
is needed in a shared pool.

a) 10 Data sources sharing a channel

Backhaul
channel

2

3

4

10

2

3

4

10

1

1

Figure 4.7 Two scenarios that demonstrate statistical multiplexing gain for N=10 sources. Sharing the channel bandwidth (a) raises the question of whether
reservations are made on a peak or average basis. If N is small, we should use peak allocation, but for large N, we can use average allocation. The law of large
numbers states that N needs only to be about 50 for an average allocation to be acceptable. Buffer pools can be partitioned (b) or shared (c)

To ensure the channel is overloaded at amore realistic rate of once per year, the headroom above the
mean is roughly

0.001headroom = 1ms
1year =3.2×10−10 ⇒ headroom=3.2

Hence, a channel of 3.2 times themean aggregate rate is sufficient to handle peak demands. This is
3.2Mbps, and the effective bandwidth of each of the 10 participants is 0.32Mbps.

Note these overloads are likely to cause a critical fault only in a hard real-time system that has no
mitigationmechanism. In most other systems, there are recovery techniques at many layers of the
system structure, ranging from FIFO queuing and link-level flow control to a human reboot. An
example hard real-time application is the output stage of a television system that is broadcasting a live
stream. This offers no opportunity for error recovery, but a tiny glitch once per year is a reasonable
designmargin.

If two ormore sources of traffic are known to be highly correlated, statistical multiplexing cannot be
used. Such sources should be considered as a single source with aggregated peak andmean statistics.
The effective bandwidth will then correctly apply to some number of aggregated sources sharing a
resource, provided they are truly independent.

Figures 4.7(b) and (c) illustrate another benefit of multiplexing. Given a resource, such as packet
buffers, it is obvious that a shared pool behaves better than a pre-partitioned pool in terms of
effective utilisation. A pre-partitioned pool will run out of resource at some point although there is
free resource in other partitions. Combinedwith flow control, this can be a useful aspect of a

165

Modern SoCDesign

Switching
fabric.

(No queue
or buffer

storage in
fabric.)

Input 0

Input 1

Input N-1

Output 0

Output 1

Output N-1

Figure 4.6 Generic switch that includes both input and output buffering on the input and output ports, respectively, of a buffer-less switch fabric. Flow
control operates between the switch fabric and the buffers in the switch

Output buffering is the ideal design, since input-buffered switches have lower throughput owing to
HoL blocking in the input queues, which can leave the output ports idle while traffic is served in arrival
order from each input queue. Typical designs use additional levels of storage, virtual queues at the
input per output port or intermediate levels of store. A simpler approach is to use both input and
output buffers such that the transfer rate between the input and output buffers is 1.5 or 2 times the
link rate. If the switch ports use link-level flow control, one further design point is to rely entirely on
source buffering and have no buffers in the switch. This is how first-generationmulti-access LANs
operated, such as rings and shared-bus Ethernet designs.

4.3.3 StatisticalMultiplexing Gain
In terms of processing delay, a powerful, monolithic server with a single queue always performs better
than a number of queues that feed individual smaller servers if the smaller server capacities sum to
the same total as themonolithic server. This is due to statistical multiplexing gain. On the other hand,
a collection of smaller servers may require less energy in total (Section 2.1.1).

If a channel with a given bandwidth carries a number of traffic flows, the effective bandwidth of an
individual flow is the share of the channel bandwidth that is consumed by carrying it. The effective
bandwidth can also be defined as the amount of bandwidth that needs to be allocated for a flow to be
conveyedwithout experiencing excessive loss or delay. For uniform flows, the effective bandwidth is
just themean rate. If the sum of themean rates equals the channel capacity, no further traffic can be
conveyed, which is not surprising. However, for bursty traffic, in the absence of flow control or
backpressure, the effective bandwidth of a flow is greater than its mean and is closer to its peak rate.
Except for constant-ratemultimedia streams, computer-generated traffic is always bursty.

Figure 4.7(a) shows a concentrator that simply combines 10 flows. Each flow has an average rate of
100 kbps, so the combined flow has an average rate of 1Mbps. However, each flow has a peak rate of
100Mbps. The peak-to-mean ratio, known as the burstiness, is 1000. If the combined channel was
dimensioned to support all sources bursting at once, it would need to support 1Gbps. However this is
unnecessary. The probability of all flows bursting at once is 1 in 103×10. This situation would last for
one average burst time. Assuming this is 1ms, the all-bursting situationwould be expected every 1027
seconds, which is 1019 years. This can be ignored, since the lifetime of the universe is only 1010 years.

164

Chapter 4 | SystemDesign Considerations

Rates:
 Peak P=100 Mbps
 Average u=100 Kbps

Concentrator

If there are 10 data sources concentrated onto one channel,
what capacity does it need for 99.999 percent non-overloaded
operation?

Peak allocation: It needs NP = 1 Gbps
Average allocation: It needs Nu = 1 Mbps

Backhaul
channel

1

2

3

4

10

b) Separate Queues

c) Shared Queue

The probability of buffer overload
is high with static allocation
of memory to buffers.

For the same probability
of overload, much less memory
is needed in a shared pool.

a) 10 Data sources sharing a channel

Backhaul
channel

2

3

4

10

2

3

4

10

1

1

Figure 4.7 Two scenarios that demonstrate statistical multiplexing gain for N=10 sources. Sharing the channel bandwidth (a) raises the question of whether
reservations are made on a peak or average basis. If N is small, we should use peak allocation, but for large N, we can use average allocation. The law of large
numbers states that N needs only to be about 50 for an average allocation to be acceptable. Buffer pools can be partitioned (b) or shared (c)

To ensure the channel is overloaded at amore realistic rate of once per year, the headroom above the
mean is roughly

0.001headroom = 1ms
1year =3.2×10−10 ⇒ headroom=3.2

Hence, a channel of 3.2 times themean aggregate rate is sufficient to handle peak demands. This is
3.2Mbps, and the effective bandwidth of each of the 10 participants is 0.32Mbps.

Note these overloads are likely to cause a critical fault only in a hard real-time system that has no
mitigationmechanism. In most other systems, there are recovery techniques at many layers of the
system structure, ranging from FIFO queuing and link-level flow control to a human reboot. An
example hard real-time application is the output stage of a television system that is broadcasting a live
stream. This offers no opportunity for error recovery, but a tiny glitch once per year is a reasonable
designmargin.

If two ormore sources of traffic are known to be highly correlated, statistical multiplexing cannot be
used. Such sources should be considered as a single source with aggregated peak andmean statistics.
The effective bandwidth will then correctly apply to some number of aggregated sources sharing a
resource, provided they are truly independent.

Figures 4.7(b) and (c) illustrate another benefit of multiplexing. Given a resource, such as packet
buffers, it is obvious that a shared pool behaves better than a pre-partitioned pool in terms of
effective utilisation. A pre-partitioned pool will run out of resource at some point although there is
free resource in other partitions. Combinedwith flow control, this can be a useful aspect of a

165

Modern SoCDesign

load-balancing or anti-hogging feature, but on its own, it offers no benefit and should be avoided to
allowmore effective use of the resources.

Asmentioned, a monolithic server performs better than a number of smaller servers that together
have the same total capacity. Consider theM/M/1 systemwith amonolithic server loaded to
utilisation ρ. The average service time isW=Wqueue+Wserver = ρ/(1−ρ)/µ. If instead there were 10
smaller servers, each with service rate µ/10, the system capacity is unchanged. Consider the best
case where the servers are evenly balanced; each will have the same utilisation as themonolithic
server. If customers are not allowed to jump queues between servers, the same formula forW applies
with the same value of ρ, but because µ is 10 times smaller, customers experience a 10 times longer
service time, 10W. In a better design where customers are allowed to jump between queues, the
monolithic server is hardly better under heavy loads, but for light loads, the average service times are
significantly shorter. This is because the queuing delay is greater than the server time for heavy loads
and less than the server time for light loads.

These basic aspects of multi-server behaviour are important when considering what mixture of
processor cores to use in a SoC design. Equations from queuing theory are helpful when creating a
high-level ESLmodel of a SoC. Onemodelling technique is to replace queue details with immediate
service and simply add on a timing correction computed from theWqueue formula (Section 5.2.1).

4.3.4 QoS Policing
A leaky bucket policer is the standardmechanism for regulating peak and average rates of flow of
packets or flits over an interface.

Figure 4.8 showsQoS policing applied to a queue. The queue can be regulated on either the input or
output with output being preferable for a queue that is not sharedwith other traffic classes. The
arrival gate either receives a packet and puts it in the queue or discards it by throwing it on the ground
(togging), generating a togged packet. In a networking context, if a packet arrives at a full queue, at
least one packet has to be togged, andwith a simple FIFO queue, it would be themost recently
arrived. In a SoC context, with backpressure being possible through the handshaking system, stopping
a packet from arriving is also commonly used. The output gate policer will cause packets to
accumulate in the queuewhen the arrival rate is faster than allowed.

Each policer has a number of rate-limiting channels. Using two channels to police a flow is common,
and the two channels, respectively, police the peak andmean rates. Each channel has one state
variable (a value that changes over time), the credit, whichmust be greater than zero for the channel
to authorise an operation. Each channel also has two parameters that are set up by the controlling
host. If there is no traffic, credit accumulates while it is less than the burst_tolerance. It builds up at
the rate set by credit_rate. The pseudocode in Figure 4.9 outlines an implementation of one
channel, although hardware implementations are commonly found, such as in theQoS-301 IP block
fromARM. If the burst_tolerance is set to unity, the regulator controls theminimum inter-packet
spacing, which is the peak rate. The credit can be Boolean for this case and the implementation can be

166

Chapter 4 | SystemDesign Considerations

Unconstrained
arrival

discipline
Bounded
departure
disciplineDeparture

gate
Queue

TOG TOG
Arrival

gate

Depth feedback

Burst tolerance 1

Credit 1

Rate 1 (e.g. mean)

Input policer Output policer

Backpressure

Backpressure

Burst tolerance 2

Credit 2

Rate 2 (e.g. peak)

Burst tolerance 3

Credit 3

Rate 3

Burst tolerance 1

Credit 1

Rate 1

Burst tolerance 2

Credit 2

Rate 2 ...

...

...

...

...

...

...

Figure 4.8 A policed queue showing both input and output regulators, although commonly only one site would be policed. Each policer has a number of rate
channels (e.g. three are shown for the input site)

int burst_tolerance, credit_rate; // Set up by PIO
int credit; // State variable
void reset() // Complete setup
{ credit = 0;

register_timer_callback(crediter, credit_rate);
}
void crediter() // Called at 1/credit_rate intervals
{ if (credit < burst_tolerance) credit += 1;
}
bool police() // Check operation currently allowed
{ if (credit==0) return false;

credit -= 1;
return true;

}

Figure 4.9 Essence of a software implementation for one channel of a generic traffic policer or regulator

hardwired to allow one of the channels to support this common, degenerate setting. The product of
burst_tolerance and credit_rate determines an averaging interval over which themean
credit_rate cannot be exceeded. The illustrated police() operation returns true if an operation is
allowed at the current instant. As shown, it also decrements the available credit if the operation is
allowed, although amultichannel implementationmust check that all channels allow the operation
before decrementing the credit for each of them.

Additional policing channels are sometimes used. Implemented in hardware, they consume energy
and area but do not give rise to a performance penalty. Beyond the peak andmean rates, a third
channel can be used to set a longer-term average limit, or channels may be flexibly assigned to
different policing points using a configurationmatrix. For instance, separate channels may be used for
the peak read and peakwrite rates, with a shared average-rate channel. Another form of policing
channel is independent of time and just counts events. A channel to control themaximumnumber of
outstanding transactions has its credit debited when an operation starts and re-credited when the
response is received. Starting a new transaction is blockedwhile the credit is zero.

167

Modern SoCDesign

load-balancing or anti-hogging feature, but on its own, it offers no benefit and should be avoided to
allowmore effective use of the resources.

Asmentioned, a monolithic server performs better than a number of smaller servers that together
have the same total capacity. Consider theM/M/1 systemwith amonolithic server loaded to
utilisation ρ. The average service time isW=Wqueue+Wserver = ρ/(1−ρ)/µ. If instead there were 10
smaller servers, each with service rate µ/10, the system capacity is unchanged. Consider the best
case where the servers are evenly balanced; each will have the same utilisation as themonolithic
server. If customers are not allowed to jump queues between servers, the same formula forW applies
with the same value of ρ, but because µ is 10 times smaller, customers experience a 10 times longer
service time, 10W. In a better design where customers are allowed to jump between queues, the
monolithic server is hardly better under heavy loads, but for light loads, the average service times are
significantly shorter. This is because the queuing delay is greater than the server time for heavy loads
and less than the server time for light loads.

These basic aspects of multi-server behaviour are important when considering what mixture of
processor cores to use in a SoC design. Equations from queuing theory are helpful when creating a
high-level ESLmodel of a SoC. Onemodelling technique is to replace queue details with immediate
service and simply add on a timing correction computed from theWqueue formula (Section 5.2.1).

4.3.4 QoS Policing
A leaky bucket policer is the standardmechanism for regulating peak and average rates of flow of
packets or flits over an interface.

Figure 4.8 showsQoS policing applied to a queue. The queue can be regulated on either the input or
output with output being preferable for a queue that is not sharedwith other traffic classes. The
arrival gate either receives a packet and puts it in the queue or discards it by throwing it on the ground
(togging), generating a togged packet. In a networking context, if a packet arrives at a full queue, at
least one packet has to be togged, andwith a simple FIFO queue, it would be themost recently
arrived. In a SoC context, with backpressure being possible through the handshaking system, stopping
a packet from arriving is also commonly used. The output gate policer will cause packets to
accumulate in the queuewhen the arrival rate is faster than allowed.

Each policer has a number of rate-limiting channels. Using two channels to police a flow is common,
and the two channels, respectively, police the peak andmean rates. Each channel has one state
variable (a value that changes over time), the credit, whichmust be greater than zero for the channel
to authorise an operation. Each channel also has two parameters that are set up by the controlling
host. If there is no traffic, credit accumulates while it is less than the burst_tolerance. It builds up at
the rate set by credit_rate. The pseudocode in Figure 4.9 outlines an implementation of one
channel, although hardware implementations are commonly found, such as in theQoS-301 IP block
fromARM. If the burst_tolerance is set to unity, the regulator controls theminimum inter-packet
spacing, which is the peak rate. The credit can be Boolean for this case and the implementation can be

166

Chapter 4 | SystemDesign Considerations

Unconstrained
arrival

discipline
Bounded
departure
disciplineDeparture

gate
Queue

TOG TOG
Arrival

gate

Depth feedback

Burst tolerance 1

Credit 1

Rate 1 (e.g. mean)

Input policer Output policer

Backpressure

Backpressure

Burst tolerance 2

Credit 2

Rate 2 (e.g. peak)

Burst tolerance 3

Credit 3

Rate 3

Burst tolerance 1

Credit 1

Rate 1

Burst tolerance 2

Credit 2

Rate 2 ...

...

...

...

...

...

...

Figure 4.8 A policed queue showing both input and output regulators, although commonly only one site would be policed. Each policer has a number of rate
channels (e.g. three are shown for the input site)

int burst_tolerance, credit_rate; // Set up by PIO
int credit; // State variable
void reset() // Complete setup
{ credit = 0;

register_timer_callback(crediter, credit_rate);
}
void crediter() // Called at 1/credit_rate intervals
{ if (credit < burst_tolerance) credit += 1;
}
bool police() // Check operation currently allowed
{ if (credit==0) return false;

credit -= 1;
return true;

}

Figure 4.9 Essence of a software implementation for one channel of a generic traffic policer or regulator

hardwired to allow one of the channels to support this common, degenerate setting. The product of
burst_tolerance and credit_rate determines an averaging interval over which themean
credit_rate cannot be exceeded. The illustrated police() operation returns true if an operation is
allowed at the current instant. As shown, it also decrements the available credit if the operation is
allowed, although amultichannel implementationmust check that all channels allow the operation
before decrementing the credit for each of them.

Additional policing channels are sometimes used. Implemented in hardware, they consume energy
and area but do not give rise to a performance penalty. Beyond the peak andmean rates, a third
channel can be used to set a longer-term average limit, or channels may be flexibly assigned to
different policing points using a configurationmatrix. For instance, separate channels may be used for
the peak read and peakwrite rates, with a shared average-rate channel. Another form of policing
channel is independent of time and just counts events. A channel to control themaximumnumber of
outstanding transactions has its credit debited when an operation starts and re-credited when the
response is received. Starting a new transaction is blockedwhile the credit is zero.

167

Modern SoCDesign

4.4 Design Trade-offs
Any design process involves amyriad of design decisions at small and large scales. The left plot in
Figure 4.10 has two principal design axes: parallelism and clock frequency. System throughput is
increased by advancing in either direction, when possible. Ideally, their product defines contours of
constant execution design for a task. Higher parallelism leads to a greater throughput at the cost of
more silicon area. The power supply voltage and energy use, which are related to clock speed, are
affected, as discussed in Section 4.6.1. However, higher clock frequencies require a superlinear
increase in energy. Likewise, a higher throughput per processor core requires a superlinear growth in
area, as given by Pollack’s rule (Section 2.1.1). However, depending on the nature of the workload, the
available parallelismmay be restricted, so the ability to use a greater area at a lower clock frequency
can be limited. A third dimension is the efficiency of hardware: bespoke hardware structures, such as
mask-programmed (or FPGA) accelerators (Section 6.4) are far more energy efficient than
programmable structures such as processor cores and should be deployed if Amdahl’s rule indicates
that there is a performance benefit.

Fold

Unfold

Large
parallel

Parallelise

Greater
wiring length

Increased
cooling effort

Higher
parallelism

y
- I

nc
re

as
in

g
Si

lc
on

 A
re

a

x1- Increasing Clock Frequency

Small
fast

Inc
rea

sin
g P

erf
orm

an
ce

Constant
execution

time

Increasing
energy

Efficiency aspiration
(parallelism-limited)

z - Efficiency
dimension

Large
parallel

Fold

Unfoldy
- I

nc
re

as
in

g
Si

lc
on

 A
re

a

x2 - Execution Time

Small
serial

Large
parallel

fast

Fold

Unfold

Small
serial
fast

Intermediate

Slower clock frequency

Faster clock frequency

Figure 4.10 Abstract views of the principal axes that span the SoC design space for a task. Parallelism can be traded for clock frequency (left), which shows
two design points. At a given clock frequency, the silicon area (and parallelism) can be traded for execution time using a time/space fold/unfold (right)

The right-hand plot illustrates the trade-off between silicon use and throughput. The fold/unfold
transformation (Section 4.4.2) for a task is an automatic or manual alteration to the number of
processors used. Alternatively, it can alter the structure of an individual subsystem to change the
degree of parallelismwithout changing the clock frequency. Clearly, the clock frequency can also be
adjusted, so two clock frequencies are illustrated. (There are intermediate design points at all clock
frequencies, but these are not shown for clarity.)

Many of the trade-offs can be summarised with basic analytic models that demonstrate interesting
interactions between high-level design decisions. Andre DeHon presented several of these in
interesting publications [1].

168

Chapter 4 | SystemDesign Considerations

4.4.1 Thermal Design

Figure 4.11 Thermal management of a high-power chip. The primary heat sink makes thermal contact with the chip. A heat pipe is connected to a second
heat sink. There is no other connection to the second heat sink

The largest challenge for today’s SoCs is effective heat dissipation. Thermal circuits work largely like
electrical circuits: they have resistance and capacitance (but there is no thermal equivalent of
inductance). Charge corresponds to heat, voltage corresponds to temperature and capacitance
corresponds to heat capacity. The temperature of a lumped-element node is the integral of the
running difference of net heat flow in or out of it divided by its thermal capacityC. Figure 4.12 shows a
simple thermal dissipationmodel with one node. Heat is generated by the source on the left at a rate
P J/s (i.e. Pwatts) when it is active. Heat is delivered to the sink on the right-hand side. The sink
models ambient air at temperature T0. We assume there is no heating of the ambient environment, so
T0 remains constant. In the diagram, the thermal node is simply ‘connected’ to the ambient air by a
thermal path of just one link, although amore detailedmodel of the various structures involved is
usually used. The thermal equivalent of Ohm’s law isNewton’s law of cooling, which states that the
rate of flow of heatw through a thermal path is the difference in temperatures T1−T0 divided by the
thermal resistance of the path. Hence, when cooling, the system is governed by the equation

w= 1
Rthermal

(T1−T0)=−Cthermal
dT1
dt

wherew is the rate of heat flow between the components (in J/s), which are connected by amaterial of
thermal resistance Rthermal. Recall that 1 J/s = 1watt. When the power is off, the thermal node cools
exponentially to ambient temperature. The heat capacity of the thermal node is Cthermal. This depends
on its mass andmaterial and has units of J/K.

Thermal
node

(heat capacity C)

R TTemp=T

Cooling
w J/s

thermal

Source
generator

Sink

Power = P watts

Heating
P J/s

1 0

Figure 4.12 Generic thermal circuit, showing on/off heat source, thermal node and thermal resistance between the node and its heat sink

Silicon chips designed to dissipatemore than a watt aremounted on a heat spreader plate that
consists of about 10 grams of copper. The thermal conductivity of copper is exceptionally good at

169

Modern SoCDesign

4.4 Design Trade-offs
Any design process involves amyriad of design decisions at small and large scales. The left plot in
Figure 4.10 has two principal design axes: parallelism and clock frequency. System throughput is
increased by advancing in either direction, when possible. Ideally, their product defines contours of
constant execution design for a task. Higher parallelism leads to a greater throughput at the cost of
more silicon area. The power supply voltage and energy use, which are related to clock speed, are
affected, as discussed in Section 4.6.1. However, higher clock frequencies require a superlinear
increase in energy. Likewise, a higher throughput per processor core requires a superlinear growth in
area, as given by Pollack’s rule (Section 2.1.1). However, depending on the nature of the workload, the
available parallelismmay be restricted, so the ability to use a greater area at a lower clock frequency
can be limited. A third dimension is the efficiency of hardware: bespoke hardware structures, such as
mask-programmed (or FPGA) accelerators (Section 6.4) are far more energy efficient than
programmable structures such as processor cores and should be deployed if Amdahl’s rule indicates
that there is a performance benefit.

Fold

Unfold

Large
parallel

Parallelise

Greater
wiring length

Increased
cooling effort

Higher
parallelism

y
- I

nc
re

as
in

g
Si

lc
on

 A
re

a

x1- Increasing Clock Frequency

Small
fast

Inc
rea

sin
g P

erf
orm

an
ce

Constant
execution

time

Increasing
energy

Efficiency aspiration
(parallelism-limited)

z - Efficiency
dimension

Large
parallel

Fold

Unfoldy
- I

nc
re

as
in

g
Si

lc
on

 A
re

a

x2 - Execution Time

Small
serial

Large
parallel

fast

Fold

Unfold

Small
serial
fast

Intermediate

Slower clock frequency

Faster clock frequency

Figure 4.10 Abstract views of the principal axes that span the SoC design space for a task. Parallelism can be traded for clock frequency (left), which shows
two design points. At a given clock frequency, the silicon area (and parallelism) can be traded for execution time using a time/space fold/unfold (right)

The right-hand plot illustrates the trade-off between silicon use and throughput. The fold/unfold
transformation (Section 4.4.2) for a task is an automatic or manual alteration to the number of
processors used. Alternatively, it can alter the structure of an individual subsystem to change the
degree of parallelismwithout changing the clock frequency. Clearly, the clock frequency can also be
adjusted, so two clock frequencies are illustrated. (There are intermediate design points at all clock
frequencies, but these are not shown for clarity.)

Many of the trade-offs can be summarised with basic analytic models that demonstrate interesting
interactions between high-level design decisions. Andre DeHon presented several of these in
interesting publications [1].

168

Chapter 4 | SystemDesign Considerations

4.4.1 Thermal Design

Figure 4.11 Thermal management of a high-power chip. The primary heat sink makes thermal contact with the chip. A heat pipe is connected to a second
heat sink. There is no other connection to the second heat sink

The largest challenge for today’s SoCs is effective heat dissipation. Thermal circuits work largely like
electrical circuits: they have resistance and capacitance (but there is no thermal equivalent of
inductance). Charge corresponds to heat, voltage corresponds to temperature and capacitance
corresponds to heat capacity. The temperature of a lumped-element node is the integral of the
running difference of net heat flow in or out of it divided by its thermal capacityC. Figure 4.12 shows a
simple thermal dissipationmodel with one node. Heat is generated by the source on the left at a rate
P J/s (i.e. Pwatts) when it is active. Heat is delivered to the sink on the right-hand side. The sink
models ambient air at temperature T0. We assume there is no heating of the ambient environment, so
T0 remains constant. In the diagram, the thermal node is simply ‘connected’ to the ambient air by a
thermal path of just one link, although amore detailedmodel of the various structures involved is
usually used. The thermal equivalent of Ohm’s law isNewton’s law of cooling, which states that the
rate of flow of heatw through a thermal path is the difference in temperatures T1−T0 divided by the
thermal resistance of the path. Hence, when cooling, the system is governed by the equation

w= 1
Rthermal

(T1−T0)=−Cthermal
dT1
dt

wherew is the rate of heat flow between the components (in J/s), which are connected by amaterial of
thermal resistance Rthermal. Recall that 1 J/s = 1watt. When the power is off, the thermal node cools
exponentially to ambient temperature. The heat capacity of the thermal node is Cthermal. This depends
on its mass andmaterial and has units of J/K.

Thermal
node

(heat capacity C)

R TTemp=T

Cooling
w J/s

thermal

Source
generator

Sink

Power = P watts

Heating
P J/s

1 0

Figure 4.12 Generic thermal circuit, showing on/off heat source, thermal node and thermal resistance between the node and its heat sink

Silicon chips designed to dissipatemore than a watt aremounted on a heat spreader plate that
consists of about 10 grams of copper. The thermal conductivity of copper is exceptionally good at

169

Modern SoCDesign

401W/m per degree, so if the spreader plate has a thickness of 2mm and an area of 1 cm2, the
thermal conductivity to the back of the chip is 401×10−4/0.002≈20W/K. So, it will convey 10W for
a small temperature drop of half a degree. Two other components of the thermal path need to be
considered: the silicon wafer itself and the air around the heat spreader.

The thermal conductivity of silicon is about 130W/m per degree. The electronics on the top of the
silicon chip are a wafer thickness away from the spreader plate on the back of the chip, which is about
1/3mm. Uniform electronic heating of 10Wwill cause the top of a 1 cm2 chip to be 0.25◦C hotter
than its backplate, but if most of the heat is dissipated in just 10 per cent of the silicon, as may be the
case for a typical SoC, the temperature difference rises to 2.5◦C. The temperature at the top affects
the behaviour of transistors and is known as the junction temperature, denoted TJ. For everyday
commercial chips, designmargins normally allow amaximum TJ of about 100◦C. Given the thermal
path to the outside of the chip, this allows an upper ambient temperature of 70◦C to be specified.
Medical, military and aerospace applicationsmay require chips to operate correctly for amuchwider
ambient range, for example, as large as−40 to+125◦C.

Packaged chips are cooled using free air, forced air, heat pipes or pumped liquids. Depending on the
size of the heat sink, a free-air cooling arrangement will dissipate up to 1Wper degree rise above
ambient. With fan-forced air, twice as much heat can be extracted. With water or glycol cooling,
massive amounts of heat can be extracted, resulting in effective thermal resistances of more than
100W/K. For handheld devices using free-air dissipation, the rise in case temperaturemust be less
than about 6–8◦C before it becomes uncomfortable to hold, limiting power use to roughly the same
number of watts.

One gram of copper has a heat capacity of 2.6K/J, so a 20-gram heat plate will rise by 0.13◦C for each
joule stored. If it absorbs 10W for 10 seconds, it would rise by 13◦C in the absence of a heat
dissipation path.

Like its electrical equivalent, the thermal time constant of a system is the time for its temperature to
decay to 1/e≈0.368 from ambient and is given by the product of the heat capacity and the thermal
resistance. For our example, this is

Thermal time constant= Thermal capacity
Thermal conductance = 52J/K

20W/K ≈2.6seconds

Hence, techniques such as computational sprinting (Section 4.6.10) can use a peak powermuch
greater than the average power use, provided there are gaps every few seconds to allow the chip to
cool down after each burst.

It is common for an embedded temperaturemonitor to be incorporated somewhere on a chip. The
diode V/I curve given by the Shockley equation depends strongly on the temperature term. This
enables TJ to be cheaply and accurately measured given suitable analogue support circuits. Operating
system governors can typically sense a reading via an ADC channel. The channel can be hardwired
into the DVFS controllers (Section 4.6.8) as a thermal throttle (Section 4.6.10) or an overload
protectionmechanism.

170

Chapter 4 | SystemDesign Considerations

Heat is also extracted from a SoC via its wired connections, which aremade of aluminium. Although
aluminium has twice the thermal resistance of copper for the same geometry, the power wires and
signal nets connect directly to the top of the chip and some have fully metallic connections to the
heat-generating transistors. Hence, they provide an additional heat extraction route that should be
considered in detailedmodelling.

4.4.2 Folding, Re-timing and Recoding
Aswas summarised in Figure 4.10, a principal design trade-off is between high performance and low
power. The time/space fold and unfold operations trade execution time for silicon area. A function
can be computedwith fewer clocks by ‘unfolding’ it in the time domain, typically by loop unwinding
and predication. The following pair of RTL-like code fragments illustrate the transform. The left-hand
fragment denotes a runtime loop that uses a single adder andmultiplier whereas the right-hand
fragment shows the unwound loop that uses three timesmore hardware. The predication step is the
insertion of the if statements.

LOOPED (time) option: | UNWOUND (space) option:
|

for (i=0; i < 3 and i < limit; i++) | if (0 < limit) sum += data[0] * coef[j];
sum += data[i] * coef[i+j]; | if (1 < limit) sum += data[1] * coef[1+j];

| if (2 < limit) sum += data[2] * coef[2+j];

Successive loop iterations interact using the ‘+=’ operation. Addition is an associative operator. In this
context, it is said to perform an associative reduction from a vector to a scalar (Section 6.9.1). If the
only interactions between loop iterations are outputs via such an operator, the loop iterations can be
executed in parallel. On the other hand, if one iteration stores a variable that affects the next iteration
or determines the loop exit condition, then the unwinding possibilities are reduced. Given that
multiplication tends to be a pipelined operator at the hardware level for any significant word size, the
above example is an oversimplification in terms of input to a low-level RTL logic synthesiser
(Section 8.3). High-level synthesis tools (Section 6.9), however, can operate from this style of coding,
deploying pipelined implementations of the arithmetic operators. High-level tools generate ancillary
logic that is needed to sequence the operands correctly to themultiplier instances. Some such tools
will also automate the decision about whether to unwind the loopwhereas others will perform loop
unwinding based on user annotations called pragmas.

Critical Path Timing Delay and Pipelining
Meeting the timing closure is the process of manipulating a design tomeet its target clock rate (as set
by amarketing department, for instance) (Section 8.12.16). A design can be re-timedwith and
without changing the state encoding of the existing state flip-flops. Re-timing is the process of
modifying the sequential behaviour of a circuit (i.e. its next-state function) so that it meets timing
constraints. Adding a pipeline stage increases the number of states without recoding an existing
state. Inserting a pipeline stage is the go-tomanipulation.

171

Modern SoCDesign

401W/m per degree, so if the spreader plate has a thickness of 2mm and an area of 1 cm2, the
thermal conductivity to the back of the chip is 401×10−4/0.002≈20W/K. So, it will convey 10W for
a small temperature drop of half a degree. Two other components of the thermal path need to be
considered: the silicon wafer itself and the air around the heat spreader.

The thermal conductivity of silicon is about 130W/m per degree. The electronics on the top of the
silicon chip are a wafer thickness away from the spreader plate on the back of the chip, which is about
1/3mm. Uniform electronic heating of 10Wwill cause the top of a 1 cm2 chip to be 0.25◦C hotter
than its backplate, but if most of the heat is dissipated in just 10 per cent of the silicon, as may be the
case for a typical SoC, the temperature difference rises to 2.5◦C. The temperature at the top affects
the behaviour of transistors and is known as the junction temperature, denoted TJ. For everyday
commercial chips, designmargins normally allow amaximum TJ of about 100◦C. Given the thermal
path to the outside of the chip, this allows an upper ambient temperature of 70◦C to be specified.
Medical, military and aerospace applicationsmay require chips to operate correctly for amuchwider
ambient range, for example, as large as−40 to+125◦C.

Packaged chips are cooled using free air, forced air, heat pipes or pumped liquids. Depending on the
size of the heat sink, a free-air cooling arrangement will dissipate up to 1Wper degree rise above
ambient. With fan-forced air, twice as much heat can be extracted. With water or glycol cooling,
massive amounts of heat can be extracted, resulting in effective thermal resistances of more than
100W/K. For handheld devices using free-air dissipation, the rise in case temperaturemust be less
than about 6–8◦C before it becomes uncomfortable to hold, limiting power use to roughly the same
number of watts.

One gram of copper has a heat capacity of 2.6K/J, so a 20-gram heat plate will rise by 0.13◦C for each
joule stored. If it absorbs 10W for 10 seconds, it would rise by 13◦C in the absence of a heat
dissipation path.

Like its electrical equivalent, the thermal time constant of a system is the time for its temperature to
decay to 1/e≈0.368 from ambient and is given by the product of the heat capacity and the thermal
resistance. For our example, this is

Thermal time constant= Thermal capacity
Thermal conductance = 52J/K

20W/K ≈2.6seconds

Hence, techniques such as computational sprinting (Section 4.6.10) can use a peak powermuch
greater than the average power use, provided there are gaps every few seconds to allow the chip to
cool down after each burst.

It is common for an embedded temperaturemonitor to be incorporated somewhere on a chip. The
diode V/I curve given by the Shockley equation depends strongly on the temperature term. This
enables TJ to be cheaply and accurately measured given suitable analogue support circuits. Operating
system governors can typically sense a reading via an ADC channel. The channel can be hardwired
into the DVFS controllers (Section 4.6.8) as a thermal throttle (Section 4.6.10) or an overload
protectionmechanism.

170

Chapter 4 | SystemDesign Considerations

Heat is also extracted from a SoC via its wired connections, which aremade of aluminium. Although
aluminium has twice the thermal resistance of copper for the same geometry, the power wires and
signal nets connect directly to the top of the chip and some have fully metallic connections to the
heat-generating transistors. Hence, they provide an additional heat extraction route that should be
considered in detailedmodelling.

4.4.2 Folding, Re-timing and Recoding
Aswas summarised in Figure 4.10, a principal design trade-off is between high performance and low
power. The time/space fold and unfold operations trade execution time for silicon area. A function
can be computedwith fewer clocks by ‘unfolding’ it in the time domain, typically by loop unwinding
and predication. The following pair of RTL-like code fragments illustrate the transform. The left-hand
fragment denotes a runtime loop that uses a single adder andmultiplier whereas the right-hand
fragment shows the unwound loop that uses three timesmore hardware. The predication step is the
insertion of the if statements.

LOOPED (time) option: | UNWOUND (space) option:
|

for (i=0; i < 3 and i < limit; i++) | if (0 < limit) sum += data[0] * coef[j];
sum += data[i] * coef[i+j]; | if (1 < limit) sum += data[1] * coef[1+j];

| if (2 < limit) sum += data[2] * coef[2+j];

Successive loop iterations interact using the ‘+=’ operation. Addition is an associative operator. In this
context, it is said to perform an associative reduction from a vector to a scalar (Section 6.9.1). If the
only interactions between loop iterations are outputs via such an operator, the loop iterations can be
executed in parallel. On the other hand, if one iteration stores a variable that affects the next iteration
or determines the loop exit condition, then the unwinding possibilities are reduced. Given that
multiplication tends to be a pipelined operator at the hardware level for any significant word size, the
above example is an oversimplification in terms of input to a low-level RTL logic synthesiser
(Section 8.3). High-level synthesis tools (Section 6.9), however, can operate from this style of coding,
deploying pipelined implementations of the arithmetic operators. High-level tools generate ancillary
logic that is needed to sequence the operands correctly to themultiplier instances. Some such tools
will also automate the decision about whether to unwind the loopwhereas others will perform loop
unwinding based on user annotations called pragmas.

Critical Path Timing Delay and Pipelining
Meeting the timing closure is the process of manipulating a design tomeet its target clock rate (as set
by amarketing department, for instance) (Section 8.12.16). A design can be re-timedwith and
without changing the state encoding of the existing state flip-flops. Re-timing is the process of
modifying the sequential behaviour of a circuit (i.e. its next-state function) so that it meets timing
constraints. Adding a pipeline stage increases the number of states without recoding an existing
state. Inserting a pipeline stage is the go-tomanipulation.

171

Modern SoCDesign

Clock

Data D OutputQ

Clock

Data

Output

Propagation delay

Setup time

Hold time
Clock

A

B

C

D Setup

Margin
Period = 1/F

Clock

D Q

D Q

A
B

C
D

Figure 4.13 Primary timing characteristics of a D-type flip-flop (left). Typical nature of a critical path in a synchronous clock domain indicating how the
maximum clock frequency (F) is calculated (right)

Themaximum clock frequency of a synchronous clock domain is set by its critical path. Figure 4.13
shows the general nature of a critical path. The output of one flip-flop in a clock domain feeds through
a chain of combinational gates and arrives at the D-input of the same or another flip-flop in the
domain. One of the paths of this naturemust be the slowest. Several, very similar paths may compete
to be the slowest depending on the PVT variation (Section 8.4.4), but onewill be dominant at any
instant. The slowest path of combinational logic must have settled before the setup time of its
destination flip-flop starts. As shown, themaximum clock frequency is the reciprocal of the path
length. If a higher frequency clock is set, the subsystem is said to be over-clocked andwill be
unreliable. Depending on the engineeringmargins, it may fail and crash in certain PVT corners. The
hold time requirement is an ancillary timing specification that is important if the output of one flop is
directly connected to the input of another, such as in a shift register. The D-input must be held for at
least the hold time after the clock edge. The clock-to-Q propagation delaymust be greater than the
hold time for such shift register structures to be valid.

As noted, pipelining is commonly used to boost system performance. Introducing a pipeline stage
increases latency but also shortens the critical path and hence, raises themaximum clock frequency
(Figure 4.14). Fortunately, many applications are tolerant to the processing delay of a logic subsystem.
Consider a decoder for a fibre optic signal. The fibremight bemany kilometres long and a few
additional clock cycles in the decoder would increase the processing delay by an amount equivalent to
a few coding symbol wavelengths, e.g. 20 cm per pipeline stage for a 1Gbaudmodulation rate.

172

Chapter 4 | SystemDesign Considerations

Data in

Domain clock

Another input

Yet another input

An output

Yet another output

Another output still

Large loop-free combinatorial logic function

... second half

Desired logic function

Same logic function - pipelined version.

Loop-free combinatorial logic
function - first half

Data in

Domain clock

Another input

Yet another input

An output

Yet another output

Another output still

Figure 4.14 A circuit before (top) and after (bottom) insertion of an additional pipeline stage

Pipelining introduces a new state but does not require existing state flip-flops to changemeaning. On
the other hand, flip-flopmigration, as illustrated in Figure 4.15, does alter the encoding of existing
states. Migrationmay bemanually turned on or off during logic synthesis by typical RTL compiler
tools. Migration exchanges the delay in one path for a delay in another to balance delay paths. A
well-chosen sequence of such transformations can lead to a shorter critical path overall.

A

B

Y A

B

Y

Figure 4.15 Flip-flop migration. Two circuits that behave identically but which have different state encodings

Althoughmigration is very useful and is automated in logic synthesisers, it cannot always be applied.
For instance, in the following RTL example, the first migration is a local transformation that has no
global consequences:

173

Modern SoCDesign

Clock

Data D OutputQ

Clock

Data

Output

Propagation delay

Setup time

Hold time
Clock

A

B

C

D Setup

Margin
Period = 1/F

Clock

D Q

D Q

A
B

C
D

Figure 4.13 Primary timing characteristics of a D-type flip-flop (left). Typical nature of a critical path in a synchronous clock domain indicating how the
maximum clock frequency (F) is calculated (right)

Themaximum clock frequency of a synchronous clock domain is set by its critical path. Figure 4.13
shows the general nature of a critical path. The output of one flip-flop in a clock domain feeds through
a chain of combinational gates and arrives at the D-input of the same or another flip-flop in the
domain. One of the paths of this naturemust be the slowest. Several, very similar paths may compete
to be the slowest depending on the PVT variation (Section 8.4.4), but onewill be dominant at any
instant. The slowest path of combinational logic must have settled before the setup time of its
destination flip-flop starts. As shown, themaximum clock frequency is the reciprocal of the path
length. If a higher frequency clock is set, the subsystem is said to be over-clocked andwill be
unreliable. Depending on the engineeringmargins, it may fail and crash in certain PVT corners. The
hold time requirement is an ancillary timing specification that is important if the output of one flop is
directly connected to the input of another, such as in a shift register. The D-input must be held for at
least the hold time after the clock edge. The clock-to-Q propagation delaymust be greater than the
hold time for such shift register structures to be valid.

As noted, pipelining is commonly used to boost system performance. Introducing a pipeline stage
increases latency but also shortens the critical path and hence, raises themaximum clock frequency
(Figure 4.14). Fortunately, many applications are tolerant to the processing delay of a logic subsystem.
Consider a decoder for a fibre optic signal. The fibremight bemany kilometres long and a few
additional clock cycles in the decoder would increase the processing delay by an amount equivalent to
a few coding symbol wavelengths, e.g. 20 cm per pipeline stage for a 1Gbaudmodulation rate.

172

Chapter 4 | SystemDesign Considerations

Data in

Domain clock

Another input

Yet another input

An output

Yet another output

Another output still

Large loop-free combinatorial logic function

... second half

Desired logic function

Same logic function - pipelined version.

Loop-free combinatorial logic
function - first half

Data in

Domain clock

Another input

Yet another input

An output

Yet another output

Another output still

Figure 4.14 A circuit before (top) and after (bottom) insertion of an additional pipeline stage

Pipelining introduces a new state but does not require existing state flip-flops to changemeaning. On
the other hand, flip-flopmigration, as illustrated in Figure 4.15, does alter the encoding of existing
states. Migrationmay bemanually turned on or off during logic synthesis by typical RTL compiler
tools. Migration exchanges the delay in one path for a delay in another to balance delay paths. A
well-chosen sequence of such transformations can lead to a shorter critical path overall.

A

B

Y A

B

Y

Figure 4.15 Flip-flop migration. Two circuits that behave identically but which have different state encodings

Althoughmigration is very useful and is automated in logic synthesisers, it cannot always be applied.
For instance, in the following RTL example, the first migration is a local transformation that has no
global consequences:

173

Modern SoCDesign

Before: Migration 1: Migration 2 (non causal):
a <= b + c; b1 <= b; c1 <= c; q1 <= (dd) ? (b+c): 0;
q <= (d) ? a:0; q <= (d) ? b1+c1:0; q <= q1;

The secondmigration, which attempts to perform themultiplexing one cycle earlier, will require an
earlier version of d, here termed dd, whichmight not be available (e.g. if it were an external input and
we need knowledge of the future). An earlier version of a given input can sometimes be obtained by
delaying all the inputs, but this cannot be done for applications where the system response time
(in-to-out delay) is critical (such as generating the not-ready handshake signal in older bus protocols).
Further problems that prevent migration from being used are:

Circuits containing loops (proper synchronous loops) cannot be pushed further than the loop
circumference, which can be quite short. An example is the control hazard in the RISC pipeline
conditional branch, which is short (Section 2.1.4).

External interfaces that do not use transactional handshakes (i.e. those without flow control)
cannot tolerate automatic re-timing since information about when data are valid is not explicit. A
related problem is that in standard RTLs, evenwhen the interface is transactional, the logic
synthesiser does not understand the protocol. This has been solved in higher-level design
expression languages, such as Chisel (Section 6.8.3) and Bluespec (Section 6.8.5).

Many structures, including RAM and ALUs, have a pipeline delay (or several), so the hazard on their
input port needs resolving in a different clock cycle from hazards involving their result values.
Again, this information is not manifest in RTL descriptions and so the transformation cannot be
automated during logic synthesis.

However, re-timing can overcome structural hazards (e.g. the writeback cycle in a RISC pipeline,
Section 2.1.4).

Recoding without changing the number of flip-flops can also be helpful. Logic synthesiser tools can
convert from binary to Gray or one-hot coding. Gray coding is a binary number ordering such that two
successive values differ in only one bit. For instance, a 3-bit Gray code goes 000, 001, 011, 010, 110,
111, 101 and 100. Although originally designed for mechanical systems, such as shaft encoders,
Gray-coded digital logic is intrinsically safe for clock domain crossing (Section 3.7.3). Automatic
recoding to Gray values causes a long bus to take consume less dynamic power (Section 4.6.2) than if
driven by a binary counter since it has fewer transitions. Another recoding is to unary or one-hot
coding. These are the same thing. They use 2n bits to encode an n-bit binary number with just one bit
being asserted for a given count value. The next-state logic for a one-hot coded counter is
exceptionally simple, leading to very short critical paths. Also, no binary-to-unary output decoder is
required in applications that need to command different operations on different count values.

174

Chapter 4 | SystemDesign Considerations

D Q3D Q2D Q1

Clock

Q1 Q2 Q3

Q1 Q2 Q3
0 0 0
1 0 0
1 1 0
0 1 1
0 0 1
0 0 0

Figure 4.16 Schematic and count sequence for a divide-by-five counter using Johnson encoding

Figure 4.16 shows a Johnson counter that divides by five using three flip-flops. A Johnson counter
uses a hybrid of one-hot andGray codingwith amaximumof 2n states out of an n-bit word being used.
It is based around a shift register and hasminimal next-state logic. Hence, this design is always used
when the fastest possible counter is required, e.g. in GaAs logic for microwave radio-frequency
synthesisers.

Automatic recoding from binary to one of these other forms is often performed by a logic synthesiser
(Section 8.3.8). Large finite-statemachines (FSMs) are commonly recoded so that the output function
is easy to generate. This is critical for good performance with complex sequencers, as used, for
instance, in HLS. In a flip-flop-rich technology, such as an FPGA, there is zero effective area overhead
using such encodings, just a speed and energy benefit. A trivial recoding used for some target cell
libraries is to invert logic polarity in a flip-flop. This enables a reset to act as a preset and flips the
starting value held in the flop. Despite its benefits, automated recoding has the disadvantage that it
makes low-level debuggingmore complex.

4.5 Design Trade-offs inMemory Systems
Memory systems frequently need to bemulti-port, meaning that a given storage location is accessible
to some number of transaction initiators. The underlying hardware implementation of a simple SRAM
can be single or dual ported (Section 2.6.5), but often a greater number of effective ports are required.
Also dual-ported RAMhas an area overhead, whichmeans it is commonly not a good solution.
Whether cached or not, a memory systemwill typically consist of an aggregation of individual RAMs.
In this section, we discuss aggregation techniques for homogeneous RAMs. The case for using
heterogeneous RAMs that vary in terms of clock speed and capacity for hierarchic memory systems is
made in Section 6.6.1.

Sequential Consistency
An important design decision is what level of sequential consistency to provide. If some reads and
writes to nominal memory are actually served from intermediate caches, write buffers or other
forwarding paths in the interconnect, it is possible for the relative order of writes to different
locations to appear differently from different points of view. This is the sequential consistency
problem. A typical programming paradigm is for one initiator to write data to a buffer in shared
memory and then to update a flag, pointer or counter to reflect that the buffer is ready to be

175

Modern SoCDesign

Before: Migration 1: Migration 2 (non causal):
a <= b + c; b1 <= b; c1 <= c; q1 <= (dd) ? (b+c): 0;
q <= (d) ? a:0; q <= (d) ? b1+c1:0; q <= q1;

The secondmigration, which attempts to perform themultiplexing one cycle earlier, will require an
earlier version of d, here termed dd, whichmight not be available (e.g. if it were an external input and
we need knowledge of the future). An earlier version of a given input can sometimes be obtained by
delaying all the inputs, but this cannot be done for applications where the system response time
(in-to-out delay) is critical (such as generating the not-ready handshake signal in older bus protocols).
Further problems that prevent migration from being used are:

Circuits containing loops (proper synchronous loops) cannot be pushed further than the loop
circumference, which can be quite short. An example is the control hazard in the RISC pipeline
conditional branch, which is short (Section 2.1.4).

External interfaces that do not use transactional handshakes (i.e. those without flow control)
cannot tolerate automatic re-timing since information about when data are valid is not explicit. A
related problem is that in standard RTLs, evenwhen the interface is transactional, the logic
synthesiser does not understand the protocol. This has been solved in higher-level design
expression languages, such as Chisel (Section 6.8.3) and Bluespec (Section 6.8.5).

Many structures, including RAM and ALUs, have a pipeline delay (or several), so the hazard on their
input port needs resolving in a different clock cycle from hazards involving their result values.
Again, this information is not manifest in RTL descriptions and so the transformation cannot be
automated during logic synthesis.

However, re-timing can overcome structural hazards (e.g. the writeback cycle in a RISC pipeline,
Section 2.1.4).

Recoding without changing the number of flip-flops can also be helpful. Logic synthesiser tools can
convert from binary to Gray or one-hot coding. Gray coding is a binary number ordering such that two
successive values differ in only one bit. For instance, a 3-bit Gray code goes 000, 001, 011, 010, 110,
111, 101 and 100. Although originally designed for mechanical systems, such as shaft encoders,
Gray-coded digital logic is intrinsically safe for clock domain crossing (Section 3.7.3). Automatic
recoding to Gray values causes a long bus to take consume less dynamic power (Section 4.6.2) than if
driven by a binary counter since it has fewer transitions. Another recoding is to unary or one-hot
coding. These are the same thing. They use 2n bits to encode an n-bit binary number with just one bit
being asserted for a given count value. The next-state logic for a one-hot coded counter is
exceptionally simple, leading to very short critical paths. Also, no binary-to-unary output decoder is
required in applications that need to command different operations on different count values.

174

Chapter 4 | SystemDesign Considerations

D Q3D Q2D Q1

Clock

Q1 Q2 Q3

Q1 Q2 Q3
0 0 0
1 0 0
1 1 0
0 1 1
0 0 1
0 0 0

Figure 4.16 Schematic and count sequence for a divide-by-five counter using Johnson encoding

Figure 4.16 shows a Johnson counter that divides by five using three flip-flops. A Johnson counter
uses a hybrid of one-hot andGray codingwith amaximumof 2n states out of an n-bit word being used.
It is based around a shift register and hasminimal next-state logic. Hence, this design is always used
when the fastest possible counter is required, e.g. in GaAs logic for microwave radio-frequency
synthesisers.

Automatic recoding from binary to one of these other forms is often performed by a logic synthesiser
(Section 8.3.8). Large finite-statemachines (FSMs) are commonly recoded so that the output function
is easy to generate. This is critical for good performance with complex sequencers, as used, for
instance, in HLS. In a flip-flop-rich technology, such as an FPGA, there is zero effective area overhead
using such encodings, just a speed and energy benefit. A trivial recoding used for some target cell
libraries is to invert logic polarity in a flip-flop. This enables a reset to act as a preset and flips the
starting value held in the flop. Despite its benefits, automated recoding has the disadvantage that it
makes low-level debuggingmore complex.

4.5 Design Trade-offs inMemory Systems
Memory systems frequently need to bemulti-port, meaning that a given storage location is accessible
to some number of transaction initiators. The underlying hardware implementation of a simple SRAM
can be single or dual ported (Section 2.6.5), but often a greater number of effective ports are required.
Also dual-ported RAMhas an area overhead, whichmeans it is commonly not a good solution.
Whether cached or not, a memory systemwill typically consist of an aggregation of individual RAMs.
In this section, we discuss aggregation techniques for homogeneous RAMs. The case for using
heterogeneous RAMs that vary in terms of clock speed and capacity for hierarchic memory systems is
made in Section 6.6.1.

Sequential Consistency
An important design decision is what level of sequential consistency to provide. If some reads and
writes to nominal memory are actually served from intermediate caches, write buffers or other
forwarding paths in the interconnect, it is possible for the relative order of writes to different
locations to appear differently from different points of view. This is the sequential consistency
problem. A typical programming paradigm is for one initiator to write data to a buffer in shared
memory and then to update a flag, pointer or counter to reflect that the buffer is ready to be

175

Modern SoCDesign

inspected by other initiators. Figure 4.17 illustrates the essence of this situation. Here, the flag is the
first word of a sharedmemory buffer being non-zero.

Thread 1 - Requestor | Thread 2 - Server
|

... | while(true)
buffer[1] = operand1; | {
buffer[2] = operand2; | if (!buffer[0]) { yield(); continue; }
write_fence(); | read_fence();
buffer[0] = COMMAND; | handle(buffer);
... | buffer[0] = 0;

| }

Figure 4.17 Two code fragments using message-passing in shared memory with explicit memory fences. The yield() call could be to the suspend primitive
of the operating system scheduler. Alternatively, if running on bare metal, it is a dedicated instruction (called YIELD in the Arm ISA) that interacts with
hardware hyper-threading if present

However, in amemory system that does not observe sequential consistency, an observer might see
erroneous data if it reads the buffer contents after seeing a change to the first word although the
writes to the remainder of the buffer are not yet visible. An equivalent problem arises if reads are
serviced out of order. Three primary system-level models that address sequential consistency are:

1. Ensure that all sharedmemory components observe strict sequential consistency.

2. Use a weakermodel, known as processor consistency, in which all readers see items in a buffer in
the same order as they were written by a single initiator but see an arbitrary view of howwrites
from different initiators are interleaved.

3. Use relaxed consistency, for which the programmermust insert explicit fence instructions.

Amemory fence instruction, also sometimes called a barrier, is inserted by a programmer to
constrain the order of memory operations. The threemain forms are read fences, write fences and
everything fences, which are the same as a read fence followed directly by a write fence or vice versa.
A write fence ensures that for any data written before the fence, the data are committed to a store
before any data from subsequent writes. Likewise, a read fence ensures that for all reads issued
before the fence, the reads have completed before any subsequent read. Hence, as shown in the
above example, a write fence should be issued betweenwriting the last word of data to the buffer and
writing the flag that acts as the transaction commit. Equivalently, a read fence can be issued between
checking the flag and reading the data from the buffer. Real-world busses, as discussed in Chapter 3,
support a broader class of bus transactions, beyond just reads andwrites. Hence, the operand to a
generic fence instruction is a squarematrix of Boolean flags indicating which classes must complete
before which others.

Memory Bank Arrangements
A single-ported SRAM array presents a structural hazard in that the single address bus can select only
one location at a time (Section 6.3). For a given clock frequency, the data transfer rate per bit of a read

176

Chapter 4 | SystemDesign Considerations

or write port is fixed at that clock rate. Two basic approaches are used to increasememory
bandwidth: multiple banks andwidewords. Smaller SRAM arrays imply simpler and faster decoding
and shorter word-line and bit-line lengths. This reduces access times and increases power efficiency
at the expense of some loss in area efficiency due to peripheral logic. In amultiple bank, different
locations can be accessed simultaneously, whereas just one location at a time can be accessed for
memories with wider words. With banking, concurrent accesses ideally hit different banks, therefore
providing parallelism.

WDATA
ADDR
wen
en

RDATA

WDATA
ADDR
wen
en

RDATA

Main
SoC
die

a) Two separate memory channels

PE RAM

PE

PE

C
rossbar Fabric

RAM

RAM

d) Processing elements requiring lane steering

Main SoC die

WDATA
ADDR
wen
en

RDATA

WDATA
ADDR
wen
en

b) Two memories sharing one channel

MUX

DECODER

D

Main
SoC
die

Main SoC die

c) Processing elements directly associated

PE RAM

PE RAM

PE RAM

Figure 4.18 SRAMmemory bank structures for MCMs (top) with two interconnection patterns inside the SoC (bottom)

Figure 4.18 illustrates typical memory banking arrangements for multi-chip modules (MCMs)
(Section 8.9.1). The SRAMmemory is die-stacked on themain SoC, but equivalent considerations
apply to DRAMand on-chip and PCB-level design. Configuration (a) is simple. Each RAM instance has
its own dedicated wiring to themain SoC. This is ideal for use case (c), since eachmemory channel
needs to be accessed by only one core or other processing element. Configuration (b) has two
memory devices connected to one channel. This reduces the pin and net count but can consumemore
dynamic energy than dedicated wiring under low tomedium loads due to the greater switched charge
(Section 4.6.1). Also the single-channel structural hazard limits bandwidth to a factor of 1×.

177

Modern SoCDesign

inspected by other initiators. Figure 4.17 illustrates the essence of this situation. Here, the flag is the
first word of a sharedmemory buffer being non-zero.

Thread 1 - Requestor | Thread 2 - Server
|

... | while(true)
buffer[1] = operand1; | {
buffer[2] = operand2; | if (!buffer[0]) { yield(); continue; }
write_fence(); | read_fence();
buffer[0] = COMMAND; | handle(buffer);
... | buffer[0] = 0;

| }

Figure 4.17 Two code fragments using message-passing in shared memory with explicit memory fences. The yield() call could be to the suspend primitive
of the operating system scheduler. Alternatively, if running on bare metal, it is a dedicated instruction (called YIELD in the Arm ISA) that interacts with
hardware hyper-threading if present

However, in amemory system that does not observe sequential consistency, an observer might see
erroneous data if it reads the buffer contents after seeing a change to the first word although the
writes to the remainder of the buffer are not yet visible. An equivalent problem arises if reads are
serviced out of order. Three primary system-level models that address sequential consistency are:

1. Ensure that all sharedmemory components observe strict sequential consistency.

2. Use a weakermodel, known as processor consistency, in which all readers see items in a buffer in
the same order as they were written by a single initiator but see an arbitrary view of howwrites
from different initiators are interleaved.

3. Use relaxed consistency, for which the programmermust insert explicit fence instructions.

Amemory fence instruction, also sometimes called a barrier, is inserted by a programmer to
constrain the order of memory operations. The threemain forms are read fences, write fences and
everything fences, which are the same as a read fence followed directly by a write fence or vice versa.
A write fence ensures that for any data written before the fence, the data are committed to a store
before any data from subsequent writes. Likewise, a read fence ensures that for all reads issued
before the fence, the reads have completed before any subsequent read. Hence, as shown in the
above example, a write fence should be issued betweenwriting the last word of data to the buffer and
writing the flag that acts as the transaction commit. Equivalently, a read fence can be issued between
checking the flag and reading the data from the buffer. Real-world busses, as discussed in Chapter 3,
support a broader class of bus transactions, beyond just reads andwrites. Hence, the operand to a
generic fence instruction is a squarematrix of Boolean flags indicating which classes must complete
before which others.

Memory Bank Arrangements
A single-ported SRAM array presents a structural hazard in that the single address bus can select only
one location at a time (Section 6.3). For a given clock frequency, the data transfer rate per bit of a read

176

Chapter 4 | SystemDesign Considerations

or write port is fixed at that clock rate. Two basic approaches are used to increasememory
bandwidth: multiple banks andwidewords. Smaller SRAM arrays imply simpler and faster decoding
and shorter word-line and bit-line lengths. This reduces access times and increases power efficiency
at the expense of some loss in area efficiency due to peripheral logic. In amultiple bank, different
locations can be accessed simultaneously, whereas just one location at a time can be accessed for
memories with wider words. With banking, concurrent accesses ideally hit different banks, therefore
providing parallelism.

WDATA
ADDR
wen
en

RDATA

WDATA
ADDR
wen
en

RDATA

Main
SoC
die

a) Two separate memory channels

PE RAM

PE

PE

C
rossbar Fabric

RAM

RAM

d) Processing elements requiring lane steering

Main SoC die

WDATA
ADDR
wen
en

RDATA

WDATA
ADDR
wen
en

b) Two memories sharing one channel

MUX

DECODER

D

Main
SoC
die

Main SoC die

c) Processing elements directly associated

PE RAM

PE RAM

PE RAM

Figure 4.18 SRAMmemory bank structures for MCMs (top) with two interconnection patterns inside the SoC (bottom)

Figure 4.18 illustrates typical memory banking arrangements for multi-chip modules (MCMs)
(Section 8.9.1). The SRAMmemory is die-stacked on themain SoC, but equivalent considerations
apply to DRAMand on-chip and PCB-level design. Configuration (a) is simple. Each RAM instance has
its own dedicated wiring to themain SoC. This is ideal for use case (c), since eachmemory channel
needs to be accessed by only one core or other processing element. Configuration (b) has two
memory devices connected to one channel. This reduces the pin and net count but can consumemore
dynamic energy than dedicated wiring under low tomedium loads due to the greater switched charge
(Section 4.6.1). Also the single-channel structural hazard limits bandwidth to a factor of 1×.

177

Modern SoCDesign

Figure 4.18(d) also uses external channels but has an on-SoC switch so that unrestricted access is
allowed under an address interleave scheme. Given a uniform, random addressing pattern, the
probability that two locations of interest are in the same bank is inversely proportional to the number
of banks. Hence, more banks are better. Withmultiple RAMs, the data can be arranged randomly or
systematically among them. To achieve a ‘random’ data placement, some set of the address bus bits
are normally used to select the different banks. Indeed, if multiple chips are used in a single bank, this
arrangement is inevitably deployed. The question is, which bits to use. Using the low bits for a bank
select creates a fine-grained interleave, but tends to destroy spatial locality in the access pattern. The
best bit field to use also depends onwhether thememory elements are truly random access. SRAM is
truly random access, whereas DRAMwill have different access times depending onwhich rows are
open. However, even SRAMexpends greater energy when switching between bit-cell words
comparedwith selecting different bit lanes from the addressedword.

If data access patterns are known in advance, which is typically the case for HLS, then data access can
bemaximised or even ensured by careful bankmapping. Interconnection complexity is also reduced if
it is manifest that certain data paths of a full crossbar will never be used. In the best cases (easiest
applications), no lane-steering or interconnect switch is needed and each processing element acts on
just one part of the wide data bus. This is basically the GPU architecture.

An architectural technique that offers pseudo-multi-porting is shown in Figure 4.19. Here, two
memory banks store the same data. It can be generalised to any number of so-calledmirror copies.
Disjoint loads can happen in parallel, but the stores update all copies simultaneously. This increases
the read but not the write bandwidth. However, sincemost data are readmore often thanwritten, it
works. The advantage of this scheme is that fewer physical ports are needed for eachmemory bank.
On the other hand, the obvious disadvantage is the area and power overhead of requiringmultiple
memory banks, since the number of memory banks is proportional to the number of read ports
required.

RDATA0

RDATA1

WDATA0

ADDR
wen
enMUX

ADDR0

ADDR1
WDATA1

Arbiter
wen0

en0

wen1
en1

ack0
ack1

clk

PO
R

T-
0

PO
R

T-
1

RAM0

RAM 1
WDATA

ADDR
wen
en

WDATA

Figure 4.19 Pseudo-dual porting of RAM (using write mirroring)

One disadvantage is that arbitration is required, which in turnmeans that an acknowledgement
reverse handshake is required, as illustrated. This introduces a level of timing crosstalk between the
ports, which does not arise with actual dual porting andwhichmay be a problem for hard real-time

178

Chapter 4 | SystemDesign Considerations

systems. An alternative approach uses static time-divisionmultiplexing or several successivememory
accesses in a single cycle. However, these approaches are possible only if cache access is much faster
than the clock cycle. This is usually not the case, and hence, this method is not scalable tomultiple
ports. Real dual porting is sometimesmore suitable for clock-domain crossing, especially if high-level
protocols avoid read/write clashes on a common location such that no low-level mechanisms are
needed to provide a specific resolution semantic.

Design Trade-offs in a DRAMController
As described in Section 2.6.6, addresses are sent over a DRAM channel in two halves: row then
column. DRAM is slow to access and certainly does not provide random access comparedwith
on-chip RAM. Amodern PCmight take 100 to 300 CPU clock cycles to access a random location of
DRAM since the CPUmay clock considerably faster than theDRAM.However, the ratio is often not as
severe in embedded systems that use slower system clocks. Nonetheless, it is nearly always helpful to
put at least one level of DRAM caching on a SoC. This can be associated with CPU cores or part of the
memory controller or bothmay be used.

ADRAM/dynamicmemory controller (DMC) sequences the operations on a DRAM channel. The
DMC controller may have embedded error detection or correction logic using additional bit lanes in
the DRAM. Caches will access the DRAM in localised bursts, saving or filling a cache line, and hence,
cache lines are always arranged to lie within a DRAM row. The controller will keepmultiple DRAM
pages open at once to exploit spatio-temporal access locality. The high random-access latency and
writeback overhead of DRAM requires a bank-closing policy in whichmainstream controllers look
ahead in a pool of pending requests to assist in deciding when to close a row. Closing a row is also
known as closing a page or deactivation. It is normal to prioritise reads over writes, but for data
consistency, overtakingmust be avoided. Alternatively, reads can be served from thewrite queue.
However, a new request in a previously open line could arrive just after the controller closes it. An
open-page policy does not write back after the last apparent operation on a row has been processed.
It keeps the bank open in case another operation on that row shortly arrives, up to a timeout duration.
A closed-page policywrites back when there is no work to do. This allows precharging of the bit lines
and reduces the latency of the next operation to use that bank. It is best if clients can tolerate
responses out of order and hence, the interconnect must support tagged transactions (Section 3.1.4).
In reality, DRAMbanks are often partitioned into bank groups. Within a bank group, power supply
and noise issues dictate additional timing constraints on successive operations, which is a further
dimension to be considered in access scheduling.

DRAMenergy use is discussed in the chapter on ESL, Chapter 5. Amajor use of energy is for the static
power in the high-speed PCB driving and receiving pads. These pads are collectively called theDRAM
physical interface (PHY). Each row activation, deactivation, data transfer or refresh consumes a
quanta of dynamic energy.

Figure 4.20 shows the structure and board-level nets for a 32-bit DRAM channel. Four separate
column address select (CAS) nets are used so that writes to individual byte lanes are possible. For
large DRAMarrays, there will also bemultiple row address select (RAS) lines that serve as the rank

179

Modern SoCDesign

Figure 4.18(d) also uses external channels but has an on-SoC switch so that unrestricted access is
allowed under an address interleave scheme. Given a uniform, random addressing pattern, the
probability that two locations of interest are in the same bank is inversely proportional to the number
of banks. Hence, more banks are better. Withmultiple RAMs, the data can be arranged randomly or
systematically among them. To achieve a ‘random’ data placement, some set of the address bus bits
are normally used to select the different banks. Indeed, if multiple chips are used in a single bank, this
arrangement is inevitably deployed. The question is, which bits to use. Using the low bits for a bank
select creates a fine-grained interleave, but tends to destroy spatial locality in the access pattern. The
best bit field to use also depends onwhether thememory elements are truly random access. SRAM is
truly random access, whereas DRAMwill have different access times depending onwhich rows are
open. However, even SRAMexpends greater energy when switching between bit-cell words
comparedwith selecting different bit lanes from the addressedword.

If data access patterns are known in advance, which is typically the case for HLS, then data access can
bemaximised or even ensured by careful bankmapping. Interconnection complexity is also reduced if
it is manifest that certain data paths of a full crossbar will never be used. In the best cases (easiest
applications), no lane-steering or interconnect switch is needed and each processing element acts on
just one part of the wide data bus. This is basically the GPU architecture.

An architectural technique that offers pseudo-multi-porting is shown in Figure 4.19. Here, two
memory banks store the same data. It can be generalised to any number of so-calledmirror copies.
Disjoint loads can happen in parallel, but the stores update all copies simultaneously. This increases
the read but not the write bandwidth. However, sincemost data are readmore often thanwritten, it
works. The advantage of this scheme is that fewer physical ports are needed for eachmemory bank.
On the other hand, the obvious disadvantage is the area and power overhead of requiringmultiple
memory banks, since the number of memory banks is proportional to the number of read ports
required.

RDATA0

RDATA1

WDATA0

ADDR
wen
enMUX

ADDR0

ADDR1
WDATA1

Arbiter
wen0

en0

wen1
en1

ack0
ack1

clk

PO
R

T-
0

PO
R

T-
1

RAM0

RAM 1
WDATA

ADDR
wen
en

WDATA

Figure 4.19 Pseudo-dual porting of RAM (using write mirroring)

One disadvantage is that arbitration is required, which in turnmeans that an acknowledgement
reverse handshake is required, as illustrated. This introduces a level of timing crosstalk between the
ports, which does not arise with actual dual porting andwhichmay be a problem for hard real-time

178

Chapter 4 | SystemDesign Considerations

systems. An alternative approach uses static time-divisionmultiplexing or several successivememory
accesses in a single cycle. However, these approaches are possible only if cache access is much faster
than the clock cycle. This is usually not the case, and hence, this method is not scalable tomultiple
ports. Real dual porting is sometimesmore suitable for clock-domain crossing, especially if high-level
protocols avoid read/write clashes on a common location such that no low-level mechanisms are
needed to provide a specific resolution semantic.

Design Trade-offs in a DRAMController
As described in Section 2.6.6, addresses are sent over a DRAM channel in two halves: row then
column. DRAM is slow to access and certainly does not provide random access comparedwith
on-chip RAM. Amodern PCmight take 100 to 300 CPU clock cycles to access a random location of
DRAM since the CPUmay clock considerably faster than theDRAM.However, the ratio is often not as
severe in embedded systems that use slower system clocks. Nonetheless, it is nearly always helpful to
put at least one level of DRAM caching on a SoC. This can be associated with CPU cores or part of the
memory controller or bothmay be used.

ADRAM/dynamicmemory controller (DMC) sequences the operations on a DRAM channel. The
DMC controller may have embedded error detection or correction logic using additional bit lanes in
the DRAM. Caches will access the DRAM in localised bursts, saving or filling a cache line, and hence,
cache lines are always arranged to lie within a DRAM row. The controller will keepmultiple DRAM
pages open at once to exploit spatio-temporal access locality. The high random-access latency and
writeback overhead of DRAM requires a bank-closing policy in whichmainstream controllers look
ahead in a pool of pending requests to assist in deciding when to close a row. Closing a row is also
known as closing a page or deactivation. It is normal to prioritise reads over writes, but for data
consistency, overtakingmust be avoided. Alternatively, reads can be served from thewrite queue.
However, a new request in a previously open line could arrive just after the controller closes it. An
open-page policy does not write back after the last apparent operation on a row has been processed.
It keeps the bank open in case another operation on that row shortly arrives, up to a timeout duration.
A closed-page policywrites back when there is no work to do. This allows precharging of the bit lines
and reduces the latency of the next operation to use that bank. It is best if clients can tolerate
responses out of order and hence, the interconnect must support tagged transactions (Section 3.1.4).
In reality, DRAMbanks are often partitioned into bank groups. Within a bank group, power supply
and noise issues dictate additional timing constraints on successive operations, which is a further
dimension to be considered in access scheduling.

DRAMenergy use is discussed in the chapter on ESL, Chapter 5. Amajor use of energy is for the static
power in the high-speed PCB driving and receiving pads. These pads are collectively called theDRAM
physical interface (PHY). Each row activation, deactivation, data transfer or refresh consumes a
quanta of dynamic energy.

Figure 4.20 shows the structure and board-level nets for a 32-bit DRAM channel. Four separate
column address select (CAS) nets are used so that writes to individual byte lanes are possible. For
large DRAMarrays, there will also bemultiple row address select (RAS) lines that serve as the rank

179

Modern SoCDesign

DRAM chips (8 x 4 bits)

N-Way
Bridge/Mux

Data RAM

I/O
Pads

SoC chip boundary PCB

Address
Data
RAS
CAS
Write

D0-3 D4-7

D8-11 D12-15

D16-19 D20-23

D24-27
MA0..11
D28-31

RAS
CAS3

WE

MA0..10

RAS

D0.31

BK0..2

CAS0..3

Address

Read Data

Write Data

A
R
W

A
R
W

A
R
W

8 x 2**12 x 2**12 * 4 = 512 Mbyte

WEBanks
open

scoreboard

BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS2

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS1

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS0

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS3

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS2

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS1

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS0

WE
BK0..2 Bank

RAS/CAS
protocol
controller

Cache
or

work queue

Ta
g

R
AM

DRAM controller

Interleave
configuration

Timer
configuration
eg 11-11-11

Wiring

Wiring

Figure 4.20 Typical structure of a 32-bit DRAM controller connected to DRAM devices. The on-SoC controller manages a DRAM channel with one rank
made of eight individual DRAM chips. Each chip has eight banks with four bit planes. Each bit plane has 212×212 bits. A DRAM is typically made available
to various on-SoC subsystems using a multi-way bus multiplexor

address decode. These help to save power by not sending a RAS to devices that will not be given a
following CAS. The controller essentially has two halves. The left half keeps track of outstanding work
and caches recent results. The right half keeps track of which rows are open in each bank using a
scoreboard and generates carefully timed control-signal waveforms. Amodern DRAM controller has
an elaborate boot-up procedure that involves:

if present, reading data from an on-DIMM serial presence detect (SPD)ROM that contains the
electronic data sheet for the device

setting the supply voltage and data clock frequency

calibrating clock and data lines by configuring programmable delay lines and termination
impedances

setting upmany internal registers inside the DRAMdevices that control the burst addressing and
modewrapping policy

implementing specific RAS-to-CAS latencies andmany other timing details including writeback
(precharge) times

180

Chapter 4 | SystemDesign Considerations

setting up hardware timers tomeet the refresh rate targets.

Given the complexity of the task, a controller may have a tiny CPU to interrogate SPD device data and
gets the DRAMoperating before themain SoC bootloader starts.

In the worst case, the DRAM refresh overhead has a 1 or 2 per cent impact on bus throughput. For
example, if 1024 refresh cycles are needed over a 4ms interval, then a refresh operation is needed on
average every 4 µs. This might take 100 clock cycles or so. However, as long as each row is refreshed
at some point in a 2ms slotted timewindow, the specification is met. Most refresh operations can be
slotted in when no other commands need to be issued.

Given themulti-level address structure of a DRAM, which has fields row, column, bank, rank and
channel, another design consideration is how a physical address is mapped to the various physical bits
making up these fields. This alters how thememory layout affects performance. Most DRAM
controllers are programmable in terms of this physical address interleave. A baseline example, shown
in Figure 4.21(a), starting with themost significant bit in the physical address space, uses the order:
row, bank, column, burst offset and byte lane. The fields channel and rank, if present, are themost
significant. The field byte lane is always at the bottom, as defined for a byte-addressedmemory
space. For the spatial locality, burst offsetmust come next and columnmust be lower than row.
However, having bank lower than column allows interleaving of accesses to open pages, which is
sensible when the systemworkload has a large amount of activity localised to one large area. In
arrangement (b), bank has beenmoved as low as it can gowithout disrupting cache lines and burst
transfers. On the other hand, having bank higher canmake sense if the system has various concurrent
active hot spots, such as is typical with heap, stack, code and static segments.

Rank (2) Column (11) Byte lane (3)Bank (3)Row (14)

023131416173133 32 30

Rank (2) Lo col (2) Byte lane (3)Bank (3)Row (14)

0234516173133 32 30

Hi column (9)

78

Rank (2) Row (14)

193435 32

C1C2 C0

Chan

35

Chan

35

Lo col (2) Byte lane (3)Bank (3)

0234517

Hi column (9)

79

a)

b)

c)

Figure 4.21 Three possible arrangements of DRAM address fields within a physical address. In the centre arrangement (b), the bank field is lower than its
naive position in the top arrangement (a). This improves load balancing over banks, but the field is not moved so low that a cache line or burst transfer is split
over banks. The rank and channel fields can also be moved lower. Arrangement (c) shows a channel field that has been split and dispersed

If rank and channel are also present, there aremore options! Due to spatial locality in access
patterns, address bit behaviour becomes increasingly correlated as the bit number increases.
Arrangement (c) shows oneway of spreading out some of the channel bits. There is a further
discussion in Section 6.9.1. Using virtual memory (VM) and its pagemanagement policy, the operating

181

Modern SoCDesign

DRAM chips (8 x 4 bits)

N-Way
Bridge/Mux

Data RAM

I/O
Pads

SoC chip boundary PCB

Address
Data
RAS
CAS
Write

D0-3 D4-7

D8-11 D12-15

D16-19 D20-23

D24-27
MA0..11
D28-31

RAS
CAS3

WE

MA0..10

RAS

D0.31

BK0..2

CAS0..3

Address

Read Data

Write Data

A
R
W

A
R
W

A
R
W

8 x 2**12 x 2**12 * 4 = 512 Mbyte

WEBanks
open

scoreboard

BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS2

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS1

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS0

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS3

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS2

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS1

WE
BK0..2 Bank

Address
Data
RAS
CAS
Write

MA0..11

RAS
CAS0

WE
BK0..2 Bank

RAS/CAS
protocol
controller

Cache
or

work queue

Ta
g

R
AM

DRAM controller

Interleave
configuration

Timer
configuration
eg 11-11-11

Wiring

Wiring

Figure 4.20 Typical structure of a 32-bit DRAM controller connected to DRAM devices. The on-SoC controller manages a DRAM channel with one rank
made of eight individual DRAM chips. Each chip has eight banks with four bit planes. Each bit plane has 212×212 bits. A DRAM is typically made available
to various on-SoC subsystems using a multi-way bus multiplexor

address decode. These help to save power by not sending a RAS to devices that will not be given a
following CAS. The controller essentially has two halves. The left half keeps track of outstanding work
and caches recent results. The right half keeps track of which rows are open in each bank using a
scoreboard and generates carefully timed control-signal waveforms. Amodern DRAM controller has
an elaborate boot-up procedure that involves:

if present, reading data from an on-DIMM serial presence detect (SPD)ROM that contains the
electronic data sheet for the device

setting the supply voltage and data clock frequency

calibrating clock and data lines by configuring programmable delay lines and termination
impedances

setting upmany internal registers inside the DRAMdevices that control the burst addressing and
modewrapping policy

implementing specific RAS-to-CAS latencies andmany other timing details including writeback
(precharge) times

180

Chapter 4 | SystemDesign Considerations

setting up hardware timers tomeet the refresh rate targets.

Given the complexity of the task, a controller may have a tiny CPU to interrogate SPD device data and
gets the DRAMoperating before themain SoC bootloader starts.

In the worst case, the DRAM refresh overhead has a 1 or 2 per cent impact on bus throughput. For
example, if 1024 refresh cycles are needed over a 4ms interval, then a refresh operation is needed on
average every 4 µs. This might take 100 clock cycles or so. However, as long as each row is refreshed
at some point in a 2ms slotted timewindow, the specification is met. Most refresh operations can be
slotted in when no other commands need to be issued.

Given themulti-level address structure of a DRAM, which has fields row, column, bank, rank and
channel, another design consideration is how a physical address is mapped to the various physical bits
making up these fields. This alters how thememory layout affects performance. Most DRAM
controllers are programmable in terms of this physical address interleave. A baseline example, shown
in Figure 4.21(a), starting with themost significant bit in the physical address space, uses the order:
row, bank, column, burst offset and byte lane. The fields channel and rank, if present, are themost
significant. The field byte lane is always at the bottom, as defined for a byte-addressedmemory
space. For the spatial locality, burst offsetmust come next and columnmust be lower than row.
However, having bank lower than column allows interleaving of accesses to open pages, which is
sensible when the systemworkload has a large amount of activity localised to one large area. In
arrangement (b), bank has beenmoved as low as it can gowithout disrupting cache lines and burst
transfers. On the other hand, having bank higher canmake sense if the system has various concurrent
active hot spots, such as is typical with heap, stack, code and static segments.

Rank (2) Column (11) Byte lane (3)Bank (3)Row (14)

023131416173133 32 30

Rank (2) Lo col (2) Byte lane (3)Bank (3)Row (14)

0234516173133 32 30

Hi column (9)

78

Rank (2) Row (14)

193435 32

C1C2 C0

Chan

35

Chan

35

Lo col (2) Byte lane (3)Bank (3)

0234517

Hi column (9)

79

a)

b)

c)

Figure 4.21 Three possible arrangements of DRAM address fields within a physical address. In the centre arrangement (b), the bank field is lower than its
naive position in the top arrangement (a). This improves load balancing over banks, but the field is not moved so low that a cache line or burst transfer is split
over banks. The rank and channel fields can also be moved lower. Arrangement (c) shows a channel field that has been split and dispersed

If rank and channel are also present, there aremore options! Due to spatial locality in access
patterns, address bit behaviour becomes increasingly correlated as the bit number increases.
Arrangement (c) shows oneway of spreading out some of the channel bits. There is a further
discussion in Section 6.9.1. Using virtual memory (VM) and its pagemanagement policy, the operating

181

Modern SoCDesign

system can freely redistribute the top bits. For the lower address bits that form the offset within a VM
page, it is possible to use a hardware XOR-based function to whiten the row access patterns.

4.6 SoC EnergyMinimisation
Amobile phone battery typically has a capacity of around 10Wh (watt-hours), which is 36 kJ. Energy
in an electronic device gets used in several different ways. For amobile phone, wemight see the
following budget:

screen backlight: 1 to 2W

RF transmissions via the various transmit antennae: up to 4W

sound and vibrations through the speaker and little shakermotor: 200mW

heat wasted in the electronics: up to 5W.

Battery life is very important for portable devices. In data centres, electricity is used both for power
and heat extraction, and generally, the electricity bill is the biggest operating cost. Saving energy in
computing is always a good idea. In this section, wewill examine how digital logic uses energy and how
it can be saved.

4.6.1 Power, Resistance and Capacitance
Figure 4.22(a) shows a battery pack for amobile phone. Strictly, this is not a battery since it has only
one cell, though it contains other components as well. If the external terminals are accidentally
shorted, a fuse prevents excessive heat or fire. A small-valued series resistor acts as a current shunt
for measuring the charge and discharge currents. The voltage across this resistor is measuredwith an
amplifier in the associated batterymonitor electronics. The amount of energy remaining in the
battery is computed bymeasuring the terminal voltage and integrating the charge and discharge
currents over time. Extra electricity applied to a fully charged cell just creates heat. This condition is
detected by the thermistor, whose resistance varies with the temperature of the battery. Being fully
charged serves as a boundary condition, which eliminates the arbitrary constant arising from
integration over an indefinite period. A complete history of charge and discharge operationsmay also
be stored to assess battery ageing and to trim the charge state estimator function that is based on the
terminal voltage. The external battery state indication (BSI) connections enable the charge status to
be read remotely by the portable device. A battery also typically contains a data sheet in internal
ROM that identifies the batterymodel and its characteristics.

When electricity is consumed, the power law, P=VI, states that the power in watts is equal to the
supply voltage (volts) multiplied by the supply current (amps). Power is defined as the rate of energy
use and 1W is 1 J/s. Also, 1 J of energy is 1C of charge dropping 1V in potential. For the battery
illustrated, the terminal voltage is 3.7V and the capacity is quoted as 1650mAh, which is equivalent

182

Chapter 4 | SystemDesign Considerations

Current
I (amps)

Li-Ion battery 3.7 volts

External load
resistor

(eg) 100 ohms

Shunt resistor
(eg) 0.002 ohms

Battery
monitor

Fuse

BSI-Clk

BSI-Data

Cell

Therm
istor

Figure 4.22 (a) Lithium-ion battery for a mobile phone (3.7 V, 1650mAh, 6Wh or 22 kJ), external view. (b) Typical internal structure. (c) Two sugar cubes

to 3.7×3600×1.65=22 kJ of energy. For comparison, two standard 4-gram sugar cubes have 32 kcal
of energy, which is about 134 kJ (Figure 4.22(c)).

If a load resistor of 100Ω is applied, as shown,Ohm’s law gives the external current as
I=V/R=3.7/100, which is 37mA. The power being used is 37×3.7=140mWor 140mJ/s and the
battery life is 22×103/(0.14×3600)=45hours, which is nearly 2 days.

Power can also be expressed as P= Ef, where E is the amount of energy used in an event and f is the
frequency of that event. For synchronous digital electronics using CMOS, the event of interest is the
active clock edge. In transaction-levelmodelling (Chapter 5), we assign energy use to each transaction.
Our power estimate is then the sum of all the transaction energies divided by the runtime, which is
also the energy of each transactionmultiplied by the average frequency at which it takes place.

4.6.2 Dynamic Energy andDynamic Power
Power use in digital electronics can be partitioned into static power use and dynamic power use.
Dynamic power is defined to be the electricity usage rate that arises in proportion to how often a net
changes state. The static power is the remainder: it is unaffected by net-level activity. In modern
CMOS devices, dynamic power tends to exceed static power by a factor of 3 or 4, but the ratio can
sometimes bemuch higher by several orders of magnitude. The high-ratio scenario used to be the
only design point for mainstreamCMOS technology, but today that design point is used only in
specialised low-leakage, low-frequency CMOS technologies that are targeted at long-lifetime,
battery-powered applications.

Figure 4.23 is an electrical equivalent circuit for modelling the dynamic power of a CMOS SoC. A
switch is used to alternately charge and discharge a capacitor through a resistor. On both the charge
and discharge halves of the cycle, the resistor dissipates energy as heat. The resistance R partly
determines the time constant τ=CR. If the time constant is sufficiently shorter than the switching
cycle, τ�1/f, the capacitor will become fully charged and discharged in each cycle. The energy
dissipated on discharge is the energy in the capacitor, which is E=CV2/2. By symmetry, the energy
dissipated in the resistor during the charge phase is the same amount, so the total energy use per
cycle is CV2. The power used is P= fE= fCV2. In a real SoC, not all of the nets change state every clock

183

Modern SoCDesign

system can freely redistribute the top bits. For the lower address bits that form the offset within a VM
page, it is possible to use a hardware XOR-based function to whiten the row access patterns.

4.6 SoC EnergyMinimisation
Amobile phone battery typically has a capacity of around 10Wh (watt-hours), which is 36 kJ. Energy
in an electronic device gets used in several different ways. For amobile phone, wemight see the
following budget:

screen backlight: 1 to 2W

RF transmissions via the various transmit antennae: up to 4W

sound and vibrations through the speaker and little shakermotor: 200mW

heat wasted in the electronics: up to 5W.

Battery life is very important for portable devices. In data centres, electricity is used both for power
and heat extraction, and generally, the electricity bill is the biggest operating cost. Saving energy in
computing is always a good idea. In this section, wewill examine how digital logic uses energy and how
it can be saved.

4.6.1 Power, Resistance and Capacitance
Figure 4.22(a) shows a battery pack for amobile phone. Strictly, this is not a battery since it has only
one cell, though it contains other components as well. If the external terminals are accidentally
shorted, a fuse prevents excessive heat or fire. A small-valued series resistor acts as a current shunt
for measuring the charge and discharge currents. The voltage across this resistor is measuredwith an
amplifier in the associated batterymonitor electronics. The amount of energy remaining in the
battery is computed bymeasuring the terminal voltage and integrating the charge and discharge
currents over time. Extra electricity applied to a fully charged cell just creates heat. This condition is
detected by the thermistor, whose resistance varies with the temperature of the battery. Being fully
charged serves as a boundary condition, which eliminates the arbitrary constant arising from
integration over an indefinite period. A complete history of charge and discharge operationsmay also
be stored to assess battery ageing and to trim the charge state estimator function that is based on the
terminal voltage. The external battery state indication (BSI) connections enable the charge status to
be read remotely by the portable device. A battery also typically contains a data sheet in internal
ROM that identifies the batterymodel and its characteristics.

When electricity is consumed, the power law, P=VI, states that the power in watts is equal to the
supply voltage (volts) multiplied by the supply current (amps). Power is defined as the rate of energy
use and 1W is 1 J/s. Also, 1 J of energy is 1C of charge dropping 1V in potential. For the battery
illustrated, the terminal voltage is 3.7V and the capacity is quoted as 1650mAh, which is equivalent

182

Chapter 4 | SystemDesign Considerations

Current
I (amps)

Li-Ion battery 3.7 volts

External load
resistor

(eg) 100 ohms

Shunt resistor
(eg) 0.002 ohms

Battery
monitor

Fuse

BSI-Clk

BSI-Data

Cell

Therm
istor

Figure 4.22 (a) Lithium-ion battery for a mobile phone (3.7 V, 1650mAh, 6Wh or 22 kJ), external view. (b) Typical internal structure. (c) Two sugar cubes

to 3.7×3600×1.65=22 kJ of energy. For comparison, two standard 4-gram sugar cubes have 32 kcal
of energy, which is about 134 kJ (Figure 4.22(c)).

If a load resistor of 100Ω is applied, as shown,Ohm’s law gives the external current as
I=V/R=3.7/100, which is 37mA. The power being used is 37×3.7=140mWor 140mJ/s and the
battery life is 22×103/(0.14×3600)=45hours, which is nearly 2 days.

Power can also be expressed as P= Ef, where E is the amount of energy used in an event and f is the
frequency of that event. For synchronous digital electronics using CMOS, the event of interest is the
active clock edge. In transaction-levelmodelling (Chapter 5), we assign energy use to each transaction.
Our power estimate is then the sum of all the transaction energies divided by the runtime, which is
also the energy of each transactionmultiplied by the average frequency at which it takes place.

4.6.2 Dynamic Energy andDynamic Power
Power use in digital electronics can be partitioned into static power use and dynamic power use.
Dynamic power is defined to be the electricity usage rate that arises in proportion to how often a net
changes state. The static power is the remainder: it is unaffected by net-level activity. In modern
CMOS devices, dynamic power tends to exceed static power by a factor of 3 or 4, but the ratio can
sometimes bemuch higher by several orders of magnitude. The high-ratio scenario used to be the
only design point for mainstreamCMOS technology, but today that design point is used only in
specialised low-leakage, low-frequency CMOS technologies that are targeted at long-lifetime,
battery-powered applications.

Figure 4.23 is an electrical equivalent circuit for modelling the dynamic power of a CMOS SoC. A
switch is used to alternately charge and discharge a capacitor through a resistor. On both the charge
and discharge halves of the cycle, the resistor dissipates energy as heat. The resistance R partly
determines the time constant τ=CR. If the time constant is sufficiently shorter than the switching
cycle, τ�1/f, the capacitor will become fully charged and discharged in each cycle. The energy
dissipated on discharge is the energy in the capacitor, which is E=CV2/2. By symmetry, the energy
dissipated in the resistor during the charge phase is the same amount, so the total energy use per
cycle is CV2. The power used is P= fE= fCV2. In a real SoC, not all of the nets change state every clock

183

Modern SoCDesign

C

R

A

B
Battery

V volts

Switch

Resistor
Capacitor

Ground

Figure 4.23 Lumped-element electrical equivalent modelling of dynamic power use of a CMOS SoC. The energy drawn from the battery each clock cycle is
essentially ‘wasted’ as heat in the distributed resistance of the active parts of the SoC

cycle: some parts of the chipmay be in power-downmode and other parts may be switched on but not
doing anything. So, in this electrical equivalent circuit, the switchmodels the system clock and the
capacitor models the average amount of capacitance that is discharged each clock cycle. The general
rule is that energy use is proportional to clock frequency and quadratically proportional to supply
voltage. This second effect is the primarymotivation for moving digital systems from the 5-V supplies
used between 1950 and 2000 to the lower voltages (e.g. 1.1V) used today. Also, note, somewhat
counter-intuitively, that the energy used does not depend on the value of the resistance. In reality, the
resistor is the effective sum of resistive effects in the wiring and the transistors. Both forms of
resistor are illustrated in Figure 4.24.

P

Ground

VDD

Wiring
and

input load
capacitance

Net resistance

N

Channel resistance

Channel leakage

Channel leakage

Figure 4.24 A generic CMOS invertor structure shown with explicit parasitic resistances and lumped-equivalent output loading. This illustrates the primary
electric paths in CMOS logic

Second and less-significant contributors to dynamic power use are short-circuit currents. These are
also known as crowbar currents (named after the so-called crowbar power protectionmechanism
that permanently shorts the power rails with a heavy-duty thyristor under error conditions). A
short-circuit path is visible in Figure 4.24. The short-circuit current flows directly from the supply to

184

Chapter 4 | SystemDesign Considerations

ground at any time that both the P andN transistors are simultaneously conducting. In CMOS, this
theoretically never happens: one or the other transistor is off at any instant. In reality, the transistors
are not digital switches that are either on or off; they are analogue amplifiers that gradually transition
between strongly conducting and very weakly conducting. When the input voltage is between logic
levels, both transistors are partially conducting and the so-called short-circuit current flows. Every
time the input net transitions, it passes through an intermediate voltage. This can be especially bad
with tri-state busses, which, in a basic design, are floating when not being used and can float to an
intermediate voltage causing significant short-circuit currents. Tri-state busses are normally totally
avoided inmodern SoC designs. If they are used, the floating statemust be avoided using a bus holder
on each net (also known as a bus keeper). A typical bus holder structure is shown in Figure 4.25. A
reset-set (RS) latch is connected to each tri-state data line. An RS latch has a very weak output drive,
due to its implementation, which uses small transistors, and so is simply overriddenwhen one of the
primary drivers controls the bus line. Of course, there is still a small short-circuit current each time
the bus holder’s weak drive is overcome, but, if the transistors are optimised for speed, this is much
lower than the short-circuit current possible in one of the sensing buffers.

Bus line

Bus holder
Tri-state

driver
Tri-state

driver
Buffers liable to high
short-circuit currents

w

Figure 4.25 A tri-state data line showing driving gates, sensing buffers and a bus holder (or keeper). The bus holder has a weak output driver, denoted ‘W’,
which acts like a series resistor to reduce the output current during transient bus fights (Section 1.1.2)

Clearly, the dynamic power used by a net depends on its activity factors, such as the probability of
being at logic one and its toggle rate. For a synchronous system, the toggle rate is the fraction of clock
cycles onwhich it changes value. Themaximum toggle rate for a flip-flop output is 100 per cent, but a
flip-flop that changes to a new, uniform random value every clock cycle has a toggle rate of 50 per
cent. The clock net itself has a toggle rate of 200 per cent and figures above 100 per cent are also
possible for double-data rate busses, as used for DDRDRAM. Simulators canmeasure activity factors
and report them in a switching activity interchange format (SAIF) file (Section 5.6.1), which can be
imported into a powermodelling tool.

4.6.3 Static Power Use
Figure 4.24 also shows the two leakage paths, indicated by the channel leakage parasitic resistors. A
transistor that is supposedly off still conducts to some extent. The current it carries is called static
leakage current. P andN transistors typically have the same off-resistance, so the same static current
passes regardless of the dynamic state or amount of dynamic activity in the circuit. The first
generations of CMOS technology had exceptionally low leakage currents; thus, static power
consumption could be neglected during design. They used relatively large transistors and supply
voltages in the 5–15V range. However, as noted earlier, the V2 term for dynamic energy has
motivated significant reductions in supply voltage. Lower voltagesmean that an off transistor is less

185

Modern SoCDesign

C

R

A

B
Battery

V volts

Switch

Resistor
Capacitor

Ground

Figure 4.23 Lumped-element electrical equivalent modelling of dynamic power use of a CMOS SoC. The energy drawn from the battery each clock cycle is
essentially ‘wasted’ as heat in the distributed resistance of the active parts of the SoC

cycle: some parts of the chipmay be in power-downmode and other parts may be switched on but not
doing anything. So, in this electrical equivalent circuit, the switchmodels the system clock and the
capacitor models the average amount of capacitance that is discharged each clock cycle. The general
rule is that energy use is proportional to clock frequency and quadratically proportional to supply
voltage. This second effect is the primarymotivation for moving digital systems from the 5-V supplies
used between 1950 and 2000 to the lower voltages (e.g. 1.1V) used today. Also, note, somewhat
counter-intuitively, that the energy used does not depend on the value of the resistance. In reality, the
resistor is the effective sum of resistive effects in the wiring and the transistors. Both forms of
resistor are illustrated in Figure 4.24.

P

Ground

VDD

Wiring
and

input load
capacitance

Net resistance

N

Channel resistance

Channel leakage

Channel leakage

Figure 4.24 A generic CMOS invertor structure shown with explicit parasitic resistances and lumped-equivalent output loading. This illustrates the primary
electric paths in CMOS logic

Second and less-significant contributors to dynamic power use are short-circuit currents. These are
also known as crowbar currents (named after the so-called crowbar power protectionmechanism
that permanently shorts the power rails with a heavy-duty thyristor under error conditions). A
short-circuit path is visible in Figure 4.24. The short-circuit current flows directly from the supply to

184

Chapter 4 | SystemDesign Considerations

ground at any time that both the P andN transistors are simultaneously conducting. In CMOS, this
theoretically never happens: one or the other transistor is off at any instant. In reality, the transistors
are not digital switches that are either on or off; they are analogue amplifiers that gradually transition
between strongly conducting and very weakly conducting. When the input voltage is between logic
levels, both transistors are partially conducting and the so-called short-circuit current flows. Every
time the input net transitions, it passes through an intermediate voltage. This can be especially bad
with tri-state busses, which, in a basic design, are floating when not being used and can float to an
intermediate voltage causing significant short-circuit currents. Tri-state busses are normally totally
avoided inmodern SoC designs. If they are used, the floating statemust be avoided using a bus holder
on each net (also known as a bus keeper). A typical bus holder structure is shown in Figure 4.25. A
reset-set (RS) latch is connected to each tri-state data line. An RS latch has a very weak output drive,
due to its implementation, which uses small transistors, and so is simply overriddenwhen one of the
primary drivers controls the bus line. Of course, there is still a small short-circuit current each time
the bus holder’s weak drive is overcome, but, if the transistors are optimised for speed, this is much
lower than the short-circuit current possible in one of the sensing buffers.

Bus line

Bus holder
Tri-state

driver
Tri-state

driver
Buffers liable to high
short-circuit currents

w

Figure 4.25 A tri-state data line showing driving gates, sensing buffers and a bus holder (or keeper). The bus holder has a weak output driver, denoted ‘W’,
which acts like a series resistor to reduce the output current during transient bus fights (Section 1.1.2)

Clearly, the dynamic power used by a net depends on its activity factors, such as the probability of
being at logic one and its toggle rate. For a synchronous system, the toggle rate is the fraction of clock
cycles onwhich it changes value. Themaximum toggle rate for a flip-flop output is 100 per cent, but a
flip-flop that changes to a new, uniform random value every clock cycle has a toggle rate of 50 per
cent. The clock net itself has a toggle rate of 200 per cent and figures above 100 per cent are also
possible for double-data rate busses, as used for DDRDRAM. Simulators canmeasure activity factors
and report them in a switching activity interchange format (SAIF) file (Section 5.6.1), which can be
imported into a powermodelling tool.

4.6.3 Static Power Use
Figure 4.24 also shows the two leakage paths, indicated by the channel leakage parasitic resistors. A
transistor that is supposedly off still conducts to some extent. The current it carries is called static
leakage current. P andN transistors typically have the same off-resistance, so the same static current
passes regardless of the dynamic state or amount of dynamic activity in the circuit. The first
generations of CMOS technology had exceptionally low leakage currents; thus, static power
consumption could be neglected during design. They used relatively large transistors and supply
voltages in the 5–15V range. However, as noted earlier, the V2 term for dynamic energy has
motivated significant reductions in supply voltage. Lower voltagesmean that an off transistor is less

185

Modern SoCDesign

off than it was with higher voltages (see Eq (4.1) in Section 4.6.6) and hence, has higher leakage. With
modern technology, a trade-off exists in the choice of dopant levels and other aspects of transistor
geometry. These affect the threshold voltage VT for transistor switching. This is the smallest gate
voltage at which (additional) current starts to flow in a straightforward, enhancement-mode
field-effect transistor (FET) (beyond the leakage current). In the simple switch view of a FET, when the
gate voltage is above this level (for an N-type transistor), the device is on andwhen below, it is off. The
logic swingmust comfortably exceed the threshold voltage. With lower supply voltages, lower
threshold transistors must be used. However, a low thresholdmeans the transistors are less turned
off when they are supposed to be off; hence, there is higher leakage. A higher thresholdmeans the
input must swing further up before the transistor turns on, which is poor switching performance and
hence, there are longer logic delays. Equivalent arguments apply to the on-resistance; a lower
on-resistance overcomes the load capacitancemore easily, resulting in faster logic, but larger or faster
transistors leakmore.

A large number of techniques have been used to tackle the leakage versus performance trade-off. A
simple approach is to use a single design point over the whole SoC and aim for static power to be
about half as much as dynamic power. This is becoming less attractive, since it rapidly encounters
dark silicon constraints (Section 8.2). Amainstream approach is to use two different transistor
designs. Low-threshold, leaky transistors are used on the critical paths (Section 4.4.2). These switch
fastest. Slower transistors with less leakage are used elsewhere. This is a static approach; these
transistors aremanufacturedwith different geometries and dopant levels. Other techniques are
dynamic, such as partial power gating (Section 4.6.10) and dynamic body bias (Section 4.6.10).

4.6.4 Wiring and CapacitanceModelling
Capacitance1 is caused by two conductors being close to each other. Capacitance is increased beyond
what would occur in a vacuum due to the relative permittivity of the surroundingmaterial ϵr. The
wiring capacitance for a pair of conductors with radius a and separation d is given by

C= πϵ0ϵr
cosh−1(d/2a)

in farads per metre (F/m). For VLSI nets for which the spacing is the same as their width (i.e. d≈ a), the
denominator is unity. If the insulator is silicon dioxide (ϵr ≈4), as used in VLSI, the capacitance is
roughly 100pF/m. At sub-centimetre chip dimensions, expressing this in units of 0.1 pF/mmor
0.1 fF/µm per net is more useful. If capacitance arises unintentionally, we refer to it, interchangeably,
as stray or parasitic capacitance. Capacitance negatively contributes to both energy use and delay
performance. Detailed analogue simulations that include capacitance and the transfer characteristics
of a transistor are used to study circuit performance. An example using SPICE is presented in
Section 4.6.7. However, this level of modelling is slow to run and unnecessary. The basic behaviour of
digital logic can be adequately understood by lumping all the capacitive effects and then all the delay
effects. These lumped figures are then used in simple formulae that also contain detailed derating

1. Strictly speaking, we are referring tomutual capacitance.

186

Chapter 4 | SystemDesign Considerations

factors that have been carefully analysed for the nine PVT corners. The PVT corners relate to a
cuboid space defined by variations in wafer processing, supply voltage and operating temperature
(Section 8.4.4). This space has eight corners and the ninth point (or corner) is the nominal operating
point in the centre of the cube.

Both the power consumption and effective delay of a gate driving a net dependmainly on the length
of the net being driven.

Parasitic
input

capacitance

Track to substrate
capacitance proportional
to total track length (area)

Driving
Gate

Driven
gates

A

B

C

D

E

Figure 4.26 Logic net with a single source and three loads, showing tracking and input load capacitances

In CMOSVLSI, themain sources of capacitance are between the gate and channel of a FET and
between a net and other nets in the wiring. Figure 4.26 shows a typical net that connects a source
gate to three load gates. To change the voltage on the net, the sourcemust overcome the net’s stray
capacitance and the input load capacitance. The fanout of a gate is the number of devices that its
output feeds. (The fanout is three in the figure.) The gate will normally come from a standard cell
library (Section 8.4.1). The net’s stray capacitance is the track-to-substrate capacitance, which is a
library constant times the track area. For constant-width nets, the area is proportional to length.
Precise track lengths are known only after placing and routing. As shown in Figure 1.13, this
information can be fed back into a high-level model in a back-annotated post-layout simulation
(Section 8.7.4). Before synthesis or before layout, tools can predict net lengths fromRent’s rule and
RTL-level heuristics (Section 5.6.6). The load-dependent part is the sum of the input loads of all the
devices being fed. These do not depend on the layout and so can be determined earlier in the
back-end design flow.

In digital modelling of non-clock nets, the following principal simplifying assumption is commonly
used: All parts of the logic net change potential at exactly the same time. The loading effects are
then all absorbed into the delaymodel of the driving gate. This model is accurate when the output
resistance of a gate is significantly higher than the net track resistance. For example, the points C, D
and E in Figure 4.26 all change from 1 to 0 at the same time. Due to the AND functionality, the
switching instant is a fixed pre-computed delay after either A or B goes from 1 to 0. The driving fixed
device delay is computedwith a lumping formula:

Device delay= (Intrinsic delay)+ (Output load×Derating factor)

187

Modern SoCDesign

off than it was with higher voltages (see Eq (4.1) in Section 4.6.6) and hence, has higher leakage. With
modern technology, a trade-off exists in the choice of dopant levels and other aspects of transistor
geometry. These affect the threshold voltage VT for transistor switching. This is the smallest gate
voltage at which (additional) current starts to flow in a straightforward, enhancement-mode
field-effect transistor (FET) (beyond the leakage current). In the simple switch view of a FET, when the
gate voltage is above this level (for an N-type transistor), the device is on andwhen below, it is off. The
logic swingmust comfortably exceed the threshold voltage. With lower supply voltages, lower
threshold transistors must be used. However, a low thresholdmeans the transistors are less turned
off when they are supposed to be off; hence, there is higher leakage. A higher thresholdmeans the
input must swing further up before the transistor turns on, which is poor switching performance and
hence, there are longer logic delays. Equivalent arguments apply to the on-resistance; a lower
on-resistance overcomes the load capacitancemore easily, resulting in faster logic, but larger or faster
transistors leakmore.

A large number of techniques have been used to tackle the leakage versus performance trade-off. A
simple approach is to use a single design point over the whole SoC and aim for static power to be
about half as much as dynamic power. This is becoming less attractive, since it rapidly encounters
dark silicon constraints (Section 8.2). Amainstream approach is to use two different transistor
designs. Low-threshold, leaky transistors are used on the critical paths (Section 4.4.2). These switch
fastest. Slower transistors with less leakage are used elsewhere. This is a static approach; these
transistors aremanufacturedwith different geometries and dopant levels. Other techniques are
dynamic, such as partial power gating (Section 4.6.10) and dynamic body bias (Section 4.6.10).

4.6.4 Wiring and CapacitanceModelling
Capacitance1 is caused by two conductors being close to each other. Capacitance is increased beyond
what would occur in a vacuum due to the relative permittivity of the surroundingmaterial ϵr. The
wiring capacitance for a pair of conductors with radius a and separation d is given by

C= πϵ0ϵr
cosh−1(d/2a)

in farads per metre (F/m). For VLSI nets for which the spacing is the same as their width (i.e. d≈ a), the
denominator is unity. If the insulator is silicon dioxide (ϵr ≈4), as used in VLSI, the capacitance is
roughly 100pF/m. At sub-centimetre chip dimensions, expressing this in units of 0.1 pF/mmor
0.1 fF/µm per net is more useful. If capacitance arises unintentionally, we refer to it, interchangeably,
as stray or parasitic capacitance. Capacitance negatively contributes to both energy use and delay
performance. Detailed analogue simulations that include capacitance and the transfer characteristics
of a transistor are used to study circuit performance. An example using SPICE is presented in
Section 4.6.7. However, this level of modelling is slow to run and unnecessary. The basic behaviour of
digital logic can be adequately understood by lumping all the capacitive effects and then all the delay
effects. These lumped figures are then used in simple formulae that also contain detailed derating

1. Strictly speaking, we are referring tomutual capacitance.

186

Chapter 4 | SystemDesign Considerations

factors that have been carefully analysed for the nine PVT corners. The PVT corners relate to a
cuboid space defined by variations in wafer processing, supply voltage and operating temperature
(Section 8.4.4). This space has eight corners and the ninth point (or corner) is the nominal operating
point in the centre of the cube.

Both the power consumption and effective delay of a gate driving a net dependmainly on the length
of the net being driven.

Parasitic
input

capacitance

Track to substrate
capacitance proportional
to total track length (area)

Driving
Gate

Driven
gates

A

B

C

D

E

Figure 4.26 Logic net with a single source and three loads, showing tracking and input load capacitances

In CMOSVLSI, themain sources of capacitance are between the gate and channel of a FET and
between a net and other nets in the wiring. Figure 4.26 shows a typical net that connects a source
gate to three load gates. To change the voltage on the net, the sourcemust overcome the net’s stray
capacitance and the input load capacitance. The fanout of a gate is the number of devices that its
output feeds. (The fanout is three in the figure.) The gate will normally come from a standard cell
library (Section 8.4.1). The net’s stray capacitance is the track-to-substrate capacitance, which is a
library constant times the track area. For constant-width nets, the area is proportional to length.
Precise track lengths are known only after placing and routing. As shown in Figure 1.13, this
information can be fed back into a high-level model in a back-annotated post-layout simulation
(Section 8.7.4). Before synthesis or before layout, tools can predict net lengths fromRent’s rule and
RTL-level heuristics (Section 5.6.6). The load-dependent part is the sum of the input loads of all the
devices being fed. These do not depend on the layout and so can be determined earlier in the
back-end design flow.

In digital modelling of non-clock nets, the following principal simplifying assumption is commonly
used: All parts of the logic net change potential at exactly the same time. The loading effects are
then all absorbed into the delaymodel of the driving gate. This model is accurate when the output
resistance of a gate is significantly higher than the net track resistance. For example, the points C, D
and E in Figure 4.26 all change from 1 to 0 at the same time. Due to the AND functionality, the
switching instant is a fixed pre-computed delay after either A or B goes from 1 to 0. The driving fixed
device delay is computedwith a lumping formula:

Device delay= (Intrinsic delay)+ (Output load×Derating factor)

187

Modern SoCDesign

The output load is the sum of the wiring and gate input capacitances. The derating factor models the
output strength of the driving gate and is taken from the gate’s data sheet. The formulamodel
estimates the delay from the input to a gate, through the internal electronics of a gate, through its
output structure and down the conductor to the input of the successor gates. It effectively has three
terms that are summed:

1. The internal delay of the gate, termed the intrinsic delay.

2. The reduction in speed of the output stage, due to the fanout/loading, termed the derating delay.

3. The propagation delay down the conductor.

For clock nets, whichmust be specially designedwith low skew and known delays, more detailed
techniques are used (Section 4.9.5).

The on-chip net delay depends on the distributed capacitance, inductance and resistance of the
conductor material and the permittivity of the adjacent insulators. A detailed computation, using the
Elmoremodel for nets that feedmore than one destination, was presented in Section 3.1.1. For circuit
board traces, the resistance can be neglected and the delay is just the speed of light in the circuit
boardmaterial. Most PCBs aremade from FR-4 fibreglass, which has a relative permittivity of ϵr ≈4.7,
so the propagation speed is about 1/

�
4.7=0.46c, which is 138m/µs. On the other hand, for the

shorter nets found on a chip, the propagation delay is not a free-standing term in the above formula
and its effects are bundled into the output derating, since a net that is longer has a larger capacitance.

To attain themaximum performance from logic, simplemodels of gate delaymay have over
conservative designmargins. Today, the delay can be characterised additionally by the slew rate of
the arriving signal, as described in Section 8.4.6. Moreover, the resistance of very thin nets, which are
sometimes used in highly dense wiring, contributes to the effective delay. Moreover, if such a net
divides to feedmultiple destinations, the difference in delay down each path can occasionally be
significant. The Elmoremodel is readily applied to each section of such a net to obtain a good delay
estimate at the start of a simulation, but the performance of a net-level simulation is reduced by the
greater number of circuit nodes that require modelling.

4.6.5 Landauer Limit and Reversible Computation
In theory, if a computer does not destroy any information, it can be runwith no energy. A computation
that does not destroy information is called a reversible calculation, since the input data can be
recreated from the output data. Conventional computer programs are not structured in this way. For
example, once the average value of a list has been computed, thememory holding that list is typically
overwritten with new data and used for something else.

There are theoretical limits on the energy that an irreversible computation requires. However, the
current technology is a long way from these limits in two respects:

188

Chapter 4 | SystemDesign Considerations

1. We use toomuch energy representing and communicating bits.

2. We use vonNeumann-based computation, whichmoves data to a centralised ALU, a design that
does not scale well (Section 6.4).

Consider electrical computers:

If a computer is built using a network of standard components (such as transistors) and the
interconnection pattern expresses the design intent, then the components must be at different
spatial locations. The computer will have some physical volume.

If the components are connected using electrical wires, these nets have capacitance, resistance and
inductance that stop them behaving like ideal conductors. The smaller the volume, the less wire we
need and the better the nets (and hence, computer) will work.

If transistors are used that need a swing of about 0.7V on their gates to switch them reliably
between off and on, then the nets need tomove through at least that much potential difference.

As explained (Section 4.6.2), the capacitance of the nets is our main enemy. Given a prescribed
minimum voltage swing, the energy used by switching awire between logic levels can bemade smaller
only by reducing its area and hence, capacitance. Hence, smaller computers are always better.

One Arm Cortex A9 instruction

One Xilinx Virtex-7 25x18 Multiplier

One 32-bit addition

Single gate with 10 um output net

1mm net switching 1V

Landauer erasure limit (0.017 eV)

-9

-12

-15

-18

-21

Log base 10
Energy

(joules)

pJ

nJ

fJ

aJ

One DRAM row activation

One 36-bit BRAM read Recent Si technology
28 nm silicon
1 Volt supply
(except 2.5V DRAM)

(Landauer limit is technology independent)

1eV

zJ

10um net switching 10mV

Future technology

 ... to be invented ...

Figure 4.27 Dynamic energy use for various technologies

Landauer worked out theminimum energy use per bit [2], in theory, for a computer that deletes data
as it goes (e.g. erasing the old contents of a register when new data are loaded). Computingmore

189

Modern SoCDesign

The output load is the sum of the wiring and gate input capacitances. The derating factor models the
output strength of the driving gate and is taken from the gate’s data sheet. The formulamodel
estimates the delay from the input to a gate, through the internal electronics of a gate, through its
output structure and down the conductor to the input of the successor gates. It effectively has three
terms that are summed:

1. The internal delay of the gate, termed the intrinsic delay.

2. The reduction in speed of the output stage, due to the fanout/loading, termed the derating delay.

3. The propagation delay down the conductor.

For clock nets, whichmust be specially designedwith low skew and known delays, more detailed
techniques are used (Section 4.9.5).

The on-chip net delay depends on the distributed capacitance, inductance and resistance of the
conductor material and the permittivity of the adjacent insulators. A detailed computation, using the
Elmoremodel for nets that feedmore than one destination, was presented in Section 3.1.1. For circuit
board traces, the resistance can be neglected and the delay is just the speed of light in the circuit
boardmaterial. Most PCBs aremade from FR-4 fibreglass, which has a relative permittivity of ϵr ≈4.7,
so the propagation speed is about 1/

�
4.7=0.46c, which is 138m/µs. On the other hand, for the

shorter nets found on a chip, the propagation delay is not a free-standing term in the above formula
and its effects are bundled into the output derating, since a net that is longer has a larger capacitance.

To attain themaximum performance from logic, simplemodels of gate delaymay have over
conservative designmargins. Today, the delay can be characterised additionally by the slew rate of
the arriving signal, as described in Section 8.4.6. Moreover, the resistance of very thin nets, which are
sometimes used in highly dense wiring, contributes to the effective delay. Moreover, if such a net
divides to feedmultiple destinations, the difference in delay down each path can occasionally be
significant. The Elmoremodel is readily applied to each section of such a net to obtain a good delay
estimate at the start of a simulation, but the performance of a net-level simulation is reduced by the
greater number of circuit nodes that require modelling.

4.6.5 Landauer Limit and Reversible Computation
In theory, if a computer does not destroy any information, it can be runwith no energy. A computation
that does not destroy information is called a reversible calculation, since the input data can be
recreated from the output data. Conventional computer programs are not structured in this way. For
example, once the average value of a list has been computed, thememory holding that list is typically
overwritten with new data and used for something else.

There are theoretical limits on the energy that an irreversible computation requires. However, the
current technology is a long way from these limits in two respects:

188

Chapter 4 | SystemDesign Considerations

1. We use toomuch energy representing and communicating bits.

2. We use vonNeumann-based computation, whichmoves data to a centralised ALU, a design that
does not scale well (Section 6.4).

Consider electrical computers:

If a computer is built using a network of standard components (such as transistors) and the
interconnection pattern expresses the design intent, then the components must be at different
spatial locations. The computer will have some physical volume.

If the components are connected using electrical wires, these nets have capacitance, resistance and
inductance that stop them behaving like ideal conductors. The smaller the volume, the less wire we
need and the better the nets (and hence, computer) will work.

If transistors are used that need a swing of about 0.7V on their gates to switch them reliably
between off and on, then the nets need tomove through at least that much potential difference.

As explained (Section 4.6.2), the capacitance of the nets is our main enemy. Given a prescribed
minimum voltage swing, the energy used by switching awire between logic levels can bemade smaller
only by reducing its area and hence, capacitance. Hence, smaller computers are always better.

One Arm Cortex A9 instruction

One Xilinx Virtex-7 25x18 Multiplier

One 32-bit addition

Single gate with 10 um output net

1mm net switching 1V

Landauer erasure limit (0.017 eV)

-9

-12

-15

-18

-21

Log base 10
Energy

(joules)

pJ

nJ

fJ

aJ

One DRAM row activation

One 36-bit BRAM read Recent Si technology
28 nm silicon
1 Volt supply
(except 2.5V DRAM)

(Landauer limit is technology independent)

1eV

zJ

10um net switching 10mV

Future technology

 ... to be invented ...

Figure 4.27 Dynamic energy use for various technologies

Landauer worked out theminimum energy use per bit [2], in theory, for a computer that deletes data
as it goes (e.g. erasing the old contents of a register when new data are loaded). Computingmore

189

Modern SoCDesign

efficiently than this requires major low-level design changes to ensure that information is never
deleted, taking us towards reversible computing. Reversible logic (e.g. Toffoli logic) can get below the
Landauer limit. Some standard algorithms, such as encryption and lossless compression, aremainly
reversible. The trick is to code in a way that does not delete intermediate results during a
computation. Such techniquesmay be in wide use within two decades. In irreversible computing, the
traditional approach of wasting the energy of each transition can be countered using techniques like
regenerative braking in electric vehicles. In one approach, the logic runs on AC and returns charge to
the power supply using resonant circuits. Switching transistors close only when they have no voltage
across them and open only when they have no current flowing.

Figure 4.27 shows ballpark figures for dynamic energy use in today’s (2020) sub-28-nm silicon
technology. We see that contemporary computers are about six orders of magnitude above the
Landauer limit in terms of energy efficiency, so a significant amount of improvement is still possible
before we have to consider reversibility. If wemake thewantonly hopeful assumption thatMoore-like
growth continues (Section 8.2), with technology doubling in performance every 18months, we could
intersect the reversible computing limit in about 2050, since 1.5× log2(106) is roughly 30 years.

4.6.6 Gate Delay as a Function of Supply Voltage
The FO4 delay is often used to represent the performance of digital logic technology. The FO4 delay
is the delay through an invertor that feeds four other nearby invertors (fanout of four). This is
illustrated in Figure 4.28. The FO4 depends on the implementation technology and the PVT
parameters (Section 8.4.4). The variationwith supply voltage is particularly important and is exploited
for DVFS (Section 4.6.8) and VCOs (Section 4.9.5). The combinational delay of a particular design can
also be expressed in a technology-independent way by quoting it in units of FO4 delay. Note the ITRS
roadmap in Table 8.2 instead uses FO3 (fan-out of 3) instead of FO4metric.

X
Y

X

Y

FO4
delay

(falling)

FO4
delay

(rising)
 0

 10
 20
 30
 40
 50
 60
 70
 80

 0.6 0.7 0.8 0.9 1 1.1

D
el

ay
 (p

s)

Vdd (V)

Propagation Delay

Figure 4.28 Fanout 4 (FO4) delay specification (left) and CMOS logic propagation delay versus supply voltage (right)

As noted earlier, the gate threshold voltage VT for FETs in a CMOS design is the voltage at which they
nominally switch from off to on. The lowest possible supply voltage to a logic system is bounded by
the threshold voltage. Above this voltage, the logic delay is roughly inversely proportional to the
supply voltage. Accordingly, to operate faster, we need a higher supply voltage for a given load

190

Chapter 4 | SystemDesign Considerations

capacitance. TheCMOS speed law embodies themain shape of the delay versus supply voltage plot:

Gate delay∝ C×V
(V−VT)2

(4.1)

This plot is sketched on the right in Figure 4.28.

4.6.7 SPICE Simulation of an Invertor
The CMOS speed law can be demonstrated using a low-level simulation. The predominant simulator
for analogue electronics is SPICE (Simulation Programwith Integrated Circuit Emphasis). SPICE can
be used in a stand-alone form for small circuits or can be invoked throughmixed-signal simulations
(Section 8.3.7) in which digital electronics interact with analogue electronics. Figure 4.29 is a
complete demonstration of the use of hspice. A standard CMOS invertor, composed of two
MOSFETs, is simulated at two supply voltages.

Figure 4.30 shows two output responses for different supply voltages. The curves for the output load
capacitor are fairly typically exponential when charging or discharging. The shape is not a true
1−exp(−t/CR) curve due to non-linearity in theMOSFETs. However, it is pretty close. If the FETs had
the same on-resistances at the two supply voltages, although the swing of the output in the two plots
would be different, the delays before they cross the half-supply level would be identical. The
difference arises because the on-resistance is lower when the gate voltage is lower (i.e. when it is
closer to the transistor threshold voltage).

4.6.8 Dynamic Voltage and Frequency Scaling
Wewill look at four techniques for saving power in the 2-D space defined in Table 4.2.

Table 4.2 Design space for dynamic power-saving techniques

Clock Power
On/Off Clock gating Power supply gating
Variable Dynamic frequency scaling (DFS) Dynamic voltage scaling (DVS)

As Figure 4.28 shows, the CMOS delay is broadly inversely proportional to the supply voltage; hence,
as the clock frequency is increased, then, over a limited range, the supply voltage can be adjusted
roughly proportionally to the clock frequency so that the timing closure can still bemet
(Section 8.12.16). At a single supply voltage, the speed of a gate can be altered at design time by
choosing its transistor geometries. Standard cell buffers are typically available with several cell drive
strengths (Section 8.4.1).

The fCV2 formulameans that power consumption is quadratic in supply voltage (Section 4.6.2).
Building on these observations, dynamic voltage and frequency scaling (DVFS) enables a circuit to
operate efficiently at different speeds with different powers. Under DVFS, as the performance needs
change, the clock frequency for a system or subsystem is moved between pre-programmed

191

Modern SoCDesign

efficiently than this requires major low-level design changes to ensure that information is never
deleted, taking us towards reversible computing. Reversible logic (e.g. Toffoli logic) can get below the
Landauer limit. Some standard algorithms, such as encryption and lossless compression, aremainly
reversible. The trick is to code in a way that does not delete intermediate results during a
computation. Such techniquesmay be in wide use within two decades. In irreversible computing, the
traditional approach of wasting the energy of each transition can be countered using techniques like
regenerative braking in electric vehicles. In one approach, the logic runs on AC and returns charge to
the power supply using resonant circuits. Switching transistors close only when they have no voltage
across them and open only when they have no current flowing.

Figure 4.27 shows ballpark figures for dynamic energy use in today’s (2020) sub-28-nm silicon
technology. We see that contemporary computers are about six orders of magnitude above the
Landauer limit in terms of energy efficiency, so a significant amount of improvement is still possible
before we have to consider reversibility. If wemake thewantonly hopeful assumption thatMoore-like
growth continues (Section 8.2), with technology doubling in performance every 18months, we could
intersect the reversible computing limit in about 2050, since 1.5× log2(106) is roughly 30 years.

4.6.6 Gate Delay as a Function of Supply Voltage
The FO4 delay is often used to represent the performance of digital logic technology. The FO4 delay
is the delay through an invertor that feeds four other nearby invertors (fanout of four). This is
illustrated in Figure 4.28. The FO4 depends on the implementation technology and the PVT
parameters (Section 8.4.4). The variationwith supply voltage is particularly important and is exploited
for DVFS (Section 4.6.8) and VCOs (Section 4.9.5). The combinational delay of a particular design can
also be expressed in a technology-independent way by quoting it in units of FO4 delay. Note the ITRS
roadmap in Table 8.2 instead uses FO3 (fan-out of 3) instead of FO4metric.

X
Y

X

Y

FO4
delay

(falling)

FO4
delay

(rising)
 0

 10
 20
 30
 40
 50
 60
 70
 80

 0.6 0.7 0.8 0.9 1 1.1

D
el

ay
 (p

s)

Vdd (V)

Propagation Delay

Figure 4.28 Fanout 4 (FO4) delay specification (left) and CMOS logic propagation delay versus supply voltage (right)

As noted earlier, the gate threshold voltage VT for FETs in a CMOS design is the voltage at which they
nominally switch from off to on. The lowest possible supply voltage to a logic system is bounded by
the threshold voltage. Above this voltage, the logic delay is roughly inversely proportional to the
supply voltage. Accordingly, to operate faster, we need a higher supply voltage for a given load

190

Chapter 4 | SystemDesign Considerations

capacitance. TheCMOS speed law embodies themain shape of the delay versus supply voltage plot:

Gate delay∝ C×V
(V−VT)2

(4.1)

This plot is sketched on the right in Figure 4.28.

4.6.7 SPICE Simulation of an Invertor
The CMOS speed law can be demonstrated using a low-level simulation. The predominant simulator
for analogue electronics is SPICE (Simulation Programwith Integrated Circuit Emphasis). SPICE can
be used in a stand-alone form for small circuits or can be invoked throughmixed-signal simulations
(Section 8.3.7) in which digital electronics interact with analogue electronics. Figure 4.29 is a
complete demonstration of the use of hspice. A standard CMOS invertor, composed of two
MOSFETs, is simulated at two supply voltages.

Figure 4.30 shows two output responses for different supply voltages. The curves for the output load
capacitor are fairly typically exponential when charging or discharging. The shape is not a true
1−exp(−t/CR) curve due to non-linearity in theMOSFETs. However, it is pretty close. If the FETs had
the same on-resistances at the two supply voltages, although the swing of the output in the two plots
would be different, the delays before they cross the half-supply level would be identical. The
difference arises because the on-resistance is lower when the gate voltage is lower (i.e. when it is
closer to the transistor threshold voltage).

4.6.8 Dynamic Voltage and Frequency Scaling
Wewill look at four techniques for saving power in the 2-D space defined in Table 4.2.

Table 4.2 Design space for dynamic power-saving techniques

Clock Power
On/Off Clock gating Power supply gating
Variable Dynamic frequency scaling (DFS) Dynamic voltage scaling (DVS)

As Figure 4.28 shows, the CMOS delay is broadly inversely proportional to the supply voltage; hence,
as the clock frequency is increased, then, over a limited range, the supply voltage can be adjusted
roughly proportionally to the clock frequency so that the timing closure can still bemet
(Section 8.12.16). At a single supply voltage, the speed of a gate can be altered at design time by
choosing its transistor geometries. Standard cell buffers are typically available with several cell drive
strengths (Section 8.4.1).

The fCV2 formulameans that power consumption is quadratic in supply voltage (Section 4.6.2).
Building on these observations, dynamic voltage and frequency scaling (DVFS) enables a circuit to
operate efficiently at different speeds with different powers. Under DVFS, as the performance needs
change, the clock frequency for a system or subsystem is moved between pre-programmed

191

Modern SoCDesign

// spice-cmos-inverter-djg-demo.hsp
// Updated 2017 by David J. Greaves
// Based on demo by David Harris harrisd@leland.stanford.edu
// Declare global supply nets and connect them to a constant-voltage supply
.global Vdd Gnd
Vsupply Vdd Gnd DC `VddVoltage'
///
// Set up the transistor geometry by defining lambda
.opt scale=0.35u * Define lambda // This is half the minimum channel length.
// Set up some typical MOSFET parameters.
//http://www.seas.upenn.edu/~jan/spice/spice.models.html#mosis1.2um

.MODEL CMOSN NMOS LEVEL=3 PHI=0.600000 TOX=2.1200E-08 XJ=0.200000U
+TPG=1 VTO=0.7860 DELTA=6.9670E-01 LD=1.6470E-07 KP=9.6379E-05
+UO=591.7 THETA=8.1220E-02 RSH=8.5450E+01 GAMMA=0.5863
+NSUB=2.7470E+16 NFS=1.98E+12 VMAX=1.7330E+05 ETA=4.3680E-02
+KAPPA=1.3960E-01 CGDO=4.0241E-10 CGSO=4.0241E-10
+CGBO=3.6144E-10 CJ=3.8541E-04 MJ=1.1854 CJSW=1.3940E-10
+MJSW=0.125195 PB=0.800000

.MODEL CMOSP PMOS LEVEL=3 PHI=0.600000 TOX=2.1200E-08 XJ=0.200000U
+TPG=-1 VTO=-0.9056 DELTA=1.5200E+00 LD=2.2000E-08 KP=2.9352E-05
+UO=180.2 THETA=1.2480E-01 RSH=1.0470E+02 GAMMA=0.4863
+NSUB=1.8900E+16 NFS=3.46E+12 VMAX=3.7320E+05 ETA=1.6410E-01
+KAPPA=9.6940E+00 CGDO=5.3752E-11 CGSO=5.3752E-11
+CGBO=3.3650E-10 CJ=4.8447E-04 MJ=0.5027 CJSW=1.6457E-10
+MJSW=0.217168 PB=0.850000

///
// Define the invertor, made of two MOSFETs as usual, using a subcircuit.
.subckt myinv In Out N=8 P=16 // Assumes 5 lambda of diffusion on the source/drain
m1 Out In Gnd Gnd CMOSN l=2 w=N
+ as=`5*N' ad=`5*N'
+ ps=`N+10' pd=`N+10'
m2 Out In Vdd Vdd CMOSP l=2 w=P
+ as=`5*P' ad=`5*P'
+ ps=`P+10' pd=`P+10'
.ends myinv

//
// Top-level simulation net list
// One instance of my invertor and a load capacitor
x1 In Out myinv // Invertor
C1 Out Gnd 0.1pF // Load capacitor
//
// Stimulus: Create a waveform generator to drive In
// Use a "Piecewise linear source" PWL that takes a list of time/voltage pairs.
Vstim In Gnd PWL(0 0 1ns 0 1.05ns `VddVoltage' 3ns VddVoltage 3.2ns 0)
//
// Invoke transient simulation (that itself will first find a steady state)
.tran .01ns 6ns // Set the time step and total duration
.plot TRAN v(In) v(Out)
.end

Figure 4.29 SPICE description and setup for two transistors arranged as a CMOS invertor simulated with a two-step input

192

Chapter 4 | SystemDesign Considerations

Figure 4.30 Plots of the invertor when running from VCC supplies of 2.5 V (left) and 1.5 V (right). Red is the input stimulus and blue is the simulated output

frequencies. Simultaneously, the supply voltage is adjusted to be the lowest that reliably works at the
chosen clock frequency. Overall, this gives a cubic power cost. The dynamic power is proportional to
clock frequency and supply voltage squared, so when the supply voltage is also increased roughly
linearly with clock frequency, there is a cubic factor in the power cost. However, the energy use for a
given computation will grow only quadratically, since the task will be completedmore quickly, so the
cubic power is expended for less time. DVFS obtains peak performance under heavy loads, yet avoids
the cubic penalty when idle.

DVFS is commonly used in laptop computers and cell phones, because the computational load varies
greatly according to what the user is doing. A process called theCPU governor chooses an
appropriate clock frequency, typically based onmeasuring the operating system halt time. Each
processor will haltwhen there are no runnable jobs in the operating system job queue. Halting is
commanded by an explicit halt instruction and processing resumes on the next hardware interrupt.
The operating system has an idle task that has the lowest static priority, so that it runs when there is
no user work to run. The task body contains a halt instruction. The system load average is computed
by the operating system based on timestampingwhen a core halts and againwhen it resumes after the
halt instruction. This load average, or a variant of it, is themain input to the governor daemon.

DVFSWorked Example
As an example, consider a subsystemwith an area of 64mm2 and average net length of 0.1mm
containing 400000 gates/mm2. Assume an average toggle rate of a=0.25. The CV2 energy of a
complete cycle is expended at half the toggle rate. The effective net capacitance is
0.1mm× 1 fF/mm× 400K× 64mm2 = 2.5 nF. Table 4.3 gives the typical power consumption for a
subsystemwhen clocked at different frequencies and voltages. It is important to ensure that the
supply voltage is sufficient for the clock frequency in use: too low a voltagemeans that signals do not
arrive at D-type inputs in time tomeet the setup time. A factor of four increase in clock frequency has
resulted in a nearly tenfold increase in power.

193

Modern SoCDesign

// spice-cmos-inverter-djg-demo.hsp
// Updated 2017 by David J. Greaves
// Based on demo by David Harris harrisd@leland.stanford.edu
// Declare global supply nets and connect them to a constant-voltage supply
.global Vdd Gnd
Vsupply Vdd Gnd DC `VddVoltage'
///
// Set up the transistor geometry by defining lambda
.opt scale=0.35u * Define lambda // This is half the minimum channel length.
// Set up some typical MOSFET parameters.
//http://www.seas.upenn.edu/~jan/spice/spice.models.html#mosis1.2um

.MODEL CMOSN NMOS LEVEL=3 PHI=0.600000 TOX=2.1200E-08 XJ=0.200000U
+TPG=1 VTO=0.7860 DELTA=6.9670E-01 LD=1.6470E-07 KP=9.6379E-05
+UO=591.7 THETA=8.1220E-02 RSH=8.5450E+01 GAMMA=0.5863
+NSUB=2.7470E+16 NFS=1.98E+12 VMAX=1.7330E+05 ETA=4.3680E-02
+KAPPA=1.3960E-01 CGDO=4.0241E-10 CGSO=4.0241E-10
+CGBO=3.6144E-10 CJ=3.8541E-04 MJ=1.1854 CJSW=1.3940E-10
+MJSW=0.125195 PB=0.800000

.MODEL CMOSP PMOS LEVEL=3 PHI=0.600000 TOX=2.1200E-08 XJ=0.200000U
+TPG=-1 VTO=-0.9056 DELTA=1.5200E+00 LD=2.2000E-08 KP=2.9352E-05
+UO=180.2 THETA=1.2480E-01 RSH=1.0470E+02 GAMMA=0.4863
+NSUB=1.8900E+16 NFS=3.46E+12 VMAX=3.7320E+05 ETA=1.6410E-01
+KAPPA=9.6940E+00 CGDO=5.3752E-11 CGSO=5.3752E-11
+CGBO=3.3650E-10 CJ=4.8447E-04 MJ=0.5027 CJSW=1.6457E-10
+MJSW=0.217168 PB=0.850000

///
// Define the invertor, made of two MOSFETs as usual, using a subcircuit.
.subckt myinv In Out N=8 P=16 // Assumes 5 lambda of diffusion on the source/drain
m1 Out In Gnd Gnd CMOSN l=2 w=N
+ as=`5*N' ad=`5*N'
+ ps=`N+10' pd=`N+10'
m2 Out In Vdd Vdd CMOSP l=2 w=P
+ as=`5*P' ad=`5*P'
+ ps=`P+10' pd=`P+10'
.ends myinv

//
// Top-level simulation net list
// One instance of my invertor and a load capacitor
x1 In Out myinv // Invertor
C1 Out Gnd 0.1pF // Load capacitor
//
// Stimulus: Create a waveform generator to drive In
// Use a "Piecewise linear source" PWL that takes a list of time/voltage pairs.
Vstim In Gnd PWL(0 0 1ns 0 1.05ns `VddVoltage' 3ns VddVoltage 3.2ns 0)
//
// Invoke transient simulation (that itself will first find a steady state)
.tran .01ns 6ns // Set the time step and total duration
.plot TRAN v(In) v(Out)
.end

Figure 4.29 SPICE description and setup for two transistors arranged as a CMOS invertor simulated with a two-step input

192

Chapter 4 | SystemDesign Considerations

Figure 4.30 Plots of the invertor when running from VCC supplies of 2.5 V (left) and 1.5 V (right). Red is the input stimulus and blue is the simulated output

frequencies. Simultaneously, the supply voltage is adjusted to be the lowest that reliably works at the
chosen clock frequency. Overall, this gives a cubic power cost. The dynamic power is proportional to
clock frequency and supply voltage squared, so when the supply voltage is also increased roughly
linearly with clock frequency, there is a cubic factor in the power cost. However, the energy use for a
given computation will grow only quadratically, since the task will be completedmore quickly, so the
cubic power is expended for less time. DVFS obtains peak performance under heavy loads, yet avoids
the cubic penalty when idle.

DVFS is commonly used in laptop computers and cell phones, because the computational load varies
greatly according to what the user is doing. A process called theCPU governor chooses an
appropriate clock frequency, typically based onmeasuring the operating system halt time. Each
processor will haltwhen there are no runnable jobs in the operating system job queue. Halting is
commanded by an explicit halt instruction and processing resumes on the next hardware interrupt.
The operating system has an idle task that has the lowest static priority, so that it runs when there is
no user work to run. The task body contains a halt instruction. The system load average is computed
by the operating system based on timestampingwhen a core halts and againwhen it resumes after the
halt instruction. This load average, or a variant of it, is themain input to the governor daemon.

DVFSWorked Example
As an example, consider a subsystemwith an area of 64mm2 and average net length of 0.1mm
containing 400000 gates/mm2. Assume an average toggle rate of a=0.25. The CV2 energy of a
complete cycle is expended at half the toggle rate. The effective net capacitance is
0.1mm× 1 fF/mm× 400K× 64mm2 = 2.5 nF. Table 4.3 gives the typical power consumption for a
subsystemwhen clocked at different frequencies and voltages. It is important to ensure that the
supply voltage is sufficient for the clock frequency in use: too low a voltagemeans that signals do not
arrive at D-type inputs in time tomeet the setup time. A factor of four increase in clock frequency has
resulted in a nearly tenfold increase in power.

193

Modern SoCDesign

Table 4.3 Example of static and dynamic power use for a three-level DVFS configuration. (The static current was estimated usingβV0.9 , where βwas chosen
to give an approximate 1:3 ratio of static to dynamic power at the middle supply voltage)

Supply voltage Clock frequency Static power Dynamic power Total power
(V) (MHz) (mW) (mW) (mW)
0.8 100 40 24 64
1.35 100 67 68 135
1.35 200 67 136 204
1.8 100 90 121 211
1.8 200 90 243 333
1.8 400 90 486 576

DVFS Shortcomings
DVFSwas very popular throughout the first decade of the 21st century, when CMOS geometries of
45 to 90nmwere widely used. These had a very low leakage. For a predictable hard real-time task,
DVFS could be arranged to finish just in time. For instance, a video decoder would clock at just the
right speed for each frame to be ready to display on time. Computing faster and halting is worse due
to the quadratic cost of running fixed-sized jobs faster. In today’s technologies, DVFS is less attractive
for two reasons. First, the higher static powermeans it can be better to compute as fast as possible
and then switch off using power gating (Section 4.6.10). Second, the range of voltages where the logic
will operate correctly is much lower, so getting a significant energy saving fromDVFS is not possible.

4.6.9 Dynamic Clock Gating
DVFS involves adjusting the clock frequency and supply voltage to a subsystem. Both of these are
typically controlled by feedback loops that contain low-pass filters. Hence, there is inertia in the
adjustment and changesmust be performedwith a granularity of at least 1 to 10ms. Turning off the
clock and turning off the power to a subsystem are two further power-saving techniques. These are
purely digital and can be done orders of magnitudemore quickly. Wewill discuss power gating in
Section 4.6.10. Here we discuss automatic clock gating.

Clock distribution trees (Section 4.9.5) consume a considerable amount of power in a SoC. The clock
might use 10 per cent of the energy in an active subsystem. A region of logic is idle if all the flip-flops
are being loadedwith their current contents, either as a result of synchronous clock enables or just
through the nature of the design. This is very common, but such a region still consumes 10 per cent of
its power because the clock is turned on. An idle period is some number of adjacent idle clock cycles,
which can last a single clock cycle or thousands. Considerable savings can bemade by turning off the
clocks during idle periods.

Figure 4.31 shows three circuits that effectively disable the clock to a subsystem. Figure 4.31(a)
shows a synchronous clock-enable structure using an external multiplexer. This multiplexer is part of
the flip-flop in reality and is implementedwith lower overhead than shown. However, such a circuit
does not stop the clock input to the flip-flop or save the dynamic power consumed by the clock net.
Instead of using synchronous clock enables, current design practice is to use a clock gating insertion
tool that asynchronously gates the clock. One clock-control logic gate can serve a number of

194

Chapter 4 | SystemDesign Considerations

neighbouring flip-flops, such as a statemachine, broadside register or some number of these. Hence,
the clock net in that region will consume no dynamic power when gated off.

D Q
D

CEN

Q

C

D QD

CEN

Q

C

D QD

nCEN

Q

C

a) Synchronous Clock Enable b) Clock gate using AND c) Clock gate using OR

Figure 4.31 Clock enable using (a) a multiplexor, (b) an AND gate and (c) an OR gate

Figure 4.31(b) shows gating with an AND gate whereas Figure 4.31(c) has anOR gate. A problemwith
the AND gate is that if the clock enable (CEN) changes when the clock is high, there is a glitch on the
clock net. A similar problemwith theOR gate solution arises if CEN changes when the clock is low.
Hence, caremust be taken not to generate glitches on the clock as it is gated. Transparent latches in
the clock-enable signal prevents these glitches, as shown in Figure 4.32. The transparent latch delays
any changes during the clock enable so that they are applied only during a safe phase of the clock.

D QD

CEN

Q
C

CEN

C

Clock Gate With AND

D

G

Q

Transparent Latch

D

G G

D Q G

D Q Other
flip-flops

CX

CX

Q

Figure 4.32 Illustrating a transparent latch and its use to suppress clock gating glitches

Comparedwith synchronous clock enables, in combinational clock gating, caremust be taken to
match the clock skewwhen crossing in and out of a non-gated domain. Delay buffers may have to be
inserted to avoid a shoot-through by building out the non-gated signal paths as well. A shoot-through
occurs when a D-type is supposed to register its current D-input value, but this has already changed
to its new value before the clock signal arrives.

The question now arises of how to generate a clock-enable condition. One could use software to
control complete blocks using additional control register flags, as is the norm for power gating
(Section 4.6.10). However, today’s designs use fast automatic detection on a finer-grained basis.
Synthesis tools automatically insert additional logic for clock-required conditions. A clock edge is
required if any register can change its state on that clock edge.

Figure 4.33 shows a basic technique for deriving a clock-required expression. It uses a so-calledmitre
pattern, in which the difference betweenD-inputs andQ-outputs for a set of flip-flops is computed. If
there is a difference, a clock is needed for that group of flip-flops. The amount of suchmitre logic
needs to be constrained, otherwise there will be no net energy saving. The increase in area generally

195

Modern SoCDesign

Table 4.3 Example of static and dynamic power use for a three-level DVFS configuration. (The static current was estimated usingβV0.9 , where βwas chosen
to give an approximate 1:3 ratio of static to dynamic power at the middle supply voltage)

Supply voltage Clock frequency Static power Dynamic power Total power
(V) (MHz) (mW) (mW) (mW)
0.8 100 40 24 64
1.35 100 67 68 135
1.35 200 67 136 204
1.8 100 90 121 211
1.8 200 90 243 333
1.8 400 90 486 576

DVFS Shortcomings
DVFSwas very popular throughout the first decade of the 21st century, when CMOS geometries of
45 to 90nmwere widely used. These had a very low leakage. For a predictable hard real-time task,
DVFS could be arranged to finish just in time. For instance, a video decoder would clock at just the
right speed for each frame to be ready to display on time. Computing faster and halting is worse due
to the quadratic cost of running fixed-sized jobs faster. In today’s technologies, DVFS is less attractive
for two reasons. First, the higher static powermeans it can be better to compute as fast as possible
and then switch off using power gating (Section 4.6.10). Second, the range of voltages where the logic
will operate correctly is much lower, so getting a significant energy saving fromDVFS is not possible.

4.6.9 Dynamic Clock Gating
DVFS involves adjusting the clock frequency and supply voltage to a subsystem. Both of these are
typically controlled by feedback loops that contain low-pass filters. Hence, there is inertia in the
adjustment and changesmust be performedwith a granularity of at least 1 to 10ms. Turning off the
clock and turning off the power to a subsystem are two further power-saving techniques. These are
purely digital and can be done orders of magnitudemore quickly. Wewill discuss power gating in
Section 4.6.10. Here we discuss automatic clock gating.

Clock distribution trees (Section 4.9.5) consume a considerable amount of power in a SoC. The clock
might use 10 per cent of the energy in an active subsystem. A region of logic is idle if all the flip-flops
are being loadedwith their current contents, either as a result of synchronous clock enables or just
through the nature of the design. This is very common, but such a region still consumes 10 per cent of
its power because the clock is turned on. An idle period is some number of adjacent idle clock cycles,
which can last a single clock cycle or thousands. Considerable savings can bemade by turning off the
clocks during idle periods.

Figure 4.31 shows three circuits that effectively disable the clock to a subsystem. Figure 4.31(a)
shows a synchronous clock-enable structure using an external multiplexer. This multiplexer is part of
the flip-flop in reality and is implementedwith lower overhead than shown. However, such a circuit
does not stop the clock input to the flip-flop or save the dynamic power consumed by the clock net.
Instead of using synchronous clock enables, current design practice is to use a clock gating insertion
tool that asynchronously gates the clock. One clock-control logic gate can serve a number of

194

Chapter 4 | SystemDesign Considerations

neighbouring flip-flops, such as a statemachine, broadside register or some number of these. Hence,
the clock net in that region will consume no dynamic power when gated off.

D Q
D

CEN

Q

C

D QD

CEN

Q

C

D QD

nCEN

Q

C

a) Synchronous Clock Enable b) Clock gate using AND c) Clock gate using OR

Figure 4.31 Clock enable using (a) a multiplexor, (b) an AND gate and (c) an OR gate

Figure 4.31(b) shows gating with an AND gate whereas Figure 4.31(c) has anOR gate. A problemwith
the AND gate is that if the clock enable (CEN) changes when the clock is high, there is a glitch on the
clock net. A similar problemwith theOR gate solution arises if CEN changes when the clock is low.
Hence, caremust be taken not to generate glitches on the clock as it is gated. Transparent latches in
the clock-enable signal prevents these glitches, as shown in Figure 4.32. The transparent latch delays
any changes during the clock enable so that they are applied only during a safe phase of the clock.

D QD

CEN

Q
C

CEN

C

Clock Gate With AND

D

G

Q

Transparent Latch

D

G G

D Q G

D Q Other
flip-flops

CX

CX

Q

Figure 4.32 Illustrating a transparent latch and its use to suppress clock gating glitches

Comparedwith synchronous clock enables, in combinational clock gating, caremust be taken to
match the clock skewwhen crossing in and out of a non-gated domain. Delay buffers may have to be
inserted to avoid a shoot-through by building out the non-gated signal paths as well. A shoot-through
occurs when a D-type is supposed to register its current D-input value, but this has already changed
to its new value before the clock signal arrives.

The question now arises of how to generate a clock-enable condition. One could use software to
control complete blocks using additional control register flags, as is the norm for power gating
(Section 4.6.10). However, today’s designs use fast automatic detection on a finer-grained basis.
Synthesis tools automatically insert additional logic for clock-required conditions. A clock edge is
required if any register can change its state on that clock edge.

Figure 4.33 shows a basic technique for deriving a clock-required expression. It uses a so-calledmitre
pattern, in which the difference betweenD-inputs andQ-outputs for a set of flip-flops is computed. If
there is a difference, a clock is needed for that group of flip-flops. The amount of suchmitre logic
needs to be constrained, otherwise there will be no net energy saving. The increase in area generally

195

Modern SoCDesign

D Q

Moore
Machine

Next State
Function

D Q

D Q

Clock Required

Inputs

Figure 4.33 Using XOR gates to determine whether a clock edge would have any effect

increases the net length, costing further energy. It is critical to choose carefully which flip-flops are
included in a gated group. The tools use heuristic search algorithms.

Amitre is the characteristic shape of a bishop’s hat and a joint in woodworking (e.g. at the corners of
picture frames). It is where two planes form a prismatic edge.

D Q

Pipeline Stage

Pipeline
Logic

D Q

Pipeline Stage

Pipeline
Logic

D Q

Pipeline Stage

Pipeline
Logic

D QClock Not
Required

D Q

Figure 4.34 Clock-needed computations forwarded down a pipeline

An analysis of a design structure can enable clock-gated domains to share information constructively.
For instance, as sketched in Figure 4.34, activity in one regionmay depend on activity in another
region the clock cycle before. Another technique is to use a counter to implement a retriggerable
monostable state. This is helpful if the last useful clock cycle is bounded to occur within a statically
determined time horizon of an event detected by amitre construction. In each clock cycle, all
registers will be being reloadedwith their current data after the settling time.

4.6.10 Dynamic Supply Gating
A SoC design that servesmultiple different products can have large functional blocks in silicon that
are never used during the lifetime of a product. Within a single product, not all the subsystems are
typically in use at once. For instance, for the SoC for a tablet computer, whether the Bluetooth
interface is being used is independent of whether theMPEG compression accelerator is active.
Cryptographic coder blocks for various ciphers may be present, but only one is likely to be in use at
once. Hence, the ability to independently turn the various subsystemswithin a chip off and on is very
useful for saving energy. Each subsystemmay support a set of sleepmodes, which always includes

196

Chapter 4 | SystemDesign Considerations

fully off and fully active, but whichmay also include standby or data retentionmodes. The fully off
mode is supported using dynamic supply gating, also known as power gating. Dark silicon constraints
imply that, for all future chips, most of the areamust bemostly powered off (Section 8.2).

Figure 4.35 shows the general principle of power gating. In essence, a large transistor serves as an
on/off switch for a subsystem. This will be designed as a low-leakage transistor at the expense of
switching speed. Its channel width will be ratioed to be the same as the sum of those components
connected to the rail it feeds, or slightly more. The extra transistor can be either an N-channel device
at the ground side, in which case it is called a footer, or a P-channel device at the power supply side, in
which case it is called a header. The detailed circuit shown on the right indicates how a footer power
gate is configured. Footers aremost commonly used because N-type transistors have better
on-resistance for a given area.

Global ground rail

Global chip supply rail (1.3 volts)

Isolation
cells

Gated
power

domain

Always ON
power
domain

Power
island
control

Global chip supply Rail (1.3 Volts)

Power island
consisting of
conventional
 CMOS logic
and wiring.

ʻVirtualʼ ground rail

Global ground rail

Power island
control

Figure 4.35 Power gating in general (left) and an actual power gate circuit (right)

Power gating implicitly introduces a transistor stacking effect such that, in sleepmode, the drain of
the header or footer settles to an intermediate voltage, effectively making the gate-source voltage
negative for the transistors in the block. This further reduces the leakage. As a downside, the gating
transistors increase the on-resistance, which negatively impacts performancewhen the logic is active.

Output nets from a gated-off region cannot be allowed to float, since they can give rise to large
short-circuit currents (Section 4.6.2). Hence, special domain isolation cells are inserted into the signal
paths. These cells are designed to tolerate floating inputs and produce a definite logic zero when their
source is turned off. Dynamic power gating typically requires some sequencing. The power controller
will use several clock cycles to perform an ordered power-up (power-down) of a region and enable
(disable) isolation gates. Additionally, a gradual turn-on over tens ofmilliseconds avoids creating noise
on the global power rails. Isolation cells on the input to an off region are normally not required, but
these outputs could be set to an appropriate logic level if parasitic paths through protection diodes
are a problem in a particular technology.

197

Modern SoCDesign

D Q

Moore
Machine

Next State
Function

D Q

D Q

Clock Required

Inputs

Figure 4.33 Using XOR gates to determine whether a clock edge would have any effect

increases the net length, costing further energy. It is critical to choose carefully which flip-flops are
included in a gated group. The tools use heuristic search algorithms.

Amitre is the characteristic shape of a bishop’s hat and a joint in woodworking (e.g. at the corners of
picture frames). It is where two planes form a prismatic edge.

D Q

Pipeline Stage

Pipeline
Logic

D Q

Pipeline Stage

Pipeline
Logic

D Q

Pipeline Stage

Pipeline
Logic

D QClock Not
Required

D Q

Figure 4.34 Clock-needed computations forwarded down a pipeline

An analysis of a design structure can enable clock-gated domains to share information constructively.
For instance, as sketched in Figure 4.34, activity in one regionmay depend on activity in another
region the clock cycle before. Another technique is to use a counter to implement a retriggerable
monostable state. This is helpful if the last useful clock cycle is bounded to occur within a statically
determined time horizon of an event detected by amitre construction. In each clock cycle, all
registers will be being reloadedwith their current data after the settling time.

4.6.10 Dynamic Supply Gating
A SoC design that servesmultiple different products can have large functional blocks in silicon that
are never used during the lifetime of a product. Within a single product, not all the subsystems are
typically in use at once. For instance, for the SoC for a tablet computer, whether the Bluetooth
interface is being used is independent of whether theMPEG compression accelerator is active.
Cryptographic coder blocks for various ciphers may be present, but only one is likely to be in use at
once. Hence, the ability to independently turn the various subsystemswithin a chip off and on is very
useful for saving energy. Each subsystemmay support a set of sleepmodes, which always includes

196

Chapter 4 | SystemDesign Considerations

fully off and fully active, but whichmay also include standby or data retentionmodes. The fully off
mode is supported using dynamic supply gating, also known as power gating. Dark silicon constraints
imply that, for all future chips, most of the areamust bemostly powered off (Section 8.2).

Figure 4.35 shows the general principle of power gating. In essence, a large transistor serves as an
on/off switch for a subsystem. This will be designed as a low-leakage transistor at the expense of
switching speed. Its channel width will be ratioed to be the same as the sum of those components
connected to the rail it feeds, or slightly more. The extra transistor can be either an N-channel device
at the ground side, in which case it is called a footer, or a P-channel device at the power supply side, in
which case it is called a header. The detailed circuit shown on the right indicates how a footer power
gate is configured. Footers aremost commonly used because N-type transistors have better
on-resistance for a given area.

Global ground rail

Global chip supply rail (1.3 volts)

Isolation
cells

Gated
power

domain

Always ON
power
domain

Power
island
control

Global chip supply Rail (1.3 Volts)

Power island
consisting of
conventional
 CMOS logic
and wiring.

ʻVirtualʼ ground rail

Global ground rail

Power island
control

Figure 4.35 Power gating in general (left) and an actual power gate circuit (right)

Power gating implicitly introduces a transistor stacking effect such that, in sleepmode, the drain of
the header or footer settles to an intermediate voltage, effectively making the gate-source voltage
negative for the transistors in the block. This further reduces the leakage. As a downside, the gating
transistors increase the on-resistance, which negatively impacts performancewhen the logic is active.

Output nets from a gated-off region cannot be allowed to float, since they can give rise to large
short-circuit currents (Section 4.6.2). Hence, special domain isolation cells are inserted into the signal
paths. These cells are designed to tolerate floating inputs and produce a definite logic zero when their
source is turned off. Dynamic power gating typically requires some sequencing. The power controller
will use several clock cycles to perform an ordered power-up (power-down) of a region and enable
(disable) isolation gates. Additionally, a gradual turn-on over tens ofmilliseconds avoids creating noise
on the global power rails. Isolation cells on the input to an off region are normally not required, but
these outputs could be set to an appropriate logic level if parasitic paths through protection diodes
are a problem in a particular technology.

197

Modern SoCDesign

Originally, powering off or onwas controlled by software or top-level input pads to the SoC. Any state
held in registers in a powered-off region is normally lost. This is fine for programmer-controller power
phasing, since the programmerwill know that the subsystem needs reinitialisation. Today, dedicated
microsequencer hardware can control a hundred power islands within a single subsystem. Automatic
power gating often uses the AMBAP orQ protocols described in Section 3.7.5.

Common practice is to power off a whole chip except for one or two RAMs and register files. This is
partial power gating. It was particularly common before flashmemory was invented, since a small
battery was used to retain the contents using a lower supply voltage (known sometimes as the CMOS
RAMdata-holding voltage). Today, most laptops, tablets and PCs still have a second, tiny battery that
maintains a small amount of running logic when themain power is off or the battery removed. This
runs the real-time clock (RTC) andmight be needed for secret retention of the secure enclave
(Section 4.9.1). If logic is run only at a low speed it can be run on a lower voltage. Likewise, for data
retention, a lower voltage is needed on SRAM storage cells than is normally used for normal reading
andwriting operations. These reduced voltages can be provided by using a power-switching
transistor, half on, half off, as a linear voltage regulator. Linear regulators dissipate energy as heat and
so are far less efficient than adjusting the standard switched-mode power supply to a lower voltage,
but the overall power is still reduced . Another technique that dynamically alters a subsystem from
active to standby levels of performance is dynamic body bias.

Dynamic Body Bias
A conventionalMOSFET is principally controlled by the potential difference between its gate and its
substrate. The active transistor layer sits on top of the silicon wafer. The wafer is doped as P-type and
is normally connected to the ground potential. N-type transistors can use the substrate P-doping or
sit inside wells with stronger doping. P-type transistors sit inside N-wells that are normally connected
to a VDD supply potential. In body biasing, a voltage offset applied to the transistor substrate can
change the effective threshold voltage of the transistor. This is achieved by removing the normal
‘tub-ties’ that connect the well to the supply rail, instead connecting a low-current voltage generator.
The system can then adjust the leakage current of all transistors in the well, either statically or
dynamically. When a subsystem is not active (all nets are stable), the body bias can be adjusted to
enter low leakagemode. If a signal must be conveyed quickly or a result delivered, the bias can be
adjusted quickly in advance. The potential across the well/substrate boundary can be quickly
dischargedwith large transistors. When activity ceases, it is not important how quickly the body bias
builds up again, which is done using low-current switched-capacitor invertors. Unfortunately, body
bias does not work effectively in FinFET technologies (Section 8.2.1) since, due to their geometry, the
substrate potential has less effect comparedwith the drain and source potentials.

Thermal Throttles
In the past, chips were often core-bound or pad-bound. Pad-boundmeant that a chip had toomany
I/O signals for its core logic area, and the number of I/O signals puts a lower bound on the perimeter
of a chip. Today’s VLSI technology allows I/O pads in themiddle of a chip, so being pad-bound is
uncommon. Core-bound still arises and is preferable. If core-bound, the chip dimensions are governed

198

Chapter 4 | SystemDesign Considerations

by the area of the content. Today’s VLSI is commonly power-bound, meaning that the areamust be
inflated for heat dissipation.

A power throttlemeasures the temperature of a SoC and reduces the clock frequency and perhaps
the power supply voltage if it is becoming too hot. As computed in Section 4.4.1, the thermal time
constant for a chip and its heat spreaders and sinks is of the order of seconds. Hence,
temperature-based throttles aremuch slower to respond than clock gating or load-based DVFS. In a
multi-socket environment, dynamically moving the work between chips helps even out the power
dissipation. Relocating a task every second has very little impact on cache performance, since the vast
majority of cache-line lifetimes are orders of magnitude shorter. A commercial implementation for
processing blades in a server farm is Intel’s running average power limit (RAPL), which provides a
temperature- and power-aware API for the operating system governor. An alternative approach is
computational sprinting: short bursts of processing are allowed to far exceed the heat removal
capacity. Much of the workload of a portable computer, like displaying a web page, is exceptionally
bursty in demand terms, but accurate calibration of the thermal capacities enables the workload to be
met without expensive heat-removal structures.

4.6.11 Future Trends for Energy Use
Table 4.4 Summary of the properties of four power-saving techniques

Technique Clock gating Supply gating DVFS
Control Automatic Various Software

Granularity Register or FSM Larger blocks Macroscopic
Clock tree Mostly free runs Turned off Slows down

Response time Instant 2 to 3 cycles Instant (or ms if PLL adjusted)

Energy can be saved by intelligent control of the power supply and clock frequency. Table 4.4
summarises the principal aspects. The term dark silicon refers to having a large proportion of a chip
switched off at any one time (Section 8.2). This is expected to be themainstreamway forward as
levels of integration grow, although certain application scenarios can warrant the use of pumped
liquids or other esoteric forms of heat-extraction technology. One approach for using dark silicon is to
put the inner loops of frequently used algorithms in hardware known as conservation cores [3].
Custom accelerators can be generated using a high-level synthesis (Section 6.9) of the standard
software kernels in application-specific hardware coprocessors, and these can be put on the chip in
case they are needed.

Other power-saving approaches are to use advanced fluid-based cooling or tomove away from silicon
FETs. Laptops have used simple fluid pipe cooling for decades, but heavy-duty water cooling is
returning for server-grade computing, going full circle back to the 1960s whenwater-cooled
mainframes were common. Increasing use of the third dimension with die-stacking (Section 8.9.1) and
multi-chip modules is greatly reducing interconnect energy use, but concentrates the power into a
smaller space. The biggest breakthrough is likely to come from a shift away from silicon FETs to
something that operates reliably with a lower voltage swing. For instance, if logic could run from a

199

Modern SoCDesign

Originally, powering off or onwas controlled by software or top-level input pads to the SoC. Any state
held in registers in a powered-off region is normally lost. This is fine for programmer-controller power
phasing, since the programmerwill know that the subsystem needs reinitialisation. Today, dedicated
microsequencer hardware can control a hundred power islands within a single subsystem. Automatic
power gating often uses the AMBAP orQ protocols described in Section 3.7.5.

Common practice is to power off a whole chip except for one or two RAMs and register files. This is
partial power gating. It was particularly common before flashmemory was invented, since a small
battery was used to retain the contents using a lower supply voltage (known sometimes as the CMOS
RAMdata-holding voltage). Today, most laptops, tablets and PCs still have a second, tiny battery that
maintains a small amount of running logic when themain power is off or the battery removed. This
runs the real-time clock (RTC) andmight be needed for secret retention of the secure enclave
(Section 4.9.1). If logic is run only at a low speed it can be run on a lower voltage. Likewise, for data
retention, a lower voltage is needed on SRAM storage cells than is normally used for normal reading
andwriting operations. These reduced voltages can be provided by using a power-switching
transistor, half on, half off, as a linear voltage regulator. Linear regulators dissipate energy as heat and
so are far less efficient than adjusting the standard switched-mode power supply to a lower voltage,
but the overall power is still reduced . Another technique that dynamically alters a subsystem from
active to standby levels of performance is dynamic body bias.

Dynamic Body Bias
A conventionalMOSFET is principally controlled by the potential difference between its gate and its
substrate. The active transistor layer sits on top of the silicon wafer. The wafer is doped as P-type and
is normally connected to the ground potential. N-type transistors can use the substrate P-doping or
sit inside wells with stronger doping. P-type transistors sit inside N-wells that are normally connected
to a VDD supply potential. In body biasing, a voltage offset applied to the transistor substrate can
change the effective threshold voltage of the transistor. This is achieved by removing the normal
‘tub-ties’ that connect the well to the supply rail, instead connecting a low-current voltage generator.
The system can then adjust the leakage current of all transistors in the well, either statically or
dynamically. When a subsystem is not active (all nets are stable), the body bias can be adjusted to
enter low leakagemode. If a signal must be conveyed quickly or a result delivered, the bias can be
adjusted quickly in advance. The potential across the well/substrate boundary can be quickly
dischargedwith large transistors. When activity ceases, it is not important how quickly the body bias
builds up again, which is done using low-current switched-capacitor invertors. Unfortunately, body
bias does not work effectively in FinFET technologies (Section 8.2.1) since, due to their geometry, the
substrate potential has less effect comparedwith the drain and source potentials.

Thermal Throttles
In the past, chips were often core-bound or pad-bound. Pad-boundmeant that a chip had toomany
I/O signals for its core logic area, and the number of I/O signals puts a lower bound on the perimeter
of a chip. Today’s VLSI technology allows I/O pads in themiddle of a chip, so being pad-bound is
uncommon. Core-bound still arises and is preferable. If core-bound, the chip dimensions are governed

198

Chapter 4 | SystemDesign Considerations

by the area of the content. Today’s VLSI is commonly power-bound, meaning that the areamust be
inflated for heat dissipation.

A power throttlemeasures the temperature of a SoC and reduces the clock frequency and perhaps
the power supply voltage if it is becoming too hot. As computed in Section 4.4.1, the thermal time
constant for a chip and its heat spreaders and sinks is of the order of seconds. Hence,
temperature-based throttles aremuch slower to respond than clock gating or load-based DVFS. In a
multi-socket environment, dynamically moving the work between chips helps even out the power
dissipation. Relocating a task every second has very little impact on cache performance, since the vast
majority of cache-line lifetimes are orders of magnitude shorter. A commercial implementation for
processing blades in a server farm is Intel’s running average power limit (RAPL), which provides a
temperature- and power-aware API for the operating system governor. An alternative approach is
computational sprinting: short bursts of processing are allowed to far exceed the heat removal
capacity. Much of the workload of a portable computer, like displaying a web page, is exceptionally
bursty in demand terms, but accurate calibration of the thermal capacities enables the workload to be
met without expensive heat-removal structures.

4.6.11 Future Trends for Energy Use
Table 4.4 Summary of the properties of four power-saving techniques

Technique Clock gating Supply gating DVFS
Control Automatic Various Software

Granularity Register or FSM Larger blocks Macroscopic
Clock tree Mostly free runs Turned off Slows down

Response time Instant 2 to 3 cycles Instant (or ms if PLL adjusted)

Energy can be saved by intelligent control of the power supply and clock frequency. Table 4.4
summarises the principal aspects. The term dark silicon refers to having a large proportion of a chip
switched off at any one time (Section 8.2). This is expected to be themainstreamway forward as
levels of integration grow, although certain application scenarios can warrant the use of pumped
liquids or other esoteric forms of heat-extraction technology. One approach for using dark silicon is to
put the inner loops of frequently used algorithms in hardware known as conservation cores [3].
Custom accelerators can be generated using a high-level synthesis (Section 6.9) of the standard
software kernels in application-specific hardware coprocessors, and these can be put on the chip in
case they are needed.

Other power-saving approaches are to use advanced fluid-based cooling or tomove away from silicon
FETs. Laptops have used simple fluid pipe cooling for decades, but heavy-duty water cooling is
returning for server-grade computing, going full circle back to the 1960s whenwater-cooled
mainframes were common. Increasing use of the third dimension with die-stacking (Section 8.9.1) and
multi-chip modules is greatly reducing interconnect energy use, but concentrates the power into a
smaller space. The biggest breakthrough is likely to come from a shift away from silicon FETs to
something that operates reliably with a lower voltage swing. For instance, if logic could run from a

199

Modern SoCDesign

0.1-V supply instead of a 1.0-V supply, it would use 1 per cent of the power (Section 4.6.5). An optical
interconnect using lithographically printed light guides could also bemade to work, especially for
inter-chip interconnections.

4.7 Designing for Testability andDebug Integration
Testing and debugging are related subjects that overlap since somemechanisms can be used for both
purposes. Both benefit from additional circuitry in a SoC that plays no part in normal operation. An
overhead of 5 per cent by area is not uncommon. This consumes hardly any power when not in use.
The goal of production testing is to rapidly check that each unit manufactured operates as designed.
Production testing will be discussed in Section 8.8. First, wewill consider debugging the applications
running on a SoC.

4.7.1 Application Debugging
A SoC contains numerous programmable components that run software or that are set up and
controlled by software. However, software always has bugs. Althoughmany programming errors can
be investigatedwith a virtual platform or ESLmodel (Chapter 5), this is not always sufficient or
appropriate. Many bugs arise from obscure and unexpected interactions that are different on the
virtual platform or do not occur at all. Hence, silicon hardware resources need to be devoted to
debugging. Indeed, today’s complex SoCs typically can have a considerable amount of logic for
debugging. Given adequate power gating (Section 4.6.10), there is little energy overhead from having
the debug infrastructure present yet switched off. The area overhead is not a cost problem either,
except perhaps for large trace buffers (Section 4.7.2).

Any debug infrastructure needs to be unobtrusive. A so-called heisenbug is a bug that disappears
when debugmonitoring is turned on. This is most unhelpful. Making the debug infrastructure as
independent of themainstream functionality as possible minimises the occurrence of heisenbugs.
Hence, having dedicated resources for the debug infrastructure is a good approach.

The threemain aspects of a debug infrastructure are tracing, triggering and single stepping. All are
accessed via a debug access port (DAP). Tracing refers to storing information in a trace buffer.
Triggering determines when to start and stop tracing. Single stepping enables a subsystem or whole
SoC to be halted andmanually advanced one clock cycle or instruction at a time. Traces are often
stored in compressed form. One form of compression relies on the program code being correctly
loaded and reliably fetched during execution. Given an off-line copy of themachine code, the
processor execution can be replayed forward or backward inside a debugger just from knowing what
values were deleted from the registers when their contents were overwritten. However, if the
problem being debugged is in the instruction stream, such an inference will be wrong and the
uncompressed visualisation will bemisleading.

A considerable amount of static meta-information is also available via the DAP. This includes the chip
version number and can include a debug reflection API, which allows the inventory and arrangement

200

Chapter 4 | SystemDesign Considerations

of the debug infrastructure to be accessed by software. Hence, a generic debugger can configure itself
to show structure diagrams and human-readable register and bit-field names. The textual names and
many further details can typically be fetched into the debugger over the Internet based on looking up
the IP block kinds and version numbers stored in the on-chip ROM.

The single-processor debug primitives available are generally the samewhether debugging the real
hardware or an emulatedmodel. For instance, the GNU gdb program is normally used to debug a
program running as a separate user-space program on the samemachine that the debugger is running
on, but by using the target remote command, it can attach to the real hardware or another machine
using a TCP socket. The standard techniques accessible through a debugger include:

1. Pause and step: A core can be stopped, stepped one instruction or allowed to resume normal
execution. A single step is often facilitated by a core runmode that executes one instruction and
then interrupts or pauses. This enables the debugger to run on the core being debugged.

2. Processor register access: Any of the programmer’s model registers within a core can be read or
changed by the debugger.

3. Remote reads andwrites: A debugger can cause a load or store operation, either directly on amain
system bus or as though it were issued by a nominated core. That coremay be running or halted.
There is minimal interruption to the running core, but there is some small overhead from the
additional debug traffic. This operationmay cause a pipeline stall, so it is not completely
unobtrusive. More serious can be side effects from particularly fragile bugs. A remote operation
can cause the re-arbitration of interconnect components, page faults and cachemisses. It can upset
the read andwrite queues in a DRAM controller. Not only does re-arbitration switch between
initiators, which has its own overhead, but the arbitration decision after the debug cycle may not
return to the original initiator. A sequential consistency bug can change or disappear in such
situations.

4. Watchpoints and breakpoints: A debugger can use hardware registers to store addresses of
interest. Theremight be four or eight such registers available centrally or per core. When a load or
store address matches an address in awatchpoint register, an event is generated. Likewise, when
the program counter matches a value in a breakpoint register, an event is generated.

5. Tracing and cross-trigger statemachine: See Section 4.7.2.

A SoC typically has a single logical DAP. Figure 4.36 shows a basic overall setup suitable for a
microcontroller or single-core SoC. The TCP connection from the debugger connects to a USB ‘dongle’
that makes the net-level connection to the SoC. JTAG is illustrated (Section 4.7.3). This has a one-bit
data path and so can be slow. Faster alternatives use parallel data. The DAP connects to the one core
and is also shown as being able to initiate its own transactions on the primary interconnect. In this
simple single-core system, the breakpoint andwatchpoint registers are in the CPU core or perhaps
inside a performancemanagement unit (PMU) coprocessor attached to the core (Section 2.7.9). The

201

Modern SoCDesign

0.1-V supply instead of a 1.0-V supply, it would use 1 per cent of the power (Section 4.6.5). An optical
interconnect using lithographically printed light guides could also bemade to work, especially for
inter-chip interconnections.

4.7 Designing for Testability andDebug Integration
Testing and debugging are related subjects that overlap since somemechanisms can be used for both
purposes. Both benefit from additional circuitry in a SoC that plays no part in normal operation. An
overhead of 5 per cent by area is not uncommon. This consumes hardly any power when not in use.
The goal of production testing is to rapidly check that each unit manufactured operates as designed.
Production testing will be discussed in Section 8.8. First, wewill consider debugging the applications
running on a SoC.

4.7.1 Application Debugging
A SoC contains numerous programmable components that run software or that are set up and
controlled by software. However, software always has bugs. Althoughmany programming errors can
be investigatedwith a virtual platform or ESLmodel (Chapter 5), this is not always sufficient or
appropriate. Many bugs arise from obscure and unexpected interactions that are different on the
virtual platform or do not occur at all. Hence, silicon hardware resources need to be devoted to
debugging. Indeed, today’s complex SoCs typically can have a considerable amount of logic for
debugging. Given adequate power gating (Section 4.6.10), there is little energy overhead from having
the debug infrastructure present yet switched off. The area overhead is not a cost problem either,
except perhaps for large trace buffers (Section 4.7.2).

Any debug infrastructure needs to be unobtrusive. A so-called heisenbug is a bug that disappears
when debugmonitoring is turned on. This is most unhelpful. Making the debug infrastructure as
independent of themainstream functionality as possible minimises the occurrence of heisenbugs.
Hence, having dedicated resources for the debug infrastructure is a good approach.

The threemain aspects of a debug infrastructure are tracing, triggering and single stepping. All are
accessed via a debug access port (DAP). Tracing refers to storing information in a trace buffer.
Triggering determines when to start and stop tracing. Single stepping enables a subsystem or whole
SoC to be halted andmanually advanced one clock cycle or instruction at a time. Traces are often
stored in compressed form. One form of compression relies on the program code being correctly
loaded and reliably fetched during execution. Given an off-line copy of themachine code, the
processor execution can be replayed forward or backward inside a debugger just from knowing what
values were deleted from the registers when their contents were overwritten. However, if the
problem being debugged is in the instruction stream, such an inference will be wrong and the
uncompressed visualisation will bemisleading.

A considerable amount of static meta-information is also available via the DAP. This includes the chip
version number and can include a debug reflection API, which allows the inventory and arrangement

200

Chapter 4 | SystemDesign Considerations

of the debug infrastructure to be accessed by software. Hence, a generic debugger can configure itself
to show structure diagrams and human-readable register and bit-field names. The textual names and
many further details can typically be fetched into the debugger over the Internet based on looking up
the IP block kinds and version numbers stored in the on-chip ROM.

The single-processor debug primitives available are generally the samewhether debugging the real
hardware or an emulatedmodel. For instance, the GNU gdb program is normally used to debug a
program running as a separate user-space program on the samemachine that the debugger is running
on, but by using the target remote command, it can attach to the real hardware or another machine
using a TCP socket. The standard techniques accessible through a debugger include:

1. Pause and step: A core can be stopped, stepped one instruction or allowed to resume normal
execution. A single step is often facilitated by a core runmode that executes one instruction and
then interrupts or pauses. This enables the debugger to run on the core being debugged.

2. Processor register access: Any of the programmer’s model registers within a core can be read or
changed by the debugger.

3. Remote reads andwrites: A debugger can cause a load or store operation, either directly on amain
system bus or as though it were issued by a nominated core. That coremay be running or halted.
There is minimal interruption to the running core, but there is some small overhead from the
additional debug traffic. This operationmay cause a pipeline stall, so it is not completely
unobtrusive. More serious can be side effects from particularly fragile bugs. A remote operation
can cause the re-arbitration of interconnect components, page faults and cachemisses. It can upset
the read andwrite queues in a DRAM controller. Not only does re-arbitration switch between
initiators, which has its own overhead, but the arbitration decision after the debug cycle may not
return to the original initiator. A sequential consistency bug can change or disappear in such
situations.

4. Watchpoints and breakpoints: A debugger can use hardware registers to store addresses of
interest. Theremight be four or eight such registers available centrally or per core. When a load or
store address matches an address in awatchpoint register, an event is generated. Likewise, when
the program counter matches a value in a breakpoint register, an event is generated.

5. Tracing and cross-trigger statemachine: See Section 4.7.2.

A SoC typically has a single logical DAP. Figure 4.36 shows a basic overall setup suitable for a
microcontroller or single-core SoC. The TCP connection from the debugger connects to a USB ‘dongle’
that makes the net-level connection to the SoC. JTAG is illustrated (Section 4.7.3). This has a one-bit
data path and so can be slow. Faster alternatives use parallel data. The DAP connects to the one core
and is also shown as being able to initiate its own transactions on the primary interconnect. In this
simple single-core system, the breakpoint andwatchpoint registers are in the CPU core or perhaps
inside a performancemanagement unit (PMU) coprocessor attached to the core (Section 2.7.9). The

201

Modern SoCDesign

DAP can pause and single step the core as well as inspect andmodify its registers. When a
watchpoint, breakpoint or other event occurs, the programmable options include to count it in a PMU
register, to interrupt the core or to pause the core so that the debugger can take over.

USB

JTAG
controller
(dongle)

Register
Access

Run/
Step/
Halt

Debug
Access

Port

TMS test mode select
TCLK - test mode clock

TDO - test data out

SoC chip

GDB
debugger

JTAG
daemon

RSP protocol (over TCP)

Debug
Workstation

Screen

Keyboard

Bus
fabric
switch

CPU
Core

I$

D$

Primary
storage

EMU

Countable
event nets

TDI - test data in

PMU

Figure 4.36 Debugging hardware for a single-core SoC. A debug access port is connected via JTAG and USB to a debug workstation

Many non-core IP blocks also generate events, and it can be useful to count them. Wires (net-level
flags) connect the IP block to the counter for each such event (shown in pink). These could be routed
to the PMUof one of the cores, but an alternative implementation uses a dedicated event-monitoring
unit (EMU). This can count events such as shared L2misses, bus transactions andDRAMactivations.

4.7.2 Multi-core Debug Integration
As noted, if a SoC has one processor, the debug interface connects directly to that core. Although the
per-core debug primitive set has not greatly changed in themultiprocessor SoC (MPSoC) era, we
inevitably havemultiple instances of that set. Additionally, other IP blocks typically now have debug
interfaces as well.

Figure 4.37 shows two additional main components of an advanced SoC debugging solution. These
are event trace logging and cross-triggering. It is implied that all the facilities shown in Figure 4.36 still
exist, such as the ability of the DAP to initiate transactions in every address space. To support trace
logging, the cores are given an additional port that delivers a stream of trace events to dedicated
event busses (green). The port supports various levels of detail, from off, to just interrupts and
branches, and to traces that contain sufficient data for a complete programmer-view replay. The
streams from the different cores are combined or thinned out with trace event funnels and
programmable event filters. The funnels providemultiplexing as well as some smarter functionality,
such as sharing a single timestamp for data from different inputs that have the same timestamp or
generating an explicit overload token rather than tacitly dropping data if there is a temporary
overload. A compressor performs run-length encoding of consecutive identical events or for lossless

202

Chapter 4 | SystemDesign Considerations

algorithms, like Lempel–Ziv, that exploit repeated patterns. Overall, the event bandwidthmust not
overwhelm the event destination, which is either an on-chip SRAMevent buffer or a dedicated
high-performance bus bond-out. A bond-out, in this sense, is a set of pads thatmay be disconnected in
mass production packages (Section 8.9) but made available for external connection in a higher-cost
test and development package. Off-chip trace buffers are commonly used by industrial or automotive
controllers. For these, a wide parallel DAP dedicates most of its pins to data. Alternatively, a
multi-gigabit serialiser can be used to export the data rapidly (Section 3.8).

Debug
Access

Port

Bus
fabric
switch

CPU
core DRAM

controller
(etc)

Cross-trigger matrix

Funnel

Program
trace

Lo
ss

le
ss

co
m

pr
es

so
r

Event trace
circular buffer

(SRAM)

Bus trace
monitor cell

EMU

CPU
core
Program

trace

Part/ECO
ROM

Trace event
funnel

Debug access bus

Hardware
event nets

Trace event busses

Run/stop
control(s)

Event filter

SoC chip

Event trace
FIFO

High-performance
event logging port

State bits

Disconnected in normal
operation, but connected
to test laboratory
equipment when needed.

Figure 4.37 Typical additional event-stream debug resources for a modernMPSoC. Operational data busses are black. Event-stream busses are green.
Debug-access busses are blue. The pink arrows denote event-monitoring nets frommiscellaneous IP blocks that either do not have their own counters or
need to be made available for cross-triggering

It is easy to collect toomuch event trace data fromCPU cores. Each coremight average 10bits per
instruction executed. Data can, instead, be collected from system busses. The figure shows a bus trace
monitor connected to the DRAM controller input. This should generate two orders of magnitude less
data than a CPU core at normal cache hit rates. Moreover, data from readsmay not need to be logged
if thememory is working properly, since the data will be the same as what was earlier written, though
the datamay have beenwritten outside the temporal window being captured. An event filter may be
programmed to record events corresponding only to narrow address windows, thereby extending the
effective temporal window.

For the on-chip trace buffer, because only a finite pool of tracememory is available, a circular
arrangement based on address wrapping is used so that the oldest data are constantly being
overwritten. Hence, data up to a point of interest can be captured by stopping the trace just after that
point. The recent history is then preserved in the buffer. It is also possible for traces to be stored in the
main DRAMof the SoC or for periodic dumping of the SRAM trace buffer to themainmemory under
operating system control, but these intrusivemechanismsmaymask the feature being investigated.

203

Modern SoCDesign

DAP can pause and single step the core as well as inspect andmodify its registers. When a
watchpoint, breakpoint or other event occurs, the programmable options include to count it in a PMU
register, to interrupt the core or to pause the core so that the debugger can take over.

USB

JTAG
controller
(dongle)

Register
Access

Run/
Step/
Halt

Debug
Access

Port

TMS test mode select
TCLK - test mode clock

TDO - test data out

SoC chip

GDB
debugger

JTAG
daemon

RSP protocol (over TCP)

Debug
Workstation

Screen

Keyboard

Bus
fabric
switch

CPU
Core

I$

D$

Primary
storage

EMU

Countable
event nets

TDI - test data in

PMU

Figure 4.36 Debugging hardware for a single-core SoC. A debug access port is connected via JTAG and USB to a debug workstation

Many non-core IP blocks also generate events, and it can be useful to count them. Wires (net-level
flags) connect the IP block to the counter for each such event (shown in pink). These could be routed
to the PMUof one of the cores, but an alternative implementation uses a dedicated event-monitoring
unit (EMU). This can count events such as shared L2misses, bus transactions andDRAMactivations.

4.7.2 Multi-core Debug Integration
As noted, if a SoC has one processor, the debug interface connects directly to that core. Although the
per-core debug primitive set has not greatly changed in themultiprocessor SoC (MPSoC) era, we
inevitably havemultiple instances of that set. Additionally, other IP blocks typically now have debug
interfaces as well.

Figure 4.37 shows two additional main components of an advanced SoC debugging solution. These
are event trace logging and cross-triggering. It is implied that all the facilities shown in Figure 4.36 still
exist, such as the ability of the DAP to initiate transactions in every address space. To support trace
logging, the cores are given an additional port that delivers a stream of trace events to dedicated
event busses (green). The port supports various levels of detail, from off, to just interrupts and
branches, and to traces that contain sufficient data for a complete programmer-view replay. The
streams from the different cores are combined or thinned out with trace event funnels and
programmable event filters. The funnels providemultiplexing as well as some smarter functionality,
such as sharing a single timestamp for data from different inputs that have the same timestamp or
generating an explicit overload token rather than tacitly dropping data if there is a temporary
overload. A compressor performs run-length encoding of consecutive identical events or for lossless

202

Chapter 4 | SystemDesign Considerations

algorithms, like Lempel–Ziv, that exploit repeated patterns. Overall, the event bandwidthmust not
overwhelm the event destination, which is either an on-chip SRAMevent buffer or a dedicated
high-performance bus bond-out. A bond-out, in this sense, is a set of pads thatmay be disconnected in
mass production packages (Section 8.9) but made available for external connection in a higher-cost
test and development package. Off-chip trace buffers are commonly used by industrial or automotive
controllers. For these, a wide parallel DAP dedicates most of its pins to data. Alternatively, a
multi-gigabit serialiser can be used to export the data rapidly (Section 3.8).

Debug
Access

Port

Bus
fabric
switch

CPU
core DRAM

controller
(etc)

Cross-trigger matrix

Funnel

Program
trace

Lo
ss

le
ss

co
m

pr
es

so
r

Event trace
circular buffer

(SRAM)

Bus trace
monitor cell

EMU

CPU
core
Program

trace

Part/ECO
ROM

Trace event
funnel

Debug access bus

Hardware
event nets

Trace event busses

Run/stop
control(s)

Event filter

SoC chip

Event trace
FIFO

High-performance
event logging port

State bits

Disconnected in normal
operation, but connected
to test laboratory
equipment when needed.

Figure 4.37 Typical additional event-stream debug resources for a modernMPSoC. Operational data busses are black. Event-stream busses are green.
Debug-access busses are blue. The pink arrows denote event-monitoring nets frommiscellaneous IP blocks that either do not have their own counters or
need to be made available for cross-triggering

It is easy to collect toomuch event trace data fromCPU cores. Each coremight average 10bits per
instruction executed. Data can, instead, be collected from system busses. The figure shows a bus trace
monitor connected to the DRAM controller input. This should generate two orders of magnitude less
data than a CPU core at normal cache hit rates. Moreover, data from readsmay not need to be logged
if thememory is working properly, since the data will be the same as what was earlier written, though
the datamay have beenwritten outside the temporal window being captured. An event filter may be
programmed to record events corresponding only to narrow address windows, thereby extending the
effective temporal window.

For the on-chip trace buffer, because only a finite pool of tracememory is available, a circular
arrangement based on address wrapping is used so that the oldest data are constantly being
overwritten. Hence, data up to a point of interest can be captured by stopping the trace just after that
point. The recent history is then preserved in the buffer. It is also possible for traces to be stored in the
main DRAMof the SoC or for periodic dumping of the SRAM trace buffer to themainmemory under
operating system control, but these intrusivemechanismsmaymask the feature being investigated.

203

Modern SoCDesign

Debug infrastructure should normally be created with the assistance of an automated tool within the
SoC design system, perhaps as part of the interconnect synthesis. This will not only ensure the correct
wiring of the debug components, but can also be used to createmeta-information files that
cross-reference physical addresses with textual names. This meta-information can be imported into
the debugger. Some of themeta-informationmay be aggregated in the single ROM shown on the
bottom right of Figure 4.37. The ROMalso gives the part number and ECO variant (Section 8.10).
Typical sizes are 4 to 200bytes of information. Alternatively, each IP block commonly has an identifier
hard-coded into the first register of its internal debug space. Amajor work item that can be handled
via such a holistic approach is proper crossing between the power and clock domains. If a component
is in a standbymode or powered off, it will not respond to a transaction on its debug port. The
debugger must either avoid issuing such a request or else go through the necessary power
phase/mode changes needed for the request to be handled.

A simple system uses one state bit for the run/pause state of each core and one state bit for whether
tracing is on or off. These state bits are driven by a configurationmatrix whose inputs are the watch
and break events and other events from the PMU and other subsystems. Such a simple system is
inadequate for detecting complex patterns defined by sequences of events or for dynamically
adjusting the event filter predicates.

As needed originally for the PMU, significant events generated by each IP block are available as
net-level flags. At the cost of a small amount of wiring, these can be pooled as inputs to a central
programmablematrix to form a generic cross-trigger statemachine. Additional state flip-flops are
provided that can be set and reset by outputs of thematrix. Their outputs are just fed back as further
inputs to thematrix. Hence, a statemachine can be programmed tomatch a user-specified sequence
of events. Additionally, a user program can be instrumented to generate specific events by accessing
an otherwise-unusedwatchpoint address. As well as programmable state flags, additional resources
such as counters can be provided, again with both their input and output connections being
programmable in thematrix, or just read out over the debug bus.

4.7.3 DebugNavigation and JTAG
There are typically several different ways of connecting to the DAP of a SoC. They vary in their cost,
intrusiveness and security. A DAPmay be selectively accessible to one of the cores on the SoC. This is
often the primary core, which is the first to boot, or it could be a dedicated tiny processor that just
manages booting, debug and initial DVFS andDRAM configuration. Designs need to be secure against
two attacks: IP theft and data access. The debug channel provides an obvious backdoor that needs
hiding from reverse engineering andmalicious applications. Security can be enforced physically by
wiring dedicated pins on the SoC directly to an unpopulated socket on the circuit board. Alternatively,
security can be provided cryptographically andwrapped up into secure boot mechanisms. Most SoCs
support a number of boot methods, e.g. by strapping a combination of pins to supply or ground. These
same techniques can be extended to providing access control levels for the debug channels
(Section 9.1.1).

204

Chapter 4 | SystemDesign Considerations

TDI TMS TCLK TDO TDI TMS TCLK TDO

TDI
TMS
TCLK
TDO

SoC Device 1 Soc Device 2

Test
socket

USB

Debug
agent

USB dongle

Figure 4.38 JTAG interface chaining at board level to create a top-level node in the debug device tree

One of the oldest andmost commonDAPs is the Joint Test Action Group (JTAG) port, standardised as
IEEE 1149. This uses four wires per chip (Table 4.5).

Table 4.5 JTAG signal list

TDI In Test data in: serial bits from test agent or previous device
TMS In Test mode select: frame data and addresses
TCK In Test clock: clocks each bit in and out
TDO Out Test data out: to next device or back to agent

There can be numerous chips at the circuit board level, each with a DAP. Figure 4.38 shows how two
can be linked into a daisy chain using JTAGwiring. JTAG is a serial bus that provides access to test
registers in a SoC. There can be any number of bits in a register and there can be any number of chips
in the daisy chain. One of the test registers is defined as a bypass register that then provides access to
the next chip in the chain. A protocol is defined using the values on the TMS pin to address any of the
test registers in any chip in the daisy chain. The old content of that test register is then shifted out and
new content is shifted in. New content will be ignored for a read-only register. Certain test registers
are predefined to hold themanufacturer and device numbers so that debugger software can
dynamically adapt to the physical ordering and presence of different SoCs at the board level. In an
advanced debug architecture, one of the JTAG test registers will be used to generate an address on
the internal debug access bus (bottom blue line in Figure 4.37) and another for data reads andwrites
to that address. However, JTAG is typically limited to just a fewMbps and hence, high-performance
parallel or USB-based DAPs are now additionally provided.

4.7.4 Additional DAP Facilities
The original purpose of JTAGwas for making boundary scans for board-level product testing, as
explained in Section 4.7.5. A SoC typically has a hundred ormore bond pads. In a boundary scan, a
virtual connection is made to each pad that carries an I/O signal using a shift register structure that is
accessed via just a few bond pads. SoCs do not always support boundary scanning, but this debug port
is increasingly used for other chip-level product tests andmanufacture purposes. Some of these are:

205

Modern SoCDesign

Debug infrastructure should normally be created with the assistance of an automated tool within the
SoC design system, perhaps as part of the interconnect synthesis. This will not only ensure the correct
wiring of the debug components, but can also be used to createmeta-information files that
cross-reference physical addresses with textual names. This meta-information can be imported into
the debugger. Some of themeta-informationmay be aggregated in the single ROM shown on the
bottom right of Figure 4.37. The ROMalso gives the part number and ECO variant (Section 8.10).
Typical sizes are 4 to 200bytes of information. Alternatively, each IP block commonly has an identifier
hard-coded into the first register of its internal debug space. Amajor work item that can be handled
via such a holistic approach is proper crossing between the power and clock domains. If a component
is in a standbymode or powered off, it will not respond to a transaction on its debug port. The
debugger must either avoid issuing such a request or else go through the necessary power
phase/mode changes needed for the request to be handled.

A simple system uses one state bit for the run/pause state of each core and one state bit for whether
tracing is on or off. These state bits are driven by a configurationmatrix whose inputs are the watch
and break events and other events from the PMU and other subsystems. Such a simple system is
inadequate for detecting complex patterns defined by sequences of events or for dynamically
adjusting the event filter predicates.

As needed originally for the PMU, significant events generated by each IP block are available as
net-level flags. At the cost of a small amount of wiring, these can be pooled as inputs to a central
programmablematrix to form a generic cross-trigger statemachine. Additional state flip-flops are
provided that can be set and reset by outputs of thematrix. Their outputs are just fed back as further
inputs to thematrix. Hence, a statemachine can be programmed tomatch a user-specified sequence
of events. Additionally, a user program can be instrumented to generate specific events by accessing
an otherwise-unusedwatchpoint address. As well as programmable state flags, additional resources
such as counters can be provided, again with both their input and output connections being
programmable in thematrix, or just read out over the debug bus.

4.7.3 DebugNavigation and JTAG
There are typically several different ways of connecting to the DAP of a SoC. They vary in their cost,
intrusiveness and security. A DAPmay be selectively accessible to one of the cores on the SoC. This is
often the primary core, which is the first to boot, or it could be a dedicated tiny processor that just
manages booting, debug and initial DVFS andDRAM configuration. Designs need to be secure against
two attacks: IP theft and data access. The debug channel provides an obvious backdoor that needs
hiding from reverse engineering andmalicious applications. Security can be enforced physically by
wiring dedicated pins on the SoC directly to an unpopulated socket on the circuit board. Alternatively,
security can be provided cryptographically andwrapped up into secure boot mechanisms. Most SoCs
support a number of boot methods, e.g. by strapping a combination of pins to supply or ground. These
same techniques can be extended to providing access control levels for the debug channels
(Section 9.1.1).

204

Chapter 4 | SystemDesign Considerations

TDI TMS TCLK TDO TDI TMS TCLK TDO

TDI
TMS
TCLK
TDO

SoC Device 1 Soc Device 2

Test
socket

USB

Debug
agent

USB dongle

Figure 4.38 JTAG interface chaining at board level to create a top-level node in the debug device tree

One of the oldest andmost commonDAPs is the Joint Test Action Group (JTAG) port, standardised as
IEEE 1149. This uses four wires per chip (Table 4.5).

Table 4.5 JTAG signal list

TDI In Test data in: serial bits from test agent or previous device
TMS In Test mode select: frame data and addresses
TCK In Test clock: clocks each bit in and out
TDO Out Test data out: to next device or back to agent

There can be numerous chips at the circuit board level, each with a DAP. Figure 4.38 shows how two
can be linked into a daisy chain using JTAGwiring. JTAG is a serial bus that provides access to test
registers in a SoC. There can be any number of bits in a register and there can be any number of chips
in the daisy chain. One of the test registers is defined as a bypass register that then provides access to
the next chip in the chain. A protocol is defined using the values on the TMS pin to address any of the
test registers in any chip in the daisy chain. The old content of that test register is then shifted out and
new content is shifted in. New content will be ignored for a read-only register. Certain test registers
are predefined to hold themanufacturer and device numbers so that debugger software can
dynamically adapt to the physical ordering and presence of different SoCs at the board level. In an
advanced debug architecture, one of the JTAG test registers will be used to generate an address on
the internal debug access bus (bottom blue line in Figure 4.37) and another for data reads andwrites
to that address. However, JTAG is typically limited to just a fewMbps and hence, high-performance
parallel or USB-based DAPs are now additionally provided.

4.7.4 Additional DAP Facilities
The original purpose of JTAGwas for making boundary scans for board-level product testing, as
explained in Section 4.7.5. A SoC typically has a hundred ormore bond pads. In a boundary scan, a
virtual connection is made to each pad that carries an I/O signal using a shift register structure that is
accessed via just a few bond pads. SoCs do not always support boundary scanning, but this debug port
is increasingly used for other chip-level product tests andmanufacture purposes. Some of these are:

205

Modern SoCDesign

Redundancy strapping: Parts of a defective die are hidden tomake a lower-specification product
or to substitute with a standby instance (Section 8.8.4).

Voltage and speed grading a part: Ring oscillators or other silicon process instrumentation is
accessed for calibration and installation of DVFS tables (Section 4.6.8).

Installing theMAC address, PKI secret key or other data that need to be different in each SoC
manufactured.

GeneralBIOS and file system flashing: Boot ROM, embedded applications and other low-level
code stored in flashmemory are installed.

Accessing built-in self-test (BIST)mechanisms (Section 4.7.6).

4.7.5 Boundary and General Path Scans
SoCs contain IP blocks from different IP vendors. Each camewith a production test programme.
Production testing of wafers and chips is discussed in Section 8.8. Test vectors are applied to the bond
pads of the whole chip. However, for integrated IP blocks, it can be useful to apply a per-block test
programme in the sameway to each block inside a chip. Moreover, it is sometimes helpful to be able to
run a chip-level production test when the SoC is attached to a circuit board. Scan path testing
provides thesemechanisms. It was the original motivation for the JTAG definition.

Output
Pad

D
Q

D
Q

1 0

Bond Pad

C
hain R

egister

D
ata R

egister

Input Pad Buffer

Input
Pad

D
Q

D
Q

1 0

Bond Pad

C
hain R

egister

D
ata R

egister

Input Pad Buffer

Input
Pad

D
Q

D
Q

C
hain R

egister

D
ata R

egister

O
utput Pad D

river
Bond Pad

From Core
To Core

Test clock
Scan M

ode Select
Test vector
output data

Strobes

To Core

Test vector
input data

Figure 4.39 Basic structure of the additional logic required in input and output pads for boundary scanning. Serial data are shifted from one pad to the next
using the test clock. The result from the previous test vector is shifted out as a vector is shifted in. The two strobe signals are used to apply the test vector to
the input pads and to sample the data at the output pads

206

Chapter 4 | SystemDesign Considerations

Figure 4.39 shows a fragment of a boundary scan path. The path is inserted into the electronics of
each input and output pad. When the scanmode select net is low, the scan logic has no effect, but in
scanmode, the boundary scan logic takes over from the input pads. The scan logic uses a shift and
store approach. Two flip-flops are added to each pad. One flop in each pad is a stage in the chain for a
shift register. A complete word of length equal to the number of instrumented pads is shifted in from
theDAP controller. Such aword is called a test vector (Section 8.8.2). Then, on the strobe signal, data
are captured from the output pads and new data applied to the input pads. The captured data are
shifted out as the next vector is shifted in. The second flop in each pad, the data register, keeps the
applied test vector stable during the shifting.

Clearly, boundary scan can be applied to appropriate IP blocks in a SoC. This might be suitable for
hardmacrocells (Section 8.4.2), such as a custom processor core. However, with increased
standardisation of on-chip busses, such as the AXI standard, boundary scanning of IP blocks is less
commonly used. A variant can be used for BIST access. A general scan path is similar to a boundary
scan path, but the scan path is threaded through all of the flip-flopswithin the IP block. This allows the
cycle-by-cycle observation of a component, but the component cannot be used at full speed during
this mode and there is a significant overhead in the additional wiring. General scan path logic is
typically inserted by running a logic synthesiser (Section 8.3.8) in a special mode. This additional logic
is called a logic built-in self-test (LBIST).

4.7.6 BIST for SRAMMemories (MBIST)
Figure 4.40 shows an SRAM component with a BIST/ECCwrapper around it. Built-in self test (BIST)
circuits are used in hardware subsystems that cannot easily be tested in other ways. BIST for memory
is calledMBIST. For instance, full access to the datamemory of a trusted computemodule or a secure
enclave (Section 4.9.1) might be completely denied from outside the silicon for security. If each RAM
has its own BIST, the RAMs can be tested in parallel during the production test. Serial testing could be
the only option if the RAM is tested using code on one of the cores or if external test vectors under a
wafer probe are used. Under normal operation, the self-test wrapper acts as a bus protocol target for
externally commanded reads andwrites. However, in self-test mode, which will be selected over the
DAP, the wrapper will runmemory tests that write and then read back standard patterns such as
0/F/5/A and ‘walking ones’. The results will be readable over the debug bus.

SRAM

Debug access bus

Address

Data

(ECC Data)

renwen
Data Access

BIST wrapper

Figure 4.40 A static RAMwith self-test wrapper around it. An error correction wrapper has a similar structure, but then the SRAM data bus will be wider
than the external data bus. Both wrappers are often logically present, in which case a single wrapper may implement both functionalities

207

Modern SoCDesign

Redundancy strapping: Parts of a defective die are hidden tomake a lower-specification product
or to substitute with a standby instance (Section 8.8.4).

Voltage and speed grading a part: Ring oscillators or other silicon process instrumentation is
accessed for calibration and installation of DVFS tables (Section 4.6.8).

Installing theMAC address, PKI secret key or other data that need to be different in each SoC
manufactured.

GeneralBIOS and file system flashing: Boot ROM, embedded applications and other low-level
code stored in flashmemory are installed.

Accessing built-in self-test (BIST)mechanisms (Section 4.7.6).

4.7.5 Boundary and General Path Scans
SoCs contain IP blocks from different IP vendors. Each camewith a production test programme.
Production testing of wafers and chips is discussed in Section 8.8. Test vectors are applied to the bond
pads of the whole chip. However, for integrated IP blocks, it can be useful to apply a per-block test
programme in the sameway to each block inside a chip. Moreover, it is sometimes helpful to be able to
run a chip-level production test when the SoC is attached to a circuit board. Scan path testing
provides thesemechanisms. It was the original motivation for the JTAG definition.

Output
Pad

D
Q

D
Q

1 0

Bond Pad

C
hain R

egister

D
ata R

egister

Input Pad Buffer

Input
Pad

D
Q

D
Q

1 0

Bond Pad

C
hain R

egister

D
ata R

egister

Input Pad Buffer

Input
Pad

D
Q

D
Q

C
hain R

egister

D
ata R

egister

O
utput Pad D

river
Bond Pad

From Core
To Core

Test clock
Scan M

ode Select
Test vector
output data

Strobes

To Core

Test vector
input data

Figure 4.39 Basic structure of the additional logic required in input and output pads for boundary scanning. Serial data are shifted from one pad to the next
using the test clock. The result from the previous test vector is shifted out as a vector is shifted in. The two strobe signals are used to apply the test vector to
the input pads and to sample the data at the output pads

206

Chapter 4 | SystemDesign Considerations

Figure 4.39 shows a fragment of a boundary scan path. The path is inserted into the electronics of
each input and output pad. When the scanmode select net is low, the scan logic has no effect, but in
scanmode, the boundary scan logic takes over from the input pads. The scan logic uses a shift and
store approach. Two flip-flops are added to each pad. One flop in each pad is a stage in the chain for a
shift register. A complete word of length equal to the number of instrumented pads is shifted in from
theDAP controller. Such aword is called a test vector (Section 8.8.2). Then, on the strobe signal, data
are captured from the output pads and new data applied to the input pads. The captured data are
shifted out as the next vector is shifted in. The second flop in each pad, the data register, keeps the
applied test vector stable during the shifting.

Clearly, boundary scan can be applied to appropriate IP blocks in a SoC. This might be suitable for
hardmacrocells (Section 8.4.2), such as a custom processor core. However, with increased
standardisation of on-chip busses, such as the AXI standard, boundary scanning of IP blocks is less
commonly used. A variant can be used for BIST access. A general scan path is similar to a boundary
scan path, but the scan path is threaded through all of the flip-flopswithin the IP block. This allows the
cycle-by-cycle observation of a component, but the component cannot be used at full speed during
this mode and there is a significant overhead in the additional wiring. General scan path logic is
typically inserted by running a logic synthesiser (Section 8.3.8) in a special mode. This additional logic
is called a logic built-in self-test (LBIST).

4.7.6 BIST for SRAMMemories (MBIST)
Figure 4.40 shows an SRAM component with a BIST/ECCwrapper around it. Built-in self test (BIST)
circuits are used in hardware subsystems that cannot easily be tested in other ways. BIST for memory
is calledMBIST. For instance, full access to the datamemory of a trusted computemodule or a secure
enclave (Section 4.9.1) might be completely denied from outside the silicon for security. If each RAM
has its own BIST, the RAMs can be tested in parallel during the production test. Serial testing could be
the only option if the RAM is tested using code on one of the cores or if external test vectors under a
wafer probe are used. Under normal operation, the self-test wrapper acts as a bus protocol target for
externally commanded reads andwrites. However, in self-test mode, which will be selected over the
DAP, the wrapper will runmemory tests that write and then read back standard patterns such as
0/F/5/A and ‘walking ones’. The results will be readable over the debug bus.

SRAM

Debug access bus

Address

Data

(ECC Data)

renwen
Data Access

BIST wrapper

Figure 4.40 A static RAMwith self-test wrapper around it. An error correction wrapper has a similar structure, but then the SRAM data bus will be wider
than the external data bus. Both wrappers are often logically present, in which case a single wrapper may implement both functionalities

207

Modern SoCDesign

Error-correcting code (ECC)memory has a similar structure. Rather than building and operating a
RAMout of completely reliable technology, other design points are used. A RAM that is clocked a
little too fast or run on a slightly low voltage or exposed to atomic radiation will suffer the occasional
error. Provided the actual error rate is within the designmargin, data can be corrected upon readout
or a periodic ‘scrub’. Like a refresh for DRAM, scrubbing is the process of periodically reading out each
word andwriting back a corrected version if necessary. The ECCwrapper extends the wordwidth for
writes by appending additional parity check or correction digits. On reading back, if the bits do not
match, the data are corrected where possible or else an error response is returned to the transaction.
Statistics on the rate of corrections are readable over the debug interface. The debug interfacemay
also be used to program the scrub rate. Since a data access port supports handshaking, contention for
a RAM location is simply solved using arbitration. The same ECC techniques are also commonly used
for DRAM, but DRAM is off-chip and has a separate production test.

4.8 Reliability and Security
SoCs are sold into diversemarkets that differ in their reliability and security requirements. A SoCmay
need to be ultra-reliable for healthcare and avionics applications. It may need to be robust under high
or low temperatures or able to withstand high radiation levels in outer space. Often, a SoC needs to
be secure against reverse engineering, either in protecting its own intellectual property or when
serving as a gateway device for financial transactions or valuable copyright-protectedmaterials, such
as digital video projection.

4.8.1 Physical Faults, Performance Degradation, Error Detection and Correction, and Pre-
and Post-siliconMitigation Techniques
Faults are classed as hard or soft. A hard fault occurs consistently and arises from amanufacturing
fault or a failure. On the other hand, a soft fault happens at random during an execution and is not
re-encountered on a re-execution. A single-event upset (SEU) is a soft fault that arises from external
interference, such as a cosmic ray hitting the silicon chip, power supply noise or intense
radio-frequency interference (RFI) originating from a nearby transmitter or faulty heavy-duty switch
gear. Some hard faults aremanufacturing faults arising from dislocations in the silicon crystal lattice
or dirt in the processing steps. Chips with this sort of fault should be discarded during the production
test.

Hard faults also arise from damage during use. Damage can be caused by an electrostatic discharge
(ESD) in which a charged object, typically a human, touches signal wiring. All chip I/O bond pads have
protection diodes that handle everyday electrostatic discharges, but certain clothes or floormaterials
can lead to excessive charge that can flow into the core circuitry and burn out theminiature
structures. Lightning storms can cause the same problem, either from a direct strike or by inducing
voltages in the cabling between components. Discharges can also enter via themains electricity grid
and power supply.

208

Chapter 4 | SystemDesign Considerations

Hard faults can occur due to wear. A flashmemorymay no longer erase owing to the build-up of
residual charge (Section 2.6.8). The flow of electricity through a silicon chip structure causes gradual
electromigration. As explained in Section 8.4.5, metallic materials can bemoved by an electric
current fromwhere they were placed duringmanufacture. Eventually, a component may no longer
function correctly, leading to a hard fault.

4.9 Hardware-based Security
Building on the history of time-sharingmainframes, the basic principles of information security on a
SoC remain access control lists and virtualisation. These traditionally relied on VM and partitioning of
the ISA into user and supervisor mode instructions. However, the need for multiple roots of trust for
authenticated financial and cell phone transactions together with copyright in multimedia streams
raises new requirements for digital rights management and copy protection. Players of online games
need assurance that other players are not using a version in which gunshots always hit. Traditional
virtualisation applies only to user-mode instructions, so further hardware support has been added to
most ISAs, where it was lacking, to fully virtualise the platform to the extent that multiple complete
operating systems can be run at once.

Low-cost hardware platforms typically run without VM. Instead, a limited form of hardware
protection is offered by amemory protection unit (MPU). AnMPU is programmed or hardwired to
divide the physical memory space into a small number of protected regions, e.g. 8. Each region has
access control privileges, which include the standard read, write and execute privileges. As with the
standard page fault used by conventional VM, an exception is raised for a privilege violation. AnMPU
can be programmed only in supervisor mode and all interrupts, including anMPU fault, are run in
supervisor mode. I/O devices may be guarded from user-mode code if they are configured or
hardwired to take note of the security-level indication in the bus transaction. In an AXI interconnect,
this is communicated in the 3-bit AWPROT field, which defines four levels of security for each piece of
code or data.

The classical approach to virtualising a SoC fully so that multiple so-called guest operating systems
can run at once is to run each operating system in user mode and to emulate all instructions that fault
on a privilege violation. Such a fault is handled by a small and trusted virtualmachinemonitor (VMM),
which is also known as as a hypervisor. This requires the ISA to ensure that any behaviour-sensitive
instruction raises such a fault [4]. A behaviour-sensitive instruction is onewhose result might be
different if run in user mode instead of supervisor mode. If the result is different but no fault is raised,
then the VMMcannot intervene to emulate the expected behaviour. Nearly all major ISAs that
previously had instructions of this nature have recently been altered to facilitate virtualisation. If
such alterations are not possible, an alternative is to rewrite parts of the operating system to avoid
such sequences. This can be folded into the automated code rewriting that is often used as part of the
emulation of privileged instructions using hotspot detection and other JIT techniques.

209

Modern SoCDesign

Error-correcting code (ECC)memory has a similar structure. Rather than building and operating a
RAMout of completely reliable technology, other design points are used. A RAM that is clocked a
little too fast or run on a slightly low voltage or exposed to atomic radiation will suffer the occasional
error. Provided the actual error rate is within the designmargin, data can be corrected upon readout
or a periodic ‘scrub’. Like a refresh for DRAM, scrubbing is the process of periodically reading out each
word andwriting back a corrected version if necessary. The ECCwrapper extends the wordwidth for
writes by appending additional parity check or correction digits. On reading back, if the bits do not
match, the data are corrected where possible or else an error response is returned to the transaction.
Statistics on the rate of corrections are readable over the debug interface. The debug interfacemay
also be used to program the scrub rate. Since a data access port supports handshaking, contention for
a RAM location is simply solved using arbitration. The same ECC techniques are also commonly used
for DRAM, but DRAM is off-chip and has a separate production test.

4.8 Reliability and Security
SoCs are sold into diversemarkets that differ in their reliability and security requirements. A SoCmay
need to be ultra-reliable for healthcare and avionics applications. It may need to be robust under high
or low temperatures or able to withstand high radiation levels in outer space. Often, a SoC needs to
be secure against reverse engineering, either in protecting its own intellectual property or when
serving as a gateway device for financial transactions or valuable copyright-protectedmaterials, such
as digital video projection.

4.8.1 Physical Faults, Performance Degradation, Error Detection and Correction, and Pre-
and Post-siliconMitigation Techniques
Faults are classed as hard or soft. A hard fault occurs consistently and arises from amanufacturing
fault or a failure. On the other hand, a soft fault happens at random during an execution and is not
re-encountered on a re-execution. A single-event upset (SEU) is a soft fault that arises from external
interference, such as a cosmic ray hitting the silicon chip, power supply noise or intense
radio-frequency interference (RFI) originating from a nearby transmitter or faulty heavy-duty switch
gear. Some hard faults aremanufacturing faults arising from dislocations in the silicon crystal lattice
or dirt in the processing steps. Chips with this sort of fault should be discarded during the production
test.

Hard faults also arise from damage during use. Damage can be caused by an electrostatic discharge
(ESD) in which a charged object, typically a human, touches signal wiring. All chip I/O bond pads have
protection diodes that handle everyday electrostatic discharges, but certain clothes or floormaterials
can lead to excessive charge that can flow into the core circuitry and burn out theminiature
structures. Lightning storms can cause the same problem, either from a direct strike or by inducing
voltages in the cabling between components. Discharges can also enter via themains electricity grid
and power supply.

208

Chapter 4 | SystemDesign Considerations

Hard faults can occur due to wear. A flashmemorymay no longer erase owing to the build-up of
residual charge (Section 2.6.8). The flow of electricity through a silicon chip structure causes gradual
electromigration. As explained in Section 8.4.5, metallic materials can bemoved by an electric
current fromwhere they were placed duringmanufacture. Eventually, a component may no longer
function correctly, leading to a hard fault.

4.9 Hardware-based Security
Building on the history of time-sharingmainframes, the basic principles of information security on a
SoC remain access control lists and virtualisation. These traditionally relied on VM and partitioning of
the ISA into user and supervisor mode instructions. However, the need for multiple roots of trust for
authenticated financial and cell phone transactions together with copyright in multimedia streams
raises new requirements for digital rights management and copy protection. Players of online games
need assurance that other players are not using a version in which gunshots always hit. Traditional
virtualisation applies only to user-mode instructions, so further hardware support has been added to
most ISAs, where it was lacking, to fully virtualise the platform to the extent that multiple complete
operating systems can be run at once.

Low-cost hardware platforms typically run without VM. Instead, a limited form of hardware
protection is offered by amemory protection unit (MPU). AnMPU is programmed or hardwired to
divide the physical memory space into a small number of protected regions, e.g. 8. Each region has
access control privileges, which include the standard read, write and execute privileges. As with the
standard page fault used by conventional VM, an exception is raised for a privilege violation. AnMPU
can be programmed only in supervisor mode and all interrupts, including anMPU fault, are run in
supervisor mode. I/O devices may be guarded from user-mode code if they are configured or
hardwired to take note of the security-level indication in the bus transaction. In an AXI interconnect,
this is communicated in the 3-bit AWPROT field, which defines four levels of security for each piece of
code or data.

The classical approach to virtualising a SoC fully so that multiple so-called guest operating systems
can run at once is to run each operating system in user mode and to emulate all instructions that fault
on a privilege violation. Such a fault is handled by a small and trusted virtualmachinemonitor (VMM),
which is also known as as a hypervisor. This requires the ISA to ensure that any behaviour-sensitive
instruction raises such a fault [4]. A behaviour-sensitive instruction is onewhose result might be
different if run in user mode instead of supervisor mode. If the result is different but no fault is raised,
then the VMMcannot intervene to emulate the expected behaviour. Nearly all major ISAs that
previously had instructions of this nature have recently been altered to facilitate virtualisation. If
such alterations are not possible, an alternative is to rewrite parts of the operating system to avoid
such sequences. This can be folded into the automated code rewriting that is often used as part of the
emulation of privileged instructions using hotspot detection and other JIT techniques.

209

Modern SoCDesign

4.9.1 Trusted Platform and ComputerModules
A trusted platformmodule (TPM) is a secure subsystem that was originally implemented as a
separate chip on PCmotherboards. Themodule is tightly delineated using a separate piece of silicon.
Tamper-proof protectionmight also be implemented, in which secrets held are destroyed if an
attempt to open or probe the circuit is detected. This secret repository is called a secure enclave.
Intrusion avoidance and detection are typically implementedwith additional metal layers on the
wafer or around the package. A TPM can also check for repeated similar inquiries, repeated resets or
a slow clock frequency. A TPM typically contains a non-volatile store, a random number generator
and a low-throughput cryptographic processor. Together, these provide the following typical services:

Platform identifier: This is rather like theMAC address of a network card, but cannot be faked. It is
often used for software licensing.

RSA key-pair generator: This is used in public key encryption (PKI) (Section 9.1.1). A key pair
comprises a public key and a private key. The private key is kept entirely within the TPM, which
prevents it from being cloned or sharedmaliciously.

Authentication: A one-way hash function is combinedwith a key also held in the TPM to produce
an unfakable digital signature for a body of data streamed to the TPM.

A key/value store with access control: Small amounts of data, such as high scores in a game or a
PIN, are saved under a string key and updated, deleted or retrieved only with authenticated
commands.

Random number generation: This is a source of the random nonce values required inmany secure
protocols. The values are produced by pieces of logic that have truly random behaviour, generally
based onmetastable resolutions (Section 3.7.2) or the amplification of random electron
movements. (This differs from a physically unclonable function (PUF), which uses random
variations arising duringmanufacturing to implement a function that behaves consistently on any
particular device, but which varies randomly between devices.)

If a TPMhas only a low-speed connection to themain processor, high-throughput encryption is
achieved using the TPM to generate session keys, perhaps once per second. These are installed in the
main crypto-processors or as part of the secondary storage interface for encrypted file systems.

However, having a separate chip is expensive and contrary to the SoC philosophy. The data passing in
and out of such chips is communicated on the bus nets. Such chips have exposed power connections
that can create a side channel, which is an unintentional communication path that allows secrets to
escape. Supply connections have been attacked using differential power analysis (DPA),
electron-beam scanning and physical probing. Some poor designs have been triggered into revealing
their secrets using runt clock pulses on their interfaces. In DPA, a test is runmillions of times. The
supply current waveform is accurately recorded and averaged. In the sameway that a safe cracker
with a stethoscope can successively find the dial settings where each hidden tumbler hits the next,

210

Chapter 4 | SystemDesign Considerations

DPA can detect at what bit positions a tentative key fails tomatch. Designs attempt tomitigate this by
using a PRBS (Section 3.8) to induce randomwait states and a random number generator to permute
address and data bits to a RAMeach time power is applied.

4.9.2 Trusted ExecutionMode
Rather than having physical security around a trusted enclave, as with a physical TPM chip, an
alternative is to emulate this behaviour on a SoC core that has a dedicated security mode, which
supports a trusted execution environment (TEE). This mode has exclusive access to a region of
curtainedmemory and certain peripherals that cannot be accessed from other processingmodes,
including any supervisor mode. This is one of themotivations for the TrustZone architectural
enhancements fromArm, which has a new processing state called hypervisormode. Each interrupt
source can be programmed to either interrupt into hypervisor mode or behave as normal. Hence,
hypervisor mode can service page faults by emulating the page walk of a guest operating system and
serve as a basis for efficient VMMprovision. For high performance, hardware assistance for page
walking of the guest VMmappingmay also be provided.

4.9.3 Capability-based Protection
An alternative to virtual memory that can also serve as a basis for VMMs is provided by capability
architectures [5, 6]. All data in registers or memory locations under a capability architecture is either
plain data or a capability. A hidden tag bit on all values marks which form is held. The ISAmakes it
impossible to create a capability from plain data. On system reset, one register is loadedwith a
comprehensive almighty capability that can access any location for reading, writing or executing. ISA
instructions refine a capability into one that has fewer permissions or covers a smaller region of
memory. There is no restriction on executing the refine operation but there is no inverse instruction
or equivalent sequence of instructions.

Recent research has shown that a capability ISA can be implemented for a low hardware cost [7].
Efficiency can be similar to that of simpleMPUs. This is being explored commercially by Arm in the
Morello project. An existing ISAwas changed so that all I/O andmemory accesses must use the
capability protectionmechanism. This immensely improves security comparedwithMPU-based
solutions, for which programmersmust exercise considerable discipline tomake sure there are no
side channels. Most code can be recompiled without change, especially if conventional pointers are
supported within amemory region defined by capabilities stored in implied segment registers rather
than forcing all memory access to bemade directly via a capability. A small amount of additional code
refines the capabilities at boot time and in dynamic memory allocations (stack and heap). This leads to
a very promising, highly secure design point, although there is a memory overhead in storing tag bits.

4.9.4 Clock Sources
Most electronic products use a soundwave inside a quartz crystal as a clock source. Ultra cheap
products, like amusical greeting card, instead use an R/C oscillator, but this typically has only 10 per
cent accuracy. One semitone is 6 per cent, so these cards are often well out of pitch. Figure 4.41

211

Modern SoCDesign

4.9.1 Trusted Platform and ComputerModules
A trusted platformmodule (TPM) is a secure subsystem that was originally implemented as a
separate chip on PCmotherboards. Themodule is tightly delineated using a separate piece of silicon.
Tamper-proof protectionmight also be implemented, in which secrets held are destroyed if an
attempt to open or probe the circuit is detected. This secret repository is called a secure enclave.
Intrusion avoidance and detection are typically implementedwith additional metal layers on the
wafer or around the package. A TPM can also check for repeated similar inquiries, repeated resets or
a slow clock frequency. A TPM typically contains a non-volatile store, a random number generator
and a low-throughput cryptographic processor. Together, these provide the following typical services:

Platform identifier: This is rather like theMAC address of a network card, but cannot be faked. It is
often used for software licensing.

RSA key-pair generator: This is used in public key encryption (PKI) (Section 9.1.1). A key pair
comprises a public key and a private key. The private key is kept entirely within the TPM, which
prevents it from being cloned or sharedmaliciously.

Authentication: A one-way hash function is combinedwith a key also held in the TPM to produce
an unfakable digital signature for a body of data streamed to the TPM.

A key/value store with access control: Small amounts of data, such as high scores in a game or a
PIN, are saved under a string key and updated, deleted or retrieved only with authenticated
commands.

Random number generation: This is a source of the random nonce values required inmany secure
protocols. The values are produced by pieces of logic that have truly random behaviour, generally
based onmetastable resolutions (Section 3.7.2) or the amplification of random electron
movements. (This differs from a physically unclonable function (PUF), which uses random
variations arising duringmanufacturing to implement a function that behaves consistently on any
particular device, but which varies randomly between devices.)

If a TPMhas only a low-speed connection to themain processor, high-throughput encryption is
achieved using the TPM to generate session keys, perhaps once per second. These are installed in the
main crypto-processors or as part of the secondary storage interface for encrypted file systems.

However, having a separate chip is expensive and contrary to the SoC philosophy. The data passing in
and out of such chips is communicated on the bus nets. Such chips have exposed power connections
that can create a side channel, which is an unintentional communication path that allows secrets to
escape. Supply connections have been attacked using differential power analysis (DPA),
electron-beam scanning and physical probing. Some poor designs have been triggered into revealing
their secrets using runt clock pulses on their interfaces. In DPA, a test is runmillions of times. The
supply current waveform is accurately recorded and averaged. In the sameway that a safe cracker
with a stethoscope can successively find the dial settings where each hidden tumbler hits the next,

210

Chapter 4 | SystemDesign Considerations

DPA can detect at what bit positions a tentative key fails tomatch. Designs attempt tomitigate this by
using a PRBS (Section 3.8) to induce randomwait states and a random number generator to permute
address and data bits to a RAMeach time power is applied.

4.9.2 Trusted ExecutionMode
Rather than having physical security around a trusted enclave, as with a physical TPM chip, an
alternative is to emulate this behaviour on a SoC core that has a dedicated security mode, which
supports a trusted execution environment (TEE). This mode has exclusive access to a region of
curtainedmemory and certain peripherals that cannot be accessed from other processingmodes,
including any supervisor mode. This is one of themotivations for the TrustZone architectural
enhancements fromArm, which has a new processing state called hypervisormode. Each interrupt
source can be programmed to either interrupt into hypervisor mode or behave as normal. Hence,
hypervisor mode can service page faults by emulating the page walk of a guest operating system and
serve as a basis for efficient VMMprovision. For high performance, hardware assistance for page
walking of the guest VMmappingmay also be provided.

4.9.3 Capability-based Protection
An alternative to virtual memory that can also serve as a basis for VMMs is provided by capability
architectures [5, 6]. All data in registers or memory locations under a capability architecture is either
plain data or a capability. A hidden tag bit on all values marks which form is held. The ISAmakes it
impossible to create a capability from plain data. On system reset, one register is loadedwith a
comprehensive almighty capability that can access any location for reading, writing or executing. ISA
instructions refine a capability into one that has fewer permissions or covers a smaller region of
memory. There is no restriction on executing the refine operation but there is no inverse instruction
or equivalent sequence of instructions.

Recent research has shown that a capability ISA can be implemented for a low hardware cost [7].
Efficiency can be similar to that of simpleMPUs. This is being explored commercially by Arm in the
Morello project. An existing ISAwas changed so that all I/O andmemory accesses must use the
capability protectionmechanism. This immensely improves security comparedwithMPU-based
solutions, for which programmersmust exercise considerable discipline tomake sure there are no
side channels. Most code can be recompiled without change, especially if conventional pointers are
supported within amemory region defined by capabilities stored in implied segment registers rather
than forcing all memory access to bemade directly via a capability. A small amount of additional code
refines the capabilities at boot time and in dynamic memory allocations (stack and heap). This leads to
a very promising, highly secure design point, although there is a memory overhead in storing tag bits.

4.9.4 Clock Sources
Most electronic products use a soundwave inside a quartz crystal as a clock source. Ultra cheap
products, like amusical greeting card, instead use an R/C oscillator, but this typically has only 10 per
cent accuracy. One semitone is 6 per cent, so these cards are often well out of pitch. Figure 4.41

211

Modern SoCDesign

12pF12pF

2 M

Output

Period
e.g. 1/33e6

Ground

Crystal inside HC49
metal screening can.

b) Canned crystal and broken open view.

a) Pierce's quartz crystal oscillator circuit
with second inverter to 'square up' the sine wave.

Typical spec:
 Nominal Output: 33 MHz
 Initial accuracy: 25ppm
 Drift:
 1ppm per year
 1ppm per centigrade
 Jitter: almost unmeasurable.

Ω

c) Output waveform

Figure 4.41 Crystal oscillator circuit (left), canned crystal and contents (centre), and specification and output waveform (right)

shows a typical circuit that exploits the piezoelectric effect of a crystal to make it resonate. An
invertor becomes an inverting amplifier using a resistor to bias it into its high-gain nearly linear region.
The oscillation frequency is set by the reciprocal of the thickness. Above 20MHz or so, a crystal
cannot be cut thinly enough, so a 3rd of 5th overtone is forcedwith an external L/C tank circuit.

4.9.5 PLL and Clock Trees

Clock distribution H tree.

1000MHz

100 MHz

Divide
by 10 or N

External
clock
input.

PLL circuit.

Outside
the
SoC.

Inside
the
SoC.

H tree layout.

LPF

N
ratio

VCO

VCO

Figure 4.42 Clock multiplication using a PLL (left) and clock distribution layout using a fractal H-tree (right)

For higher clock frequencies of around 1GHz, which are commonly needed for CPU cores, the crystal
oscillator frequency is multiplied up on-chip using a phase-locked loop (PLL). A PLL is shown on the
left of Figure 4.42. A voltage-controlled oscillator (VCO) generates a clock whose frequency depends
on the average voltage on its control input. By dividing down the generated frequency by a constant
factor, e.g. 10 as shown, the frequency can bemade the same as that of the board-level clock of a
crystal under locked operation. A simple AND gate can serve as a phase comparator. If the VCO
output is a little too fast, the output from the divider will overlap less with the high cycle of the
external clock input, resulting in a reduced average voltage on the AND gate output. The resistor and

212

Chapter 4 | SystemDesign Considerations

capacitor form a low-pass filter (LPF). This helps provide inertia and stability. The VCO reduces its
output frequency and remains phase and frequency locked to the external input. Dynamic frequency
scaling (Section 4.6.8) can be implemented by changing the division ratio with a larger division factor
leading to a higher system clock rate for a fixed external reference.

A clock tree delivers a clock to all flops in a domain with sufficiently low skew. Toomuch skew
(difference in arrival times) leads to a shoot-through, such that a flip-flop output has already changed
while it is still being used to determine the next state of a companion (Section 4.6.9). Skew in delivery
is minimised using a balanced clock distribution tree, so that each path from the VCO to the clock
input of a flip-flop has the same net length and the same number of buffers. Inverters are used as
buffers tominimise pulse shrinkage. In most technologies, a buffer propagates the zero-to-one
transition faster or slower than the opposite transition. If a chain is composed of non-inverting stages,
the effects will accumulate systematically, resulting in duty-cycle distortion in which the pulse width
of one phase of the clock shrinks. One layout that ensures a balanced structure is the binary H-tree,
shown on the right of Figure 4.42. An inverter can be placed at every (or every other) point where the
clock net splits twoways. The flip-flops are wired to the ends of every linemaking up the smallest H
pattern.

If the H is balanced, the clock distribution delay does not require further consideration. However, if
unbalanced clock timing is needed for clock skewing (Section 4.9.6) or to compensate for delays in
clock gates, a more detailed delaymodel is needed beyond the simple lumped-element delaymodel of
Section 4.6.4. The resistance of each net segment produces a delay down that segment that depends
on the loading of the segment. A full SPICE simulation is always possible, but the Elmore delaymodel
provides a reasonable approximation to real behaviour. The total capacitive load on a segment is
simply summed and used along with the resistance of that segment tomodel its delay. The delay to a
point on the net is the sum of the delays thereby calculated from the source. Both forking and
non-forking nets can easily be computedwith the Elmoremodel. For a homogeneous non-forking net,
the Elmore delay degenerates to a simple sum of an arithmetic progression and gives the same answer
for any resolution of a lumped-elementmodel. That answer is quadratic in length and gives the delay
as L2RC/2where R and C are the resistance and capacitance per unit length. This contrasts with the
linear derating with length used in simpler models (Section 4.6.4).

4.9.6 Clock Skewing andMulti-cycle Paths
Although the golden principle of synchronous logic design has served us well for decades, today, with
the support of advanced EDA tools, the principle can be deliberately violated. The principle is that all
registers in a clock domain are clocked at exactly the same time and that all their inputs have properly
settled in advance of the setup time before the next clock edge (Section 4.4.2). Both clock skewing and
multi-clock paths can increase performancemore than is allowed under the golden rule.

Clock skewing is the process of deliberately offsetting the delivery of a clock edge to a register or
group of registers within a clock domain. The default design approach is to aim for zero skew, but it is

213

Modern SoCDesign

12pF12pF

2 M

Output

Period
e.g. 1/33e6

Ground

Crystal inside HC49
metal screening can.

b) Canned crystal and broken open view.

a) Pierce's quartz crystal oscillator circuit
with second inverter to 'square up' the sine wave.

Typical spec:
 Nominal Output: 33 MHz
 Initial accuracy: 25ppm
 Drift:
 1ppm per year
 1ppm per centigrade
 Jitter: almost unmeasurable.

Ω

c) Output waveform

Figure 4.41 Crystal oscillator circuit (left), canned crystal and contents (centre), and specification and output waveform (right)

shows a typical circuit that exploits the piezoelectric effect of a crystal to make it resonate. An
invertor becomes an inverting amplifier using a resistor to bias it into its high-gain nearly linear region.
The oscillation frequency is set by the reciprocal of the thickness. Above 20MHz or so, a crystal
cannot be cut thinly enough, so a 3rd of 5th overtone is forcedwith an external L/C tank circuit.

4.9.5 PLL and Clock Trees

Clock distribution H tree.

1000MHz

100 MHz

Divide
by 10 or N

External
clock
input.

PLL circuit.

Outside
the
SoC.

Inside
the
SoC.

H tree layout.

LPF

N
ratio

VCO

VCO

Figure 4.42 Clock multiplication using a PLL (left) and clock distribution layout using a fractal H-tree (right)

For higher clock frequencies of around 1GHz, which are commonly needed for CPU cores, the crystal
oscillator frequency is multiplied up on-chip using a phase-locked loop (PLL). A PLL is shown on the
left of Figure 4.42. A voltage-controlled oscillator (VCO) generates a clock whose frequency depends
on the average voltage on its control input. By dividing down the generated frequency by a constant
factor, e.g. 10 as shown, the frequency can bemade the same as that of the board-level clock of a
crystal under locked operation. A simple AND gate can serve as a phase comparator. If the VCO
output is a little too fast, the output from the divider will overlap less with the high cycle of the
external clock input, resulting in a reduced average voltage on the AND gate output. The resistor and

212

Chapter 4 | SystemDesign Considerations

capacitor form a low-pass filter (LPF). This helps provide inertia and stability. The VCO reduces its
output frequency and remains phase and frequency locked to the external input. Dynamic frequency
scaling (Section 4.6.8) can be implemented by changing the division ratio with a larger division factor
leading to a higher system clock rate for a fixed external reference.

A clock tree delivers a clock to all flops in a domain with sufficiently low skew. Toomuch skew
(difference in arrival times) leads to a shoot-through, such that a flip-flop output has already changed
while it is still being used to determine the next state of a companion (Section 4.6.9). Skew in delivery
is minimised using a balanced clock distribution tree, so that each path from the VCO to the clock
input of a flip-flop has the same net length and the same number of buffers. Inverters are used as
buffers tominimise pulse shrinkage. In most technologies, a buffer propagates the zero-to-one
transition faster or slower than the opposite transition. If a chain is composed of non-inverting stages,
the effects will accumulate systematically, resulting in duty-cycle distortion in which the pulse width
of one phase of the clock shrinks. One layout that ensures a balanced structure is the binary H-tree,
shown on the right of Figure 4.42. An inverter can be placed at every (or every other) point where the
clock net splits twoways. The flip-flops are wired to the ends of every linemaking up the smallest H
pattern.

If the H is balanced, the clock distribution delay does not require further consideration. However, if
unbalanced clock timing is needed for clock skewing (Section 4.9.6) or to compensate for delays in
clock gates, a more detailed delaymodel is needed beyond the simple lumped-element delaymodel of
Section 4.6.4. The resistance of each net segment produces a delay down that segment that depends
on the loading of the segment. A full SPICE simulation is always possible, but the Elmore delaymodel
provides a reasonable approximation to real behaviour. The total capacitive load on a segment is
simply summed and used along with the resistance of that segment tomodel its delay. The delay to a
point on the net is the sum of the delays thereby calculated from the source. Both forking and
non-forking nets can easily be computedwith the Elmoremodel. For a homogeneous non-forking net,
the Elmore delay degenerates to a simple sum of an arithmetic progression and gives the same answer
for any resolution of a lumped-elementmodel. That answer is quadratic in length and gives the delay
as L2RC/2where R and C are the resistance and capacitance per unit length. This contrasts with the
linear derating with length used in simpler models (Section 4.6.4).

4.9.6 Clock Skewing andMulti-cycle Paths
Although the golden principle of synchronous logic design has served us well for decades, today, with
the support of advanced EDA tools, the principle can be deliberately violated. The principle is that all
registers in a clock domain are clocked at exactly the same time and that all their inputs have properly
settled in advance of the setup time before the next clock edge (Section 4.4.2). Both clock skewing and
multi-clock paths can increase performancemore than is allowed under the golden rule.

Clock skewing is the process of deliberately offsetting the delivery of a clock edge to a register or
group of registers within a clock domain. The default design approach is to aim for zero skew, but it is

213

Modern SoCDesign

P Q R

D

Amax minA- Bmax minB -Clk+DClk+0 Clk+0

CLK+TCQ CLK+D+TCQ CLK+TCQCLK+TCQ +A CLK+TCQ +B

Clock

Figure 4.43 Clock skewing. The delivery of the clock edge to some D-types is delayed or advanced to balance out timing margins either side

valid to deliver the clock late to a group of registers if there is a long combinational path on their input
and shorter paths on all of their outputs.

Figure 4.43 shows themost basic setup. The clock to the broadside register Q is made earlier or later
by changing the structure of the clock distribution network (typically an H-tree; Section 4.9.5). The
amount of offset isD. There aremultiple paths through the combinational logic, so, even in this very
simple scenario, there is a range of arrival times at the D-inputs. These add on to the clock-to-Q time
TCQ. All inputs must be stable before the setup time of Q, TSU. Likewise, adjustingD alters the time of
arrival at registers fed byQ, but it is their hold time that is likely to be violated. A shoot-through
(Section 4.6.9) without violating the set and hold times is even possible ifD is unreasonably large.

Themaximum amount of clock advance allowable (most negativeD) is governed by
TCQ+Amax+TSU < T+D. This inequality ensures that the setup time into register Q is met. The
maximum amount of clock retard allowable (most positiveD) is governed by TCQ+Bmin−D> Thold.
This inequality ensures the hold time into register R is met. Of course, in realistic scenarios, every
register could be given a controlled skew to its clock, and the combinational paths of data, as the data
move between the registers, would follow amore complex path. Nonetheless, deliberate clock skew
remains a valuable tool.

Timing slack is the difference between the arrival of data at the end of a path and the required arrival
time defined by the clock period, design constraints and timingmargins. Positive slackmeans that the
path hasmet its constraints. Negative slackmeans that the path has failed tomeet its constraints. For
any non-trivial subsystem or clock domain, there is a huge number of delay paths. These are explored
in parallel by a static timing analyser (STA) (Section 8.12.1), which creates lengthy report files.

Timing slack is often reported in twoways: theworst negative slack (WNS) and the total negative
slack (TNS). As the terms suggest,WNS is the slack of the one path with the largest timing violation
and TNS is the sum of the slack of all paths that violate their timing constraints. A third value that is
often reported is the number of violating paths (NVP). These values are a quick way to estimate how
muchmore timing optimisation is necessary (for negative slack) or possible (for positive slack). A slack
graph is a histogram of the timing slack. It has the general form shown in Figure 4.44. The plot is a
good visual representation of howmuchmore optimisation is necessary. Timing optimisation and

214

Chapter 4 | SystemDesign Considerations

Figure 4.44 Basic form of a timing slack graph

automated algorithms strive to reduce the negative slack to zero. In addition, it is generally sensible to
reclaim power and area using optimisations that strive to reduce the positive slack to zero as well.

Amulti-cycle path is a combinational logic path that intentionally takesmore than one clock cycle to
convey a signal between two registers in a common clock domain. Figure 4.45 illustrates the typical
structure, which has no unusual features, except that the combinational delay through the logic block
is large with respect to the clock period T=1/f.

S T

Cmax minC-

Clock

SD Q TS D TQ SD

QS

TD

TQ

TSU

THOLD

TCQ
Cmax

minC

SD

TCQ

Clock

TSU

margin

Figure 4.45 Schematic (left) and timing diagram (right) of a typical multi-cycle path. The delay through logic block C ranges fromCmin to Cmax with both
limits being between one and two clock periods

Themaximum clock frequency is more than doubled when amulti-cycle path is used, since the
register timing overheads are encountered only every other clock cycle. It is given by the inequality
TCQ+Cmax+TSU <2T. This is based on ‘multi’ meaning exactly 2, which is the normal case. Depending
on design style, there is also aminimum clock frequency. If a multi-cycle path is to act as an extra stage
of pipeline delay, the periodmust be no longer than given by TCQ+Cmin > T+Thold.

215

Modern SoCDesign

P Q R

D

Amax minA- Bmax minB -Clk+DClk+0 Clk+0

CLK+TCQ CLK+D+TCQ CLK+TCQCLK+TCQ +A CLK+TCQ +B

Clock

Figure 4.43 Clock skewing. The delivery of the clock edge to some D-types is delayed or advanced to balance out timing margins either side

valid to deliver the clock late to a group of registers if there is a long combinational path on their input
and shorter paths on all of their outputs.

Figure 4.43 shows themost basic setup. The clock to the broadside register Q is made earlier or later
by changing the structure of the clock distribution network (typically an H-tree; Section 4.9.5). The
amount of offset isD. There aremultiple paths through the combinational logic, so, even in this very
simple scenario, there is a range of arrival times at the D-inputs. These add on to the clock-to-Q time
TCQ. All inputs must be stable before the setup time of Q, TSU. Likewise, adjustingD alters the time of
arrival at registers fed byQ, but it is their hold time that is likely to be violated. A shoot-through
(Section 4.6.9) without violating the set and hold times is even possible ifD is unreasonably large.

Themaximum amount of clock advance allowable (most negativeD) is governed by
TCQ+Amax+TSU < T+D. This inequality ensures that the setup time into register Q is met. The
maximum amount of clock retard allowable (most positiveD) is governed by TCQ+Bmin−D> Thold.
This inequality ensures the hold time into register R is met. Of course, in realistic scenarios, every
register could be given a controlled skew to its clock, and the combinational paths of data, as the data
move between the registers, would follow amore complex path. Nonetheless, deliberate clock skew
remains a valuable tool.

Timing slack is the difference between the arrival of data at the end of a path and the required arrival
time defined by the clock period, design constraints and timingmargins. Positive slackmeans that the
path hasmet its constraints. Negative slackmeans that the path has failed tomeet its constraints. For
any non-trivial subsystem or clock domain, there is a huge number of delay paths. These are explored
in parallel by a static timing analyser (STA) (Section 8.12.1), which creates lengthy report files.

Timing slack is often reported in twoways: theworst negative slack (WNS) and the total negative
slack (TNS). As the terms suggest,WNS is the slack of the one path with the largest timing violation
and TNS is the sum of the slack of all paths that violate their timing constraints. A third value that is
often reported is the number of violating paths (NVP). These values are a quick way to estimate how
muchmore timing optimisation is necessary (for negative slack) or possible (for positive slack). A slack
graph is a histogram of the timing slack. It has the general form shown in Figure 4.44. The plot is a
good visual representation of howmuchmore optimisation is necessary. Timing optimisation and

214

Chapter 4 | SystemDesign Considerations

Figure 4.44 Basic form of a timing slack graph

automated algorithms strive to reduce the negative slack to zero. In addition, it is generally sensible to
reclaim power and area using optimisations that strive to reduce the positive slack to zero as well.

Amulti-cycle path is a combinational logic path that intentionally takesmore than one clock cycle to
convey a signal between two registers in a common clock domain. Figure 4.45 illustrates the typical
structure, which has no unusual features, except that the combinational delay through the logic block
is large with respect to the clock period T=1/f.

S T

Cmax minC-

Clock

SD Q TS D TQ SD

QS

TD

TQ

TSU

THOLD

TCQ
Cmax

minC

SD

TCQ

Clock

TSU

margin

Figure 4.45 Schematic (left) and timing diagram (right) of a typical multi-cycle path. The delay through logic block C ranges fromCmin to Cmax with both
limits being between one and two clock periods

Themaximum clock frequency is more than doubled when amulti-cycle path is used, since the
register timing overheads are encountered only every other clock cycle. It is given by the inequality
TCQ+Cmax+TSU <2T. This is based on ‘multi’ meaning exactly 2, which is the normal case. Depending
on design style, there is also aminimum clock frequency. If a multi-cycle path is to act as an extra stage
of pipeline delay, the periodmust be no longer than given by TCQ+Cmin > T+Thold.

215

Modern SoCDesign

Generally speaking, logic that has aminimum operating frequency should be avoided, since it cannot
be single-stepped and can be harder to debug. Amulti-cycle path becomes a single-cycle path at low
frequencies. Often, multi-cycle paths are usedwhere design is intrinsically tolerant to any amount of
pipelining, which is where the data are self-qualifying using a valid net or paddable justification
symbol (Section 3.7.4).

The difference between inertial and transport delays is described in Section 8.3.5. Multi-cycle paths
can potentially be designed on the transport principle, meaning that more than one value can actively
progress through the delay structure. This requires much tighter understanding of the precise delay
structure in the logic path and can be avoided inmany applications. Additionally, it is possible that
register T becomesmetastable in clock cycles where its output should not be used. This does not
cause a functional problem but could occasionally slightly increase energy use.

4.10 Summary
Formany electronics products, themost important task is SoC design. Asmuch logic as possible
should normally be included on the primary ASIC. This chapter has presentedmany of the low-level
considerations and techniques in SoC design. Whenever a basic equation defines the behaviour, this
equation has been presented. A potential design will deploy some combination of techniques.
However, a system architect will rarely view the overall problemmathematically. Instead they will
make instinct-directed design decisionswhile being tacitly aware of the basic shapes of the underlying
curves. It is important to be able to get rapid feedback of the energy, area, cost and performance of a
potential design without having to invest toomuch effort in that particular design point. Techniques
for generating high-level models of the systemwill be presented next, in Chapter 5. Design
exploration is the process of experimenting withmajor andminor design variations to optimise these
keymetrics. This will be covered in Chapter 6.

The reader has now seen formulae and techniques that cover themain quantities used in the
high-level design of a SoC. They should have become familiar with parallel speedup, queuing delay,
electricity use, thermal management, test structures, security and clock distribution.

4.10.1 Exercises
1. If an accelerator multiplies the performance of one quarter of a task by a factor of four, what is the
overall speedup?

2. The server for a queue has a deterministic response time of 1 µs. If arrivals are random and the
server is loaded to 70% utilisation, what is the average time spent waiting in the queue?

3. If the server is still loaded to 70% but now has two queues, with one being served in preference to
the other, and 10% of the traffic is in the high-priority queue, howmuch faster is the higher-priority
work served than the previous design where it shared its queuewith all forms of traffic?

216

Chapter 4 | SystemDesign Considerations

4. If a switched-on region of logic has an average static to dynamic power use of 1 to 4 and a clock
gating can save 85% of the dynamic power, discuss whether there is a further benefit to power
gating.

5. What is theminimum information that needs to be stored in a processor trace buffer to capture all
aspects of the behaviour of a programmodel given that themachine code image is also available?

6. A 100-kbit SRAMmitigates against a manufacturing fault using redundancy. Compute the
percentage overhead for a specific design approach of your own choosing. Assuming at most one
fault per die, whichmay ormay not lie in an SRAM region, how do the advantages of your approach
vary according to the percentage of the die that is an SRAMprotected in this way?

7. Assuming an embarrassingly parallel problem, in which all data can be held close to the processing
element that operates on it, use Pollack’s rule and other equations to derive a formula for
approximate total energy use with a varying number of cores and various clock frequencies within
a given silicon area.

8. Consider a succession of matrix multiplications, as performed by convolutional neural networks
(CNNs) and similar applications in which the output of one stage is the input to the next. Is FIFO
storage needed between stages and if so, could a region of scratchpad RAMbe sensibly used or
would it be better to have a full hardware FIFO buffer?

References
[1] AndréM. DeHon. Location, location, location: The role of spatial locality in asymptotic energyminimization.

In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’13, pages
137–146, NewYork, NY, USA, 2013. Association for ComputingMachinery. ISBN 9781450318877. doi:
10.1145/2435264.2435291. URL https://doi.org/10.1145/2435264.2435291.

[2] R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 5(3):183–191, July
1961. ISSN 0018-8646. doi: 10.1147/rd.53.0183. URL https://doi.org/10.1147/rd.53.0183.

[3] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose
Lugo-Martinez, Steven Swanson, andMichael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. In Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XV, pages 205–218, NewYork, NY, USA, 2010.
Association for ComputingMachinery. ISBN 9781605588391. doi: 10.1145/1736020.1736044. URL
https://doi.org/10.1145/1736020.1736044.

[4] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421, July 1974. ISSN 0001-0782. doi: 10.1145/361011.361073.
URL https://doi.org/10.1145/361011.361073.

[5] HenryM. Levy. Capability-Based Computer Systems. Digital Press, 2014. ISBN 148310740X.
[6] M. V.Wilkes and R.M. Needham. The Cambridge CAP Computer and Its Operating System. Elsevier, January

1979. URL https://www.microsoft.com/en-us/research/publication/the-cambridge-cap-
computer-and-its-operating-system/.

217

Modern SoCDesign

Generally speaking, logic that has aminimum operating frequency should be avoided, since it cannot
be single-stepped and can be harder to debug. Amulti-cycle path becomes a single-cycle path at low
frequencies. Often, multi-cycle paths are usedwhere design is intrinsically tolerant to any amount of
pipelining, which is where the data are self-qualifying using a valid net or paddable justification
symbol (Section 3.7.4).

The difference between inertial and transport delays is described in Section 8.3.5. Multi-cycle paths
can potentially be designed on the transport principle, meaning that more than one value can actively
progress through the delay structure. This requires much tighter understanding of the precise delay
structure in the logic path and can be avoided inmany applications. Additionally, it is possible that
register T becomesmetastable in clock cycles where its output should not be used. This does not
cause a functional problem but could occasionally slightly increase energy use.

4.10 Summary
Formany electronics products, themost important task is SoC design. Asmuch logic as possible
should normally be included on the primary ASIC. This chapter has presentedmany of the low-level
considerations and techniques in SoC design. Whenever a basic equation defines the behaviour, this
equation has been presented. A potential design will deploy some combination of techniques.
However, a system architect will rarely view the overall problemmathematically. Instead they will
make instinct-directed design decisionswhile being tacitly aware of the basic shapes of the underlying
curves. It is important to be able to get rapid feedback of the energy, area, cost and performance of a
potential design without having to invest toomuch effort in that particular design point. Techniques
for generating high-level models of the systemwill be presented next, in Chapter 5. Design
exploration is the process of experimenting withmajor andminor design variations to optimise these
keymetrics. This will be covered in Chapter 6.

The reader has now seen formulae and techniques that cover themain quantities used in the
high-level design of a SoC. They should have become familiar with parallel speedup, queuing delay,
electricity use, thermal management, test structures, security and clock distribution.

4.10.1 Exercises
1. If an accelerator multiplies the performance of one quarter of a task by a factor of four, what is the
overall speedup?

2. The server for a queue has a deterministic response time of 1 µs. If arrivals are random and the
server is loaded to 70% utilisation, what is the average time spent waiting in the queue?

3. If the server is still loaded to 70% but now has two queues, with one being served in preference to
the other, and 10% of the traffic is in the high-priority queue, howmuch faster is the higher-priority
work served than the previous design where it shared its queuewith all forms of traffic?

216

Chapter 4 | SystemDesign Considerations

4. If a switched-on region of logic has an average static to dynamic power use of 1 to 4 and a clock
gating can save 85% of the dynamic power, discuss whether there is a further benefit to power
gating.

5. What is theminimum information that needs to be stored in a processor trace buffer to capture all
aspects of the behaviour of a programmodel given that themachine code image is also available?

6. A 100-kbit SRAMmitigates against a manufacturing fault using redundancy. Compute the
percentage overhead for a specific design approach of your own choosing. Assuming at most one
fault per die, whichmay ormay not lie in an SRAM region, how do the advantages of your approach
vary according to the percentage of the die that is an SRAMprotected in this way?

7. Assuming an embarrassingly parallel problem, in which all data can be held close to the processing
element that operates on it, use Pollack’s rule and other equations to derive a formula for
approximate total energy use with a varying number of cores and various clock frequencies within
a given silicon area.

8. Consider a succession of matrix multiplications, as performed by convolutional neural networks
(CNNs) and similar applications in which the output of one stage is the input to the next. Is FIFO
storage needed between stages and if so, could a region of scratchpad RAMbe sensibly used or
would it be better to have a full hardware FIFO buffer?

References
[1] AndréM. DeHon. Location, location, location: The role of spatial locality in asymptotic energyminimization.

In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’13, pages
137–146, NewYork, NY, USA, 2013. Association for ComputingMachinery. ISBN 9781450318877. doi:
10.1145/2435264.2435291. URL https://doi.org/10.1145/2435264.2435291.

[2] R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 5(3):183–191, July
1961. ISSN 0018-8646. doi: 10.1147/rd.53.0183. URL https://doi.org/10.1147/rd.53.0183.

[3] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose
Lugo-Martinez, Steven Swanson, andMichael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. In Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XV, pages 205–218, NewYork, NY, USA, 2010.
Association for ComputingMachinery. ISBN 9781605588391. doi: 10.1145/1736020.1736044. URL
https://doi.org/10.1145/1736020.1736044.

[4] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421, July 1974. ISSN 0001-0782. doi: 10.1145/361011.361073.
URL https://doi.org/10.1145/361011.361073.

[5] HenryM. Levy. Capability-Based Computer Systems. Digital Press, 2014. ISBN 148310740X.
[6] M. V.Wilkes and R.M. Needham. The Cambridge CAP Computer and Its Operating System. Elsevier, January

1979. URL https://www.microsoft.com/en-us/research/publication/the-cambridge-cap-
computer-and-its-operating-system/.

217

Modern SoCDesign

[7] JonathanWoodruff, RobertWatson, David Chisnall, SimonMoore, Jonathan Anderson, Brooks Davis, Ben
Laurie, Peter Neumann, Robert Norton, andMichael Roe. The CHERI capability model: Revisiting RISC in an
age of risk. In Proceedings of the International Symposium on Computer Architecture, pages 457–468, June 2014.
ISBN 978-1-4799-4394-4. doi: 10.1109/ISCA.2014.6853201.

218

Chapter 5
Electronic
System-Level
Modelling

Modern SoCDesign

[7] JonathanWoodruff, RobertWatson, David Chisnall, SimonMoore, Jonathan Anderson, Brooks Davis, Ben
Laurie, Peter Neumann, Robert Norton, andMichael Roe. The CHERI capability model: Revisiting RISC in an
age of risk. In Proceedings of the International Symposium on Computer Architecture, pages 457–468, June 2014.
ISBN 978-1-4799-4394-4. doi: 10.1109/ISCA.2014.6853201.

218

Chapter 5
Electronic
System-Level
Modelling

Modern SoCDesign

A SoC combines hardware and software and communicates with the outside world via various
interfaces. An electronic system-level (ESL) model of a SoC can simulate the complete system
behaviour. This includes running all the software that the real SoCwill run in a largely unmodified
form. An alternative name for an ESLmodel is a virtual platform. In some SoC design flows, creating
the ESLmodel is the first design step. A process of incremental refinement then gradually replaces
high-level components with lower-level models or actual implementations. Ultimately, all of the
system is implemented, but a good ESLmethodology enables an arbitrarymix of high- and low-level
modelling styles that interwork. A typical use case is when all the design is present in high-level form
except for one or two subsystems of current interest for which greater modelling detail is needed to
answer a specific design question.

In this chapter, we present themain aims of and approaches to ESLmodelling. We review the
SystemCmodelling library and its transaction library and discuss how high-level models can be
calibrated to give useful insights into power and performance.

The performance of an ESLmodel must be good enough to execute large programs in a reasonable
time. This typically means achieving at least 1 per cent of real system performance. An ESLmodel is
normally accurate in terms of memory layout and content, but many other hardware details are
commonly neglected unless they are of special relevance to the test being run. This is the principal
means of achieving a high-performance simulation.

By default, an ESLmodel simulates the system from the point of power-up or reset. Another way to
apply an ESLmodel to complex software is checkpoint and replay. This is useful if a significant amount
of softwaremust run before the point of interest is approached. A checkpoint is chosen, such as after
the boot or operating system start. At the checkpoint, the entire state of themodel is saved to a
checkpoint file. Information could be captured from the real system in principle, but the ESLmodel
may not be identical to the real system andminor discrepancies may arise. Moreover, instrumenting
the real systemmay be tricky (especially if it does not exist yet). Since the checkpoint serves as the
basis for a number of experiments, the time invested in generating it is amortised.

To conduct an experiment, the ESLmodel is loadedwith the checkpoint data andmodelling rolls
forward from that point. Themodel may be switched to a greater level of detail than used for
preparing the checkpoint, either globally or just for some subsystems. For instance a high-level model
of an I/O blockmay be switched to an RTLmodel.

5.1 Modelling Abstractions
Themodelling system should ideally support all stages of the design process, from design entry to
fabrication. However, we cannot model a complete SoC in detail and expect to simulate the booting of
the operating system in a reasonable time. Amodel that is a million times slower than the real
hardware would take 115 days to simulate a boot sequence that lasts 10 seconds! An ESL virtual
platformmust support a number of levels of modelling abstraction and away to interwork between
them. Most ESLmodels are built on top of some form of event-driven simulation (EDS) (also known as

220

Chapter 5 | Electronic System-LevelModelling

discrete-event simulation). An EDS simulator defines various types of discrete event and the
simulation is a progression of events in the time domain. Detailed variations of EDS are discussed
in Section 8.3.4. Themain variation inmodelling detail is the type of event predominantly used:
examples range from the change in state of an individual digital net to the delivery of a complete
Ethernet packet. At the highest level, events are replacedwith flow rates, giving a fluid-flowmodel,
which essentially traces the progression of a set of simultaneous differential equations.

An overall taxonomy of modelling levels is as follows:

1. Functional modelling: The output from a simulation run is accurate.

2. Memory-accuratemodelling: The contents and layout of memory are accurate.

3. Cycle lumped or untimed TLM: Complete transactions between IP blocks, such as the delivery of a
burst of data, aremodelled as atomic events. No timestamps are recorded on transactions. Cycle
counts are accurate at the end of a program run; however, individual cycles are not modelled.
Typically a sub-model will do a quantum of work and then update the cycle count.

4. Stochastic or loosely timed TLM: The number of transactions is accurate, and even though the
order may bewrong, each is given a timestamp based on standard queuingmodels. Thus, an overall
runtime can be reported. Formulae from queuing theory (Section 4.3.1) can be used to incorporate
the time spent waiting in queues instead of modelling the queues themselves. Synthetic traffic
injectors, characterised by amean rate and burst size and other numeric parameters, replace real
applications, although traces from real runs can also be replayed from a file.

5. Approximately timed TLM: The number and order of transactions are accurate and the degree to
which they overlap or interfere is measured.

6. Cycle-accurate simulation: The number of clock cycles consumed is accurate and the work done in
each clock cycle is accurately modelled. A simulation of synthesisable RTL gives such amodel, if the
combinational nets are evaluated only when needed.

7. Net-level EDS: The netlist of the subsystem is fully modelled and the ordering of net changes
within a clock cycle is accurate.

8. Analogue andmixed-signal simulation: Voltage waveforms for certain nodes aremodelled.

Before explaining these levels in greater detail, two further terms are worth defining:

1. With programmer-view accuracy, themodel correctly reflects the contents of programmer-
visible memory and registers. The programmer’s view (PV) contains only architecturally significant
registers, such as those that the software programmer canmanipulate with instructions. Other
registers in a particular hardware implementation, such as pipeline stages and holding registers to

221

Modern SoCDesign

A SoC combines hardware and software and communicates with the outside world via various
interfaces. An electronic system-level (ESL) model of a SoC can simulate the complete system
behaviour. This includes running all the software that the real SoCwill run in a largely unmodified
form. An alternative name for an ESLmodel is a virtual platform. In some SoC design flows, creating
the ESLmodel is the first design step. A process of incremental refinement then gradually replaces
high-level components with lower-level models or actual implementations. Ultimately, all of the
system is implemented, but a good ESLmethodology enables an arbitrarymix of high- and low-level
modelling styles that interwork. A typical use case is when all the design is present in high-level form
except for one or two subsystems of current interest for which greater modelling detail is needed to
answer a specific design question.

In this chapter, we present themain aims of and approaches to ESLmodelling. We review the
SystemCmodelling library and its transaction library and discuss how high-level models can be
calibrated to give useful insights into power and performance.

The performance of an ESLmodel must be good enough to execute large programs in a reasonable
time. This typically means achieving at least 1 per cent of real system performance. An ESLmodel is
normally accurate in terms of memory layout and content, but many other hardware details are
commonly neglected unless they are of special relevance to the test being run. This is the principal
means of achieving a high-performance simulation.

By default, an ESLmodel simulates the system from the point of power-up or reset. Another way to
apply an ESLmodel to complex software is checkpoint and replay. This is useful if a significant amount
of softwaremust run before the point of interest is approached. A checkpoint is chosen, such as after
the boot or operating system start. At the checkpoint, the entire state of themodel is saved to a
checkpoint file. Information could be captured from the real system in principle, but the ESLmodel
may not be identical to the real system andminor discrepancies may arise. Moreover, instrumenting
the real systemmay be tricky (especially if it does not exist yet). Since the checkpoint serves as the
basis for a number of experiments, the time invested in generating it is amortised.

To conduct an experiment, the ESLmodel is loadedwith the checkpoint data andmodelling rolls
forward from that point. Themodel may be switched to a greater level of detail than used for
preparing the checkpoint, either globally or just for some subsystems. For instance a high-level model
of an I/O blockmay be switched to an RTLmodel.

5.1 Modelling Abstractions
Themodelling system should ideally support all stages of the design process, from design entry to
fabrication. However, we cannot model a complete SoC in detail and expect to simulate the booting of
the operating system in a reasonable time. Amodel that is a million times slower than the real
hardware would take 115 days to simulate a boot sequence that lasts 10 seconds! An ESL virtual
platformmust support a number of levels of modelling abstraction and away to interwork between
them. Most ESLmodels are built on top of some form of event-driven simulation (EDS) (also known as

220

Chapter 5 | Electronic System-LevelModelling

discrete-event simulation). An EDS simulator defines various types of discrete event and the
simulation is a progression of events in the time domain. Detailed variations of EDS are discussed
in Section 8.3.4. Themain variation inmodelling detail is the type of event predominantly used:
examples range from the change in state of an individual digital net to the delivery of a complete
Ethernet packet. At the highest level, events are replacedwith flow rates, giving a fluid-flowmodel,
which essentially traces the progression of a set of simultaneous differential equations.

An overall taxonomy of modelling levels is as follows:

1. Functional modelling: The output from a simulation run is accurate.

2. Memory-accuratemodelling: The contents and layout of memory are accurate.

3. Cycle lumped or untimed TLM: Complete transactions between IP blocks, such as the delivery of a
burst of data, aremodelled as atomic events. No timestamps are recorded on transactions. Cycle
counts are accurate at the end of a program run; however, individual cycles are not modelled.
Typically a sub-model will do a quantum of work and then update the cycle count.

4. Stochastic or loosely timed TLM: The number of transactions is accurate, and even though the
order may bewrong, each is given a timestamp based on standard queuingmodels. Thus, an overall
runtime can be reported. Formulae from queuing theory (Section 4.3.1) can be used to incorporate
the time spent waiting in queues instead of modelling the queues themselves. Synthetic traffic
injectors, characterised by amean rate and burst size and other numeric parameters, replace real
applications, although traces from real runs can also be replayed from a file.

5. Approximately timed TLM: The number and order of transactions are accurate and the degree to
which they overlap or interfere is measured.

6. Cycle-accurate simulation: The number of clock cycles consumed is accurate and the work done in
each clock cycle is accurately modelled. A simulation of synthesisable RTL gives such amodel, if the
combinational nets are evaluated only when needed.

7. Net-level EDS: The netlist of the subsystem is fully modelled and the ordering of net changes
within a clock cycle is accurate.

8. Analogue andmixed-signal simulation: Voltage waveforms for certain nodes aremodelled.

Before explaining these levels in greater detail, two further terms are worth defining:

1. With programmer-view accuracy, themodel correctly reflects the contents of programmer-
visible memory and registers. The programmer’s view (PV) contains only architecturally significant
registers, such as those that the software programmer canmanipulate with instructions. Other
registers in a particular hardware implementation, such as pipeline stages and holding registers to

221

Modern SoCDesign

overcome structural hazards (Section 6.3.2), are not part of the PV. These are typically not present
in a PVmodel. If a PVmodel also has a notion of time, it is denoted PV+T. Similarly, PV+ET denotes
themodelling of energy and time use.

2. The term ‘behavioural modelling’ has no precise definition, but generally denotes a simulation
model that is different from the real implementation. For instance, a handcrafted programmay be
written tomodel the behaviour of a component or subsystem. More specifically, it can denote a
model that expresses the behaviour of a component using an imperative thread of execution, as in
software programming. Such a thread performs successive reads andwrites of registers, whereas
an RTL implementationmakes all the assignments in parallel on a clock edge. In Section 5.3, we
implement behavioural models of hardware components using the SystemC library.

Asmentioned in Chapter 1, the starting point for a SoC for some classes of applicationmay be a
software program that generates the same output as the SoC should generate. This is the functional
model. For an IoT device, themodel would serve the same responses over the network. For an RF
transmitter subsystem, it might write the analoguewaveform to be fed to the real antenna to a file on
themodelling workstation. The output generated by this highest of models is shown in yellow on
Figure 1.10. Although suchmodels represent none of the structure of the SoC implementation, they
define the basic behaviour required and provide reference data that can be used to evaluate both the
SoC-based solution and the reset of the ecosystem.

A SoC typically contains a large amount of memory. The next refinement can be to determine the
number of different logical memory spaces there should be in the SoC and to plan their detailed
layout. The software in the functional model should be partitioned into that representing hardware
and that remaining as software running inside the SoC. This model will have a number of arrays,
which, ultimately, will be held in one ormore SRAM andDRAM components in the real hardware. In a
memory-accuratemodel, the contents of each array in themodel are the same as the contents of the
real memory in the final implementation. Manually counting the frequency of operations on the
arrays or the number of iterations of the inner loops of this model gives a preliminary estimate of the
amount of processing power andmemory bandwidth needed in the SoC. A simple spreadsheet
analysis of these figures can be used as a first estimate of the final power consumption and battery
life. Using an assertion-based design (ABD) approach (Section 7.2.2), the first assertions can be
written about the contents of thememory.

In ESLmodelling, the next refinement is to generate a transaction-level model (TLM). In mainstream
computer science, the term transaction is related to properties of atomicity, plus commits and
rollbacks. In ESLmodelling, the termmeans less than that. Rather, a transaction simply means that
one component invokes an operation on another component. Using object-oriented programming,
the components can bemodelled as instances of classes and the transactions implemented asmethod
invocations of one component or another. A transaction could be as simple as changing the value of
one net, but more commonly a transaction represents hundreds or thousands of nets changing value.
Moreover, many of the real nets or interconnect components do not need to be represented at all.

222

Chapter 5 | Electronic System-LevelModelling

This is the primary reason that a TLMmodel runs somuch faster than a net-level simulation. TLM
models can optionally include time, power and energy. TLMmodelling is discussed in Section 5.4.

A cycle-accuratemodel for a subsystemmodels all state bits in registers and RAMs for the
subsystem. The state bits are updated once per clock cycle to reflect their new value on that clock
edge. The values for combinational nets do not have to be computed if a static analysis shows that
they are not participating in the next-state function. If they are computed, there is no representation
of when in the clock cycle they changed or whether they glitched. To increase performance, a
cycle-accuratemodel will typically use a simple two-value logic system or a four-value logic system
rather than the richer logic of Verilog or VHDL (Section 8.3.3). A cycle-callablemodel is a
cycle-accuratemodel of one clock domain. It essentially consists of a subroutine that can be called by
a thread in a higher-level simulator that causes themodel to advance by one clock cycle. For instance,
a cycle-callable model of a counter would just be a subroutine that increments the counter value.

Lower-level models represent all the flip-flops and busses of the real implementation. These are
based on RTL implementations of the components. RTL synthesis does not greatly affect the number
of state bits or their meaning, although theremay be some optimisation of the state encoding, as
mentioned in Section 4.4.2. RTL synthesis does, however, instantiate many combinational gates and it
can also bit blast (implement a bus or arithmetic operator in terms of its individual bits, Section 8.3.8),
so an EDS simulation post-synthesis runsmuchmore slowly than before RTL synthesis. The
simulation is slower not only because of the 10× to 50× increase in the number of nets, but also
because the timing of combinational nets within the clock cycle is accurately represented.

As discussed in Section 8.3.7, an even lower-level simulation is possible, in which the voltage
waveform on a net is simulated rather than just being treated as a digital value. This is required for
analogue andmixed-signal systems but is not normally required for digital logic.

5.1.1 ESL FlowDiagram
ESL flows aremost commonly based on C++. The SystemC TLM library for C++ is also typically used
(Section 5.3). In SoC design, C/C++ tends to be used for behavioural models of peripherals, for
embedded applications, for the operating system and for its device drivers. The interface
specifications for the hardware-to-software APIs are then in .h files, which are imported into both the
hardware and software strands. These three forms of C++ file are shown across the top of Figure 5.1.
To create the embeddedmachine code for an SoC-level product, the software strand is compiled with
a compiler appropriate for the embedded cores (e.g. gcc-arm). As explained in Chapters 6 and 8, the
behavioural models of the hardware are converted by variousmeans into the RTL and gate-level
hardware for the real SoC. This is illustrated in the diagonal right-to-left downwards trajectory in the
figure. On the other hand, the fastest ESLmodels are typically generated by the left-to-right
downwards trajectory. This takes the hardwaremodels and the embedded software and links them
together so that the entire system can be run as a single application program. This is possible only if
suitable coding guidelines are followed. Instead of simulatingmillions of times slower than real time,
this hybridmodel can run even faster than real time, such as when a high-performancemodelling

223

Modern SoCDesign

overcome structural hazards (Section 6.3.2), are not part of the PV. These are typically not present
in a PVmodel. If a PVmodel also has a notion of time, it is denoted PV+T. Similarly, PV+ET denotes
themodelling of energy and time use.

2. The term ‘behavioural modelling’ has no precise definition, but generally denotes a simulation
model that is different from the real implementation. For instance, a handcrafted programmay be
written tomodel the behaviour of a component or subsystem. More specifically, it can denote a
model that expresses the behaviour of a component using an imperative thread of execution, as in
software programming. Such a thread performs successive reads andwrites of registers, whereas
an RTL implementationmakes all the assignments in parallel on a clock edge. In Section 5.3, we
implement behavioural models of hardware components using the SystemC library.

Asmentioned in Chapter 1, the starting point for a SoC for some classes of applicationmay be a
software program that generates the same output as the SoC should generate. This is the functional
model. For an IoT device, themodel would serve the same responses over the network. For an RF
transmitter subsystem, it might write the analoguewaveform to be fed to the real antenna to a file on
themodelling workstation. The output generated by this highest of models is shown in yellow on
Figure 1.10. Although suchmodels represent none of the structure of the SoC implementation, they
define the basic behaviour required and provide reference data that can be used to evaluate both the
SoC-based solution and the reset of the ecosystem.

A SoC typically contains a large amount of memory. The next refinement can be to determine the
number of different logical memory spaces there should be in the SoC and to plan their detailed
layout. The software in the functional model should be partitioned into that representing hardware
and that remaining as software running inside the SoC. This model will have a number of arrays,
which, ultimately, will be held in one ormore SRAM andDRAM components in the real hardware. In a
memory-accuratemodel, the contents of each array in themodel are the same as the contents of the
real memory in the final implementation. Manually counting the frequency of operations on the
arrays or the number of iterations of the inner loops of this model gives a preliminary estimate of the
amount of processing power andmemory bandwidth needed in the SoC. A simple spreadsheet
analysis of these figures can be used as a first estimate of the final power consumption and battery
life. Using an assertion-based design (ABD) approach (Section 7.2.2), the first assertions can be
written about the contents of thememory.

In ESLmodelling, the next refinement is to generate a transaction-level model (TLM). In mainstream
computer science, the term transaction is related to properties of atomicity, plus commits and
rollbacks. In ESLmodelling, the termmeans less than that. Rather, a transaction simply means that
one component invokes an operation on another component. Using object-oriented programming,
the components can bemodelled as instances of classes and the transactions implemented asmethod
invocations of one component or another. A transaction could be as simple as changing the value of
one net, but more commonly a transaction represents hundreds or thousands of nets changing value.
Moreover, many of the real nets or interconnect components do not need to be represented at all.

222

Chapter 5 | Electronic System-LevelModelling

This is the primary reason that a TLMmodel runs somuch faster than a net-level simulation. TLM
models can optionally include time, power and energy. TLMmodelling is discussed in Section 5.4.

A cycle-accuratemodel for a subsystemmodels all state bits in registers and RAMs for the
subsystem. The state bits are updated once per clock cycle to reflect their new value on that clock
edge. The values for combinational nets do not have to be computed if a static analysis shows that
they are not participating in the next-state function. If they are computed, there is no representation
of when in the clock cycle they changed or whether they glitched. To increase performance, a
cycle-accuratemodel will typically use a simple two-value logic system or a four-value logic system
rather than the richer logic of Verilog or VHDL (Section 8.3.3). A cycle-callablemodel is a
cycle-accuratemodel of one clock domain. It essentially consists of a subroutine that can be called by
a thread in a higher-level simulator that causes themodel to advance by one clock cycle. For instance,
a cycle-callable model of a counter would just be a subroutine that increments the counter value.

Lower-level models represent all the flip-flops and busses of the real implementation. These are
based on RTL implementations of the components. RTL synthesis does not greatly affect the number
of state bits or their meaning, although theremay be some optimisation of the state encoding, as
mentioned in Section 4.4.2. RTL synthesis does, however, instantiate many combinational gates and it
can also bit blast (implement a bus or arithmetic operator in terms of its individual bits, Section 8.3.8),
so an EDS simulation post-synthesis runsmuchmore slowly than before RTL synthesis. The
simulation is slower not only because of the 10× to 50× increase in the number of nets, but also
because the timing of combinational nets within the clock cycle is accurately represented.

As discussed in Section 8.3.7, an even lower-level simulation is possible, in which the voltage
waveform on a net is simulated rather than just being treated as a digital value. This is required for
analogue andmixed-signal systems but is not normally required for digital logic.

5.1.1 ESL FlowDiagram
ESL flows aremost commonly based on C++. The SystemC TLM library for C++ is also typically used
(Section 5.3). In SoC design, C/C++ tends to be used for behavioural models of peripherals, for
embedded applications, for the operating system and for its device drivers. The interface
specifications for the hardware-to-software APIs are then in .h files, which are imported into both the
hardware and software strands. These three forms of C++ file are shown across the top of Figure 5.1.
To create the embeddedmachine code for an SoC-level product, the software strand is compiled with
a compiler appropriate for the embedded cores (e.g. gcc-arm). As explained in Chapters 6 and 8, the
behavioural models of the hardware are converted by variousmeans into the RTL and gate-level
hardware for the real SoC. This is illustrated in the diagonal right-to-left downwards trajectory in the
figure. On the other hand, the fastest ESLmodels are typically generated by the left-to-right
downwards trajectory. This takes the hardwaremodels and the embedded software and links them
together so that the entire system can be run as a single application program. This is possible only if
suitable coding guidelines are followed. Instead of simulatingmillions of times slower than real time,
this hybridmodel can run even faster than real time, such as when a high-performancemodelling

223

Modern SoCDesign

Application Code
Operating System

Device Drivers
(C/C++)

Behavioural Models
of Peripherals

(C/C++)

Interface Specifications
Memory maps

(.h/IP-XACT xml)

Target Compiler
(gcc-arm)

Workstation Compiler
(gcc-x86)

Machine
Code

Gate-level Netlist
Polygons

Fabricated
product

Manual
Recode to RTL

System RTL
(Verilog/VHDL)

High-level
Synthesis (HLS)

SystemC EDS Kernel

Verilator
V-to-C

Synopsys
Design

Compiler
(RTL Synthesiser)

Link-level libraries (.o .dll)

Stimulus
Synthetic Traffic

Models

C Models of
RTL Components

TLM 2.0 Library

ESL Modelling Environment
(Virtual Platform)

Instruction Set
Simulator (ISS)

Figure 5.1 Overall setup of a generic ESL flow. The heavy lines show the fastest technique, which avoids using an instruction set simulator (ISS) through
native cross-compiling of the embedded firmware and direct linking with behavioural models of the hardware

workstation has amore powerful processor than the embedded SoC cores. The hybrid programmay
rely on a threads package, typically provided by the SystemC EDS kernel, but it is coded so that
context switches areminimised.

A simple yet stark example of the potential performance gain is to consider a network packet being
received by a device driver and transferred over the bus tomemory. This will involve tens of
thousands of transitions at the gate outputs of the real implementation. Using a net-level simulation,
the simulation for each gate transitionmight require themodelling workstation to execute 100
instructions. However, with a suitable ESL coding style, the packet reception transaction can be
modelled with a simplemethod call between one component and another that takes fewer than 100
instructions in total. With careful memorymanagement, the data transferred by the transaction does
not even need to be copied; a pointer to its buffer is all that needs to be conveyed in the transaction.

Figure 5.1 also shows two flow variations:

1. An instruction set simulator (ISS)may be used to interpret themachine code of the embedded
cores. The typical structure of an interpreting ISS is illustrated in Section 5.5. However, the best ISS

224

Chapter 5 | Electronic System-LevelModelling

implementations, like JIT compilers for JavaScript, spot frequently used execution paths in the
inner loops of the interpretedmachine code and cross-compile this code to nativemachine code for
themodelling workstation. Hence, the performance can again approach faster than real-time
speed.

2. If an RTLmodel differs greatly from the initial high-level model or if a high-level model does not
exist, the RTL design can be projected back to a C++model using standard tools. One of the first to
do this was VTOC from Tenison EDA. Today, the public-domain Verilator tool is often used. Some IP
providers make C++models directly available. For instance, Arm providesmany C++models
generated from internal RTL using the Carbon tool chain.

5.2 InterconnectModelling
Interconnect models are used to study the behaviour of an interconnect and for performance
trade-offs before the actual interconnect is designed. They also serve to provide realistic delay
estimates during ESLmodelling of a complete SoC. Another quite useful role for a detailed
interconnect model is to replicate a problem in a production version and then carry out mitigation
studies. Both packetised networks-on-chip (NoCs) and conventional circuit-switched interconnects
convey discrete events that encounter queueing and arbitration, so the samemodelling techniques
largely apply to both.

An interconnect can bemodelled at a high level using queuing theory or in more detail bymodelling
individual contention events. The stochastic queuing formulae presented in Section 4.3.1 reflect the
emergent behaviour that occurs when a large number of uncorrelated event generators share
interconnect components. However, real designs can convey a large amount of unexpectedly
correlated traffic and queuing theory then gives the wrong answer. For instance, the queuing formula
for anM/M/1 system gives an inflated result for systems that are actually closer toM/D/1 due to
deterministic behaviour in the server or when the events it potentially serves cannot all arrive at once
due to secondarymechanisms.

In more detail, a taxonomy of interconnect modelling, in order of increasing detail, is:

1. High-level static analysis: A fluid-flowmodel populates a spreadsheet (or equivalent) using the
traffic flowmatrix defined in Section 3.5.1. If the routing protocol is followed, then for each point of
contention, the utilisation and service disciplines are known and hence, the buffer occupancy and
transit delay can be computed from the standard stochastic formulae. This approach is suitable for
an initial design, and it can also generate simplistic delay values, which are added to the ‘sc_time
&delay’ field in a loosely timed TLMmodel.

2. Virtual queuing: A virtual platform propagates transactions across an interconnect without queue
models or delay. However, the routing protocol is followed and hence, the dynamic level of traffic at
each contention point is accurate to the timescale within which transaction ordering is maintained

225

Modern SoCDesign

Application Code
Operating System

Device Drivers
(C/C++)

Behavioural Models
of Peripherals

(C/C++)

Interface Specifications
Memory maps

(.h/IP-XACT xml)

Target Compiler
(gcc-arm)

Workstation Compiler
(gcc-x86)

Machine
Code

Gate-level Netlist
Polygons

Fabricated
product

Manual
Recode to RTL

System RTL
(Verilog/VHDL)

High-level
Synthesis (HLS)

SystemC EDS Kernel

Verilator
V-to-C

Synopsys
Design

Compiler
(RTL Synthesiser)

Link-level libraries (.o .dll)

Stimulus
Synthetic Traffic

Models

C Models of
RTL Components

TLM 2.0 Library

ESL Modelling Environment
(Virtual Platform)

Instruction Set
Simulator (ISS)

Figure 5.1 Overall setup of a generic ESL flow. The heavy lines show the fastest technique, which avoids using an instruction set simulator (ISS) through
native cross-compiling of the embedded firmware and direct linking with behavioural models of the hardware

workstation has amore powerful processor than the embedded SoC cores. The hybrid programmay
rely on a threads package, typically provided by the SystemC EDS kernel, but it is coded so that
context switches areminimised.

A simple yet stark example of the potential performance gain is to consider a network packet being
received by a device driver and transferred over the bus tomemory. This will involve tens of
thousands of transitions at the gate outputs of the real implementation. Using a net-level simulation,
the simulation for each gate transitionmight require themodelling workstation to execute 100
instructions. However, with a suitable ESL coding style, the packet reception transaction can be
modelled with a simplemethod call between one component and another that takes fewer than 100
instructions in total. With careful memorymanagement, the data transferred by the transaction does
not even need to be copied; a pointer to its buffer is all that needs to be conveyed in the transaction.

Figure 5.1 also shows two flow variations:

1. An instruction set simulator (ISS)may be used to interpret themachine code of the embedded
cores. The typical structure of an interpreting ISS is illustrated in Section 5.5. However, the best ISS

224

Chapter 5 | Electronic System-LevelModelling

implementations, like JIT compilers for JavaScript, spot frequently used execution paths in the
inner loops of the interpretedmachine code and cross-compile this code to nativemachine code for
themodelling workstation. Hence, the performance can again approach faster than real-time
speed.

2. If an RTLmodel differs greatly from the initial high-level model or if a high-level model does not
exist, the RTL design can be projected back to a C++model using standard tools. One of the first to
do this was VTOC from Tenison EDA. Today, the public-domain Verilator tool is often used. Some IP
providers make C++models directly available. For instance, Arm providesmany C++models
generated from internal RTL using the Carbon tool chain.

5.2 InterconnectModelling
Interconnect models are used to study the behaviour of an interconnect and for performance
trade-offs before the actual interconnect is designed. They also serve to provide realistic delay
estimates during ESLmodelling of a complete SoC. Another quite useful role for a detailed
interconnect model is to replicate a problem in a production version and then carry out mitigation
studies. Both packetised networks-on-chip (NoCs) and conventional circuit-switched interconnects
convey discrete events that encounter queueing and arbitration, so the samemodelling techniques
largely apply to both.

An interconnect can bemodelled at a high level using queuing theory or in more detail bymodelling
individual contention events. The stochastic queuing formulae presented in Section 4.3.1 reflect the
emergent behaviour that occurs when a large number of uncorrelated event generators share
interconnect components. However, real designs can convey a large amount of unexpectedly
correlated traffic and queuing theory then gives the wrong answer. For instance, the queuing formula
for anM/M/1 system gives an inflated result for systems that are actually closer toM/D/1 due to
deterministic behaviour in the server or when the events it potentially serves cannot all arrive at once
due to secondarymechanisms.

In more detail, a taxonomy of interconnect modelling, in order of increasing detail, is:

1. High-level static analysis: A fluid-flowmodel populates a spreadsheet (or equivalent) using the
traffic flowmatrix defined in Section 3.5.1. If the routing protocol is followed, then for each point of
contention, the utilisation and service disciplines are known and hence, the buffer occupancy and
transit delay can be computed from the standard stochastic formulae. This approach is suitable for
an initial design, and it can also generate simplistic delay values, which are added to the ‘sc_time
&delay’ field in a loosely timed TLMmodel.

2. Virtual queuing: A virtual platform propagates transactions across an interconnect without queue
models or delay. However, the routing protocol is followed and hence, the dynamic level of traffic at
each contention point is accurate to the timescale within which transaction ordering is maintained

225

Modern SoCDesign

(e.g. the TLM quantum). A delay penalty based on stochastic formulae is then added to the
transaction delay field. This style of modelling is demonstrated in detail in Section 5.4.5.

3. TLMqueuing: High-level models of switching elements contain queues of transactions. Coding
based on blocking TLM (Section 5.4.1) is then typically required.

4. Cycle-accuratemodelling: Themodel is accurate to the clock cycle, either using TLM or RTL-level
simulation, as described in Section 5.2.2.

5.2.1 Stochastic InterconnectModelling
There is a wealth of material in the networking domain that models interconnects for various forms of
random traffic. Many of themodels based on aMarkov process [1] are excellent analytical tools for
detailedmathematical studies. AMarkov process is one in which the current state of the system is
sufficient to predict its next behaviour. The system operates as a chain of operations eachmodifying
the current state of the system and no further history is required. Markovmodels work well when
traffic sources are uncorrelated and the applied load is independent of the round-trip latency. Many
aspects of wide-area networks such as the Internet can be accurately studied in this way. Many
factors affect network behaviour, e.g. packet arrival rates and times at the various ingress points and
packet departure rates at the egress points. Traffic levels can be regarded as stationary or slowly
varying with a daily andweekly pattern. Even for a NoC, this sort of information is typically available,
or at least somemeaningful approximation can be found. Hence, Markovmodels are useful for
high-level dimensioning and provisioning studies. Given sufficiently accurate trafficmodels, e.g. in
terms of packet length distribution, the effects of arbitration policies and other features of an
interconnect can be explored.

Despite their advantages, stochastic sources andMarkovian fabric models are often not helpful for a
particular issue with a production chip. Comparedwith cycle-accuratemodelling, problems include:

broad-brush correlations in traffic patterns (such as responding to a request) may not be captured
adequately

local effects may be neglected at a particular contention point

the order of transactions will be incorrect under loose timing (see later)

a deadlockmay bemissed.

5.2.2 Cycle-accurate InterconnectModelling
Themost detailed and lowest level of interconnect modelling is cycle-accuratemodelling. Aliasing
traffic occurs when a link carries multiple flows. The term is especially relevant if traffic shares a NoC
virtual channel. The behaviour of an interconnect with respect to event interdependence and various

226

Chapter 5 | Electronic System-LevelModelling

other aliasing effects cannot be effectively investigated at any higher level of abstraction, because, at
a contention point, the traffic shape can entirely change the performance characteristic. As an
example, if two packets arrive at a switching element such that each arrival requires arbitration, then
therewill be a delay resulting in an increase in overall latency. However, if the same two packets arrive
one after the other, no such delay is observed. Any store-and-forward network distorts the shape of
the traffic from that received at the ingress to that which it displays at the egress.

Tomodel an entire interconnect at a cycle-accurate level, each of the individual sub-models must
operate at a cycle-accurate level. The end points can bemodelled using a bus functional model (BFM)
or plugged into a real system, e.g. Arm’s mesh generators [2, 3]. Quite often it is not necessary to
integrate actual end-point devices for performance analysis or problem-solving. The input stimuli can
be either traces, obtained from real-world systems, or more popularly synthetic scenarios, as
described in Section 3.5.1. A second and detailed analysis phase can usemore accurate end-point
models or RTL-level simulations.

If multiple clocks or clock edges are used, sub-cycle accuracymodelling is occasionally needed, since a
cycle-accuratemodel may still be insufficient to capture the subtleties of a problem. Theremay be
behavioural differences between RTL and themodel, and it is not trivial to get themodel right. Such
models are stabilised over generations of a product.

As stated at the start of this chapter, a virtual platform ideally supports interworking between
different levels of abstraction. If a behavioural subtlety has been identified, only the localised
subsystem needs to use a low-level model. This is joined to the remainder of the ESLmodel using
transactors (Section 5.4.8).

5.3 SystemCModelling Library
SystemC is a free library for C++ for hardwaremodelling. It was initially promoted byOSCI, theOpen
SystemC Initiative, and is now available fromAccelera and standardised as IEEE-1666 [4]. Each
hardware component is defined by a C++ class thatmay instantiate lower-level components. SystemC
neatly supports anymixture of TLM and net-level modelling and it can be used for simulation and
synthesis. It was originally designed as an RTL-equivalent means of representing digital logic inside
C++. The next sections cover these basic aspects and then Sections Section 5.4 and Section 6.9move
on to uses for ESL and synthesis.

The SystemC core library includes the following essential elements:

Amodule systemwith inter-module channels: C++ class instances are instantiated in a hierarchy,
following the circuit component structure, in the sameway that RTLmodules instantiate each other.

A kernel that runs in user space: It provides facilities for the system time, pausing a simulation and
name resolution. It implements an EDS event queue that roughly follows the detailed semantics of
VHDL (described in Section 8.3.4). Event notifications and threads are provided. The threads are

227

Modern SoCDesign

(e.g. the TLM quantum). A delay penalty based on stochastic formulae is then added to the
transaction delay field. This style of modelling is demonstrated in detail in Section 5.4.5.

3. TLMqueuing: High-level models of switching elements contain queues of transactions. Coding
based on blocking TLM (Section 5.4.1) is then typically required.

4. Cycle-accuratemodelling: Themodel is accurate to the clock cycle, either using TLM or RTL-level
simulation, as described in Section 5.2.2.

5.2.1 Stochastic InterconnectModelling
There is a wealth of material in the networking domain that models interconnects for various forms of
random traffic. Many of themodels based on aMarkov process [1] are excellent analytical tools for
detailedmathematical studies. AMarkov process is one in which the current state of the system is
sufficient to predict its next behaviour. The system operates as a chain of operations eachmodifying
the current state of the system and no further history is required. Markovmodels work well when
traffic sources are uncorrelated and the applied load is independent of the round-trip latency. Many
aspects of wide-area networks such as the Internet can be accurately studied in this way. Many
factors affect network behaviour, e.g. packet arrival rates and times at the various ingress points and
packet departure rates at the egress points. Traffic levels can be regarded as stationary or slowly
varying with a daily andweekly pattern. Even for a NoC, this sort of information is typically available,
or at least somemeaningful approximation can be found. Hence, Markovmodels are useful for
high-level dimensioning and provisioning studies. Given sufficiently accurate trafficmodels, e.g. in
terms of packet length distribution, the effects of arbitration policies and other features of an
interconnect can be explored.

Despite their advantages, stochastic sources andMarkovian fabric models are often not helpful for a
particular issue with a production chip. Comparedwith cycle-accuratemodelling, problems include:

broad-brush correlations in traffic patterns (such as responding to a request) may not be captured
adequately

local effects may be neglected at a particular contention point

the order of transactions will be incorrect under loose timing (see later)

a deadlockmay bemissed.

5.2.2 Cycle-accurate InterconnectModelling
Themost detailed and lowest level of interconnect modelling is cycle-accuratemodelling. Aliasing
traffic occurs when a link carries multiple flows. The term is especially relevant if traffic shares a NoC
virtual channel. The behaviour of an interconnect with respect to event interdependence and various

226

Chapter 5 | Electronic System-LevelModelling

other aliasing effects cannot be effectively investigated at any higher level of abstraction, because, at
a contention point, the traffic shape can entirely change the performance characteristic. As an
example, if two packets arrive at a switching element such that each arrival requires arbitration, then
therewill be a delay resulting in an increase in overall latency. However, if the same two packets arrive
one after the other, no such delay is observed. Any store-and-forward network distorts the shape of
the traffic from that received at the ingress to that which it displays at the egress.

Tomodel an entire interconnect at a cycle-accurate level, each of the individual sub-models must
operate at a cycle-accurate level. The end points can bemodelled using a bus functional model (BFM)
or plugged into a real system, e.g. Arm’s mesh generators [2, 3]. Quite often it is not necessary to
integrate actual end-point devices for performance analysis or problem-solving. The input stimuli can
be either traces, obtained from real-world systems, or more popularly synthetic scenarios, as
described in Section 3.5.1. A second and detailed analysis phase can usemore accurate end-point
models or RTL-level simulations.

If multiple clocks or clock edges are used, sub-cycle accuracymodelling is occasionally needed, since a
cycle-accuratemodel may still be insufficient to capture the subtleties of a problem. Theremay be
behavioural differences between RTL and themodel, and it is not trivial to get themodel right. Such
models are stabilised over generations of a product.

As stated at the start of this chapter, a virtual platform ideally supports interworking between
different levels of abstraction. If a behavioural subtlety has been identified, only the localised
subsystem needs to use a low-level model. This is joined to the remainder of the ESLmodel using
transactors (Section 5.4.8).

5.3 SystemCModelling Library
SystemC is a free library for C++ for hardwaremodelling. It was initially promoted byOSCI, theOpen
SystemC Initiative, and is now available fromAccelera and standardised as IEEE-1666 [4]. Each
hardware component is defined by a C++ class thatmay instantiate lower-level components. SystemC
neatly supports anymixture of TLM and net-level modelling and it can be used for simulation and
synthesis. It was originally designed as an RTL-equivalent means of representing digital logic inside
C++. The next sections cover these basic aspects and then Sections Section 5.4 and Section 6.9move
on to uses for ESL and synthesis.

The SystemC core library includes the following essential elements:

Amodule systemwith inter-module channels: C++ class instances are instantiated in a hierarchy,
following the circuit component structure, in the sameway that RTLmodules instantiate each other.

A kernel that runs in user space: It provides facilities for the system time, pausing a simulation and
name resolution. It implements an EDS event queue that roughly follows the detailed semantics of
VHDL (described in Section 8.3.4). Event notifications and threads are provided. The threads are

227

Modern SoCDesign

not pre-emptive, which allows user code to take a lightweight approach to data structure locks, but
theremay be problems running SystemC onmulti-core workstations. Threads run inside
components either using a lightweight trampoline style, returning the thread to the kernel without
blocking, or by blocking the thread inside the component, which requires a per-thread stack.

The compute/commit signal paradigm, aswell as other forms of channel for connecting components
together: The compute/commit operation, described in Section 8.3.6, is needed inside a zero-delay
model of a clock domain to avoid shoot-through (Section 4.6.9), which occurs when one flip-flop in a
clock domain changes its output before another has read the previous value. If propagation times
are unknown, as is the case whenwriting new code or porting to a new fabrication technology, a
zero-delaymodel is preferable to amodel that embodies an arbitrary and inaccurate non-zero delay.

A library of arbitrary fixed-precision integers: Hardware typically uses many busses and counters
with different widths that wrap accordingly. SystemC provides classes of signed and unsigned
variables of any width that behave in the sameway. For instance, a user can define an sc_int of
5 bits and put it inside a signal. Being signed, it will overflowwhen it is incremented beyond 15 and
wrap to−16. The library includes overloads of all the standard arithmetic and logic operators for
these types.

Plotting output functions that enable waveforms to be captured to a file and viewedwith a
standard waveform viewer program such as gtkwave, as shown in Section 5.3.3.

A problemwith SystemC arises from the lack of a reflection API in the C language. A reflection API, as
found in Python for instance, enables a program to inspect its own source code. This is very useful for
reporting runtime errors and other types of static analysis, such as when an expressionmay need to
be recomputed due to its free variables having changed value. To overcome this, SystemC coding
sometimes requires the user to annotate a structure with its name as a string, but the C preprocessor
can helpminimise the amount of double-entry of identifiers needed. Another problem is that
hardware engineers are often not C++ experts, but if theymisuse the library, they can be facedwith
complex and advanced C++ error messages.

One of themajor benefits of SystemC is the intrinsic excellent performance of anything coded in C++.
Moreover, it is a standard adopted by the entire electronic design automation (EDA) industry.
General-purpose behavioural code, including application code and device drivers, is modelled and/or
implemented in this common language.

First Example: A Binary Counter
SystemC enables a component to be defined using the SC_MODULE and SC_CTORmacros. Figure 5.2
gives an example component definition. The example is a leaf component since it has no children. It
uses behavioural modelling to express what it does on each clock edge. Each of these SCmacros is
expanded into a C++ class definition and its constructor along with some code that registers each
instance with the runtime SystemC kernel. Modules inherit various attributes appropriate for an
hierarchic hardware design, including an instance name, a type name and channel binding capability.

228

Chapter 5 | Electronic System-LevelModelling

SC_MODULE(mycounter) // An example of a leaf module (no subcomponents)
{

sc_in < bool > clk, reset;
sc_out < sc_int<10> > myout;

void mybev() // Internal behaviour, invoked as an SC_METHOD
{

myout = (reset) ? 0: (myout.read()+1); // Use .read() since sc_out makes a signal
}

SC_CTOR(mycounter) // Constructor
{ SC_METHOD(mybev); // Require that mybev is called on each positive edge of clk

sensitive << clk.pos();
}

}

Figure 5.2 A 10-bit binary counter with synchronous reset, coded as a SystemC class

The sensitive construct registers a callback with the EDS kernel that says when the code inside the
module should be run. However, an unattractive feature of SystemC is the need to use the .read()
methodwhen reading a signal.

5.3.1 SystemC Structural Netlist
A structural netlist or gate-level netlist is a circuit diagram showing the connections between
components (Figure 5.3 and Section 8.3.1).

A SystemC templated channel is a general purpose interface between components. We rarely use the
raw channels. Instead, the derived forms – sc_in, sc_out and sc_signal – aremostly used. These
channels implement the compute/commit paradigm required for delta cycles (Section 8.3.6). This
avoids indeterminacy from racing in zero-delaymodels. The fragment in Figure 5.4 illustrates the
compute/commit behaviour. The sc_signal is an abstract (templated) data type that has a current
value and a next value. Signal reads get the current value, and the next value is written. If the EDS
kernel blocks when there are nomore events in the current time step, the pending new values are
committed to the visible current values. Hence, the value read from the signal changes from 95 to 96.

Other channels provided include a buffer, FIFO andmutex. Users can overload the channel class to
implement channels with their own semantics as needed. Note that a rich set of non-standard
channels is not a good basis for reusable IP blocks that are widely interoperable. Hence, designers
shouldminimise the number of new channel types. However, it is not possible to get high performance
from amodel that invokes the EDS kernel for every change of every net or bus.

229

Modern SoCDesign

not pre-emptive, which allows user code to take a lightweight approach to data structure locks, but
theremay be problems running SystemC onmulti-core workstations. Threads run inside
components either using a lightweight trampoline style, returning the thread to the kernel without
blocking, or by blocking the thread inside the component, which requires a per-thread stack.

The compute/commit signal paradigm, aswell as other forms of channel for connecting components
together: The compute/commit operation, described in Section 8.3.6, is needed inside a zero-delay
model of a clock domain to avoid shoot-through (Section 4.6.9), which occurs when one flip-flop in a
clock domain changes its output before another has read the previous value. If propagation times
are unknown, as is the case whenwriting new code or porting to a new fabrication technology, a
zero-delaymodel is preferable to amodel that embodies an arbitrary and inaccurate non-zero delay.

A library of arbitrary fixed-precision integers: Hardware typically uses many busses and counters
with different widths that wrap accordingly. SystemC provides classes of signed and unsigned
variables of any width that behave in the sameway. For instance, a user can define an sc_int of
5 bits and put it inside a signal. Being signed, it will overflowwhen it is incremented beyond 15 and
wrap to−16. The library includes overloads of all the standard arithmetic and logic operators for
these types.

Plotting output functions that enable waveforms to be captured to a file and viewedwith a
standard waveform viewer program such as gtkwave, as shown in Section 5.3.3.

A problemwith SystemC arises from the lack of a reflection API in the C language. A reflection API, as
found in Python for instance, enables a program to inspect its own source code. This is very useful for
reporting runtime errors and other types of static analysis, such as when an expressionmay need to
be recomputed due to its free variables having changed value. To overcome this, SystemC coding
sometimes requires the user to annotate a structure with its name as a string, but the C preprocessor
can helpminimise the amount of double-entry of identifiers needed. Another problem is that
hardware engineers are often not C++ experts, but if theymisuse the library, they can be facedwith
complex and advanced C++ error messages.

One of themajor benefits of SystemC is the intrinsic excellent performance of anything coded in C++.
Moreover, it is a standard adopted by the entire electronic design automation (EDA) industry.
General-purpose behavioural code, including application code and device drivers, is modelled and/or
implemented in this common language.

First Example: A Binary Counter
SystemC enables a component to be defined using the SC_MODULE and SC_CTORmacros. Figure 5.2
gives an example component definition. The example is a leaf component since it has no children. It
uses behavioural modelling to express what it does on each clock edge. Each of these SCmacros is
expanded into a C++ class definition and its constructor along with some code that registers each
instance with the runtime SystemC kernel. Modules inherit various attributes appropriate for an
hierarchic hardware design, including an instance name, a type name and channel binding capability.

228

Chapter 5 | Electronic System-LevelModelling

SC_MODULE(mycounter) // An example of a leaf module (no subcomponents)
{

sc_in < bool > clk, reset;
sc_out < sc_int<10> > myout;

void mybev() // Internal behaviour, invoked as an SC_METHOD
{

myout = (reset) ? 0: (myout.read()+1); // Use .read() since sc_out makes a signal
}

SC_CTOR(mycounter) // Constructor
{ SC_METHOD(mybev); // Require that mybev is called on each positive edge of clk

sensitive << clk.pos();
}

}

Figure 5.2 A 10-bit binary counter with synchronous reset, coded as a SystemC class

The sensitive construct registers a callback with the EDS kernel that says when the code inside the
module should be run. However, an unattractive feature of SystemC is the need to use the .read()
methodwhen reading a signal.

5.3.1 SystemC Structural Netlist
A structural netlist or gate-level netlist is a circuit diagram showing the connections between
components (Figure 5.3 and Section 8.3.1).

A SystemC templated channel is a general purpose interface between components. We rarely use the
raw channels. Instead, the derived forms – sc_in, sc_out and sc_signal – aremostly used. These
channels implement the compute/commit paradigm required for delta cycles (Section 8.3.6). This
avoids indeterminacy from racing in zero-delaymodels. The fragment in Figure 5.4 illustrates the
compute/commit behaviour. The sc_signal is an abstract (templated) data type that has a current
value and a next value. Signal reads get the current value, and the next value is written. If the EDS
kernel blocks when there are nomore events in the current time step, the pending new values are
committed to the visible current values. Hence, the value read from the signal changes from 95 to 96.

Other channels provided include a buffer, FIFO andmutex. Users can overload the channel class to
implement channels with their own semantics as needed. Note that a rich set of non-standard
channels is not a good basis for reusable IP blocks that are widely interoperable. Hence, designers
shouldminimise the number of new channel types. However, it is not possible to get high performance
from amodel that invokes the EDS kernel for every change of every net or bus.

229

Modern SoCDesign

D Q D Q

reset

din

clk

doutq1_s

dff1 dff2

shiftreg

//Example of structural hierarchy and wiring between levels:
SC_MODULE(shiftreg) // Two-bit shift register
{ sc_in < bool > clk, reset, din;

sc_out < bool > dout;

sc_signal < bool > q1_s;
dff dff1, dff2; // Instantiate FFs

SC_CTOR(shiftreg) : dff1("dff1"), dff2("dff2")
{ dff1.clk(clk);

dff1.reset(reset);
dff1.d(din);
dff1.q(q1_s);

dff2.clk(clk);
dff2.reset(reset);
dff2.d(q1_s);
dff2.q(dout);

}
};

Figure 5.3 Schematic (left) and SystemC structural netlist (right) for a 2-bit shift register

int nv; // nv is a simple C variable (POD, plain old data)
sc_out < int > data; // data and mysig are sc_signals (non-POD)
sc_signal < int > mysig; //
...

nv += 1;
data = nv;
mysig = nv;
printf("Before nv=%i, %i %i\n'', nv, data.read(), mysig.read());
wait(10, SC_NS);
printf("After nv=%i, %i %i\n'', nv, data.read(), mysig.read());

...
Before nv=96, 95 95
After nv=96, 96 96

Figure 5.4 Compute/commit behaviour

5.3.2 SystemC Threads andMethods
SystemC enables a user module to have its own thread and stack. However, thememory footprint is
lower if the user code operates in a trampoline style using only non-blocking upcalls from the kernel.
As shown in the subsequent examples, the constructor for a component typically uses one or other of
these coding styles, depending on its needs and complexity. Code can block, either bymaking a
blocking system call, such as a read, or a SystemC call, such as wait(sc_time), or by entering a

230

Chapter 5 | Electronic System-LevelModelling

lengthy or infinite loop. Theremay bemultiple threads active, using, perhaps, a mixture of these two
styles. The constructor selects the thread for each upcall using either:

The SC_THREADmacro if an upcall is allowed to block and retain the thread forever.

The SC_METHOD for an upcall that will not block but always returns once the instantaneous work is
complete.

For efficiency, designers should use SC_METHODwhenever possible. SC_THREAD should be reserved for
when an important statemust be retained in the program counter from one activation to the next or
for when asynchronous active behaviour is needed. This choice of programming styles is also the basis
for twomain programming TLM styles introduced later: blocking and non-blocking (Section 5.4.1).

The earlier counterexample of Figure 5.2 used SC_METHOD. Figure 5.5 is an example that uses
SC_THREAD. It is a data source that provides a stream of increasing numbers using a net-level
four-phase handshake (Section 3.1.3).

SC_MODULE(mydata_generator)
{ sc_out < int > data;

sc_out < bool > req;
sc_in < bool > ack;

void myloop()
{ while(1)

{ data = data.read() + 1;
wait(10, SC_NS);
req = 1;
do { wait(10, SC_NS); } while(!ack.read());
req = 0;
do { wait(10, SC_NS); } while(ack.read());

}
}

SC_CTOR(mydata_generator)
{

SC_THREAD(myloop);
}

}

Figure 5.5 Sample code using SC_THREAD

SystemC supports all standard ISO time specifications from femtoseconds to seconds using a library
type SC_TIME. For instance,

sc_time ten_nanoseconds(10, SC_NS)

defines a variable called ten_nanoseconds initialised to the eponymous value. A SystemC thread can
then block for this time using wait(ten_nanoseconds). All standard arithmetic overloads are
supported for the SC_TIME type.

231

Modern SoCDesign

D Q D Q

reset

din

clk

doutq1_s

dff1 dff2

shiftreg

//Example of structural hierarchy and wiring between levels:
SC_MODULE(shiftreg) // Two-bit shift register
{ sc_in < bool > clk, reset, din;

sc_out < bool > dout;

sc_signal < bool > q1_s;
dff dff1, dff2; // Instantiate FFs

SC_CTOR(shiftreg) : dff1("dff1"), dff2("dff2")
{ dff1.clk(clk);

dff1.reset(reset);
dff1.d(din);
dff1.q(q1_s);

dff2.clk(clk);
dff2.reset(reset);
dff2.d(q1_s);
dff2.q(dout);

}
};

Figure 5.3 Schematic (left) and SystemC structural netlist (right) for a 2-bit shift register

int nv; // nv is a simple C variable (POD, plain old data)
sc_out < int > data; // data and mysig are sc_signals (non-POD)
sc_signal < int > mysig; //
...

nv += 1;
data = nv;
mysig = nv;
printf("Before nv=%i, %i %i\n'', nv, data.read(), mysig.read());
wait(10, SC_NS);
printf("After nv=%i, %i %i\n'', nv, data.read(), mysig.read());

...
Before nv=96, 95 95
After nv=96, 96 96

Figure 5.4 Compute/commit behaviour

5.3.2 SystemC Threads andMethods
SystemC enables a user module to have its own thread and stack. However, thememory footprint is
lower if the user code operates in a trampoline style using only non-blocking upcalls from the kernel.
As shown in the subsequent examples, the constructor for a component typically uses one or other of
these coding styles, depending on its needs and complexity. Code can block, either bymaking a
blocking system call, such as a read, or a SystemC call, such as wait(sc_time), or by entering a

230

Chapter 5 | Electronic System-LevelModelling

lengthy or infinite loop. Theremay bemultiple threads active, using, perhaps, a mixture of these two
styles. The constructor selects the thread for each upcall using either:

The SC_THREADmacro if an upcall is allowed to block and retain the thread forever.

The SC_METHOD for an upcall that will not block but always returns once the instantaneous work is
complete.

For efficiency, designers should use SC_METHODwhenever possible. SC_THREAD should be reserved for
when an important statemust be retained in the program counter from one activation to the next or
for when asynchronous active behaviour is needed. This choice of programming styles is also the basis
for twomain programming TLM styles introduced later: blocking and non-blocking (Section 5.4.1).

The earlier counterexample of Figure 5.2 used SC_METHOD. Figure 5.5 is an example that uses
SC_THREAD. It is a data source that provides a stream of increasing numbers using a net-level
four-phase handshake (Section 3.1.3).

SC_MODULE(mydata_generator)
{ sc_out < int > data;

sc_out < bool > req;
sc_in < bool > ack;

void myloop()
{ while(1)

{ data = data.read() + 1;
wait(10, SC_NS);
req = 1;
do { wait(10, SC_NS); } while(!ack.read());
req = 0;
do { wait(10, SC_NS); } while(ack.read());

}
}

SC_CTOR(mydata_generator)
{

SC_THREAD(myloop);
}

}

Figure 5.5 Sample code using SC_THREAD

SystemC supports all standard ISO time specifications from femtoseconds to seconds using a library
type SC_TIME. For instance,

sc_time ten_nanoseconds(10, SC_NS)

defines a variable called ten_nanoseconds initialised to the eponymous value. A SystemC thread can
then block for this time using wait(ten_nanoseconds). All standard arithmetic overloads are
supported for the SC_TIME type.

231

Modern SoCDesign

Waiting for an arbitrary Boolean expression to become true is hard to implement in a language such as
C++ because it is compiled. It does not have a reflection API that enables a user expression to be
re-evaluated by the EDS kernel. Yet, we still want a reasonably neat and efficient way of blocking a
thread on an arbitrary event expression coded in C++. The original solution was the delayed
evaluation class. For instance, one would write:

waituntil(mycount.delayed() > 5 && !reset.delayed());

The delayed() suffix used neat overloading tricks to construct the abstract syntax tree of the
expression on the runtime heap rather than compile the expression natively. Hence, the kernel could
deduce its support (the set of conditions for which the expression needs to be re-evaluated) and
evaluate it when needed. This was deemed to be too unwieldy and removed. Today, wewrite a less
efficient spin, viz.:

do { wait(10, SC_NS); } while(!((mycount > 5 && !reset)));

Moreover, within SystemC, there is no direct equivalent to the continuous assignment of Verilog.
However, the fully supported sensitivity list always @(*) or always_comb can be reproducedwith an
SC_METHODwhere the usermanually lists the supporting nets. Performance is enhanced by putting the
continuous assignment behaviour in amethod and remembering to call that methodwhenever the
support is changed in other parts of themodel. However, suchmanual coding is liable to programming
error and is fragile when edited. Fortunately, for TLMmodels in SystemC, very little continuous
assignment is needed, with the exception being, perhaps, just interrupt wiring.

5.3.3 SystemC Plotting and its GUI
SystemC supports the dumping of a waveform plot to the industry-standardVerilog Change Dump
(VCD) files for later viewing with visualisers such as gtkwave,ModelSim fromMentor Graphics and
many other tools from themajor EDA vendors. A VCD file stores net names and a list of changes in
value to those nets with associated timestamps. The nets are held in a tree structure that typically
represents the originating design hierarchy. In SystemC, traces like the one shown in Figure 5.6 can be

Figure 5.6 An example waveform view plotted by gtkwave

232

Chapter 5 | Electronic System-LevelModelling

generated by passing the nets to be traced to sc_trace calls, as in the top-level fragment in Figure 5.7.
Again, due to the lack of a reflection API in C++, for the correct signal names to be shown, the nets
need to be namedwhen instantiated or else (re)namedwhen passed to sc_trace.

sc_trace_file *tf = sc_create_vcd_trace_file("tracefilename");

// Now call:
// sc_trace(tf, <traced variable>, <string>);

sc_signal < bool > serialin("serialin"); // A named signal
sc_signal < bool > serialout; // An unnamed signal
float fbar;
sc_trace(tf, clk);
sc_trace(tf, serialin);
sc_trace(tf, serialout, "serialout"); // Give name since not named above
sc_trace(tf, fbar, "fbar"); // Give name since POD form

sc_start(1000, SC_NS); // Simulate for 1 microsecond (old API)
sc_close_vcd_trace_file(tr);
return 0;

Figure 5.7 Naming nets

5.3.4 Towards GreaterModelling Efficiency
One approach for conveyingmore data per kernel operation is to pass more detailed data types along
the SystemC channels, which is a step towards transactional modelling. A record containing all the
values on a bus can be supplied as the sc_channel template type. The channel requires various
methods to be defined, such as the equality operator overload shown in the fragment in Figure 5.8.

sc_signal < bool > mywire; // Rather than a channel conveying just one bit

struct capsule
{ int ts_int1, ts_int2;

bool operator== (struct ts other)
{ return (ts_int1 == other.ts_int1) && (ts_int2 == other.ts_int2); }

int next_ts_int1, next_ts_int2; // Pending updates
void update()
{ ts_int1 = next_ts_int1; ts_int2 = next_ts_int2;
}
...
... // Also must define read(), write() and value_changed()

};

sc_signal < struct capsule > myast; // We can send two integers at once

Figure 5.8 Equality operator overload

233

Modern SoCDesign

Waiting for an arbitrary Boolean expression to become true is hard to implement in a language such as
C++ because it is compiled. It does not have a reflection API that enables a user expression to be
re-evaluated by the EDS kernel. Yet, we still want a reasonably neat and efficient way of blocking a
thread on an arbitrary event expression coded in C++. The original solution was the delayed
evaluation class. For instance, one would write:

waituntil(mycount.delayed() > 5 && !reset.delayed());

The delayed() suffix used neat overloading tricks to construct the abstract syntax tree of the
expression on the runtime heap rather than compile the expression natively. Hence, the kernel could
deduce its support (the set of conditions for which the expression needs to be re-evaluated) and
evaluate it when needed. This was deemed to be too unwieldy and removed. Today, wewrite a less
efficient spin, viz.:

do { wait(10, SC_NS); } while(!((mycount > 5 && !reset)));

Moreover, within SystemC, there is no direct equivalent to the continuous assignment of Verilog.
However, the fully supported sensitivity list always @(*) or always_comb can be reproducedwith an
SC_METHODwhere the usermanually lists the supporting nets. Performance is enhanced by putting the
continuous assignment behaviour in amethod and remembering to call that methodwhenever the
support is changed in other parts of themodel. However, suchmanual coding is liable to programming
error and is fragile when edited. Fortunately, for TLMmodels in SystemC, very little continuous
assignment is needed, with the exception being, perhaps, just interrupt wiring.

5.3.3 SystemC Plotting and its GUI
SystemC supports the dumping of a waveform plot to the industry-standardVerilog Change Dump
(VCD) files for later viewing with visualisers such as gtkwave,ModelSim fromMentor Graphics and
many other tools from themajor EDA vendors. A VCD file stores net names and a list of changes in
value to those nets with associated timestamps. The nets are held in a tree structure that typically
represents the originating design hierarchy. In SystemC, traces like the one shown in Figure 5.6 can be

Figure 5.6 An example waveform view plotted by gtkwave

232

Chapter 5 | Electronic System-LevelModelling

generated by passing the nets to be traced to sc_trace calls, as in the top-level fragment in Figure 5.7.
Again, due to the lack of a reflection API in C++, for the correct signal names to be shown, the nets
need to be namedwhen instantiated or else (re)namedwhen passed to sc_trace.

sc_trace_file *tf = sc_create_vcd_trace_file("tracefilename");

// Now call:
// sc_trace(tf, <traced variable>, <string>);

sc_signal < bool > serialin("serialin"); // A named signal
sc_signal < bool > serialout; // An unnamed signal
float fbar;
sc_trace(tf, clk);
sc_trace(tf, serialin);
sc_trace(tf, serialout, "serialout"); // Give name since not named above
sc_trace(tf, fbar, "fbar"); // Give name since POD form

sc_start(1000, SC_NS); // Simulate for 1 microsecond (old API)
sc_close_vcd_trace_file(tr);
return 0;

Figure 5.7 Naming nets

5.3.4 Towards GreaterModelling Efficiency
One approach for conveyingmore data per kernel operation is to pass more detailed data types along
the SystemC channels, which is a step towards transactional modelling. A record containing all the
values on a bus can be supplied as the sc_channel template type. The channel requires various
methods to be defined, such as the equality operator overload shown in the fragment in Figure 5.8.

sc_signal < bool > mywire; // Rather than a channel conveying just one bit

struct capsule
{ int ts_int1, ts_int2;

bool operator== (struct ts other)
{ return (ts_int1 == other.ts_int1) && (ts_int2 == other.ts_int2); }

int next_ts_int1, next_ts_int2; // Pending updates
void update()
{ ts_int1 = next_ts_int1; ts_int2 = next_ts_int2;
}
...
... // Also must define read(), write() and value_changed()

};

sc_signal < struct capsule > myast; // We can send two integers at once

Figure 5.8 Equality operator overload

233

Modern SoCDesign

This can be rather heavy. For instance, the value_changed operator must be defined so that positive
edges can be used, as in Figure 5.9, but this is rarely used.

void mymethod() { }
SC_METHOD(mymethod)
sensitive << myast.pos(); // User must define concept of posedge for his own abstract type

Figure 5.9 Positive edge

5.4 Transaction-levelModelling
Asmentioned earlier, SystemCwas originally intended for detailed net-level modelling of hardware,
but today its main uses are:

Architectural exploration:Making a fast and quick, high-level model of a SoC to explore
performance variations against various dimensions, such as bus width and cachememory size
(Chapter 6).

Transaction-level ESLmodels (TLM) of systems: Handshaking protocols between components and
net-level modelling of hardware are replacedwith subroutine calls between higher-level models of
those components.

Synthesis: RTL is synthesised from SystemC source code using either the RTL constructs of
SystemC or a high-level synthesis (Section 6.9).

Two coding styles were recommended byOSCI. These are called 1.0 and 2.0. The 1.0 standard is
slightly easier to understand but the 2.0 standard is nowmorewidely used and interoperable. We
present them both since 1.0 illustrates some significant concepts. Each standard supports both
so-called blocking and non-blocking transactions, but the 2.0 library supports interworking between
the blocking and non-blocking styles and addsmany further features such as back channels. With
release 2.0, SystemC implemented an extension called sc_export, which allows a parent module to
inherit the interface of one of its children. This is vital for the common situation where the exporting
module is not the top-level module of the component being wired up. Moreover, the same binding
mechanisms used in the structural netlist of Section 5.3.1 to connect wires between components can
be used to connect TLM calls.

234

Chapter 5 | Electronic System-LevelModelling

REQUEST

DATA

REQUEST

DATA

ACKNOWLEDGE

Four phase
receiverFour phase

sender

Four phase
receiverFour phase

sender

initiator target

char mydata = ... src ...;
target.putchar(mydata);

void target::putchar(char d)
{
 //.. do something with data
}

Net-level (pin-level) interconnection. TLM push configuration.

TLM pull configuration.

Four phase
receiverFour phase

sender

initiatortarget

mydata = target.getchar();
char target::getchar()
{
 char mydata = ... src ...;
 return mydata;
}

Net-level protocol

ACKNOWLEDGE

Figure 5.10 Three views of the four-phase transactional protocol from Section 3.1.3 operating between a sender and a receiver. The views are for a net-level
connection, an untimed TLM push and an untimed TLM pull

Figure 5.10 is an example of a transactional protocol for a simplex data flow implemented at net level
and TLM level. The two variant TLM implementations show that the TLM initiator can be the source
or sink of the data.

5.4.1 OSCI TLM1.0 Standard
The TLM1.0 standard is essentially a coding style that uses the conventional C++ concepts of multiple
inheritance: an SC_MODULE that implements an interface just inherits it using the C++ inheritance
mechanism. Figure 5.11 shows the definition of a component called fifo_device, which has two
interfaces, read and write. The former has one callable methodwhereas the latter has two. The
interfaces are defined as the C++ virtual classes shown on the left. A net-level implementation of the
interfaces typically has data busses and handshake nets to qualify the data on the data busses and
implement flow control. The handshake nets do not appear in the TLM equivalent. They are replaced
with the acts of calling and returning from themethods in the interfaces.

The left-hand code box in Figure 5.12 shows the SystemCmodule definition. It does not use the
SC_MODULEmacro because that macro is incompatible with the additional interface declarations;
hence, there is an explicit call to the sc_module constructor that registers instances with the kernel.

The examplemodule is a target for TLM calls. The right-hand code box gives the definition of another
module, called fifo_writer, which initiates calls to a FIFOmodule. It also shows instantiation of the
module and binding of its TLM-style interfaces. The net-level implementations of these interfaces
might use about 25wires, but all the details have beenmodelled using simplemethod invocations. The
net-level modelling of thewrite transactionmight involve change in state for 10 sc_signals aswell as

235

Modern SoCDesign

This can be rather heavy. For instance, the value_changed operator must be defined so that positive
edges can be used, as in Figure 5.9, but this is rarely used.

void mymethod() { }
SC_METHOD(mymethod)
sensitive << myast.pos(); // User must define concept of posedge for his own abstract type

Figure 5.9 Positive edge

5.4 Transaction-levelModelling
Asmentioned earlier, SystemCwas originally intended for detailed net-level modelling of hardware,
but today its main uses are:

Architectural exploration:Making a fast and quick, high-level model of a SoC to explore
performance variations against various dimensions, such as bus width and cachememory size
(Chapter 6).

Transaction-level ESLmodels (TLM) of systems: Handshaking protocols between components and
net-level modelling of hardware are replacedwith subroutine calls between higher-level models of
those components.

Synthesis: RTL is synthesised from SystemC source code using either the RTL constructs of
SystemC or a high-level synthesis (Section 6.9).

Two coding styles were recommended byOSCI. These are called 1.0 and 2.0. The 1.0 standard is
slightly easier to understand but the 2.0 standard is nowmorewidely used and interoperable. We
present them both since 1.0 illustrates some significant concepts. Each standard supports both
so-called blocking and non-blocking transactions, but the 2.0 library supports interworking between
the blocking and non-blocking styles and addsmany further features such as back channels. With
release 2.0, SystemC implemented an extension called sc_export, which allows a parent module to
inherit the interface of one of its children. This is vital for the common situation where the exporting
module is not the top-level module of the component being wired up. Moreover, the same binding
mechanisms used in the structural netlist of Section 5.3.1 to connect wires between components can
be used to connect TLM calls.

234

Chapter 5 | Electronic System-LevelModelling

REQUEST

DATA

REQUEST

DATA

ACKNOWLEDGE

Four phase
receiverFour phase

sender

Four phase
receiverFour phase

sender

initiator target

char mydata = ... src ...;
target.putchar(mydata);

void target::putchar(char d)
{
 //.. do something with data
}

Net-level (pin-level) interconnection. TLM push configuration.

TLM pull configuration.

Four phase
receiverFour phase

sender

initiatortarget

mydata = target.getchar();
char target::getchar()
{
 char mydata = ... src ...;
 return mydata;
}

Net-level protocol

ACKNOWLEDGE

Figure 5.10 Three views of the four-phase transactional protocol from Section 3.1.3 operating between a sender and a receiver. The views are for a net-level
connection, an untimed TLM push and an untimed TLM pull

Figure 5.10 is an example of a transactional protocol for a simplex data flow implemented at net level
and TLM level. The two variant TLM implementations show that the TLM initiator can be the source
or sink of the data.

5.4.1 OSCI TLM1.0 Standard
The TLM1.0 standard is essentially a coding style that uses the conventional C++ concepts of multiple
inheritance: an SC_MODULE that implements an interface just inherits it using the C++ inheritance
mechanism. Figure 5.11 shows the definition of a component called fifo_device, which has two
interfaces, read and write. The former has one callable methodwhereas the latter has two. The
interfaces are defined as the C++ virtual classes shown on the left. A net-level implementation of the
interfaces typically has data busses and handshake nets to qualify the data on the data busses and
implement flow control. The handshake nets do not appear in the TLM equivalent. They are replaced
with the acts of calling and returning from themethods in the interfaces.

The left-hand code box in Figure 5.12 shows the SystemCmodule definition. It does not use the
SC_MODULEmacro because that macro is incompatible with the additional interface declarations;
hence, there is an explicit call to the sc_module constructor that registers instances with the kernel.

The examplemodule is a target for TLM calls. The right-hand code box gives the definition of another
module, called fifo_writer, which initiates calls to a FIFOmodule. It also shows instantiation of the
module and binding of its TLM-style interfaces. The net-level implementations of these interfaces
might use about 25wires, but all the details have beenmodelled using simplemethod invocations. The
net-level modelling of thewrite transactionmight involve change in state for 10 sc_signals aswell as

235

Modern SoCDesign

fifo_dev

write(char c)
{

}

reset()
{

}

char read()
{
 return c;
}

(two target
methods)

read
interface

fifo_devfifo_writer fifo_reader

Schematic for the FIFO device:

Schematic for its typical instantiation

write
interface

Figure 5.11 Schematic of a FIFO device (top) and its typical instantiation (bottom)

//Define the interfaces:
class write_if: public sc_interface
{ public:

virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if: public sc_interface
{ public:

virtual char read() = 0;
};

//Define a component that inherits:
class fifo_dev: sc_module("fifo_dev"),
public write_if, public read_if, ...
{

void write(char) { ... }
void reset() { ... }
...

}

SC_MODULE("fifo_writer")
{

sc_port< write_if > outputport;
sc_in < bool > clk;
void writer()
{

outputport.write(random());
}

SC_CTOR(fifo_writer) {
SC_METHOD(writer);
sensitive << clk.pos();

}
}

//Top level instances:
fifo_dev myfifo("myfifo");
fifo_writer mywriter("mywriter");
// Port binding:
mywriter.outputport(myfifo);

Figure 5.12 SystemCmodule definition of an interface (left) and FIFOwriter (right)

10 upcalls into the the behavioural model of the FIFO buffer from the EDS kernel. In the freeOSCI
SystemC kernel, each upcall is a computed jump, which tends to result in a pipeline stall onmodern
processors. The TLM implementation, however, does not need to enter the EDS kernel at all and there
are no computed jumps. Although TLM is three orders of magnitude faster, its disadvantage is that it
doesmodel any concept of time. Moreover, it is not directly possible to dynamically model energy in

236

Chapter 5 | Electronic System-LevelModelling

terms of the number of nets changed. Also, note that all notions of the system clock and clock tree are
missing at this level of modelling. These shortcoming aremitigated in Section 5.4.3 and Section 5.6.7.

A callable TLMmethodmay contain thread-blocking primitives. A blockingmethodmust be called
with an SC_THREAD, whereas non-blocking can use the lighter SC_METHOD. Method names should be
prefixedwith either b_ or nb_, respectively. This showswhether they can block and reduces the
likelihood of programmer error if a blocking entry point is invokedwith an SC_METHOD. Moreover, the
standard defines different handshakingmodels for the two forms. These naming and handshaking
principles were retained in TLM2.0. Namely:

For a blockingmethod, hardware flow control signals are implied by the thread call and return of
themethod. The call event implies that the handshake to send arguments has taken place and the
return implies that the handshake for communicating the result has taken place.

For a non-blockingmethod, two separatemethodsmust be defined, one for sending the arguments
and the second for returning the result. Themethods themselves return a Boolean completion
status flag and the initiatormust repeatedly invoke eachmethod until it returns true. Hence, thread
blocking is replacedwith caller spinning. An example is presented later under the approximately
timed TLMheading (Section 5.4.6).

TLM 1.0 had no standardised or recommended structure for payloads. Different houses could adopt
their ownmodels of standard bus structures, leading to incompatible IP blockmodels at SoC assembly
time. There was also the problem of how to havemultiple instances of the same type of interface on a
component, e.g. for a packet router. This design pattern is not often needed in software, and hence,
there is no support for it in high-level languages like C++, but it is a common requirement in hardware
designs. A workaroundwas to add a dummy formal type parameter to the interface specification that
is given a different concrete type in each instance of an interface. That was really ugly.

Another problemwas having to choose between blocking and non-blocking coding. Since any
particular method is either blocking or non-blocking, the initiator and target had to agree onwhich
style was being used tomake calling possible. Alternatively, the target had to provide both forms. In
TLM2.0, all of these issues are hidden using TLM sockets, which have lightweight library code that
solves all these issues.

5.4.2 OSCI TLM2.0 Standard
Although there was a limited capability in SystemC 1.0 to pass threads along channels, and hence,
make subroutine calls along infrastructure originally design tomodel nets, this wasmademuch easier
in SystemC 2.0. TLM2.0 (July 2008) tidied away the TLM1.0 interface inheritance problems by
providing TLM convenience sockets, listed in Table 5.1. It also defined the TLM generic payload to
promote compatibility between IP block vendors. Further, it definedmemory/garbage ownership and
transport primitives with timing and fast backdoor access to RAMmodels.

237

Modern SoCDesign

fifo_dev

write(char c)
{

}

reset()
{

}

char read()
{
 return c;
}

(two target
methods)

read
interface

fifo_devfifo_writer fifo_reader

Schematic for the FIFO device:

Schematic for its typical instantiation

write
interface

Figure 5.11 Schematic of a FIFO device (top) and its typical instantiation (bottom)

//Define the interfaces:
class write_if: public sc_interface
{ public:

virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if: public sc_interface
{ public:

virtual char read() = 0;
};

//Define a component that inherits:
class fifo_dev: sc_module("fifo_dev"),
public write_if, public read_if, ...
{

void write(char) { ... }
void reset() { ... }
...

}

SC_MODULE("fifo_writer")
{

sc_port< write_if > outputport;
sc_in < bool > clk;
void writer()
{

outputport.write(random());
}

SC_CTOR(fifo_writer) {
SC_METHOD(writer);
sensitive << clk.pos();

}
}

//Top level instances:
fifo_dev myfifo("myfifo");
fifo_writer mywriter("mywriter");
// Port binding:
mywriter.outputport(myfifo);

Figure 5.12 SystemCmodule definition of an interface (left) and FIFOwriter (right)

10 upcalls into the the behavioural model of the FIFO buffer from the EDS kernel. In the freeOSCI
SystemC kernel, each upcall is a computed jump, which tends to result in a pipeline stall onmodern
processors. The TLM implementation, however, does not need to enter the EDS kernel at all and there
are no computed jumps. Although TLM is three orders of magnitude faster, its disadvantage is that it
doesmodel any concept of time. Moreover, it is not directly possible to dynamically model energy in

236

Chapter 5 | Electronic System-LevelModelling

terms of the number of nets changed. Also, note that all notions of the system clock and clock tree are
missing at this level of modelling. These shortcoming aremitigated in Section 5.4.3 and Section 5.6.7.

A callable TLMmethodmay contain thread-blocking primitives. A blockingmethodmust be called
with an SC_THREAD, whereas non-blocking can use the lighter SC_METHOD. Method names should be
prefixedwith either b_ or nb_, respectively. This showswhether they can block and reduces the
likelihood of programmer error if a blocking entry point is invokedwith an SC_METHOD. Moreover, the
standard defines different handshakingmodels for the two forms. These naming and handshaking
principles were retained in TLM2.0. Namely:

For a blockingmethod, hardware flow control signals are implied by the thread call and return of
themethod. The call event implies that the handshake to send arguments has taken place and the
return implies that the handshake for communicating the result has taken place.

For a non-blockingmethod, two separatemethodsmust be defined, one for sending the arguments
and the second for returning the result. Themethods themselves return a Boolean completion
status flag and the initiatormust repeatedly invoke eachmethod until it returns true. Hence, thread
blocking is replacedwith caller spinning. An example is presented later under the approximately
timed TLMheading (Section 5.4.6).

TLM 1.0 had no standardised or recommended structure for payloads. Different houses could adopt
their ownmodels of standard bus structures, leading to incompatible IP blockmodels at SoC assembly
time. There was also the problem of how to havemultiple instances of the same type of interface on a
component, e.g. for a packet router. This design pattern is not often needed in software, and hence,
there is no support for it in high-level languages like C++, but it is a common requirement in hardware
designs. A workaroundwas to add a dummy formal type parameter to the interface specification that
is given a different concrete type in each instance of an interface. That was really ugly.

Another problemwas having to choose between blocking and non-blocking coding. Since any
particular method is either blocking or non-blocking, the initiator and target had to agree onwhich
style was being used tomake calling possible. Alternatively, the target had to provide both forms. In
TLM2.0, all of these issues are hidden using TLM sockets, which have lightweight library code that
solves all these issues.

5.4.2 OSCI TLM2.0 Standard
Although there was a limited capability in SystemC 1.0 to pass threads along channels, and hence,
make subroutine calls along infrastructure originally design tomodel nets, this wasmademuch easier
in SystemC 2.0. TLM2.0 (July 2008) tidied away the TLM1.0 interface inheritance problems by
providing TLM convenience sockets, listed in Table 5.1. It also defined the TLM generic payload to
promote compatibility between IP block vendors. Further, it definedmemory/garbage ownership and
transport primitives with timing and fast backdoor access to RAMmodels.

237

Modern SoCDesign

Command

Address

Data pointer

Data length

Byte lane info ptr

Response

Misc + Extensions

Generic
Payload
(C Structure)

Initiator

(cpu0)

Intermediate
component
(bus/cache)

(busmux0)

init_skt.b_transact (payload, delay);

Payload is passed by pointer

Payload's data packet is pointed to from payload, not in the payload.

Commands: Read/Write/Load-linked/Store-conditional.

Delay variable ‘owned’ by initiating thread but all can increment or
resynch it with EDS kernel.

memory1

I/O dev0

memory1

Figure 5.13 TLM 2.0 generic payload structure (left) and interconnection of three IP blocks showing passthrough and demultiplexing (right)

In TLM2.0, rather than having application-specificmethod names, the focus is on generic bus
operation. Individual functions are achieved by dispatching on the address field in the sameway as the
real hardware. That is, there are different addressable registers/methods in the target IP block for the
different functions, such as reset andwrite. Figure 5.13 illustrates the general setup. A generic
payload is a record inmemory that is passed by reference as an argument tomethod calls that are
made via the sockets. The right shows three IP blocks: an initiator, a passthrough and a target. The
initiator thread runs code in both of the other two blocks as its calls and returns. Each block can
inspect andmodify the generic payload. The fields of a generic payload can be set upwith code such as
in Figure 5.14.

// Filling in the fields or a TLM2.0 generic payload:
trans.set_command(tlm::TLM_WRITE_COMMAND);
trans.set_address(addr);
trans.set_data_ptr(reinterpret_cast<unsigned char*>(&data));
trans.set_data_length(4);
trans.set_streaming_width(4);
trans.set_byte_enable_ptr(0);
trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);

// Sending the payload through a TLM socket:
socket->b_transport(trans, delay);

Figure 5.14 Setting up a generic payload

The sockets themselves can handle any type of payload, but C++ strong typing ensures that all
interconnected sites agree. Formats for cache lines, USB request blocks (URBs), 802.3 network
frames and audio samples are common examples. The generic payload can be extended on a custom
basis and intermediate bus bridges and routers can be polymorphic about this, as they do not need to
know about all the extensions. The generic payload encompassed some advanced features, such as
burst transfers and byte laning, but the command field uses an enumeration that ranges over just read

238

Chapter 5 | Electronic System-LevelModelling

andwrite. That command set is woefully inadequate given the rich set used by amodern SoC
interconnect (Section 3.1), so non-standard extensions are always needed in real use.

As a worked example, consider a small SRAM connected as a bus target. This is an SC_MODULE
defined as a class. The first step is to define the target socket in the .h file:

SC_MODULE(cbgram)
{

tlm_utils::simple_target_socket <cbgram> port0;
...

Here is the constructor:

cbgram::cbgram(sc_module_name name, uint32_t mem_size, bool tracing_on, bool dmi_on):
sc_module(name), port0("port0"),
latency(10, SC_NS), mem_size(mem_size), tracing_on(tracing_on), dmi_on(dmi_on)

{
mem = new uint8_t [mem_size]; // Allocate memory to store contents
// Register callback for incoming b_transport interface method call
port0.register_b_transport(this, &cbgram::b_transact);

}

The constructor will register various callbacks with the socket. In this case, there is just the blocking
entry point called b_transact. This is defined as follows:

void cbgram::b_transact(tlm::tlm_generic_payload &trans, sc_time &delay)
{

tlm::tlm_command cmd = trans.get_command();
uint32_t adr = (uint32_t)trans.get_address();
uint8_t * ptr = trans.get_data_ptr();
uint32_t len = trans.get_data_length();
uint8_t * lanes = trans.get_byte_enable_ptr();
uint32_t wid = trans.get_streaming_width();

if (cmd == tlm::TLM_READ_COMMAND)
{

ptr[0] = mem[adr];
}

else ...
trans.set_response_status(tlm::TLM_OK_RESPONSE);

}

This is theminimal C++ code required for a working implementation. The instantiator will connect the
initiator to the target using the bindmethod provided by all convenience ports. Calls to the bind
method establish the interconnection topology between the socket instances. The coding style is

239

Modern SoCDesign

Command

Address

Data pointer

Data length

Byte lane info ptr

Response

Misc + Extensions

Generic
Payload
(C Structure)

Initiator

(cpu0)

Intermediate
component
(bus/cache)

(busmux0)

init_skt.b_transact (payload, delay);

Payload is passed by pointer

Payload's data packet is pointed to from payload, not in the payload.

Commands: Read/Write/Load-linked/Store-conditional.

Delay variable ‘owned’ by initiating thread but all can increment or
resynch it with EDS kernel.

memory1

I/O dev0

memory1

Figure 5.13 TLM 2.0 generic payload structure (left) and interconnection of three IP blocks showing passthrough and demultiplexing (right)

In TLM2.0, rather than having application-specificmethod names, the focus is on generic bus
operation. Individual functions are achieved by dispatching on the address field in the sameway as the
real hardware. That is, there are different addressable registers/methods in the target IP block for the
different functions, such as reset andwrite. Figure 5.13 illustrates the general setup. A generic
payload is a record inmemory that is passed by reference as an argument tomethod calls that are
made via the sockets. The right shows three IP blocks: an initiator, a passthrough and a target. The
initiator thread runs code in both of the other two blocks as its calls and returns. Each block can
inspect andmodify the generic payload. The fields of a generic payload can be set upwith code such as
in Figure 5.14.

// Filling in the fields or a TLM2.0 generic payload:
trans.set_command(tlm::TLM_WRITE_COMMAND);
trans.set_address(addr);
trans.set_data_ptr(reinterpret_cast<unsigned char*>(&data));
trans.set_data_length(4);
trans.set_streaming_width(4);
trans.set_byte_enable_ptr(0);
trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);

// Sending the payload through a TLM socket:
socket->b_transport(trans, delay);

Figure 5.14 Setting up a generic payload

The sockets themselves can handle any type of payload, but C++ strong typing ensures that all
interconnected sites agree. Formats for cache lines, USB request blocks (URBs), 802.3 network
frames and audio samples are common examples. The generic payload can be extended on a custom
basis and intermediate bus bridges and routers can be polymorphic about this, as they do not need to
know about all the extensions. The generic payload encompassed some advanced features, such as
burst transfers and byte laning, but the command field uses an enumeration that ranges over just read

238

Chapter 5 | Electronic System-LevelModelling

andwrite. That command set is woefully inadequate given the rich set used by amodern SoC
interconnect (Section 3.1), so non-standard extensions are always needed in real use.

As a worked example, consider a small SRAM connected as a bus target. This is an SC_MODULE
defined as a class. The first step is to define the target socket in the .h file:

SC_MODULE(cbgram)
{

tlm_utils::simple_target_socket <cbgram> port0;
...

Here is the constructor:

cbgram::cbgram(sc_module_name name, uint32_t mem_size, bool tracing_on, bool dmi_on):
sc_module(name), port0("port0"),
latency(10, SC_NS), mem_size(mem_size), tracing_on(tracing_on), dmi_on(dmi_on)

{
mem = new uint8_t [mem_size]; // Allocate memory to store contents
// Register callback for incoming b_transport interface method call
port0.register_b_transport(this, &cbgram::b_transact);

}

The constructor will register various callbacks with the socket. In this case, there is just the blocking
entry point called b_transact. This is defined as follows:

void cbgram::b_transact(tlm::tlm_generic_payload &trans, sc_time &delay)
{

tlm::tlm_command cmd = trans.get_command();
uint32_t adr = (uint32_t)trans.get_address();
uint8_t * ptr = trans.get_data_ptr();
uint32_t len = trans.get_data_length();
uint8_t * lanes = trans.get_byte_enable_ptr();
uint32_t wid = trans.get_streaming_width();

if (cmd == tlm::TLM_READ_COMMAND)
{

ptr[0] = mem[adr];
}

else ...
trans.set_response_status(tlm::TLM_OK_RESPONSE);

}

This is theminimal C++ code required for a working implementation. The instantiator will connect the
initiator to the target using the bindmethod provided by all convenience ports. Calls to the bind
method establish the interconnection topology between the socket instances. The coding style is

239

Modern SoCDesign

identical to that for a SystemC structural netlist, as in Section 5.3.1. Following the instance naming of
Figure 5.13, the required code is:

busmux0.init_socket.bind(memory0.port0);
busmux0.init_socket.bind(memory1.port0);
busmux0.init_socket.bind(iodev0.port0);

Table 5.1 lists the set of convenience sockets defined by TLM2.0. The problem ofmultiple instances of
one type of port is solved by themulti-sockets. These sockets can be boundmore than once, as shown
in the fragment above. Passthrough sockets enable a generic payload reference to be passed on to a
further TLM call. This directly reflects the behaviour of interconnect components as they forward a
flit. An initiator specifies which binding to amulti-port is used by supplying an integer to an overload
of the subscription operator:

int n = ...; // Which binding to deliver message to
output_socket[n]->b_transport(trans, delay);

Aswell as the blocking transport method, sockets can invoke and register a non-blocking equivalent.
The sockets map calls from one form to the other if the required target is not registered. In addition,
there is a reverse channel so that a target can invoke amethod on an initiator. This is especially useful
for operations such as cache snoop and line invalidate (Section 2.4) where a shared L2 needs to
remove entries in an L1 but each L1 is configured as an initiator that operates on the L2.

Table 5.1 List of TLM 2.0 convenience socket types

simple_initiator_socket.h
A version of an initiator socket that has a default implementation of all interfaces. It allows the
registration of an implementation for any of the interfaces to the socket, either unique interfaces or
tagged interfaces (carrying an additional ID).

simple_target_socket.h

A basic target socket that has a default implementation of all interfaces. It also allows the
registration of an implementation for any of the interfaces to the socket, either unique interfaces or
tagged interfaces (carrying an additional ID). This socket allows only one of the transport interfaces
(blocking or non-blocking) to be registered and implements a conversion if the socket is used on the
other interface.

passthrough_target_socket.h A target socket that has a default implementation of all interfaces. It also allows the registration of
an implementation for any of the interfaces to the socket.

multi_passthrough_initiator_socket.h
An implementation of a socket that allowsmultiple targets to be bound to the same initiator socket.
It implements amechanism that allows the index of the socket the call passed through in the
backward path to be identified.

multi_passthrough_target_socket.h
An implementation of a socket that allowsmultiple initiators to bind to the same target socket. It
implements amechanism that allows the index of the socket the call passed through in the forward
path to be identified.

240

Chapter 5 | Electronic System-LevelModelling

5.4.3 TLMModels with Timing (TLM+T)
A TLMmodel does not need to refer to the system clock. As discussed, the TLM calls between
behavioural models of IP blocks do not need to invoke the EDS kernel at all. So if timing and
performance indications are wanted, mechanisms are needed that periodically interact with the
kernel. Moreover, given the non-pre-emptive scheduling of SystemC, a single thread can hog the
modelling resources such that other parts of the system cannot make progress. To study system
performance, however, wemust model the time taken by a real transaction in the initiator and target
and over the bus or NoC.

There are two definedmethods for annotating timings in TLMmodellingwith SystemC. Loosely timed
TLM has less overhead and sometimes less accuracy than approximately timed TLM. Both use the
SystemC EDS kernel with its tnow variable defined by the head of the discrete event queue, as
explained in Section 8.3.4. This remains themain time reference, but we do not aim to use the kernel
verymuch, perhaps entering it only when inter-thread communication is needed. This reduces the
context swap overhead. Tomake good use of the caches on themodelling workstation, the aim is to
run a large number of ISS instructions or other operations before context switching.

Note, in SystemC, we can always print the kernel tnowwith:

cout << ``Time now is : `` << simcontext()->time_stamp() << `` \n'';

5.4.4 TLMwith Loosely TimedModelling
The naive way to add timing annotations to TLMmodelling is to block the SystemC kernel in a
transaction until the prescribed time has elapsed. For instance:

sc_time clock_period = sc_time(5, SC_NS); // 200 MHz clock

int b_mem_read(A)
{

int r = 0;
if (A < 0 or A >= SIZE) error(....);
else r = MEM[A];
wait(clock_period * 3); // <-- Directly model memory access time: three cycles, say
return r;

}

Although this is accurate, it has an enormous overhead comparedwith untimed TLMdue to the
frequent scheduling decisions required by the EDS kernel. The preferred alternative is loosely timed
coding, which is very efficient. Youmay have noticed in the SRAMexample of Section 5.4.2 that the
b_transact method has a second parameter, delay. There needs to be an instance of such a variable
for each loosely timed thread and easymutable access to it is needed at all sites where that thread
might be held up. Hence, it is passed by reference as an additional argument in each TLM call. The

241

Modern SoCDesign

identical to that for a SystemC structural netlist, as in Section 5.3.1. Following the instance naming of
Figure 5.13, the required code is:

busmux0.init_socket.bind(memory0.port0);
busmux0.init_socket.bind(memory1.port0);
busmux0.init_socket.bind(iodev0.port0);

Table 5.1 lists the set of convenience sockets defined by TLM2.0. The problem ofmultiple instances of
one type of port is solved by themulti-sockets. These sockets can be boundmore than once, as shown
in the fragment above. Passthrough sockets enable a generic payload reference to be passed on to a
further TLM call. This directly reflects the behaviour of interconnect components as they forward a
flit. An initiator specifies which binding to amulti-port is used by supplying an integer to an overload
of the subscription operator:

int n = ...; // Which binding to deliver message to
output_socket[n]->b_transport(trans, delay);

Aswell as the blocking transport method, sockets can invoke and register a non-blocking equivalent.
The sockets map calls from one form to the other if the required target is not registered. In addition,
there is a reverse channel so that a target can invoke amethod on an initiator. This is especially useful
for operations such as cache snoop and line invalidate (Section 2.4) where a shared L2 needs to
remove entries in an L1 but each L1 is configured as an initiator that operates on the L2.

Table 5.1 List of TLM 2.0 convenience socket types

simple_initiator_socket.h
A version of an initiator socket that has a default implementation of all interfaces. It allows the
registration of an implementation for any of the interfaces to the socket, either unique interfaces or
tagged interfaces (carrying an additional ID).

simple_target_socket.h

A basic target socket that has a default implementation of all interfaces. It also allows the
registration of an implementation for any of the interfaces to the socket, either unique interfaces or
tagged interfaces (carrying an additional ID). This socket allows only one of the transport interfaces
(blocking or non-blocking) to be registered and implements a conversion if the socket is used on the
other interface.

passthrough_target_socket.h A target socket that has a default implementation of all interfaces. It also allows the registration of
an implementation for any of the interfaces to the socket.

multi_passthrough_initiator_socket.h
An implementation of a socket that allowsmultiple targets to be bound to the same initiator socket.
It implements amechanism that allows the index of the socket the call passed through in the
backward path to be identified.

multi_passthrough_target_socket.h
An implementation of a socket that allowsmultiple initiators to bind to the same target socket. It
implements amechanism that allows the index of the socket the call passed through in the forward
path to be identified.

240

Chapter 5 | Electronic System-LevelModelling

5.4.3 TLMModels with Timing (TLM+T)
A TLMmodel does not need to refer to the system clock. As discussed, the TLM calls between
behavioural models of IP blocks do not need to invoke the EDS kernel at all. So if timing and
performance indications are wanted, mechanisms are needed that periodically interact with the
kernel. Moreover, given the non-pre-emptive scheduling of SystemC, a single thread can hog the
modelling resources such that other parts of the system cannot make progress. To study system
performance, however, wemust model the time taken by a real transaction in the initiator and target
and over the bus or NoC.

There are two definedmethods for annotating timings in TLMmodellingwith SystemC. Loosely timed
TLM has less overhead and sometimes less accuracy than approximately timed TLM. Both use the
SystemC EDS kernel with its tnow variable defined by the head of the discrete event queue, as
explained in Section 8.3.4. This remains themain time reference, but we do not aim to use the kernel
verymuch, perhaps entering it only when inter-thread communication is needed. This reduces the
context swap overhead. Tomake good use of the caches on themodelling workstation, the aim is to
run a large number of ISS instructions or other operations before context switching.

Note, in SystemC, we can always print the kernel tnowwith:

cout << ``Time now is : `` << simcontext()->time_stamp() << `` \n'';

5.4.4 TLMwith Loosely TimedModelling
The naive way to add timing annotations to TLMmodelling is to block the SystemC kernel in a
transaction until the prescribed time has elapsed. For instance:

sc_time clock_period = sc_time(5, SC_NS); // 200 MHz clock

int b_mem_read(A)
{

int r = 0;
if (A < 0 or A >= SIZE) error(....);
else r = MEM[A];
wait(clock_period * 3); // <-- Directly model memory access time: three cycles, say
return r;

}

Although this is accurate, it has an enormous overhead comparedwith untimed TLMdue to the
frequent scheduling decisions required by the EDS kernel. The preferred alternative is loosely timed
coding, which is very efficient. Youmay have noticed in the SRAMexample of Section 5.4.2 that the
b_transact method has a second parameter, delay. There needs to be an instance of such a variable
for each loosely timed thread and easymutable access to it is needed at all sites where that thread
might be held up. Hence, it is passed by reference as an additional argument in each TLM call. The

241

Modern SoCDesign

coding then augments the delay variable instead of delaying the thread. So a target routine that
models an action that takes 140ns on average is coded as:

//The leading ampersand on delay is the C++ denotation for pass-by-reference
void b_putbyte(char d, sc_time &delay)
{

...
delay += sc_time(140, SC_NS); // It should be increment at each point where time would pass...

}

The delay variable records how far ahead of kernel time its associated thread has advanced. A thread
using this timing style, in which amodel runs ahead of the event queue, is using temporal decoupling.
At any point, any thread can resync itself with the kernel by performing:

// Resynch idiomatic form:
wait(delay);
delay = 0;

// Note: delay has units sc_time so the SystemC overload of wait is called, not the O/S POSIX wait

On calling wait(delay), the current thread yields and the simulation time advances to where or
beyond the current thread has progressed. All other threads will likewise catch up.

However, a loosely timed thread needs to yield only when it is waiting for a result delivered from
another thread. To prevent threads from getting too far apart in terms of modelled time, a limit is
imposed by a so-called quantum keeper. Every threadmust encounter a quantum keeper at least
once in its outermost loop. The code for the quantum keeper can be very simple. It operates with
respect to a setting called the global quantum. The amount that the thread has run ahead of global
time is limited to an integer multiple of the global quantum. The integer is typically 1, in which case
the code is just a conditional resync:

void quantum_keep(&delay) { if (delay > global_q) { wait(delay); delay = 0; } }

If a thread needs to spin while waiting for a result from some other thread, it must also call wait using
code such as:

while (!condition_of_interest)
{

wait(delay);
delay = 0;

}

242

Chapter 5 | Electronic System-LevelModelling

T0

T1

5

3

4

2

4

Shared resource

2

Waiting

time

2

T1 finish at T=9

T0
finish at

T=13

5

3

4

2

2

Virtual
waiting

time

T0

T1

T0 serving

T1 serving T1 serving

T0 serving

T1 finish at T=10

T0
finish at

T=12

Cycle-accurate or approximately-timed, interleaved operation. Large-quantum loose timing: T0 run entirely before T1.

Interleave

pattern

Interleave

pattern

Figure 5.15 Illustration of modelling artefacts relating to model interleaving and timing arising from loosely timed TLM. In a cycle-accurate or approximately
timedmodel (left), two threads, T0 and T1, can access a shared resource. One blocks while the resource is busy. With loose timing (right), the average
contention delay is added to the response times of all customers. With a large quantum, one threadmay run entirely before the other

Loose timing, especially with a large quantum, does not preserve relative transaction ordering
between threads. Figure 5.15 shows two threads contending for a shared resource. With an accurate
model (left), the simulator rapidly switches context between themodelled threads or uses separate
simulator threads for the parallel behaviour. The interleave pattern is sketched in green. However, an
accuratemodel will maintain transaction order and allocate a queuing delay to the thread that queues
in reality. On the other hand, a loosely timed TLMmodel may gloss over contention details and just
add the average amount of delay, denoted as the virtual queuing time, to each contender.
Computation of the average delay is presented in the next section, but note that the average result for
T0 and T1 in the figure is correctly maintained. Moreover, with a large quantum, the whole of the
work by T0may be completed before T1 has started to work, so the shared resourcemay serve T0
before T1, whereas in reality it would serve T1 first.

Hence, an interleaving that is different from reality will sometimes bemodelled. Although this may
sound bad, it can be beneficial in terms of evaluating the robustness of a system-level design against
race conditions. Many components are designed to tolerate alternative transaction interleaving.
However, any target susceptible to RaWhazards or similar (Section 6.3) may deliver a different result
that is wrong. Given that order is correctly preservedwithin a loosely timed thread and that the
interleaving of such threads tends tomodel situations that race in the real world (such as two cores
storing to the same location), the ability to easily explore different interleavings of the same test is
useful. The degree of interleaving is directly adjustable via the quantum.

Generally, we can choose the quantum according to our current modelling interest:

A large time quantum results in a fast simulation because there are fewer EDS kernel calls.

A small time quantummakes the interleaving of transactionsmore accurate.

Other approaches to loosely timed simulation exist. The Zsim simulator [5] uses a hybrid approach,
called boundweave. The simulation period defined by the quantum setting is partitioned into two
phases. In the first phase, no contention between parallel threads is modelled. They proceedwithout

243

Modern SoCDesign

coding then augments the delay variable instead of delaying the thread. So a target routine that
models an action that takes 140ns on average is coded as:

//The leading ampersand on delay is the C++ denotation for pass-by-reference
void b_putbyte(char d, sc_time &delay)
{

...
delay += sc_time(140, SC_NS); // It should be increment at each point where time would pass...

}

The delay variable records how far ahead of kernel time its associated thread has advanced. A thread
using this timing style, in which amodel runs ahead of the event queue, is using temporal decoupling.
At any point, any thread can resync itself with the kernel by performing:

// Resynch idiomatic form:
wait(delay);
delay = 0;

// Note: delay has units sc_time so the SystemC overload of wait is called, not the O/S POSIX wait

On calling wait(delay), the current thread yields and the simulation time advances to where or
beyond the current thread has progressed. All other threads will likewise catch up.

However, a loosely timed thread needs to yield only when it is waiting for a result delivered from
another thread. To prevent threads from getting too far apart in terms of modelled time, a limit is
imposed by a so-called quantum keeper. Every threadmust encounter a quantum keeper at least
once in its outermost loop. The code for the quantum keeper can be very simple. It operates with
respect to a setting called the global quantum. The amount that the thread has run ahead of global
time is limited to an integer multiple of the global quantum. The integer is typically 1, in which case
the code is just a conditional resync:

void quantum_keep(&delay) { if (delay > global_q) { wait(delay); delay = 0; } }

If a thread needs to spin while waiting for a result from some other thread, it must also call wait using
code such as:

while (!condition_of_interest)
{

wait(delay);
delay = 0;

}

242

Chapter 5 | Electronic System-LevelModelling

T0

T1

5

3

4

2

4

Shared resource

2

Waiting

time

2

T1 finish at T=9

T0
finish at

T=13

5

3

4

2

2

Virtual
waiting

time

T0

T1

T0 serving

T1 serving T1 serving

T0 serving

T1 finish at T=10

T0
finish at

T=12

Cycle-accurate or approximately-timed, interleaved operation. Large-quantum loose timing: T0 run entirely before T1.

Interleave

pattern

Interleave

pattern

Figure 5.15 Illustration of modelling artefacts relating to model interleaving and timing arising from loosely timed TLM. In a cycle-accurate or approximately
timedmodel (left), two threads, T0 and T1, can access a shared resource. One blocks while the resource is busy. With loose timing (right), the average
contention delay is added to the response times of all customers. With a large quantum, one threadmay run entirely before the other

Loose timing, especially with a large quantum, does not preserve relative transaction ordering
between threads. Figure 5.15 shows two threads contending for a shared resource. With an accurate
model (left), the simulator rapidly switches context between themodelled threads or uses separate
simulator threads for the parallel behaviour. The interleave pattern is sketched in green. However, an
accuratemodel will maintain transaction order and allocate a queuing delay to the thread that queues
in reality. On the other hand, a loosely timed TLMmodel may gloss over contention details and just
add the average amount of delay, denoted as the virtual queuing time, to each contender.
Computation of the average delay is presented in the next section, but note that the average result for
T0 and T1 in the figure is correctly maintained. Moreover, with a large quantum, the whole of the
work by T0may be completed before T1 has started to work, so the shared resourcemay serve T0
before T1, whereas in reality it would serve T1 first.

Hence, an interleaving that is different from reality will sometimes bemodelled. Although this may
sound bad, it can be beneficial in terms of evaluating the robustness of a system-level design against
race conditions. Many components are designed to tolerate alternative transaction interleaving.
However, any target susceptible to RaWhazards or similar (Section 6.3) may deliver a different result
that is wrong. Given that order is correctly preservedwithin a loosely timed thread and that the
interleaving of such threads tends tomodel situations that race in the real world (such as two cores
storing to the same location), the ability to easily explore different interleavings of the same test is
useful. The degree of interleaving is directly adjustable via the quantum.

Generally, we can choose the quantum according to our current modelling interest:

A large time quantum results in a fast simulation because there are fewer EDS kernel calls.

A small time quantummakes the interleaving of transactionsmore accurate.

Other approaches to loosely timed simulation exist. The Zsim simulator [5] uses a hybrid approach,
called boundweave. The simulation period defined by the quantum setting is partitioned into two
phases. In the first phase, no contention between parallel threads is modelled. They proceedwithout

243

Modern SoCDesign

a delay penalty, but a log is kept of each access to a shared resource, which includes the operation
performed and the relative timestamp from the previous operation. In the second phase, the logs
from each thread undergo an accurate EDS analysis so that precise times can be allocated to each
event. Zsimwas designed for simulatingmulti-core software and also some hardware aspects of the
platform, such as the cache structure. Due to the typically low density of potentially and actually
interfering loads and stores, a considerable speedup can be achieved. If transactions have run out of
order and there are consequences, the quantum can be subdivided and run again. Overall, this gives
very accurate results for such systems andmostly avoids the need for detailedmodelling of parallel
cache activity.

5.4.5 Modelling Contention under Loosely Timed TLM
If more than one client wants to use a resource simultaneously, we have contention. Real queues are
used in hardware, either in FIFOmemories or through flow control applying backpressure on the
source to stall it until the contended resource is available. An arbiter allocates a resource to one client
at a time (Section 4.2.1). Using loosely timed TLM, contention such as this can bemodelled using real
or virtual queues:

1. In a low-level model, the real queues aremodelled in detail. The entries in the queues are TLM
payloads and the finite durations of the queue and enqueue operations aremodelled. This style is
also ideal for approximately timed, non-blocking TLM.

2. A higher-level, blocking TLMmodel may queue transactions by blocking the client thread until a
transaction can be served or forwarded. This still enables alternative arbitration policies to be
explored, but may not be ideal for initiators that support multiple outstanding transactions.

3. In the highest level of modelling, a transaction can be run straight away. The ordering effects of the
queue are not modelled. However, the estimated delay spent in the queue can be added to the
client’s delay account. This is virtual queueing and is ideal for loosely timed, blocking TLMmodels.

SystemC provides a TLM payload queue library component to support style 2. With a virtual queue
(style 3), although the TLM call passes through the bus/NoCmodel without suffering a delay or
experiencing the contention or queuing of the real system, we use standard queueing theory to
provide an appropriate estimated amount of delay. Delay estimates are based on dynamic
measurements of the local utilisation ρ at the contention point. These are used in the appropriate
waiting time formula, such as forM/D/1 (Section 4.3.1):

TQ = ρ2

2(1−ρ)µ

The utilisation is calculated with the standard running average formula, with response time α≈0.05,
for themost recent transaction spacing:

ρn+1 = (1−α)ρn+
α(Tn−Tn−1)

µ

244

Chapter 5 | Electronic System-LevelModelling

vqueue::b_transact(pkt, sc_time &delay)
{

// Measure utilisation and predict queue delay based on last 32 transactions
if (++opcount == 32)
{ sc_time delta = sc_time_stamp()+delay-last_measure_time;

local_processing_delay += (delay_formula(delta/32)-local_processing_delay)/16;
logging.log(25, delta); // record utilisation
last_measure_time = sc_time_stamp()+delay;
opcount = 0;

}

// Add estimated (virtual) queuing penalty
delay += local_processing_delay;

// Do actual work
output.b_transact(pky, delay);

}

Figure 5.16 Essence of the code for a virtual queue contention point. A number of clients send work using vqueue::b_transact. The work is done straight
away by output.b_transact, but the virtual time spent in the queue is added to the loosely timed delay

Alternatively, it can be calculated as the average time between the last 32 transactions, as shown in
Figure 5.16. In the figure, the delay formula function knows howmany bus cycles per unit time can be
handled, and hence, it can compute the queuing delay. The same approach can be applied to a server
with an internal queue or backpressure.

As well as subsuming queues, a single multi-socket canmodel traffic that is conveyed in parallel over
several physical busses that allow for the spatial reuse of bandwidth. It can alsomodel traffic
serialised in the time domain over a single bus. In all cases, the precise details are not implemented.
For a parallel bus, an array of utilisationmetrics is maintained and the appropriate equations are used.

5.4.6 Non-blocking TLM coding
The blocking coding style is very lightweight, but at the cost of numerous assumptions. Examples
include not separating out the queuing time and service times for a transaction and relying on the
properties of independent random variables that do not hold if there are correlations. However, real
designs inevitably have correlated traffic patterns. Although loose timing can be an oversimplification,
it remains generally suitable for architectural exploration since it does showwhether one design is
better than another and it provides a quantitative indication of howmuch. However, if greater
accuracy is required from a TLMmodel, non-blocking coding with approximate timing should be used.

Non-blocking TLM coding is normally usedwith approximate timing rather than loose timing. Like
loose timing, the non-blocking style separates the interconnect busy time from the server busy time,
but, in addition, pipelined TLM paths aremodelled in detail. New requests are initiated while
outstanding results are still to be returned. As with the blocking TLM style, there is a precise start and
end point to a transaction, but two ormore further timing reference points are used to delimit the end

245

Modern SoCDesign

a delay penalty, but a log is kept of each access to a shared resource, which includes the operation
performed and the relative timestamp from the previous operation. In the second phase, the logs
from each thread undergo an accurate EDS analysis so that precise times can be allocated to each
event. Zsimwas designed for simulatingmulti-core software and also some hardware aspects of the
platform, such as the cache structure. Due to the typically low density of potentially and actually
interfering loads and stores, a considerable speedup can be achieved. If transactions have run out of
order and there are consequences, the quantum can be subdivided and run again. Overall, this gives
very accurate results for such systems andmostly avoids the need for detailedmodelling of parallel
cache activity.

5.4.5 Modelling Contention under Loosely Timed TLM
If more than one client wants to use a resource simultaneously, we have contention. Real queues are
used in hardware, either in FIFOmemories or through flow control applying backpressure on the
source to stall it until the contended resource is available. An arbiter allocates a resource to one client
at a time (Section 4.2.1). Using loosely timed TLM, contention such as this can bemodelled using real
or virtual queues:

1. In a low-level model, the real queues aremodelled in detail. The entries in the queues are TLM
payloads and the finite durations of the queue and enqueue operations aremodelled. This style is
also ideal for approximately timed, non-blocking TLM.

2. A higher-level, blocking TLMmodel may queue transactions by blocking the client thread until a
transaction can be served or forwarded. This still enables alternative arbitration policies to be
explored, but may not be ideal for initiators that support multiple outstanding transactions.

3. In the highest level of modelling, a transaction can be run straight away. The ordering effects of the
queue are not modelled. However, the estimated delay spent in the queue can be added to the
client’s delay account. This is virtual queueing and is ideal for loosely timed, blocking TLMmodels.

SystemC provides a TLM payload queue library component to support style 2. With a virtual queue
(style 3), although the TLM call passes through the bus/NoCmodel without suffering a delay or
experiencing the contention or queuing of the real system, we use standard queueing theory to
provide an appropriate estimated amount of delay. Delay estimates are based on dynamic
measurements of the local utilisation ρ at the contention point. These are used in the appropriate
waiting time formula, such as forM/D/1 (Section 4.3.1):

TQ = ρ2

2(1−ρ)µ

The utilisation is calculated with the standard running average formula, with response time α≈0.05,
for themost recent transaction spacing:

ρn+1 = (1−α)ρn+
α(Tn−Tn−1)

µ

244

Chapter 5 | Electronic System-LevelModelling

vqueue::b_transact(pkt, sc_time &delay)
{

// Measure utilisation and predict queue delay based on last 32 transactions
if (++opcount == 32)
{ sc_time delta = sc_time_stamp()+delay-last_measure_time;

local_processing_delay += (delay_formula(delta/32)-local_processing_delay)/16;
logging.log(25, delta); // record utilisation
last_measure_time = sc_time_stamp()+delay;
opcount = 0;

}

// Add estimated (virtual) queuing penalty
delay += local_processing_delay;

// Do actual work
output.b_transact(pky, delay);

}

Figure 5.16 Essence of the code for a virtual queue contention point. A number of clients send work using vqueue::b_transact. The work is done straight
away by output.b_transact, but the virtual time spent in the queue is added to the loosely timed delay

Alternatively, it can be calculated as the average time between the last 32 transactions, as shown in
Figure 5.16. In the figure, the delay formula function knows howmany bus cycles per unit time can be
handled, and hence, it can compute the queuing delay. The same approach can be applied to a server
with an internal queue or backpressure.

As well as subsuming queues, a single multi-socket canmodel traffic that is conveyed in parallel over
several physical busses that allow for the spatial reuse of bandwidth. It can alsomodel traffic
serialised in the time domain over a single bus. In all cases, the precise details are not implemented.
For a parallel bus, an array of utilisationmetrics is maintained and the appropriate equations are used.

5.4.6 Non-blocking TLM coding
The blocking coding style is very lightweight, but at the cost of numerous assumptions. Examples
include not separating out the queuing time and service times for a transaction and relying on the
properties of independent random variables that do not hold if there are correlations. However, real
designs inevitably have correlated traffic patterns. Although loose timing can be an oversimplification,
it remains generally suitable for architectural exploration since it does showwhether one design is
better than another and it provides a quantitative indication of howmuch. However, if greater
accuracy is required from a TLMmodel, non-blocking coding with approximate timing should be used.

Non-blocking TLM coding is normally usedwith approximate timing rather than loose timing. Like
loose timing, the non-blocking style separates the interconnect busy time from the server busy time,
but, in addition, pipelined TLM paths aremodelled in detail. New requests are initiated while
outstanding results are still to be returned. As with the blocking TLM style, there is a precise start and
end point to a transaction, but two ormore further timing reference points are used to delimit the end

245

Modern SoCDesign

of conveying arguments and the start of conveying the result. Themethod calls take an additional
argument called phase, which ranges over four values in sequence: BEGIN_REQ, END_REQ, BEGIN_RESP
and END_RESP. Moreover, the time delay argument to themethod call is used differently. It is not there
to support loose timing, as it is just an additional delay that can be used tomodel the communication
overhead in the interconnect, if that delay is not explicitly modelled in another component.

With approximate timing, threads are kept in lockstep with the SystemC kernel. The titular
approximations disappear if themodels are correctly parametrised with the number of clock cycles
taken in the real hardware. Moreover, all queues and contention aremodelled in detail. However,
detailed figures for clock cycles are not normally known unless RTL is available.

5.4.7 Typical ISS Setupwith Loose Timing and Temporal Decoupling
Figure 5.17 is a typical loosely timedmodel showing just one CPU of aMPSoC. For each CPU core, a
single SC_THREAD is used that passes between components and back to the originator and only rarely
enters the SystemC kernel. As needed for temporal decoupling, associated with each thread is a
variable called delay, which records how far it has run ahead of the kernel simulation time. A thread
yields only when it needs an actual result from another thread or because its delay has exceeded the
quantum. As the thread progresses around the system, each component increments the delay
reference parameter in the TLM call signature, according to how long it would have delayed the client
thread under approximate timing. Every threadmust encounter a quantum keeper at least once in its
outermost loop. It is also possible to quantum keep at other components, as shown. Moreover, if an
interconnect component is modelling actual queues or is lockedwhile waiting for another thread to
complete, themodel will be forced to enter the EDS kernel from those components.

Memory
SubsystemBus/NoC Subsystem

SystemC Kernel tnow

O/S main

while(1)
 {

 delay += ins_del;
 keeper(delay);
}

CPU Subsystem

QK

mem_read(A, delay)

SC_THREAD
wait()

sc_time delay;

delay +=
 busdel;
keeper(delay);

wait() wait()

global_q

QK

QK

read(A, &delay)
{
 delay+= ramdel;
 ... operate on A ...
 keeper(delay);
}

Processor
ISS

Figure 5.17 Typical setup of a thread using loosely timedmodelling with a quantum keeper for one core of anMPSoC. In reality there would be multiple
interconnect components between the initiator and its final target

5.4.8 TLMTransactors for BridgingModelling Styles
An aim in ESLmodelling is to replace parts of a high-level model with lower-level models that have
greater detail, if necessary. TLMmodels in SystemC can interwork with cycle-accurate Cmodels

246

Chapter 5 | Electronic System-LevelModelling

generated fromRTL using so-called TLM transactors. TLMmodels in C++ can also interact with RTL
models using a combination of transactors and various programming language interface (PLI)
gateways supported bymainstreamRTL tools.

A transactor converts the representation of a component from hardware to software. There are four
forms of transactor for a bus protocol. Either of the two sidesmay be an initiator or a target, giving the
four possibilities. The initiator of a net-level interface is the one that asserts the command signals that
take the interface net out of its starting or idle state (e.g. by asserting a REQ or command_valid net).
The initiator for a TLM interface is the side that makes a subroutine or method call and the target is
the side that provides the entry point to be called.

REQ

DATA

ACK

Four phase
receiver

TFour phase
sender

initiator

Net-level modelling

I

TLM modelling

Write Transactor

Figure 5.18Mixing modelling styles using a target-to-initiator transactor. An initiator-to-target transactor, not shown, would receive net-level transactions
andmake method calls on a TLM target

REQ

DATA

ACK

Four phase
transmitter

T

Four phase
receiver

initiator

Net-level modelling

T

TLM modelling

Read Transactor

Figure 5.19Mixing modelling styles using a mailbox paradigm transactor

Figures 5.18 and 5.19 show example transactor configurations. A net-level implementation of a
four-phase asynchronous port interworks with a TLM component. The code for these two transactors
is very simple. The following twomethods work:

// Write transactor 4/P handshake
b_putbyte(char d)
{

while(ack) do wait(10, SC_NS);
data = d;
settle();
req = 1;
while(!ack) do wait(10, SC_NS);
req = 0;

}

// Read transactor 4/P handshake
char b_getbyte()
{

while(!req) do wait(10, SC_NS);
char r = data;
ack = 1;
while(req) do wait(10, SC_NS);
ack = 0;
return r;

}

247

Modern SoCDesign

of conveying arguments and the start of conveying the result. Themethod calls take an additional
argument called phase, which ranges over four values in sequence: BEGIN_REQ, END_REQ, BEGIN_RESP
and END_RESP. Moreover, the time delay argument to themethod call is used differently. It is not there
to support loose timing, as it is just an additional delay that can be used tomodel the communication
overhead in the interconnect, if that delay is not explicitly modelled in another component.

With approximate timing, threads are kept in lockstep with the SystemC kernel. The titular
approximations disappear if themodels are correctly parametrised with the number of clock cycles
taken in the real hardware. Moreover, all queues and contention aremodelled in detail. However,
detailed figures for clock cycles are not normally known unless RTL is available.

5.4.7 Typical ISS Setupwith Loose Timing and Temporal Decoupling
Figure 5.17 is a typical loosely timedmodel showing just one CPU of aMPSoC. For each CPU core, a
single SC_THREAD is used that passes between components and back to the originator and only rarely
enters the SystemC kernel. As needed for temporal decoupling, associated with each thread is a
variable called delay, which records how far it has run ahead of the kernel simulation time. A thread
yields only when it needs an actual result from another thread or because its delay has exceeded the
quantum. As the thread progresses around the system, each component increments the delay
reference parameter in the TLM call signature, according to how long it would have delayed the client
thread under approximate timing. Every threadmust encounter a quantum keeper at least once in its
outermost loop. It is also possible to quantum keep at other components, as shown. Moreover, if an
interconnect component is modelling actual queues or is lockedwhile waiting for another thread to
complete, themodel will be forced to enter the EDS kernel from those components.

Memory
SubsystemBus/NoC Subsystem

SystemC Kernel tnow

O/S main

while(1)
 {

 delay += ins_del;
 keeper(delay);
}

CPU Subsystem

QK

mem_read(A, delay)

SC_THREAD
wait()

sc_time delay;

delay +=
 busdel;
keeper(delay);

wait() wait()

global_q

QK

QK

read(A, &delay)
{
 delay+= ramdel;
 ... operate on A ...
 keeper(delay);
}

Processor
ISS

Figure 5.17 Typical setup of a thread using loosely timedmodelling with a quantum keeper for one core of anMPSoC. In reality there would be multiple
interconnect components between the initiator and its final target

5.4.8 TLMTransactors for BridgingModelling Styles
An aim in ESLmodelling is to replace parts of a high-level model with lower-level models that have
greater detail, if necessary. TLMmodels in SystemC can interwork with cycle-accurate Cmodels

246

Chapter 5 | Electronic System-LevelModelling

generated fromRTL using so-called TLM transactors. TLMmodels in C++ can also interact with RTL
models using a combination of transactors and various programming language interface (PLI)
gateways supported bymainstreamRTL tools.

A transactor converts the representation of a component from hardware to software. There are four
forms of transactor for a bus protocol. Either of the two sidesmay be an initiator or a target, giving the
four possibilities. The initiator of a net-level interface is the one that asserts the command signals that
take the interface net out of its starting or idle state (e.g. by asserting a REQ or command_valid net).
The initiator for a TLM interface is the side that makes a subroutine or method call and the target is
the side that provides the entry point to be called.

REQ

DATA

ACK

Four phase
receiver

TFour phase
sender

initiator

Net-level modelling

I

TLM modelling

Write Transactor

Figure 5.18Mixing modelling styles using a target-to-initiator transactor. An initiator-to-target transactor, not shown, would receive net-level transactions
andmake method calls on a TLM target

REQ

DATA

ACK

Four phase
transmitter

T

Four phase
receiver

initiator

Net-level modelling

T

TLM modelling

Read Transactor

Figure 5.19Mixing modelling styles using a mailbox paradigm transactor

Figures 5.18 and 5.19 show example transactor configurations. A net-level implementation of a
four-phase asynchronous port interworks with a TLM component. The code for these two transactors
is very simple. The following twomethods work:

// Write transactor 4/P handshake
b_putbyte(char d)
{

while(ack) do wait(10, SC_NS);
data = d;
settle();
req = 1;
while(!ack) do wait(10, SC_NS);
req = 0;

}

// Read transactor 4/P handshake
char b_getbyte()
{

while(!req) do wait(10, SC_NS);
char r = data;
ack = 1;
while(req) do wait(10, SC_NS);
ack = 0;
return r;

}

247

Modern SoCDesign

5.4.9 ESLModel of the LocalLink Protocol
Figure 5.20 shows two TLMmodelling styles for the LocalLink protocol. The timing diagram is
reproduced from Figure 3.5. If the start-of-frame net is deleted and the end-of-frame signal is
renamedDLAST, the protocol becomes the essence of AXI4-Stream. Bothmodelling styles are coded
using blocking transactions with data originating from the initiator (the push rather than the pull
paradigm). Hence, neither needs to represent the src_rdy or dest_rdy signals. Both are represented
at a high level and bound using the simple arrangement shown in Figure 5.20(c).

b_send(uint8_t data, bool sof, bool eof)
{ static uint8_t dbuf[132];
 static int bp;
 if (sof) bp = 0;
 dbuf[bp++] = data;
 if (eof) handler(dbuf, bp);
}

b_send(uint8_t *data, int len)
{ handle(data, len);
}

data

sof_n

eof_n

src_rdy_n

dst_rdy_n

clk

D0 D1 D2 D3 D4

Initiator Target

Initiator Target

data

sof_n

eof_n

src_rdy_n

dst_rdy_n

a) b)

c) d)

e)

Figure 5.20 Five views of the LocalLink protocol (also of AXI4-Stream). (a) Timing diagram. (b) Net-level wiring. (c) TLM abstract view. (d) Blocking TLM
target code, big step. (e) Blocking TLM, small step

The code fragment in Figure 5.20(d) is a large-step operation. The wholemulti-word transaction is
conveyed as a single TLM call. The fragment in Figure 5.20(e) shows small-step operation in which the
method signature represents the framing signals and eachword is conveyed in a separate transaction.
Choosing whichmodelling style to use depends on the level of interest in the interface timing. The
large-step style gives higher simulation throughput but lower event resolution.

5.5 ProcessorModelling with Different Levels of Abstraction
An instruction set simulator (ISS) is a program that interprets or otherwisemanages to execute
machine code as part of an ESLmodel. An ISS will always be PV accurate, but hidden registers that
overcome structural hazards or implement pipeline stages are typically not modelled. An ISS is
typically not cycle-accurate, meaning it cannot give a completely accurate report of the number of
clock cycles needed, and, if it is connected to amemory systemmodel, it may not initiate its
transactions at the same time as a real implementation. An ISSmay not model time, or it may just give
an estimate of time based on themix of instructions it executed and pre-loaded tables of howmany

248

Chapter 5 | Electronic System-LevelModelling

cycles these instructions take on a particular real implementation. However, for heavily pipelined and
out-of-order processors, such tables may not be public or theymay not have a simple form. Moreover,
the actual execution time is heavily dependent on the rest of thememory system.

Processor manufacturers sell ISSmodels of their cores for customers to incorporate into ESLmodels.
A number of open-sourcemodels are available from projects such as Gem5 [6] andQEMU [7]. It is
quite easy to implement a home-brewed low-performance ISS as a SystemC component, which will
connect to TLMmodels of the caches. The general structure is to define a class that contains themain
register file and amethod called step(), which is called to execute one instruction. With the
increasing use and availability of formal specifications for an ISA, it is also possible to generate such an
ISS from the instruction specification usingmacros. The class definition starts with something like:

SC_MODULE(mips64iss)
{ // Programmer's view state:

u64_t regfile[32]; // General purpose registers (R0 is constant zero)
u64_t pc; // Program counter (low two bits always zero)
u5_t mode; // Mode (user, supervisor, etc.)
...

public:
void reset(); // Power-on reset
void step(); // Run one instruction
int irq; // Polled each cycle to check for an interrupt
...

}

The fragment in Figure 5.21 of amain step function evaluates one instruction, but this does not
necessarily correspond to one clock cycle in hardware (e.g. fetch and execute are operating on
different instructions due to pipelining or themultiple issue). It also shows themain structure for the
MIPS instruction set.

5.5.1 Forms of ISS and Their Variants
Table 5.2 Typical relative performance of different virtual platform processor modelling approaches compared with real time. Figures assume a
high-performance modelling workstation and a SoC with just one core

Index Type of ISS I-cache traffic D-cache traffic Relative
modelled modelled performance

(1) Interpreted RTL Y Y 0.000001
(2) Compiled RTL Y Y 0.00001
(3) V-to-C C++ Y Y 0.001
(4) Handcrafted cycle-accurate C++ Y Y 0.1
(5) Handcrafted high-level C++ Y Y 1.0
(6) Trace buffer/JIT C++ N Y 20.0
(7) Native cross-compile N N 50.0

249

Modern SoCDesign

5.4.9 ESLModel of the LocalLink Protocol
Figure 5.20 shows two TLMmodelling styles for the LocalLink protocol. The timing diagram is
reproduced from Figure 3.5. If the start-of-frame net is deleted and the end-of-frame signal is
renamedDLAST, the protocol becomes the essence of AXI4-Stream. Bothmodelling styles are coded
using blocking transactions with data originating from the initiator (the push rather than the pull
paradigm). Hence, neither needs to represent the src_rdy or dest_rdy signals. Both are represented
at a high level and bound using the simple arrangement shown in Figure 5.20(c).

b_send(uint8_t data, bool sof, bool eof)
{ static uint8_t dbuf[132];
 static int bp;
 if (sof) bp = 0;
 dbuf[bp++] = data;
 if (eof) handler(dbuf, bp);
}

b_send(uint8_t *data, int len)
{ handle(data, len);
}

data

sof_n

eof_n

src_rdy_n

dst_rdy_n

clk

D0 D1 D2 D3 D4

Initiator Target

Initiator Target

data

sof_n

eof_n

src_rdy_n

dst_rdy_n

a) b)

c) d)

e)

Figure 5.20 Five views of the LocalLink protocol (also of AXI4-Stream). (a) Timing diagram. (b) Net-level wiring. (c) TLM abstract view. (d) Blocking TLM
target code, big step. (e) Blocking TLM, small step

The code fragment in Figure 5.20(d) is a large-step operation. The wholemulti-word transaction is
conveyed as a single TLM call. The fragment in Figure 5.20(e) shows small-step operation in which the
method signature represents the framing signals and eachword is conveyed in a separate transaction.
Choosing whichmodelling style to use depends on the level of interest in the interface timing. The
large-step style gives higher simulation throughput but lower event resolution.

5.5 ProcessorModelling with Different Levels of Abstraction
An instruction set simulator (ISS) is a program that interprets or otherwisemanages to execute
machine code as part of an ESLmodel. An ISS will always be PV accurate, but hidden registers that
overcome structural hazards or implement pipeline stages are typically not modelled. An ISS is
typically not cycle-accurate, meaning it cannot give a completely accurate report of the number of
clock cycles needed, and, if it is connected to amemory systemmodel, it may not initiate its
transactions at the same time as a real implementation. An ISSmay not model time, or it may just give
an estimate of time based on themix of instructions it executed and pre-loaded tables of howmany

248

Chapter 5 | Electronic System-LevelModelling

cycles these instructions take on a particular real implementation. However, for heavily pipelined and
out-of-order processors, such tables may not be public or theymay not have a simple form. Moreover,
the actual execution time is heavily dependent on the rest of thememory system.

Processor manufacturers sell ISSmodels of their cores for customers to incorporate into ESLmodels.
A number of open-sourcemodels are available from projects such as Gem5 [6] andQEMU [7]. It is
quite easy to implement a home-brewed low-performance ISS as a SystemC component, which will
connect to TLMmodels of the caches. The general structure is to define a class that contains themain
register file and amethod called step(), which is called to execute one instruction. With the
increasing use and availability of formal specifications for an ISA, it is also possible to generate such an
ISS from the instruction specification usingmacros. The class definition starts with something like:

SC_MODULE(mips64iss)
{ // Programmer's view state:

u64_t regfile[32]; // General purpose registers (R0 is constant zero)
u64_t pc; // Program counter (low two bits always zero)
u5_t mode; // Mode (user, supervisor, etc.)
...

public:
void reset(); // Power-on reset
void step(); // Run one instruction
int irq; // Polled each cycle to check for an interrupt
...

}

The fragment in Figure 5.21 of amain step function evaluates one instruction, but this does not
necessarily correspond to one clock cycle in hardware (e.g. fetch and execute are operating on
different instructions due to pipelining or themultiple issue). It also shows themain structure for the
MIPS instruction set.

5.5.1 Forms of ISS and Their Variants
Table 5.2 Typical relative performance of different virtual platform processor modelling approaches compared with real time. Figures assume a
high-performance modelling workstation and a SoC with just one core

Index Type of ISS I-cache traffic D-cache traffic Relative
modelled modelled performance

(1) Interpreted RTL Y Y 0.000001
(2) Compiled RTL Y Y 0.00001
(3) V-to-C C++ Y Y 0.001
(4) Handcrafted cycle-accurate C++ Y Y 0.1
(5) Handcrafted high-level C++ Y Y 1.0
(6) Trace buffer/JIT C++ N Y 20.0
(7) Native cross-compile N N 50.0

249

Modern SoCDesign

void mips64iss::step()
{

u32_t ins = ins_fetch(pc);
pc += 4;
u8_t opcode = ins >> 26; // Major opcode
u8_t scode = ins&0x3F; // Minor opcode
u5_t rs = (ins >> 21)&31; // Registers
u5_t rd = (ins >> 11)&31;
u5_t rt = (ins >> 16)&31;

if (!opcode) switch (scode) // decode minor opcode
{

case 052: /* SLT - set on less than */
regfile_up(rd, ((int64_t)regfile[rs]) < ((int64_t)regfile[rt]));
break;

case 053: /* SLTU - set on less than unsigned */
regfile_up(rd, ((u64_t)regfile[rs]) < ((u64_t)regfile[rt]));
break;
...

...

void mips64iss::regfile_up(u5_t d, u64_t w32)
{ if (d != 0) // Register zero stays at zero

{ TRC(trace("[r%i := %llX]", d, w32));
regfile[d] = w32;

}
}

Figure 5.21Main step function

Various forms of ISS are possible, modellingmore or less detail. Table 5.2 lists themain techniques
with indicative performance compared to real-world execution.

An interpreted RTL ISS is a cycle-accuratemodel of the processor core (1). These are commonly
available. Using that model under an EDS interpreted simulator produces a system that typically runs
onemillionth of real-time speed. Using natively compiled RTL (2), as is currently a common practice
for commercial RTL simulators from themain EDA vendors, is 10× faster but hopeless for serious
software testing.

A fast cycle-accurate C++model of a core can be generated using tools such as Carbon, Tenison VTOC
or Verilator (3). Such amodel has intermediate performance. These tools model less detail than
compiled RTL. They use a two-valued logic system and discard events within a clock cycle. A
handcraftedmodel (4) is generally much better, requiring perhaps 100workstation instructions to be
executed for eachmodelled instruction. The workstation clock frequency is generally about 10×
faster than themodelled embedded system, so such a system runs only 10× slower than real time.

250

Chapter 5 | Electronic System-LevelModelling

Abstracting further and dispensing with cycle accuracy, a handcrafted behavioural model (5) performs
well but is generally throttled by the overhead of modelling instructions and data operations in the
model of the system bus.

A just-in-time (JIT) cross-compilation of the target machine code to native workstationmachine code
(6) gives excellent performance (say 20× faster than real time) but the instruction fetch traffic is no
longer fullymodelled. Instruction counts and bus cycles are not accurate. Techniques that unroll loops
and concatenate basic blocks, as used for trace caches in processor architecture and
high-performance JavaScript, can be used. Finally, cross-compiling the embedded software using the
workstation native compiler (7), as shown in Figure 5.1, exposes the unfettered raw performance of
the workstation for CPU-intensive code and has the best performance.

With all these techniques, performance degrades as the number of cores to bemodelled decreases.
On the other hand, performance should increase with the number of cores on themodelling
workstation. Recently, a number of approaches have been developed that provide the original
non-pre-emptive SystemC semantics onmulti-coremodelling workstations. Perhaps due to a lack of
foresight, the original SystemC semantics preserved the strict serialisation of threads, although this
cannot easily be enforced for generic C++ code running on cache-coherent platforms. Themain
alternative approaches are to adopt a strict additional coding discipline for all thread-shared variables
or to preprocess the SystemC so that it appropriately guards and instruments sections of code that
are likely to race. Adopting a strict coding style is not overly troublesome inmost circumstances. For
instance, it can be done by providingmonitor-stylemutual exclusion locks on TLM transaction targets.

5.5.2 Using the C Preprocessor to Adapt Firmware
Ideally, the ESLmodel would be able to run the unmodifiedmachine code of the target platform. This
is clearly not possible with the natively compiled approach (7) just described; however, the source
code can be used if minor modifications aremade to the parts that interact with the I/O devices,
namely the device drivers. For the DMA controller of Section 2.7.5, the access to device registers
could be changed as follows:

#define DMACONT_BASE (0xFFFFCD00) // Or other memory map value
#define DMACONT_SRC_REG 0
#define DMACONT_DEST_REG 4
#define DMACONT_LENGTH_REG 8 // These are the offsets of the addressable registers
#define DMACONT_STATUS_REG 12

#ifdef ACTUAL_FIRMWARE
// For real system and lower-level models:
// Store via processor bus to DMACONT device register
#define DMACONT_WRITE(A, D) (*(DMACONT_BASE+A*4)) = (D)
#define DMACONT_READ(A) (*(DMACONT_BASE+A*4))

#else
// For high-level TLM modelling:
// Make a direct subroutine call from the firmware to the DMACONT model
#define DMACONT_WRITE(A, D) dmaunit.slave_write(A, D)
#define DMACONT_READ(A) dmaunit.slave_read(A)

251

Modern SoCDesign

void mips64iss::step()
{

u32_t ins = ins_fetch(pc);
pc += 4;
u8_t opcode = ins >> 26; // Major opcode
u8_t scode = ins&0x3F; // Minor opcode
u5_t rs = (ins >> 21)&31; // Registers
u5_t rd = (ins >> 11)&31;
u5_t rt = (ins >> 16)&31;

if (!opcode) switch (scode) // decode minor opcode
{

case 052: /* SLT - set on less than */
regfile_up(rd, ((int64_t)regfile[rs]) < ((int64_t)regfile[rt]));
break;

case 053: /* SLTU - set on less than unsigned */
regfile_up(rd, ((u64_t)regfile[rs]) < ((u64_t)regfile[rt]));
break;
...

...

void mips64iss::regfile_up(u5_t d, u64_t w32)
{ if (d != 0) // Register zero stays at zero

{ TRC(trace("[r%i := %llX]", d, w32));
regfile[d] = w32;

}
}

Figure 5.21Main step function

Various forms of ISS are possible, modellingmore or less detail. Table 5.2 lists themain techniques
with indicative performance compared to real-world execution.

An interpreted RTL ISS is a cycle-accuratemodel of the processor core (1). These are commonly
available. Using that model under an EDS interpreted simulator produces a system that typically runs
onemillionth of real-time speed. Using natively compiled RTL (2), as is currently a common practice
for commercial RTL simulators from themain EDA vendors, is 10× faster but hopeless for serious
software testing.

A fast cycle-accurate C++model of a core can be generated using tools such as Carbon, Tenison VTOC
or Verilator (3). Such amodel has intermediate performance. These tools model less detail than
compiled RTL. They use a two-valued logic system and discard events within a clock cycle. A
handcraftedmodel (4) is generally much better, requiring perhaps 100workstation instructions to be
executed for eachmodelled instruction. The workstation clock frequency is generally about 10×
faster than themodelled embedded system, so such a system runs only 10× slower than real time.

250

Chapter 5 | Electronic System-LevelModelling

Abstracting further and dispensing with cycle accuracy, a handcrafted behavioural model (5) performs
well but is generally throttled by the overhead of modelling instructions and data operations in the
model of the system bus.

A just-in-time (JIT) cross-compilation of the target machine code to native workstationmachine code
(6) gives excellent performance (say 20× faster than real time) but the instruction fetch traffic is no
longer fullymodelled. Instruction counts and bus cycles are not accurate. Techniques that unroll loops
and concatenate basic blocks, as used for trace caches in processor architecture and
high-performance JavaScript, can be used. Finally, cross-compiling the embedded software using the
workstation native compiler (7), as shown in Figure 5.1, exposes the unfettered raw performance of
the workstation for CPU-intensive code and has the best performance.

With all these techniques, performance degrades as the number of cores to bemodelled decreases.
On the other hand, performance should increase with the number of cores on themodelling
workstation. Recently, a number of approaches have been developed that provide the original
non-pre-emptive SystemC semantics onmulti-coremodelling workstations. Perhaps due to a lack of
foresight, the original SystemC semantics preserved the strict serialisation of threads, although this
cannot easily be enforced for generic C++ code running on cache-coherent platforms. Themain
alternative approaches are to adopt a strict additional coding discipline for all thread-shared variables
or to preprocess the SystemC so that it appropriately guards and instruments sections of code that
are likely to race. Adopting a strict coding style is not overly troublesome inmost circumstances. For
instance, it can be done by providingmonitor-stylemutual exclusion locks on TLM transaction targets.

5.5.2 Using the C Preprocessor to Adapt Firmware
Ideally, the ESLmodel would be able to run the unmodifiedmachine code of the target platform. This
is clearly not possible with the natively compiled approach (7) just described; however, the source
code can be used if minor modifications aremade to the parts that interact with the I/O devices,
namely the device drivers. For the DMA controller of Section 2.7.5, the access to device registers
could be changed as follows:

#define DMACONT_BASE (0xFFFFCD00) // Or other memory map value
#define DMACONT_SRC_REG 0
#define DMACONT_DEST_REG 4
#define DMACONT_LENGTH_REG 8 // These are the offsets of the addressable registers
#define DMACONT_STATUS_REG 12

#ifdef ACTUAL_FIRMWARE
// For real system and lower-level models:
// Store via processor bus to DMACONT device register
#define DMACONT_WRITE(A, D) (*(DMACONT_BASE+A*4)) = (D)
#define DMACONT_READ(A) (*(DMACONT_BASE+A*4))

#else
// For high-level TLM modelling:
// Make a direct subroutine call from the firmware to the DMACONT model
#define DMACONT_WRITE(A, D) dmaunit.completer_write(A, D)
#define DMACONT_READ(A) dmaunit.completer_read(A)

251

Modern SoCDesign

#endif
// The device driver will make all hardware accesses to the unit using these macros
// When compiled natively, the calls directly invoke the behavioural model

This change uses the C preprocessor to conditionally replace loads and stores to device registers to
simple read andwrite transactions in a behavioural model of the device. This gives the fastest possible
model since no aspects of the interconnect aremodelled. Similar modifications would redirect the
loads and stores to a TLMmodel of the interconnect or to a transactor connected to a net-level model
of the interconnect. This is slower but accurately models bus traffic.

DMA Controller

wdata

hwen

addr

rdata

interrupt

hren

Target port
(completer port)

Initiator port
(requester port)

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

Figure 5.22 Block diagram of one channel of a DMA unit. (Repeated from Figure 2.34)

Figure 5.22 reproduces the DMA controller from an earlier chapter. A suitable behavioural model of
(one channel of) the DMA controller has the two parts shown in Figure 5.23. On the left is the target
for programmed I/O that updates the PV registers. On the right is the DMA active behaviour that
copies blocks of data. This is exceptionally succinct in TLM form!

Ideally the interrupt output would be drivenwith an RTL-like continuous assignment. This is relatively
expensive in SystemC (Section 5.3.2), so a suitable coding style is to place the interrupt driving code in
a subroutine that is invoked (and inlined by the compiler) at all points where the supporting
expressionsmight change, which are the assigns to busy and int_enable.

252

Chapter 5 | Electronic System-LevelModelling

// Behavioural model of
// target side: PIO register r/w
uint32 src, dest, length;
bool busy, int_enable;

u32_t status() { return (busy << 31)
| (int_enable << 30); }

u32_t completer_read(u32_t a)
{

return (a==0)? src: (a==4) ? dest:
(a==8) ? (length) : status();

}
void completer_write(u32_t1 a, u32_t d)
{

if (a==0) src=d;
else if (a==4) dest=d;
else if (a==8) length = d;
else if (a==12)
{ busy = d >> 31;

int_enable = d >> 30; }
}

// Bev model of bus mastering portion
while(1)
{

waituntil(busy);
while (length-- > 0)

mem.write(dest++, mem.read(src++));
busy = 0;

}

Interrupt code:

interrupt = int_enable&!busy;

Figure 5.23 Behavioural model of (one channel of) the DMA controller

5.5.3 ESL CacheModelling andDMI
A real SoC contains caches that improve performance. Perversely, including the cache in an ESLmodel
may reduce performance, especially if it is caching a type of memory that is easy tomodel, such as
SRAM. This is because, in themodel, all levels of thememory hierarchy are actually held in
workstationmemory that has homogeneous access time.

Depending on the need, wemaywant tomeasure the hit ratio in the I or D caches, or the effect on
performance from themisses, or neither, or all suchmetrics. So a cache can bemodelled at various
levels of abstraction

not at all, since caches do not affect functionality

using an estimated hit ratio and randomly adding a delay tomainmemory transactions accordingly

fully modelling the tags and their lookup (while providing backdoor access to themainmemory for
the data)

modelling the cache data RAMs as well (which is needed for detailed powermodelling).

The backdoor access to the next level of store is possible in TLM2.0 using a direct memory interface
(DMI). This enables an initiator to get direct access to an area of memory inside a target. It can then

253

Modern SoCDesign

#endif
// The device driver will make all hardware accesses to the unit using these macros
// When compiled natively, the calls directly invoke the behavioural model

This change uses the C preprocessor to conditionally replace loads and stores to device registers to
simple read andwrite transactions in a behavioural model of the device. This gives the fastest possible
model since no aspects of the interconnect aremodelled. Similar modifications would redirect the
loads and stores to a TLMmodel of the interconnect or to a transactor connected to a net-level model
of the interconnect. This is slower but accurately models bus traffic.

DMA Controller

wdata

hwen

addr

rdata

interrupt

hren

Target port
(completer port)

Initiator port
(requester port)

m_wdata

m_wen

m_addr

m_rdata

m_ack

m_ren

Figure 5.22 Block diagram of one channel of a DMA unit. (Repeated from Figure 2.34)

Figure 5.22 reproduces the DMA controller from an earlier chapter. A suitable behavioural model of
(one channel of) the DMA controller has the two parts shown in Figure 5.23. On the left is the target
for programmed I/O that updates the PV registers. On the right is the DMA active behaviour that
copies blocks of data. This is exceptionally succinct in TLM form!

Ideally the interrupt output would be drivenwith an RTL-like continuous assignment. This is relatively
expensive in SystemC (Section 5.3.2), so a suitable coding style is to place the interrupt driving code in
a subroutine that is invoked (and inlined by the compiler) at all points where the supporting
expressionsmight change, which are the assigns to busy and int_enable.

252

Chapter 5 | Electronic System-LevelModelling

// Behavioural model of
// target side: PIO register r/w
uint32 src, dest, length;
bool busy, int_enable;

u32_t status() { return (busy << 31)
| (int_enable << 30); }

u32_t completer_read(u32_t a)
{

return (a==0)? src: (a==4) ? dest:
(a==8) ? (length) : status();

}
void completer_write(u32_t1 a, u32_t d)
{

if (a==0) src=d;
else if (a==4) dest=d;
else if (a==8) length = d;
else if (a==12)
{ busy = d >> 31;

int_enable = d >> 30; }
}

// Bev model of bus mastering portion
while(1)
{

waituntil(busy);
while (length-- > 0)

mem.write(dest++, mem.read(src++));
busy = 0;

}

Interrupt code:

interrupt = int_enable&!busy;

Figure 5.23 Behavioural model of (one channel of) the DMA controller

5.5.3 ESL CacheModelling andDMI
A real SoC contains caches that improve performance. Perversely, including the cache in an ESLmodel
may reduce performance, especially if it is caching a type of memory that is easy tomodel, such as
SRAM. This is because, in themodel, all levels of thememory hierarchy are actually held in
workstationmemory that has homogeneous access time.

Depending on the need, wemaywant tomeasure the hit ratio in the I or D caches, or the effect on
performance from themisses, or neither, or all suchmetrics. So a cache can bemodelled at various
levels of abstraction

not at all, since caches do not affect functionality

using an estimated hit ratio and randomly adding a delay tomainmemory transactions accordingly

fully modelling the tags and their lookup (while providing backdoor access to themainmemory for
the data)

modelling the cache data RAMs as well (which is needed for detailed powermodelling).

The backdoor access to the next level of store is possible in TLM2.0 using a direct memory interface
(DMI). This enables an initiator to get direct access to an area of memory inside a target. It can then

253

Modern SoCDesign

access thatmemory using a direct pointer rather than via TLM calls. A DMI conveysmeta-information
about how long an access would take in reality and that information is used by the initiator from time
to time to correct for timing, such as adding the latency of access to a loosely timed delay. Of course,
this leads to under-reporting of metrics delivered by the interconnect, such as the operation count
and energy used.

An instruction cache (I-cache), whenmodelled, may ormay not be accessed by an emulator or ISS. For
instance, the ISSmay use backdoor access to the program inmainmemory, or it might use JIT
techniques, in which commonly executed inner loops of emulated code are converted to the native
machine code of themodelling workstation. Hence, an advanced ISSmay result in misleading
instruction fetch traffic.

5.6 ESLModelling of Power, Performance and Area
The three primary non-functional parameters of a SoC are power, performance and area (PPA). An
ESLmodel of a complete SoC contains a complete list of the IP blocksmaking up the SoC and a full
description of themodule hierarchy. An ESLmodel can accurately reflect the power-gated and clock
domains of the final SoC.Moreover, if each IP block is annotated with its predicted eventual area, the
ESLmodel can provide valuable geometric information, even though there were no place or route
steps (Section 5.6.6). Many of these area figures will be accurately known from previous tapeouts of
the same IP block. However, theymay need scaling for a newVLSI geometry or process.

The number of transactions between IP blocks in a functioning ESLmodel is the same as the number
of transactions on the real SoC. Likewise, the number of power-gatingmode changes is also accurately
reflected, so annotating each of these with the energy used enables the ESLmodel to give preliminary
indications of the power. When estimating static energy use, the time a domain spends being powered
up is as important as the power it consumes when active. A TLM+Tmodel can give sufficiently
accurate performance figures, but previous tapeouts or gate switching estimates are needed for the
power computation. Where RTL is available for an IP block, it can serve as a valuable source of PPA
information for an ESLmodel.

5.6.1 Estimating theOperating Frequency and Powerwith RTL
RTL implementations of an IP blockmay be too slow to include in an ESLmodel, but static and dynamic
analyses of the RTL can generate useful metrics that can be back-ported to the ESLmodel. RTL
simulations can give accurate power figures, especially if a full place-and-route analysis is performed.
Advanced ESL flows aim to provide rapid power indications during the early architectural exploration
phases. Once back-ported, many architectures can be explored based on the same leaf metrics.

RTL synthesis is relatively quick, but produces a detailed output that is slow to simulate and otherwise
process for a large chip; hence, pre-synthesis energy and delaymodels are desirable. A
place-and-route analysis gives accuratewiring lengths but is highly time-consuming for a design point,
so that this approach is not really compatible with the goals of an ESLmodel. A simulation of a

254

Chapter 5 | Electronic System-LevelModelling

Table 5.3 Product space of power and area estimates for an RTL implementation

Without simulation Using simulation
Without place and route Fast design exploration

Area and delay heuristics needed
Can generate indicative activity ratios that can be used instead of a
simulation in further runs

With place and route Static timing analyser will give an accurate
clock frequency

Gold standard: only bettered bymeasuring a real chip

placed-and-routed design can give very accurate energy and critical path figures, but is likewise
useless for ‘what if’ style design exploration.

Table 5.3 defines the space for RTL power and areamodelling. The slowest but most accurate design
point is at the bottom right. Power estimation using simulation post-layout is typically based on a
scalar product in a spreadsheet:

Edynamic =V2
∑
i
Cisi

The capacitance of each net Ci can be accurately extracted from the layout. The number of discharges
si is read from a file that contains the number of changes on each net during a net-level simulation. A
Switching Activity Interchange Format (SAIF) file format records this information and also supports
some aspects of a static power computation (e.g. when a logic value is degraded by a pass transistor
(Section 8.5.1) and hence, incurring a higher short-circuit current). VCD filesmay also be used, but the
temporal information is ignored (Section 5.3.3).

RTL can also be used for estimating power through a static analysis instead of a simulation. After RTL
synthesis, we have a netlist and can use approximatemodels (based on Rent’s rule, Section 5.6.6) for
wire lengths, provided the hierarchy in the ESLmodel has a sufficient depth (perhaps five ormore
levels). This requirement can typically be satisfied by any full-SoCmodel. The natural hierarchy of the
RTL input design can be used. Alternatively, a clustering/clique-finding algorithm can determine a
rough placement for the floor plan (Section 8.6) without a full place-and-route analysis.

Unsynthesised RTL, such as the fragment in Figure 5.24, tends to reflect the followingmetrics
accurately:

number of flip-flops

number and bit widths of arithmetic operators

size of RAMs (likely to be explicit instances in an ASIC anyway).

Random logic complexity can bemodelled in gate-equivalent units. Thesemight count a ripple-carry
adder stage as 4 gates, a multiplexor as 3 gates per bit and a D-type flip-flop as 6 gates. These cell
counts can give a prediction for the static power use that is sufficient to assist with architectural
exploration. Inaccuracies arise from power gating, level-dependent variations of static power (the

255

Modern SoCDesign

access thatmemory using a direct pointer rather than via TLM calls. A DMI conveysmeta-information
about how long an access would take in reality and that information is used by the initiator from time
to time to correct for timing, such as adding the latency of access to a loosely timed delay. Of course,
this leads to under-reporting of metrics delivered by the interconnect, such as the operation count
and energy used.

An instruction cache (I-cache), whenmodelled, may ormay not be accessed by an emulator or ISS. For
instance, the ISSmay use backdoor access to the program inmainmemory, or it might use JIT
techniques, in which commonly executed inner loops of emulated code are converted to the native
machine code of themodelling workstation. Hence, an advanced ISSmay result in misleading
instruction fetch traffic.

5.6 ESLModelling of Power, Performance and Area
The three primary non-functional parameters of a SoC are power, performance and area (PPA). An
ESLmodel of a complete SoC contains a complete list of the IP blocksmaking up the SoC and a full
description of themodule hierarchy. An ESLmodel can accurately reflect the power-gated and clock
domains of the final SoC.Moreover, if each IP block is annotated with its predicted eventual area, the
ESLmodel can provide valuable geometric information, even though there were no place or route
steps (Section 5.6.6). Many of these area figures will be accurately known from previous tapeouts of
the same IP block. However, theymay need scaling for a newVLSI geometry or process.

The number of transactions between IP blocks in a functioning ESLmodel is the same as the number
of transactions on the real SoC. Likewise, the number of power-gatingmode changes is also accurately
reflected, so annotating each of these with the energy used enables the ESLmodel to give preliminary
indications of the power. When estimating static energy use, the time a domain spends being powered
up is as important as the power it consumes when active. A TLM+Tmodel can give sufficiently
accurate performance figures, but previous tapeouts or gate switching estimates are needed for the
power computation. Where RTL is available for an IP block, it can serve as a valuable source of PPA
information for an ESLmodel.

5.6.1 Estimating theOperating Frequency and Powerwith RTL
RTL implementations of an IP blockmay be too slow to include in an ESLmodel, but static and dynamic
analyses of the RTL can generate useful metrics that can be back-ported to the ESLmodel. RTL
simulations can give accurate power figures, especially if a full place-and-route analysis is performed.
Advanced ESL flows aim to provide rapid power indications during the early architectural exploration
phases. Once back-ported, many architectures can be explored based on the same leaf metrics.

RTL synthesis is relatively quick, but produces a detailed output that is slow to simulate and otherwise
process for a large chip; hence, pre-synthesis energy and delaymodels are desirable. A
place-and-route analysis gives accuratewiring lengths but is highly time-consuming for a design point,
so that this approach is not really compatible with the goals of an ESLmodel. A simulation of a

254

Chapter 5 | Electronic System-LevelModelling

Table 5.3 Product space of power and area estimates for an RTL implementation

Without simulation Using simulation
Without place and route Fast design exploration

Area and delay heuristics needed
Can generate indicative activity ratios that can be used instead of a
simulation in further runs

With place and route Static timing analyser will give an accurate
clock frequency

Gold standard: only bettered bymeasuring a real chip

placed-and-routed design can give very accurate energy and critical path figures, but is likewise
useless for ‘what if’ style design exploration.

Table 5.3 defines the space for RTL power and areamodelling. The slowest but most accurate design
point is at the bottom right. Power estimation using simulation post-layout is typically based on a
scalar product in a spreadsheet:

Edynamic =V2
∑
i
Cisi

The capacitance of each net Ci can be accurately extracted from the layout. The number of discharges
si is read from a file that contains the number of changes on each net during a net-level simulation. A
Switching Activity Interchange Format (SAIF) file format records this information and also supports
some aspects of a static power computation (e.g. when a logic value is degraded by a pass transistor
(Section 8.5.1) and hence, incurring a higher short-circuit current). VCD filesmay also be used, but the
temporal information is ignored (Section 5.3.3).

RTL can also be used for estimating power through a static analysis instead of a simulation. After RTL
synthesis, we have a netlist and can use approximatemodels (based on Rent’s rule, Section 5.6.6) for
wire lengths, provided the hierarchy in the ESLmodel has a sufficient depth (perhaps five ormore
levels). This requirement can typically be satisfied by any full-SoCmodel. The natural hierarchy of the
RTL input design can be used. Alternatively, a clustering/clique-finding algorithm can determine a
rough placement for the floor plan (Section 8.6) without a full place-and-route analysis.

Unsynthesised RTL, such as the fragment in Figure 5.24, tends to reflect the followingmetrics
accurately:

number of flip-flops

number and bit widths of arithmetic operators

size of RAMs (likely to be explicit instances in an ASIC anyway).

Random logic complexity can bemodelled in gate-equivalent units. Thesemight count a ripple-carry
adder stage as 4 gates, a multiplexor as 3 gates per bit and a D-type flip-flop as 6 gates. These cell
counts can give a prediction for the static power use that is sufficient to assist with architectural
exploration. Inaccuracies arise from power gating, level-dependent variations of static power (the

255

Modern SoCDesign

module CTR16(
input mainclk,
input din, input cen,
output o);

reg [3:0] count, oldcount; // D-types

always @(posedge mainclk) begin
if (cen) count <= count + 1; // ALU
if (din) oldcount <= count; // Wiring
end

assign o = count[3] ^ count[1]; // Combinational

endmodule

Figure 5.24 Example RTL fragment used in a static analysis

pass transistor effect) and synthesis variations, such as state re-encoding (Section 4.4.2) and cell drive
strength selection (Section 8.4.1).

However, the following dynamic quantities are not manifest in the RTL and instead, require heuristic
estimates:

dynamic clock gating ratios

flip-flop activity (number of enabled cycles and number of flipping bits)

number of reads andwrites to RAMs

glitch energy in combinational logic.

There are also techniques for estimating the logic activity using balance equations. The balance
equations range over a pair of values for each net, consisting of:

average duty cycle: the fraction of time at logic one

average toggle rate: the fraction of clock cycles during which a net changes value.

Consider an XOR gate with inputs toggling randomly. If the inputs are uncorrelated, the output is also
random and its toggle rate can be predicted to be 50 per cent (cf. entropy computations in information
theory). However, if we replace it with an AND orOR gate, the output duty cycle will be 1 in 4 on
average and its toggle rate will be given by the binomial theorem, and so on.

256

Chapter 5 | Electronic System-LevelModelling

Overall, a synchronous digital logic subsystem can be roughly modelled with a set of balance
equations (simultaneous equations) in terms of the average duty cycle and expected toggle rate on
each net. D-typesmake no difference. Inverters subtract the duty cycle from unity. Other forms of
logic can bemodelled with similar equations.

Is this a useful technique? Suchmodels need statistics for the input nets. The accuracy can, however,
be predicted statically. First, a tool computes the partial derivatives with respect to the input
assumptions. If they are all very small, our result holds for all inputs. Such techniques are also used
inside logic synthesisers tominimise the glitch energy.

5.6.2 TypicalMacroscopic Performance Equations: SRAMExample
It is important to have an accuratemodel of each SRAMwithin an ESLmodel. Because of the simple
internal structure of an SRAM, a generic TLM template with only a few parameters can be adapted to
each instance. Most SRAMs are generated bymemory generator tools from an EDA vendor
(Section 8.3.10). The compiler also generates a data sheet that contains the necessary values for the
component. Table 5.4 lists the normal parameters for a RAM compiler together with selected values.

Table 5.4 Normal parameters for a RAM compiler together with selected values

Parameter Value
Fabrication geometry 22nm
Organisation 64Kx64
Nominal VDD 1.0V
Number of banks 1
Read/write ports per bank 1
Read ports per bank 0
Write ports per bank 0

The CACTI cachemodelling tool fromHP Labs [8] is widely used to create ESLmetadata for memory.
It can generate energy, area and performance figures for SRAM, caches of various organisations and
DRAM. Version 7.0 added support for die-stacked devices. The program reads a set of basic process
properties from configuration files for known geometries, such as dielectric constants and sheet
resistivities for 22 nm. It thenmodels the layout of a memory in detail, comparing various numbers of
banks, bit lines andword lines to find the best configuration given the user’s expressed importance
weighting for static power, dynamic power, area and access time. Being coded in C++, the tool can
easily be invoked from the constructor of a memorymodel. It takes under a second to run for a simple
SRAM, so could be invoked each time the supply voltage is adjusted, but the results will typically be
cached.

For example, Figure 5.25 plots CACTI outputs for SRAMs of different sizes, implemented in 22nm
technology. The full set of build scripts and results for this CACTI run is included in the cacti22 folder.

Instead of conducting a considerable amount of performance sweeping, CACTI-like optimisers can be
replacedwith simple formulae, based on the same implementation architecture and underlying

257

Modern SoCDesign

module CTR16(
input mainclk,
input din, input cen,
output o);

reg [3:0] count, oldcount; // D-types

always @(posedge mainclk) begin
if (cen) count <= count + 1; // ALU
if (din) oldcount <= count; // Wiring
end

assign o = count[3] ^ count[1]; // Combinational

endmodule

Figure 5.24 Example RTL fragment used in a static analysis

pass transistor effect) and synthesis variations, such as state re-encoding (Section 4.4.2) and cell drive
strength selection (Section 8.4.1).

However, the following dynamic quantities are not manifest in the RTL and instead, require heuristic
estimates:

dynamic clock gating ratios

flip-flop activity (number of enabled cycles and number of flipping bits)

number of reads andwrites to RAMs

glitch energy in combinational logic.

There are also techniques for estimating the logic activity using balance equations. The balance
equations range over a pair of values for each net, consisting of:

average duty cycle: the fraction of time at logic one

average toggle rate: the fraction of clock cycles during which a net changes value.

Consider an XOR gate with inputs toggling randomly. If the inputs are uncorrelated, the output is also
random and its toggle rate can be predicted to be 50 per cent (cf. entropy computations in information
theory). However, if we replace it with an AND orOR gate, the output duty cycle will be 1 in 4 on
average and its toggle rate will be given by the binomial theorem, and so on.

256

Chapter 5 | Electronic System-LevelModelling

Overall, a synchronous digital logic subsystem can be roughly modelled with a set of balance
equations (simultaneous equations) in terms of the average duty cycle and expected toggle rate on
each net. D-typesmake no difference. Inverters subtract the duty cycle from unity. Other forms of
logic can bemodelled with similar equations.

Is this a useful technique? Suchmodels need statistics for the input nets. The accuracy can, however,
be predicted statically. First, a tool computes the partial derivatives with respect to the input
assumptions. If they are all very small, our result holds for all inputs. Such techniques are also used
inside logic synthesisers tominimise the glitch energy.

5.6.2 TypicalMacroscopic Performance Equations: SRAMExample
It is important to have an accuratemodel of each SRAMwithin an ESLmodel. Because of the simple
internal structure of an SRAM, a generic TLM template with only a few parameters can be adapted to
each instance. Most SRAMs are generated bymemory generator tools from an EDA vendor
(Section 8.3.10). The compiler also generates a data sheet that contains the necessary values for the
component. Table 5.4 lists the normal parameters for a RAM compiler together with selected values.

Table 5.4 Normal parameters for a RAM compiler together with selected values

Parameter Value
Fabrication geometry 22nm
Organisation 64Kx64
Nominal VDD 1.0V
Number of banks 1
Read/write ports per bank 1
Read ports per bank 0
Write ports per bank 0

The CACTI cachemodelling tool fromHP Labs [8] is widely used to create ESLmetadata for memory.
It can generate energy, area and performance figures for SRAM, caches of various organisations and
DRAM. Version 7.0 added support for die-stacked devices. The program reads a set of basic process
properties from configuration files for known geometries, such as dielectric constants and sheet
resistivities for 22 nm. It thenmodels the layout of a memory in detail, comparing various numbers of
banks, bit lines andword lines to find the best configuration given the user’s expressed importance
weighting for static power, dynamic power, area and access time. Being coded in C++, the tool can
easily be invoked from the constructor of a memorymodel. It takes under a second to run for a simple
SRAM, so could be invoked each time the supply voltage is adjusted, but the results will typically be
cached.

For example, Figure 5.25 plots CACTI outputs for SRAMs of different sizes, implemented in 22nm
technology. The full set of build scripts and results for this CACTI run is included in the cacti22 folder.

Instead of conducting a considerable amount of performance sweeping, CACTI-like optimisers can be
replacedwith simple formulae, based on the same implementation architecture and underlying

257

Modern SoCDesign

physical parameters. For instance, for a single-ported SRAM in 45nm, the following equations
broadly hold for a wide range of capacities and read bus widths:

Area: 13000+ 5
8 ×bits µm2

Read energy: 5+ (1.2×10−4)× bits
8 pJ

Leakage (static power): 82 nW/bit

Random access latency: 0.21+3.8×10−4×
�
bits

supply voltage ns

The area is essentially 34λ on a side where λ=22.5nm in 45nm (Section 8.2). As shown in the code
fragments of Figure 5.26, these equations can then be installed directly in the constructor of an ESL
model, allowing the RAM to be re-evaluated if the supply voltage is changed.

Figure 5.25 Performance and overheads for various sizes of a single-ported 32-bit data width SRAM implemented in 22 nm, as modelled by CACTI 7.0. The
tool gives the access time, read and write dynamic energy use, and static power and area use for each size

258

Chapter 5 | Electronic System-LevelModelling

void sram64_cbg::recompute_pvt_parameters() // Called in constructor and when Vcc is changed
{

m_latency = sc_time(0.21 + 3.8e-4 *sqrt(float(m_bits)), SC_NS);

pw_power leakage = pw_power(82.0 * m_bits, PW_nW);
set_static_power(leakage);

set_fixed_area(pw_area(13359.0 + 4.93/8 * m_bits, PW_squm));

m_read_energy_op = pw_energy(5.0 + 1.2e-4 / 8.0 *m_bits, pw_energy_unit::PW_pJ);
m_write_energy_op = 2.0 * m_read_energy_op; // rule of thumb!

// NB: Might want different energy when high-order address bits change

pw_voltage vcc = get_vcc();
m_latency = m_latency / vcc.to_volts();
cout << name () << ":" << kind() << ": final latency = " << m_latency << "\n";

}

void sram64_cbg::b_access(PW_TLM_PAYTYPE &trans, sc_time &delay)
{

tlm::tlm_command cmd = trans.get_command();

// Log wiring power consumed by transaction arriving here.
// Also set which nets modelled by the TLM will be active after this operation:
// For a write none (except a response ack) and for read the payload data.
trans.pw_log_hop(this, (cmd==tlm::TLM_READ_COMMAND ? PW_TGP_DATA: PW_TGP_NOFIELDS) |

PW_TGP_ACCT_CKP, &read_bus_tracker);

if (cmd == tlm::TLM_READ_COMMAND)
{

// Log internal transaction energy for read
pw_module_base::record_energy_use(m_read_energy_op);
...

}
else if (cmd == tlm::TLM_WRITE_COMMAND)

{
// Log internal transaction energy for write
pw_module_base::record_energy_use(m_write_energy_op);
...

}
}

Figure 5.26 TLM+TEmodel of an SRAM. Constructor and blocking transport methods

5.6.3 TypicalMacroscopic Performance Equations: DRAMExample
ADRAM channel is some number of DRAMdie (e.g. 16) connected to a set of I/O pads on a controller.
The channel data width is typically 16, 32 or 64 bits. The capacity might be 16Gbytes. DRAMpower
generally comes from a different budget from themain SoC since it is normally off-chip. However,
when die-stacked, thermalmanagement of the combinationmust be considered. Amajor contribution

259

Modern SoCDesign

physical parameters. For instance, for a single-ported SRAM in 45nm, the following equations
broadly hold for a wide range of capacities and read bus widths:

Area: 13000+ 5
8 ×bits µm2

Read energy: 5+ (1.2×10−4)× bits
8 pJ

Leakage (static power): 82 nW/bit

Random access latency: 0.21+3.8×10−4×
�
bits

supply voltage ns

The area is essentially 34λ on a side where λ=22.5nm in 45nm (Section 8.2). As shown in the code
fragments of Figure 5.26, these equations can then be installed directly in the constructor of an ESL
model, allowing the RAM to be re-evaluated if the supply voltage is changed.

Figure 5.25 Performance and overheads for various sizes of a single-ported 32-bit data width SRAM implemented in 22 nm, as modelled by CACTI 7.0. The
tool gives the access time, read and write dynamic energy use, and static power and area use for each size

258

Chapter 5 | Electronic System-LevelModelling

void sram64_cbg::recompute_pvt_parameters() // Called in constructor and when Vcc is changed
{

m_latency = sc_time(0.21 + 3.8e-4 *sqrt(float(m_bits)), SC_NS);

pw_power leakage = pw_power(82.0 * m_bits, PW_nW);
set_static_power(leakage);

set_fixed_area(pw_area(13359.0 + 4.93/8 * m_bits, PW_squm));

m_read_energy_op = pw_energy(5.0 + 1.2e-4 / 8.0 *m_bits, pw_energy_unit::PW_pJ);
m_write_energy_op = 2.0 * m_read_energy_op; // rule of thumb!

// NB: Might want different energy when high-order address bits change

pw_voltage vcc = get_vcc();
m_latency = m_latency / vcc.to_volts();
cout << name () << ":" << kind() << ": final latency = " << m_latency << "\n";

}

void sram64_cbg::b_access(PW_TLM_PAYTYPE &trans, sc_time &delay)
{

tlm::tlm_command cmd = trans.get_command();

// Log wiring power consumed by transaction arriving here.
// Also set which nets modelled by the TLM will be active after this operation:
// For a write none (except a response ack) and for read the payload data.
trans.pw_log_hop(this, (cmd==tlm::TLM_READ_COMMAND ? PW_TGP_DATA: PW_TGP_NOFIELDS) |

PW_TGP_ACCT_CKP, &read_bus_tracker);

if (cmd == tlm::TLM_READ_COMMAND)
{

// Log internal transaction energy for read
pw_module_base::record_energy_use(m_read_energy_op);
...

}
else if (cmd == tlm::TLM_WRITE_COMMAND)

{
// Log internal transaction energy for write
pw_module_base::record_energy_use(m_write_energy_op);
...

}
}

Figure 5.26 TLM+TEmodel of an SRAM. Constructor and blocking transport methods

5.6.3 TypicalMacroscopic Performance Equations: DRAMExample
ADRAM channel is some number of DRAMdie (e.g. 16) connected to a set of I/O pads on a controller.
The channel data width is typically 16, 32 or 64 bits. The capacity might be 16Gbytes. DRAMpower
generally comes from a different budget from themain SoC since it is normally off-chip. However,
when die-stacked, thermalmanagement of the combinationmust be considered. Amajor contribution

259

Modern SoCDesign

to DRAMenergy use is the static power of its physical layer (PHY), which is the set of I/O pads both
on-SoC and on-DRAM that drive the high-performance PCB or interposer conductors between the
pieces of silicon. PHY power can beminimised if the traces are short, which is themotivation for
multi-chip modules and die-stacking. Micron released amulti-channel DRAMpackage, theMicron
hybridmemory cube (HMC), whose structure is like that in Figure 5.27. One ormore vertical stacks
of DRAM chips aremounted on a controller chip using through-silicon vias. The device is shared by a
number of hosts, each linked by a SERDES channel (Section 3.8) that typically runs for several inches
over themain circuit board. Generic devices of this nature are being standardised by JEDEC and
developed by the high bandwidthmemory (HBM) group of companies.

Logic die

Stacked DRAM chips
(perhaps four piles of four)

Through
silicon
vias

Serdes Serdes

Interposer

Package substrate

Solder
bumps

Outer case
encapsulation

Figure 5.27 A die-stacked DRAM subsystem in the style of theMicron HMC and HBM. Several DRAM chips are piled on top of an upside-down (flip-chip)
controller chip, interconnected into a 3-D structure using through-silicon vias. There could be several stacks. A passive interposer (ceramic PCB) wires the
logic die using a parallel interconnect to SERDES chips (also upside-down) for serial connection over the circuit board to the hosts

The high-performance PHY of a DRAM subsystem consumes power. The PHY drives data over a
circuit board at GHz rates, both in the controller and in the devices themselves. PHY power is largely
static and can be significantly minimised by either die-stacking or automatically entering low-power
standbymodes when possible. Dynamic energy use is directly related to the principal DRAM
operations. In summary, energy use comprises:

Controller static power: The on-SoC controller logic and any associatedmini-cache (Section 2.6.6).

DRAM static power: Each die takes about 100mWwhen idle but may enter a sleepmode if left
unused for amillisecond or so, reducing this to about 10mW. SomeDRAMs self-refresh while in a
sleepmode, so they can remain in it indefinitely.

Each row activation consumes dynamic energy in the row lines of the addressed page.

Each column activation and data transfer consumes on-chip energy at both ends as well as
considerable energy in driving the PCB conductors. The figures in Table 5.5 show that reads and
writes consume roughly the same amount of energy and, strangely, differ between the 4-Gb and
8-Gb devices as to which takesmore.

260

Chapter 5 | Electronic System-LevelModelling

Each row closure (writeback, deactivate or precharge) consumes dynamic energy, principally in the
devices.

Refresh operations consume energy like an activate command, again, principally in the devices.

The DRAMsim3 tool [9] is freely downloadable along with configuration files for a large variety of
DRAMdevices. The latest release includes HMCmodels. The DRAMmodels in the tool can run
various free-standing exercises. It canmodel DRAMas part of an ESLmodel such as Prazor or Gem5.
The simulator supports several page-closing policies and can report statistics for an access pattern,
such as throughput achieved and energy used. A TLM+Emodel of a DRAM chip includes energy
figures like those computed byDRAMsim3. They can accumulate the dynamic energy for each
operation.

Table 5.5 Example performance data from collated DRAMSim4 data sheets for a variety of DDR4 devices, showing their closed page, random access time
and dynamic energy for several major operations (total energy for 8 devices making up a 32-bit data bus). Only two significant figures are accurate. Note:
VDD =1.2V and tCL = tRCD = tRP

Device type tCL Clock Access Activate Read Write
(capacity, word frequency time
size and speed) (cycles) (MHz) (ns) (pJ) (pJ) (pJ)

DDR4_4Gb_x4_1866 13 934.6 32.1 4006.1 5752.3 6985.0
DDR4_4Gb_x4_2133 16 1063.8 33.8 3754.0 5775.4 7219.2
DDR4_4Gb_x4_2400 17 1204.8 31.5 4063.7 5418.2 7330.6
DDR4_4Gb_x4_2666 19 1333.3 31.5 4104.0 6048.0 7488.0
DDR4_8Gb_x4_1866 13 934.6 32.1 5156.5 5341.4 4930.6
DDR4_8Gb_x4_2133 16 1063.8 33.8 5270.0 4692.5 4331.5
DDR4_8Gb_x4_2666 19 1333.3 31.5 6105.6 4608.0 4089.6
DDR4_8Gb_x4_2933 21 1470.6 31.3 6632.4 4595.7 4021.2
DDR4_8Gb_x4_3200 22 1587.3 30.2 7136.6 4644.9 4015.9

Table 5.5 shows data computed from configuration files for a variety of DDR4 devices. Being double
data rate, the clock frequency is half the listed number of transfers per second. The access time
quoted is the absoluteminimal possible, starting from a closed page and includes tCL+ tRCD+BL/2,
where the burst size BL=8. In reality, the achieved access time is considerably more, since there are
several more pipeline stages in the controller and there are random overheads arising from having to
close a page or cross clock domains. The data sheets provide an indicative current use for each of the
main operating phases. In TLM, the energy for eachmajor operation is computed bymultiplying
together the current, supply voltage VDD, clock period and number of cycles spent in that phase.
DDR4 devices also have a second rail calledVPP of typically 2.5V, which also delivers some energy, but
this can be neglected in a roughmodel, since the supply currents specified bymost manufacturers are
an upper bound. Also, as mentioned above, there is a considerable static power overhead for the
high-performance data PHY, which should bemodelled using phase/mode analysis, as the device is
taken in and out of standbymodes by its controller.

261

Modern SoCDesign

to DRAMenergy use is the static power of its physical layer (PHY), which is the set of I/O pads both
on-SoC and on-DRAM that drive the high-performance PCB or interposer conductors between the
pieces of silicon. PHY power can beminimised if the traces are short, which is themotivation for
multi-chip modules and die-stacking. Micron released amulti-channel DRAMpackage, theMicron
hybridmemory cube (HMC), whose structure is like that in Figure 5.27. One ormore vertical stacks
of DRAM chips aremounted on a controller chip using through-silicon vias. The device is shared by a
number of hosts, each linked by a SERDES channel (Section 3.8) that typically runs for several inches
over themain circuit board. Generic devices of this nature are being standardised by JEDEC and
developed by the high bandwidthmemory (HBM) group of companies.

Logic die

Stacked DRAM chips
(perhaps four piles of four)

Through
silicon
vias

Serdes Serdes

Interposer

Package substrate

Solder
bumps

Outer case
encapsulation

Figure 5.27 A die-stacked DRAM subsystem in the style of theMicron HMC and HBM. Several DRAM chips are piled on top of an upside-down (flip-chip)
controller chip, interconnected into a 3-D structure using through-silicon vias. There could be several stacks. A passive interposer (ceramic PCB) wires the
logic die using a parallel interconnect to SERDES chips (also upside-down) for serial connection over the circuit board to the hosts

The high-performance PHY of a DRAM subsystem consumes power. The PHY drives data over a
circuit board at GHz rates, both in the controller and in the devices themselves. PHY power is largely
static and can be significantly minimised by either die-stacking or automatically entering low-power
standbymodes when possible. Dynamic energy use is directly related to the principal DRAM
operations. In summary, energy use comprises:

Controller static power: The on-SoC controller logic and any associatedmini-cache (Section 2.6.6).

DRAM static power: Each die takes about 100mWwhen idle but may enter a sleepmode if left
unused for amillisecond or so, reducing this to about 10mW. SomeDRAMs self-refresh while in a
sleepmode, so they can remain in it indefinitely.

Each row activation consumes dynamic energy in the row lines of the addressed page.

Each column activation and data transfer consumes on-chip energy at both ends as well as
considerable energy in driving the PCB conductors. The figures in Table 5.5 show that reads and
writes consume roughly the same amount of energy and, strangely, differ between the 4-Gb and
8-Gb devices as to which takesmore.

260

Chapter 5 | Electronic System-LevelModelling

Each row closure (writeback, deactivate or precharge) consumes dynamic energy, principally in the
devices.

Refresh operations consume energy like an activate command, again, principally in the devices.

The DRAMsim3 tool [9] is freely downloadable along with configuration files for a large variety of
DRAMdevices. The latest release includes HMCmodels. The DRAMmodels in the tool can run
various free-standing exercises. It canmodel DRAMas part of an ESLmodel such as Prazor or Gem5.
The simulator supports several page-closing policies and can report statistics for an access pattern,
such as throughput achieved and energy used. A TLM+Emodel of a DRAM chip includes energy
figures like those computed byDRAMsim3. They can accumulate the dynamic energy for each
operation.

Table 5.5 Example performance data from collated DRAMSim4 data sheets for a variety of DDR4 devices, showing their closed page, random access time
and dynamic energy for several major operations (total energy for 8 devices making up a 32-bit data bus). Only two significant figures are accurate. Note:
VDD =1.2V and tCL = tRCD = tRP

Device type tCL Clock Access Activate Read Write
(capacity, word frequency time
size and speed) (cycles) (MHz) (ns) (pJ) (pJ) (pJ)

DDR4_4Gb_x4_1866 13 934.6 32.1 4006.1 5752.3 6985.0
DDR4_4Gb_x4_2133 16 1063.8 33.8 3754.0 5775.4 7219.2
DDR4_4Gb_x4_2400 17 1204.8 31.5 4063.7 5418.2 7330.6
DDR4_4Gb_x4_2666 19 1333.3 31.5 4104.0 6048.0 7488.0
DDR4_8Gb_x4_1866 13 934.6 32.1 5156.5 5341.4 4930.6
DDR4_8Gb_x4_2133 16 1063.8 33.8 5270.0 4692.5 4331.5
DDR4_8Gb_x4_2666 19 1333.3 31.5 6105.6 4608.0 4089.6
DDR4_8Gb_x4_2933 21 1470.6 31.3 6632.4 4595.7 4021.2
DDR4_8Gb_x4_3200 22 1587.3 30.2 7136.6 4644.9 4015.9

Table 5.5 shows data computed from configuration files for a variety of DDR4 devices. Being double
data rate, the clock frequency is half the listed number of transfers per second. The access time
quoted is the absoluteminimal possible, starting from a closed page and includes tCL+ tRCD+BL/2,
where the burst size BL=8. In reality, the achieved access time is considerably more, since there are
several more pipeline stages in the controller and there are random overheads arising from having to
close a page or cross clock domains. The data sheets provide an indicative current use for each of the
main operating phases. In TLM, the energy for eachmajor operation is computed bymultiplying
together the current, supply voltage VDD, clock period and number of cycles spent in that phase.
DDR4 devices also have a second rail calledVPP of typically 2.5V, which also delivers some energy, but
this can be neglected in a roughmodel, since the supply currents specified bymost manufacturers are
an upper bound. Also, as mentioned above, there is a considerable static power overhead for the
high-performance data PHY, which should bemodelled using phase/mode analysis, as the device is
taken in and out of standbymodes by its controller.

261

Modern SoCDesign

5.6.4 Macroscopic Phase andMode Power Estimation Formula
IP blocks of any significant complexity support various powermodes. These include off, sleep, idle,
run, etc. Theymay set their own operatingmode or be commanded externally using something like
the ArmQ-channel protocol (Section 3.7.5). Most blocks consume a fairly predictable average amount
of power in each of their power phases or modes, certainly for static power use. The clock frequency
and supply voltage are also subject to step changes, which enlarges the discrete phase/mode
operating space. If the blocks in an ESLmodel can correctly switch between energy states, a simple
technique for estimating energy use is based on the percentage of time spent in each state.

Table 5.6 Phase/mode example: supply rail voltage and current and total power consumption for 3320C-EZK USB line driver devices

Operatingmode Rail 1 Rail 2 Rail 3 Total power
(volts) (mA) (volts) (mA) (volts) (mA) (mW)

Standby 3.3 0.018 1.8 0.0007 3.3 0.03 0.16
L/Smode 3.3 6.3 1.8 11 3.3 5 57
H/Smode 3.3 29 1.8 22 3.3 59 155

For instance, the Parallella board shown in Figure 5.28 has two 3320CUSB line drivers (highlighted
with red boxes). They use three supply rails and have three operatingmodes. The current consumed
by each rail depends on themode. The documented nominal currents are shown in Table 5.6, along
with the total power consumption. The actual power depends on the traffic activity, but for many line
transceiver circuits that contain a significant amount of analogue electronics, the variation is not
great. The TLMPOWER2 library [10] for SystemC uses constant power figures for each phase and
mode. For any component that changesmode each time it goes busy or idle, using a constant for each
phase andmode gives a reasonable model for both static and dynamic power. However, this approach
is not suitable for components whose dynamic power use is not correlated with an explicit phase or
mode change.

Ethernet
magnetics

Zynq
super
FPGA

Epiphany
processor

16-bit
DRAM

USB

USB

SD
card

Figure 5.28 A Parallella single-board computer. The two 3320C USB driver devices and connectors are highlighted in red boxes

262

Chapter 5 | Electronic System-LevelModelling

5.6.5 Spreadsheet-based Energy Accounting
A basic approach for estimating power consumption uses a spreadsheet that lists each register, gate
and IP block in the design. The total power used by a component can be computedwith the average
number of operations per second performed by the component, its static power use and its energy use
per operation. Figure 5.29 illustrates the basic parts of such a spreadsheet. For each RAMor ALU
present, the energy per operationmust be known. For RISC-style processors, the energy per
instruction is roughly the same overmost instruction types and it is not generally needed to know the
precise mix of instructions used to obtain a sufficiently accurate power estimate. For random logic for
miscellaneous registers and gates, the energy use for each component depends linearly on the activity
ratio (toggle rate). Initial guesses in the spreadsheet are typically set close to the worst case, which is
conservative but often wildly out. Hence, SAIF-based or other dynamic trace informationmust be fed
in to get an accurate result (Section 5.6.1). Given the chip package structure and cooling
arrangements, the same spreadsheet can compute the likely junction temperature.

CBG Power Analysis Spreadsheet Subsystem Static Power when on Dynamic Power when active Total
On time (W) Activity ratio (W) Power

Device Selection Processor System 1.00 0.30 0.90 1.80 1.92
Primary interconnect 1.00 0.02 1.00 0.40 0.42

Family ZX7000 DRAM Controller 1.00 0.04 0.90 0.22 0.24
Device ZX742189 Miscellaneous Peripherals 0.40 0.05 0.40 0.21 0.10
Package BGA-256 Level 2 Cache 1.00 0.50 0.90 1.20 1.58
Temp Grade Ext Commercial DRAM Phy 1.00 0.70 1.00 0.30 1.00

Tranceivers (including PHY) 1.00 0.65 1.00 0.65 1.30
Clock generator 1 1.00 0.03 1.00 0.12 0.15

Clock frequency 500 MHz AES Accelerator 1.00 0.02 0.22 0.04 0.03
DSP Block 0.44 0.02 0.44 0.10 0.05

Operating Conditions Misc Other 1.00 0.01 0.50 0.05 0.04

T Ambient 55 C Total power (watts) 6.83
T Junction (max) 85 C
Thermal Resistance 3.1 C/W Import SAIF Rail name Current (mA) Voltage (V) Power
Board layers 8 to 12 Core 3727.3 1.1 4.1

Import VCD Ring 1 1909.1 1.1 2.1
Ring 2 190.5 3.3 0.6

Estimated die temperature 76.2 C OK Vectorless 6.83

Figure 5.29 Example power estimation spreadsheet. The inventory of instantiated components is annotated with clock frequencies and activity ratios to
generate an approximate total power use in watts

5.6.6 Rent's Rule for EstimatingWire Length
As explained in Section 4.6.8, energy use today is dominated bywiring capacitance. Hence, reliable
indications of net length and net toggle rate are needed to compute energy use. The activity
ratio-based, phase/mode spreadsheet just presented does not take the physical layout into account.
An ESLmodel does not include place-and-route data (Section 8.7.1), but the design hierarchy is
accurately reflected in the high-level model and the number of transactions between subsystemswill
also be accurate. The area of each subsystem can be reliably estimated from the RTL or previous
implementations. A floor plan (Section 8.6) may provide additional guidance.

263

Modern SoCDesign

5.6.4 Macroscopic Phase andMode Power Estimation Formula
IP blocks of any significant complexity support various powermodes. These include off, sleep, idle,
run, etc. Theymay set their own operatingmode or be commanded externally using something like
the ArmQ-channel protocol (Section 3.7.5). Most blocks consume a fairly predictable average amount
of power in each of their power phases or modes, certainly for static power use. The clock frequency
and supply voltage are also subject to step changes, which enlarges the discrete phase/mode
operating space. If the blocks in an ESLmodel can correctly switch between energy states, a simple
technique for estimating energy use is based on the percentage of time spent in each state.

Table 5.6 Phase/mode example: supply rail voltage and current and total power consumption for 3320C-EZK USB line driver devices

Operatingmode Rail 1 Rail 2 Rail 3 Total power
(volts) (mA) (volts) (mA) (volts) (mA) (mW)

Standby 3.3 0.018 1.8 0.0007 3.3 0.03 0.16
L/Smode 3.3 6.3 1.8 11 3.3 5 57
H/Smode 3.3 29 1.8 22 3.3 59 155

For instance, the Parallella board shown in Figure 5.28 has two 3320CUSB line drivers (highlighted
with red boxes). They use three supply rails and have three operatingmodes. The current consumed
by each rail depends on themode. The documented nominal currents are shown in Table 5.6, along
with the total power consumption. The actual power depends on the traffic activity, but for many line
transceiver circuits that contain a significant amount of analogue electronics, the variation is not
great. The TLMPOWER2 library [10] for SystemC uses constant power figures for each phase and
mode. For any component that changesmode each time it goes busy or idle, using a constant for each
phase andmode gives a reasonable model for both static and dynamic power. However, this approach
is not suitable for components whose dynamic power use is not correlated with an explicit phase or
mode change.

Ethernet
magnetics

Zynq
super
FPGA

Epiphany
processor

16-bit
DRAM

USB

USB

SD
card

Figure 5.28 A Parallella single-board computer. The two 3320C USB driver devices and connectors are highlighted in red boxes

262

Chapter 5 | Electronic System-LevelModelling

5.6.5 Spreadsheet-based Energy Accounting
A basic approach for estimating power consumption uses a spreadsheet that lists each register, gate
and IP block in the design. The total power used by a component can be computedwith the average
number of operations per second performed by the component, its static power use and its energy use
per operation. Figure 5.29 illustrates the basic parts of such a spreadsheet. For each RAMor ALU
present, the energy per operationmust be known. For RISC-style processors, the energy per
instruction is roughly the same overmost instruction types and it is not generally needed to know the
precise mix of instructions used to obtain a sufficiently accurate power estimate. For random logic for
miscellaneous registers and gates, the energy use for each component depends linearly on the activity
ratio (toggle rate). Initial guesses in the spreadsheet are typically set close to the worst case, which is
conservative but often wildly out. Hence, SAIF-based or other dynamic trace informationmust be fed
in to get an accurate result (Section 5.6.1). Given the chip package structure and cooling
arrangements, the same spreadsheet can compute the likely junction temperature.

CBG Power Analysis Spreadsheet Subsystem Static Power when on Dynamic Power when active Total
On time (W) Activity ratio (W) Power

Device Selection Processor System 1.00 0.30 0.90 1.80 1.92
Primary interconnect 1.00 0.02 1.00 0.40 0.42

Family ZX7000 DRAM Controller 1.00 0.04 0.90 0.22 0.24
Device ZX742189 Miscellaneous Peripherals 0.40 0.05 0.40 0.21 0.10
Package BGA-256 Level 2 Cache 1.00 0.50 0.90 1.20 1.58
Temp Grade Ext Commercial DRAM Phy 1.00 0.70 1.00 0.30 1.00

Tranceivers (including PHY) 1.00 0.65 1.00 0.65 1.30
Clock generator 1 1.00 0.03 1.00 0.12 0.15

Clock frequency 500 MHz AES Accelerator 1.00 0.02 0.22 0.04 0.03
DSP Block 0.44 0.02 0.44 0.10 0.05

Operating Conditions Misc Other 1.00 0.01 0.50 0.05 0.04

T Ambient 55 C Total power (watts) 6.83
T Junction (max) 85 C
Thermal Resistance 3.1 C/W Import SAIF Rail name Current (mA) Voltage (V) Power
Board layers 8 to 12 Core 3727.3 1.1 4.1

Import VCD Ring 1 1909.1 1.1 2.1
Ring 2 190.5 3.3 0.6

Estimated die temperature 76.2 C OK Vectorless 6.83

Figure 5.29 Example power estimation spreadsheet. The inventory of instantiated components is annotated with clock frequencies and activity ratios to
generate an approximate total power use in watts

5.6.6 Rent's Rule for EstimatingWire Length
As explained in Section 4.6.8, energy use today is dominated bywiring capacitance. Hence, reliable
indications of net length and net toggle rate are needed to compute energy use. The activity
ratio-based, phase/mode spreadsheet just presented does not take the physical layout into account.
An ESLmodel does not include place-and-route data (Section 8.7.1), but the design hierarchy is
accurately reflected in the high-level model and the number of transactions between subsystemswill
also be accurate. The area of each subsystem can be reliably estimated from the RTL or previous
implementations. A floor plan (Section 8.6) may provide additional guidance.

263

Modern SoCDesign

Knowing the average net length and the average activity ratio is not sufficient to get the average
power, due to the non-uniform distribution of events (all the activity may occur on the longer nets, for
instance). Hence, it is better to have amore detailedmodel when forming the product. Rent’s rule
provides the answer.

If the physical area of each leaf cell is known, the area of each component in a hierarchic design can be
estimated using the sum of the parts plus the percentage swell (e.g. 5 per cent). In the 1960’s,
E. F. Rent, working at IBM, first popularised a rule of thumb pertaining to the organisation of
computing logic, specifically the relationship between the number of external signal connections
(terminals) to a logic block and the number of logic gates in the logic block:

Number of terminals= k×Number of gatesρ

It has been formalised, justified and enhanced over the decades [11], so is largely accurate and can be
applied to circuits ranging from small digital circuits tomainframe computers.

D Q D Q D Q D Q D Q

Design A - A Typical Hierarchic Circuit
Structure

Design B - Same components but with
greater number of external connections.

Shift register: Has very few external
connections for the embodied logic. Accelerator-on-a-stick configuration.

System Bus

Figure 5.30 Two similar designs with different Rent exponents (top) and two non-Rentian design points (bottom)

Rent’s rule is basically a simple power law that gives the number of terminals for a subsystem as a
function of the number of logic gates in the subsystem. Figure 5.30 shows that designs with very
similar functionality can have small variations in the Rent coefficient. Circuits like the shift register
are definite outliers. There is no increase in external connectivity regardless of length, so these have a
Rent exponent ρ =0. A circuit composed of components that do no have any local wiring between
them is the other extreme possibility, having a Rent exponent ρ =1.0. However, the rule of thumb is
that for most general subsystems, the Rent exponent is between about 0.5 and 0.7. The values apply
also to certain accelerator-on-a-stick structures in which data are copied in and out over a
comparatively narrow access bus but the accelerator has a significant amount of logic (Section 6.4).

264

Chapter 5 | Electronic System-LevelModelling

Also the degree of unfold in an accelerator (Section 4.4.2) affects the Rent exponent; unfolding an
algorithm for faster execution usesmore logic but the accelerator would, by default, still have the
same number of external connections.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.55 0.6 0.65 0.7 0.75

Av
er

ag
e

ne
t l

en
gt

h
(g

at
e

pi
tc

he
s)

.

Rentʼs Exponent, p.

Length Estimate vs Rent Exponent for two Sizes.

EQ14_g671(x)
EQ14_g59(x)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 500 1000 1500 2000

Av
er

ag
e

ne
t l

en
gt

h
(g

at
e

pi
tc

he
s)

.

Size - Number of Gates.

Length Estimate vs Size for various Models (p=0.65)

EQ14(x)
EQ15(x)
EQ16(x)
EQ17(x)

Figure 5.31 Left: average net length in systems composed of 59 and 671 gates for various values of rent exponent. Right: average net length for subsystems
of different sizes for rent exponent of 0.65 using four improved equations presented in [12]

Figure 5.31-left plots variation in expected average net length for subsystems of two different sizes,
showing the sensitivity to exponent value. Clearly, there is not a huge variation for designs once p is
above 0.6, which is the normal region. Numerous improvements have been explored for Rent’s basic
model. For example, Hefeida and Chowdhury [12] present four equations, numbered 14 to 17, which
are plotted in Figure 5.31-right. Again, there is not a great deal of variation between themodels. It is
not surprising that the general shape of the right-hand plot looks broadly like a square-root function
of the number of gates.

For a single level of design hierarchy, the random placement of blocks in a square with area defined by
their aggregate areas gives a particular net length distribution. Generalisations of Rent’s rule can
model the real-world wire length distribution by assuming that a good placement is always used in
practice. Careful placement reduces the net length by a Rent-like factor (e.g. by a factor of 2). If we
know the area of each leaf cell in a hierarchic design, evenwithout placement, we can follow the
trajectory of the net up and down the hierarchy and apply Rent-like rules. This is illustrated in

265

Modern SoCDesign

Knowing the average net length and the average activity ratio is not sufficient to get the average
power, due to the non-uniform distribution of events (all the activity may occur on the longer nets, for
instance). Hence, it is better to have amore detailedmodel when forming the product. Rent’s rule
provides the answer.

If the physical area of each leaf cell is known, the area of each component in a hierarchic design can be
estimated using the sum of the parts plus the percentage swell (e.g. 5 per cent). In the 1960’s,
E. F. Rent, working at IBM, first popularised a rule of thumb pertaining to the organisation of
computing logic, specifically the relationship between the number of external signal connections
(terminals) to a logic block and the number of logic gates in the logic block:

Number of terminals= k×Number of gatesρ

It has been formalised, justified and enhanced over the decades [11], so is largely accurate and can be
applied to circuits ranging from small digital circuits tomainframe computers.

D Q D Q D Q D Q D Q

Design A - A Typical Hierarchic Circuit
Structure

Design B - Same components but with
greater number of external connections.

Shift register: Has very few external
connections for the embodied logic. Accelerator-on-a-stick configuration.

System Bus

Figure 5.30 Two similar designs with different Rent exponents (top) and two non-Rentian design points (bottom)

Rent’s rule is basically a simple power law that gives the number of terminals for a subsystem as a
function of the number of logic gates in the subsystem. Figure 5.30 shows that designs with very
similar functionality can have small variations in the Rent coefficient. Circuits like the shift register
are definite outliers. There is no increase in external connectivity regardless of length, so these have a
Rent exponent ρ =0. A circuit composed of components that do no have any local wiring between
them is the other extreme possibility, having a Rent exponent ρ =1.0. However, the rule of thumb is
that for most general subsystems, the Rent exponent is between about 0.5 and 0.7. The values apply
also to certain accelerator-on-a-stick structures in which data are copied in and out over a
comparatively narrow access bus but the accelerator has a significant amount of logic (Section 6.4).

264

Chapter 5 | Electronic System-LevelModelling

Also the degree of unfold in an accelerator (Section 4.4.2) affects the Rent exponent; unfolding an
algorithm for faster execution usesmore logic but the accelerator would, by default, still have the
same number of external connections.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.55 0.6 0.65 0.7 0.75

Av
er

ag
e

ne
t l

en
gt

h
(g

at
e

pi
tc

he
s)

.

Rentʼs Exponent, p.

Length Estimate vs Rent Exponent for two Sizes.

EQ14_g671(x)
EQ14_g59(x)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 500 1000 1500 2000

Av
er

ag
e

ne
t l

en
gt

h
(g

at
e

pi
tc

he
s)

.

Size - Number of Gates.

Length Estimate vs Size for various Models (p=0.65)

EQ14(x)
EQ15(x)
EQ16(x)
EQ17(x)

Figure 5.31 Left: average net length in systems composed of 59 and 671 gates for various values of rent exponent. Right: average net length for subsystems
of different sizes for rent exponent of 0.65 using four improved equations presented in [12]

Figure 5.31-left plots variation in expected average net length for subsystems of two different sizes,
showing the sensitivity to exponent value. Clearly, there is not a huge variation for designs once p is
above 0.6, which is the normal region. Numerous improvements have been explored for Rent’s basic
model. For example, Hefeida and Chowdhury [12] present four equations, numbered 14 to 17, which
are plotted in Figure 5.31-right. Again, there is not a great deal of variation between themodels. It is
not surprising that the general shape of the right-hand plot looks broadly like a square-root function
of the number of gates.

For a single level of design hierarchy, the random placement of blocks in a square with area defined by
their aggregate areas gives a particular net length distribution. Generalisations of Rent’s rule can
model the real-world wire length distribution by assuming that a good placement is always used in
practice. Careful placement reduces the net length by a Rent-like factor (e.g. by a factor of 2). If we
know the area of each leaf cell in a hierarchic design, evenwithout placement, we can follow the
trajectory of the net up and down the hierarchy and apply Rent-like rules. This is illustrated in

265

Modern SoCDesign

Figure 5.32. Hence, we can estimate the length of a signal by sampling a power law distribution whose
maximum is the square root of the area of the lowest-common-parent component in the hierarchy.

Figure 5.32 Lowest common parent of the end-point logic blocks. The distance between two end points is always roughly the same for any sensible layout of
a design, so a detailed layout, like the one shown, is not required

5.6.7 Dynamic EnergyModelling in TLM
The TLMPOWER3 library [13] modified the TLMPOWER2 approach by capturing dynamic power
use by logging energy quanta for each TLM transaction or other event. Dynamic power use in a TLM
model has two components: the energy associated with the explicitly modelled transactions between
IP blocks and the energy of intensive internal computation that is not correlated with visible
transactions. Most I/O blocks use very little of the second form of power. For other devices, such as
CPU cores, the internal power use can also be readily allocated to discrete events, such as the fetch,
decode and execute of each instruction.

SleepOff OffActive1

Static
Power

Dynamic
Energy

Phase/mode:

Vdd

Time

Time

Time

Active2 Idle

Figure 5.33 Example of a transactional energy modelling plot. Static power depends on the power mode, whereas the dynamic power depends on internal
and external activity events

266

Chapter 5 | Electronic System-LevelModelling

Overall, electrical consumptionmodelling in TLM is best handled using a hybrid of power and energy
quanta, as illustrated in Figure 5.33. The static power is modelled with an average power annotation
of the current phase or mode, which uses energy in proportion to how long the block is in that phase
or mode. In contrast, the dynamic energy is modelled by accumulating the energy associated with
discrete events, many of which are transactions. The Cambridge TLMPOWER3 library for SystemC
supports this hybrid approach. It also uses Rent’s rule and the lowest-common-parent approach to
estimate the wiring length between components. To compute this distance, it gets from the SystemC
kernel database a list of the instantiatedmodules in the design hierarchy and relies on user
annotations of howmuch area each leaf component requires. It then counts the bit transitions in the
generic payload to estimate the dynamic power use for the nets of the real SoC.

5.6.8 ESLModelling of DVFS and Power Gating
The SystemC database of instantiatedmodules has a tree form, with the root being the pad ring of the
SoC. The clock, voltage and power-gated domains are commonly tightly coupled with themodule
instance tree. It is logical to record the supply voltage and power status for each subsystem at the
root of the appropriate subtree. The TLMPOWER3 library takes this approach and invokes a callback
on all components in the subtree whenever the supply voltage is changed. The user-provided power
and performance equations can be recomputed during this callback. However, it is not as necessary to
have a callback for a clock frequency change if most of the dynamic energy use is associated with a
transaction, since the transaction spacing will be adjusted accordingly by the delay values, whether
loosely or approximately timed.

Figure 5.34 Example reports generated by the TLM POWER3 library. The energy use between two checkpoints is shown in the upper table and power
consumption in the lower table. A total for the whole device is given, along with subtotals for parts of the design hierarchy specifically selected by the user

267

Modern SoCDesign

Figure 5.32. Hence, we can estimate the length of a signal by sampling a power law distribution whose
maximum is the square root of the area of the lowest-common-parent component in the hierarchy.

Figure 5.32 Lowest common parent of the end-point logic blocks. The distance between two end points is always roughly the same for any sensible layout of
a design, so a detailed layout, like the one shown, is not required

5.6.7 Dynamic EnergyModelling in TLM
The TLMPOWER3 library [13] modified the TLMPOWER2 approach by capturing dynamic power
use by logging energy quanta for each TLM transaction or other event. Dynamic power use in a TLM
model has two components: the energy associated with the explicitly modelled transactions between
IP blocks and the energy of intensive internal computation that is not correlated with visible
transactions. Most I/O blocks use very little of the second form of power. For other devices, such as
CPU cores, the internal power use can also be readily allocated to discrete events, such as the fetch,
decode and execute of each instruction.

SleepOff OffActive1

Static
Power

Dynamic
Energy

Phase/mode:

Vdd

Time

Time

Time

Active2 Idle

Figure 5.33 Example of a transactional energy modelling plot. Static power depends on the power mode, whereas the dynamic power depends on internal
and external activity events

266

Chapter 5 | Electronic System-LevelModelling

Overall, electrical consumptionmodelling in TLM is best handled using a hybrid of power and energy
quanta, as illustrated in Figure 5.33. The static power is modelled with an average power annotation
of the current phase or mode, which uses energy in proportion to how long the block is in that phase
or mode. In contrast, the dynamic energy is modelled by accumulating the energy associated with
discrete events, many of which are transactions. The Cambridge TLMPOWER3 library for SystemC
supports this hybrid approach. It also uses Rent’s rule and the lowest-common-parent approach to
estimate the wiring length between components. To compute this distance, it gets from the SystemC
kernel database a list of the instantiatedmodules in the design hierarchy and relies on user
annotations of howmuch area each leaf component requires. It then counts the bit transitions in the
generic payload to estimate the dynamic power use for the nets of the real SoC.

5.6.8 ESLModelling of DVFS and Power Gating
The SystemC database of instantiatedmodules has a tree form, with the root being the pad ring of the
SoC. The clock, voltage and power-gated domains are commonly tightly coupled with themodule
instance tree. It is logical to record the supply voltage and power status for each subsystem at the
root of the appropriate subtree. The TLMPOWER3 library takes this approach and invokes a callback
on all components in the subtree whenever the supply voltage is changed. The user-provided power
and performance equations can be recomputed during this callback. However, it is not as necessary to
have a callback for a clock frequency change if most of the dynamic energy use is associated with a
transaction, since the transaction spacing will be adjusted accordingly by the delay values, whether
loosely or approximately timed.

Figure 5.34 Example reports generated by the TLM POWER3 library. The energy use between two checkpoints is shown in the upper table and power
consumption in the lower table. A total for the whole device is given, along with subtotals for parts of the design hierarchy specifically selected by the user

267

Modern SoCDesign

Figure 5.34 shows an example of an output from the TLMPOWER3 library for the Parallella platform
modelled in Section 5.7. The tool gives totals for phase/mode static power use, dynamic power use
inside components and the wiring power collected from the transaction activity and estimatedwiring
length.

5.7 Case Study: Modelling the Zynq Platform (Prazor)
The Prazor/VHLS virtual platform is a simulator implemented in SystemC using TLM2.0 sockets. It
canmodel a number of CPU architectures, including x86_64, Arm-7,MIPS andOpenRISC.

5.8 Summary
In this chapter, we have presented themain aims and approaches for ESLmodelling. Very few design
houses use the full ESL approach that we have advocated. Although theymay start off with an ESL
model of a SoC and use it for architectural exploration, it will later bemaintained only as a virtual
platform for software development. All major EDA companies offer ESLmodelling platforms and IP
vendors, such as Arm, provide compatible ISS products and fast models of their IP blocks that are
portable over a number of platforms. The principal trade-off is accuracy versus efficiency, with a loss
of accuracy arising from the incorrect interleaving of transactions from different initiators. Another
use is to produce accurate performance and energy reports. Some products concentrate almost
entirely on providing an accurate software development platform, such as gem5, QEMU and various
Android simulators. Others focus on integrating withmainstreamRTL simulators.

The reader should havemastered the core concepts and constructs of the SystemCmodelling
language, both for its original purpose for net-level modelling and as an ESLmodelling framework. A
number of detailedmodelling styles have been presented.

5.8.1 Exercises
1. Estimate the number of CPU instructions executed by amodelling workstation when net-level and
TLMmodels alternatively simulate the transfer of a frame over a LocalLink interface.

2. Using the additional materials from the four-phase folder, perform a net-level simulation of the
source and sink. Then code in SystemC a net-level FIFO to go between them andmodify the test
bench to include it. Finally, write and deploy a transactor to the TLM-1 style sink that is also
provided.

3. If access to the real hardware is not yet possible, discuss how development, debugging and
performance analysis of device driver code can be facilitated by a virtual platform. Whatmight be
the same andwhat might be different?

268

Chapter 5 | Electronic System-LevelModelling

4. In the additional materials toy-esl folder, work through the four SystemC TLM coding examples in
which processors access memory. (Note, for ease of getting started and debugging, this material
does not use TLM2.0 sockets. It essentially does the same thing as the Prazor system, but at amuch
more basic level.)

5. A NoC switching element is modelled using SystemC TLM.Whatmechanisms exist for capturing
the queuing delay if passthrough TLM sockets are to be used in the NoC elementmodel?

6. Assuming a typical Rent value, using a spreadsheet or simple program, tabulate the average wiring
length versus number of hierarchy levels crossed for a transactional interface in a typical SoC.
Which of the following do you need to assume: total number of hierarchy levels, average number of
child components to a component, variation in area of a component, Rentian exponent, average
number of connections to a component and percentage of local nets to a component? Obtain a
numerical figure for the partial derivatives of the result with respect to each of your assumptions.
Which is themost important?

7. Towhat extent can a simple spreadsheet or static analysis determine the average activity ratio for a
net or subsystem? What further information is needed? Given activity numbers, what further
informationmay be needed to generate an idealisedmapping of subsystems to power domains?
What other considerations should be applied to determine a practical power domainmapping?

8. Give simple examples where out-of-order transaction processing arising from the loosely timed
modelling approach causes and does not cause functional accuracy errors. Are transaction counts
likely to bewrong under loose timing?

References
[1] Sumit K.Mandal, Raid Ayoub,Michael Kishinevsky, and Umit Y. Ogras. Analytical performancemodels for

NoCswithmultiple priority traffic classes. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019. ISSN
1539-9087. doi: 10.1145/3358176. URL https://doi.org/10.1145/3358176.

[2] Arm Ltd. Corelink CMN-600 coherent mesh network. https://developer.arm.com/ip-products/system-
ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600, 2020.

[3] Arm Ltd. ArmCoreLink NI-700Network-on-Chip Interconnect, Technical ReferenceManual.
https://developer.arm.com/documentation/101566/0100/Introduction/About-the-CoreLink-NI-700-
Network-on-Chip-Interconnect, 2020.

[4] IEEE Standard for Standard SystemC Language ReferenceManual. IEEE, 2011. Std 1666-2011.
[5] Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accuratemicroarchitectural simulation of

thousand-core systems. ACM SIGARCH Computer Architecture News, 41:475, 2013. doi:
10.1145/2508148.2485963.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A.Wood. The Gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL https://doi.org/
10.1145/2024716.2024718.

269

Modern SoCDesign

Figure 5.34 shows an example of an output from the TLMPOWER3 library for the Parallella platform
modelled in Section 5.7. The tool gives totals for phase/mode static power use, dynamic power use
inside components and the wiring power collected from the transaction activity and estimatedwiring
length.

5.7 Case Study: Modelling the Zynq Platform (Prazor)
The Prazor/VHLS virtual platform is a simulator implemented in SystemC using TLM2.0 sockets. It
canmodel a number of CPU architectures, including x86_64, Arm-7,MIPS andOpenRISC.

5.8 Summary
In this chapter, we have presented themain aims and approaches for ESLmodelling. Very few design
houses use the full ESL approach that we have advocated. Although theymay start off with an ESL
model of a SoC and use it for architectural exploration, it will later bemaintained only as a virtual
platform for software development. All major EDA companies offer ESLmodelling platforms and IP
vendors, such as Arm, provide compatible ISS products and fast models of their IP blocks that are
portable over a number of platforms. The principal trade-off is accuracy versus efficiency, with a loss
of accuracy arising from the incorrect interleaving of transactions from different initiators. Another
use is to produce accurate performance and energy reports. Some products concentrate almost
entirely on providing an accurate software development platform, such as gem5, QEMU and various
Android simulators. Others focus on integrating withmainstreamRTL simulators.

The reader should havemastered the core concepts and constructs of the SystemCmodelling
language, both for its original purpose for net-level modelling and as an ESLmodelling framework. A
number of detailedmodelling styles have been presented.

5.8.1 Exercises
1. Estimate the number of CPU instructions executed by amodelling workstation when net-level and
TLMmodels alternatively simulate the transfer of a frame over a LocalLink interface.

2. Using the additional materials from the four-phase folder, perform a net-level simulation of the
source and sink. Then code in SystemC a net-level FIFO to go between them andmodify the test
bench to include it. Finally, write and deploy a transactor to the TLM-1 style sink that is also
provided.

3. If access to the real hardware is not yet possible, discuss how development, debugging and
performance analysis of device driver code can be facilitated by a virtual platform. Whatmight be
the same andwhat might be different?

268

Chapter 5 | Electronic System-LevelModelling

4. In the additional materials toy-esl folder, work through the four SystemC TLM coding examples in
which processors access memory. (Note, for ease of getting started and debugging, this material
does not use TLM2.0 sockets. It essentially does the same thing as the Prazor system, but at amuch
more basic level.)

5. A NoC switching element is modelled using SystemC TLM.Whatmechanisms exist for capturing
the queuing delay if passthrough TLM sockets are to be used in the NoC elementmodel?

6. Assuming a typical Rent value, using a spreadsheet or simple program, tabulate the average wiring
length versus number of hierarchy levels crossed for a transactional interface in a typical SoC.
Which of the following do you need to assume: total number of hierarchy levels, average number of
child components to a component, variation in area of a component, Rentian exponent, average
number of connections to a component and percentage of local nets to a component? Obtain a
numerical figure for the partial derivatives of the result with respect to each of your assumptions.
Which is themost important?

7. Towhat extent can a simple spreadsheet or static analysis determine the average activity ratio for a
net or subsystem? What further information is needed? Given activity numbers, what further
informationmay be needed to generate an idealisedmapping of subsystems to power domains?
What other considerations should be applied to determine a practical power domainmapping?

8. Give simple examples where out-of-order transaction processing arising from the loosely timed
modelling approach causes and does not cause functional accuracy errors. Are transaction counts
likely to bewrong under loose timing?

References
[1] Sumit K.Mandal, Raid Ayoub,Michael Kishinevsky, and Umit Y. Ogras. Analytical performancemodels for

NoCswithmultiple priority traffic classes. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019. ISSN
1539-9087. doi: 10.1145/3358176. URL https://doi.org/10.1145/3358176.

[2] Arm Ltd. Corelink CMN-600 coherent mesh network. https://developer.arm.com/ip-products/system-
ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600, 2020.

[3] Arm Ltd. ArmCoreLink NI-700Network-on-Chip Interconnect, Technical ReferenceManual.
https://developer.arm.com/documentation/101566/0100/Introduction/About-the-CoreLink-NI-700-
Network-on-Chip-Interconnect, 2020.

[4] IEEE Standard for Standard SystemC Language ReferenceManual. IEEE, 2011. Std 1666-2011.
[5] Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accuratemicroarchitectural simulation of

thousand-core systems. ACM SIGARCH Computer Architecture News, 41:475, 2013. doi:
10.1145/2508148.2485963.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A.Wood. The Gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL https://doi.org/
10.1145/2024716.2024718.

269

Modern SoCDesign

[7] The Software FreedomConservancy. QEMU the fast processor emulator. https://www.qemu.org/, 2020.
[8] N.Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA organizations andwiring

alternatives for large caches with CACTI 6.0. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pages 3–14, 2007. doi: 10.1109/MICRO.2007.33.

[9] Shang Li, Zhiyuan Yang, Dhriaj Reddy, Ankur Srivastava, and Bruce Jacob. DRAMsim3: a cycle-accurate,
thermal-capable DRAM simulator. IEEE Computer Architecture Letters, PP:1, 2020. doi:
10.1109/LCA.2020.2973991.

[10] MatthieuMoy.Mini power-aware TLM-platform. https://matthieu-moy.fr/spip/?Mini-Power-
Aware-TLM-Platform, 2010.

[11] D. Strooband, H. VanMarck, and J. Van Campenhout. An accurate interconnection length estimation for
computer logic. In Proceedings of the 6th Great Lakes Symposium on VLSI, pages 50–55, 1996. doi:
10.1109/GLSV.1996.497592.

[12] Mohamed S. Hefeida andMasudH. Chowdhury. Improvedmodel for wire-length estimation in stochastic
wiring distribution. arXiv preprint arXiv:1502.05931, 2015.

[13] David J. Greaves andM. Yasin. TLMPOWER3: Power estimationmethodology for SystemC TLM2.0. In
Proceedings of the 2012 Forum on Specification and Design Languages, pages 106–111, 2012.

270

Chapter 6
Architectural
Design Exploration

Modern SoCDesign

[7] The Software FreedomConservancy. QEMU the fast processor emulator. https://www.qemu.org/, 2020.
[8] N.Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA organizations andwiring

alternatives for large caches with CACTI 6.0. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pages 3–14, 2007. doi: 10.1109/MICRO.2007.33.

[9] Shang Li, Zhiyuan Yang, Dhriaj Reddy, Ankur Srivastava, and Bruce Jacob. DRAMsim3: a cycle-accurate,
thermal-capable DRAM simulator. IEEE Computer Architecture Letters, PP:1, 2020. doi:
10.1109/LCA.2020.2973991.

[10] MatthieuMoy.Mini power-aware TLM-platform. https://matthieu-moy.fr/spip/?Mini-Power-
Aware-TLM-Platform, 2010.

[11] D. Strooband, H. VanMarck, and J. Van Campenhout. An accurate interconnection length estimation for
computer logic. In Proceedings of the 6th Great Lakes Symposium on VLSI, pages 50–55, 1996. doi:
10.1109/GLSV.1996.497592.

[12] Mohamed S. Hefeida andMasudH. Chowdhury. Improvedmodel for wire-length estimation in stochastic
wiring distribution. arXiv preprint arXiv:1502.05931, 2015.

[13] David J. Greaves andM. Yasin. TLMPOWER3: Power estimationmethodology for SystemC TLM2.0. In
Proceedings of the 2012 Forum on Specification and Design Languages, pages 106–111, 2012.

270

Chapter 6
Architectural
Design Exploration

Modern SoCDesign

As alreadymentioned in Section 1.4.2, the algorithms and functional requirements for an application
are implemented using one ormore pieces of silicon. Eachmajor piece of silicon contains one ormore
custom or standardmicroprocessors. Some of the silicon has a custom design for a high-volume
product, some of it has a design common to different devices in a product line, some of it has a
standard design and some of it has a third-party design.

The result of architectural design is a mapping of the design into physical components. Certain
electronic requirements, such as high voltage, microwave radio frequencies and optimummemory bit
density, are still fulfilled with optimised silicon (or GaAs) processes, but today, almost everything else
is either a standard part or can bemapped onto a single System-on-Chip (SoC). If an architectural
design requires more than one chip, the process is known as design partition. Beyond the
fundamental properties of silicon, a design partitionmust take into account non-technical aspects,
such as the stability of requirements, the design lifetime, ease of reuse and other market forces, such
as whether a third-party source is required by the target customers.

When designing a subsystem, the architect must choose what to have as hardware, what to have as
software andwhether custom or standard processors are needed. When designing the complete SoC,
theymust think about sharing the subsystem load over the chosen processing elements. Estimates of
the instruction fetch and data bandwidth for each element and subsystem are neededwhen deciding
howmuchmemory to instantiate andwhere each class of data and instruction will be stored. The
envisioned system data flow between subsystems is another important consideration in terms of bus
capacity, how busses should be interconnected andwhether a network-on-chip (NoC) is justified
(Section 3.4).

The design specification will includemust-have and desirable targets. The architect will have to
guarantee that all must-have goals are achieved and that most of the desirable goals have been
addressed. As amust-have example, if an I/O port has to receive data from a pre-existing standard or
communication protocol, then it must run at xMHz, where xmight be 12.5MHz for a 100-Mbps serial
link that has been deserialised by a factor of 8 to give bytes. To increase profitability, a desirable target
could be that its area should be less than ymm2, though this is not always an obligation. Respecting
each constraint is part of the daily work of the whole design team, but the chosen design partition
must first be suitable. Achieving this is called design closure.

In this chapter, we review themajor influences on architectural design. These arise from functional
requirements, including technology limitations such as power, area (Section 8.2) andmixing
constraints (Section 6.1). Choosing which pre-existing IP blocks and complete chips to use is also
important. Engineers usemodular designs tomanage scaling and future reuse. Themicroarchitecture
of new subsystemsmust take into account structural hazards (Section 6.3). Communications between
subsystemsmust be carefully designed (Section 6.4.1) to be adequate but not over-engineered.
Architectural exploration is the process of trying out different design partitions and
microarchitecture details at a high level. These issues are discussed in Section 8.2 whereas ESL
methods are presented in Chapter 5. This chapter also has a section onmodern design languages
(Section 6.8), which are far more expressive than conventional RTL.

272

Chapter 6 | Architectural Design Exploration

6.1 Hardware and Software Design Partition
A number of separate pieces of silicon are combined to form the final product. The principal reasons
for usingmore than one piece of silicon are (see also Section 8.4):

Modular engineering: No design team can create the complete product as onemodule. This is
infeasible to do, both in terms of staff management and the capacity of tools. A test program for
each subcomponent, known as as unit test, is also amust-have for quality control and yield
management. Design lifetime, revision control, component sourcing and portable reuse all benefit
from amodular approach.

Size and capacity: For CMOS technology, a silicon chipmeasuring between about 6 and 11mmon
a side is the sweet spot (Section 8.11.1).

Technologymismatch: Ultra-high frequency logic can be better implemented onGaAs than on
silicon; hence, a separate chipmust be used. Analogue electronics may need to switch high voltages
and hence, require thicker oxide layers, or the analogue electronics may use very large transistors
for high currents and hence, not be a cost-effective use of state-of-the-art fabrication lines
(Figure 8.32). Processes that are ideal for DRAMare different from those that are ideal for flash,
SRAM and general-purpose logic.

Supply chain and costs: The costs associated with an in-house custom chip are very different from
those for a standard part. Standard parts are generally mature products and available at a lower
price per unit area of silicon, comparedwith in-house designs. A standard part has a larger market
than a bespoke part, so that non-recurring expenses (NRE) are amortised differently (Section 8.11).

Isolation: Sensitive analogue signals for audio and radio frequencies need shielding from
general-purpose logic. This can be achieved by isolating the power supply and floor plan
(Section 8.6.1). However, because of the need for different types of transistors, a separate
integrated circuit (IC) is commonly used for the analogue front end (AFE).

Risk: Using existing chips that are known towork (andwhose suppliers can be sued) has a lower
risk than developing chips in-house. Chips larger than 1 cm2 are high risk, especially for new
fabrication geometries.

Many functions can be realised in software or hardware. In general, a software implementation has
lower development costs and is easier to change post tapeout (Section 8.7.7), so this tends to be the
default approach. The principal reasons for implementing a function in hardware are:

for physical I/O using line drivers or physical media interfaces

to reduce energy use

for real-time uses where jitter or throughput requirements rule out a software implementation.

273

Modern SoCDesign

As alreadymentioned in Section 1.4.2, the algorithms and functional requirements for an application
are implemented using one ormore pieces of silicon. Eachmajor piece of silicon contains one ormore
custom or standardmicroprocessors. Some of the silicon has a custom design for a high-volume
product, some of it has a design common to different devices in a product line, some of it has a
standard design and some of it has a third-party design.

The result of architectural design is a mapping of the design into physical components. Certain
electronic requirements, such as high voltage, microwave radio frequencies and optimummemory bit
density, are still fulfilled with optimised silicon (or GaAs) processes, but today, almost everything else
is either a standard part or can bemapped onto a single System-on-Chip (SoC). If an architectural
design requires more than one chip, the process is known as design partition. Beyond the
fundamental properties of silicon, a design partitionmust take into account non-technical aspects,
such as the stability of requirements, the design lifetime, ease of reuse and other market forces, such
as whether a third-party source is required by the target customers.

When designing a subsystem, the architect must choose what to have as hardware, what to have as
software andwhether custom or standard processors are needed. When designing the complete SoC,
theymust think about sharing the subsystem load over the chosen processing elements. Estimates of
the instruction fetch and data bandwidth for each element and subsystem are neededwhen deciding
howmuchmemory to instantiate andwhere each class of data and instruction will be stored. The
envisioned system data flow between subsystems is another important consideration in terms of bus
capacity, how busses should be interconnected andwhether a network-on-chip (NoC) is justified
(Section 3.4).

The design specification will includemust-have and desirable targets. The architect will have to
guarantee that all must-have goals are achieved and that most of the desirable goals have been
addressed. As amust-have example, if an I/O port has to receive data from a pre-existing standard or
communication protocol, then it must run at xMHz, where xmight be 12.5MHz for a 100-Mbps serial
link that has been deserialised by a factor of 8 to give bytes. To increase profitability, a desirable target
could be that its area should be less than ymm2, though this is not always an obligation. Respecting
each constraint is part of the daily work of the whole design team, but the chosen design partition
must first be suitable. Achieving this is called design closure.

In this chapter, we review themajor influences on architectural design. These arise from functional
requirements, including technology limitations such as power, area (Section 8.2) andmixing
constraints (Section 6.1). Choosing which pre-existing IP blocks and complete chips to use is also
important. Engineers usemodular designs tomanage scaling and future reuse. Themicroarchitecture
of new subsystemsmust take into account structural hazards (Section 6.3). Communications between
subsystemsmust be carefully designed (Section 6.4.1) to be adequate but not over-engineered.
Architectural exploration is the process of trying out different design partitions and
microarchitecture details at a high level. These issues are discussed in Section 8.2 whereas ESL
methods are presented in Chapter 5. This chapter also has a section onmodern design languages
(Section 6.8), which are far more expressive than conventional RTL.

272

Chapter 6 | Architectural Design Exploration

6.1 Hardware and Software Design Partition
A number of separate pieces of silicon are combined to form the final product. The principal reasons
for usingmore than one piece of silicon are (see also Section 8.4):

Modular engineering: No design team can create the complete product as onemodule. This is
infeasible to do, both in terms of staff management and the capacity of tools. A test program for
each subcomponent, known as as unit test, is also amust-have for quality control and yield
management. Design lifetime, revision control, component sourcing and portable reuse all benefit
from amodular approach.

Size and capacity: For CMOS technology, a silicon chipmeasuring between about 6 and 11mmon
a side is the sweet spot (Section 8.11.1).

Technologymismatch: Ultra-high frequency logic can be better implemented onGaAs than on
silicon; hence, a separate chipmust be used. Analogue electronics may need to switch high voltages
and hence, require thicker oxide layers, or the analogue electronics may use very large transistors
for high currents and hence, not be a cost-effective use of state-of-the-art fabrication lines
(Figure 8.32). Processes that are ideal for DRAMare different from those that are ideal for flash,
SRAM and general-purpose logic.

Supply chain and costs: The costs associated with an in-house custom chip are very different from
those for a standard part. Standard parts are generally mature products and available at a lower
price per unit area of silicon, comparedwith in-house designs. A standard part has a larger market
than a bespoke part, so that non-recurring expenses (NRE) are amortised differently (Section 8.11).

Isolation: Sensitive analogue signals for audio and radio frequencies need shielding from
general-purpose logic. This can be achieved by isolating the power supply and floor plan
(Section 8.6.1). However, because of the need for different types of transistors, a separate
integrated circuit (IC) is commonly used for the analogue front end (AFE).

Risk: Using existing chips that are known towork (andwhose suppliers can be sued) has a lower
risk than developing chips in-house. Chips larger than 1 cm2 are high risk, especially for new
fabrication geometries.

Many functions can be realised in software or hardware. In general, a software implementation has
lower development costs and is easier to change post tapeout (Section 8.7.7), so this tends to be the
default approach. The principal reasons for implementing a function in hardware are:

for physical I/O using line drivers or physical media interfaces

to reduce energy use

for real-time uses where jitter or throughput requirements rule out a software implementation.

273

Modern SoCDesign

Hardware implementations do not have an instruction fetch and decode overhead. A hardware
implementation is oftenmore parallel than a software version. Hence, it can clock at a lower
frequency and it has a lower V2 overhead (Section 4.6.8). Dedicated data paths in hardware aremore
efficient thanmultiplexed paths, but ALU and RAMenergy use tends to be the same. These
comparisons are developed further in Section 6.4.

If a function is to be implemented on a programmable processor, the next question is whether a
custom or off-the-shelf processor should be used. Another possibility is to use a custom coprocessor
for the high-performance data path but not for control or datamanagement. The principal functions
that benefit from non-standard processor data paths are:

bit-oriented operations

highly compute-intensive SIMD

other algorithmswith custom data paths

algorithms that might be altered post tapeout.

The following functions are best implemented in software on standard cores:

highly complex, non-repetitive functions

low-throughput computations of any sort

functions that might be altered post tapeout

generally, as much as possible.

6.1.1 Design Partitioning Example: A BluetoothModule
Radio communicationsmuch above VHF (above 150MHz) use high-frequencywaveforms that cannot
be directly processed by an analogue-to-digital convertor (ADC) or a digital-to-analogue convertor
(DAC). Figure 6.1 shows the typical structure of a wireless link for digital signals. Only simplex
communication is shown, but many applications require bidirectional communication. This is typically
achieved using time-division duplexing, in which the two ends alternate between sending and
receiving, sharing the same antenna and radio spectrum.

Heterodyning is used. This is implemented in the analoguemixers that multiply twowaveforms. A
sine wave carrier is used for the frequency conversion, as this exploits the
sin(A)×sin(B)=−cos(A+B)/2 half of the standard identity for converting frequency upwards. The
other half is used for converting downwards. The high-frequency circuity is almost always on a
different chip to separate it from the digital signal processing (DSP) of the baseband logic.

274

Chapter 6 | Architectural Design Exploration

Modem

(digital waveform

generator)

D-to-A

DAC

Mixer

Carrier

Oscillator

(2.4 GHz)

Power

Amp

50 ksps

Antenna
Digital Baseband Processing Analogue Upconvertor

Data in

Modem

(digital waveform

processor)

A-to-D

ADC

Mixer

Carrier

Oscillator

(2.4 GHz)

Receiver

Amp

50 ksps

Antenna
Digital Baseband Processing Analogue Downconvertor

Data out

Transmit power

(say 1 Watt)

Receiver power

0.01 microWatt

Path loss

(say 80dB)

12

12

Figure 6.1 Typical wireless link for digital communications, showing the transmitter (top) and receiver (bottom) for a simplex link

Many digital radio systems use quadraturemodulation. A local oscillator generates two outputs with
a 90◦ phase shift between them. Each feeds its ownmixer, which is coupled to its own ADCs or DAC.
This creates a radio signal with different data in the upper and lower sidebands, which requires less
energy per bit transmitted.

Figure 6.2 shows an early implementation of a Bluetooth USB dongle with an ISSC chipset. This uses
three pieces of silicon on a small PCB. On the front side there is an IS1601 AFE and an IS1002
baseband processor along with an antenna track at the left end. On the reverse is an FT24C04 serial
EEPROMand a 16-MHz crystal. The crystal serves as a clock for the digital logic and a frequency
reference for the RF carrier. Three pieces of silicon were used, mainly because the three sections
require wildly different types of circuit structure:

1. The analogue IC has amplifiers, oscillators, filters andmixers that operate in the 2.4-GHz band. This
was too fast for CMOS transistors and so bipolar transistors with thin bases were used (certainly in
early versions). Themodule amplifies the radio signals and converts them using themixers down to
an intermediate frequency of a fewMHz, which can be processed by the ADC andDAC
components of the digital circuit.

2. The digital circuit has a small amount of low-frequency analogue circuitry in its ADC andDACs and
perhaps, in its interface logic. A USB interface requires signal amplification and clock recovery
(Section 3.8). Additional analogue line drivers may be present on the silicon, e.g. an audio headset,
microphone and phone interface, but these will be powered permanently off in this deployment.
Overall, the baseband chip is mostly digital, with random logic implementations of themodem
functions and amicrocontroller with local RAM. The local RAMholds a system stack, local variables
and temporary buffers for data being sent or received.

275

Modern SoCDesign

Hardware implementations do not have an instruction fetch and decode overhead. A hardware
implementation is oftenmore parallel than a software version. Hence, it can clock at a lower
frequency and it has a lower V2 overhead (Section 4.6.8). Dedicated data paths in hardware aremore
efficient thanmultiplexed paths, but ALU and RAMenergy use tends to be the same. These
comparisons are developed further in Section 6.4.

If a function is to be implemented on a programmable processor, the next question is whether a
custom or off-the-shelf processor should be used. Another possibility is to use a custom coprocessor
for the high-performance data path but not for control or datamanagement. The principal functions
that benefit from non-standard processor data paths are:

bit-oriented operations

highly compute-intensive SIMD

other algorithmswith custom data paths

algorithms that might be altered post tapeout.

The following functions are best implemented in software on standard cores:

highly complex, non-repetitive functions

low-throughput computations of any sort

functions that might be altered post tapeout

generally, as much as possible.

6.1.1 Design Partitioning Example: A BluetoothModule
Radio communicationsmuch above VHF (above 150MHz) use high-frequencywaveforms that cannot
be directly processed by an analogue-to-digital convertor (ADC) or a digital-to-analogue convertor
(DAC). Figure 6.1 shows the typical structure of a wireless link for digital signals. Only simplex
communication is shown, but many applications require bidirectional communication. This is typically
achieved using time-division duplexing, in which the two ends alternate between sending and
receiving, sharing the same antenna and radio spectrum.

Heterodyning is used. This is implemented in the analoguemixers that multiply twowaveforms. A
sine wave carrier is used for the frequency conversion, as this exploits the
sin(A)×sin(B)=−cos(A+B)/2 half of the standard identity for converting frequency upwards. The
other half is used for converting downwards. The high-frequency circuity is almost always on a
different chip to separate it from the digital signal processing (DSP) of the baseband logic.

274

Chapter 6 | Architectural Design Exploration

Modem

(digital waveform

generator)

D-to-A

DAC

Mixer

Carrier

Oscillator

(2.4 GHz)

Power

Amp

50 ksps

Antenna
Digital Baseband Processing Analogue Upconvertor

Data in

Modem

(digital waveform

processor)

A-to-D

ADC

Mixer

Carrier

Oscillator

(2.4 GHz)

Receiver

Amp

50 ksps

Antenna
Digital Baseband Processing Analogue Downconvertor

Data out

Transmit power

(say 1 Watt)

Receiver power

0.01 microWatt

Path loss

(say 80dB)

12

12

Figure 6.1 Typical wireless link for digital communications, showing the transmitter (top) and receiver (bottom) for a simplex link

Many digital radio systems use quadraturemodulation. A local oscillator generates two outputs with
a 90◦ phase shift between them. Each feeds its ownmixer, which is coupled to its own ADCs or DAC.
This creates a radio signal with different data in the upper and lower sidebands, which requires less
energy per bit transmitted.

Figure 6.2 shows an early implementation of a Bluetooth USB dongle with an ISSC chipset. This uses
three pieces of silicon on a small PCB. On the front side there is an IS1601 AFE and an IS1002
baseband processor along with an antenna track at the left end. On the reverse is an FT24C04 serial
EEPROMand a 16-MHz crystal. The crystal serves as a clock for the digital logic and a frequency
reference for the RF carrier. Three pieces of silicon were used, mainly because the three sections
require wildly different types of circuit structure:

1. The analogue IC has amplifiers, oscillators, filters andmixers that operate in the 2.4-GHz band. This
was too fast for CMOS transistors and so bipolar transistors with thin bases were used (certainly in
early versions). Themodule amplifies the radio signals and converts them using themixers down to
an intermediate frequency of a fewMHz, which can be processed by the ADC andDAC
components of the digital circuit.

2. The digital circuit has a small amount of low-frequency analogue circuitry in its ADC andDACs and
perhaps, in its interface logic. A USB interface requires signal amplification and clock recovery
(Section 3.8). Additional analogue line drivers may be present on the silicon, e.g. an audio headset,
microphone and phone interface, but these will be powered permanently off in this deployment.
Overall, the baseband chip is mostly digital, with random logic implementations of themodem
functions and amicrocontroller with local RAM. The local RAMholds a system stack, local variables
and temporary buffers for data being sent or received.

275

Modern SoCDesign

3. A flash ROM chip (Section 2.6.8) is a standard part. It is a non-volatile memory that can hold
firmware for themicrocontroller, parameters for themodem and encryption keys, and other
end-application functions.

Carrier
Oscillator
2.4 GHz

Antenna

RF
Amps

IF
Amps

Analog (RF) Integrated Circuit

DAC

Microcontroller

Baseband
Modem

ADC

Digital Integrated Circuit

Hop
Controller

RAM

USB
inter-
face

FLASH
memory chip

XTAL
16 MHz

+5V
D+
D-
0V

Figure 6.2 Block diagram and photographs of a first-generation Bluetooth USB dongle

In the early 2010s, due to advances in technology, a complete Bluetoothmodule could be
implemented on one piece of silicon, but this still presentedmajor technical challenges due to the
diverse requirements of the various subsystems. Figure 6.3 demonstrates yet further integration. The
three-chipWi-Fi solution on the left had been replaced by 2013with the single-chip solution shown
on the right.

6.2 Design Space Exploration
Design space exploration (DSE) is the process of evaluating a succession of different designs while
trying to understandwhich decisions lead to a good design and then finally selecting a design that
meets each requirement, or exceeds them if possible. DSE can bemanual or automated. DSE applies
at themicroarchitecture level, such as in the optimisation loops of high-level synthesis (HLS) tools
(Section 6.9), but more typically the term refers to system-level architecture design, which is called
architectural exploration.

System design goals were discussed in Section 4.1. These include performance (or throughput),
battery life (or energy use) andmanufacturing costs. The goals for just the silicon cost alone are
usually called power, performance and area (PPA) (Section 5.6). Numeric values of these goals form
the objectivemetric vector, which quantifies the quality of a design point. The design space can be
approximately formalised as another vector whose component members are each design decision,
such as what and howmany cores, howmanyDRAM channels, clock frequency and so on. In practice,
a linear vector is a poor approximation of a real design space, which is a very large, if not infinite, tree.
The tree structure arises sincemany design decisions are predicated by others: you can only choose a
DRAM clock frequency if you are using DRAM!However, it is sensible to review conventional

276

Chapter 6 | Architectural Design Exploration

Figure 6.3 Two PCIe 802.11Wi-Fi modules for a laptop. Their shielding lids have been removed. The older unit, on the left, has a three-chip set from
Broadcom. It is physically nearly twice the size of the newer unit, shown on the right, which has been magnified 2×. The new unit uses a Qualcomm
QCA9565 device that has a higher throughput and also includes Bluetooth. The only other active part needed is the 40-MHz crystal oscillator to the left of
the chip. As can be seen at top right, to give a lower-cost lower-performance product, the second of the two diversity antenna sockets, labelled ‘ALT’, was not
fitted

multi-objective optimisation, since it certainly applies within regions of the design space, even if
optimisation in general is better left to gut instinct honed by years of design experience.

In formal multi-objective optimisation, the design vector V is processed by an evaluation function to
give an objective vectorM based on the individual metrics: M= E(V). Ideally, the value of eachmetric
should be as large as possible. If a design does not work, zero is reported for all its metrics. Preferably,
evaluation functions are quick to run. This is themotivation of the ESLmodels in Chapter 5. An overall
figure of merit for a design can be given by a scalarisation function, S(M)=m, which returns the scalar
meritm. This is also known as the goodness. Again, we seek as high a goodness as possible. However,
performing DSE based onM instead ofm is more intelligent and potentially faster since function S
throws away useful information.

Multi-variate optimisation is also known as hill climbing. A hill-climbing algorithm starts with one or
some number ofmanually created seed reference designs,V0,V1, . . . , Vn. To find the best design point,
these vectors are refined or otherwisemutated to create further vectors. Frequently, there are
numerous equally good or best design points. These are said to bemembers of a Pareto-optimal set.
For a Pareto optimal solution, any attempt to improve one of the objective functions is compromised
by a decrease in one ormore of the others. Themembers of the set all have the same value ofm. An

277

Modern SoCDesign

3. A flash ROM chip (Section 2.6.8) is a standard part. It is a non-volatile memory that can hold
firmware for themicrocontroller, parameters for themodem and encryption keys, and other
end-application functions.

Carrier
Oscillator
2.4 GHz

Antenna

RF
Amps

IF
Amps

Analog (RF) Integrated Circuit

DAC

Microcontroller

Baseband
Modem

ADC

Digital Integrated Circuit

Hop
Controller

RAM

USB
inter-
face

FLASH
memory chip

XTAL
16 MHz

+5V
D+
D-
0V

Figure 6.2 Block diagram and photographs of a first-generation Bluetooth USB dongle

In the early 2010s, due to advances in technology, a complete Bluetoothmodule could be
implemented on one piece of silicon, but this still presentedmajor technical challenges due to the
diverse requirements of the various subsystems. Figure 6.3 demonstrates yet further integration. The
three-chipWi-Fi solution on the left had been replaced by 2013with the single-chip solution shown
on the right.

6.2 Design Space Exploration
Design space exploration (DSE) is the process of evaluating a succession of different designs while
trying to understandwhich decisions lead to a good design and then finally selecting a design that
meets each requirement, or exceeds them if possible. DSE can bemanual or automated. DSE applies
at themicroarchitecture level, such as in the optimisation loops of high-level synthesis (HLS) tools
(Section 6.9), but more typically the term refers to system-level architecture design, which is called
architectural exploration.

System design goals were discussed in Section 4.1. These include performance (or throughput),
battery life (or energy use) andmanufacturing costs. The goals for just the silicon cost alone are
usually called power, performance and area (PPA) (Section 5.6). Numeric values of these goals form
the objectivemetric vector, which quantifies the quality of a design point. The design space can be
approximately formalised as another vector whose component members are each design decision,
such as what and howmany cores, howmanyDRAM channels, clock frequency and so on. In practice,
a linear vector is a poor approximation of a real design space, which is a very large, if not infinite, tree.
The tree structure arises sincemany design decisions are predicated by others: you can only choose a
DRAM clock frequency if you are using DRAM!However, it is sensible to review conventional

276

Chapter 6 | Architectural Design Exploration

Figure 6.3 Two PCIe 802.11Wi-Fi modules for a laptop. Their shielding lids have been removed. The older unit, on the left, has a three-chip set from
Broadcom. It is physically nearly twice the size of the newer unit, shown on the right, which has been magnified 2×. The new unit uses a Qualcomm
QCA9565 device that has a higher throughput and also includes Bluetooth. The only other active part needed is the 40-MHz crystal oscillator to the left of
the chip. As can be seen at top right, to give a lower-cost lower-performance product, the second of the two diversity antenna sockets, labelled ‘ALT’, was not
fitted

multi-objective optimisation, since it certainly applies within regions of the design space, even if
optimisation in general is better left to gut instinct honed by years of design experience.

In formal multi-objective optimisation, the design vector V is processed by an evaluation function to
give an objective vectorM based on the individual metrics: M= E(V). Ideally, the value of eachmetric
should be as large as possible. If a design does not work, zero is reported for all its metrics. Preferably,
evaluation functions are quick to run. This is themotivation of the ESLmodels in Chapter 5. An overall
figure of merit for a design can be given by a scalarisation function, S(M)=m, which returns the scalar
meritm. This is also known as the goodness. Again, we seek as high a goodness as possible. However,
performing DSE based onM instead ofm is more intelligent and potentially faster since function S
throws away useful information.

Multi-variate optimisation is also known as hill climbing. A hill-climbing algorithm starts with one or
some number ofmanually created seed reference designs,V0,V1, . . . , Vn. To find the best design point,
these vectors are refined or otherwisemutated to create further vectors. Frequently, there are
numerous equally good or best design points. These are said to bemembers of a Pareto-optimal set.
For a Pareto optimal solution, any attempt to improve one of the objective functions is compromised
by a decrease in one ormore of the others. Themembers of the set all have the same value ofm. An

277

Modern SoCDesign

optimisation algorithmwould then return a number of results, and the engineer would have to decide
which to use.

One problemwith hill-climbing algorithms is that they can get stuck in local maxima, which are design
points where a small change to any component of the design vector leads to a worse design. A bad
algorithmwill return a false maximum because it has not explored sufficiently far away from a seed
point to find a better maximum. Hill-climbing algorithms include simulated annealing, genetic
algorithms, gradient ascent, ant colony optimisation and particle swarm optimisation. Simulated
annealing starts with only one of the Vi seeds and is run for each in turn, with the best result being
selected, whereas the others use all the seeds at once.
If there are various local maximawith scalar metric valuesmi, the ratio of the smallest to the optimal
solution is sometimes called the locality gap:

Locality gap=max
i

(moptimum
mi

)

Baseline code for simulated annealing is presented in Figure 6.4. Simulated annealing is a blind search
in that it looks atm instead ofM. It is named after the equivalent process in metalworking. To avoid
local maxima, simulated annealing uses a state variable called ‘temperature’, which starts at a high
value, perhaps based on knowledge of the locality gap, and is gradually decreased during the process.
A new trial design point is created by perturbing the current point such that the step size is larger at
higher temperatures. If the new point is better than the current one, it is adopted. Moreover, if the
new trial point is worse than the current point, it is also adoptedwith a probability proportional to its
temperature. Whenwe get below a threshold temperature, only improvements are accepted: this is
the so-called quench phase. Rather than running simulated annealing for each seed in turn, particle
swarm optimisation runs agents in parallel, iterating over a set of successively improving designs.

A gradient ascent usesM instead ofm to implement amulti-dimensional quantised variant of
Newton–Raphson iteration. A number of orthogonal perturbations δi aremade to the current design
point V. Walsh functions are sometimes used as a basis; these are like binary versions of a Fourier
sine/cosine basis. An estimate of the partial derivative ofMwith respect to each perturbation vector
is computed:

Di =
M(V)−M(V+δi)

|δi|
Amotion vector is then created from theweighted sum of each derivative and V is replacedwith
V−αD, where α is a fractional parameter selected to trade off the speed of convergence with stability
and overshoot.

In manual DSE, engineers typically use a genetic algorithm (whether they know the formal name or
not!). Genetic algorithms are also commonly automated. Two existing design points are cross-bred to
create a new design point. If this is better than either of its parents, it replaces the weaker parent in
the working set. Cross-breeding is simply amatter of taking some random fields from the first parent
and the complementary fields from the other parent.

278

Chapter 6 | Architectural Design Exploration

temp := 200 // Set initial temperature to a high value
ans := first_guess // This is the design vector (or tree)
metric := metric_metric ans // We seek the highest-metric answer

while (temp > 1)
{

// Create new design point, offsetting with delta proportional to temperature
ans' := perturb_ans temp ans

// Evaluate (scalar) objective function (figure of merit) for new design point
metric' := metric_metric ans'

// Accept if better probabilistically
accept := (metric' > metric) || rand(100..200) < temp;
if (accept) (ans, metric, temp) := (ans', metric', temp * 0.99)

}
return ans;

Figure 6.4 An iteration for hill climbing using simulated annealing to find a design point with the highest scalar metric

Constructive Algorithms
Themain alternatives to hill climbing are constructive algorithms. A constructive algorithm generates
an output design without iterating. Hence, such algorithms are fast, but tend to deliver inferior
results. They often use little more intelligence than the greedy principle from computer science. At
each step, a greedy algorithm always takes the best-looking current option without considering
subsequent steps. The output design can bemeasured to given an initial indication of performance. It
can also be used to generate a seed point for incremental transform-based improvement.

One example is a constructive placer used to generate a seed design for a place-and-route run
(Section 8.7.1). A naive constructive placer first sorts the nodes into decreasing order of connectivity.
The component with the highest connectivity is placed in themiddle of a 2-D area. Using a
force-directed approach, it then places each component in turn into a site, whether occupied or not,
to minimise the wiring distance to already-placed components. If the site is occupied, a partial row or
column is shoved aside, so that the extremity of the row or column now lies in empty space. The
shove-aside cost has order�n, so the total constructive placement cost is n�n.

NP-Hard Algorithms
AnNP-hard algorithm has no known solutionmethod, other than trying every possible solution and
assessing which is best. Themeasurement cost is polynomial in time complexity and trying each
solution is factorial or exponential in complexity. However, in a fictional world where every solution
can be tried non-deterministically (i.e. in parallel), the time cost would reduce to the polynomial
checking cost, hence, the nameNP.

In nearly all circumstances, individual optimisations applied to a subsystem are non-composable, so
that the global optimisation of a system is NP-hard. A non-composable optimisation is one where

279

Modern SoCDesign

optimisation algorithmwould then return a number of results, and the engineer would have to decide
which to use.

One problemwith hill-climbing algorithms is that they can get stuck in local maxima, which are design
points where a small change to any component of the design vector leads to a worse design. A bad
algorithmwill return a false maximum because it has not explored sufficiently far away from a seed
point to find a better maximum. Hill-climbing algorithms include simulated annealing, genetic
algorithms, gradient ascent, ant colony optimisation and particle swarm optimisation. Simulated
annealing starts with only one of the Vi seeds and is run for each in turn, with the best result being
selected, whereas the others use all the seeds at once.
If there are various local maximawith scalar metric valuesmi, the ratio of the smallest to the optimal
solution is sometimes called the locality gap:

Locality gap=max
i

(moptimum
mi

)

Baseline code for simulated annealing is presented in Figure 6.4. Simulated annealing is a blind search
in that it looks atm instead ofM. It is named after the equivalent process in metalworking. To avoid
local maxima, simulated annealing uses a state variable called ‘temperature’, which starts at a high
value, perhaps based on knowledge of the locality gap, and is gradually decreased during the process.
A new trial design point is created by perturbing the current point such that the step size is larger at
higher temperatures. If the new point is better than the current one, it is adopted. Moreover, if the
new trial point is worse than the current point, it is also adoptedwith a probability proportional to its
temperature. Whenwe get below a threshold temperature, only improvements are accepted: this is
the so-called quench phase. Rather than running simulated annealing for each seed in turn, particle
swarm optimisation runs agents in parallel, iterating over a set of successively improving designs.

A gradient ascent usesM instead ofm to implement amulti-dimensional quantised variant of
Newton–Raphson iteration. A number of orthogonal perturbations δi aremade to the current design
point V. Walsh functions are sometimes used as a basis; these are like binary versions of a Fourier
sine/cosine basis. An estimate of the partial derivative ofMwith respect to each perturbation vector
is computed:

Di =
M(V)−M(V+δi)

|δi|
Amotion vector is then created from theweighted sum of each derivative and V is replacedwith
V−αD, where α is a fractional parameter selected to trade off the speed of convergence with stability
and overshoot.

In manual DSE, engineers typically use a genetic algorithm (whether they know the formal name or
not!). Genetic algorithms are also commonly automated. Two existing design points are cross-bred to
create a new design point. If this is better than either of its parents, it replaces the weaker parent in
the working set. Cross-breeding is simply amatter of taking some random fields from the first parent
and the complementary fields from the other parent.

278

Chapter 6 | Architectural Design Exploration

temp := 200 // Set initial temperature to a high value
ans := first_guess // This is the design vector (or tree)
metric := metric_metric ans // We seek the highest-metric answer

while (temp > 1)
{

// Create new design point, offsetting with delta proportional to temperature
ans' := perturb_ans temp ans

// Evaluate (scalar) objective function (figure of merit) for new design point
metric' := metric_metric ans'

// Accept if better probabilistically
accept := (metric' > metric) || rand(100..200) < temp;
if (accept) (ans, metric, temp) := (ans', metric', temp * 0.99)

}
return ans;

Figure 6.4 An iteration for hill climbing using simulated annealing to find a design point with the highest scalar metric

Constructive Algorithms
Themain alternatives to hill climbing are constructive algorithms. A constructive algorithm generates
an output design without iterating. Hence, such algorithms are fast, but tend to deliver inferior
results. They often use little more intelligence than the greedy principle from computer science. At
each step, a greedy algorithm always takes the best-looking current option without considering
subsequent steps. The output design can bemeasured to given an initial indication of performance. It
can also be used to generate a seed point for incremental transform-based improvement.

One example is a constructive placer used to generate a seed design for a place-and-route run
(Section 8.7.1). A naive constructive placer first sorts the nodes into decreasing order of connectivity.
The component with the highest connectivity is placed in themiddle of a 2-D area. Using a
force-directed approach, it then places each component in turn into a site, whether occupied or not,
to minimise the wiring distance to already-placed components. If the site is occupied, a partial row or
column is shoved aside, so that the extremity of the row or column now lies in empty space. The
shove-aside cost has order�n, so the total constructive placement cost is n�n.

NP-Hard Algorithms
AnNP-hard algorithm has no known solutionmethod, other than trying every possible solution and
assessing which is best. Themeasurement cost is polynomial in time complexity and trying each
solution is factorial or exponential in complexity. However, in a fictional world where every solution
can be tried non-deterministically (i.e. in parallel), the time cost would reduce to the polynomial
checking cost, hence, the nameNP.

In nearly all circumstances, individual optimisations applied to a subsystem are non-composable, so
that the global optimisation of a system is NP-hard. A non-composable optimisation is one where

279

Modern SoCDesign

applying a transformation on one subsystem prevents or diminishes the effect of another
optimisation on a neighbour. A good example is sub-expression computation. Suppose a logic signal is
needed in two subsystems and the information to generate it is present in both. Is it better to
compute it twice or to compute it in one and send the result to the other with additional wiring? There
are no known algorithms for solving such problems perfectly, apart from exponential trial and error.
Indeed, even the general problem ofminimising the logic within a subsystemwhile ignoring wiring
length is NP-hard. Although that problem is well solved heuristically by Espresso (Section 8.3.8), once
net length and energy design intents (Section 8.3) are added, even the heuristics become complex.

6.2.1 DSEWorkflows
A three-step approach to DSE, starting at the top-level, is as follows:

1. The overall requirements aremanually broken down into tasks.

2. The tasks are allocated to subsystems.

3. The subsystems are designed.

A number of use cases are defined in the system specification. A use casemay correspond to one or
more tasks. All use cases must be supported, but an exclusivitymatrix identifies tasks that do not
need to be supported concurrently. A devicemay have phases of operation, such as start-up, firmware
upgrade and showtime, that are exclusive. Moreover, certain application combinationsmight be
precluded due to the overall load or other reasons, such as providing satellite navigation and
video-conferencing at the same time on amobile phone.

The output of one task is frequently the input to another. These dependencies are defined in the task
dependencymatrix, which controls which tasks can be performed in parallel and limits the available
parallelism (Section 4.2).

For a particular task, the threemain digital resources that need to be provided are: (1) the input and
output bandwidth, (2) storage for intermediate results and (3) a number of arithmetic operations.
On-chip storage in SRAM always offers the highest throughput, but storage capacity limitationsmean
that nearby DRAMmust be used. It is important for the DRAM system to offer sufficient read and
write bandwidth. On the other hand, DRAM capacity is typically a limiting factor only for cloud-scale
algorithms, such as search completions on Google or product suggestions during online shopping on
Amazon. Secondary storage capacity is rarely a restriction at themoment, due to the capacity of SSD
and SD cards. (Magnetic spinningmedia and tape are also relevant, but not for most SoC projects.) A
typical approach for quantifying the requirements of a task is to take an implementation in C and
compile it for a simple processor. A combination of static analysis and running the program then gives
a naive preliminary indication of the key resources needed.

280

Chapter 6 | Architectural Design Exploration

Finally, the designer needs to consider the power supply and heat extraction. Power density
restrictions affect modern system designs and require dark silicon (Section 8.2). If parts of the system
are in different chips, the energy for communicating between those parts goes up, but it is
significantly easier to get heat out.

Although some IP blocks have higher licensing costs than others, to a first approximation, the cost of a
squaremillimetre of silicon on a SoC is the same, regardless of what it is used for. The three important
baseline figures per squaremillimetre of area are:

1. Computation density: Each integer-arithmetic ALU has a silicon area proportional to its precision
in bits. To evaluate a design without regard to a particular silicon geometry, the area can be
expressed in units of square lambda (λ2) (Section 8.2). A 32-bit ripple carry adder needs about 128
two-input gate equivalents and each gate needs about 1000λ2 (Section 8.2.1). A faster adder, such
as the synthesis-friendly Kogge-Stone design, requires four or more times the area. The growth in
area with increasing precision is logarithmic.

2. Communication density: If a logic gate is implemented using polysilicon andmetal layer 1, then
metal layers 2 and 3 are available for wiring and data busses. A wiring pitch of 15λ is easily
achievable, allowing several bits of a bus to pass over a single gate. However, longer busses made of
finewires (6λ pitch) suffer badly from increased resistance and delay (Figure 3.2). A lower pitch and
hence, lower data flux are needed for longer distances or on higher metal layers where lower
fabrication precision is achieved. Some busses need to turn a corner, which can use significant area
for wide busses. This problem arises mainly at themeeting point of blocks that have already been
physically optimised or have a hardened layout (Figure 6.5). The local net width and spacing rules
may have to be adjustedmanually, or else the nets may need to bemanually assigned to a broader
set of metal layers.

3. Storage density: An SRAM cell requires six transistors and, like a simple gate, also uses about
1000λ2 of silicon. However, support circuitry also requires space, which is a non-negligible
overhead for RAM smaller than 64 kbytes. A D-type flip-flop typically counts as six gate
equivalents, and hence, uses about 6000λ2.

For technology-independent DSE, the logic delay can be conveniently expressed using scalar
multiples of the FO4 delay (Section 4.6.6). It is then possible to estimate the delay using pre-synthesis
RTL by analysing the complexity of the right-hand expressions andmaking assumptions about the
degree of sub-expression sharing that the logic synthesiser maymake (Section 8.3.1). Appropriate
factorisation and reuse of sub-expressions is obviously beneficial for locally derived results, but with
today’s technology, sending the result of a 32-bit addition a significant fraction of amillimetre across a
chipmay usemore power then recomputing it locally. This can influence themicroarchitecture design
(Section 6.2.4).

281

Modern SoCDesign

applying a transformation on one subsystem prevents or diminishes the effect of another
optimisation on a neighbour. A good example is sub-expression computation. Suppose a logic signal is
needed in two subsystems and the information to generate it is present in both. Is it better to
compute it twice or to compute it in one and send the result to the other with additional wiring? There
are no known algorithms for solving such problems perfectly, apart from exponential trial and error.
Indeed, even the general problem ofminimising the logic within a subsystemwhile ignoring wiring
length is NP-hard. Although that problem is well solved heuristically by Espresso (Section 8.3.8), once
net length and energy design intents (Section 8.3) are added, even the heuristics become complex.

6.2.1 DSEWorkflows
A three-step approach to DSE, starting at the top-level, is as follows:

1. The overall requirements aremanually broken down into tasks.

2. The tasks are allocated to subsystems.

3. The subsystems are designed.

A number of use cases are defined in the system specification. A use casemay correspond to one or
more tasks. All use cases must be supported, but an exclusivitymatrix identifies tasks that do not
need to be supported concurrently. A devicemay have phases of operation, such as start-up, firmware
upgrade and showtime, that are exclusive. Moreover, certain application combinationsmight be
precluded due to the overall load or other reasons, such as providing satellite navigation and
video-conferencing at the same time on amobile phone.

The output of one task is frequently the input to another. These dependencies are defined in the task
dependencymatrix, which controls which tasks can be performed in parallel and limits the available
parallelism (Section 4.2).

For a particular task, the threemain digital resources that need to be provided are: (1) the input and
output bandwidth, (2) storage for intermediate results and (3) a number of arithmetic operations.
On-chip storage in SRAM always offers the highest throughput, but storage capacity limitationsmean
that nearby DRAMmust be used. It is important for the DRAM system to offer sufficient read and
write bandwidth. On the other hand, DRAM capacity is typically a limiting factor only for cloud-scale
algorithms, such as search completions on Google or product suggestions during online shopping on
Amazon. Secondary storage capacity is rarely a restriction at themoment, due to the capacity of SSD
and SD cards. (Magnetic spinningmedia and tape are also relevant, but not for most SoC projects.) A
typical approach for quantifying the requirements of a task is to take an implementation in C and
compile it for a simple processor. A combination of static analysis and running the program then gives
a naive preliminary indication of the key resources needed.

280

Chapter 6 | Architectural Design Exploration

Finally, the designer needs to consider the power supply and heat extraction. Power density
restrictions affect modern system designs and require dark silicon (Section 8.2). If parts of the system
are in different chips, the energy for communicating between those parts goes up, but it is
significantly easier to get heat out.

Although some IP blocks have higher licensing costs than others, to a first approximation, the cost of a
squaremillimetre of silicon on a SoC is the same, regardless of what it is used for. The three important
baseline figures per squaremillimetre of area are:

1. Computation density: Each integer-arithmetic ALU has a silicon area proportional to its precision
in bits. To evaluate a design without regard to a particular silicon geometry, the area can be
expressed in units of square lambda (λ2) (Section 8.2). A 32-bit ripple carry adder needs about 128
two-input gate equivalents and each gate needs about 1000λ2 (Section 8.2.1). A faster adder, such
as the synthesis-friendly Kogge-Stone design, requires four or more times the area. The growth in
area with increasing precision is logarithmic.

2. Communication density: If a logic gate is implemented using polysilicon andmetal layer 1, then
metal layers 2 and 3 are available for wiring and data busses. A wiring pitch of 15λ is easily
achievable, allowing several bits of a bus to pass over a single gate. However, longer busses made of
finewires (6λ pitch) suffer badly from increased resistance and delay (Figure 3.2). A lower pitch and
hence, lower data flux are needed for longer distances or on higher metal layers where lower
fabrication precision is achieved. Some busses need to turn a corner, which can use significant area
for wide busses. This problem arises mainly at themeeting point of blocks that have already been
physically optimised or have a hardened layout (Figure 6.5). The local net width and spacing rules
may have to be adjustedmanually, or else the nets may need to bemanually assigned to a broader
set of metal layers.

3. Storage density: An SRAM cell requires six transistors and, like a simple gate, also uses about
1000λ2 of silicon. However, support circuitry also requires space, which is a non-negligible
overhead for RAM smaller than 64 kbytes. A D-type flip-flop typically counts as six gate
equivalents, and hence, uses about 6000λ2.

For technology-independent DSE, the logic delay can be conveniently expressed using scalar
multiples of the FO4 delay (Section 4.6.6). It is then possible to estimate the delay using pre-synthesis
RTL by analysing the complexity of the right-hand expressions andmaking assumptions about the
degree of sub-expression sharing that the logic synthesiser maymake (Section 8.3.1). Appropriate
factorisation and reuse of sub-expressions is obviously beneficial for locally derived results, but with
today’s technology, sending the result of a 32-bit addition a significant fraction of amillimetre across a
chipmay usemore power then recomputing it locally. This can influence themicroarchitecture design
(Section 6.2.4).

281

Modern SoCDesign

Figure 6.5 Screenshot from a place-and-route tool, showing how the wiring avoids a region of hardened layout (grey area on the right). Some area is required
to route these interconnections

6.2.2 C FunctionalModels
As presented in Section 5.1, designing a subsystem for a SoC often starts with a functional model of
the intended system coded in C/C++. This model embodies the required behaviour of the hardware
implementation. It is an executable specification (Section 7.9) of the system, although its structure is
likely to be unsuitable for direct implementation or HLS (Section 6.9).

As well as defining the functionality, a C/C++model can directly provide an initial estimate of the
computational resources required. Detailed profiling of the programwill reveal its computational
load, whereas amanual inspection of the compiled binary will indicate the size of coefficient ROMs.
The number of load and store operations is not likely to be informative, most likely because a different
control-flow structure will be needed for the hardware implementation (Section 6.2.3). However, the
number of ALU and floating-point operations is very valuable, along with the number of DRAM
activations, if the functional model uses the samememory layout in terms of DRAMuse. Profilingwith
a test load can be performed in four ways:

1. Run the functional model on a workstation and use a C profiler (e.g. gprof) to find the number of
calls of each subroutine. The program can bemanually factored intomore subroutines than strictly
required to obtain finer detail.

2. For all loop bodies, instrument each line of code that performs an arithmetic operation to
increment the global statistics counters, then export the counts to a spreadsheet after each run.

3. For a simple in-order processor, cross-compile the functional model. Instrument the code to take
note of the global clock tick register in the counter/timer block or PMU (Section 2.7.9). Run the
model on any real hardware available and export the timing information to a spreadsheet. Some
PMUsmay break down the number of instructions.

4. Run the functional model on a virtual platformwith the ISS (Section 5.5) in amode that reports the
number of each type of instruction. Cache activity logs are also useful for memory-bound
computations.

282

Chapter 6 | Architectural Design Exploration

Profiling should be runwith different sizes of test load to provide information about the start-up
overhead of themain algorithm so that it can be factored out. The scaling factor should be
determined, which ideally would be linear. The functional model is also a good resource for becoming
familiar with the overall problem domain and for capturing data input and output files from test runs.
These files can be later replayed against ESL and RTLmodels of the system, once it is developed.

Table 6.1 lists the ROM requirements for anMP3 decoder. The constant data entries in a C
implementation of the decoder were examinedwith the objdump utility. The last entry in the .rodata
segment ends at virtual address 0x2350, so about 9 kbytes of ROMare needed before anymirroring
(Section 6.9.1). Table 6.2 reports instrumented figures for theMP3 decoder when generating 16-bit
stereo sound from a 128 kbps input stream. However, the decoder supports various sub-modes of
operation (level 1/2 or level 3) and for both levels, theMP3 dynamically switches between operational
modes depending on the content (transient sounds versus pitched sounds). It also supports many
different bit rates, sample rates and other parameters. Therefore, many experiments are needed to
determine the average and 99th percentile computational load. The worst-case load is best found by
(or at least cross-checked against) a static analysis of the source code.

Table 6.1 Determining the ROM needs of anMP3 decoder by disassembling a segment .rodata

Label Start address (hex)
g_drmp3_pow43-0x120 0x0000
g_drmp3_pow43> 0x120
g_scf_partitions.6678> 0x0c40
…
_end_of_static 0x2350

Table 6.2 Statistics logged during one second of a profile run of MP3 stream decoding. The numbers of integer ALU operations exclude loop control and array
subscription operations

Event type Number of operations
Input bytes 16392
Output frames 44352
DCT operations 154
Floating-point adds and subtracts 874965
Floating-point multiplies 401255
Integer adds and subtracts 162107
Integer multiplies 88704

The instrumented figures should be checked against simple analytic estimates. For instance, we
should expect a data expansion ratio of about 10 to 1. This should correspond to the ratio of input and
output data bits. We know thatMP3 uses overlapping discrete cosine transforms (DCTs)with 576
samples per sound granule (or 192 for occasional short granules) and so the number of transforms per
second should be 44100×2/576 for stereo sound at 44.1 kbps, and so on.

The computational load indicates the number of ALUs needed given a target system clock rate. The
tabulated figures sum to under 10MOPS (million operations per second). This shows thatMP3 audio

283

Modern SoCDesign

Figure 6.5 Screenshot from a place-and-route tool, showing how the wiring avoids a region of hardened layout (grey area on the right). Some area is required
to route these interconnections

6.2.2 C FunctionalModels
As presented in Section 5.1, designing a subsystem for a SoC often starts with a functional model of
the intended system coded in C/C++. This model embodies the required behaviour of the hardware
implementation. It is an executable specification (Section 7.9) of the system, although its structure is
likely to be unsuitable for direct implementation or HLS (Section 6.9).

As well as defining the functionality, a C/C++model can directly provide an initial estimate of the
computational resources required. Detailed profiling of the programwill reveal its computational
load, whereas amanual inspection of the compiled binary will indicate the size of coefficient ROMs.
The number of load and store operations is not likely to be informative, most likely because a different
control-flow structure will be needed for the hardware implementation (Section 6.2.3). However, the
number of ALU and floating-point operations is very valuable, along with the number of DRAM
activations, if the functional model uses the samememory layout in terms of DRAMuse. Profilingwith
a test load can be performed in four ways:

1. Run the functional model on a workstation and use a C profiler (e.g. gprof) to find the number of
calls of each subroutine. The program can bemanually factored intomore subroutines than strictly
required to obtain finer detail.

2. For all loop bodies, instrument each line of code that performs an arithmetic operation to
increment the global statistics counters, then export the counts to a spreadsheet after each run.

3. For a simple in-order processor, cross-compile the functional model. Instrument the code to take
note of the global clock tick register in the counter/timer block or PMU (Section 2.7.9). Run the
model on any real hardware available and export the timing information to a spreadsheet. Some
PMUsmay break down the number of instructions.

4. Run the functional model on a virtual platformwith the ISS (Section 5.5) in amode that reports the
number of each type of instruction. Cache activity logs are also useful for memory-bound
computations.

282

Chapter 6 | Architectural Design Exploration

Profiling should be runwith different sizes of test load to provide information about the start-up
overhead of themain algorithm so that it can be factored out. The scaling factor should be
determined, which ideally would be linear. The functional model is also a good resource for becoming
familiar with the overall problem domain and for capturing data input and output files from test runs.
These files can be later replayed against ESL and RTLmodels of the system, once it is developed.

Table 6.1 lists the ROM requirements for anMP3 decoder. The constant data entries in a C
implementation of the decoder were examinedwith the objdump utility. The last entry in the .rodata
segment ends at virtual address 0x2350, so about 9 kbytes of ROMare needed before anymirroring
(Section 6.9.1). Table 6.2 reports instrumented figures for theMP3 decoder when generating 16-bit
stereo sound from a 128 kbps input stream. However, the decoder supports various sub-modes of
operation (level 1/2 or level 3) and for both levels, theMP3 dynamically switches between operational
modes depending on the content (transient sounds versus pitched sounds). It also supports many
different bit rates, sample rates and other parameters. Therefore, many experiments are needed to
determine the average and 99th percentile computational load. The worst-case load is best found by
(or at least cross-checked against) a static analysis of the source code.

Table 6.1 Determining the ROM needs of anMP3 decoder by disassembling a segment .rodata

Label Start address (hex)
g_drmp3_pow43-0x120 0x0000
g_drmp3_pow43> 0x120
g_scf_partitions.6678> 0x0c40
…
_end_of_static 0x2350

Table 6.2 Statistics logged during one second of a profile run of MP3 stream decoding. The numbers of integer ALU operations exclude loop control and array
subscription operations

Event type Number of operations
Input bytes 16392
Output frames 44352
DCT operations 154
Floating-point adds and subtracts 874965
Floating-point multiplies 401255
Integer adds and subtracts 162107
Integer multiplies 88704

The instrumented figures should be checked against simple analytic estimates. For instance, we
should expect a data expansion ratio of about 10 to 1. This should correspond to the ratio of input and
output data bits. We know thatMP3 uses overlapping discrete cosine transforms (DCTs)with 576
samples per sound granule (or 192 for occasional short granules) and so the number of transforms per
second should be 44100×2/576 for stereo sound at 44.1 kbps, and so on.

The computational load indicates the number of ALUs needed given a target system clock rate. The
tabulated figures sum to under 10MOPS (million operations per second). This shows thatMP3 audio

283

Modern SoCDesign

decoding is a taxing operation for low-clock-rate embedded CPUs, but not a problem for a single core
of a tablet- or laptop-grade processor. However, the reference implementation uses floating-point
arithmetic and is certainly not appropriate for a low-energy implementation suitable for embedding in
a spectacle stem or hearing aid.

6.2.3 FunctionalModel Refactoring to ESL
Although a software functional model can directly provide useful ALU operation count and ROM size
metrics, it generally requires manual refactoring in a number of ways before datamovement and
parallelismmetrics can be explored. A suitably refactoredmodel can serve as an electronic system
level (ESL)model (Chapter 5). Typical refactoring operations include:

Disabling unused options: The programwill typically includemany options that are irrelevant.
These include conditional compilation options for alternative operating systems (e.g. Android and
Windows). Theymay include support for different output variations. TheMP3 example supports
10 audio device drivers whereas only raw PCMoutput was required. Theremay be options to
exploit various SIMD instruction sets, such as SSE2 or ArmNEON. For instance, anAdvanced
Encryption Standard (AES) encoder/decoder would typically check whether the target processor
has AES instructions. If not, it would use everyday instructions instead. All non-essential code
should be deleted.

Splitting off management functions: Most data-intensive applications that are acceleration
targets contain dedicated code for starting, stopping and configuring options. These are likely to be
retained in the software and need newmechanisms for interconnection to the accelerated data
paths. Section 6.4.2 discusses manual co-design factoring of control functions to convey
parameters via a programmed I/O (PIO) register bank. Similar mechanisms are needed if exceptions
are raised or for access to the file system.

Splitting off coefficient computations: The functional model may compute large tables of
constants when it starts, such as sinewaves andwindow functions. For a hardware implementation,
these are placed in ROMor else RAM that is initialised by the host processor.

Static allocation: Hardware implementations often use statically allocatedmemory pools or
dedicated SRAM. The software versionmakes dynamic allocations on the stack and heap. To
convert to static form, the size of each resource needs to be analysed from the system specification
and for all available test loads. If a resource is to remain in DRAM, a base address in the PIO
configuration bank can be used, written by the host at start-up time.

Changing the thread library: A portable program that can run onWindows and Linux is already
likely to use a shim layer to abstract the threading primitives of each substrate. It may be useful to
replace or augment the abstraction to use the SystemC threading system (Section 5.3) so that the
functions performed by the various threads can be placed in separate hardware components.

284

Chapter 6 | Architectural Design Exploration

Changing the control flow: The control-flow graph of the software implementation is likely to be
irrelevant for hardware acceleration. In software, various subsystems are likely to be
interconnected usingmethod calls. In theMP3 example, themain IDCT decoder was invoked as a
subroutine of the Huffman decoder, whereas for DSE experiments, other paradigms need to be
explored, such as running each component in its own thread and using FIFO channels with a
mailbox design (Section 6.3.4). To exploit greater parallelism than present in the functional model,
finer-grainedwork units need to be identified. The loop-splitting transform takes a loopwith no
loop-carried dependencies (Section 6.9.1) and creates two ormore similar loops that share out the
original loop range. Each new loop needs to bewrapped up as amethodwith a signature suitable
for running as an autonomous thread.

Changing the precision: A software implementation will use the predefined native word sizes of
the C language (8, 16, 32 and 64). Energy efficiency in hardware is achieved using custom field
widths. Changing the definition of all variables to use an arbitrary- precision library (Section 5.3)
can be done using global edits of the source code. Thewidths themselves can then be adjusted
during DSE or automatically by some synthesis back ends. A custom data encoding can be explored
by overloading all the standard operators in C++.

Rather than using two’s complement or IEEE floating-point arithmetic, a hardware implementation
can often benefit from using custom data encoding. For certain functions, especially those withmany
probability computations, values are commonly stored as logarithms. Multiplication can then be
replacedwith addition. Although logarithms cannot express negative numbers directly, it is simple to
add an additional sign bit. For instance, a 6-bit field could use themost significant bit to hold the sign.
All zeroes would represent 0, and the remaining values would represent geometric values of the form
1.5j. Unity is representedwith j=0. All arithmetic operations on these values can be directly
implemented in small ROMs of 212 =4096 entries, or just 1024 entries if the sign bit is handled in
logic. Higher-precision temporary results are typically maintained to avoid an underflow
(Section 6.8.1) during accumulation operations (running sums) or when necessary. A ROM
implementation can easily support saturating arithmetic, as commonly required in DSP applications.
In saturating arithmetic, an overflow is replacedwith an underflow. For instance, in 8-bit two’s
complement encoding, 127+2will return 127 (0x7f) instead of−127 (0x81). Applications for which a
custom numeric representation can produce a significant energy saving include neural networks,
low-density parity check decoding and the Viterbi algorithm.

After all these changes, the C/C++ program should still work, producing the same output as it did
before, but it is likely to be less efficient. This does not matter, of course.

6.2.4 Microarchitecture of a Subsystem
Themicroarchitecture of a subsystem is equivalent to its data path, as it is the layout of data busses
between its functional units (FUs), such as register files and ALUs (Section 6.8.1).

285

Modern SoCDesign

decoding is a taxing operation for low-clock-rate embedded CPUs, but not a problem for a single core
of a tablet- or laptop-grade processor. However, the reference implementation uses floating-point
arithmetic and is certainly not appropriate for a low-energy implementation suitable for embedding in
a spectacle stem or hearing aid.

6.2.3 FunctionalModel Refactoring to ESL
Although a software functional model can directly provide useful ALU operation count and ROM size
metrics, it generally requires manual refactoring in a number of ways before datamovement and
parallelismmetrics can be explored. A suitably refactoredmodel can serve as an electronic system
level (ESL)model (Chapter 5). Typical refactoring operations include:

Disabling unused options: The programwill typically includemany options that are irrelevant.
These include conditional compilation options for alternative operating systems (e.g. Android and
Windows). Theymay include support for different output variations. TheMP3 example supports
10 audio device drivers whereas only raw PCMoutput was required. Theremay be options to
exploit various SIMD instruction sets, such as SSE2 or ArmNEON. For instance, anAdvanced
Encryption Standard (AES) encoder/decoder would typically check whether the target processor
has AES instructions. If not, it would use everyday instructions instead. All non-essential code
should be deleted.

Splitting off management functions: Most data-intensive applications that are acceleration
targets contain dedicated code for starting, stopping and configuring options. These are likely to be
retained in the software and need newmechanisms for interconnection to the accelerated data
paths. Section 6.4.2 discusses manual co-design factoring of control functions to convey
parameters via a programmed I/O (PIO) register bank. Similar mechanisms are needed if exceptions
are raised or for access to the file system.

Splitting off coefficient computations: The functional model may compute large tables of
constants when it starts, such as sinewaves andwindow functions. For a hardware implementation,
these are placed in ROMor else RAM that is initialised by the host processor.

Static allocation: Hardware implementations often use statically allocatedmemory pools or
dedicated SRAM. The software versionmakes dynamic allocations on the stack and heap. To
convert to static form, the size of each resource needs to be analysed from the system specification
and for all available test loads. If a resource is to remain in DRAM, a base address in the PIO
configuration bank can be used, written by the host at start-up time.

Changing the thread library: A portable program that can run onWindows and Linux is already
likely to use a shim layer to abstract the threading primitives of each substrate. It may be useful to
replace or augment the abstraction to use the SystemC threading system (Section 5.3) so that the
functions performed by the various threads can be placed in separate hardware components.

284

Chapter 6 | Architectural Design Exploration

Changing the control flow: The control-flow graph of the software implementation is likely to be
irrelevant for hardware acceleration. In software, various subsystems are likely to be
interconnected usingmethod calls. In theMP3 example, themain IDCT decoder was invoked as a
subroutine of the Huffman decoder, whereas for DSE experiments, other paradigms need to be
explored, such as running each component in its own thread and using FIFO channels with a
mailbox design (Section 6.3.4). To exploit greater parallelism than present in the functional model,
finer-grainedwork units need to be identified. The loop-splitting transform takes a loopwith no
loop-carried dependencies (Section 6.9.1) and creates two ormore similar loops that share out the
original loop range. Each new loop needs to bewrapped up as amethodwith a signature suitable
for running as an autonomous thread.

Changing the precision: A software implementation will use the predefined native word sizes of
the C language (8, 16, 32 and 64). Energy efficiency in hardware is achieved using custom field
widths. Changing the definition of all variables to use an arbitrary- precision library (Section 5.3)
can be done using global edits of the source code. Thewidths themselves can then be adjusted
during DSE or automatically by some synthesis back ends. A custom data encoding can be explored
by overloading all the standard operators in C++.

Rather than using two’s complement or IEEE floating-point arithmetic, a hardware implementation
can often benefit from using custom data encoding. For certain functions, especially those withmany
probability computations, values are commonly stored as logarithms. Multiplication can then be
replacedwith addition. Although logarithms cannot express negative numbers directly, it is simple to
add an additional sign bit. For instance, a 6-bit field could use themost significant bit to hold the sign.
All zeroes would represent 0, and the remaining values would represent geometric values of the form
1.5j. Unity is representedwith j=0. All arithmetic operations on these values can be directly
implemented in small ROMs of 212 =4096 entries, or just 1024 entries if the sign bit is handled in
logic. Higher-precision temporary results are typically maintained to avoid an underflow
(Section 6.8.1) during accumulation operations (running sums) or when necessary. A ROM
implementation can easily support saturating arithmetic, as commonly required in DSP applications.
In saturating arithmetic, an overflow is replacedwith an underflow. For instance, in 8-bit two’s
complement encoding, 127+2will return 127 (0x7f) instead of−127 (0x81). Applications for which a
custom numeric representation can produce a significant energy saving include neural networks,
low-density parity check decoding and the Viterbi algorithm.

After all these changes, the C/C++ program should still work, producing the same output as it did
before, but it is likely to be less efficient. This does not matter, of course.

6.2.4 Microarchitecture of a Subsystem
Themicroarchitecture of a subsystem is equivalent to its data path, as it is the layout of data busses
between its functional units (FUs), such as register files and ALUs (Section 6.8.1).

285

Modern SoCDesign

Once tasks have been allocated to subsystems, themicroarchitecture for each subsystemmust be
designed. Whether the subsystem is based on a processor or custom hardware, one of themost
influential aspects is how datamoves in and out. DMA (Section 2.7.5) is often the obvious choice, but
in reality themain difference betweenDMA and PIO on a simple core is the instruction fetch
overhead of the simple core, since thememory bandwidth, bus bandwidth and energy for data
movement are essentially unchanged.

If custom hardware is to be used, themicroarchitecture can either be designedmanually or created
using HLS (Section 6.9) or similar tools. In both cases, themicroarchitecture is dominated by the
layout of data in memory. Most arithmetic operations are comparatively cheap. Multiplying or
dividing by powers of two is free for integer arithmetic and requires a small adder for floating point.
Likewise, the absolute value function and negation functions are free, or virtually free, for
floating-point arithmetic. On the other hand, multiplying largemantissa numbers, such as 64-bit
integers when both arguments are variable, is expensive and should be avoided if possible. Division
should also generally be avoided, by, for instance, multiplying by the reciprocal. Single-precision
floating-point multiplication requires only a 24-bit multiplier, so does not have a significant cost.

In modern silicon, energy costs aremore troublesome than area costs, and energy use primarily arises
from going off chip, frommoving data a long distance over the chip or from considerable use of
multiplexing. Recall that themost powerful component in a software implementation is thememory
system. Knuth’s classic book on algorithms, The Art of Computer Programming [1], extensively uses
arrays, which were seen as a low-cost atomic operation, but this does not hold for modern hardware.
GPU architectures achieve high performance using a constrainedmemorymodel. Random accesses
from processing elements (PEs) to flat memory space is banned (Section 6.9.1). High-performance
processors use energy-hungry cache structures to give the illusion of random access, whereas
low-energy approaches use scratchpads (Section 2.3) wherememory layout optimisations are
performed at compile time.

A principal issue inmicroarchitecture design is avoiding the threemain forms of hazard (Section 6.3).
Mirroring data overmultiple memories and using dual-port memories are solutions, but this is
resource-expensive (Section 2.6.5). Allowing components to operate asynchronously using FIFO
buffers (Section 6.3.4) can reduce busy waiting and stalls, but havingmany small memories, FIFO
buffers and so on can be area-expensive due to the lack of statistical sharing of the available storage
(Section 4.3.3).

Finding a suitable microarchitecture for a subsystem requires considerable effort. If it proves to be
difficult, despite rapid feedback from a high-level virtual platform (Chapter 5), it is often sensible to
start again and consider a different algorithm or data layout. Many problems involve themanipulation
of sparse arrays. Graph algorithms are themain example. There are two adjacency list projections for
a graph algorithm: edge centric and node centric. Typically a graph hasmore edges than nodes. In an
edge-centric graph, the iteration is over the edges, whichmay be streamed past an array of PEs. In
contrast, for a node-centric graph, the iteration is over the nodes. Nodes vary in arity and the data
flow is, thus, irregular. For several mainstream problems, such as finding the single-source shortest

286

Chapter 6 | Architectural Design Exploration

path, the classical algorithm devised by Dijkstra, which is optimal on a single-core processor, is
unsuitable for attaining a parallel speedup. Using an alternative algorithm is oftenmuch better than
trying tomake small improvements to themicroarchitecture.

6.2.5 Interconnect Optimisation
Minimising the energy required for communications is generally one of the top concerns in SoC
design. Thus, it is important to consider the design and optimisation of an interconnect.

The goodness metric for interconnect design includes the usual silicon area, net length and energy
costs. These can be based on the same high-level parametric formulae embedded in an ESLmodel of
the canvas parts. These formulae were obtained from fitting curves to RTL synthesis data for each
part in isolation. Also included in a cost model for NoC-based designs are throughput, QoS andHoL
penalties. Incorporating these aspects is more difficult, since it is easy to form ametric with a very
‘bumpy’ surface that performs badly in a hill-climbing search. For instance, it is unclear whether the
scalar reduction to goodness should give a positive or negative credit to aspects of the design that
providemore throughput than is needed.

Fortunately, the goodness metric needs to designed only once for any interconnect tool flow. Its
behaviour can be extensively analysed from hill-climbing traces for benchmark designs. The end user
then benefits from a fast solution. Machine learning techniques can be used.

Two approaches for seeding an automated interconnect generation process are agglomerative
clustering and the Steiner tree approach, as presented in Section 3.9. Agglomerative clustering is a
constructive algorithm (Section 6.2) that starts by placing each source and destination in its own set
and then successively combining sets by interconnecting themwith switching elements. It uses only
radix-3 elements, so local or global optimisations are also applied to conglomerate simple elements
into higher arity elements, if available.

If hill climbing uses only mutations that consist of the smallest possible changes in any dimension,
then it is a local search. Making large changes to a design point can lead to hunting by the algorithm
and poor convergence. An exploration based entirely on local searches in the vicinity of working
solutions cannot find the optimum solution if the optimum is disconnected from all seed points.
However, before its quench phase, simulated annealing (Section 6.2) based on local searching can
follow paths through non-working design points.

Fortunately, local searches are extremely effective for solving facility location problems [2].
Classically, in a facility location problem, the location of a new parcel sorting office has to be chosen
due to the closure of an existing one. The aim is tominimise the cost of conveying parcels between a
fixed set of customers. If switching elements are treated as facilities and the aim is tominimise the net
length while avoiding obstacles, then the topology generation problem is very similar to facility
location problems. Hence, it can be solvedwell by a local search.

287

Modern SoCDesign

Once tasks have been allocated to subsystems, themicroarchitecture for each subsystemmust be
designed. Whether the subsystem is based on a processor or custom hardware, one of themost
influential aspects is how datamoves in and out. DMA (Section 2.7.5) is often the obvious choice, but
in reality themain difference betweenDMA and PIO on a simple core is the instruction fetch
overhead of the simple core, since thememory bandwidth, bus bandwidth and energy for data
movement are essentially unchanged.

If custom hardware is to be used, themicroarchitecture can either be designedmanually or created
using HLS (Section 6.9) or similar tools. In both cases, themicroarchitecture is dominated by the
layout of data in memory. Most arithmetic operations are comparatively cheap. Multiplying or
dividing by powers of two is free for integer arithmetic and requires a small adder for floating point.
Likewise, the absolute value function and negation functions are free, or virtually free, for
floating-point arithmetic. On the other hand, multiplying largemantissa numbers, such as 64-bit
integers when both arguments are variable, is expensive and should be avoided if possible. Division
should also generally be avoided, by, for instance, multiplying by the reciprocal. Single-precision
floating-point multiplication requires only a 24-bit multiplier, so does not have a significant cost.

In modern silicon, energy costs aremore troublesome than area costs, and energy use primarily arises
from going off chip, frommoving data a long distance over the chip or from considerable use of
multiplexing. Recall that themost powerful component in a software implementation is thememory
system. Knuth’s classic book on algorithms, The Art of Computer Programming [1], extensively uses
arrays, which were seen as a low-cost atomic operation, but this does not hold for modern hardware.
GPU architectures achieve high performance using a constrainedmemorymodel. Random accesses
from processing elements (PEs) to flat memory space is banned (Section 6.9.1). High-performance
processors use energy-hungry cache structures to give the illusion of random access, whereas
low-energy approaches use scratchpads (Section 2.3) wherememory layout optimisations are
performed at compile time.

A principal issue inmicroarchitecture design is avoiding the threemain forms of hazard (Section 6.3).
Mirroring data overmultiple memories and using dual-port memories are solutions, but this is
resource-expensive (Section 2.6.5). Allowing components to operate asynchronously using FIFO
buffers (Section 6.3.4) can reduce busy waiting and stalls, but havingmany small memories, FIFO
buffers and so on can be area-expensive due to the lack of statistical sharing of the available storage
(Section 4.3.3).

Finding a suitable microarchitecture for a subsystem requires considerable effort. If it proves to be
difficult, despite rapid feedback from a high-level virtual platform (Chapter 5), it is often sensible to
start again and consider a different algorithm or data layout. Many problems involve themanipulation
of sparse arrays. Graph algorithms are themain example. There are two adjacency list projections for
a graph algorithm: edge centric and node centric. Typically a graph hasmore edges than nodes. In an
edge-centric graph, the iteration is over the edges, whichmay be streamed past an array of PEs. In
contrast, for a node-centric graph, the iteration is over the nodes. Nodes vary in arity and the data
flow is, thus, irregular. For several mainstream problems, such as finding the single-source shortest

286

Chapter 6 | Architectural Design Exploration

path, the classical algorithm devised by Dijkstra, which is optimal on a single-core processor, is
unsuitable for attaining a parallel speedup. Using an alternative algorithm is oftenmuch better than
trying tomake small improvements to themicroarchitecture.

6.2.5 Interconnect Optimisation
Minimising the energy required for communications is generally one of the top concerns in SoC
design. Thus, it is important to consider the design and optimisation of an interconnect.

The goodness metric for interconnect design includes the usual silicon area, net length and energy
costs. These can be based on the same high-level parametric formulae embedded in an ESLmodel of
the canvas parts. These formulae were obtained from fitting curves to RTL synthesis data for each
part in isolation. Also included in a cost model for NoC-based designs are throughput, QoS andHoL
penalties. Incorporating these aspects is more difficult, since it is easy to form ametric with a very
‘bumpy’ surface that performs badly in a hill-climbing search. For instance, it is unclear whether the
scalar reduction to goodness should give a positive or negative credit to aspects of the design that
providemore throughput than is needed.

Fortunately, the goodness metric needs to designed only once for any interconnect tool flow. Its
behaviour can be extensively analysed from hill-climbing traces for benchmark designs. The end user
then benefits from a fast solution. Machine learning techniques can be used.

Two approaches for seeding an automated interconnect generation process are agglomerative
clustering and the Steiner tree approach, as presented in Section 3.9. Agglomerative clustering is a
constructive algorithm (Section 6.2) that starts by placing each source and destination in its own set
and then successively combining sets by interconnecting themwith switching elements. It uses only
radix-3 elements, so local or global optimisations are also applied to conglomerate simple elements
into higher arity elements, if available.

If hill climbing uses only mutations that consist of the smallest possible changes in any dimension,
then it is a local search. Making large changes to a design point can lead to hunting by the algorithm
and poor convergence. An exploration based entirely on local searches in the vicinity of working
solutions cannot find the optimum solution if the optimum is disconnected from all seed points.
However, before its quench phase, simulated annealing (Section 6.2) based on local searching can
follow paths through non-working design points.

Fortunately, local searches are extremely effective for solving facility location problems [2].
Classically, in a facility location problem, the location of a new parcel sorting office has to be chosen
due to the closure of an existing one. The aim is tominimise the cost of conveying parcels between a
fixed set of customers. If switching elements are treated as facilities and the aim is tominimise the net
length while avoiding obstacles, then the topology generation problem is very similar to facility
location problems. Hence, it can be solvedwell by a local search.

287

Modern SoCDesign

When optimising an interconnect, several local change operations can be utilised, although some are
suitable only for NoC-based solutions. Each preserves operational correctness. Some of these are as
follows:

switch_vc: In this change operation, virtual circuit (VC) assignments are twiddled to arrive at a
different solution. The choice of VC andwhich traffic entry to twiddle the VC on are based on
heuristics, such as traffic criticality andHoL conflicts.

1: procedure switch_vc
2: for each route from src to dst do
3: for e in the route do
4: VC_set[v][src] = e
5: Compute edge-set intersection for each pair of VCs
6: random_shuffle(edge-intersection < threshold)
7: merge_vcs(pick lowest selected VC)

switch_route: In this change operation, part of a static route is modified, based on element port
utilisation, to distribute traffic evenly across ports. Prohibited edges are checked to prevent a cycle
from causing a deadlock (Section 3.4.3).

1: procedure switch_route
2: for each route from src to dst do
3: for each unconsidered edge e in the route do
4: Tag e as considered
5: src_r = source(edge e)
6: tx_p = least_utilised_port(src_r)
7: if path_exists(tx_p, dst) then
8: p = shortest_path(from tx_p, dst)
9: Save alternative candidate for route
10: break
11: else
12: continue
13: Update all the route vectors from the candidate

switch_end_point_port: An end point is rewired to a a different hub or switching element in the
vicinity to generate another solution.

switch_router: A switching element is interchangedwith another in the vicinity and all the
connectionsmoved to the new one.

switch_path_based_on_traffic: An entire path is switched to an alternative to generate a new
solution.

switch_end_point_vc: A VC at an end point or protocol-converting bridge transmit port is
switched to a new one, while ensuring that deadlocks do not occur due to this change.

merge_vc: Two transmit VCs from a protocol-converting bridge aremerged. That is, one of the VCs
is chosen to represent both of them as a new solution. Deadlock constraints are honoured, as in
switch_end_point_vc and switch_vc above.

288

Chapter 6 | Architectural Design Exploration

merge_end_point_ports: Multiple routes originating from a common bridge transmit port are
merged to generate a new solution.

1: procedure merge_end_point_ports
2: For all bridges, compute average and peak rates for the system
3: random_shuffle(bridges where average and peak < threshold)
4: for bridges do
5: Merge all the routes across all ports
6: Update the route vectors

6.3 Hazards
The design and optimisation of amicroarchitecture typically attempt tomaximise the utilisation of a
minimal number of FUs, such as register files and ALUs (Section 6.8.1). In today’s SoCs, having a larger
number of FUs is not a severe problem provided they have low static-power dissipation
(Section 4.6.1). However, minimising the overall distance of datamovement is also a primary aim.
Usingmore siliconmakes nets longer. As well as average utilisation, the performance of a subsystem
depends on its clock frequency and degree of parallelism. The clock frequency can be increased using
more pipelining (Section 4.4.2), but this can also increase the hazard penalty, which is the cost of
recovering from or avoiding a hazard. Hazards cause stalls or misspeculation, both of which reduce
the throughput of a subsystem.

A pipeline stall is essentially a clock gating step (Section 4.6.9) at a certain stage in the pipeline
beyondwhich the content of architectural registers is not updated.

Amisspeculation occurs when the wrong data are processed. No results can be committed to
primary state registers or RAMuntil the speculation guard is qualified (i.e. the true result is known).

Both situations arise from hazards and have a penalty. A good design avoids hazards andminimises
the penalty incurred from each remaining hazard. Themain forms of hazard are:

Write-after-write (WaW) hazard: Onewrite must occur after another otherwise the wrong
answer persists.

Read-after-write (RaW) or write-after-read (WaR) hazard: The write and read at a locationmust
not be accidentally permuted.

Other data hazard: Part of a pipeline stalls if an operand simply has not arrived in time for use.

Control hazard: When it is not yet clear whether the results of an operation should be committed
(but the computation can still start speculatively).

289

Modern SoCDesign

When optimising an interconnect, several local change operations can be utilised, although some are
suitable only for NoC-based solutions. Each preserves operational correctness. Some of these are as
follows:

switch_vc: In this change operation, virtual circuit (VC) assignments are twiddled to arrive at a
different solution. The choice of VC andwhich traffic entry to twiddle the VC on are based on
heuristics, such as traffic criticality andHoL conflicts.

1: procedure switch_vc
2: for each route from src to dst do
3: for e in the route do
4: VC_set[v][src] = e
5: Compute edge-set intersection for each pair of VCs
6: random_shuffle(edge-intersection < threshold)
7: merge_vcs(pick lowest selected VC)

switch_route: In this change operation, part of a static route is modified, based on element port
utilisation, to distribute traffic evenly across ports. Prohibited edges are checked to prevent a cycle
from causing a deadlock (Section 3.4.3).

1: procedure switch_route
2: for each route from src to dst do
3: for each unconsidered edge e in the route do
4: Tag e as considered
5: src_r = source(edge e)
6: tx_p = least_utilised_port(src_r)
7: if path_exists(tx_p, dst) then
8: p = shortest_path(from tx_p, dst)
9: Save alternative candidate for route
10: break
11: else
12: continue
13: Update all the route vectors from the candidate

switch_end_point_port: An end point is rewired to a a different hub or switching element in the
vicinity to generate another solution.

switch_router: A switching element is interchangedwith another in the vicinity and all the
connectionsmoved to the new one.

switch_path_based_on_traffic: An entire path is switched to an alternative to generate a new
solution.

switch_end_point_vc: A VC at an end point or protocol-converting bridge transmit port is
switched to a new one, while ensuring that deadlocks do not occur due to this change.

merge_vc: Two transmit VCs from a protocol-converting bridge aremerged. That is, one of the VCs
is chosen to represent both of them as a new solution. Deadlock constraints are honoured, as in
switch_end_point_vc and switch_vc above.

288

Chapter 6 | Architectural Design Exploration

merge_end_point_ports: Multiple routes originating from a common bridge transmit port are
merged to generate a new solution.

1: procedure merge_end_point_ports
2: For all bridges, compute average and peak rates for the system
3: random_shuffle(bridges where average and peak < threshold)
4: for bridges do
5: Merge all the routes across all ports
6: Update the route vectors

6.3 Hazards
The design and optimisation of amicroarchitecture typically attempt tomaximise the utilisation of a
minimal number of FUs, such as register files and ALUs (Section 6.8.1). In today’s SoCs, having a larger
number of FUs is not a severe problem provided they have low static-power dissipation
(Section 4.6.1). However, minimising the overall distance of datamovement is also a primary aim.
Usingmore siliconmakes nets longer. As well as average utilisation, the performance of a subsystem
depends on its clock frequency and degree of parallelism. The clock frequency can be increased using
more pipelining (Section 4.4.2), but this can also increase the hazard penalty, which is the cost of
recovering from or avoiding a hazard. Hazards cause stalls or misspeculation, both of which reduce
the throughput of a subsystem.

A pipeline stall is essentially a clock gating step (Section 4.6.9) at a certain stage in the pipeline
beyondwhich the content of architectural registers is not updated.

Amisspeculation occurs when the wrong data are processed. No results can be committed to
primary state registers or RAMuntil the speculation guard is qualified (i.e. the true result is known).

Both situations arise from hazards and have a penalty. A good design avoids hazards andminimises
the penalty incurred from each remaining hazard. Themain forms of hazard are:

Write-after-write (WaW) hazard: Onewrite must occur after another otherwise the wrong
answer persists.

Read-after-write (RaW) or write-after-read (WaR) hazard: The write and read at a locationmust
not be accidentally permuted.

Other data hazard: Part of a pipeline stalls if an operand simply has not arrived in time for use.

Control hazard: When it is not yet clear whether the results of an operation should be committed
(but the computation can still start speculatively).

289

Modern SoCDesign

Name alias hazard: When it cannot be determined in advance whether two subscripts to an array
(of RAM address bus values) are going to be equal.

Structural hazard: There are insufficient physical resources to do everything at once.

Sometimes a hazard can be classed inmore than oneway. For instance, if the address to a register file
has not yet arrived, there is a data hazard on the address, but this could be regarded as a control
hazard for the register file operation (read or write). However, changing the classification does not
alter the associated penalty!

A structural hazard occurs when an operation cannot proceed because a resource is already in use.
Structural hazardsmay occur for the following reasons:

memories and register files have insufficient ports

memories, especially DRAM, have variable latency

there are not enoughmirrorable FUs (Section 6.8.1) for all the arithmetic in the current clock tick

when a resource is not fully pipelined, i.e. it cannot accept newworkwhen it is busy.

A fully pipelined FU can start a new operation on every clock cycle. Such components have a fixed
latency (pipeline delay). They are common, and they are the easiest components to form schedules
around. Two non-fully pipelined FU forms are:

1. Those that have a re-initiation interval greater than unity. For example, the component might
accept new data every third clock cycle but still have a fixed latency.

2. Those with a pair of handshakewires that kick off processing and inform the client logic when it is
busy or ready, respectively. This arrangement is used for computations that are performed better
with variable latency, such as wide-wordmultiplications and divisions.

Synchronous RAMs, andmost complex ALUs, excluding division, are generally fully pipelined and have
a fixed latency. An example of a component that cannot accept new input data every clock cycle (i.e. it
is not fully pipelined) is a sequential longmultiplier, as described in Section 6.9. The adjective ‘flash’ is
sometimes used for a combinational (or single-cycle) implementation of an FU. For example, a flash
multiplier operates in less than one clock cycle and uses quadratic silicon area. (Although, in theory,
n logn area is possible for enormousmultipliers.)

290

Chapter 6 | Architectural Design Exploration

6.3.1 Hazards FromArrayMemories
A structural hazard in an RTL design canmake the RTL non-synthesisable (Section 8.3.2). Consider the
following expressions. Theymake liberal use of array subscription and themultiplier operator. The
structural hazard sources are numbered:

always @(posedge clk) begin
q0 <= Boz[e3] // 3
q1 <= Foo[e0] + Foo[e1]; // 1
q2 <= Bar[Bar[e2]]; // 2
q3 <= a*b + c*d; // 4
q4 <= Boz[e4] // 3
end

1. The RAMs or register files Foo, Bar and Bozmay not have two read ports.

2. Evenwith two ports, can Bar perform the double subscription in one clock cycle?

3. Read operations on Bozmay be a long way apart in the code, so the hazard is hard to spot.

4. The cost of providing two flashmultipliers for use in one clock cycle, which then lie idlemuch of the
rest of the time, is likely not warranted.

RAMs have a small number of ports but when RTL arrays are held in RAM, it is easy to write RTL
expressions that require many operations on the contents of a RAM in one operation, even from
within one thread. For instance, wemight need to implement three operations on a RAM:

A[x] <= A[y + A[z]]

Moreover, this requires a combinational read port on the RAM, which is normally not feasible for
more than a few kilobytes.

Because it is a very low-level language, RTL typically requires the user to schedule port usemanually.
To overcome hazards automatically, stalls and holding registers need to be inserted. The
programmer’s original model of the designmust be stalled when ports are reused in the time domain
and require extra clock cycles to copy data to and from the holding registers. This is not a feature of
standard RTL, so it must be done either by hand or automatically using the put/get paradigm of
Bluespec (Section 6.8.5) or general HLS (Section 6.9). The put/get approachmakes the sending
(putting) of arguments asynchronous to the getting of results, as on a split-port bus (Section 3.1.3). In
contrast, HLS uses a compile-time static schedule that understands static pipeline delays and stalls
the entire schedule if any component is not ready.

6.3.2 Overcoming Structural Hazards using Holding Registers
Oneway to overcome a structural hazard is to deploymore resources. These will suffer
correspondingly less contention. For instance, wemight have threemultipliers instead of one. This is

291

Modern SoCDesign

Name alias hazard: When it cannot be determined in advance whether two subscripts to an array
(of RAM address bus values) are going to be equal.

Structural hazard: There are insufficient physical resources to do everything at once.

Sometimes a hazard can be classed inmore than oneway. For instance, if the address to a register file
has not yet arrived, there is a data hazard on the address, but this could be regarded as a control
hazard for the register file operation (read or write). However, changing the classification does not
alter the associated penalty!

A structural hazard occurs when an operation cannot proceed because a resource is already in use.
Structural hazardsmay occur for the following reasons:

memories and register files have insufficient ports

memories, especially DRAM, have variable latency

there are not enoughmirrorable FUs (Section 6.8.1) for all the arithmetic in the current clock tick

when a resource is not fully pipelined, i.e. it cannot accept newworkwhen it is busy.

A fully pipelined FU can start a new operation on every clock cycle. Such components have a fixed
latency (pipeline delay). They are common, and they are the easiest components to form schedules
around. Two non-fully pipelined FU forms are:

1. Those that have a re-initiation interval greater than unity. For example, the component might
accept new data every third clock cycle but still have a fixed latency.

2. Those with a pair of handshakewires that kick off processing and inform the client logic when it is
busy or ready, respectively. This arrangement is used for computations that are performed better
with variable latency, such as wide-wordmultiplications and divisions.

Synchronous RAMs, andmost complex ALUs, excluding division, are generally fully pipelined and have
a fixed latency. An example of a component that cannot accept new input data every clock cycle (i.e. it
is not fully pipelined) is a sequential longmultiplier, as described in Section 6.9. The adjective ‘flash’ is
sometimes used for a combinational (or single-cycle) implementation of an FU. For example, a flash
multiplier operates in less than one clock cycle and uses quadratic silicon area. (Although, in theory,
n logn area is possible for enormousmultipliers.)

290

Chapter 6 | Architectural Design Exploration

6.3.1 Hazards FromArrayMemories
A structural hazard in an RTL design canmake the RTL non-synthesisable (Section 8.3.2). Consider the
following expressions. Theymake liberal use of array subscription and themultiplier operator. The
structural hazard sources are numbered:

always @(posedge clk) begin
q0 <= Boz[e3] // 3
q1 <= Foo[e0] + Foo[e1]; // 1
q2 <= Bar[Bar[e2]]; // 2
q3 <= a*b + c*d; // 4
q4 <= Boz[e4] // 3
end

1. The RAMs or register files Foo, Bar and Bozmay not have two read ports.

2. Evenwith two ports, can Bar perform the double subscription in one clock cycle?

3. Read operations on Bozmay be a long way apart in the code, so the hazard is hard to spot.

4. The cost of providing two flashmultipliers for use in one clock cycle, which then lie idlemuch of the
rest of the time, is likely not warranted.

RAMs have a small number of ports but when RTL arrays are held in RAM, it is easy to write RTL
expressions that require many operations on the contents of a RAM in one operation, even from
within one thread. For instance, wemight need to implement three operations on a RAM:

A[x] <= A[y + A[z]]

Moreover, this requires a combinational read port on the RAM, which is normally not feasible for
more than a few kilobytes.

Because it is a very low-level language, RTL typically requires the user to schedule port usemanually.
To overcome hazards automatically, stalls and holding registers need to be inserted. The
programmer’s original model of the designmust be stalled when ports are reused in the time domain
and require extra clock cycles to copy data to and from the holding registers. This is not a feature of
standard RTL, so it must be done either by hand or automatically using the put/get paradigm of
Bluespec (Section 6.8.5) or general HLS (Section 6.9). The put/get approachmakes the sending
(putting) of arguments asynchronous to the getting of results, as on a split-port bus (Section 3.1.3). In
contrast, HLS uses a compile-time static schedule that understands static pipeline delays and stalls
the entire schedule if any component is not ready.

6.3.2 Overcoming Structural Hazards using Holding Registers
Oneway to overcome a structural hazard is to deploymore resources. These will suffer
correspondingly less contention. For instance, wemight have threemultipliers instead of one. This is

291

Modern SoCDesign

a spatial solution. For RAMs and register files, we need to addmore ports to them ormirror them (i.e.
to ensure the same data are written to each copy). An architectural register holds data that are part
of the algorithm or programmer’s view state. On the other hand, in a temporal solution, a holding
register is inserted to overcome a structural hazard (by hand or by a design-entry language compiler).
Sometimes, the value that is needed is always available elsewhere in the design and needs forwarding.
Sometimes, an extra sequencer step is needed.

For example, say we know nothing about e0 and e1:

always @(posedge clk) begin
...
ans = Foo[e0] + Foo[e1];
...
end

We can load a holding register in an additional cycle:

always @(posedge clk) begin
pc = !pc;
...
if (!pc) holding <= Foo[e0];
if (pc) ans <= holding + Foo[e1];
...
end

Alternatively, wemay be able to analyse the pattern for e0 and e1:

always @(posedge clk) begin
...
ee = ee + 1;
...
ans = Foo[ee] + Foo[ee-1];
...
end

Then, apart from the first cycle, we can use a holding register to loop forward the value from the
previous iteration (Section 6.9.1):

always @(posedge clk) begin
...
ee <= ee + 1;
holding <= Foo[ee];
ans <= holding + Foo[ee];
...
end

292

Chapter 6 | Architectural Design Exploration

Although these examples usedmemories, other FUs, such as fixed- and floating-point ALUs, also have
structural hazards. A good design not only balances structural resource use between clock cycles but
also critical-path timing delays. These example fragments handled one hazard and used two clock
cycles. They were localised transformations. If there is a large number of clock cycles, memories and
ALUs, a global search and optimisation procedure is needed to find a good balance for the load on
structural components.

6.3.3 NameAlias Hazards
A name alias hazard arises when an analysis tool cannot tell whether two references are to the same
storage location. There are three possible situations: definitely different, definitely the same and
cannot tell. The third of these raises problems in the static optimisation of hardware or software
structures. Expanding blocking assignments in RTL can lead to name aliases.

Suppose we know nothing about xx and yy, then consider:

begin
...
if (g) Foo[xx] = e1;
r2 = Foo[yy];

To avoid name alias problems, this must be compiled to non-blocking pure RTL as:

begin
...
Foo[xx] <= (g) ? e1: Foo[xx];
r2 <= (xx==yy) ? ((g) ? e1: Foo[xx]): Foo[yy];

Quite commonly, we do know something about the subscript expressions. If they are compile-time
constants, we can check their equality at compile time. Suppose that at the ellipsis (…) we had the line
yy = xx+1;. It is then ‘obvious’ that xx and yy cannot be the same value. The compiler can then
determine that the array subscripts will never alias and it can eliminate the conditional expression
construct. Many other patterns in the preceding code can guarantee that these variables are unequal.
A sufficiently rich set of rules, built into the tool, canmake this deduction, andmany others like it, for a
large number of typical program structures. However, no set of rules can be complete due to the
decidability of the halting problem. Limited domains for which the problem is solvable are discussed
in Section 6.9.1.

6.3.4 FIFOBuffers andDual-port IP Blocks
Flow control between accelerated sub-tasks is known as orchestration. Often themost efficient data
layout for one sub-task is different from that for another that shares the data. Further, the order in
which data are generated by a sub-taskmay not be ideal for the consumer. If a major reorganisation of

293

Modern SoCDesign

a spatial solution. For RAMs and register files, we need to addmore ports to them ormirror them (i.e.
to ensure the same data are written to each copy). An architectural register holds data that are part
of the algorithm or programmer’s view state. On the other hand, in a temporal solution, a holding
register is inserted to overcome a structural hazard (by hand or by a design-entry language compiler).
Sometimes, the value that is needed is always available elsewhere in the design and needs forwarding.
Sometimes, an extra sequencer step is needed.

For example, say we know nothing about e0 and e1:

always @(posedge clk) begin
...
ans = Foo[e0] + Foo[e1];
...
end

We can load a holding register in an additional cycle:

always @(posedge clk) begin
pc = !pc;
...
if (!pc) holding <= Foo[e0];
if (pc) ans <= holding + Foo[e1];
...
end

Alternatively, wemay be able to analyse the pattern for e0 and e1:

always @(posedge clk) begin
...
ee = ee + 1;
...
ans = Foo[ee] + Foo[ee-1];
...
end

Then, apart from the first cycle, we can use a holding register to loop forward the value from the
previous iteration (Section 6.9.1):

always @(posedge clk) begin
...
ee <= ee + 1;
holding <= Foo[ee];
ans <= holding + Foo[ee];
...
end

292

Chapter 6 | Architectural Design Exploration

Although these examples usedmemories, other FUs, such as fixed- and floating-point ALUs, also have
structural hazards. A good design not only balances structural resource use between clock cycles but
also critical-path timing delays. These example fragments handled one hazard and used two clock
cycles. They were localised transformations. If there is a large number of clock cycles, memories and
ALUs, a global search and optimisation procedure is needed to find a good balance for the load on
structural components.

6.3.3 NameAlias Hazards
A name alias hazard arises when an analysis tool cannot tell whether two references are to the same
storage location. There are three possible situations: definitely different, definitely the same and
cannot tell. The third of these raises problems in the static optimisation of hardware or software
structures. Expanding blocking assignments in RTL can lead to name aliases.

Suppose we know nothing about xx and yy, then consider:

begin
...
if (g) Foo[xx] = e1;
r2 = Foo[yy];

To avoid name alias problems, this must be compiled to non-blocking pure RTL as:

begin
...
Foo[xx] <= (g) ? e1: Foo[xx];
r2 <= (xx==yy) ? ((g) ? e1: Foo[xx]): Foo[yy];

Quite commonly, we do know something about the subscript expressions. If they are compile-time
constants, we can check their equality at compile time. Suppose that at the ellipsis (…) we had the line
yy = xx+1;. It is then ‘obvious’ that xx and yy cannot be the same value. The compiler can then
determine that the array subscripts will never alias and it can eliminate the conditional expression
construct. Many other patterns in the preceding code can guarantee that these variables are unequal.
A sufficiently rich set of rules, built into the tool, canmake this deduction, andmany others like it, for a
large number of typical program structures. However, no set of rules can be complete due to the
decidability of the halting problem. Limited domains for which the problem is solvable are discussed
in Section 6.9.1.

6.3.4 FIFOBuffers andDual-port IP Blocks
Flow control between accelerated sub-tasks is known as orchestration. Often themost efficient data
layout for one sub-task is different from that for another that shares the data. Further, the order in
which data are generated by a sub-taskmay not be ideal for the consumer. If a major reorganisation of

293

Modern SoCDesign

the layout is required, there can be little alternative to storing the data in memory and reading the
data back with a different pattern. This should ideally be done in SRAMon-chip and the top-level
design should be chosen tominimise the SRAM size. If done off-chip in DRAM, one of the two access
patterns is bound to be DRAM-unfriendly. In that case, the layout used is typically the best for the
readout, if data are often readmore than once. If only temporal decoupling is required, FIFO buffering
can be used.

Figure 6.6 shows three possible initiator/target configurations for a device with two transactional
ports, such as a FIFO buffer or a task in amultistage accelerator. We assume that there is flow control
at each port (e.g. using the standard synchronous interface (Section 3.1.3) or credit (Section 3.4.4)).
The arrows show the flow from initiator to target. For simplex ports, the data do not always flow in
the same direction as the arrow. For duplex and half-duplex ports, the data flow in both directions, so
cannot possibly flow only in the direction of the arrow.

PumpRelayMailbox

Figure 6.6Mailbox, relay and pump paradigms: three initiator/target configurations possible for dual-ported IP blocks

A dual-ported component that is an initiator on both sides has a pump pattern. A component that is a
target on both sides has amailbox pattern. Thememory used for data follows themailbox pattern, as
do all FIFO, LIFO and RAM components, but thememory can be nominally inside a proactive wrapper
that makes one of the other paradigms visible externally.

FIFOBuffers and Combinational Paths
A synchronous FIFO buffer cannot be bubble-free without also having a combinational path.

write clock

write enable

ready for write

read enable

ready for read

Data In Data Out

n n

clock

write enable

ready for write

WR_EN

WR_RDY

read enable

ready for read

RD_EN

RD_RDY

Data In Data Out

n n

read clock

WR_EN

WR_RDY

RD_EN

RD_RDY

Figure 6.7 Schematic symbols of a FIFO buffer following the mailbox pattern: synchronous (left) and clock-domain crossing (right)

A FIFO buffer is a first-in, first-out queue. Although a FIFO buffer helps decouple timing constraints
between coupled subsystems, thereby boosting performance, long combinational paths can arise if
care is not taken. A long combinational path reduces the allowable clock frequency. A FIFO buffer has
an internal storage limit (its capacity), but the interface is independent of that. A hardware FIFO
buffer follows themailbox pattern in that it has two target ports. Figure 6.7 shows the schematic

294

Chapter 6 | Architectural Design Exploration

symbols for two such FIFO buffers, one synchronous and one asynchronous, with the latter being
suitable for clock-domain crossing (Section 3.7.1).

Except for a credit-controlled FIFO buffer (Figure 3.32), each of the two ports has a pair of standard
synchronous handshake nets (Section 3.1.3). Some FIFO buffers provide further status output signals,
such as half or nearly full. For a clock-domain crossing FIFO buffer, these will be timed according to
one of the clock domains. The signals can be output twice, synchronised for each domain. Table 6.3
shows that synchronous FIFO buffers can be:

1. Fully registered: The effect of a read or write is visible at only the opposite port a clock cycle later.

2. Bypass: The input data appear straight away at the output of an empty FIFO buffer.

3. Pipelined: Does not support a simultaneous enqueue and dequeue operation when full.

4. Bubble-free: Simultaneous read andwrite operations are always possible.

A fully registered FIFO buffer is the only synchronous variation with a local handshake that fully
isolates combinational paths between the coupled subsystems.

Table 6.3 Synchronous delay and combinational paths for basic FIFO types

Type Data latency Ready latency Combinational paths
Fully registered 1 1 None
Bypass 0 1 WR_EN→ RD_RDY
Pipelined 1 0 RD_EN→ WR_RDY
Bubble-free 0 0 Both directions
Asynchronous Several Several None
Credit-controlled 1 n/a None

Figure 6.8 shows a circuit for a one-place synchronous FIFO buffer. (One placemeans that the
capacity is 1. For multi-place FIFO buffers, the datamay be either shifted internally or held in
dual-ported RAM as a circular queuewith in and out pointers.) The dashed paths show the optional
signal paths, called bypass and pipeline, defining a total of four behaviours. Using either optional
signal provides a speedup in terms of latency, for the forward and reverse paths, respectively. If a
FIFO buffer is installed to assist with timing closure, having either path can extend the critical path. In
other words, their use can remove clock cycles but can also restrict the clock frequency. If both paths
are present and there is combinational logic in both the read andwrite initiators, as shown, a
combinational loop is created.

A bubble is strictly a clock cycle when nothing happens due to a delay in the ready signal propagating
backwards, but the term can sometimes be applied to the equivalent forward path delay. For a large
FIFO buffer, the presence of bubbleswhen full is insignificant, since under normal conditions, it should
not be full and fullness will be associated with other, perhapsmoremajor, system-level problems.

295

Modern SoCDesign

the layout is required, there can be little alternative to storing the data in memory and reading the
data back with a different pattern. This should ideally be done in SRAMon-chip and the top-level
design should be chosen tominimise the SRAM size. If done off-chip in DRAM, one of the two access
patterns is bound to be DRAM-unfriendly. In that case, the layout used is typically the best for the
readout, if data are often readmore than once. If only temporal decoupling is required, FIFO buffering
can be used.

Figure 6.6 shows three possible initiator/target configurations for a device with two transactional
ports, such as a FIFO buffer or a task in amultistage accelerator. We assume that there is flow control
at each port (e.g. using the standard synchronous interface (Section 3.1.3) or credit (Section 3.4.4)).
The arrows show the flow from initiator to target. For simplex ports, the data do not always flow in
the same direction as the arrow. For duplex and half-duplex ports, the data flow in both directions, so
cannot possibly flow only in the direction of the arrow.

PumpRelayMailbox

Figure 6.6Mailbox, relay and pump paradigms: three initiator/target configurations possible for dual-ported IP blocks

A dual-ported component that is an initiator on both sides has a pump pattern. A component that is a
target on both sides has amailbox pattern. Thememory used for data follows themailbox pattern, as
do all FIFO, LIFO and RAM components, but thememory can be nominally inside a proactive wrapper
that makes one of the other paradigms visible externally.

FIFOBuffers and Combinational Paths
A synchronous FIFO buffer cannot be bubble-free without also having a combinational path.

write clock

write enable

ready for write

read enable

ready for read

Data In Data Out

n n

clock

write enable

ready for write

WR_EN

WR_RDY

read enable

ready for read

RD_EN

RD_RDY

Data In Data Out

n n

read clock

WR_EN

WR_RDY

RD_EN

RD_RDY

Figure 6.7 Schematic symbols of a FIFO buffer following the mailbox pattern: synchronous (left) and clock-domain crossing (right)

A FIFO buffer is a first-in, first-out queue. Although a FIFO buffer helps decouple timing constraints
between coupled subsystems, thereby boosting performance, long combinational paths can arise if
care is not taken. A long combinational path reduces the allowable clock frequency. A FIFO buffer has
an internal storage limit (its capacity), but the interface is independent of that. A hardware FIFO
buffer follows themailbox pattern in that it has two target ports. Figure 6.7 shows the schematic

294

Chapter 6 | Architectural Design Exploration

symbols for two such FIFO buffers, one synchronous and one asynchronous, with the latter being
suitable for clock-domain crossing (Section 3.7.1).

Except for a credit-controlled FIFO buffer (Figure 3.32), each of the two ports has a pair of standard
synchronous handshake nets (Section 3.1.3). Some FIFO buffers provide further status output signals,
such as half or nearly full. For a clock-domain crossing FIFO buffer, these will be timed according to
one of the clock domains. The signals can be output twice, synchronised for each domain. Table 6.3
shows that synchronous FIFO buffers can be:

1. Fully registered: The effect of a read or write is visible at only the opposite port a clock cycle later.

2. Bypass: The input data appear straight away at the output of an empty FIFO buffer.

3. Pipelined: Does not support a simultaneous enqueue and dequeue operation when full.

4. Bubble-free: Simultaneous read andwrite operations are always possible.

A fully registered FIFO buffer is the only synchronous variation with a local handshake that fully
isolates combinational paths between the coupled subsystems.

Table 6.3 Synchronous delay and combinational paths for basic FIFO types

Type Data latency Ready latency Combinational paths
Fully registered 1 1 None
Bypass 0 1 WR_EN→ RD_RDY
Pipelined 1 0 RD_EN→ WR_RDY
Bubble-free 0 0 Both directions
Asynchronous Several Several None
Credit-controlled 1 n/a None

Figure 6.8 shows a circuit for a one-place synchronous FIFO buffer. (One placemeans that the
capacity is 1. For multi-place FIFO buffers, the datamay be either shifted internally or held in
dual-ported RAM as a circular queuewith in and out pointers.) The dashed paths show the optional
signal paths, called bypass and pipeline, defining a total of four behaviours. Using either optional
signal provides a speedup in terms of latency, for the forward and reverse paths, respectively. If a
FIFO buffer is installed to assist with timing closure, having either path can extend the critical path. In
other words, their use can remove clock cycles but can also restrict the clock frequency. If both paths
are present and there is combinational logic in both the read andwrite initiators, as shown, a
combinational loop is created.

A bubble is strictly a clock cycle when nothing happens due to a delay in the ready signal propagating
backwards, but the term can sometimes be applied to the equivalent forward path delay. For a large
FIFO buffer, the presence of bubbleswhen full is insignificant, since under normal conditions, it should
not be full and fullness will be associated with other, perhapsmoremajor, system-level problems.

295

Modern SoCDesign

Set

Reset

Valid

Br
oa

ds
id

e
R

eg
is

te
r

Data In

Data
Out

RD_RDY

WR_RDY

RD_EN

WR_EN

1

0

RD
WR

One-place buffer with optional bypassesSource Sink

ʼbypassʼ

ʼpipelineʼ

ce

Figure 6.8 A generic schematic of a one-place synchronous FIFO buffer. A synchronous set/reset flip-flop records whether there are valid data in the
broadside register. The dashed lines show optional latency-reducing wiring. The output multiplexer is needed only if the dashed bypass wire is installed. Also
illustrated are typical patterns of combinational path wiring in the client source and sink. The red annotations show a potential combinational loop

S

R

Br
oa

ds
id

e
R

eg
is

te
r

Data In

Valid

ʼbypassʼ

Relay Mailbox

Data Out

Rdy Rdy

Valid

ce

S

R

Br
oa

ds
id

e
R

eg
is

te
r

Data In

Valid

ʼbypassʼ

Data Out

Rdy

Rdy

Valid

ce

Figure 6.9 Relay andmailbox paradigms for a one-place synchronous FIFO buffer. If there are no combinational paths, the only differences are the net names

However, for theminimal FIFO buffers of size one (a single-place queue), which are potentially
desirable for re-timing a standard synchronous handshake, bubbles reduce the throughput to 50 per

296

Chapter 6 | Architectural Design Exploration

cent, since only either a queue or a dequeue is possible in any one clock cycle. For this reason, FIFO
buffers with a combinational reverse path are preferable for single-place queues. FIFO buffers with at
least two places should be used if combinational paths must be prevented in both directions.
Alternatively, credit-based flow control (Section 3.4.4) can be used to eliminate the ready signals
entirely.

Figure 6.9 shows that themailbox and relay paradigms, under the standard synchronous handshake,
are equivalent except for the net names.

6.4 CustomAccelerators
A hardware accelerator implements a task in hardware that would otherwise be performed in
software. Perhaps the first hardware accelerator added alongside the integer execution units (ALUs)
of early computers was the floating-point unit (FPU). However, accelerators can servemany different
purposes and sit elsewhere within the architecture. Examples include cryptographic processors for
security, motion predictors forMPEG video compression, network packet filters in firewall
applications and neural processing units and similar inference engines for AI libraries such as
Tensorflow [3]. Custom hardware is alwaysmuchmore energy efficient than general-purpose
processors. Thus, frequently used algorithms should be implemented in silicon. Nine reasons why this
is better are:

1. Pollack’s rule states that energy use in a vonNeumann core growswith the square of its IPC
(Section 2.1.1). However, a custom accelerator, using a static schedule, moves the out-of-order
overheads to compile time. Hence, closer to linear growth is achievable.

2. VonNeumann SIMD vector extensions (Section 2.1.2) greatly amortise the fetch and decode
energy, but a custom accelerator does better. Spatio-parallel processing uses less energy than
equivalent temporal processing (i.e. at higher clock rates) due to V2 power scaling (Section 4.6.8).

3. Paths, registers and FUs can have appropriate widths rather than being rounded up to general
word sizes.

4. A dedicated data pathwill not have unnecessary additional components in its route, such as unused
multiplexors, that just slow it down.

5. Operator fusion: For instance, a custom accelerator can implement a fused accumulate rather than
renormalising after each summation (Section 6.8.1).

6. A custom accelerator with combinational logic uses zero energy recomputing sub-expressions
whose support has not changed. Moreover, it has no overheadwhen determining whether the
support (input values) has changed.

297

Modern SoCDesign

Set

Reset

Valid

Br
oa

ds
id

e
R

eg
is

te
r

Data In

Data
Out

RD_RDY

WR_RDY

RD_EN

WR_EN

1

0

RD
WR

One-place buffer with optional bypassesSource Sink

ʼbypassʼ

ʼpipelineʼ

ce

Figure 6.8 A generic schematic of a one-place synchronous FIFO buffer. A synchronous set/reset flip-flop records whether there are valid data in the
broadside register. The dashed lines show optional latency-reducing wiring. The output multiplexer is needed only if the dashed bypass wire is installed. Also
illustrated are typical patterns of combinational path wiring in the client source and sink. The red annotations show a potential combinational loop

S

R

Br
oa

ds
id

e
R

eg
is

te
r

Data In

Valid

ʼbypassʼ

Relay Mailbox

Data Out

Rdy Rdy

Valid

ce

S

R

Br
oa

ds
id

e
R

eg
is

te
r

Data In

Valid

ʼbypassʼ

Data Out

Rdy

Rdy

Valid

ce

Figure 6.9 Relay andmailbox paradigms for a one-place synchronous FIFO buffer. If there are no combinational paths, the only differences are the net names

However, for theminimal FIFO buffers of size one (a single-place queue), which are potentially
desirable for re-timing a standard synchronous handshake, bubbles reduce the throughput to 50 per

296

Chapter 6 | Architectural Design Exploration

cent, since only either a queue or a dequeue is possible in any one clock cycle. For this reason, FIFO
buffers with a combinational reverse path are preferable for single-place queues. FIFO buffers with at
least two places should be used if combinational paths must be prevented in both directions.
Alternatively, credit-based flow control (Section 3.4.4) can be used to eliminate the ready signals
entirely.

Figure 6.9 shows that themailbox and relay paradigms, under the standard synchronous handshake,
are equivalent except for the net names.

6.4 CustomAccelerators
A hardware accelerator implements a task in hardware that would otherwise be performed in
software. Perhaps the first hardware accelerator added alongside the integer execution units (ALUs)
of early computers was the floating-point unit (FPU). However, accelerators can servemany different
purposes and sit elsewhere within the architecture. Examples include cryptographic processors for
security, motion predictors forMPEG video compression, network packet filters in firewall
applications and neural processing units and similar inference engines for AI libraries such as
Tensorflow [3]. Custom hardware is alwaysmuchmore energy efficient than general-purpose
processors. Thus, frequently used algorithms should be implemented in silicon. Nine reasons why this
is better are:

1. Pollack’s rule states that energy use in a vonNeumann core growswith the square of its IPC
(Section 2.1.1). However, a custom accelerator, using a static schedule, moves the out-of-order
overheads to compile time. Hence, closer to linear growth is achievable.

2. VonNeumann SIMD vector extensions (Section 2.1.2) greatly amortise the fetch and decode
energy, but a custom accelerator does better. Spatio-parallel processing uses less energy than
equivalent temporal processing (i.e. at higher clock rates) due to V2 power scaling (Section 4.6.8).

3. Paths, registers and FUs can have appropriate widths rather than being rounded up to general
word sizes.

4. A dedicated data pathwill not have unnecessary additional components in its route, such as unused
multiplexors, that just slow it down.

5. Operator fusion: For instance, a custom accelerator can implement a fused accumulate rather than
renormalising after each summation (Section 6.8.1).

6. A custom accelerator with combinational logic uses zero energy recomputing sub-expressions
whose support has not changed. Moreover, it has no overheadwhen determining whether the
support (input values) has changed.

297

Modern SoCDesign

7. A custom accelerator has zero instruction fetch and decode energy. Any controlling
microsequencer or predication control uses close to zero energy.

8. Data locality can easily be exploited on a custom accelerator. The operands are held closer to FUs,
giving near-data processing (NDP).

9. Asymptotic limit studies indicate that custom accelerators have potential for massively parallel
processing [4].

The performance of vonNeumann cores is easily surpassedwith custom hardware, especially for
algorithmswith data-dependent control flow that has only localised effects. The computer, as
originally designed byBabbage as a ‘universalmachine’, suffers considerable overhead frombeing fully
programmable. This is sometimes called the Turing tax. The dynamic scheduling of today’s advanced
out-of-order cores is up to two orders of magnitude less energy efficient than custom hardware [5, 6].
For example, when performing 32-bit addition on an out-of-order core, up to one hundred times the
energy of the addition is consumed in deciding whether to do it, selecting the operands and storing
the result in a temporary register. Super-scalar cores achieve an effective IPC of three on average, at
best. SIMD extensions (Section 2.1.2) can give another factor of three or four when appropriate, but
parallel hardware is limited only by its power supply, heat extraction and off-chip data bandwidth.

6.4.1 Accelerator Communication
SoC interconnects were the subject of Chapter 3. Amainstream SoC interconnect essentially
supports datamovement between cores andmainmemory for load/store and instructions via caches.
A SoC uses two forms of PIO:

Port-mapped I/O (PMIO) uses a special address space outside of normal memory that is accessed
with instructions such as in and out.

Memory-mapped I/O (MMIO) relies on I/O devices being allocated addresses inside the normal
vonNeumann address space, which is primarily used for programs and data. Such I/O is done using
instructions such as load and store.

PMIOwas very useful on A16microprocessors since valuable address spacewas not consumed by the
I/O devices, but A32 architectures generally provide no PMIO instructions and hence, useMMIO. The
distinction is irrelevant these days, but mentioned for completeness. However, accelerators can be
connected to CPU cores in other ways, outside of mainstreamMMIO, PMIO andDMA.

As defined above, hardware accelerators improve the performance of code nominally running on a
general-purpose CPU core. When externally accelerated, this core becomes known as the host
processor, although it may be relegated to just runningmanagement functions. Communication
paradigms between the host and the accelerator vary according to their degree of decoupling. The
principal paradigms are:

298

Chapter 6 | Architectural Design Exploration

1. Extend the CPUwith a custom data path and customALU, as shown in Figure 6.10(a). The new
facility is accessed using a custom ISA extension, which is a new instruction in the instruction set
architecture (ISA) (Section 2.1.1 and Section 2.1.3). This does not provide any parallelism but is
appropriate for operations that can be completed in the time for a single instruction (e.g. two or
three clock cycles in a pipelined core), such as the specialised arithmetic for a cyclic redundancy
check (CRC).

Standard
ALU

Custom
ALU

Standard
Register

File

Level 1 Data CacheLoad Store

Standard
ALU

Custom
ALUs

Standard
Register

File

(a) Custom Instruction with Custom Datapath and ALU (b) Coprocessor with own ALU(s) and Registers

Custom
Registers

or Reg Files

Move to CPR

Move
from
CPR

Level 1 Data CacheLoad Store

Figure 6.10 A custom ALU inside a CPU core implemented in two similar ways: (a) as a custom instruction or (b) as a coprocessor

2. Add a tightly coupled custom coprocessor, as shown in Figure 6.10(b). This has fast data paths for
load/store operands from and to themain CPU. Themain CPU still generates the address values for
load/store operations. This is a typical structure of a FPU. Such a coprocessor has its own register
file and can perform some operations, like computing cosines and logarithms, without intervention
from the core.

3. An accelerator or high-performance peripheral can request instant attention from themain CPU
using a fast interrupt (FIQ). Such an interrupt has a dedicated register file, so no context save and
restore are needed, and the operating systemwill return from a fast interrupt without invoking the
scheduler. Such an interrupt does not normally change the readiness of processes to run, but when
it does, it can change a scheduler flag (semaphore/mutex etc.) and force an early end of the slice so
that the scheduler is invoked.

4. More advanced dedicated inter-core wiring is used in some architectures. SomeArm cores support
fast signalling between cores with the special signal event (SEV) and wait-for event (WFE)
instructions. Again, these are faster to use than inter-core interrupts (ICIs) sent through a generic
interrupt controller (GIC) (Section 2.5).

Devices inspired by the Transputer [7] integrate synchronisation andmessage-passing primitives
into the instruction set. This supports low-overhead remote procedure calls between cores.
Figure 6.11 shows fast access to a specialised NoC that enables one core to send part of its register

299

Modern SoCDesign

7. A custom accelerator has zero instruction fetch and decode energy. Any controlling
microsequencer or predication control uses close to zero energy.

8. Data locality can easily be exploited on a custom accelerator. The operands are held closer to FUs,
giving near-data processing (NDP).

9. Asymptotic limit studies indicate that custom accelerators have potential for massively parallel
processing [4].

The performance of vonNeumann cores is easily surpassedwith custom hardware, especially for
algorithmswith data-dependent control flow that has only localised effects. The computer, as
originally designed byBabbage as a ‘universalmachine’, suffers considerable overhead frombeing fully
programmable. This is sometimes called the Turing tax. The dynamic scheduling of today’s advanced
out-of-order cores is up to two orders of magnitude less energy efficient than custom hardware [5, 6].
For example, when performing 32-bit addition on an out-of-order core, up to one hundred times the
energy of the addition is consumed in deciding whether to do it, selecting the operands and storing
the result in a temporary register. Super-scalar cores achieve an effective IPC of three on average, at
best. SIMD extensions (Section 2.1.2) can give another factor of three or four when appropriate, but
parallel hardware is limited only by its power supply, heat extraction and off-chip data bandwidth.

6.4.1 Accelerator Communication
SoC interconnects were the subject of Chapter 3. Amainstream SoC interconnect essentially
supports datamovement between cores andmainmemory for load/store and instructions via caches.
A SoC uses two forms of PIO:

Port-mapped I/O (PMIO) uses a special address space outside of normal memory that is accessed
with instructions such as in and out.

Memory-mapped I/O (MMIO) relies on I/O devices being allocated addresses inside the normal
vonNeumann address space, which is primarily used for programs and data. Such I/O is done using
instructions such as load and store.

PMIOwas very useful on A16microprocessors since valuable address spacewas not consumed by the
I/O devices, but A32 architectures generally provide no PMIO instructions and hence, useMMIO. The
distinction is irrelevant these days, but mentioned for completeness. However, accelerators can be
connected to CPU cores in other ways, outside of mainstreamMMIO, PMIO andDMA.

As defined above, hardware accelerators improve the performance of code nominally running on a
general-purpose CPU core. When externally accelerated, this core becomes known as the host
processor, although it may be relegated to just runningmanagement functions. Communication
paradigms between the host and the accelerator vary according to their degree of decoupling. The
principal paradigms are:

298

Chapter 6 | Architectural Design Exploration

1. Extend the CPUwith a custom data path and customALU, as shown in Figure 6.10(a). The new
facility is accessed using a custom ISA extension, which is a new instruction in the instruction set
architecture (ISA) (Section 2.1.1 and Section 2.1.3). This does not provide any parallelism but is
appropriate for operations that can be completed in the time for a single instruction (e.g. two or
three clock cycles in a pipelined core), such as the specialised arithmetic for a cyclic redundancy
check (CRC).

Standard
ALU

Custom
ALU

Standard
Register

File

Level 1 Data CacheLoad Store

Standard
ALU

Custom
ALUs

Standard
Register

File

(a) Custom Instruction with Custom Datapath and ALU (b) Coprocessor with own ALU(s) and Registers

Custom
Registers

or Reg Files

Move to CPR

Move
from
CPR

Level 1 Data CacheLoad Store

Figure 6.10 A custom ALU inside a CPU core implemented in two similar ways: (a) as a custom instruction or (b) as a coprocessor

2. Add a tightly coupled custom coprocessor, as shown in Figure 6.10(b). This has fast data paths for
load/store operands from and to themain CPU. Themain CPU still generates the address values for
load/store operations. This is a typical structure of a FPU. Such a coprocessor has its own register
file and can perform some operations, like computing cosines and logarithms, without intervention
from the core.

3. An accelerator or high-performance peripheral can request instant attention from themain CPU
using a fast interrupt (FIQ). Such an interrupt has a dedicated register file, so no context save and
restore are needed, and the operating systemwill return from a fast interrupt without invoking the
scheduler. Such an interrupt does not normally change the readiness of processes to run, but when
it does, it can change a scheduler flag (semaphore/mutex etc.) and force an early end of the slice so
that the scheduler is invoked.

4. More advanced dedicated inter-core wiring is used in some architectures. SomeArm cores support
fast signalling between cores with the special signal event (SEV) and wait-for event (WFE)
instructions. Again, these are faster to use than inter-core interrupts (ICIs) sent through a generic
interrupt controller (GIC) (Section 2.5).

Devices inspired by the Transputer [7] integrate synchronisation andmessage-passing primitives
into the instruction set. This supports low-overhead remote procedure calls between cores.
Figure 6.11 shows fast access to a specialised NoC that enables one core to send part of its register

299

Modern SoCDesign

file to another core. The routing could be based onwhich cores are currently idle using additional
signalling nets (not shown). If the receiver’s program counter can be set from themessage, this
provides automatic invocation of a predefined handler.

ALU
Standard

register file

Level 1 Data CacheLoad Store

Program counter (PC)

Fabric port
Core 3

ALU
Standard

register file

Level 1 data cacheLoad Store

Program counter (PC)

Fabric port

Level 2 Shared Cache

Core 2

Messaging switch

Core 1

Core 0

Figure 6.11 A specialised inter-core message-passing fabric allows cores to rapidly exchange a packet composed of several successive registers with each
other

5. The accelerator can be connected to themain system bus as a custom peripheral unit, as shown in
Figure 6.12. Operands are transferred in and out using PIO or pseudoDMA. Under pseudoDMA
(Section 3.1), the host processor generates memory addresses or network traffic and the
accelerator simply snoops or interposes on the data stream.

Standard
CPU
core

Level 1
cache(s)

Custom
ALUs

Optional
DMA
unit

System Bus

Bus-connected custom IP block

Custom
registers

or reg files

Move from CPR

Load

Load Store

Store

LoadStore Address

Control &
status regs

Unmodified CPU and Cache(s).

Figure 6.12 A custom function implemented as a peripheral IP block, with optional DMA (bus master) capability

6. As paradigm 5, but with the new IP block having busmaster capabilities so that it can fetch data
itself (DMA), with polled or interrupt-driven synchronisation with themain CPU. A key design

300

Chapter 6 | Architectural Design Exploration

decision is whether such an accelerator operates on virtual or physical addresses andwhether it is
cache-consistent with the cores. The Xilinx Zynq platform allows accelerators to be configured in
either way (Section 6.5).

7. Use an FPGA or bank of FPGAswithout a conventional CPU at all. A CPU in a supervisory role is
normally a more sensible use of silicon.

6.4.2 Multiple Sub-tasks
Figure 6.13 shows a typical accelerated subsystem that connects to a high-performance data input,
such as an AFE (Section 2.7.6). It has several sub-tasks. This subsystem does not require DRAM
access for intermediate results. It is managed by a host processor that makes PIO operations
(Section 2.7) on a file of status and control registers. Themanagement overhead is typically small and
the same processor has the capacity to domany other functions.

System Bus
Variable-Q feedback loop

Processing
Block 1

(eg M-DCT)

Processing
Block 0

(eg Filter)

Processing
Block 2

(eg Huffman)

DMA
unit

DRAM

Standard
CPU
Host

High- throughput
input interface

PIO control and status register file

Figure 6.13 Example of a hardware accelerator receiving data from a specialist interface. It uses DMA for data transfer to the main memory. PIO is managed
by the host processor

6.4.3 CustomAccelerator Example I
The following code embodies the CRC algorithm used in the Ethernet andmany other applications.
The generating polynomial is

G(x)= x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1

The codemake intensive use of bit-level operations and so does not work efficiently on
general-purpose CPU cores.

// Generating polynomial:
const uint32_t ethernet_polynomial_le = 0xedb88320U;

// Bit-oriented implementation: processes a byte array
unsigned ether_crc_le(int length, u8_t *data, int resetf)
{

unsigned int crc = (resetf) ? 0xffffffff: 0; /* Initial value */
while(--length >= 0)

{

301

Modern SoCDesign

file to another core. The routing could be based onwhich cores are currently idle using additional
signalling nets (not shown). If the receiver’s program counter can be set from themessage, this
provides automatic invocation of a predefined handler.

ALU
Standard

register file

Level 1 Data CacheLoad Store

Program counter (PC)

Fabric port
Core 3

ALU
Standard

register file

Level 1 data cacheLoad Store

Program counter (PC)

Fabric port

Level 2 Shared Cache

Core 2

Messaging switch

Core 1

Core 0

Figure 6.11 A specialised inter-core message-passing fabric allows cores to rapidly exchange a packet composed of several successive registers with each
other

5. The accelerator can be connected to themain system bus as a custom peripheral unit, as shown in
Figure 6.12. Operands are transferred in and out using PIO or pseudoDMA. Under pseudoDMA
(Section 3.1), the host processor generates memory addresses or network traffic and the
accelerator simply snoops or interposes on the data stream.

Standard
CPU
core

Level 1
cache(s)

Custom
ALUs

Optional
DMA
unit

System Bus

Bus-connected custom IP block

Custom
registers

or reg files

Move from CPR

Load

Load Store

Store

LoadStore Address

Control &
status regs

Unmodified CPU and Cache(s).

Figure 6.12 A custom function implemented as a peripheral IP block, with optional DMA (bus master) capability

6. As paradigm 5, but with the new IP block having busmaster capabilities so that it can fetch data
itself (DMA), with polled or interrupt-driven synchronisation with themain CPU. A key design

300

Chapter 6 | Architectural Design Exploration

decision is whether such an accelerator operates on virtual or physical addresses andwhether it is
cache-consistent with the cores. The Xilinx Zynq platform allows accelerators to be configured in
either way (Section 6.5).

7. Use an FPGA or bank of FPGAswithout a conventional CPU at all. A CPU in a supervisory role is
normally a more sensible use of silicon.

6.4.2 Multiple Sub-tasks
Figure 6.13 shows a typical accelerated subsystem that connects to a high-performance data input,
such as an AFE (Section 2.7.6). It has several sub-tasks. This subsystem does not require DRAM
access for intermediate results. It is managed by a host processor that makes PIO operations
(Section 2.7) on a file of status and control registers. Themanagement overhead is typically small and
the same processor has the capacity to domany other functions.

System Bus
Variable-Q feedback loop

Processing
Block 1

(eg M-DCT)

Processing
Block 0

(eg Filter)

Processing
Block 2

(eg Huffman)

DMA
unit

DRAM

Standard
CPU
Host

High- throughput
input interface

PIO control and status register file

Figure 6.13 Example of a hardware accelerator receiving data from a specialist interface. It uses DMA for data transfer to the main memory. PIO is managed
by the host processor

6.4.3 CustomAccelerator Example I
The following code embodies the CRC algorithm used in the Ethernet andmany other applications.
The generating polynomial is

G(x)= x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1

The codemake intensive use of bit-level operations and so does not work efficiently on
general-purpose CPU cores.

// Generating polynomial:
const uint32_t ethernet_polynomial_le = 0xedb88320U;

// Bit-oriented implementation: processes a byte array
unsigned ether_crc_le(int length, u8_t *data, int resetf)
{

unsigned int crc = (resetf) ? 0xffffffff: 0; /* Initial value */
while(--length >= 0)

{

301

Modern SoCDesign

unsigned char current_octet = *data++;
for (int bit = 8; --bit >= 0; current_octet >>= 1) {

if ((crc ^ current_octet) & 1) {
crc >>= 1;
crc ^= ethernet_polynomial_le;

} else
crc >>= 1;

}
}

return crc;
}

The code is structured to take 8 bits at a time and uses one iteration of the inner loop per input bit.
Many other implementations are possible. For instance, by using two identical 256-word ROMswith
32-bit words, 8 bits can be processed in one clock cycle using the code:

unsigned char c = crc >> 24;
crc = (crc << 8) ^ crc32_rom[*data++] ^ crc32_rom[c];

A single ROM cannot be used since it must be consulted in two places per clock cycle. A 16-bit
implementation would give twice the throughput but requires ROMs that are 256× larger. A 32-bit
version following that schemewould require infeasibly large ROMs. The function can instead be
implementedwith XOR gates. The expected number of gates for a 32-bit input, 32-bit output random
XOR function is 322/2=512with a critical path of 5 two-input gates. However, the number required
in reality is about 452 and the critical path can be reducedwith higher fan-in XORs [8].

The best position for such an accelerator is close to where the data are alreadymoving. This is a
common design pattern and is known as a bump-in-wire accelerator (Section 6.4.4). Hence, for data
that are being handled by a core and are in its register file or data path, this is best implemented as a
custom ISA extension using a new instruction (Section 6.4.1). An additional register file or decoupled
operation, as in a coprocessor, is not appropriate for a 32-bit CRC, but would be useful for amore
complex function.

Related design decisions arise when accelerating Advanced Encryption Standard (AES) [9] and
various secure hashes, such as SHA (Section 9.1.1). Like CRC, these apply many XOR gates to
streaming data while updating a small amount of additional state held in accumulating registers. AES
operates in 10 to 14 rounds, whichmust be performed on a data block of 16 bytes in succession. The
encryption key, once loaded, is expanded using a simple ancillary algorithm to give a different 128-bit
number for each round. Additional storage can be usefully provided to hold the expanded key, but the
nature of this needs to be consideredwhen virtualising (Section 4.9), such as whether it needs to be
saved and restored over operating system context swaps.

Themain consideration for a AES coprocessor is whether to sequence the rounds using program
control by themain core or whether the coprocessor proceeds asynchronously using its own

302

Chapter 6 | Architectural Design Exploration

sequencer. Any increase in the interrupt latency or the possibility of a mid-block data cachemiss or
TLBmiss are also significant considerations. For AES, the sequencer runtime is likely to be
comparable in cycles to TLBmiss processing etc., so would not significantly increase latency if made
uninterruptible. Moreover, it does not accessmemory during operation, assuming the expanded key is
held in registers, so the duration is not extended by cachemisses. However, most major architectures,
including Arm and Intel, sequence the rounds using themain core.

6.4.4 FPGAAcceleration in the Cloud
Historically, many hardware accelerator projects have ultimately been unsuccessful for one of these
reasons:

The hardware development takes too long and general-purpose CPUsmeanwhile make progress
and overtake them (their development teams are vastly more resourced).

The overhead of copying the data in and out of the accelerator exceeds the processing speedup.

The hardware implementation is out of date, such as when the requirements or a protocol standard
is changed.

A field-programmable gate array (FPGA) is a semiconductor device that is rapidly programmable to
take on the role of an ASIC. FPGAs are discussed in detail in Section 8.5.2. They dominate the recent
history of reconfigurable computing and have successfully displaced fetch-execute operations for a
variety of tasks, especially those with a low-complexity control flow (i.e. those with a simple flow
chart). The FPGAs used have a fine-grained reconfigurable structure due to their heritage in hardware
circuits. There is an argument for having wider busses as the lowest programmable feature. Likewise,
having simple ALU slices instead of lookup tables (LUTs) is common. These changes amortise the
programming overhead to some extent. The result is called a coarse-grained reconfigurable array.

Today, FPGAs are available as a resource in several cloud compute environments, currently based on
everyday fine-grained FPGA. However, we expect that specialised devices will be produced for the
cloud. Thesemay be coarser grained, may have less esoteric I/O support andmay be adapted to
simplify time sharing and virtualisation. Cloud environments use large devices. Until fairly recently,
FPGAs have not had hardenedDRAM controllers, and consequently, they have been short of DRAM
bandwidth. However, the devices used in cloud acceleration have two ormore DRAM channels.

By connecting FPGA accelerators where the data aremoving already, the overhead of copying data in
and out of the FPGA can often bemitigated. Microsoft have produced several generations of blades
for their data centres, and recent versions have placed the FPGA in series with the blade’s network
connection, thereby enabling copy-free pre- and post-processing of data. For instance, an index hash
can be computed for database fields as the data are read in. This is sometimes called a bump-in-wire
accelerator.

303

Modern SoCDesign

unsigned char current_octet = *data++;
for (int bit = 8; --bit >= 0; current_octet >>= 1) {

if ((crc ^ current_octet) & 1) {
crc >>= 1;
crc ^= ethernet_polynomial_le;

} else
crc >>= 1;

}
}

return crc;
}

The code is structured to take 8 bits at a time and uses one iteration of the inner loop per input bit.
Many other implementations are possible. For instance, by using two identical 256-word ROMswith
32-bit words, 8 bits can be processed in one clock cycle using the code:

unsigned char c = crc >> 24;
crc = (crc << 8) ^ crc32_rom[*data++] ^ crc32_rom[c];

A single ROM cannot be used since it must be consulted in two places per clock cycle. A 16-bit
implementation would give twice the throughput but requires ROMs that are 256× larger. A 32-bit
version following that schemewould require infeasibly large ROMs. The function can instead be
implementedwith XOR gates. The expected number of gates for a 32-bit input, 32-bit output random
XOR function is 322/2=512with a critical path of 5 two-input gates. However, the number required
in reality is about 452 and the critical path can be reducedwith higher fan-in XORs [8].

The best position for such an accelerator is close to where the data are alreadymoving. This is a
common design pattern and is known as a bump-in-wire accelerator (Section 6.4.4). Hence, for data
that are being handled by a core and are in its register file or data path, this is best implemented as a
custom ISA extension using a new instruction (Section 6.4.1). An additional register file or decoupled
operation, as in a coprocessor, is not appropriate for a 32-bit CRC, but would be useful for amore
complex function.

Related design decisions arise when accelerating Advanced Encryption Standard (AES) [9] and
various secure hashes, such as SHA (Section 9.1.1). Like CRC, these apply many XOR gates to
streaming data while updating a small amount of additional state held in accumulating registers. AES
operates in 10 to 14 rounds, whichmust be performed on a data block of 16 bytes in succession. The
encryption key, once loaded, is expanded using a simple ancillary algorithm to give a different 128-bit
number for each round. Additional storage can be usefully provided to hold the expanded key, but the
nature of this needs to be consideredwhen virtualising (Section 4.9), such as whether it needs to be
saved and restored over operating system context swaps.

Themain consideration for a AES coprocessor is whether to sequence the rounds using program
control by themain core or whether the coprocessor proceeds asynchronously using its own

302

Chapter 6 | Architectural Design Exploration

sequencer. Any increase in the interrupt latency or the possibility of a mid-block data cachemiss or
TLBmiss are also significant considerations. For AES, the sequencer runtime is likely to be
comparable in cycles to TLBmiss processing etc., so would not significantly increase latency if made
uninterruptible. Moreover, it does not accessmemory during operation, assuming the expanded key is
held in registers, so the duration is not extended by cachemisses. However, most major architectures,
including Arm and Intel, sequence the rounds using themain core.

6.4.4 FPGAAcceleration in the Cloud
Historically, many hardware accelerator projects have ultimately been unsuccessful for one of these
reasons:

The hardware development takes too long and general-purpose CPUsmeanwhile make progress
and overtake them (their development teams are vastly more resourced).

The overhead of copying the data in and out of the accelerator exceeds the processing speedup.

The hardware implementation is out of date, such as when the requirements or a protocol standard
is changed.

A field-programmable gate array (FPGA) is a semiconductor device that is rapidly programmable to
take on the role of an ASIC. FPGAs are discussed in detail in Section 8.5.2. They dominate the recent
history of reconfigurable computing and have successfully displaced fetch-execute operations for a
variety of tasks, especially those with a low-complexity control flow (i.e. those with a simple flow
chart). The FPGAs used have a fine-grained reconfigurable structure due to their heritage in hardware
circuits. There is an argument for having wider busses as the lowest programmable feature. Likewise,
having simple ALU slices instead of lookup tables (LUTs) is common. These changes amortise the
programming overhead to some extent. The result is called a coarse-grained reconfigurable array.

Today, FPGAs are available as a resource in several cloud compute environments, currently based on
everyday fine-grained FPGA. However, we expect that specialised devices will be produced for the
cloud. Thesemay be coarser grained, may have less esoteric I/O support andmay be adapted to
simplify time sharing and virtualisation. Cloud environments use large devices. Until fairly recently,
FPGAs have not had hardenedDRAM controllers, and consequently, they have been short of DRAM
bandwidth. However, the devices used in cloud acceleration have two ormore DRAM channels.

By connecting FPGA accelerators where the data aremoving already, the overhead of copying data in
and out of the FPGA can often bemitigated. Microsoft have produced several generations of blades
for their data centres, and recent versions have placed the FPGA in series with the blade’s network
connection, thereby enabling copy-free pre- and post-processing of data. For instance, an index hash
can be computed for database fields as the data are read in. This is sometimes called a bump-in-wire
accelerator.

303

Modern SoCDesign

Figure 6.14 illustrates the structure of a server blade with an FPGA. A conventional blade typically
has two standard CPUs, each with twoDRAM channels. It has an Ethernet NIC that connects to the
so-called top-of-rack Ethernet hub, which servesmany tens of blades. It typically also has an SSD or
hard disk for local data storage, or at least for booting and paging. With the FPGA extension, all
secondary storage and network traffic is passed through the FPGA. An FPGA is programmedwith a
backstop that gives the processors transparent access to its resources when the FPGA is not being
used.

SSD

Standard CPU

Shared L2

BUS I/FDRAM CTRL

L1 I L1 D

CPU

L1 I L1 D

CPU

DRAM Bank

Network
Interface

(NIC)

FPGA

Server Blade

Ethernet to
Top-of-Rack Switch Serial links to neighbour FPGA

Serial links to neighbour FPGA

DRAM Bank
DRAM Bank

SATA

SerDesSerDes

SerDesSerDes

BUS I/FBUS I/F

DRAM CTRL

Standard CPU

Shared L2

BUS I/FDRAM CTRL

L1 I L1 D

CPU

L1 I L1 D

CPU

BUS I/F

Programmable
logic

SSD

QPI/
CCIX/
CXL/

NVLink

Figure 6.14 Representative bump-in-wire server blade architecture that has the FPGA in series with the network interface and secondary storage (disk
drives or SSD)

The other notable feature is a local interconnect between FPGAs using SERDES channels
(Section 3.8). A cluster of FPGAs can be joined together with inter-blade wiring. For example, eight
bladesmay be placed in a ring or hyper-ring, which is a standard ring, unidirectional or bidirectional,
but with a small number of longer distance links (called chords) that decrease themean diameter and
increase the sectional bandwidth. Commonly, all the FPGAs in a cluster use one blade or core as their
host CPU. The remaining CPUs operate independently, executing unrelated tasks. This is explained by
Caulfield et al. in ‘A cloud-scale acceleration architecture’ [10].

The interconnect standard used between the processors and the FPGA is often coherent [11, 12],
such as the Intel quick path interconnect (QPI) standard. This replaced the older front-side busses
and is cache-consistent. Other protocols used include CCIX, CXL andNVLink (Section 3.8.2).

304

Chapter 6 | Architectural Design Exploration

6.5 Super FPGAs
An FPGA devotes a large area of silicon to programmable components and programmable
circuit-switchedwiring (Section 8.5.1). Although programmable structures use at least an order of
magnitudemore silicon than customVLSI and deliver up to an order of magnitude lower clock
frequencies, it is very attractive to combine FPGAswith standard CPU cores, memory and other IP
blocks. The high degree of parallelism in the programmable logic (PL)mitigates the lower clock
frequency whereas the optimisation inherent in the standard parts leads to an acceptable overall
silicon budget. The energy used by a board-level interconnect is also avoidedwith a single-chip
approach. Before super FPGAs, it was sometimes a good design point to devote FPGA area to
implementing standard processors and IP blocks. This could give a smaller overall bill of materials
(BoM) for the final product, despite the somewhat extravagant use of silicon. A processor
implemented in PL is known as a soft core. If an IP block is new andNRE (Section 8.11) are not
warranted, implementing it as an FPGA is the obvious choice.

Recently, a new generation of so-called super FPGAs has emerged. The chips have both a large
number of standard IP blocks as well as a large area of PL in FPGA form. A good example is the Zynq
range fromXilinx [11]. Figure 6.15 shows the typical block diagram for such a component. All
members of the family will have the same hardened architecture, which is non-programmable, but
the amount of PL available varies from part to part. The PL is at the top of the figure. It connects to the
hardened IP blocks using nine AXI bus ports (Section 3.1.5). A number of clock and reset generators as
well as interrupt signals can be connected between the two parts.

Significant components of the hardened logic are two ArmA9 processors with a shared L2 cache, the
double-data-rate (DDR) DRAM controller and an on-chip SRAM scratchpadmemory of 256 kbytes
(Section 2.3). Rather than using a NoC, the device has several bus switching elements. Thesemostly
have three or four inputs and three or four outputs. The DRAM controller has four target ports and
operates out-of-order using a small local cache andwrite buffer, as per Section 2.6.6.

Not shown on the figure are the numerous I/O pads. These aremostly multifunctional, with a pin
having three to five different programmable uses. As well as being usable for multistandard generic
input and output to the PL (i.e. with different logic levels, drive strengths and slew rates), the pins can
be routed to specific hardened IP blocks. As well as DRAM, these includemany of the standard blocks
described in Section 2.7, such as Ethernet, UART, USB and others. These IP blocks are all transaction
targets, but many are also initiators. They are represented on Figure 6.15 as the I/O peripheral block
(IOP) at centre right.

Themultiple AXI ports between the hardened logic and PL are of three different types. The four
left-hand ports give high throughput access to the DRAMand scratchpad. They can be 32 or 64bits
wide. The four right-hand ports are primarily for PIO. These allow software on the Arm cores to target
register files implemented in the PL. The reverse direction allows soft cores and other controllers,
implemented in the PL, to perform PIO on the hardened peripherals.

305

Modern SoCDesign

Figure 6.14 illustrates the structure of a server blade with an FPGA. A conventional blade typically
has two standard CPUs, each with twoDRAM channels. It has an Ethernet NIC that connects to the
so-called top-of-rack Ethernet hub, which servesmany tens of blades. It typically also has an SSD or
hard disk for local data storage, or at least for booting and paging. With the FPGA extension, all
secondary storage and network traffic is passed through the FPGA. An FPGA is programmedwith a
backstop that gives the processors transparent access to its resources when the FPGA is not being
used.

SSD

Standard CPU

Shared L2

BUS I/FDRAM CTRL

L1 I L1 D

CPU

L1 I L1 D

CPU

DRAM Bank

Network
Interface

(NIC)

FPGA

Server Blade

Ethernet to
Top-of-Rack Switch Serial links to neighbour FPGA

Serial links to neighbour FPGA

DRAM Bank
DRAM Bank

SATA

SerDesSerDes

SerDesSerDes

BUS I/FBUS I/F

DRAM CTRL

Standard CPU

Shared L2

BUS I/FDRAM CTRL

L1 I L1 D

CPU

L1 I L1 D

CPU

BUS I/F

Programmable
logic

SSD

QPI/
CCIX/
CXL/

NVLink

Figure 6.14 Representative bump-in-wire server blade architecture that has the FPGA in series with the network interface and secondary storage (disk
drives or SSD)

The other notable feature is a local interconnect between FPGAs using SERDES channels
(Section 3.8). A cluster of FPGAs can be joined together with inter-blade wiring. For example, eight
bladesmay be placed in a ring or hyper-ring, which is a standard ring, unidirectional or bidirectional,
but with a small number of longer distance links (called chords) that decrease themean diameter and
increase the sectional bandwidth. Commonly, all the FPGAs in a cluster use one blade or core as their
host CPU. The remaining CPUs operate independently, executing unrelated tasks. This is explained by
Caulfield et al. in ‘A cloud-scale acceleration architecture’ [10].

The interconnect standard used between the processors and the FPGA is often coherent [11, 12],
such as the Intel quick path interconnect (QPI) standard. This replaced the older front-side busses
and is cache-consistent. Other protocols used include CCIX, CXL andNVLink (Section 3.8.2).

304

Chapter 6 | Architectural Design Exploration

6.5 Super FPGAs
An FPGA devotes a large area of silicon to programmable components and programmable
circuit-switchedwiring (Section 8.5.1). Although programmable structures use at least an order of
magnitudemore silicon than customVLSI and deliver up to an order of magnitude lower clock
frequencies, it is very attractive to combine FPGAswith standard CPU cores, memory and other IP
blocks. The high degree of parallelism in the programmable logic (PL)mitigates the lower clock
frequency whereas the optimisation inherent in the standard parts leads to an acceptable overall
silicon budget. The energy used by a board-level interconnect is also avoidedwith a single-chip
approach. Before super FPGAs, it was sometimes a good design point to devote FPGA area to
implementing standard processors and IP blocks. This could give a smaller overall bill of materials
(BoM) for the final product, despite the somewhat extravagant use of silicon. A processor
implemented in PL is known as a soft core. If an IP block is new andNRE (Section 8.11) are not
warranted, implementing it as an FPGA is the obvious choice.

Recently, a new generation of so-called super FPGAs has emerged. The chips have both a large
number of standard IP blocks as well as a large area of PL in FPGA form. A good example is the Zynq
range fromXilinx [11]. Figure 6.15 shows the typical block diagram for such a component. All
members of the family will have the same hardened architecture, which is non-programmable, but
the amount of PL available varies from part to part. The PL is at the top of the figure. It connects to the
hardened IP blocks using nine AXI bus ports (Section 3.1.5). A number of clock and reset generators as
well as interrupt signals can be connected between the two parts.

Significant components of the hardened logic are two ArmA9 processors with a shared L2 cache, the
double-data-rate (DDR) DRAM controller and an on-chip SRAM scratchpadmemory of 256 kbytes
(Section 2.3). Rather than using a NoC, the device has several bus switching elements. Thesemostly
have three or four inputs and three or four outputs. The DRAM controller has four target ports and
operates out-of-order using a small local cache andwrite buffer, as per Section 2.6.6.

Not shown on the figure are the numerous I/O pads. These aremostly multifunctional, with a pin
having three to five different programmable uses. As well as being usable for multistandard generic
input and output to the PL (i.e. with different logic levels, drive strengths and slew rates), the pins can
be routed to specific hardened IP blocks. As well as DRAM, these includemany of the standard blocks
described in Section 2.7, such as Ethernet, UART, USB and others. These IP blocks are all transaction
targets, but many are also initiators. They are represented on Figure 6.15 as the I/O peripheral block
(IOP) at centre right.

Themultiple AXI ports between the hardened logic and PL are of three different types. The four
left-hand ports give high throughput access to the DRAMand scratchpad. They can be 32 or 64bits
wide. The four right-hand ports are primarily for PIO. These allow software on the Arm cores to target
register files implemented in the PL. The reverse direction allows soft cores and other controllers,
implemented in the PL, to perform PIO on the hardened peripherals.

305

Modern SoCDesign

High performance
Initiatior AXI ports

Cache-coherent
ACP port

General purpose AXI
ports (for PIO and I/O control)

Initiators Targets

FI
FO

s

Application Processing Unit

Scratch
pad

256 kB

64 64 64 64 64 32 32 32 32

Programmable logic (PL / FPGA) region

Level Two Cache
512 kB

CBRI

CBRI

CBRI

CBRI

QoS QoS

CBRI

QoS

CBRI

QoS

DDR DRAM Controller

CBRI 2 x Arm A9
NEON MMU
L1 I/D Caches

Snoop Control Unit

CBRI

CBRI CBRI

CBRIDevC

DAP

DMA
x 2

QoS QoS

Hardened I/O Devices
InitiatorsTargets

Central
Interconnect

DRAM
(offchip)

64

64

64 64

32 or
64

High-Performance
Interconnect

32

32

32

Ethernet/USB/I2C/CAN...

Figure 6.15 Simplified block diagram of a super FPGA, like the Xilinx Zynq devices

The device operates with a global, flat address space that covers all peripherals andmemory. The
central AXI port allows the PL to initiate transactions on the whole space. Moreover, these
transactions are cache-coherent with the shared L2 cache (which is physically mapped, of course).
Although limited bandwidth is available through this single AXI port, comparedwith the four on the
left, the lack of a need for software-enforced consistency can be beneficial for some applications, such
as anything that does a considerable amount of fine-grained random access to data structures that are
simultaneously being accessed by the Arm cores.

Key parameters for recent Zynq parts are given in Table 6.4. Logic is primarily implemented in the
LUTs. The equivalent number of two-input gates for each LUT varies according to the design, but can
be around 15. These parts support a larger number of gigabit transceivers (Section 3.8), Ethernet
ports and CCIX off-chip cache-coherent interconnects (Section 3.8.2). Two or four SERDES ports can
be paralleled to form a higher-bandwidth logical port using the hardware support in the Interlaken
protocol.

306

Chapter 6 | Architectural Design Exploration

Table 6.4 Key parameters for a range of super-FPGA parts available from Xilinx in 2018

Device name VU31P VU33P VU35P VU37P VU11P VU13P
System logic cells (k) 962 962 1907 2852 2835 3780
CLB flip-flops (k) 879 879 1743 2607 2592 3456
CLB LUTs (k) 440 440 872 1304 1296 1728
Maximum distributed RAM (Mb) 12.5 12.5 24.6 36.7 36.2 48.3
Total block RAM (Mb) 23.6 23.6 47.3 70.9 70.9 94.5
Ultra RAM (Mb) 90.0 90.0 180.0 270.0 270.0 360.0
HBMDRAM (GB) 4 8 8 8 – –
Clockmanagement tiles 4 4 5 3 6 4
DSP slices 2880 2880 5952 9024 9216 12288
PCIe ports 4 4 5 6 3 4
CCIX ports 4 4 4 4 – –
150G Interlaken 0 0 2 4 6 8
100G Ethernet with RS-FEC 2 2 5 8 9 12
Maximum single-ended I/O 208 208 416 624 624 832
Multi-standard Gbps SERDES 32 32 64 96 96 128

6.6 Asymptotic Analysis
In this section, we present four analytic studies that justify abstract design decisions based on
relatively crude assumptions about their effects. Asymptotic analysis is a widely used sanity check for
a theory or formula. It is also known as ‘taking it to the limit’. An asymptotic analysis considers the
behaviour of a model when its parameters are taken to extreme values. Such values are commonly
well outside the design space of a sensible or even feasible product, but the procedure gives insight
into the structure of the design problem and the accuracy of themodel. For instance, if the capacity of
a cache is set to zero or to the size of mainmemory, then amodel or formula should report its capacity
miss ratio as one or zero at these extremes, respectively. This result arises regardless of
implementation technology or fabrication process.

Amodel that gives inaccurate results in numerical terms can still be very useful for DSE, provided it
has the correct partial derivative polarity. For instance, a model might be parametrised with double
the correct activation energy for a DRAM row. In basic terms, if changing a design parameter makes
some things better and other things worse, themodel is still useful for exploration provided it
correctly distinguishes betweenmetrics that are improving and those that are deteriorating. The
power and energy reported by amodel with twice the activation energy would be out according to
how often the DRAM traffic crosses pages, but these could still reflect the complex shape of themerit
surfaces and indicate the presence of sweet spots and false maxima.

Although this section uses equations and spreadsheets to evaluate composite system behaviour, it
should be emphasised that the same elemental formulae can be embedded in ESLmodels of system
components. The composite behaviour is then represented by the ESLmodel as a whole and
automatically recomputedwhen tests are run on different ESL architectures.

307

Modern SoCDesign

High performance
Initiatior AXI ports

Cache-coherent
ACP port

General purpose AXI
ports (for PIO and I/O control)

Initiators Targets

FI
FO

s

Application Processing Unit

Scratch
pad

256 kB

64 64 64 64 64 32 32 32 32

Programmable logic (PL / FPGA) region

Level Two Cache
512 kB

CBRI

CBRI

CBRI

CBRI

QoS QoS

CBRI

QoS

CBRI

QoS

DDR DRAM Controller

CBRI 2 x Arm A9
NEON MMU
L1 I/D Caches

Snoop Control Unit

CBRI

CBRI CBRI

CBRIDevC

DAP

DMA
x 2

QoS QoS

Hardened I/O Devices
InitiatorsTargets

Central
Interconnect

DRAM
(offchip)

64

64

64 64

32 or
64

High-Performance
Interconnect

32

32

32

Ethernet/USB/I2C/CAN...

Figure 6.15 Simplified block diagram of a super FPGA, like the Xilinx Zynq devices

The device operates with a global, flat address space that covers all peripherals andmemory. The
central AXI port allows the PL to initiate transactions on the whole space. Moreover, these
transactions are cache-coherent with the shared L2 cache (which is physically mapped, of course).
Although limited bandwidth is available through this single AXI port, comparedwith the four on the
left, the lack of a need for software-enforced consistency can be beneficial for some applications, such
as anything that does a considerable amount of fine-grained random access to data structures that are
simultaneously being accessed by the Arm cores.

Key parameters for recent Zynq parts are given in Table 6.4. Logic is primarily implemented in the
LUTs. The equivalent number of two-input gates for each LUT varies according to the design, but can
be around 15. These parts support a larger number of gigabit transceivers (Section 3.8), Ethernet
ports and CCIX off-chip cache-coherent interconnects (Section 3.8.2). Two or four SERDES ports can
be paralleled to form a higher-bandwidth logical port using the hardware support in the Interlaken
protocol.

306

Chapter 6 | Architectural Design Exploration

Table 6.4 Key parameters for a range of super-FPGA parts available from Xilinx in 2018

Device name VU31P VU33P VU35P VU37P VU11P VU13P
System logic cells (k) 962 962 1907 2852 2835 3780
CLB flip-flops (k) 879 879 1743 2607 2592 3456
CLB LUTs (k) 440 440 872 1304 1296 1728
Maximum distributed RAM (Mb) 12.5 12.5 24.6 36.7 36.2 48.3
Total block RAM (Mb) 23.6 23.6 47.3 70.9 70.9 94.5
Ultra RAM (Mb) 90.0 90.0 180.0 270.0 270.0 360.0
HBMDRAM (GB) 4 8 8 8 – –
Clockmanagement tiles 4 4 5 3 6 4
DSP slices 2880 2880 5952 9024 9216 12288
PCIe ports 4 4 5 6 3 4
CCIX ports 4 4 4 4 – –
150G Interlaken 0 0 2 4 6 8
100G Ethernet with RS-FEC 2 2 5 8 9 12
Maximum single-ended I/O 208 208 416 624 624 832
Multi-standard Gbps SERDES 32 32 64 96 96 128

6.6 Asymptotic Analysis
In this section, we present four analytic studies that justify abstract design decisions based on
relatively crude assumptions about their effects. Asymptotic analysis is a widely used sanity check for
a theory or formula. It is also known as ‘taking it to the limit’. An asymptotic analysis considers the
behaviour of a model when its parameters are taken to extreme values. Such values are commonly
well outside the design space of a sensible or even feasible product, but the procedure gives insight
into the structure of the design problem and the accuracy of themodel. For instance, if the capacity of
a cache is set to zero or to the size of mainmemory, then amodel or formula should report its capacity
miss ratio as one or zero at these extremes, respectively. This result arises regardless of
implementation technology or fabrication process.

Amodel that gives inaccurate results in numerical terms can still be very useful for DSE, provided it
has the correct partial derivative polarity. For instance, a model might be parametrised with double
the correct activation energy for a DRAM row. In basic terms, if changing a design parameter makes
some things better and other things worse, themodel is still useful for exploration provided it
correctly distinguishes betweenmetrics that are improving and those that are deteriorating. The
power and energy reported by amodel with twice the activation energy would be out according to
how often the DRAM traffic crosses pages, but these could still reflect the complex shape of themerit
surfaces and indicate the presence of sweet spots and false maxima.

Although this section uses equations and spreadsheets to evaluate composite system behaviour, it
should be emphasised that the same elemental formulae can be embedded in ESLmodels of system
components. The composite behaviour is then represented by the ESLmodel as a whole and
automatically recomputedwhen tests are run on different ESL architectures.

307

Modern SoCDesign

In the following sections, we present four examples with non-linear effects:

1. Using amemory hierarchy: Instead of an enormous fast cache, there is a fast L1 and a large L2 to
get the same hit rate at almost the same latency but with far less energy use (Section 6.6.1).

2. Usingmultiple cores when you can: A high-performance core (Intel Nehalem style) consumes far
more power than a set of simple cores with similar total throughput (Section 6.6.2).

3. Using amulti-access NoC instead of a switchedNoC that has spatial reuse (Section 6.6.3).

4. Usingmore static power at the expense of being able to run a task at a higher clock rate
(Section 6.6.4).

6.6.1 Illustration 1: Hierarchical Cache
For a given CMOS technology, it is possible to design circuits with different trade-offs of delay and
energy use. By varying the transistor size and doping, this is possible even for a single supply voltage.
Hence, a cache with a given silicon area can have a small capacity and fast response times or a large
capacity and slower responses. (Reliability and the use of ECC is another potential dimension but not
explored here.) Two points in a fictional design space are called L1 and L2. These differ by 10 to 1 in
access times and area (although 3 or 4 to 1may be all that is possible in many technologies). Their
respective performance is tabulated in Table 6.5 using arbitrary units for area and energy. The access
time reciprocally decreases with the square root of capacity on the assumption that the bit-line
capacitance is the dominant factor whereas the energy of access is just proportional to capacity.
Clearly, the ratio between these two power laws could be adjusted in a further exploration, but this is
a reasonable starting point. A formula that models the hit ratio for a given cache sizemust pass
through the origin and asymptotically approach 100 per cent. Any formula with broadly the correct
shape and intercepts can be used. The spreadsheet used s/(512+ s) but could equally have used
1−exp(−s/512) to illustrate the same point.

It is now possible to show that having two caches with different speed/power ratios is a good design
point. Table 6.6 tabulates 4 two-level caches that use L1 technology backed by L2 technology. The
most obvious distinction between having one or two caches is clear from the bottom line of each
table. For the largest cache considered, the energy for L1 alone is roughly 10 times that for L2 alone,
but for L2 alone, the average access times is 10 times higher. For a composite design, where an L1 of
size 4096 is prefixed onto the front side of the largest L2, the average access time drops until it is only
slightly worse than if the whole cache weremade of L1 technology. However, the energy used by the
combination is vastly lower. This was based on the L2 having zero leakage, so its power use decreased
in direct proportion to its access rate. However, even if 30 per cent of its energy use is static power,
the bottom-line energy would increase by only 150 units, with the total still remaining less than the
262 arising frommaking the whole cache from the low-power L2 technology. Although not shown
here, we could also explore a higher density for L2 in a similar framework.

308

Chapter 6 | Architectural Design Exploration

Table 6.5 Basic parameters for two caches with different speed/power ratios but the same technology and bit density, versus cache size

L1 L2
Cache Size Energy Area Hit rate Access time Mean time Energy Area Hit rate Access time Mean time

1 0.01 0.001 0.002 0.0 200 0.001 0.001 0.002 0.1 200
2 0.02 0.002 0.004 0.0 199 0.002 0.002 0.004 0.1 199
4 0.04 0.004 0.008 0.0 198 0.004 0.004 0.008 0.2 198
8 0.08 0.008 0.015 0.0 197 0.008 0.008 0.015 0.3 197

16 0.16 0.016 0.030 0.0 194 0.016 0.016 0.030 0.4 194
32 0.32 0.032 0.059 0.1 188 0.032 0.032 0.059 0.6 188
64 0.64 0.064 0.111 0.1 178 0.064 0.064 0.111 0.8 178
128 1.28 0.128 0.200 0.1 160 0.128 0.128 0.200 1.1 160
256 2.56 0.256 0.333 0.2 133 0.256 0.256 0.333 1.6 134
512 5.12 0.512 0.500 0.2 100 0.512 0.512 0.500 2.3 101
1024 10.24 1.024 0.667 0.3 67 1.024 1.024 0.667 3.2 69
2048 20.48 2.048 0.800 0.5 40 2.048 2.048 0.800 4.5 44
4096 40.96 4.096 0.889 0.6 23 4.096 4.096 0.889 6.4 28
8192 81.92 8.192 0.941 0.9 13 8.192 8.192 0.941 9.1 20

16384 163.84 16.384 0.970 1.3 7 16.384 16.384 0.970 12.8 18
32768 327.68 32.768 0.985 1.8 5 32.768 32.768 0.985 18.1 21
65536 655.36 65.536 0.992 2.6 4 65.536 65.536 0.992 25.6 27
131072 1310.72 131.072 0.996 3.6 4 131.072 131.072 0.996 36.2 37
262144 2621.44 262.144 0.998 5.1 5 262.144 262.144 0.998 51.2 51

Table 6.6 Some composite design examples

L1 L2 L2 Composite Composite Composite
size size energy energy area mean time
64 262144 233.0 233.6 262.2 45.8
128 262144 209.7 211.0 262.3 41.2
1024 262144 87.4 97.6 263.2 17.4
4096 262144 29.1 70.1 266.2 6.3

6.6.2 Illustration 2: big.LITTLE
Using smaller circuitry is the best way to improve the performance of a computer. However, for a
given geometry, performance can be increased in three orthogonal ways: increasing the IPC of
individual cores (i.e. increasing their complexity, c), clocking faster (i.e. increasing the DVFS voltage, v)
or usingmore cores, n. Approximate power laws for performance and power are summarised in
Table 6.7. Pollack’s rule (Section 2.1.1) suggests that performance increases with the square root of
complexity. With voltage scaling (Section 4.6.8), there is a cubic growth of power when the clock
frequency is increased in proportion to the voltage (although the energy use for a fixed-size task
grows only quadratically). Simply havingmore cores generally results in a sub-linear improvement
due to inter-core communication overheads, so 0.9 is used for the exponent here. The bottom line of
the table considers the power/performance ratio and shows that the throughput can be doubled for
the smallest increase in power by altering the third parameter – the number of cores.

The big.LITTLE architecture fromArmwasmotivated by Pollack’s rule. Most computer systems have
bursty application loads. Halting the cores saves dynamic energy whereas clock gating reduces the
clock tree energywhile halted. Newwork interrupts the processor, which takes it out of the halt state.
However, static power use is proportional to the complexity of the core, as is dynamic energy use by

309

Modern SoCDesign

In the following sections, we present four examples with non-linear effects:

1. Using amemory hierarchy: Instead of an enormous fast cache, there is a fast L1 and a large L2 to
get the same hit rate at almost the same latency but with far less energy use (Section 6.6.1).

2. Usingmultiple cores when you can: A high-performance core (Intel Nehalem style) consumes far
more power than a set of simple cores with similar total throughput (Section 6.6.2).

3. Using amulti-access NoC instead of a switchedNoC that has spatial reuse (Section 6.6.3).

4. Usingmore static power at the expense of being able to run a task at a higher clock rate
(Section 6.6.4).

6.6.1 Illustration 1: Hierarchical Cache
For a given CMOS technology, it is possible to design circuits with different trade-offs of delay and
energy use. By varying the transistor size and doping, this is possible even for a single supply voltage.
Hence, a cache with a given silicon area can have a small capacity and fast response times or a large
capacity and slower responses. (Reliability and the use of ECC is another potential dimension but not
explored here.) Two points in a fictional design space are called L1 and L2. These differ by 10 to 1 in
access times and area (although 3 or 4 to 1may be all that is possible in many technologies). Their
respective performance is tabulated in Table 6.5 using arbitrary units for area and energy. The access
time reciprocally decreases with the square root of capacity on the assumption that the bit-line
capacitance is the dominant factor whereas the energy of access is just proportional to capacity.
Clearly, the ratio between these two power laws could be adjusted in a further exploration, but this is
a reasonable starting point. A formula that models the hit ratio for a given cache sizemust pass
through the origin and asymptotically approach 100 per cent. Any formula with broadly the correct
shape and intercepts can be used. The spreadsheet used s/(512+ s) but could equally have used
1−exp(−s/512) to illustrate the same point.

It is now possible to show that having two caches with different speed/power ratios is a good design
point. Table 6.6 tabulates 4 two-level caches that use L1 technology backed by L2 technology. The
most obvious distinction between having one or two caches is clear from the bottom line of each
table. For the largest cache considered, the energy for L1 alone is roughly 10 times that for L2 alone,
but for L2 alone, the average access times is 10 times higher. For a composite design, where an L1 of
size 4096 is prefixed onto the front side of the largest L2, the average access time drops until it is only
slightly worse than if the whole cache weremade of L1 technology. However, the energy used by the
combination is vastly lower. This was based on the L2 having zero leakage, so its power use decreased
in direct proportion to its access rate. However, even if 30 per cent of its energy use is static power,
the bottom-line energy would increase by only 150 units, with the total still remaining less than the
262 arising frommaking the whole cache from the low-power L2 technology. Although not shown
here, we could also explore a higher density for L2 in a similar framework.

308

Chapter 6 | Architectural Design Exploration

Table 6.5 Basic parameters for two caches with different speed/power ratios but the same technology and bit density, versus cache size

L1 L2
Cache Size Energy Area Hit rate Access time Mean time Energy Area Hit rate Access time Mean time

1 0.01 0.001 0.002 0.0 200 0.001 0.001 0.002 0.1 200
2 0.02 0.002 0.004 0.0 199 0.002 0.002 0.004 0.1 199
4 0.04 0.004 0.008 0.0 198 0.004 0.004 0.008 0.2 198
8 0.08 0.008 0.015 0.0 197 0.008 0.008 0.015 0.3 197

16 0.16 0.016 0.030 0.0 194 0.016 0.016 0.030 0.4 194
32 0.32 0.032 0.059 0.1 188 0.032 0.032 0.059 0.6 188
64 0.64 0.064 0.111 0.1 178 0.064 0.064 0.111 0.8 178
128 1.28 0.128 0.200 0.1 160 0.128 0.128 0.200 1.1 160
256 2.56 0.256 0.333 0.2 133 0.256 0.256 0.333 1.6 134
512 5.12 0.512 0.500 0.2 100 0.512 0.512 0.500 2.3 101
1024 10.24 1.024 0.667 0.3 67 1.024 1.024 0.667 3.2 69
2048 20.48 2.048 0.800 0.5 40 2.048 2.048 0.800 4.5 44
4096 40.96 4.096 0.889 0.6 23 4.096 4.096 0.889 6.4 28
8192 81.92 8.192 0.941 0.9 13 8.192 8.192 0.941 9.1 20

16384 163.84 16.384 0.970 1.3 7 16.384 16.384 0.970 12.8 18
32768 327.68 32.768 0.985 1.8 5 32.768 32.768 0.985 18.1 21
65536 655.36 65.536 0.992 2.6 4 65.536 65.536 0.992 25.6 27
131072 1310.72 131.072 0.996 3.6 4 131.072 131.072 0.996 36.2 37
262144 2621.44 262.144 0.998 5.1 5 262.144 262.144 0.998 51.2 51

Table 6.6 Some composite design examples

L1 L2 L2 Composite Composite Composite
size size energy energy area mean time
64 262144 233.0 233.6 262.2 45.8
128 262144 209.7 211.0 262.3 41.2
1024 262144 87.4 97.6 263.2 17.4
4096 262144 29.1 70.1 266.2 6.3

6.6.2 Illustration 2: big.LITTLE
Using smaller circuitry is the best way to improve the performance of a computer. However, for a
given geometry, performance can be increased in three orthogonal ways: increasing the IPC of
individual cores (i.e. increasing their complexity, c), clocking faster (i.e. increasing the DVFS voltage, v)
or usingmore cores, n. Approximate power laws for performance and power are summarised in
Table 6.7. Pollack’s rule (Section 2.1.1) suggests that performance increases with the square root of
complexity. With voltage scaling (Section 4.6.8), there is a cubic growth of power when the clock
frequency is increased in proportion to the voltage (although the energy use for a fixed-size task
grows only quadratically). Simply havingmore cores generally results in a sub-linear improvement
due to inter-core communication overheads, so 0.9 is used for the exponent here. The bottom line of
the table considers the power/performance ratio and shows that the throughput can be doubled for
the smallest increase in power by altering the third parameter – the number of cores.

The big.LITTLE architecture fromArmwasmotivated by Pollack’s rule. Most computer systems have
bursty application loads. Halting the cores saves dynamic energy whereas clock gating reduces the
clock tree energywhile halted. Newwork interrupts the processor, which takes it out of the halt state.
However, static power use is proportional to the complexity of the core, as is dynamic energy use by

309

Modern SoCDesign

Table 6.7 Power laws for performance delivered and power used in terms of three independent parameters

Metric Core complexity (c) DVFS voltage (v) Number of cores (n)
Performance delivered c0.5 v1.0 n0.9

Power used c1.0 v3.0 n1.0

Increase in power for double performance 4 8 2.16

ungated portions of the system. Hence, having a complex core that spends a long time halted uses
more energy than running the samework on a simple core that spends proportionately less time
halted. The big.LITTLE technologymakes it easy to shift work between cores of different sizes as the
measured load varies [13].

Power
mW

Performance
MIPS

Out-of-order
superscalar

CPU

Simple CPU

Two Simple
CPUs

Big/Little/Parallel Trade Offs

Figure 6.16 Relative performance of simple and complex CPU cores with DVFS

Figure 6.16 illustrates three systems that vary in power and performance. Each system traces a line as
the supply voltage is varied. Importantly, having two smaller CPUs is clearly the best of the three
designs. Moreover, one of the two cores could be switched off entirely to encompass the single simple
CPU.

This shows it is better to write a parallel program if you can and then usemultiple simple cores.
However, exploiting two cores in parallel is possible only with certain workloads. Three forms of
parallel speedup are well known from classical imperative parallel programming:

310

Chapter 6 | Architectural Design Exploration

Task-level parallelism: Partition the input data over nodes and run the same program on each
node. If there is no inter-node communication, this is called an embarrassingly parallel problem,
since there is no excuse for sub-linear performance scaling.

Programmer-defined thread-level parallelism: The programmer uses constructs such as
pthreads, Cilk or C# Parallel.for loops to explicitly denote local regions of concurrent activity
that typically communicate using shared variables. SIMD vector instructions are another from of
programmer-defined parallelism.

Instruction-level parallelism: The imperative program (or local region of) is converted to data
flows. All ALU operations can potentially be run in parallel, but operands remain prerequisites for
results and load/store operations on a givenmutable object must respect program order. This is the
behaviour of a super-scalar core that achieves an IPC of greater than one (Section 2.2).

Themulti-core approach is applicable only for the first two approaches. Legacy codewith a complex
control flow, such as a PDF viewer, can be significantly accelerated only using the third approach.
Alternatively, a PDF viewer could be refactored, or perhaps even the file formats amended, to suit
parallel programming. For the PDF example, the key step is to establish the page andword layout as
soon as possible so that each word, letter or line can be rendered in parallel. However, older code
might not be structured so that it can establish where the next letter is to be placed until it has
completed rendering the current letter. In the paper ‘Brawny cores still beat wimpy cores, most of the
time’ [14], Hölzle argues that:

Slower, but energy-efficient ‘wimpy’ cores only win for general workloads if their single-core
speed is reasonably close to that of mid-range ‘brawny’ cores.

6.6.3 Illustration 3: NoC Topology Trade-off
Figure 3.20 shows a 2-D unidirectional torus NoC composed of radix-3 elements. A related common
variant is a bidirectional torus, which requires radix-5 elements and correspondingly greater
complexity. A very efficient radix-5 element was designed by IBM in 2014 [15]. Nonetheless, the
complexity of either torus is much greater than an equivalent multi-access network. As explained
in Section 3.3.1, amulti-access network has a sharedmedium that is forwarded between participants
withminimal logic. Broadside registers can be freely inserted for timing closure, but the overall logic
cost may bemuch lower, as explored here.

All network topologies have throughput that is bisectional. This means that the average bandwidth
between all sources and destinations either side of any partition of the topology is bounded by the
bandwidth of the links cut by that line. Figure 6.17 shows several NoC designs that use amulti-access
sharedmedium. A slotted ring and counter-rotating ring have constant bandwidth if cut with a
horizontal line. Hence, their throughput can be expected to degrade reciprocally in proportion to the
number of end points connected. Although this is, indeed, the case for rings, if there is a mix of local
and global traffic, the sectional bandwidthmay be less important.

311

Modern SoCDesign

Table 6.7 Power laws for performance delivered and power used in terms of three independent parameters

Metric Core complexity (c) DVFS voltage (v) Number of cores (n)
Performance delivered c0.5 v1.0 n0.9

Power used c1.0 v3.0 n1.0

Increase in power for double performance 4 8 2.16

ungated portions of the system. Hence, having a complex core that spends a long time halted uses
more energy than running the samework on a simple core that spends proportionately less time
halted. The big.LITTLE technologymakes it easy to shift work between cores of different sizes as the
measured load varies [13].

Power
mW

Performance
MIPS

Out-of-order
superscalar

CPU

Simple CPU

Two Simple
CPUs

Big/Little/Parallel Trade Offs

Figure 6.16 Relative performance of simple and complex CPU cores with DVFS

Figure 6.16 illustrates three systems that vary in power and performance. Each system traces a line as
the supply voltage is varied. Importantly, having two smaller CPUs is clearly the best of the three
designs. Moreover, one of the two cores could be switched off entirely to encompass the single simple
CPU.

This shows it is better to write a parallel program if you can and then usemultiple simple cores.
However, exploiting two cores in parallel is possible only with certain workloads. Three forms of
parallel speedup are well known from classical imperative parallel programming:

310

Chapter 6 | Architectural Design Exploration

Task-level parallelism: Partition the input data over nodes and run the same program on each
node. If there is no inter-node communication, this is called an embarrassingly parallel problem,
since there is no excuse for sub-linear performance scaling.

Programmer-defined thread-level parallelism: The programmer uses constructs such as
pthreads, Cilk or C# Parallel.for loops to explicitly denote local regions of concurrent activity
that typically communicate using shared variables. SIMD vector instructions are another from of
programmer-defined parallelism.

Instruction-level parallelism: The imperative program (or local region of) is converted to data
flows. All ALU operations can potentially be run in parallel, but operands remain prerequisites for
results and load/store operations on a givenmutable object must respect program order. This is the
behaviour of a super-scalar core that achieves an IPC of greater than one (Section 2.2).

Themulti-core approach is applicable only for the first two approaches. Legacy codewith a complex
control flow, such as a PDF viewer, can be significantly accelerated only using the third approach.
Alternatively, a PDF viewer could be refactored, or perhaps even the file formats amended, to suit
parallel programming. For the PDF example, the key step is to establish the page andword layout as
soon as possible so that each word, letter or line can be rendered in parallel. However, older code
might not be structured so that it can establish where the next letter is to be placed until it has
completed rendering the current letter. In the paper ‘Brawny cores still beat wimpy cores, most of the
time’ [14], Hölzle argues that:

Slower, but energy-efficient ‘wimpy’ cores only win for general workloads if their single-core
speed is reasonably close to that of mid-range ‘brawny’ cores.

6.6.3 Illustration 3: NoC Topology Trade-off
Figure 3.20 shows a 2-D unidirectional torus NoC composed of radix-3 elements. A related common
variant is a bidirectional torus, which requires radix-5 elements and correspondingly greater
complexity. A very efficient radix-5 element was designed by IBM in 2014 [15]. Nonetheless, the
complexity of either torus is much greater than an equivalent multi-access network. As explained
in Section 3.3.1, amulti-access network has a sharedmedium that is forwarded between participants
withminimal logic. Broadside registers can be freely inserted for timing closure, but the overall logic
cost may bemuch lower, as explored here.

All network topologies have throughput that is bisectional. This means that the average bandwidth
between all sources and destinations either side of any partition of the topology is bounded by the
bandwidth of the links cut by that line. Figure 6.17 shows several NoC designs that use amulti-access
sharedmedium. A slotted ring and counter-rotating ring have constant bandwidth if cut with a
horizontal line. Hence, their throughput can be expected to degrade reciprocally in proportion to the
number of end points connected. Although this is, indeed, the case for rings, if there is a mix of local
and global traffic, the sectional bandwidthmay be less important.

311

Modern SoCDesign

EP

EP

EP

EP

EP

EP
1

2

3

4

N-1

N
EP

EP
5

6

b) Bi-directional Ring c) Ring-of-folded busses

EP EP EP EP
1 2 3 N

1

2

N-1

N

N+1

2N

N*(M-1)

N*(M-1)+1

N*M

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

N-2

N-3

2N-1

2N-2

N*M-1

N*M-2

a) Uni-directional Ring

Figure 6.17 Three multi-access NoC topologies

A slotted ring of folded busses can exploit traffic locality if flows between stations on the same bus do
not need to use the ring. The ring can be bidirectional, as shown, or unidirectional. The arcs of the ring
typically use wider busses than are used for folded bus links. With appropriately dimensioned VCs on
the rings, it is easy to ensure that traffic does not arrive at a folded bus faster than the bus bandwidth.
For instance, a ringmight use four times the data width of folded busses and four VCs that are directly
mapped to the word lanes on the ring.

A folded bus has a significant advantage over a ring because it is possible to stall the transmit half
globally while allowing the receive half to continue. For a bus layout, a clock enable net connected to
the transmit logic of all stationsmust be added. For a tree layout, the reverse channel already exists,
whichmeans that it is always possible to instantly and losslessly insert a slot at the fold point for a
folded bus. In keeping with themulti-access principle, no FIFO structure is required.

On the other hand, and again assuming there is no queue or buffer at the connection point, a bridge
between two rings can deadlock, as follows. A slot flit (or phit) canmove between rings without
additional buffering only if the destination ring has an empty slot at themoment it needs to be read
off the source ring. If not, the source ringmust be stalled. Since slots move in both directions between
the rings, there is a chance that both need to be stalled. No further progress can then bemade,
resulting in a deadlock. In essence, all four turns are in use (Section 3.4.3). Since both rings at the
connection point need to transfer data to the other one, a straightforward slot swap is a possible
solution. Neither then needs to stall. However, this works only if the rings have the samewordwidths,
there are nomulticasts, there are no bandwidth-limiting VCs and destinations are released for busy
slots. Most designs will fail for nearly all of these aspects.

Using a hardware construction language (Section 6.8.3), it is relatively easy to generatemulti-access
ring, bus andmeshNoC structures and to capture the total gate count used. The resulting throughput

312

Chapter 6 | Architectural Design Exploration

using balanced traffic assumptions is readily calculated from the sectional bandwidth formulae.
Alternatively, the resulting hardware can be simulated tomeasure the achieved throughput under
various trafficmodels, such as thosewith greater amounts of local traffic than remote traffic, based on
the assumption that some care was put into the overall layout.

In Figure 6.18, the gate counts and balanced throughput figures for eight designs were captured in a
spreadsheet and the effective throughput per clock cycle, per gate input are plotted. The gate input
metric was directly measured from the hardware designs. For CMOS combinational gates, it relates
to half the transistor count. For D-types, a figure of 12 inputs was used, based on a D-type being
equivalent to about six 2-input gates.

All FIFOsmodelled could hold up to two 136-bit flits. Beingmulti-access, the ring and bus designs
have no FIFO storage in the network fabric, but a transmit and a receive FIFOwere added to each
station and included in the gate count. For the torus NoC designs, one FIFOwas used per output port
of each switching element and there was further arbitration and credit counter overhead as well. But
FIFOswere then not included at each ingress and egress port, since the fabric FIFOwas deemed
sufficient.

Figure 6.18 Comparison of various multi-access and switched NoC designs in terms of throughput (136 bit words per clock cycle) per gate input as the
number of end points (stations) is increased.

The baseline networksmodelled are a unidirectional and a bidirectional slotted ring and a
unidirectional (radix-3 element) and bidirectional (radix-5 element) torus. The bidirectional rings are
designed not to deliver two flits at once to a given destination by using two logical channels, as
discussed in Section 3.3.1. Then hybrid networks weremodelled where each slotted ring station

313

Modern SoCDesign

EP

EP

EP

EP

EP

EP
1

2

3

4

N-1

N
EP

EP
5

6

b) Bi-directional Ring c) Ring-of-folded busses

EP EP EP EP
1 2 3 N

1

2

N-1

N

N+1

2N

N*(M-1)

N*(M-1)+1

N*M

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

N-2

N-3

2N-1

2N-2

N*M-1

N*M-2

a) Uni-directional Ring

Figure 6.17 Three multi-access NoC topologies

A slotted ring of folded busses can exploit traffic locality if flows between stations on the same bus do
not need to use the ring. The ring can be bidirectional, as shown, or unidirectional. The arcs of the ring
typically use wider busses than are used for folded bus links. With appropriately dimensioned VCs on
the rings, it is easy to ensure that traffic does not arrive at a folded bus faster than the bus bandwidth.
For instance, a ringmight use four times the data width of folded busses and four VCs that are directly
mapped to the word lanes on the ring.

A folded bus has a significant advantage over a ring because it is possible to stall the transmit half
globally while allowing the receive half to continue. For a bus layout, a clock enable net connected to
the transmit logic of all stationsmust be added. For a tree layout, the reverse channel already exists,
whichmeans that it is always possible to instantly and losslessly insert a slot at the fold point for a
folded bus. In keeping with themulti-access principle, no FIFO structure is required.

On the other hand, and again assuming there is no queue or buffer at the connection point, a bridge
between two rings can deadlock, as follows. A slot flit (or phit) canmove between rings without
additional buffering only if the destination ring has an empty slot at themoment it needs to be read
off the source ring. If not, the source ringmust be stalled. Since slots move in both directions between
the rings, there is a chance that both need to be stalled. No further progress can then bemade,
resulting in a deadlock. In essence, all four turns are in use (Section 3.4.3). Since both rings at the
connection point need to transfer data to the other one, a straightforward slot swap is a possible
solution. Neither then needs to stall. However, this works only if the rings have the samewordwidths,
there are nomulticasts, there are no bandwidth-limiting VCs and destinations are released for busy
slots. Most designs will fail for nearly all of these aspects.

Using a hardware construction language (Section 6.8.3), it is relatively easy to generatemulti-access
ring, bus andmeshNoC structures and to capture the total gate count used. The resulting throughput

312

Chapter 6 | Architectural Design Exploration

using balanced traffic assumptions is readily calculated from the sectional bandwidth formulae.
Alternatively, the resulting hardware can be simulated tomeasure the achieved throughput under
various trafficmodels, such as thosewith greater amounts of local traffic than remote traffic, based on
the assumption that some care was put into the overall layout.

In Figure 6.18, the gate counts and balanced throughput figures for eight designs were captured in a
spreadsheet and the effective throughput per clock cycle, per gate input are plotted. The gate input
metric was directly measured from the hardware designs. For CMOS combinational gates, it relates
to half the transistor count. For D-types, a figure of 12 inputs was used, based on a D-type being
equivalent to about six 2-input gates.

All FIFOsmodelled could hold up to two 136-bit flits. Beingmulti-access, the ring and bus designs
have no FIFO storage in the network fabric, but a transmit and a receive FIFOwere added to each
station and included in the gate count. For the torus NoC designs, one FIFOwas used per output port
of each switching element and there was further arbitration and credit counter overhead as well. But
FIFOswere then not included at each ingress and egress port, since the fabric FIFOwas deemed
sufficient.

Figure 6.18 Comparison of various multi-access and switched NoC designs in terms of throughput (136 bit words per clock cycle) per gate input as the
number of end points (stations) is increased.

The baseline networksmodelled are a unidirectional and a bidirectional slotted ring and a
unidirectional (radix-3 element) and bidirectional (radix-5 element) torus. The bidirectional rings are
designed not to deliver two flits at once to a given destination by using two logical channels, as
discussed in Section 3.3.1. Then hybrid networks weremodelled where each slotted ring station

313

Modern SoCDesign

connects to a number of client stations using a local folded bus, following the pattern on the right of
Figure 3.20. A fat ring, with twice the bandwidth (×2) on each link was also included in the study.

As expected, themulti-access networks degrade reciprocally in performance as the number of
stations is increased, owing to bandwidth sharing. However, they start off at a much higher
throughput per gate input owing to their intrinsic simplicity. The crossover points for several of the
different approaches can be seen in the plot. Their precise locations will, of course, depend greatly on
many design details.

For the largest configuration plotted, the unidirectional torus has twice the overall bandwidth of the
bidirectional fat ring, and the bidirectional torus has eight timesmore throughput. But the throughput
per gate input can be seen not yet to have crossed over with this number of stations (4096). This
demonstrates the significant complexity of hop-by-hop flow control, comparedwithmulti-access
techniques. For this reason, a recent 4-core chip from IBMuses counter-rotating rings with a bus
width of 128 bytes [16]. However, the downside of multi-access is that destinationsmust always be
ready to receive the bandwidth they were provisioned to receive in the network design or else a
higher-level transport protocol, using responses, must be relied on. All modern SoC protocols support
retry, but their design intent may have been that it would rarely be used.

6.6.4 Illustration 4: Static andDynamic Power Trade-off
The principles of dynamic voltage and frequency scaling (DVFS)were explained in Section 4.6.8 by
assuming that all the transistors in a design have the same leakage. For 90-nm technology, the static
leakage is low so there is considerable scope for DVFS.With sub-45-nm geometries, performance can
be traded off for greater leakage but supply voltages have considerably less freedom and are always
about 1V. Dynamic body bias, available in some technologies, results in further runtime differences
(Section 4.6.10) and is another possibility.

With DVFS using low-leakage logic, the energy use is generally lowest by computing slowly at a lower
voltage and finishing just in time. However, for sub-45 nm, there is reduced freedom in the choice of
voltage. Generally, transistors are turned off less for lower voltages; hence, there is a higher static
leakage current. So, withmodern geometries, it can now be better to operate quickly within the
voltage/frequency band that works and then powering off until next deadline. Low-leakage large but
slow transistors are still required for power gating.

It is now possible to fabricate transistors with different speeds usingmethods other than just altering
the channel width. Transistor thresholds can be adjusted by using different doping levels or ion
implantation, to produce either low-leakage transistors or fast transistors. The variations can be
made globally or in local regions, such as the output cells of a subsystem. If these aremixed on a single
chip, the faster transistors are commonly used for critical-path routes (Section 4.4.2). The rest of the
logic is thenmade from low-leakage transistors (Section 4.6.3).

The problem can be formulated using example coefficients to demonstrate the basic trade-off. Design
exploration using ESLmodels gives the coefficients for a specific application and architecture. The R

314

Chapter 6 | Architectural Design Exploration

program in Figure 6.19 captures the essence. Two implementation technologies and two levels of
parallelism are considered, to give a total of four cases. A simple linear model of frequency versus
supply voltage was used, but themore accurate reciprocal formula from Section 4.6.6 could be used
instead. The two levels of leakage were selected as being roughly 5 and 30 per cent of the average
dynamic energy.

Unfold=1 is the baseline design. Unfold=3 uses three times more silicon.
static_dynamic_tradeoff <- function(clock_freq, leakage, unfold, xx)
{

op_count <- 2e7;

Model: Pollack-like unfold benefit
execution_time <- op_count / clock_freq / (unfold ^ 0.75);

Model: Higher supply needed for higher clock and leakage resistance slightly increasing with Vdd
vdd <- 1 + 0.5 * (clock_freq/100e6);
static_power <- leakage * vdd ^ 0.9 * unfold;

Integrate static power and energy
static_energy <- static_power * execution_time;

Use CV^2 for dynamic energy
dynamic_energy <- op_count * vdd ^ 2.0 * 5e-10;

}

Figure 6.19 Trading off Aesop’s hare versus the tortoise for increasingly leaky technology. In a hard real-time computation, we know the number of clock
cycles needed but should we do them quickly and halt (Hare) or do them slowly and finish just in time (Tortoise)?

Figure 6.20 plots the static, dynamic and total energy for the four configurations. Of key significance
is the design point with the lowest total energy. For the higher leakage system, this can be seen at a
clock frequency of around 200MHz, with not much dependence on the unfold factor. For the
low-leakage technology, the lowest frequencies have the lowest energy use while still being able to
meet the deadline.

6.7 Virtual Platform Examples
Asmentioned in Section 1.4.3, partitioning a design into hardware and software components is known
as co-design and if this is performed by an automatic tool, it is known as co-synthesis. Co-synthesis is
still not mature, so all SoCs are developed usingmanual co-design. An ESLmodel (Chapter 5) based on
a virtual platform is generally the tool of choice for manual architectural exploration.

6.7.1 The Prazor/Zynq Virtual Platform
Twowell-known software simulators are QEMU [17], which is used by the software development kit
(SDK) for the standard phonemodel in the Android operating system, and Gem5 [18], which is often
used for Arm systemmodelling. EDA companies sometimes offer proprietary enhancements to these

315

Modern SoCDesign

connects to a number of client stations using a local folded bus, following the pattern on the right of
Figure 3.20. A fat ring, with twice the bandwidth (×2) on each link was also included in the study.

As expected, themulti-access networks degrade reciprocally in performance as the number of
stations is increased, owing to bandwidth sharing. However, they start off at a much higher
throughput per gate input owing to their intrinsic simplicity. The crossover points for several of the
different approaches can be seen in the plot. Their precise locations will, of course, depend greatly on
many design details.

For the largest configuration plotted, the unidirectional torus has twice the overall bandwidth of the
bidirectional fat ring, and the bidirectional torus has eight timesmore throughput. But the throughput
per gate input can be seen not yet to have crossed over with this number of stations (4096). This
demonstrates the significant complexity of hop-by-hop flow control, comparedwithmulti-access
techniques. For this reason, a recent 4-core chip from IBMuses counter-rotating rings with a bus
width of 128 bytes [16]. However, the downside of multi-access is that destinationsmust always be
ready to receive the bandwidth they were provisioned to receive in the network design or else a
higher-level transport protocol, using responses, must be relied on. All modern SoC protocols support
retry, but their design intent may have been that it would rarely be used.

6.6.4 Illustration 4: Static andDynamic Power Trade-off
The principles of dynamic voltage and frequency scaling (DVFS)were explained in Section 4.6.8 by
assuming that all the transistors in a design have the same leakage. For 90-nm technology, the static
leakage is low so there is considerable scope for DVFS.With sub-45-nm geometries, performance can
be traded off for greater leakage but supply voltages have considerably less freedom and are always
about 1V. Dynamic body bias, available in some technologies, results in further runtime differences
(Section 4.6.10) and is another possibility.

With DVFS using low-leakage logic, the energy use is generally lowest by computing slowly at a lower
voltage and finishing just in time. However, for sub-45 nm, there is reduced freedom in the choice of
voltage. Generally, transistors are turned off less for lower voltages; hence, there is a higher static
leakage current. So, withmodern geometries, it can now be better to operate quickly within the
voltage/frequency band that works and then powering off until next deadline. Low-leakage large but
slow transistors are still required for power gating.

It is now possible to fabricate transistors with different speeds usingmethods other than just altering
the channel width. Transistor thresholds can be adjusted by using different doping levels or ion
implantation, to produce either low-leakage transistors or fast transistors. The variations can be
made globally or in local regions, such as the output cells of a subsystem. If these aremixed on a single
chip, the faster transistors are commonly used for critical-path routes (Section 4.4.2). The rest of the
logic is thenmade from low-leakage transistors (Section 4.6.3).

The problem can be formulated using example coefficients to demonstrate the basic trade-off. Design
exploration using ESLmodels gives the coefficients for a specific application and architecture. The R

314

Chapter 6 | Architectural Design Exploration

program in Figure 6.19 captures the essence. Two implementation technologies and two levels of
parallelism are considered, to give a total of four cases. A simple linear model of frequency versus
supply voltage was used, but themore accurate reciprocal formula from Section 4.6.6 could be used
instead. The two levels of leakage were selected as being roughly 5 and 30 per cent of the average
dynamic energy.

Unfold=1 is the baseline design. Unfold=3 uses three times more silicon.
static_dynamic_tradeoff <- function(clock_freq, leakage, unfold, xx)
{

op_count <- 2e7;

Model: Pollack-like unfold benefit
execution_time <- op_count / clock_freq / (unfold ^ 0.75);

Model: Higher supply needed for higher clock and leakage resistance slightly increasing with Vdd
vdd <- 1 + 0.5 * (clock_freq/100e6);
static_power <- leakage * vdd ^ 0.9 * unfold;

Integrate static power and energy
static_energy <- static_power * execution_time;

Use CV^2 for dynamic energy
dynamic_energy <- op_count * vdd ^ 2.0 * 5e-10;

}

Figure 6.19 Trading off Aesop’s hare versus the tortoise for increasingly leaky technology. In a hard real-time computation, we know the number of clock
cycles needed but should we do them quickly and halt (Hare) or do them slowly and finish just in time (Tortoise)?

Figure 6.20 plots the static, dynamic and total energy for the four configurations. Of key significance
is the design point with the lowest total energy. For the higher leakage system, this can be seen at a
clock frequency of around 200MHz, with not much dependence on the unfold factor. For the
low-leakage technology, the lowest frequencies have the lowest energy use while still being able to
meet the deadline.

6.7 Virtual Platform Examples
Asmentioned in Section 1.4.3, partitioning a design into hardware and software components is known
as co-design and if this is performed by an automatic tool, it is known as co-synthesis. Co-synthesis is
still not mature, so all SoCs are developed usingmanual co-design. An ESLmodel (Chapter 5) based on
a virtual platform is generally the tool of choice for manual architectural exploration.

6.7.1 The Prazor/Zynq Virtual Platform
Twowell-known software simulators are QEMU [17], which is used by the software development kit
(SDK) for the standard phonemodel in the Android operating system, and Gem5 [18], which is often
used for Arm systemmodelling. EDA companies sometimes offer proprietary enhancements to these

315

Modern SoCDesign

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Low Leakage Transistors
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

High Leakage Transistors
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Low Leakage, Unfolded 3:1
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

High Leakage, Unfolded 3:1
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

Figure 6.20 Shift in the sweet spot (small vertical line) for DVFS with high-leakage technology for a real-time task. The total energy (solid line) is the sum of
the static energy (dashes) and dynamic energy (dots)

public-domain platforms that provide enhanced accuracy, for instance, per-cycle timing or energy use.
However, these tools are not set up for interworking with RTL-level SystemCmodels or RTL
simulators.

The Prazor virtual platform (ESL simulator) is implemented using SystemC and supports interworking
between RTL-level SystemC and high-level SystemCmodels using TLM2.0 sockets. Anymix of
heterogeneous cores can be included in the systemmodel. The ISAs provided are x86_64, Arm-32
(including Thumb2), MIPS andOpenRISC-32, but others can be added. Prazor uses the
TLM_POWER3 library [19] to generate energy profiles for an overall system.

In theMPEGworked example, we show how to run a C implementation of the compression algorithm
on a real and Prazor Arm core to obtain the baseline computational complexity and energy use and
then explore accelerations by a variety of hardware accelerators.

316

Chapter 6 | Architectural Design Exploration

6.7.2 Co-designWorked Example: MPEGVideo Compression
MPEG compression is typically a hard real-time problem. It can be done better offline, if the raw
video is in secondary storage, but that use case tends to be reserved as amastering step in producing
feature films. Hard real-time compression has recurring sub-problems, each of whichmust be solved
before a specific deadline. The deadlines could be generated by the system timer in a real-time
operating system, but aremore likely to be generated by the frame-ready event from a camera.

Primary
framestore

(Y+UV RAMs)

Colour
space

conversion

Video
capture

DCT
(discrete cosine

transform)

Motion
compensation

Variable Q
quantiser

Vari-length
encoder

Output
FIFO

De-quantiser
Motion

estimator

Secondary
framestore

(RAM)

Regulator

IDCT
(inverse DCT)

D
epth/rate feedback

Video in MPEG out

YUV

RGB

Compressed, inter-frame differences

Motion vectors

Figure 6.21 Block diagram for anMPEG compression subsystem. The input is a real-time video stream and the outut is anMPEG transport stream (without
sound). The DCT, IDCT andmotion estimators are highly compute intensive

MPEG compression is implemented on all smartphones. To prevent the phone from getting too hot to
hold and to ensure that the battery lifetime is not severely impacted, the compression relies on special
coprocessors or separate hardware accelerators. As shown in Figure 6.21,MPEG compression of a
live stream involves the following steps:

1. Capturing the real-time video, frame by frame, in a RAM frame store in YUV format. The luminance
(Y) and chrominance (U and V) are then processed separately as parallel streams.

2. Applying the discrete cosine transform (DCT) to each channel.

3. Quantising the DCT values. The least significant bits are removed, giving rise to a large number of
zero values. The division ratio is controlled by a regulator using negative feedback based on the
current data output rate.

4. Variable-length encoding of the resulting stream. The zeros produced by the quantiser are
represented concisely.

5. Regenerating the compressed image in a secondary frame store by de-quantising the transmitted
data and applying IDCT.

317

Modern SoCDesign

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Low Leakage Transistors
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

High Leakage Transistors
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Low Leakage, Unfolded 3:1
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

High Leakage, Unfolded 3:1
Clock Frequency

E
n

e
rg

y
 o

f
C

o
m

p
u

ta
ti
o

n

Figure 6.20 Shift in the sweet spot (small vertical line) for DVFS with high-leakage technology for a real-time task. The total energy (solid line) is the sum of
the static energy (dashes) and dynamic energy (dots)

public-domain platforms that provide enhanced accuracy, for instance, per-cycle timing or energy use.
However, these tools are not set up for interworking with RTL-level SystemCmodels or RTL
simulators.

The Prazor virtual platform (ESL simulator) is implemented using SystemC and supports interworking
between RTL-level SystemC and high-level SystemCmodels using TLM2.0 sockets. Anymix of
heterogeneous cores can be included in the systemmodel. The ISAs provided are x86_64, Arm-32
(including Thumb2), MIPS andOpenRISC-32, but others can be added. Prazor uses the
TLM_POWER3 library [19] to generate energy profiles for an overall system.

In theMPEGworked example, we show how to run a C implementation of the compression algorithm
on a real and Prazor Arm core to obtain the baseline computational complexity and energy use and
then explore accelerations by a variety of hardware accelerators.

316

Chapter 6 | Architectural Design Exploration

6.7.2 Co-designWorked Example: MPEGVideo Compression
MPEG compression is typically a hard real-time problem. It can be done better offline, if the raw
video is in secondary storage, but that use case tends to be reserved as amastering step in producing
feature films. Hard real-time compression has recurring sub-problems, each of whichmust be solved
before a specific deadline. The deadlines could be generated by the system timer in a real-time
operating system, but aremore likely to be generated by the frame-ready event from a camera.

Primary
framestore

(Y+UV RAMs)

Colour
space

conversion

Video
capture

DCT
(discrete cosine

transform)

Motion
compensation

Variable Q
quantiser

Vari-length
encoder

Output
FIFO

De-quantiser
Motion

estimator

Secondary
framestore

(RAM)

Regulator

IDCT
(inverse DCT)

D
epth/rate feedback

Video in MPEG out

YUV

RGB

Compressed, inter-frame differences

Motion vectors

Figure 6.21 Block diagram for anMPEG compression subsystem. The input is a real-time video stream and the outut is anMPEG transport stream (without
sound). The DCT, IDCT andmotion estimators are highly compute intensive

MPEG compression is implemented on all smartphones. To prevent the phone from getting too hot to
hold and to ensure that the battery lifetime is not severely impacted, the compression relies on special
coprocessors or separate hardware accelerators. As shown in Figure 6.21,MPEG compression of a
live stream involves the following steps:

1. Capturing the real-time video, frame by frame, in a RAM frame store in YUV format. The luminance
(Y) and chrominance (U and V) are then processed separately as parallel streams.

2. Applying the discrete cosine transform (DCT) to each channel.

3. Quantising the DCT values. The least significant bits are removed, giving rise to a large number of
zero values. The division ratio is controlled by a regulator using negative feedback based on the
current data output rate.

4. Variable-length encoding of the resulting stream. The zeros produced by the quantiser are
represented concisely.

5. Regenerating the compressed image in a secondary frame store by de-quantising the transmitted
data and applying IDCT.

317

Modern SoCDesign

6. Computingmotion vectors by comparing blocks in the primary and secondary frame stores that are
largely similar, but perhaps displaced by a few pixels.

7. Subtracting the identifiedmoving patches from the primary frame store output so that these zones
contain just a few residual variations. This compresses much better in the DCT. Hence, mainly the
inter-frame differences and post-motion compensation are compressed. Every nth frame is a
so-called key frame, which is compressed in isolation to allow a recovery from transmission errors.

For a battery-operated device, which of these tasks should be done in hardware andwhich in
software?

Amobile phone can have an internal USB bus with the camera device connected to themain SoC via
USB. This is a standard IP block and no bespoke hardware is then required. This opens the potential
for a fully software implementation. However, only the forward-facing low-quality camera is likely to
be connected by USB. Themost common camera interface is a bespoke parallel 8-bit bus operating at
10 to 40MB of data per second. This can be connected only to special hardware. A camera typically
generates alternating chrominance and luminescence bytes, rather than RGB, so the bulk of the
colour-space conversion occurs inside the camera. Amatrix multiply on the chrominance channels
produces a rotation as the final tint correction. Although the whole task is classed as hard real time,
the camera interface is especially so, with bursty asynchronous data occurring only after quantisation.
Given that bespoke hardware is required for the hardware interface, it is a small additional overhead
to implement a complexmultiplication in hardware before storing the data in the frame store.

The primary frame store needs to be accessed in raster scan order whenwriting and 8×8 tile order
when reading. Storing eight lines could potentially be sufficient if motion estimation was not needed
(e.g. for themotion JPEG or audio video interleave (AVI) formats). Amore reasonable design is to
store twowhole frames, using double buffering, with one being readwhile the other is loaded. For
motion estimation, we require a third copy for comparing themotion vectors.

Next, the amount of processing power needed for each of the remaining steps is estimated. Profiling a
software functional model (Section 6.2.2) rapidly identifies the tasks that require themost effort. It is
worthwhile targeting these with hardware acceleration. The DCT, IDCT andmotion prediction blocks
are the largest consumers of ALU operations. The variable-length encoding unit can also be
implemented in hardware, since it is comparatively easy to do so, though it does not fit well on a
general-purpose CPU.

The discrete cosine transform (DCT) performs a 2-D Fourier transform on a tile of pixels from the
image, giving themean intensity and coefficients for various horizontal and vertical frequencies. In
JPEG compression, many of these frequencies have very little energy, so that it can be replaced by
zero without subjectively degrading picture quality. However, MPEG also exploits inter-frame
correlations.

318

Chapter 6 | Architectural Design Exploration

//Output bit-to-byte buffer
void putbits(uint val, uint no_of_bits)
{

buffer |= val << (int)no_of_bits;
buffer_bits += no_of_bits;
while (buffer_bits >= 8)
{ yield_byte((byte)(buffer & 0xFF));

buffer_bits -= 8;
buffer_bits >>= 8;

}
}

// Send a DC component
void putDC(sVLCtable [] tab, int val)
{

uint absval, size;
absval = (uint) Math.Abs(val);
/* Compute dct_dc_size */
size = 0;
while (absval!=0)
{ absval >>= 1;

size ++;
}
// Generate VLC for dct_dc_size (B-12 or B-13)
putbits(tab[size].code, tab[size].len);
// Append fixed-length code (dc_dct_differential)
if (size!=0) // Send val + (2 ^ size) - 1
{ if (val>=0) absval = (uint)val;

else absval = (uint)(val + (1 << (int)size) - 1);
putbits(absval, size);

}
}

void putDClum(int val)
{

putDC(DClumtab, val);
}

void putDCchrom(int val)
{

putDC(DCchromtab, val);
}

void putAC(int run, int signed_level, int vlcformat)
{

// ...
}

/* Generate variable-length codes for an intra-coded
block (6.2.6, 6.3.17) */

void putintrablk(Picture picture, short [] blk, int cc)
{

/* DC Difference from previous block (7.2.1) */
int dct_diff = blk[0] - picture.dc_dct_pred[cc];
picture.dc_dct_pred[cc] = blk[0];

if (cc==0) putDClum(dct_diff);
else putDCchrom(dct_diff);

/* AC coefficients (7.2.2) */
int run = 0;
byte [] scan_tbl = (picture.altscan ? alternate_scan:

zig_zag_scan);
for (int n=1; n<64; n++)
{ // Use appropriate entropy scanning pattern

int signed_level = blk[scan_tbl[n]];
if (signed_level!=0)
{

putAC(run, signed_level, picture.intravlc);
run = 0;

}
else run++; /* count zero coefficients */

}

/* End of Block -- normative block punctuation */
if (picture.intravlc!=0) putbits(6,4); // 0110 (B-15)

else putbits(2,2); // 10 (B-14)
}

// Return difference between two (8*h) sub-sampled
blocks

// blk1, blk2: addresses of top left pels of both blocks
// rowstride: distance (in bytes) of vertically

adjacent pels
// h: height of block (usually 8 or 16)
int sumsq_sub22(byte [] blk1, byte [] blk2,

int rowstride, int h)
{

int ss = 0, p1 = 0, p2 = 0;
for (int j=0; j<h; j++)
{

for (int i=0; i<8; i++)
{ int v = blk1[p1+i] - blk2[p2+i];

ss += v*v;
}
p1+= rowstride; p2+= rowstride;

}
return ss;

}

Figure 6.22 Code fragments for anMPEG encoder, coded in C# for Kiwi HLS. The putintrablk routine takes the 64 values from the quantised DCT and
transmits them using the variable-length coding and with a run-length encoding of zero values in the routines it calls. The sumsq_sub22 function is one of
many used during motion estimation to compute differences betweenmacro blocks

AnMPEG compressor must search for regions in the current frame that can bemodelled as regions
shifted from the previous frame. Searching for shifts much greater than 10 pixels is generally not
useful, but even just computing all possible correlations within an X and Y region of±10 pixels would
require 202 =400 comparisons. Each comparison needs to operate on a block of several hundred
pixels to determine similarity, so naive searching is infeasible. Hence, the so-called block-matching
algorithm used for motion estimation has to be designedwith care. An exhaustive rectangular search
is not used in practice. Instead, successive 2-D approximation techniques are used. For instance, all
eight compass points can be exploredwith an offset of 16 pixels and the neighbours of the best of

319

Modern SoCDesign

6. Computingmotion vectors by comparing blocks in the primary and secondary frame stores that are
largely similar, but perhaps displaced by a few pixels.

7. Subtracting the identifiedmoving patches from the primary frame store output so that these zones
contain just a few residual variations. This compresses much better in the DCT. Hence, mainly the
inter-frame differences and post-motion compensation are compressed. Every nth frame is a
so-called key frame, which is compressed in isolation to allow a recovery from transmission errors.

For a battery-operated device, which of these tasks should be done in hardware andwhich in
software?

Amobile phone can have an internal USB bus with the camera device connected to themain SoC via
USB. This is a standard IP block and no bespoke hardware is then required. This opens the potential
for a fully software implementation. However, only the forward-facing low-quality camera is likely to
be connected by USB. Themost common camera interface is a bespoke parallel 8-bit bus operating at
10 to 40MB of data per second. This can be connected only to special hardware. A camera typically
generates alternating chrominance and luminescence bytes, rather than RGB, so the bulk of the
colour-space conversion occurs inside the camera. Amatrix multiply on the chrominance channels
produces a rotation as the final tint correction. Although the whole task is classed as hard real time,
the camera interface is especially so, with bursty asynchronous data occurring only after quantisation.
Given that bespoke hardware is required for the hardware interface, it is a small additional overhead
to implement a complexmultiplication in hardware before storing the data in the frame store.

The primary frame store needs to be accessed in raster scan order whenwriting and 8×8 tile order
when reading. Storing eight lines could potentially be sufficient if motion estimation was not needed
(e.g. for themotion JPEG or audio video interleave (AVI) formats). Amore reasonable design is to
store twowhole frames, using double buffering, with one being readwhile the other is loaded. For
motion estimation, we require a third copy for comparing themotion vectors.

Next, the amount of processing power needed for each of the remaining steps is estimated. Profiling a
software functional model (Section 6.2.2) rapidly identifies the tasks that require themost effort. It is
worthwhile targeting these with hardware acceleration. The DCT, IDCT andmotion prediction blocks
are the largest consumers of ALU operations. The variable-length encoding unit can also be
implemented in hardware, since it is comparatively easy to do so, though it does not fit well on a
general-purpose CPU.

The discrete cosine transform (DCT) performs a 2-D Fourier transform on a tile of pixels from the
image, giving themean intensity and coefficients for various horizontal and vertical frequencies. In
JPEG compression, many of these frequencies have very little energy, so that it can be replaced by
zero without subjectively degrading picture quality. However, MPEG also exploits inter-frame
correlations.

318

Chapter 6 | Architectural Design Exploration

//Output bit-to-byte buffer
void putbits(uint val, uint no_of_bits)
{

buffer |= val << (int)no_of_bits;
buffer_bits += no_of_bits;
while (buffer_bits >= 8)
{ yield_byte((byte)(buffer & 0xFF));

buffer_bits -= 8;
buffer_bits >>= 8;

}
}

// Send a DC component
void putDC(sVLCtable [] tab, int val)
{

uint absval, size;
absval = (uint) Math.Abs(val);
/* Compute dct_dc_size */
size = 0;
while (absval!=0)
{ absval >>= 1;

size ++;
}
// Generate VLC for dct_dc_size (B-12 or B-13)
putbits(tab[size].code, tab[size].len);
// Append fixed-length code (dc_dct_differential)
if (size!=0) // Send val + (2 ^ size) - 1
{ if (val>=0) absval = (uint)val;

else absval = (uint)(val + (1 << (int)size) - 1);
putbits(absval, size);

}
}

void putDClum(int val)
{

putDC(DClumtab, val);
}

void putDCchrom(int val)
{

putDC(DCchromtab, val);
}

void putAC(int run, int signed_level, int vlcformat)
{

// ...
}

/* Generate variable-length codes for an intra-coded
block (6.2.6, 6.3.17) */

void putintrablk(Picture picture, short [] blk, int cc)
{

/* DC Difference from previous block (7.2.1) */
int dct_diff = blk[0] - picture.dc_dct_pred[cc];
picture.dc_dct_pred[cc] = blk[0];

if (cc==0) putDClum(dct_diff);
else putDCchrom(dct_diff);

/* AC coefficients (7.2.2) */
int run = 0;
byte [] scan_tbl = (picture.altscan ? alternate_scan:

zig_zag_scan);
for (int n=1; n<64; n++)
{ // Use appropriate entropy scanning pattern

int signed_level = blk[scan_tbl[n]];
if (signed_level!=0)
{

putAC(run, signed_level, picture.intravlc);
run = 0;

}
else run++; /* count zero coefficients */

}

/* End of Block -- normative block punctuation */
if (picture.intravlc!=0) putbits(6,4); // 0110 (B-15)

else putbits(2,2); // 10 (B-14)
}

// Return difference between two (8*h) sub-sampled
blocks

// blk1, blk2: addresses of top left pels of both blocks
// rowstride: distance (in bytes) of vertically

adjacent pels
// h: height of block (usually 8 or 16)
int sumsq_sub22(byte [] blk1, byte [] blk2,

int rowstride, int h)
{

int ss = 0, p1 = 0, p2 = 0;
for (int j=0; j<h; j++)
{

for (int i=0; i<8; i++)
{ int v = blk1[p1+i] - blk2[p2+i];

ss += v*v;
}
p1+= rowstride; p2+= rowstride;

}
return ss;

}

Figure 6.22 Code fragments for anMPEG encoder, coded in C# for Kiwi HLS. The putintrablk routine takes the 64 values from the quantised DCT and
transmits them using the variable-length coding and with a run-length encoding of zero values in the routines it calls. The sumsq_sub22 function is one of
many used during motion estimation to compute differences betweenmacro blocks

AnMPEG compressor must search for regions in the current frame that can bemodelled as regions
shifted from the previous frame. Searching for shifts much greater than 10 pixels is generally not
useful, but even just computing all possible correlations within an X and Y region of±10 pixels would
require 202 =400 comparisons. Each comparison needs to operate on a block of several hundred
pixels to determine similarity, so naive searching is infeasible. Hence, the so-called block-matching
algorithm used for motion estimation has to be designedwith care. An exhaustive rectangular search
is not used in practice. Instead, successive 2-D approximation techniques are used. For instance, all
eight compass points can be exploredwith an offset of 16 pixels and the neighbours of the best of

319

Modern SoCDesign

those are then exploredwith an offset of eight pixels, and so on. Also, only the luminance channel
needs to be examined for motion, since the colour channels will experience the samemovement. A
popular implementation was optimised hierarchical blockmatching [20]. However, various other
techniques can be used (e.g. diamond search patterns and those based on nearbymotion vectors). A
further saving is typically achieved in the earlier parts of the search by operating on subsampled
images. These have been reduced by 2-to-1 in each direction, thereby reducing thework by a factor of
four.

Figure 6.22 shows various fragments ofMPEG encoder code, adapted from the source code for the
GNUAvidemux editor. These can be run as regular software on an embedded processor or converted
to hardware using HLS (Section 6.9). Additionally, the CPU-intensive primitives used inmotion
estimation are commonly coded in assembler and use SIMD extensions (Section 2.1.2), if available.
The different individual subsystems can each be implemented in various ways, so there is a large
potential design space.

In commonwithmany compression techniques, both lossy and lossless, decompression is much
simpler than compression, as it is simply amatter of following instructions generated by the
compressor and does not require expensive correlation search operations. The output frommany
compression algorithms can be decoded by the same decompressor.

Many architectures and implementations forMPEG andMP4 compression have been published, with
[21] notably providing a detailed discussion of energy and cycle use, but see also [22, 23].

6.8 Design-entry Languages
Aswell as low-level coding in RTL and SystemC, higher-level design-entry systems are increasingly
being used. These are especially useful when complex algorithmsmust be implemented in hardware
accelerators. Graphical tools that support high-level structural design and automatically generate
interconnects are commonly used. These tend to be based on IP-XACT and are discussed
in Section 6.8.2. The currently popular textual languages are Chisel (Section 6.8.3) and Bluespec
(Section 6.8.5). Both of these require the designer to understand clock cycles. One difference is that
Bluespec can automatically allocate work to clock cycles, whereas this is manual in Chisel, like RTL.
With HLS (Section 6.9), clocking need not appear in the design language, although better quality
designs require the designer to have some understanding of hardwaremapping.

Verilog and VHDL focusmore on simulation than logic synthesis. The rules for translation to
hardware that define the synthesisable subset were standardised after the languages had been
defined. These languages are verbose when expressingmodule structure. Manually connecting an
AXI bus to a component requires tens of lines of code. Many of these lines contain details that can
easily be generated by amacro in a higher-level language. RTL is precise: the number of state
variables, the size of registers and the width of busses are all explicit.

320

Chapter 6 | Architectural Design Exploration

Perhaps themajor shortcoming of conventional RTL is that the language gives the designer no help
with concurrency. That is, the designer must keep track of all aspects of handshaking between logic
circuits and shared reading of register resources. This is ironic since hardware systems havemuch
greater parallelism than software systems. An RTLmodel cannot express whether a register has a live
value in it or is idle. The assignment of an X to a register is ignored during synthesis when the register
is read. Compiler optimisation is limited tominimising the combinational logic, since sequential logic
minimisation and state re-encoding are not allowed.

Higher-level designs should have few redundant expressions and should be amenable to substantial
automatic DSE by the compiler flow. Advanced compilers can generate data paths and schedules,
including re-encoding and repipelining tomeet timing closure and power budgets (Section 4.4.2). A
design where the language expresses which registers contain live data can bemore freely folded in
time, by the compiler, to generate different designs, for instance usingmore silicon and fewer clock
cycles.

Verilog and VHDL have enabled vast ASICs to be designed by hand, so in that sense they are
successful. However, better languages are needed tomeet the following EDA aims:

To speed up design processes and reduce the time tomarket.

To understand pipelined RAMs and ALUs.

To allow richer behavioural specifications.

To readily allow time/space folding experiments.

To give the compiler greater freedom and hence, more scope for optimisation.

To facilitate the implementation of a formal specification.

To facilitate proof of conformance to a specification.

To allow rule-based programming (i.e. a logic-programming sublanguage).

To allow seamless integration with bus standards.

To be aware of clock and power domains and able to deploy domain-crossingmechanisms or at
least flag designs that wantonly cross domain boundaries.

To compile into software as well as into hardware.

Higher-level tools normally output RTL, so that RTL behaves like an assembly language for digital
hardware. A hardware construction language (HCL) (Section 6.8.3) does nothing other than print out

321

Modern SoCDesign

those are then exploredwith an offset of eight pixels, and so on. Also, only the luminance channel
needs to be examined for motion, since the colour channels will experience the samemovement. A
popular implementation was optimised hierarchical blockmatching [20]. However, various other
techniques can be used (e.g. diamond search patterns and those based on nearbymotion vectors). A
further saving is typically achieved in the earlier parts of the search by operating on subsampled
images. These have been reduced by 2-to-1 in each direction, thereby reducing thework by a factor of
four.

Figure 6.22 shows various fragments ofMPEG encoder code, adapted from the source code for the
GNUAvidemux editor. These can be run as regular software on an embedded processor or converted
to hardware using HLS (Section 6.9). Additionally, the CPU-intensive primitives used inmotion
estimation are commonly coded in assembler and use SIMD extensions (Section 2.1.2), if available.
The different individual subsystems can each be implemented in various ways, so there is a large
potential design space.

In commonwithmany compression techniques, both lossy and lossless, decompression is much
simpler than compression, as it is simply amatter of following instructions generated by the
compressor and does not require expensive correlation search operations. The output frommany
compression algorithms can be decoded by the same decompressor.

Many architectures and implementations forMPEG andMP4 compression have been published, with
[21] notably providing a detailed discussion of energy and cycle use, but see also [22, 23].

6.8 Design-entry Languages
Aswell as low-level coding in RTL and SystemC, higher-level design-entry systems are increasingly
being used. These are especially useful when complex algorithmsmust be implemented in hardware
accelerators. Graphical tools that support high-level structural design and automatically generate
interconnects are commonly used. These tend to be based on IP-XACT and are discussed
in Section 6.8.2. The currently popular textual languages are Chisel (Section 6.8.3) and Bluespec
(Section 6.8.5). Both of these require the designer to understand clock cycles. One difference is that
Bluespec can automatically allocate work to clock cycles, whereas this is manual in Chisel, like RTL.
With HLS (Section 6.9), clocking need not appear in the design language, although better quality
designs require the designer to have some understanding of hardwaremapping.

Verilog and VHDL focusmore on simulation than logic synthesis. The rules for translation to
hardware that define the synthesisable subset were standardised after the languages had been
defined. These languages are verbose when expressingmodule structure. Manually connecting an
AXI bus to a component requires tens of lines of code. Many of these lines contain details that can
easily be generated by amacro in a higher-level language. RTL is precise: the number of state
variables, the size of registers and the width of busses are all explicit.

320

Chapter 6 | Architectural Design Exploration

Perhaps themajor shortcoming of conventional RTL is that the language gives the designer no help
with concurrency. That is, the designer must keep track of all aspects of handshaking between logic
circuits and shared reading of register resources. This is ironic since hardware systems havemuch
greater parallelism than software systems. An RTLmodel cannot express whether a register has a live
value in it or is idle. The assignment of an X to a register is ignored during synthesis when the register
is read. Compiler optimisation is limited tominimising the combinational logic, since sequential logic
minimisation and state re-encoding are not allowed.

Higher-level designs should have few redundant expressions and should be amenable to substantial
automatic DSE by the compiler flow. Advanced compilers can generate data paths and schedules,
including re-encoding and repipelining tomeet timing closure and power budgets (Section 4.4.2). A
design where the language expresses which registers contain live data can bemore freely folded in
time, by the compiler, to generate different designs, for instance usingmore silicon and fewer clock
cycles.

Verilog and VHDL have enabled vast ASICs to be designed by hand, so in that sense they are
successful. However, better languages are needed tomeet the following EDA aims:

To speed up design processes and reduce the time tomarket.

To understand pipelined RAMs and ALUs.

To allow richer behavioural specifications.

To readily allow time/space folding experiments.

To give the compiler greater freedom and hence, more scope for optimisation.

To facilitate the implementation of a formal specification.

To facilitate proof of conformance to a specification.

To allow rule-based programming (i.e. a logic-programming sublanguage).

To allow seamless integration with bus standards.

To be aware of clock and power domains and able to deploy domain-crossingmechanisms or at
least flag designs that wantonly cross domain boundaries.

To compile into software as well as into hardware.

Higher-level tools normally output RTL, so that RTL behaves like an assembly language for digital
hardware. A hardware construction language (HCL) (Section 6.8.3) does nothing other than print out

321

Modern SoCDesign

a netlist. It is a low-level language whosemain purpose is to alleviate the tediousmanual entry of
regular netlists for complex busses that traversemultiple levels of design hierarchy. Other than HCLs
and similar elaboration techniques, the primary higher-level design styles with data-dependent
control flow can be divided into either:

Behavioural: These use imperative software-like code. Threads have stacks, pass between
modules andmake subroutine calls on user-defined and primitivemethods.

Declarative, functional and logical: These have constraining assertions about the allowable
behaviour, but any ordering constraints are implicit (e.g. SQL queries) rather than being based on
program counters. A declarative program can be defined as an unordered list of definitions, rules
or assertions that simultaneously hold at all times.

Designing is undoubtedly easier with a higher-level design language in which a serial thread of
execution works on variousmodules than the forced parallelism of expressions found in RTL-style
coding. Ideally, a new thread should be introduced only when there is a need for concurrent behaviour
in the design. However, the semantics of an imperative language need to be expressed declaratively
when proving the correctness of a design and the same constructions can, to a large extent, be used to
convert one form of design expression into the other. Hence, a good entry language should allow an
arbitrarymix of design styles. The tool can hide these conversions from the user. For safety-critical
applications, a declarative style normally enables the safety rules to be directly expressed in the
language, which is an advantage. Using declarative expressions normally gives the compiler much
greater freedom for design optimisation. However, all advanced tools have a history of being difficult
to use, so adoption is slow. Two particular problems are:

1. Unexpected changes: Sometimes when an engineer makes one small change to one aspect of a
design, this has amassive effect on the rendered RTL, either changingmany net names or changing
its entire shape. This makes debugging hard.

2. Unexpected size: The art of engineering is creating a design that is cost-effective and performant.
Compilers for higher-level design languages, especially early C-to-gates flows (Section 6.9),
sometimes unexpectedly generate very large designs, whereas a good tool leaves the engineer fully
in charge of the cost/performance trade-off.

A further problemwith declarative designs is that RAM is a vital component in all hardware systems
and it is intrinsically imperative. So a convert-to-imperative stepmust exist at some point in the
design flow. For long-running applications, memory has to be recyled, which requires explicit memory
management or some form of hardware garbage collection [24]. Both automatic parallelisation and
memory release can be severely limited if memory array subscripts cannot be distinguishedwhen
performing compile-time optimisations. This is the name alias problem (Section 6.3.3).

322

Chapter 6 | Architectural Design Exploration

6.8.1 Functional Units

Vari-Latency ALU
(eg DIVIDE)

RAM

D/P RAM

Load/Store
Station

(typically simplex)

Blackbox

Heap Manager
(one per memory space)

addr
wdata

rdata
wen

Arg A

Arg B
Result Y

addr A
wdata A
wen A
addr B
wdata B
wen B

rdata A

rdata B

DIV

ALU
Integer or F/P

Arg A

Arg B
Result Y

clock

Req
Ready

AXI-4
Req

Ready
addr
wdata
wen
rdata

Alloc Req

addr
Dealloc Req

size
addr

Divide-by-zero

req

req

Incremental
Compilation

Result
or Blackbox Wrapper

Function
code

Figure 6.23 Typical examples of FUs deployed by higher-level design languages, especially HLS

Higher-level design-entry languages almost always generate synthesisable RTL (Section 8.3). The RTL
has amix of the operators and gates supported by the back-end logic synthesiser, such as integer
addition, and structural component instances known as FUs. A functional unit (FU) is a standard
component designed to be used inmany designs and often instantiatedmultiple times in a single
design, such as those in Figure 6.23. Themain examples are integer ALUs, floating-point ALUs and
static RAM. A single port on amulti-ported bus fabric, NoC or DRAM controller can also usefully be
modelled as an FU. Some FUs are instantiable only once per chip, such as a power controller for global

323

Modern SoCDesign

a netlist. It is a low-level language whosemain purpose is to alleviate the tediousmanual entry of
regular netlists for complex busses that traversemultiple levels of design hierarchy. Other than HCLs
and similar elaboration techniques, the primary higher-level design styles with data-dependent
control flow can be divided into either:

Behavioural: These use imperative software-like code. Threads have stacks, pass between
modules andmake subroutine calls on user-defined and primitivemethods.

Declarative, functional and logical: These have constraining assertions about the allowable
behaviour, but any ordering constraints are implicit (e.g. SQL queries) rather than being based on
program counters. A declarative program can be defined as an unordered list of definitions, rules
or assertions that simultaneously hold at all times.

Designing is undoubtedly easier with a higher-level design language in which a serial thread of
execution works on variousmodules than the forced parallelism of expressions found in RTL-style
coding. Ideally, a new thread should be introduced only when there is a need for concurrent behaviour
in the design. However, the semantics of an imperative language need to be expressed declaratively
when proving the correctness of a design and the same constructions can, to a large extent, be used to
convert one form of design expression into the other. Hence, a good entry language should allow an
arbitrarymix of design styles. The tool can hide these conversions from the user. For safety-critical
applications, a declarative style normally enables the safety rules to be directly expressed in the
language, which is an advantage. Using declarative expressions normally gives the compiler much
greater freedom for design optimisation. However, all advanced tools have a history of being difficult
to use, so adoption is slow. Two particular problems are:

1. Unexpected changes: Sometimes when an engineer makes one small change to one aspect of a
design, this has amassive effect on the rendered RTL, either changingmany net names or changing
its entire shape. This makes debugging hard.

2. Unexpected size: The art of engineering is creating a design that is cost-effective and performant.
Compilers for higher-level design languages, especially early C-to-gates flows (Section 6.9),
sometimes unexpectedly generate very large designs, whereas a good tool leaves the engineer fully
in charge of the cost/performance trade-off.

A further problemwith declarative designs is that RAM is a vital component in all hardware systems
and it is intrinsically imperative. So a convert-to-imperative stepmust exist at some point in the
design flow. For long-running applications, memory has to be recyled, which requires explicit memory
management or some form of hardware garbage collection [24]. Both automatic parallelisation and
memory release can be severely limited if memory array subscripts cannot be distinguishedwhen
performing compile-time optimisations. This is the name alias problem (Section 6.3.3).

322

Chapter 6 | Architectural Design Exploration

6.8.1 Functional Units

Vari-Latency ALU
(eg DIVIDE)

RAM

D/P RAM

Load/Store
Station

(typically simplex)

Blackbox

Heap Manager
(one per memory space)

addr
wdata

rdata
wen

Arg A

Arg B
Result Y

addr A
wdata A
wen A
addr B
wdata B
wen B

rdata A

rdata B

DIV

ALU
Integer or F/P

Arg A

Arg B
Result Y

clock

Req
Ready

AXI-4
Req

Ready
addr
wdata
wen
rdata

Alloc Req

addr
Dealloc Req

size
addr

Divide-by-zero

req

req

Incremental
Compilation

Result
or Blackbox Wrapper

Function
code

Figure 6.23 Typical examples of FUs deployed by higher-level design languages, especially HLS

Higher-level design-entry languages almost always generate synthesisable RTL (Section 8.3). The RTL
has amix of the operators and gates supported by the back-end logic synthesiser, such as integer
addition, and structural component instances known as FUs. A functional unit (FU) is a standard
component designed to be used inmany designs and often instantiatedmultiple times in a single
design, such as those in Figure 6.23. Themain examples are integer ALUs, floating-point ALUs and
static RAM. A single port on amulti-ported bus fabric, NoC or DRAM controller can also usefully be
modelled as an FU. Some FUs are instantiable only once per chip, such as a power controller for global

323

Modern SoCDesign

on/off and PSU healthmonitoring. Application-specific FUs are also possible. These exploit the FU
framework to wrap up custom logic and esoteric physical devices, such as ADCs, DACs and SERDESs
(Section 3.8).

As well as the specification of the function to be performed by the FU, such asmultiplying or adding, a
block that performs a function in some number of clock cycles can be characterised using the
followingmetrics:

Precision: This is the wordwidth in bits.

Referentially transparent (stateless): This Boolean indicates whether the unit always yields the
same result for the same arguments. An FU that is stateless is called amirrorable FU and can be
replicated as often as desired. Examples are ROMs and ALUs. In contrast, RAMhas state and
cannot simply be replicated to increase the read or write bandwidth since the replicas will diverge.

EIS (an end in itself): This Boolean indicates that the FU has unseen side effects, such as being
non-volatile or turning on an LED. Such an FU cannot be deleted by logic trimming even if it appears
that none of its outputs are used.

Fixed or variable latency: This flag denotes whether the FU has fixed or variable latency. There is
also an integer value, which is used for budgeting, that is the precise pipeline delay if fixed or an
average if variable.

Initiation interval (II): This integer gives theminimum number of cycles between operation starts.
A unit whose initiation interval is one is said to be fully pipelined (Section 6.3).

Energy: This real number indicates the energy per operation. For example, an SRAMmight use 5 pJ
for each read or write.

Gate count or area: This estimate of the area is used tomake physically aware predictions of the
floor plan andwiring length. It is typically given in squaremicrons or, for a FPGA, the number of
LUTs andDSP blocks.

In today’s ASIC and FPGA technology, combinational adds and subtracts of up to 32-bit words are
typical. However, RAM reads, multiplies and divides are usually allocated at least one pipeline cycle,
with larger multiplies and all divides being two ormore. For 64-bit words and for FPUs and RAM
larger than L1 (e.g. 32 kbytes), it is common for the latency to be two ormore cycles, but with an
initiation interval of one.

Functional Unit Chaining
Naively instantiating standard FUs can bewasteful of performance, precision and silicon area.
Generally, if the output of one FU is to be fed directly to another, then some optimisation can bemade.
Many sensible optimisations involve changes to the state encoding or algorithm that are beyond the

324

Chapter 6 | Architectural Design Exploration

possibilities of the back-end logic synthesiser. A common example is an associative reduction
operator (Section 6.9.1), such as floating-point addition in a scalar product. In that example, we do not
wish to denormalise and round-and-renormalise the operand and result at each addition. This adds
overheads such as:

It increases the processing latency in clock cycles or the gate delay for the critical path.

It requires modulo scheduling (Section 6.9) for loops shorter than the reduction operator’s latency.

It uses considerable silicon area.

For example, in ‘When FPGAs are better at floating-point thanmicroprocessors’ [25], Dinechin et al.
report that a fixed-point adder of width greater than the normal mantissa precision can reduce or
eliminate underflow errors and operate with less energy and fewer clock cycles (Figure 6.24).

Input
shifter

Input values

Mantissa

Exponent

Fixed-point sum

Normalisation
unit

(LZC+shifter)

Output sum

Mantissa

Exponent

Hidden bit
1

7

23

7

23150

150

Figure 6.24 Fixed-point implementation of a floating-point accumulator

Their approach is to denormalise themantissa on input to each iteration and renormalise at the end
when the result is needed. This architecture can accept a new input word every clock cycle, whereas
six ormore standard floating-point adders would otherwise be needed to get that level of throughput,
and these would be liable to underflow. If a non-zero number is added to a floating-point accumulator
and its value does not change, a complete underflow occurs. For instance, with a 3-digit base-10
mantissa, 1.23 + 0.001will underflow, giving 1.23.

At the expense of one or two additional clock cycles, the adder can be internally pipelined to give
low-complexity high-frequency operation, saving one or two carry bits to the next clock cycle. Typical
running-average use cases require an input value streamwith a high bandwidth, but the output is
generally used in a decimated form (i.e. only every 10th or so result is looked at). (See also Figure 6.51
and the related exercise.)

Static Versus Dynamic Scheduling
High-throughput hardware with highly pipelined FUs (Section 6.8.1) requires careful scheduling to
balance data-dependencies while achieving high FU utilisation (Section 6.9). A static schedule is

325

Modern SoCDesign

on/off and PSU healthmonitoring. Application-specific FUs are also possible. These exploit the FU
framework to wrap up custom logic and esoteric physical devices, such as ADCs, DACs and SERDESs
(Section 3.8).

As well as the specification of the function to be performed by the FU, such asmultiplying or adding, a
block that performs a function in some number of clock cycles can be characterised using the
followingmetrics:

Precision: This is the wordwidth in bits.

Referentially transparent (stateless): This Boolean indicates whether the unit always yields the
same result for the same arguments. An FU that is stateless is called amirrorable FU and can be
replicated as often as desired. Examples are ROMs and ALUs. In contrast, RAMhas state and
cannot simply be replicated to increase the read or write bandwidth since the replicas will diverge.

EIS (an end in itself): This Boolean indicates that the FU has unseen side effects, such as being
non-volatile or turning on an LED. Such an FU cannot be deleted by logic trimming even if it appears
that none of its outputs are used.

Fixed or variable latency: This flag denotes whether the FU has fixed or variable latency. There is
also an integer value, which is used for budgeting, that is the precise pipeline delay if fixed or an
average if variable.

Initiation interval (II): This integer gives theminimum number of cycles between operation starts.
A unit whose initiation interval is one is said to be fully pipelined (Section 6.3).

Energy: This real number indicates the energy per operation. For example, an SRAMmight use 5 pJ
for each read or write.

Gate count or area: This estimate of the area is used tomake physically aware predictions of the
floor plan andwiring length. It is typically given in squaremicrons or, for a FPGA, the number of
LUTs andDSP blocks.

In today’s ASIC and FPGA technology, combinational adds and subtracts of up to 32-bit words are
typical. However, RAM reads, multiplies and divides are usually allocated at least one pipeline cycle,
with larger multiplies and all divides being two ormore. For 64-bit words and for FPUs and RAM
larger than L1 (e.g. 32 kbytes), it is common for the latency to be two ormore cycles, but with an
initiation interval of one.

Functional Unit Chaining
Naively instantiating standard FUs can bewasteful of performance, precision and silicon area.
Generally, if the output of one FU is to be fed directly to another, then some optimisation can bemade.
Many sensible optimisations involve changes to the state encoding or algorithm that are beyond the

324

Chapter 6 | Architectural Design Exploration

possibilities of the back-end logic synthesiser. A common example is an associative reduction
operator (Section 6.9.1), such as floating-point addition in a scalar product. In that example, we do not
wish to denormalise and round-and-renormalise the operand and result at each addition. This adds
overheads such as:

It increases the processing latency in clock cycles or the gate delay for the critical path.

It requires modulo scheduling (Section 6.9) for loops shorter than the reduction operator’s latency.

It uses considerable silicon area.

For example, in ‘When FPGAs are better at floating-point thanmicroprocessors’ [25], Dinechin et al.
report that a fixed-point adder of width greater than the normal mantissa precision can reduce or
eliminate underflow errors and operate with less energy and fewer clock cycles (Figure 6.24).

Input
shifter

Input values

Mantissa

Exponent

Fixed-point sum

Normalisation
unit

(LZC+shifter)

Output sum

Mantissa

Exponent

Hidden bit
1

7

23

7

23150

150

Figure 6.24 Fixed-point implementation of a floating-point accumulator

Their approach is to denormalise themantissa on input to each iteration and renormalise at the end
when the result is needed. This architecture can accept a new input word every clock cycle, whereas
six ormore standard floating-point adders would otherwise be needed to get that level of throughput,
and these would be liable to underflow. If a non-zero number is added to a floating-point accumulator
and its value does not change, a complete underflow occurs. For instance, with a 3-digit base-10
mantissa, 1.23 + 0.001will underflow, giving 1.23.

At the expense of one or two additional clock cycles, the adder can be internally pipelined to give
low-complexity high-frequency operation, saving one or two carry bits to the next clock cycle. Typical
running-average use cases require an input value streamwith a high bandwidth, but the output is
generally used in a decimated form (i.e. only every 10th or so result is looked at). (See also Figure 6.51
and the related exercise.)

Static Versus Dynamic Scheduling
High-throughput hardware with highly pipelined FUs (Section 6.8.1) requires careful scheduling to
balance data-dependencies while achieving high FU utilisation (Section 6.9). A static schedule is

325

Modern SoCDesign

computed at compile time. The runtimemanifestation is the set of output functions from the
controlling sequencer, which requires negligible runtime energy. A dynamic schedule is computed at
runtime. Dynamic scheduling of instructions is performed in out-of-order CPUs (Section 2.2) and can
dominate the actual computation energy. The downside of static scheduling is a lack of flexibility,
which is required if there are variable-latency FUs. Some operations are intrinsically or better
implementedwith a variable latency. Examples are division and reading from cachedDRAM. This
means a static schedule cannot be completely rigid andmust be based on expected execution times.

In multithreaded source code, as compiled by Kiwi HLS (Section 6.9), threads can compete for shared
resources, such as global mutexes or a frame store written to by all threads. Such structural hazards
can bemanaged by a global schedule or else treated as variable-latency operations. Decoupling is
possible through FIFO channels (Section 6.8.4), but if these block, again the static schedule is
disrupted.

A systolic array is a mainstream example of global static scheduling. Such an array has a number of
identical processing elements (PEs) that operate in lockstep. Array elements communicate directly
with their neighbours, passing data on at regular intervals, like a heartbeat, hence, the name. As well
as PE-to-PE links, global nets and busses distribute commands and scalar values that are needed to
sequence load/compute/unload phases and distribute coefficients and other constants. The input
data and intermediate results to be processed are frequently multi-dimensional and, in the standard
approach, a further dimension is defined as the time sequence of values held in a particular register.
PEs are normally in a 1-D or 2-D pattern. Data are often allowed tomove a distance of at most one PE
per clock cycle. To compile an algorithm for a systolic array, a mapping between themulti-dimensional
value set and the PE pattern is required. Themappingmust observe causality, meaning that not only
must no value be read before it is computed, but also that the value has had time tomove the required
distance through the PE structure. The dimensions of the data are commonlymuch larger than the
available PE dimensions, so a compile-time strip-mining process is also applied, in which the
dimensions are folded so that each PE handles more than one datum according to a static schedule.

Schemes for dynamically adapting a static schedule include a simple pipeline stall, or having a number
of static schedules and switching between them, on the fly. Another approach is the server farm
paradigm, in which PEs locally use an efficient static schedule but work is dynamically allocated to
them. Figure 6.25 shows the basic abstraction. The rich Bluespec library contains a completion buffer
and other flexible structures for easy creation of pools of servers for dynamic load sharing. The unit of
dynamic work can be small or large. For instance, to match DRAMaccess time variability, it may be
better if the unit is coupled to either a DRAMburst transfer or a DRAM row activation.

6.8.2 Accellera IP-XACT
IP-XACT is a set of XML schemas that describe IP blocks, their interfaces and structural designs [26].
It was first standardised as IEEE-1685 in 2009. Its primary aim is to help automate the design process
in terms of block configuration, interconnect, test program generation and documentation, especially
if blocks are from diverse IP suppliers. It describes the hardware interfaces of a block, register layouts

326

Chapter 6 | Architectural Design Exploration

Client 1

Client 2

Client 3

Client N-1

Work Queue
Allocator

and
Completion Buffer

Server 1

Server 2

Server 3

Figure 6.25 Dynamic load balancing using the server farm paradigm

and non-functional attributes. There is also amechanism for vendor-specific extensions, which is used
heavily by real-world tools.

Design build

Design Capture and Configure

IP-XACT
TGI

Datasheets
and

reports

address

interface

registers

memory map protocol

buswidth

Component
IP CPU

SRAM

IP
provider

repositories

UART GPIO

System Integrator Tool (editor)

SoC
design

SoC
design.xml

SoC
Design IP

IP-XACT
IP

import/
export

DMA

Component
tray

component.xml

component.v
component.vhd

Generators & configurators

Interconnect

Interconnect

generator

SRAM

Report

generator

RAM

compiler

Interrupt

wiring

generator

Interrupt

wiring

IP-XACT
metadata

Design IP
(RTL etc)

IP-XACT
view of

SoC
pad ring

SoC Design
(RTL etc)

Design files

Figure 6.26 Generic setup of a system integrator tool. This is the IP-XACT reference model for design capture and synthesis. A central interactive editor
enables a system to be created from externally provided IP blocks by invoking generator and configurator tools

In a generic IP-XACT tool flow, a number of EDA tools process and generate the relevant XML
documents. The tools are classed as editors, generators, checkers or automation assistants. The
primary tool is a system integrator, which is typically GUI-based. It includes an editor and can invoke
the other tools. The editor is a high-level design environment for creating and amending the block
diagram of a SoC. The general setup is illustrated in Figure 6.26. IP blocks are each providedwith
accompanying electronic XML data sheets. The editor is used to deploy the blocks on a canvas.
Numerous plug-ins are invoked via a tightly coupled generator interface (TGI). These check design
rules, generate inter-component wiring, run reports on power, area, latency etc. and launch compilers
to generate implementation details. Interconnects, interrupts and the debug infrastructure can
typically be generated. A plug-in for designing a high-level interconnect topologymight also be used.

327

Modern SoCDesign

computed at compile time. The runtimemanifestation is the set of output functions from the
controlling sequencer, which requires negligible runtime energy. A dynamic schedule is computed at
runtime. Dynamic scheduling of instructions is performed in out-of-order CPUs (Section 2.2) and can
dominate the actual computation energy. The downside of static scheduling is a lack of flexibility,
which is required if there are variable-latency FUs. Some operations are intrinsically or better
implementedwith a variable latency. Examples are division and reading from cachedDRAM. This
means a static schedule cannot be completely rigid andmust be based on expected execution times.

In multithreaded source code, as compiled by Kiwi HLS (Section 6.9), threads can compete for shared
resources, such as global mutexes or a frame store written to by all threads. Such structural hazards
can bemanaged by a global schedule or else treated as variable-latency operations. Decoupling is
possible through FIFO channels (Section 6.8.4), but if these block, again the static schedule is
disrupted.

A systolic array is a mainstream example of global static scheduling. Such an array has a number of
identical processing elements (PEs) that operate in lockstep. Array elements communicate directly
with their neighbours, passing data on at regular intervals, like a heartbeat, hence, the name. As well
as PE-to-PE links, global nets and busses distribute commands and scalar values that are needed to
sequence load/compute/unload phases and distribute coefficients and other constants. The input
data and intermediate results to be processed are frequently multi-dimensional and, in the standard
approach, a further dimension is defined as the time sequence of values held in a particular register.
PEs are normally in a 1-D or 2-D pattern. Data are often allowed tomove a distance of at most one PE
per clock cycle. To compile an algorithm for a systolic array, a mapping between themulti-dimensional
value set and the PE pattern is required. Themappingmust observe causality, meaning that not only
must no value be read before it is computed, but also that the value has had time tomove the required
distance through the PE structure. The dimensions of the data are commonlymuch larger than the
available PE dimensions, so a compile-time strip-mining process is also applied, in which the
dimensions are folded so that each PE handles more than one datum according to a static schedule.

Schemes for dynamically adapting a static schedule include a simple pipeline stall, or having a number
of static schedules and switching between them, on the fly. Another approach is the server farm
paradigm, in which PEs locally use an efficient static schedule but work is dynamically allocated to
them. Figure 6.25 shows the basic abstraction. The rich Bluespec library contains a completion buffer
and other flexible structures for easy creation of pools of servers for dynamic load sharing. The unit of
dynamic work can be small or large. For instance, to match DRAMaccess time variability, it may be
better if the unit is coupled to either a DRAMburst transfer or a DRAM row activation.

6.8.2 Accellera IP-XACT
IP-XACT is a set of XML schemas that describe IP blocks, their interfaces and structural designs [26].
It was first standardised as IEEE-1685 in 2009. Its primary aim is to help automate the design process
in terms of block configuration, interconnect, test program generation and documentation, especially
if blocks are from diverse IP suppliers. It describes the hardware interfaces of a block, register layouts

326

Chapter 6 | Architectural Design Exploration

Client 1

Client 2

Client 3

Client N-1

Work Queue
Allocator

and
Completion Buffer

Server 1

Server 2

Server 3

Figure 6.25 Dynamic load balancing using the server farm paradigm

and non-functional attributes. There is also amechanism for vendor-specific extensions, which is used
heavily by real-world tools.

Design build

Design Capture and Configure

IP-XACT
TGI

Datasheets
and

reports

address

interface

registers

memory map protocol

buswidth

Component
IP CPU

SRAM

IP
provider

repositories

UART GPIO

System Integrator Tool (editor)

SoC
design

SoC
design.xml

SoC
Design IP

IP-XACT
IP

import/
export

DMA

Component
tray

component.xml

component.v
component.vhd

Generators & configurators

Interconnect

Interconnect

generator

SRAM

Report

generator

RAM

compiler

Interrupt

wiring

generator

Interrupt

wiring

IP-XACT
metadata

Design IP
(RTL etc)

IP-XACT
view of

SoC
pad ring

SoC Design
(RTL etc)

Design files

Figure 6.26 Generic setup of a system integrator tool. This is the IP-XACT reference model for design capture and synthesis. A central interactive editor
enables a system to be created from externally provided IP blocks by invoking generator and configurator tools

In a generic IP-XACT tool flow, a number of EDA tools process and generate the relevant XML
documents. The tools are classed as editors, generators, checkers or automation assistants. The
primary tool is a system integrator, which is typically GUI-based. It includes an editor and can invoke
the other tools. The editor is a high-level design environment for creating and amending the block
diagram of a SoC. The general setup is illustrated in Figure 6.26. IP blocks are each providedwith
accompanying electronic XML data sheets. The editor is used to deploy the blocks on a canvas.
Numerous plug-ins are invoked via a tightly coupled generator interface (TGI). These check design
rules, generate inter-component wiring, run reports on power, area, latency etc. and launch compilers
to generate implementation details. Interconnects, interrupts and the debug infrastructure can
typically be generated. A plug-in for designing a high-level interconnect topologymight also be used.

327

Modern SoCDesign

One algorithm for automatic topology synthesis was presented in Section 3.9. Each generated
sub-assembly should be describedwith fresh IP-XACTmeta-information, in the sameway that leaf IP
blocks were. Thus, a hierarchical design flow is possible.

IP blocks should be imported from the IP vendor via a revision control and licence/purchasing
interface. Documentation in IP-XACT form should be supplied in the delivery package. The package
typically also contains test programs and human-readable documentation. The system integrator can
represent each available block in an inventory or component tray. An IP block is describedwith the
component schema, which gives its name and version number and lists its ports. (The typewriter font
is used for schema elements.) Ports must conform to an interface standard defined in further files.
Theremay be various versions of a component referred to in the document, each as a view element,
relating to different versions of a design. Typical levels are gate, RTL and TLM. Each view typically
contains a list of filenames as a fileSet. These files implement the design at that level of abstraction
in the appropriate language, like Verilog, C++ or a property specification language (PSL) (Section 7.4).

Extensions allow arbitrary additional material to be embedded. Thesemay include a schematic icon
for the GUI rendition of the block, the formal specification of a bus protocol, the bus abstraction
definition (Section 7.5) and non-functional data such as energy and area estimates. The programmer’s
view address space of registers inside each block can also be described, as shown in Figure 6.27. This
uses the register and memoryMap or addressBlock elements. Bit fields within a register can be
named and given access types, such as read only, write once or self-resetting.

resetValue

read-only

write-only

writeOnce

read-write

read-writeOnce

accessType

DRAM

TCM
scratchpad

Peripheral
sub-system

Graphics
sub-system

0x0000_0000

0x8000_0000

0x9000_0000

0xA000_0000

Unused 0xB000_0000

0x0_0000

0x1_0000

0x2_0000

0x3_0000

0x4_0000

Unused

Ethernet

USB1

USB0

UART

memoryMap

relativeAddressabsoluteAddress

0x5_0000

I2C

Config0

Id0

IntEnable

IntPending

PowerMode

MasterStat

0x0

0x8

0x10

0x18

0x20

0x28

relativeAddress

15 8 7 4 3 2 1 0

accessType

bitField

name

IntPending bitFields

XSPEED UFLOW EDGER OFLOW

0x0 0x3 2'b01 2b'00

read-only read-only read-write read-write

registerMapaddressBlock

Peripheral sub-system USB blockTop-level

Figure 6.27 IP-XACT structures for documenting the memory map and register field definitions, plus the access type supported for each bit field

The basic unit of an interconnect is the bus, but this can be described in various forms. Hence,
interfaces are always described at two levels. The high level is the bus definition, which names the
interface and describes how it can be connected to other interfaces. Theremay be several bus
abstraction files, which define implementations of the bus at lower levels. The twomost common
forms, respectively, encompass the TLM (Section 5.4.8) and net-level definitions of the interface. All
forms of connection can be generated from the same high-level wiring diagram.

For each port of a component, there is a busInterface element in the document. This may have a
signalMap, whichmaps the formal net names in the interface to the names used in a corresponding
bus abstraction specification of the port. Simple IP-XACTwiring generation tools use the signal
map to determine how the nets on one interface are connected to the nets on another instance for the

328

Chapter 6 | Architectural Design Exploration

same formal port on another component. The bus instance namemay be in the IP-XACT design or it
may be given a name based on the instance names of the components connected by the wiring
generator.

Figure 6.28 illustrates the automatic generation of a passive interconnect using IP-XACT. A passive
interconnect has point-to-point or multipoint wiring. Five IP-XACT XML files are required to describe
this connection, but only one is not shared over other similar connections. The example bus is a
standard synchronous interface (Section 3.1.3) with end-of-packet indication using DLAST.
Components with the interface are either data sources or data sinks, which have nets in opposite
directions. The bus is defined generically by its bus definition IP-XACT file. For net-level output, the
relevant implementation is in the RTL bus abstraction file.

Component kind: SS_SRC

Bus type:

Port: SR0
input m_rdy;

output m_valid;
output [7:0] m_data;

output m_dlast;

Rdy
Valid
Data
Dlast

output s_rdy;
input s_valid;
input [7:0] s_data;
input s_dlast;

in
out
out
out

out
in
in
in

1:1
1:1
1:1
1:1

IP-XACT Bus abstraction

RTL Abstraction definition

STD_SYNCH_DLAST_RTL

signal
map

void put_data(u8_t dx);

TLM abstraction definition

u8_t get_data()

TLM abstraction definition

RTL Abstraction definition

Component kind: SS_SINK

signal
map

IP-XACT component definition

Port: SK0

output s_rdy;
input s_valid;
input [7:0] s_data;
input s_dlast;

input m_rdy;
output m_valid;

output [7:0] m_data;
output m_dlast;

d2_d4_0_Rdy
d2_d4_0_Valid
d2_d4_0_Data
d2+d4_0_Dlast

Instance name: d2 Instance name: d4

Instance name: d2 Instance name: d4

IP-XACT component definition

Bus type:
IP-XACT Bus definiton

STD_SYNCH_DLAST
Abstraction: STD_SYNCH_DLAST_RTL
Abstraction: STD_SYNCH_DLAST_TLM

IP-XACT
design

SS_SRC SS_SINK

Figure 6.28 Generating an interconnect from IP-XACT: abstract view (top) using five IP-XACT XML files and synthesised wiring (bottom)

The overall high-level design is described in an IP-XACT design document. This lists the component
kinds and instance names. It describes the wiring between the ports with a simple connectivity
matrix. We have two component kinds in the example, so theremust be two component IP-XACT
documents. The busInterface element gives the port kind and port instance name.

329

Modern SoCDesign

One algorithm for automatic topology synthesis was presented in Section 3.9. Each generated
sub-assembly should be describedwith fresh IP-XACTmeta-information, in the sameway that leaf IP
blocks were. Thus, a hierarchical design flow is possible.

IP blocks should be imported from the IP vendor via a revision control and licence/purchasing
interface. Documentation in IP-XACT form should be supplied in the delivery package. The package
typically also contains test programs and human-readable documentation. The system integrator can
represent each available block in an inventory or component tray. An IP block is describedwith the
component schema, which gives its name and version number and lists its ports. (The typewriter font
is used for schema elements.) Ports must conform to an interface standard defined in further files.
Theremay be various versions of a component referred to in the document, each as a view element,
relating to different versions of a design. Typical levels are gate, RTL and TLM. Each view typically
contains a list of filenames as a fileSet. These files implement the design at that level of abstraction
in the appropriate language, like Verilog, C++ or a property specification language (PSL) (Section 7.4).

Extensions allow arbitrary additional material to be embedded. Thesemay include a schematic icon
for the GUI rendition of the block, the formal specification of a bus protocol, the bus abstraction
definition (Section 7.5) and non-functional data such as energy and area estimates. The programmer’s
view address space of registers inside each block can also be described, as shown in Figure 6.27. This
uses the register and memoryMap or addressBlock elements. Bit fields within a register can be
named and given access types, such as read only, write once or self-resetting.

resetValue

read-only

write-only

writeOnce

read-write

read-writeOnce

accessType

DRAM

TCM
scratchpad

Peripheral
sub-system

Graphics
sub-system

0x0000_0000

0x8000_0000

0x9000_0000

0xA000_0000

Unused 0xB000_0000

0x0_0000

0x1_0000

0x2_0000

0x3_0000

0x4_0000

Unused

Ethernet

USB1

USB0

UART

memoryMap

relativeAddressabsoluteAddress

0x5_0000

I2C

Config0

Id0

IntEnable

IntPending

PowerMode

MasterStat

0x0

0x8

0x10

0x18

0x20

0x28

relativeAddress

15 8 7 4 3 2 1 0

accessType

bitField

name

IntPending bitFields

XSPEED UFLOW EDGER OFLOW

0x0 0x3 2'b01 2b'00

read-only read-only read-write read-write

registerMapaddressBlock

Peripheral sub-system USB blockTop-level

Figure 6.27 IP-XACT structures for documenting the memory map and register field definitions, plus the access type supported for each bit field

The basic unit of an interconnect is the bus, but this can be described in various forms. Hence,
interfaces are always described at two levels. The high level is the bus definition, which names the
interface and describes how it can be connected to other interfaces. Theremay be several bus
abstraction files, which define implementations of the bus at lower levels. The twomost common
forms, respectively, encompass the TLM (Section 5.4.8) and net-level definitions of the interface. All
forms of connection can be generated from the same high-level wiring diagram.

For each port of a component, there is a busInterface element in the document. This may have a
signalMap, whichmaps the formal net names in the interface to the names used in a corresponding
bus abstraction specification of the port. Simple IP-XACTwiring generation tools use the signal
map to determine how the nets on one interface are connected to the nets on another instance for the

328

Chapter 6 | Architectural Design Exploration

same formal port on another component. The bus instance namemay be in the IP-XACT design or it
may be given a name based on the instance names of the components connected by the wiring
generator.

Figure 6.28 illustrates the automatic generation of a passive interconnect using IP-XACT. A passive
interconnect has point-to-point or multipoint wiring. Five IP-XACT XML files are required to describe
this connection, but only one is not shared over other similar connections. The example bus is a
standard synchronous interface (Section 3.1.3) with end-of-packet indication using DLAST.
Components with the interface are either data sources or data sinks, which have nets in opposite
directions. The bus is defined generically by its bus definition IP-XACT file. For net-level output, the
relevant implementation is in the RTL bus abstraction file.

Component kind: SS_SRC

Bus type:

Port: SR0
input m_rdy;

output m_valid;
output [7:0] m_data;

output m_dlast;

Rdy
Valid
Data
Dlast

output s_rdy;
input s_valid;
input [7:0] s_data;
input s_dlast;

in
out
out
out

out
in
in
in

1:1
1:1
1:1
1:1

IP-XACT Bus abstraction

RTL Abstraction definition

STD_SYNCH_DLAST_RTL

signal
map

void put_data(u8_t dx);

TLM abstraction definition

u8_t get_data()

TLM abstraction definition

RTL Abstraction definition

Component kind: SS_SINK

signal
map

IP-XACT component definition

Port: SK0

output s_rdy;
input s_valid;
input [7:0] s_data;
input s_dlast;

input m_rdy;
output m_valid;

output [7:0] m_data;
output m_dlast;

d2_d4_0_Rdy
d2_d4_0_Valid
d2_d4_0_Data
d2+d4_0_Dlast

Instance name: d2 Instance name: d4

Instance name: d2 Instance name: d4

IP-XACT component definition

Bus type:
IP-XACT Bus definiton

STD_SYNCH_DLAST
Abstraction: STD_SYNCH_DLAST_RTL
Abstraction: STD_SYNCH_DLAST_TLM

IP-XACT
design

SS_SRC SS_SINK

Figure 6.28 Generating an interconnect from IP-XACT: abstract view (top) using five IP-XACT XML files and synthesised wiring (bottom)

The overall high-level design is described in an IP-XACT design document. This lists the component
kinds and instance names. It describes the wiring between the ports with a simple connectivity
matrix. We have two component kinds in the example, so theremust be two component IP-XACT
documents. The busInterface element gives the port kind and port instance name.

329

Modern SoCDesign

The logic generated is shown at the bottom of the figure. It looks quite simple considering the number
of XML files involved. However, often an hierarchical output (a netlist with a structure) is needed, in
which casemultiple nets need to cross tediously in and out of modules. This can be exceptionally
verbose and error-prone if manually entered in RTL. Interrupt wiring and the debug infrastructure
can also be generated and configured in a similar way.

Test benches following theOVM/UVM coding standard can also be rendered (Section 8.8.1) by
suitable generators. Leaf IP blocks tend to be supplied with their own test benches that follow this
standard. Address base offsettingmay be used if an IP block is embedded in another, but this makes
test programs fail. However, if the offsetting is documented in IP-XACT, automatic compensation for
compliant test programs can be implemented. Additional test benches can also be created
automatically for composed subsystems.

IP-XACTGenerators
Aswell as wiring generators, there are various other synthesis plug-ins, such as RAM compilers
(Section 8.3.10). Busses tend to havemany variations in terms of address and data width, presence of
sideband signals andmaximum number of outstanding transactions. Active interconnect
components, such asmultiplexers andNoC elements, also need to be configured, such as FIFO depth
and number of ports. Many of the components required are synthesised on demand by interconnect
generator tools. When invoked, these tools generate not only the IP blocks but also the complete
suite of IP-XACT documents required for integration.

An interconnect generator can be automatically triggered if the ports that need to be connected are
definedwith incompatible types in their bus definitions. The system integrator will not make a
direct connection but can perform a patternmatch on the available interconnect or glue logic
generators to find a suitable adaptor and run it. This may cross clock domains or power domains or
may adjust the bus width.

Standard arithmetic operators, such as floating-point ALUs or fast Fourier transform (FFT) units, can
also be generated by core generators. Again, the GUI for these generators may be accessible via the
system integrator API and again the generator outputs the necessarymeta-files in IP-XACT form.

Another class of generators managesmemorymaps and produces C header files for inclusion in
device drivers. Hence, header files in RTL and C are always synchronised with themachine-generated
documentation in PDF or word-processor formats.

Design checkers can perform a static analysis of the SoC as a whole. Simple checks based on
output-to-output and disconnected input rules can be applied. If IP-XACT extensions have gate
counts, or area and power use estimates, the design checkers can sum over the component inventory
to give system-wide totals.

Example System Integrator Tools
SoC system integrator tools are often based on the Eclipse IDE or other generic frameworks that
were primarily designed for the integrated debugging and development of software. As well as being

330

Chapter 6 | Architectural Design Exploration

interactive, they can also be run as batch processes using TCL scripting or perhaps Python or Ruby. A
number of broadly similar system integrator tools are available from different vendors. These vary
according to howmuch automation they provide and howwell they support software co-design and
the generation of ESL virtual platforms. Examples are PlatformDesigner from Intel [27], SDSoC/Vitis
fromXilinx [28] and Socrates fromArm [29]. Figure 6.29 shows themanual deployment of IP blocks
and a point-to-point interconnect using an IP-XACT-based GUI tool. Clock, reset and interrupt
interconnect will be configured one net at a time, but large numbers of nets are connected with a
single mouse click for bus connections.

APU-7TDMI

RESET
CLK

I-OUT0

IRQ1
IRQ0

u_CPU0

DEMUX4

M0
M1
M2
M3

u_DEM10

IN0

CLK

FSTORE

u_FRAMESTORE

T-IN0

HDMI
MEM

BCLK

SRAM32KB

u_MEM1

T-IN0

CLK

CBRI32

u_ASYNCH1

I-OUT0T-IN0

CLK CLK

POLICER2

u_QOS202

I-OUT0
T-IN0

CLK

MUX2

M0

u_MUX3

IN0

CLK

IN1

SRAM32KB

u_MEM2

T-IN0

CLK

RESIZE-64/32

u_RES9

I-OUT0T-IN0

CLK

HMDI_OUTX

u_HDMI1

HDMI-IN

CLK

SRAM32KB

u_MEM0

T-IN0

CLK

CLK_RST_GEN

CLK-OUT
RST-OUT

u_CLKRST1 CLK_GEN

CLK-OUT

u_PIXCLK1

PIXCLK

Figure 6.29 Example of high-level manual wiring between subsystems with wiring configured using a GUI

The Arm tool allows IP blocks to be configured for evaluation before they are licensed. It drives two
main interconnect mesh generator tools: the CMN-600 CoherentMeshNetwork Generator from
Arm [30] and a companion tool for non-coherent interconnects [31].

Figure 6.30 is a screenshot from Socrates after running the Network-On-Chip Synthesis Engine
(NoC-SE), which generated the NI-700mesh. The various blobs in red are ingress interfaces; those in
green are egress interfaces; the ‘H’ and remainder in purple are NI-700 routing elements. Those with
two colours are power and clock domain convertors (PCDCs) (Section 3.7.1 and Section 4.6.10).
Those with a small arrow inside are bus resizers. The three scattered light blue circles are
performancemanagement units (Section 2.7.9). In grey are unroutable areas (UAs) and the blue large
boxes are various external IP clusters named CPU, DDR and so on.

6.8.3 Hardware Construction Languages
A hardware construction language (HCL) is a program that prints out a circuit diagram, which is called
elaboration. There are two principal differences between RTLs andHCLs:

1. AnHCL is far more expressive than the limited facilities supported by the generate statements
found in VHDL and Verilog (Section 8.3.1). HCLs can concisely and elegantly describe

331

Modern SoCDesign

The logic generated is shown at the bottom of the figure. It looks quite simple considering the number
of XML files involved. However, often an hierarchical output (a netlist with a structure) is needed, in
which casemultiple nets need to cross tediously in and out of modules. This can be exceptionally
verbose and error-prone if manually entered in RTL. Interrupt wiring and the debug infrastructure
can also be generated and configured in a similar way.

Test benches following theOVM/UVM coding standard can also be rendered (Section 8.8.1) by
suitable generators. Leaf IP blocks tend to be supplied with their own test benches that follow this
standard. Address base offsettingmay be used if an IP block is embedded in another, but this makes
test programs fail. However, if the offsetting is documented in IP-XACT, automatic compensation for
compliant test programs can be implemented. Additional test benches can also be created
automatically for composed subsystems.

IP-XACTGenerators
Aswell as wiring generators, there are various other synthesis plug-ins, such as RAM compilers
(Section 8.3.10). Busses tend to havemany variations in terms of address and data width, presence of
sideband signals andmaximum number of outstanding transactions. Active interconnect
components, such asmultiplexers andNoC elements, also need to be configured, such as FIFO depth
and number of ports. Many of the components required are synthesised on demand by interconnect
generator tools. When invoked, these tools generate not only the IP blocks but also the complete
suite of IP-XACT documents required for integration.

An interconnect generator can be automatically triggered if the ports that need to be connected are
definedwith incompatible types in their bus definitions. The system integrator will not make a
direct connection but can perform a patternmatch on the available interconnect or glue logic
generators to find a suitable adaptor and run it. This may cross clock domains or power domains or
may adjust the bus width.

Standard arithmetic operators, such as floating-point ALUs or fast Fourier transform (FFT) units, can
also be generated by core generators. Again, the GUI for these generators may be accessible via the
system integrator API and again the generator outputs the necessarymeta-files in IP-XACT form.

Another class of generators managesmemorymaps and produces C header files for inclusion in
device drivers. Hence, header files in RTL and C are always synchronised with themachine-generated
documentation in PDF or word-processor formats.

Design checkers can perform a static analysis of the SoC as a whole. Simple checks based on
output-to-output and disconnected input rules can be applied. If IP-XACT extensions have gate
counts, or area and power use estimates, the design checkers can sum over the component inventory
to give system-wide totals.

Example System Integrator Tools
SoC system integrator tools are often based on the Eclipse IDE or other generic frameworks that
were primarily designed for the integrated debugging and development of software. As well as being

330

Chapter 6 | Architectural Design Exploration

interactive, they can also be run as batch processes using TCL scripting or perhaps Python or Ruby. A
number of broadly similar system integrator tools are available from different vendors. These vary
according to howmuch automation they provide and howwell they support software co-design and
the generation of ESL virtual platforms. Examples are PlatformDesigner from Intel [27], SDSoC/Vitis
fromXilinx [28] and Socrates fromArm [29]. Figure 6.29 shows themanual deployment of IP blocks
and a point-to-point interconnect using an IP-XACT-based GUI tool. Clock, reset and interrupt
interconnect will be configured one net at a time, but large numbers of nets are connected with a
single mouse click for bus connections.

APU-7TDMI

RESET
CLK

I-OUT0

IRQ1
IRQ0

u_CPU0

DEMUX4

M0
M1
M2
M3

u_DEM10

IN0

CLK

FSTORE

u_FRAMESTORE

T-IN0

HDMI
MEM

BCLK

SRAM32KB

u_MEM1

T-IN0

CLK

CBRI32

u_ASYNCH1

I-OUT0T-IN0

CLK CLK

POLICER2

u_QOS202

I-OUT0
T-IN0

CLK

MUX2

M0

u_MUX3

IN0

CLK

IN1

SRAM32KB

u_MEM2

T-IN0

CLK

RESIZE-64/32

u_RES9

I-OUT0T-IN0

CLK

HMDI_OUTX

u_HDMI1

HDMI-IN

CLK

SRAM32KB

u_MEM0

T-IN0

CLK

CLK_RST_GEN

CLK-OUT
RST-OUT

u_CLKRST1 CLK_GEN

CLK-OUT

u_PIXCLK1

PIXCLK

Figure 6.29 Example of high-level manual wiring between subsystems with wiring configured using a GUI

The Arm tool allows IP blocks to be configured for evaluation before they are licensed. It drives two
main interconnect mesh generator tools: the CMN-600 CoherentMeshNetwork Generator from
Arm [30] and a companion tool for non-coherent interconnects [31].

Figure 6.30 is a screenshot from Socrates after running the Network-On-Chip Synthesis Engine
(NoC-SE), which generated the NI-700mesh. The various blobs in red are ingress interfaces; those in
green are egress interfaces; the ‘H’ and remainder in purple are NI-700 routing elements. Those with
two colours are power and clock domain convertors (PCDCs) (Section 3.7.1 and Section 4.6.10).
Those with a small arrow inside are bus resizers. The three scattered light blue circles are
performancemanagement units (Section 2.7.9). In grey are unroutable areas (UAs) and the blue large
boxes are various external IP clusters named CPU, DDR and so on.

6.8.3 Hardware Construction Languages
A hardware construction language (HCL) is a program that prints out a circuit diagram, which is called
elaboration. There are two principal differences between RTLs andHCLs:

1. AnHCL is far more expressive than the limited facilities supported by the generate statements
found in VHDL and Verilog (Section 8.3.1). HCLs can concisely and elegantly describe

331

Modern SoCDesign

multi-dimensional structures with arbitrary hierarchy and localised variations and
parametrisations.

2. HCLs support very little data-dependent control flow. An elaborate time thread has nomeaning at
runtime. Indeed, functional and declarative expressions are typically used in HCLs so that the
notion of threading at elaborate timemay not exist. To achieve data-dependent effects, explicit
rendering of multiplexors is usually used, although sometimes there is syntactic support for
multiplexors so that if like structures can be used.

Figure 6.30 Screenshot of the connectivity matrix editor within Arm Socrates

HCLs havemuch in commonwith new paradigms for rendering computation graphs in cloud and
machine learning orchestration. Generative approaches for programming supercomputers, such as
DryadLINQ fromMicrosoft, also elegantly support the rendering of large static computation trees.
These can be split overmultiple processing nodes or blades. They are agnostic as to whatmix of nodes
is used: FPGA, GPU or CPU. If FPGA accelerators are used (Section 6.4), synergies may be possible.

TwomainstreamHCLs are Lava and Chisel. Lava was implemented in the language Haskell in 1998
[32] but many derivatives are used for niche applications today (e.g. Cλash [33]). Functional
programming languages, like Haskell, have vast expressive power for concisely describing common

332

Chapter 6 | Architectural Design Exploration

operations, such replication, mapping and scalar reduction (Section 4.4.2). Application scenarios
include adders, multipliers, NoCs (Section 3.4), FFTs (Section 6.9.1) and anything that has a repetitive
structure at small or large scale.

Chisel HCL
Chisel HCL [34] is a HCL embedded as a domain-specific language (DSL) in the Scala language. Scala
is a very powerful general-purpose language that embodies all of the power of functional
programming (proper closures etc.) as well as popular imperative features, such as objects and
assignment to variables. However, Chisel does not allow general Scala programs to be converted to
hardware, as that requires HLS (Section 6.9).

The output fromChisel is RTL or SystemC. The latter is mainly used to increase the speed of
simulation in a virtual platform or otherwise. For one component to include another, a Chisel module
generator invokes the generator for the child. This potentially results in compile-time flattening of the
hierarchy, although there is an option to preserve the hierarchy. As well as quickly generating a large
amount of hardware, two further elegant aspects of Chisel are its wiring bundles and automatic
bit-width determination for busses and registers that are not specified. As with system integrator
tools based on IP-XACT, the bundle mechanism easily allows busses to be run up and down the
module hierarchy without the need for manual configuration of every net direction at each level.

Validly tagged data are one of themost fundamental paradigms in hardware. A register or bus is
either in use or idle. Standard RTL has nowidely used coding standard for representing this and bus
qualifiers must bemanually entered alongside the data carrying part of any bus or register. This is
easier if user-defined data types are supported by the hardware language, especially if all users follow
the same conventions. Chisel nurtures this convergence by providing a standard library that includes
themaybe/option type for validly tagged data as well as prototypes for FIFO buffers and SRAM.
Future tool chains may expect such conventions to be followed, e.g. for compiler-based logic
optimisation.

Figure 6.31 An example Chisel module: a static-priority arbiter, showing Chisel source code (left) and the circuit generated (right) when n_inputs is 3

333

Modern SoCDesign

multi-dimensional structures with arbitrary hierarchy and localised variations and
parametrisations.

2. HCLs support very little data-dependent control flow. An elaborate time thread has nomeaning at
runtime. Indeed, functional and declarative expressions are typically used in HCLs so that the
notion of threading at elaborate timemay not exist. To achieve data-dependent effects, explicit
rendering of multiplexors is usually used, although sometimes there is syntactic support for
multiplexors so that if like structures can be used.

Figure 6.30 Screenshot of the connectivity matrix editor within Arm Socrates

HCLs havemuch in commonwith new paradigms for rendering computation graphs in cloud and
machine learning orchestration. Generative approaches for programming supercomputers, such as
DryadLINQ fromMicrosoft, also elegantly support the rendering of large static computation trees.
These can be split overmultiple processing nodes or blades. They are agnostic as to whatmix of nodes
is used: FPGA, GPU or CPU. If FPGA accelerators are used (Section 6.4), synergies may be possible.

TwomainstreamHCLs are Lava and Chisel. Lava was implemented in the language Haskell in 1998
[32] but many derivatives are used for niche applications today (e.g. Cλash [33]). Functional
programming languages, like Haskell, have vast expressive power for concisely describing common

332

Chapter 6 | Architectural Design Exploration

operations, such replication, mapping and scalar reduction (Section 4.4.2). Application scenarios
include adders, multipliers, NoCs (Section 3.4), FFTs (Section 6.9.1) and anything that has a repetitive
structure at small or large scale.

Chisel HCL
Chisel HCL [34] is a HCL embedded as a domain-specific language (DSL) in the Scala language. Scala
is a very powerful general-purpose language that embodies all of the power of functional
programming (proper closures etc.) as well as popular imperative features, such as objects and
assignment to variables. However, Chisel does not allow general Scala programs to be converted to
hardware, as that requires HLS (Section 6.9).

The output fromChisel is RTL or SystemC. The latter is mainly used to increase the speed of
simulation in a virtual platform or otherwise. For one component to include another, a Chisel module
generator invokes the generator for the child. This potentially results in compile-time flattening of the
hierarchy, although there is an option to preserve the hierarchy. As well as quickly generating a large
amount of hardware, two further elegant aspects of Chisel are its wiring bundles and automatic
bit-width determination for busses and registers that are not specified. As with system integrator
tools based on IP-XACT, the bundle mechanism easily allows busses to be run up and down the
module hierarchy without the need for manual configuration of every net direction at each level.

Validly tagged data are one of themost fundamental paradigms in hardware. A register or bus is
either in use or idle. Standard RTL has nowidely used coding standard for representing this and bus
qualifiers must bemanually entered alongside the data carrying part of any bus or register. This is
easier if user-defined data types are supported by the hardware language, especially if all users follow
the same conventions. Chisel nurtures this convergence by providing a standard library that includes
themaybe/option type for validly tagged data as well as prototypes for FIFO buffers and SRAM.
Future tool chains may expect such conventions to be followed, e.g. for compiler-based logic
optimisation.

Figure 6.31 An example Chisel module: a static-priority arbiter, showing Chisel source code (left) and the circuit generated (right) when n_inputs is 3

333

Modern SoCDesign

Figure 6.31 shows a Chisel example in Scala and schematic form. The Scala class has nomethods and
does all of its work in its constructor. The constructor extends the Chisel base Module and generates a
combinational priority encoder whose number of inputs is passed to the constructor at elaboration
time. The input and output contacts are generated by the call to map. Then, for each input and output
pair, an anonymous function is folded. A scalar, which is carried between each fold, is the
combinational net that indicates whether any stage with a higher priority than the current is active.

Figure 6.32 is a Chisel example using synchronous logic and a when block. The clock net is notmanifest
in the low-level Chisel code. The Reg() primitive references an implicit clock, while the surrounding
scope sets the clock domain name and the resets. This example goes beyond Lava-like HCL. It
demonstrates howmultiplexers are inferred. There are two possible sources of input to the register.
Note that the register width does not have to be specified. The Chisel width determiner deduces that
no logic will ever connect to bits higher than bit 7 and so creates an 8-bit register in the output RTL.

1 class CTR8_SLD extends Module
2 {
3 val io = new Bundle
4 {
5 val DIN = UInt(INPUT, 8)
6 val load = Bool(INPUT)
7 val Q = UInt(OUTPUT, 8)
8 }
9 val reg0 = Reg(UInt())

8
DIN Q

load
10 when (io.load)
11 {
12 reg0 := io.DIN
13 }
14 .otherwise
15 {
16 reg0 := reg0 + 1
17 }
18 io.Q := reg0
19 }

CTR8_SLD

Figure 6.32 An 8-bit counter with a synchronous load using sequential logic and a when/otherwise clause: Chisel source code and schematic symbol

Although Chisel supports advanced structural elaboration and reduces the amount of typing
comparedwith using RTL directly, it retains the RTL semantics. Hence, the designer must allocate
work to clock cycles. Moreover, to achieve high utilisation with pipelined FUs, manual sequencing and
scoreboarding are required, which again is left to the design engineer.

6.8.4 Handel-C
Parallel thread communication via shared variables is widely recognised to be a poor communication
paradigm, despite being themainstay of parallel programming onmulti-core computers. Using shared
variables to communicate between threads is a low-level model of computation:

The user must abide by self-imposed protocol conventions, and hence, themethod is error-prone.

Quite richmutex and semaphore semantics must be supported by the tool chain.

Cache and sequential consistency are necessary.

It has become (unfortunately) the primary parallel communications paradigm in today’s chip
multiprocessors (CMPs).

Thus, it is generally better avoided (so saymany at least)!

334

Chapter 6 | Architectural Design Exploration

Themain disadvantage of shared variables is toomuch freedom of expression. Arbitrary user
protocols are commonly coded, although the compilers are in complete ignorance of their semantics.
Accordingly, the optimisations deployable by the compiler are severely limited. The primary
alternative is inter-thread communication bymessage passing.

// Generator (src)
while(1)
{

ch1 ! (x);
x += 3;

}

// Processor
while(1)
{

ch2 ! (ch1? + 2)
}

// Consumer (sink)
while(1)
{

$display(ch2?);
}

Figure 6.33 Three communication processes expressed using Handel-C

Using channels makes concurrency explicit and allows synthesis to re-time the design.

Amainstream example of message passing being compiled to hardware is the Handel-C language. Its
compiler converts a variant of theOccam programming language to RTL. Figure 6.33 illustrates the
essence of this design style. Three sequential processes are composed in parallel and communicate
via channels. Handel-C has twomessage communication primitives: c!v is used to write a value v to
channel c and c? is used to read it. Each channel has a bounded storage capacity that is nominally
establishedwhen it is declared. The read andwrite primitives are blocking, so the thread blocks when
reading an empty channel andwhenwriting to a full channel. Richer concurrent structures are
possible using the keywords SEQ and PAR, which enable threads to fork and join.

This coding style encourages the writer to exploit thread-level parallelism, yet the compiler has
massive freedom to optimise. If static analysis shows that a thread never blocks on any channel,
where helpful, its work can instead be redistributed and inlined in other threads. Other channels may
be reduced to combinational logic between the program counters of communicating threads. The
minimal required channel capacity can often be determined at compile time by static analysis phases
that balance the load by allocating work to clock cycles while avoiding accidental serialisation or a
deadlock. Accidental serialisation occurs when a program that was written for a parallel platform
mostly runs sequentially due to structural hazards relating to commonly used resources (Section 6.3).

6.8.5 Bluespec SystemVerilog
Using guarded atomic actions is an old andwell-loved design paradigm in computer science. Recently,
Bluespec SystemVerilog has successfully raised the level of abstraction in hardware design using this
paradigm [35].

Like Chisel and Lava, Bluespec benefits from having an advanced elaboration language for rendering
structure. Early versions were very powerful, being directly embedded in Haskell, whereas an
easier-to-use and slightly restricted subset was used for the commercial variant of the language. The

335

Modern SoCDesign

Figure 6.31 shows a Chisel example in Scala and schematic form. The Scala class has nomethods and
does all of its work in its constructor. The constructor extends the Chisel base Module and generates a
combinational priority encoder whose number of inputs is passed to the constructor at elaboration
time. The input and output contacts are generated by the call to map. Then, for each input and output
pair, an anonymous function is folded. A scalar, which is carried between each fold, is the
combinational net that indicates whether any stage with a higher priority than the current is active.

Figure 6.32 is a Chisel example using synchronous logic and a when block. The clock net is notmanifest
in the low-level Chisel code. The Reg() primitive references an implicit clock, while the surrounding
scope sets the clock domain name and the resets. This example goes beyond Lava-like HCL. It
demonstrates howmultiplexers are inferred. There are two possible sources of input to the register.
Note that the register width does not have to be specified. The Chisel width determiner deduces that
no logic will ever connect to bits higher than bit 7 and so creates an 8-bit register in the output RTL.

1 class CTR8_SLD extends Module
2 {
3 val io = new Bundle
4 {
5 val DIN = UInt(INPUT, 8)
6 val load = Bool(INPUT)
7 val Q = UInt(OUTPUT, 8)
8 }
9 val reg0 = Reg(UInt())

8
DIN Q

load
10 when (io.load)
11 {
12 reg0 := io.DIN
13 }
14 .otherwise
15 {
16 reg0 := reg0 + 1
17 }
18 io.Q := reg0
19 }

CTR8_SLD

Figure 6.32 An 8-bit counter with a synchronous load using sequential logic and a when/otherwise clause: Chisel source code and schematic symbol

Although Chisel supports advanced structural elaboration and reduces the amount of typing
comparedwith using RTL directly, it retains the RTL semantics. Hence, the designer must allocate
work to clock cycles. Moreover, to achieve high utilisation with pipelined FUs, manual sequencing and
scoreboarding are required, which again is left to the design engineer.

6.8.4 Handel-C
Parallel thread communication via shared variables is widely recognised to be a poor communication
paradigm, despite being themainstay of parallel programming onmulti-core computers. Using shared
variables to communicate between threads is a low-level model of computation:

The user must abide by self-imposed protocol conventions, and hence, themethod is error-prone.

Quite richmutex and semaphore semantics must be supported by the tool chain.

Cache and sequential consistency are necessary.

It has become (unfortunately) the primary parallel communications paradigm in today’s chip
multiprocessors (CMPs).

Thus, it is generally better avoided (so saymany at least)!

334

Chapter 6 | Architectural Design Exploration

Themain disadvantage of shared variables is toomuch freedom of expression. Arbitrary user
protocols are commonly coded, although the compilers are in complete ignorance of their semantics.
Accordingly, the optimisations deployable by the compiler are severely limited. The primary
alternative is inter-thread communication bymessage passing.

// Generator (src)
while(1)
{

ch1 ! (x);
x += 3;

}

// Processor
while(1)
{

ch2 ! (ch1? + 2)
}

// Consumer (sink)
while(1)
{

$display(ch2?);
}

Figure 6.33 Three communication processes expressed using Handel-C

Using channels makes concurrency explicit and allows synthesis to re-time the design.

Amainstream example of message passing being compiled to hardware is the Handel-C language. Its
compiler converts a variant of theOccam programming language to RTL. Figure 6.33 illustrates the
essence of this design style. Three sequential processes are composed in parallel and communicate
via channels. Handel-C has twomessage communication primitives: c!v is used to write a value v to
channel c and c? is used to read it. Each channel has a bounded storage capacity that is nominally
establishedwhen it is declared. The read andwrite primitives are blocking, so the thread blocks when
reading an empty channel andwhenwriting to a full channel. Richer concurrent structures are
possible using the keywords SEQ and PAR, which enable threads to fork and join.

This coding style encourages the writer to exploit thread-level parallelism, yet the compiler has
massive freedom to optimise. If static analysis shows that a thread never blocks on any channel,
where helpful, its work can instead be redistributed and inlined in other threads. Other channels may
be reduced to combinational logic between the program counters of communicating threads. The
minimal required channel capacity can often be determined at compile time by static analysis phases
that balance the load by allocating work to clock cycles while avoiding accidental serialisation or a
deadlock. Accidental serialisation occurs when a program that was written for a parallel platform
mostly runs sequentially due to structural hazards relating to commonly used resources (Section 6.3).

6.8.5 Bluespec SystemVerilog
Using guarded atomic actions is an old andwell-loved design paradigm in computer science. Recently,
Bluespec SystemVerilog has successfully raised the level of abstraction in hardware design using this
paradigm [35].

Like Chisel and Lava, Bluespec benefits from having an advanced elaboration language for rendering
structure. Early versions were very powerful, being directly embedded in Haskell, whereas an
easier-to-use and slightly restricted subset was used for the commercial variant of the language. The

335

Modern SoCDesign

elaboration language, however, is an orthogonal aspect. What is significant is the basic unit that is
rendered by the elaboration stage.

Bluespec essentially has two types of entity that can be rendered: modules and rules. Modules can be
defined by the user or built in. They can instantiate instances of other modules in a classical hardware
structural hierarchy (Section 8.3.1). Modules are not regarded as having net-level connections
(althoughwhen rendered as RTL, they do, of course). Instead, they support TLM-style method entry
points (Section 5.4), which can be invoked from a parentmodule. Methods are grouped into interfaces
andmade accessible to the parent module. An interface can also be passed into amodule so that the
module canmake use of interfaces defined in other parts of the structure.

The second type of entity is a rule. As well as containing instances of smaller modules, a modulemay
have one ormore rules. A rule makesmethod calls on the interfaces of the instantiatedmodules and
onmethods of interfaces passed in from above. Leaf methodsmay not be re-entrant in the sense that
theymay be in use by only one rule at a time. For example, a hardware broadside register of n bits has
a read()method and a write()method. Any number of rules can use the readmethod at once, but
the write method can be called by only one rule in any one clock cycle.

Comparedwith the other design languages covered in this section, Bluespec sits between RTL and
HLSwith regard to clock cycles. For performance reasons, a designer using Bluespec normally takes a
keen interest in what is done in what clock cycle, but the compiler has the final say and the rate of
progress of a design is sometimes slower than expected. This is because of the Bluespec scheduler. If
methods cannot be calledmore than once per clock cycle, any rules that wish to call the samemethod
must do so in turn. Rules are always exercised at most once per clock cycle under the default
compilation semantics. Moreover, themainstreamBluespec compiler generates only a static schedule
and reports starvation for rules that manifestly can never fire under a static schedule. To achieve
dynamic scheduling, the usermust instantiate stateful arbiters so that different rules are arbitrated at
runtime. The intention was that a compiler can direct scheduling decisions to span various
power/performance implementations for a given program. However, designs with an over-reliance on
shared variables suffer RaW andWaR hazards if the schedule is altered. There are other compilers
that insert their own dynamic schedulers.

Figure 6.34 has three Bluespec rules that demonstrate contention. This example looks pretty much
like RTL, so it understandable by experienced RTL engineers. The rule countone attempts to
increment the register rxwhile it is less than 30. The expression (rx < 30) in the rule definition line
is called its explicit guard. For this rule, whatever its starting value, it should count to 30 and stop. A
standard Bluespec semantic is that a rule can fire at most once per clock cycle; hence, this rule can
increment the register at most once per clock cycle. The second rule, counttwo, attempts to add 2 to
the same register when it is above 20. Clearly, both rules can fire if the register is between 21 and 29.
However, only one rule is allowed to write to the register in a single clock cycle. The Bluespec
scheduler will detect this condition, and give one rule static priority over the other. The decision will
be reported to the user in a compilation log file. Annotations can be added to control the relative
priority if the user has a preference. Either way, one rule will always fire at the expense of total

336

Chapter 6 | Architectural Design Exploration

module mkTb1 (Empty); // This module has no externally callable methods

Reg#(int) rx <- mkReg (23); // Create an instance of a 23-bit register called rx

rule countone (rx < 30); // A rule named 'countup' with an explicit guard
int y = rx + 1; // This is short for int y = rx.read() + 1;
rx <= rx + 1; // This is short for rx.write(rx.read() + 1);
$display ("countone: rx = %0d, y = %0d", rx, y);

endrule

rule counttwo (rx > 20); // A competing rule, also guarded
rx <= rx + 2; // This increments twice each cycle
$display ("counttwo: rx = %0d", rx);

endrule

rule done (rx >= 40); // A third rule
$finish (0);

endrule

endmodule: mkTb1

Figure 6.34 A Bluespec example in which three rules compete to act on a simple broadside register

starvation for the other rule in this interval. Once above 29, the second rule is the only one that can
fire, and the count sequence will go up in 2s until it reaches 40, when the final rule will exit the
simulation. In real hardware, the RTL generated from the final rule will be ignored during logic
synthesis, since real hardware cannot exit, and the second rule will continue until the register goes
negative at 222.

This small example is easy to analyse by inspection, but, in general, rules that interferemay be far away
from each other, perhaps in different source files. However, the compiler will analyse all possibilities
and generate what it deems to be an appropriate static prioritisation. If the user does not like the
compiler’s decisions, additional guard conditions and annotations canmanually steer the schedule
towards the preferred behaviour. If a round-robin service is desired (Section 4.2.1), an additional state
has to be added, either manually or via the extensions available in some Bluespec compilers.

Figure 6.35 demonstrates inter-module wiring in Bluespec. Asmentioned, modules are
interconnected usingmethod calls. Amethod call must be completed in a clock cycle, so access to any
pipelined unit requires two transactions on differentmethods, called put() and get(). (For commonly
used paradigms, like put/get, Bluespec offers type-class mechanisms that ease their interconnection,
but our simple example does not show that.) As with IP-XACT, the interface definition is shared by the
initiator and the target. The net declarations in the hardware are determined from the definition and
the reciprocal net directions between initiator and target. The example shows Bluespec source code
for the initiator and the net-level schematic of the target. For eachmethod, there is a handshake net
in each direction together with parallel data busses for each argument and the result.

337

Modern SoCDesign

elaboration language, however, is an orthogonal aspect. What is significant is the basic unit that is
rendered by the elaboration stage.

Bluespec essentially has two types of entity that can be rendered: modules and rules. Modules can be
defined by the user or built in. They can instantiate instances of other modules in a classical hardware
structural hierarchy (Section 8.3.1). Modules are not regarded as having net-level connections
(althoughwhen rendered as RTL, they do, of course). Instead, they support TLM-style method entry
points (Section 5.4), which can be invoked from a parentmodule. Methods are grouped into interfaces
andmade accessible to the parent module. An interface can also be passed into amodule so that the
module canmake use of interfaces defined in other parts of the structure.

The second type of entity is a rule. As well as containing instances of smaller modules, a modulemay
have one ormore rules. A rule makesmethod calls on the interfaces of the instantiatedmodules and
onmethods of interfaces passed in from above. Leaf methodsmay not be re-entrant in the sense that
theymay be in use by only one rule at a time. For example, a hardware broadside register of n bits has
a read()method and a write()method. Any number of rules can use the readmethod at once, but
the write method can be called by only one rule in any one clock cycle.

Comparedwith the other design languages covered in this section, Bluespec sits between RTL and
HLSwith regard to clock cycles. For performance reasons, a designer using Bluespec normally takes a
keen interest in what is done in what clock cycle, but the compiler has the final say and the rate of
progress of a design is sometimes slower than expected. This is because of the Bluespec scheduler. If
methods cannot be calledmore than once per clock cycle, any rules that wish to call the samemethod
must do so in turn. Rules are always exercised at most once per clock cycle under the default
compilation semantics. Moreover, themainstreamBluespec compiler generates only a static schedule
and reports starvation for rules that manifestly can never fire under a static schedule. To achieve
dynamic scheduling, the usermust instantiate stateful arbiters so that different rules are arbitrated at
runtime. The intention was that a compiler can direct scheduling decisions to span various
power/performance implementations for a given program. However, designs with an over-reliance on
shared variables suffer RaW andWaR hazards if the schedule is altered. There are other compilers
that insert their own dynamic schedulers.

Figure 6.34 has three Bluespec rules that demonstrate contention. This example looks pretty much
like RTL, so it understandable by experienced RTL engineers. The rule countone attempts to
increment the register rxwhile it is less than 30. The expression (rx < 30) in the rule definition line
is called its explicit guard. For this rule, whatever its starting value, it should count to 30 and stop. A
standard Bluespec semantic is that a rule can fire at most once per clock cycle; hence, this rule can
increment the register at most once per clock cycle. The second rule, counttwo, attempts to add 2 to
the same register when it is above 20. Clearly, both rules can fire if the register is between 21 and 29.
However, only one rule is allowed to write to the register in a single clock cycle. The Bluespec
scheduler will detect this condition, and give one rule static priority over the other. The decision will
be reported to the user in a compilation log file. Annotations can be added to control the relative
priority if the user has a preference. Either way, one rule will always fire at the expense of total

336

Chapter 6 | Architectural Design Exploration

module mkTb1 (Empty); // This module has no externally callable methods

Reg#(int) rx <- mkReg (23); // Create an instance of a 23-bit register called rx

rule countone (rx < 30); // A rule named 'countup' with an explicit guard
int y = rx + 1; // This is short for int y = rx.read() + 1;
rx <= rx + 1; // This is short for rx.write(rx.read() + 1);
$display ("countone: rx = %0d, y = %0d", rx, y);

endrule

rule counttwo (rx > 20); // A competing rule, also guarded
rx <= rx + 2; // This increments twice each cycle
$display ("counttwo: rx = %0d", rx);

endrule

rule done (rx >= 40); // A third rule
$finish (0);

endrule

endmodule: mkTb1

Figure 6.34 A Bluespec example in which three rules compete to act on a simple broadside register

starvation for the other rule in this interval. Once above 29, the second rule is the only one that can
fire, and the count sequence will go up in 2s until it reaches 40, when the final rule will exit the
simulation. In real hardware, the RTL generated from the final rule will be ignored during logic
synthesis, since real hardware cannot exit, and the second rule will continue until the register goes
negative at 222.

This small example is easy to analyse by inspection, but, in general, rules that interferemay be far away
from each other, perhaps in different source files. However, the compiler will analyse all possibilities
and generate what it deems to be an appropriate static prioritisation. If the user does not like the
compiler’s decisions, additional guard conditions and annotations canmanually steer the schedule
towards the preferred behaviour. If a round-robin service is desired (Section 4.2.1), an additional state
has to be added, either manually or via the extensions available in some Bluespec compilers.

Figure 6.35 demonstrates inter-module wiring in Bluespec. Asmentioned, modules are
interconnected usingmethod calls. Amethod call must be completed in a clock cycle, so access to any
pipelined unit requires two transactions on differentmethods, called put() and get(). (For commonly
used paradigms, like put/get, Bluespec offers type-class mechanisms that ease their interconnection,
but our simple example does not show that.) As with IP-XACT, the interface definition is shared by the
initiator and the target. The net declarations in the hardware are determined from the definition and
the reciprocal net directions between initiator and target. The example shows Bluespec source code
for the initiator and the net-level schematic of the target. For eachmethod, there is a handshake net
in each direction together with parallel data busses for each argument and the result.

337

Modern SoCDesign

interface Pipe_ifc;
method Action put(int arg);
method int get();

endinterface

module mkTb2 (Empty); // Testbench

Reg#(int) x <- mkReg ('h10);
Pipe_ifc thepipe <- mkPipe;

rule fill; // explicit guard of (true) is implied
thepipe.put(x);
// This is short for x.write(x.read() + 'h10);
x <= x + 'h10;

endrule

rule drain;
let y = thepipe.get();
$display (" y = %0h", y);

endrule
endmodule

Clock

mkPipe
details

Bluespec Compiler
(synthesis tool)

Reset

put_EN
put_RDY
put_arg

get_EN
get_RDY
get_RV

32

32

pipe

Pipe_ifc

Figure 6.35 Bluespec definition of an example interface, the Pipe_ifc (top left), the definition of a component that has an instance of a component that has
that interface and two rules to operate on it (bottom left) and a net-level schematic symbol for the instantiated component showing handshake nets. The
symbol for the Tb2 component has no external nets (apart from clock and reset) since it has an empty interface

The fill and drain rules in Figure 6.35 do not use explicit guards but remain guarded by the implicit
guards of all methods they invoke. These are the _RDY nets of eachmethod. The compiler generates a
composite guard for any rule as a conjunction of its explicit guard, the implicit guards of anymethods
called in the explicit guard and the implicit guards of all methods in the rule body. When it is holding
off a rule to avoid starving another, the scheduler adds a further clause in the conjunction. An
annotation or a command-line option can select a non-strict compilationmode for a rule. In that case,
the implicit guards of code that is not going to be runwhen the rule fires, due to being surrounded by
an if statement whose guard does not hold, can be excluded from the expression for the rule guard.
The RDY signals from eachmethod indicate the implicit guard of themethod. When a rule exercises a
method, it multiplexes its arguments on to themethod argument bus and drives the _EN signal for the
method high, using an input to a disjunction for eachmethod that collects the fire signals for all rules
that invoke themethod.

Bluespec was intended to be declarative, both in the elaboration language for the design structure
andwith the guarded atomic action paradigm for its rules. Declarative programming is not ideal in all
situations. A behavioural sublanguage based on a finite-statemachine (FSM) is also available for when
an imperative expression is best. This is converted into declarative rule form as a preprocessing step
during elaboration. The let-bind structure, illustrated in both the above examples for variable y, also
helps with imperative-like coding. However, the principal components in real hardware are the
register and the SRAM. Both of these are imperative and suffer RaW-like hazards (Section 6.3), which
makes the order of firing rules important. Within a rule, we have atomicity, but large designs need to
usemultiple rules and these are best coupled with FIFO-like structures to avoid RaWhazards.
Alternatively, we can use a highly defensive programming style that tolerates any rule ordering. As
with Handel-C, due to the clean semantics of the language, advanced compilers have the potential to
explore a wide implementation space, well beyond that dictated by direct translation according to the

338

Chapter 6 | Architectural Design Exploration

programmer’s model. Like Chisel, it has good support for validly tagged data in registers and busses.
Hence, compiler optimisations that ignore dead data are possible. However, the put/get paradigm for
access to pipelined RAMs, ALUs and other FUs (Section 6.8.1) forces a slightly verbose programming
style that could be simplifiedwith such a compiler.

6.9 High-level Synthesis
The holy grail of high-level synthesis (HLS) is to convert arbitrary software to hardware
automatically. There are two principal reasons for attempting this:

Engineer productivity: Section 6.8mentioned time tomarket and the related benefits of
higher-level design expression. HLS grants access to a very rich design expression environment.
Fragments of existing code can be readily compiled to hardware and new code can be created
quickly. HLS is particularly adroit at using complex pipelined FUs (Section 6.8.1), which are very
difficult to deploy in any programming style where the pipelinemust bemanually constructed by
the user.

Power and performance: When accelerating common big-data applications, HLS can target FPGA
to generate custom coprocessors and networks of interconnected accelerators. Equally, for
portable devices, longer battery life is possible when intensive processing is performed using
specialised logic instead of software on a general-purpose core. The improved performance due to
hardware accelerators was covered in Section 6.4.

Although it has been a research topic for decades, HLS is now seeing industrial traction. The
advantages of using a general-purpose language to describe both hardware and software are
becoming apparent. Algorithms can be ported easily and tested in software environments before
implementation in hardware. There is also the potential benefit that software engineers can be used
instead of building hardware, as they are normally cheaper to employ than ASIC engineers!

Awide variety of HLS tools are available. They vary in their purpose and capabilities. Most accept C,
C++ or SystemC as input languages, but there are also tools for Python, C# and other less popular
languages. Figure 6.36 illustrates a typical tool flow. The HLS compiler generates RTL that is then
synthesised for ASIC or converted to an FPGA bit stream. A colloquial name for such a tool used to be
aC-to-gates compiler. All generate RTL and some can generate SystemC as an additional output. An
advantage of using SystemC as the input is the predefined library of multi-bit words, but these are
also available in other ways, such as through the various portable C libraries that have been verified to
compile tidily on a given tool. The RTL subset of SystemC (Section 5.3.2) can also be seamlessly used
to combine HLSwith RTL coding styles if certain operations, such as interface protocols, need to be
clock-aware in their coding. Some tools are dedicated to generating highly optimised hardware
implementations of algorithmic kernels. Others support a complete software ecosystem, including
multithreading and transparent access to the file system, like Kiwi (Section 6.9)

339

Modern SoCDesign

interface Pipe_ifc;
method Action put(int arg);
method int get();

endinterface

module mkTb2 (Empty); // Testbench

Reg#(int) x <- mkReg ('h10);
Pipe_ifc thepipe <- mkPipe;

rule fill; // explicit guard of (true) is implied
thepipe.put(x);
// This is short for x.write(x.read() + 'h10);
x <= x + 'h10;

endrule

rule drain;
let y = thepipe.get();
$display (" y = %0h", y);

endrule
endmodule

Clock

mkPipe
details

Bluespec Compiler
(synthesis tool)

Reset

put_EN
put_RDY
put_arg

get_EN
get_RDY
get_RV

32

32

pipe

Pipe_ifc

Figure 6.35 Bluespec definition of an example interface, the Pipe_ifc (top left), the definition of a component that has an instance of a component that has
that interface and two rules to operate on it (bottom left) and a net-level schematic symbol for the instantiated component showing handshake nets. The
symbol for the Tb2 component has no external nets (apart from clock and reset) since it has an empty interface

The fill and drain rules in Figure 6.35 do not use explicit guards but remain guarded by the implicit
guards of all methods they invoke. These are the _RDY nets of eachmethod. The compiler generates a
composite guard for any rule as a conjunction of its explicit guard, the implicit guards of anymethods
called in the explicit guard and the implicit guards of all methods in the rule body. When it is holding
off a rule to avoid starving another, the scheduler adds a further clause in the conjunction. An
annotation or a command-line option can select a non-strict compilationmode for a rule. In that case,
the implicit guards of code that is not going to be runwhen the rule fires, due to being surrounded by
an if statement whose guard does not hold, can be excluded from the expression for the rule guard.
The RDY signals from eachmethod indicate the implicit guard of themethod. When a rule exercises a
method, it multiplexes its arguments on to themethod argument bus and drives the _EN signal for the
method high, using an input to a disjunction for eachmethod that collects the fire signals for all rules
that invoke themethod.

Bluespec was intended to be declarative, both in the elaboration language for the design structure
andwith the guarded atomic action paradigm for its rules. Declarative programming is not ideal in all
situations. A behavioural sublanguage based on a finite-statemachine (FSM) is also available for when
an imperative expression is best. This is converted into declarative rule form as a preprocessing step
during elaboration. The let-bind structure, illustrated in both the above examples for variable y, also
helps with imperative-like coding. However, the principal components in real hardware are the
register and the SRAM. Both of these are imperative and suffer RaW-like hazards (Section 6.3), which
makes the order of firing rules important. Within a rule, we have atomicity, but large designs need to
usemultiple rules and these are best coupled with FIFO-like structures to avoid RaWhazards.
Alternatively, we can use a highly defensive programming style that tolerates any rule ordering. As
with Handel-C, due to the clean semantics of the language, advanced compilers have the potential to
explore a wide implementation space, well beyond that dictated by direct translation according to the

338

Chapter 6 | Architectural Design Exploration

programmer’s model. Like Chisel, it has good support for validly tagged data in registers and busses.
Hence, compiler optimisations that ignore dead data are possible. However, the put/get paradigm for
access to pipelined RAMs, ALUs and other FUs (Section 6.8.1) forces a slightly verbose programming
style that could be simplifiedwith such a compiler.

6.9 High-level Synthesis
The holy grail of high-level synthesis (HLS) is to convert arbitrary software to hardware
automatically. There are two principal reasons for attempting this:

Engineer productivity: Section 6.8mentioned time tomarket and the related benefits of
higher-level design expression. HLS grants access to a very rich design expression environment.
Fragments of existing code can be readily compiled to hardware and new code can be created
quickly. HLS is particularly adroit at using complex pipelined FUs (Section 6.8.1), which are very
difficult to deploy in any programming style where the pipelinemust bemanually constructed by
the user.

Power and performance: When accelerating common big-data applications, HLS can target FPGA
to generate custom coprocessors and networks of interconnected accelerators. Equally, for
portable devices, longer battery life is possible when intensive processing is performed using
specialised logic instead of software on a general-purpose core. The improved performance due to
hardware accelerators was covered in Section 6.4.

Although it has been a research topic for decades, HLS is now seeing industrial traction. The
advantages of using a general-purpose language to describe both hardware and software are
becoming apparent. Algorithms can be ported easily and tested in software environments before
implementation in hardware. There is also the potential benefit that software engineers can be used
instead of building hardware, as they are normally cheaper to employ than ASIC engineers!

Awide variety of HLS tools are available. They vary in their purpose and capabilities. Most accept C,
C++ or SystemC as input languages, but there are also tools for Python, C# and other less popular
languages. Figure 6.36 illustrates a typical tool flow. The HLS compiler generates RTL that is then
synthesised for ASIC or converted to an FPGA bit stream. A colloquial name for such a tool used to be
aC-to-gates compiler. All generate RTL and some can generate SystemC as an additional output. An
advantage of using SystemC as the input is the predefined library of multi-bit words, but these are
also available in other ways, such as through the various portable C libraries that have been verified to
compile tidily on a given tool. The RTL subset of SystemC (Section 5.3.2) can also be seamlessly used
to combine HLSwith RTL coding styles if certain operations, such as interface protocols, need to be
clock-aware in their coding. Some tools are dedicated to generating highly optimised hardware
implementations of algorithmic kernels. Others support a complete software ecosystem, including
multithreading and transparent access to the file system, like Kiwi (Section 6.9)

339

Modern SoCDesign

High-level
libraries

RTL Design
(Verilog)

FPGA
Logic synthesis,
place and route
(Xilinx or Altera)

Device-
specific

bitstream

High Level
Program

C++/C# etc
HLS

Compiler
(KiwiC/LegUp)

FPGA
Device

Standard cell
logic synthesis

Standard cell
ASIC flow

(Chapter 8)

FU definitions
(ALUs, RAMs)

Figure 6.36 Basic steps of an HLS tool chain for ASIC or FPGA

HLS Synthesisable Subsets and Flow
Although the ideal is to convert arbitrary legacy programs to hardware, this does notwork verywell in
general. Existing code tends to need refactoring to suit the synthesisable subset supported by the
HLS tool. At a veryminimum, the boundary of what is to be put in hardware needs to be defined,
typically using the instance of a class or a particular subroutine. New code is likely to bewritten with
knowledge of howwell the chosen tool copes with a particular language construct. Typical subset
restrictions include the following:

The programmust be finite-state and single-threaded.

All recursionmust be bounded or else is not allowed at all.

All dynamic storage allocation is outside infinite loops (or de-allocated again in the same loop).

Only Boolean logic and integer arithmetic can be used (althoughmany tools now support
floating-point and custom precision as well).

There is limited string handling.

There is very limited standard library support.

Which loops have runtime bounds has to be explicit.

The classical HLS tool is a compiler that operates much like a software compiler, but there aremany
differences. It includes parallelism detection algorithms, which facilitate the creation of large circuits,
but these are not always required. Hence, it needs guidance regarding the time/space trade-off.
Moreover, it can benefit significantly from profile-directed feedback, which gives a clear indication of
how often each region of code is executed. It is pointless producing high-performance hardware for
control-flow arcs that are seldom used, such as start-up code or error handlers. A software compiler
takes advantage of caches tomove frequently used data to higher-bandwidth storage cells, but the
HLS compiler makes these decisions at compile time, dispensing with all but the last-level cache.
MainstreamHLS tools use a static schedule (Section 6.8.1), although, as discussed, these schedules
can suffer when interacting with variable-latency FUs, such as DRAMand for divides.

340

Chapter 6 | Architectural Design Exploration

A compiler normally has an extensive library of mathematical functions and common I/O routines.
There is also a library of execution substrates or shells, which can easily host the generated RTL
simulation, FPGA evaluation boards or cloud server blades.

Although someHLS tools can process multithreaded code, they essentially repeat the compilation
flow separately for each thread. Resource sharing between threads needs to use the server farm
paradigm using an array of processing elements (PEs). Each PE is from a separate HLS thread run
(Section 6.8.1). The internal steps of an HLS compiler for a single thread take an imperative program
and convert it to a custom data pathwith an optional sequencing FSMwhen required. The steps are:

1. Lexing and parsing: This is the same as any high-level language (HLL). Lexing is the process of
recognising the syntactic tokens in an input file, such as keywords and composite symbols like >=.
Parsing forms an abstract syntax tree from these tokens, provided the input is grammatically
correct. Otherwise, it reports a syntax error.

2. Type and reference checking: Again, this is like any HLL. Errors are reported if an integer is added
to a string, if an invoked primitive is unsupported or if a variable is not initialised.

3. Trimming: Unreachable code is deleted. Register widths are reduced if it is manifest that the value
stored is bounded. Constants are propagated between code blocks. Identity reductions are applied
to operators, such asmultiplying by unity.

4. Loop unwinding: Parallelism is easily increased by loop unwinding, subject to loop-carried
dependencies (Section 6.9.1).

5. Strength reduction: An operator may be replacedwith a lower area operator where possible, such
as replacing amultiplication by−1with a subtraction from 0.

6. Reassociation: A sequence of associative operators is typically parsedwith a linear association,
whereas a tree-like structure results in shorter delays and better FU utilisation. For instance
a+ (b+ (c+d)) is replacedwith (a+b)+ (c+d).

7. Binding: Every storage element and PE, such as a variable, an add operation or amemory read, is
allocated a physical resource. The compiler must select an inventory of FUs, such as RAMs and
ALUs, to instantiate.

8. Addressmapping: Memory layouts and loop nest ordering are optimised. Arrays of structs can be
permuted to structs of arrays (Section 6.9.1). Polyhedral address mapping is applied to loop nests
(Section 6.9.1).

9. Scheduling: Each physical resource can be usedmany times in the time domain. A static schedule is
generated to assign work to clock cycles. This is typically a scoreboard of what expressions are
available at what clock offset for a basic block (Section 6.9).

341

Modern SoCDesign

High-level
libraries

RTL Design
(Verilog)

FPGA
Logic synthesis,
place and route
(Xilinx or Altera)

Device-
specific

bitstream

High Level
Program

C++/C# etc
HLS

Compiler
(KiwiC/LegUp)

FPGA
Device

Standard cell
logic synthesis

Standard cell
ASIC flow

(Chapter 8)

FU definitions
(ALUs, RAMs)

Figure 6.36 Basic steps of an HLS tool chain for ASIC or FPGA

HLS Synthesisable Subsets and Flow
Although the ideal is to convert arbitrary legacy programs to hardware, this does notwork verywell in
general. Existing code tends to need refactoring to suit the synthesisable subset supported by the
HLS tool. At a veryminimum, the boundary of what is to be put in hardware needs to be defined,
typically using the instance of a class or a particular subroutine. New code is likely to bewritten with
knowledge of howwell the chosen tool copes with a particular language construct. Typical subset
restrictions include the following:

The programmust be finite-state and single-threaded.

All recursionmust be bounded or else is not allowed at all.

All dynamic storage allocation is outside infinite loops (or de-allocated again in the same loop).

Only Boolean logic and integer arithmetic can be used (althoughmany tools now support
floating-point and custom precision as well).

There is limited string handling.

There is very limited standard library support.

Which loops have runtime bounds has to be explicit.

The classical HLS tool is a compiler that operates much like a software compiler, but there aremany
differences. It includes parallelism detection algorithms, which facilitate the creation of large circuits,
but these are not always required. Hence, it needs guidance regarding the time/space trade-off.
Moreover, it can benefit significantly from profile-directed feedback, which gives a clear indication of
how often each region of code is executed. It is pointless producing high-performance hardware for
control-flow arcs that are seldom used, such as start-up code or error handlers. A software compiler
takes advantage of caches tomove frequently used data to higher-bandwidth storage cells, but the
HLS compiler makes these decisions at compile time, dispensing with all but the last-level cache.
MainstreamHLS tools use a static schedule (Section 6.8.1), although, as discussed, these schedules
can suffer when interacting with variable-latency FUs, such as DRAMand for divides.

340

Chapter 6 | Architectural Design Exploration

A compiler normally has an extensive library of mathematical functions and common I/O routines.
There is also a library of execution substrates or shells, which can easily host the generated RTL
simulation, FPGA evaluation boards or cloud server blades.

Although someHLS tools can process multithreaded code, they essentially repeat the compilation
flow separately for each thread. Resource sharing between threads needs to use the server farm
paradigm using an array of processing elements (PEs). Each PE is from a separate HLS thread run
(Section 6.8.1). The internal steps of an HLS compiler for a single thread take an imperative program
and convert it to a custom data pathwith an optional sequencing FSMwhen required. The steps are:

1. Lexing and parsing: This is the same as any high-level language (HLL). Lexing is the process of
recognising the syntactic tokens in an input file, such as keywords and composite symbols like >=.
Parsing forms an abstract syntax tree from these tokens, provided the input is grammatically
correct. Otherwise, it reports a syntax error.

2. Type and reference checking: Again, this is like any HLL. Errors are reported if an integer is added
to a string, if an invoked primitive is unsupported or if a variable is not initialised.

3. Trimming: Unreachable code is deleted. Register widths are reduced if it is manifest that the value
stored is bounded. Constants are propagated between code blocks. Identity reductions are applied
to operators, such asmultiplying by unity.

4. Loop unwinding: Parallelism is easily increased by loop unwinding, subject to loop-carried
dependencies (Section 6.9.1).

5. Strength reduction: An operator may be replacedwith a lower area operator where possible, such
as replacing amultiplication by−1with a subtraction from 0.

6. Reassociation: A sequence of associative operators is typically parsedwith a linear association,
whereas a tree-like structure results in shorter delays and better FU utilisation. For instance
a+ (b+ (c+d)) is replacedwith (a+b)+ (c+d).

7. Binding: Every storage element and PE, such as a variable, an add operation or amemory read, is
allocated a physical resource. The compiler must select an inventory of FUs, such as RAMs and
ALUs, to instantiate.

8. Addressmapping: Memory layouts and loop nest ordering are optimised. Arrays of structs can be
permuted to structs of arrays (Section 6.9.1). Polyhedral address mapping is applied to loop nests
(Section 6.9.1).

9. Scheduling: Each physical resource can be usedmany times in the time domain. A static schedule is
generated to assign work to clock cycles. This is typically a scoreboard of what expressions are
available at what clock offset for a basic block (Section 6.9).

341

Modern SoCDesign

10. Sequencer generation: A controlling FSM that embodies the schedule and drives multiplexor and
ALU function codes is generated.

11. Quantity surveying: The number of hardware resources and clock cycles used can now be readily
computed.

12. Optimisation: The binding and scheduling phasesmay be revisited to ensure they bettermatch any
user-provided target metrics. Iterative strategies, as outlined in Section 6.2, are used.

13. RTL output: The resulting design is printed to a Verilog or VHDL file and optionally as SystemC.
IP-XACT documentation is also written by some tools.

SimpleWorkedHLS Example

// A simple long multiplier with
// variable latency
int multiply(int A, int B)
{

int RA=A;
int RB=B;
int RC=0;
while(RA>0)
{

if odd(RA) RC = RC + RB;
RA = RA >> 1;
RB = RB << 1;

}
return RC;

}

module LONGMULT8b8(clk, reset, C, Ready, A, B, Start);
input clk, reset, Start;
output Ready;
input [7:0] A, B;
output [15:0] C;
reg [15:0] RC, RB, RA;
reg Ready;

reg xx, yy, qq, pp; // Control and predicate nets
reg [1:0] fc;
reg [3:0] state;
always @(posedge clk) begin

xx = 0; // default settings.
yy = 0;
fc = 0;

// Predicates
pp = (RA!=16'h0); // Work while pp holds
qq = RA[0]; // Odd if qq holds

if (reset) begin // Sequencer
state <= 0;
Ready <= 0;
end

else case (state)
0: if (Start) begin

xx = 1;
yy = 1;
fc = 2;
state <= 1;

end

1: begin
fc = qq;
if (!pp) state <= 2;

end
2: begin

Ready <= 1;
if (!Start) state <= 3;

end

3: begin
Ready <= 0;
state <= 0;

end

endcase // case (state)
RB <= (yy) ? B: RB<<1; // Data path
RA <= (xx) ? A: RA>>1;
RC <= (fc==2) ? 0: (fc==1) ? RC+RB: RC;
end

assign C = RC;
endmodule

Figure 6.37 A very basic worked HLS example showing the input source code (left) and generated RTL (right) for a 32-bit multiplier as a variable-latency FU
with start and ready handshake nets

342

Chapter 6 | Architectural Design Exploration

As a simple worked example of HLS, we consider longmultiplication implemented in C, as shown on
the left of Figure 6.37. Following a strictly syntax-directed approach, with no search of the solution
space for minimum clock cycles, minimum area ormaximum clock frequency, we use a simple
one-to-onemapping of ALUs to the source code text. As can be seen in the generated RTL, shown on
the right, each register has amultiplexer that ranges over all expressions stored in it. Figure 6.38 (left)
shows the resulting data path. The compilation output could serve as a primitive FU to be instantiated
by further runs of the HLS tool (right). The accompanying documentation would describe its input,
output and handshake nets in XML using an IP-XACT schema. For such a simple algorithm, there is no
performance benefit compared to in-lining its compilation within a parent, but keeping it separate
means its input and output busses are an easy-to-find structure during debugging.

D Q

8

D Q
C

A
RA

RC

/2D Q

8
B

RB

x2

x

y

fc

p

ReadyStart

fcp

y
x

FSM

8

16

bit 0
q

q

16

8

Ready

C
16

B

Start

A

8

8

Figure 6.38 Long multiplier output fromHLS showing the internal data path and sequencer (left) and the schematic symbol (right). The result is used as an
FU in a higher-level design

Pipelined Scheduling: One Basic Block
The simplemultiplier example just considered had nomulti-cycle FUs. Indeed, it could be considered
as a design exercise for a generic variable-latency FU for use at a higher level.

Now, suppose that wewish to compute Y :=Y×Y+1.0/
�
X×X+Z×Z and suppose the FUs chosen

include a 1.0/SQRT unit that takes 5 cycles, an ADD FU that takes 4 cycles and a SQUARE FU that takes 3.
None of the FUs are pipelined and hence, they have an initiation interval equal to their latency, such as
our simplemultiplier (Section 6.3). Note that amultiply may be faster than an add in floating-point
arithmetic (as there is no exponent denormalising step and a 24- versus a 32-bit mantissa) and that
the reciprocal of a square root may be cheaper to compute than a square root.

Figure 6.39 shows one possible computation schedule. The squaring operation for input Y has slack,
as it can be shifted between offsets 4 and 10 if wewant to use the same FU for X as Y. If the
assignment to Y is inside a loop, then Ywould have a loop-carried dependency (Section 6.9.1). The
loop can be reissued earlier if the dependency occurs later in the loop body schedule, thus increasing
the loop rate. In general, each sub-expression can bemigrated between its earliest and latest times

343

Modern SoCDesign

10. Sequencer generation: A controlling FSM that embodies the schedule and drives multiplexor and
ALU function codes is generated.

11. Quantity surveying: The number of hardware resources and clock cycles used can now be readily
computed.

12. Optimisation: The binding and scheduling phasesmay be revisited to ensure they bettermatch any
user-provided target metrics. Iterative strategies, as outlined in Section 6.2, are used.

13. RTL output: The resulting design is printed to a Verilog or VHDL file and optionally as SystemC.
IP-XACT documentation is also written by some tools.

SimpleWorkedHLS Example

// A simple long multiplier with
// variable latency
int multiply(int A, int B)
{

int RA=A;
int RB=B;
int RC=0;
while(RA>0)
{

if odd(RA) RC = RC + RB;
RA = RA >> 1;
RB = RB << 1;

}
return RC;

}

module LONGMULT8b8(clk, reset, C, Ready, A, B, Start);
input clk, reset, Start;
output Ready;
input [7:0] A, B;
output [15:0] C;
reg [15:0] RC, RB, RA;
reg Ready;

reg xx, yy, qq, pp; // Control and predicate nets
reg [1:0] fc;
reg [3:0] state;
always @(posedge clk) begin

xx = 0; // default settings.
yy = 0;
fc = 0;

// Predicates
pp = (RA!=16'h0); // Work while pp holds
qq = RA[0]; // Odd if qq holds

if (reset) begin // Sequencer
state <= 0;
Ready <= 0;
end

else case (state)
0: if (Start) begin

xx = 1;
yy = 1;
fc = 2;
state <= 1;

end

1: begin
fc = qq;
if (!pp) state <= 2;

end
2: begin

Ready <= 1;
if (!Start) state <= 3;

end

3: begin
Ready <= 0;
state <= 0;

end

endcase // case (state)
RB <= (yy) ? B: RB<<1; // Data path
RA <= (xx) ? A: RA>>1;
RC <= (fc==2) ? 0: (fc==1) ? RC+RB: RC;
end

assign C = RC;
endmodule

Figure 6.37 A very basic worked HLS example showing the input source code (left) and generated RTL (right) for a 32-bit multiplier as a variable-latency FU
with start and ready handshake nets

342

Chapter 6 | Architectural Design Exploration

As a simple worked example of HLS, we consider longmultiplication implemented in C, as shown on
the left of Figure 6.37. Following a strictly syntax-directed approach, with no search of the solution
space for minimum clock cycles, minimum area ormaximum clock frequency, we use a simple
one-to-onemapping of ALUs to the source code text. As can be seen in the generated RTL, shown on
the right, each register has amultiplexer that ranges over all expressions stored in it. Figure 6.38 (left)
shows the resulting data path. The compilation output could serve as a primitive FU to be instantiated
by further runs of the HLS tool (right). The accompanying documentation would describe its input,
output and handshake nets in XML using an IP-XACT schema. For such a simple algorithm, there is no
performance benefit compared to in-lining its compilation within a parent, but keeping it separate
means its input and output busses are an easy-to-find structure during debugging.

D Q

8

D Q
C

A
RA

RC

/2D Q

8
B

RB

x2

x

y

fc

p

ReadyStart

fcp

y
x

FSM

8

16

bit 0
q

q

16

8

Ready

C
16

B

Start

A

8

8

Figure 6.38 Long multiplier output fromHLS showing the internal data path and sequencer (left) and the schematic symbol (right). The result is used as an
FU in a higher-level design

Pipelined Scheduling: One Basic Block
The simplemultiplier example just considered had nomulti-cycle FUs. Indeed, it could be considered
as a design exercise for a generic variable-latency FU for use at a higher level.

Now, suppose that wewish to compute Y :=Y×Y+1.0/
�
X×X+Z×Z and suppose the FUs chosen

include a 1.0/SQRT unit that takes 5 cycles, an ADD FU that takes 4 cycles and a SQUARE FU that takes 3.
None of the FUs are pipelined and hence, they have an initiation interval equal to their latency, such as
our simplemultiplier (Section 6.3). Note that amultiply may be faster than an add in floating-point
arithmetic (as there is no exponent denormalising step and a 24- versus a 32-bit mantissa) and that
the reciprocal of a square root may be cheaper to compute than a square root.

Figure 6.39 shows one possible computation schedule. The squaring operation for input Y has slack,
as it can be shifted between offsets 4 and 10 if wewant to use the same FU for X as Y. If the
assignment to Y is inside a loop, then Ywould have a loop-carried dependency (Section 6.9.1). The
loop can be reissued earlier if the dependency occurs later in the loop body schedule, thus increasing
the loop rate. In general, each sub-expression can bemigrated between its earliest and latest times

343

Modern SoCDesign

SQUARE

SQUARE

SQUARE

1.0/SQRT
X

Y
Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Same
FU ?

Y

ADD

ADD

Clock cycle number

Figure 6.39 An example of a static schedule for a basic block containing a single assignment

within a schedule. There are knock-on effects regarding the sharing of FUs for different
sub-expressions and the commencement of subsequent basic blocks.

If the SQUARE unit is now fully pipelined, the same SQUARE unit could be used for X and Zwith only a
single cycle extension to the schedule. One operation starts the cycle after the other. The earliest
start time for the squaring of Y is now 2.

After some loop unrolling, we have an expanded control-flow graph that has larger basic blocks than
the original HLL program. In classical HLS, each basic block of an expanded graph is given a
time-domain static schedule.

A good heuristic for scheduling is to start the operations that have the largest processing delay as
early as possible. This is called a list schedule. Finding an optimum schedule is NP-hard and integer
linear programming packages are often deployed to find an optimum trade-off for the schedule and
resource use.

The result for this example was stored in only one output variable. A basic block schedule typically
contains multiple assignments, with sub-expressions and FUs being reused in the time domain
throughout the schedule and shared between output assignments. To avoid RaWhazards within a
basic block, all reads to a variable or memory locationmust be scheduled before all writes to the same
variable. The name alias problemmeans wemust be conservative in this analysis when considering
whether array subscripts are equal (Section 6.9.1). This is undecidable in general theory, but often
doable in practice (Section 6.9.1). Indeed, many subscript expressions are simple functions of loop
induction. We need to understand their patterns to increase performance. An induction variable in a
loop is simply the variable that is stepped at each iteration.

Modulo Scheduling
Earlier in Section 6.9, we discussed the shortest possible schedule, but sometimes a longer schedule is
acceptable and preferable if it uses less silicon. For example, the high-level expression of a basic block
may contain arithmetic operators, such as 9 additions and 10multiplies for a 10-stage finite-impulse
response filter. However, wemaywish to render this in hardware using fewer FUs. For instance, to do
this in three clock cycles of at least three times the streaming sample rate, three adders and four

344

Chapter 6 | Architectural Design Exploration

multipliers should be sufficient, as these wouldmeet the required number of basic operations per
second, assuming they can each compute a new result every clock cycle. However, such FUs are often
pipelined and the output from onemay not be ready in time to be the input to the next. Streaming
hardware designs with a low initiation interval (II) are surprisingly complex and difficult to findwhen
the available ALUs are heavily pipelined. Floating-point ALUs tend to have amulti-cycle delay (a
latency of four to six cycles is common for adds andmultiplies in a FPGA). However, such problems are
always solvable with theminimal number of FUs, given sufficient pipelining. In our example, the
pipeline II is 3, but the latency is more than 3. The design issue is then tominimise the latency and the
number of additional holding registers. These two aims are, at least, compatible.

Running Sum Using II=1, L=1 diadic adder.
Overall II=1, L=1

X(t)
Y(t)

Running Sum Using
II=1, L=2 diadic adders.

Overall II=1, L=6

X(t)

Y(t-1)

X(t)

Y(t-5)

Running Sum Using II=1, L=2 triadic adders.
Overall II=1, L=2

C1 C2

C3

Figure 6.40 Various circuits that compute a running sum. The everyday circuit C1 can be used if the adder has a latency of 1. However, if the adder has a
latency of 2, more complex circuits are needed, namely C2 and C3

Figure 6.40 tackles a simpler example: compute the running sum of streaming data with an II of 1 and
no oversampling. Circuit C1 is the obvious answer for integer arithmetic, but for floating-point
arithmetic, an adder with a latency of 1 is rarely good due to its very long combinational paths. If an
adder with a latency of 2 and three inputs is available, then solution C2 is feasible. However, if the
adders have only two inputs, the fairly complex design of C3must be used. Since single-precision
floating-point adders generally have a latency of at least 3, C3 is unlikely to be realised in practice.

In general, a scheduler or planner will produce a static mapping of operations to FUs. The creation of
the schedule can be formulated nicely as an integer linear programming problem, as demonstrated in
‘ILP-basedModulo Scheduling and Binding for RegisterMinimization’ [36]. The aim is to find a set of
integer values that simultaneously make a set of simple inequalities hold over sums of the variables.
The schedule will use some number of FUs and have a duration that is some integral number of
initiation intervals before it repeats. The result is called amodulo schedule. A schedule that uses the
fewest number of FUswill generally be preferred over a schedule that is as short as possible, since
additional complexity arising from schedule length is likely to be less than the area and energy costs of

345

Modern SoCDesign

SQUARE

SQUARE

SQUARE

1.0/SQRT

X
Y

Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Same
FU ?

Y

ADD

ADD

Clock cycle number

Figure 6.39 An example of a static schedule for a basic block containing a single assignment

within a schedule. There are knock-on effects regarding the sharing of FUs for different
sub-expressions and the commencement of subsequent basic blocks.

If the SQUARE unit is now fully pipelined, the same SQUARE unit could be used for X and Zwith only a
single cycle extension to the schedule. One operation starts the cycle after the other. The earliest
start time for the squaring of Y is now 2.

After some loop unrolling, we have an expanded control-flow graph that has larger basic blocks than
the original HLL program. In classical HLS, each basic block of an expanded graph is given a
time-domain static schedule.

A good heuristic for scheduling is to start the operations that have the largest processing delay as
early as possible. This is called a list schedule. Finding an optimum schedule is NP-hard and integer
linear programming packages are often deployed to find an optimum trade-off for the schedule and
resource use.

The result for this example was stored in only one output variable. A basic block schedule typically
contains multiple assignments, with sub-expressions and FUs being reused in the time domain
throughout the schedule and shared between output assignments. To avoid RaWhazards within a
basic block, all reads to a variable or memory locationmust be scheduled before all writes to the same
variable. The name alias problemmeans wemust be conservative in this analysis when considering
whether array subscripts are equal (Section 6.9.1). This is undecidable in general theory, but often
doable in practice (Section 6.9.1). Indeed, many subscript expressions are simple functions of loop
induction. We need to understand their patterns to increase performance. An induction variable in a
loop is simply the variable that is stepped at each iteration.

Modulo Scheduling
Earlier in Section 6.9, we discussed the shortest possible schedule, but sometimes a longer schedule is
acceptable and preferable if it uses less silicon. For example, the high-level expression of a basic block
may contain arithmetic operators, such as 9 additions and 10multiplies for a 10-stage finite-impulse
response filter. However, wemaywish to render this in hardware using fewer FUs. For instance, to do
this in three clock cycles of at least three times the streaming sample rate, three adders and four

344

Chapter 6 | Architectural Design Exploration

multipliers should be sufficient, as these wouldmeet the required number of basic operations per
second, assuming they can each compute a new result every clock cycle. However, such FUs are often
pipelined and the output from onemay not be ready in time to be the input to the next. Streaming
hardware designs with a low initiation interval (II) are surprisingly complex and difficult to findwhen
the available ALUs are heavily pipelined. Floating-point ALUs tend to have amulti-cycle delay (a
latency of four to six cycles is common for adds andmultiplies in a FPGA). However, such problems are
always solvable with theminimal number of FUs, given sufficient pipelining. In our example, the
pipeline II is 3, but the latency is more than 3. The design issue is then tominimise the latency and the
number of additional holding registers. These two aims are, at least, compatible.

Running Sum Using II=1, L=1 diadic adder.
Overall II=1, L=1

X(t)
Y(t)

Running Sum Using
II=1, L=2 diadic adders.

Overall II=1, L=6

X(t)

Y(t-1)

X(t)

Y(t-5)

Running Sum Using II=1, L=2 triadic adders.
Overall II=1, L=2

C1 C2

C3

Figure 6.40 Various circuits that compute a running sum. The everyday circuit C1 can be used if the adder has a latency of 1. However, if the adder has a
latency of 2, more complex circuits are needed, namely C2 and C3

Figure 6.40 tackles a simpler example: compute the running sum of streaming data with an II of 1 and
no oversampling. Circuit C1 is the obvious answer for integer arithmetic, but for floating-point
arithmetic, an adder with a latency of 1 is rarely good due to its very long combinational paths. If an
adder with a latency of 2 and three inputs is available, then solution C2 is feasible. However, if the
adders have only two inputs, the fairly complex design of C3must be used. Since single-precision
floating-point adders generally have a latency of at least 3, C3 is unlikely to be realised in practice.

In general, a scheduler or planner will produce a static mapping of operations to FUs. The creation of
the schedule can be formulated nicely as an integer linear programming problem, as demonstrated in
‘ILP-basedModulo Scheduling and Binding for RegisterMinimization’ [36]. The aim is to find a set of
integer values that simultaneously make a set of simple inequalities hold over sums of the variables.
The schedule will use some number of FUs and have a duration that is some integral number of
initiation intervals before it repeats. The result is called amodulo schedule. A schedule that uses the
fewest number of FUswill generally be preferred over a schedule that is as short as possible, since
additional complexity arising from schedule length is likely to be less than the area and energy costs of

345

Modern SoCDesign

additional FUs. Per-FU utilisation is also bound to be be lower if more FUs are used for the same
system throughput. Once the schedule is computed, it is then fairly simple to render a sequencer
circuit and the additional holding registers as needed. Integer linear programming problems occur in
many fields, so there aremany general-purpose solver packages.

Pipelined Scheduling between Basic Blocks
Programs do not consist of just one basic block. They typically have loops and data-dependent control
flow. Due to the high level of pipelining inherent in an efficient hardware implementation of a single
basic block, multiple basic blocks, even fromone thread, will be executing at once. Frequently, an inner
loop consists of one basic block repeated, and so it is competing with itself for structural resources
and data hazards. This is loop pipelining. If an outer loop has to be pipelined, all loops inside it must be
pipelined too. The inter-block scheduling problem grows exponentially with a base equal to the
average control-flow fanout, but only a finite part needs to be governed by themaximal block length.

Example:
 Block 1, postpad=0, is followed by another instance of itself or Block 2.
 Block 2, postpad=1, is always followed by Block 3 (no control phase).
 Block 3ʼs followers (and hence postpad) are not drawn for clarity.

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

Block 2

D0

D1

D1

D1

D1

Block 2

Block 2

Block 2

Block 2

D1

Block 3

C0+D0

D1

D2

Block 3

C0+D0

D1

D2

Block 3

C0+D0

D1

D2

D0

D0

D0

D0

Block 1

C0+D0

C1+D1

TI
M

E

Across any horizontal time
slot there must be no structural
hazards.

Vertically there must be no
RaW or WaW hazards.

Control-flow
edge

Highlighted time slot

Figure 6.41 Fragment of an example inter-block initiation and hazard graph. Block 1may be followed by itself or by block 2. Each block schedule contains
both C (control flow) predicate evaluation and D (data) computation operations

Each block has its own static schedule of determined length (Figure 6.41). The shortest possible
schedule arises from commencing each operation as soon as all of its arguments are ready and
instantiating a fresh FU to compute the operation, if no free one is available. This results in an
as-soon-as-possible schedule. The early part of the schedule generally contains control-flow
predicate computation to determine which block will run next. This can take several cycles (if
predicates depend on synchronous RAM contents) or be null if the block is the initialisation code for a
subsequent loop (i.e. the basic block ends on a branch destination rather than on a conditional
branch). The later part of a block contains data reads, data writes and ALU computations. Data
operations can also occur in the control phase, but if resources are tight (typically memory read

346

Chapter 6 | Architectural Design Exploration

bandwidth), the control work should be given a higher scheduling priority and hence, remain at the
top of the schedule. At most one control section will be running at any time per thread. However, a
number of data sections from successors and from predecessors may still be running.

In the highlighted time slot in Figure 6.41, the D3 operations of the first block are concurrent with the
control and data operations (C1+D1) of a later copy of itself when it has looped back or with the D1
phase of block 2, if it has exited from its tight loop.

Each time offset in a block schedule needs to be checked for structural hazards (Section 6.3) against
the resource use of all other blocks that are potentially running at the same time. As well as avoiding
structural hazards, the schedule must not contain RaWorWaWhazards. So a blockmust read a
datum at a point in its schedule after any earlier block that might be running has written it. If this can
occur at the same time, forwarding logic must be synthesised.

It may be necessary to add a ‘postpad’ to relax the schedule. This is a delay beyondwhat is needed by
the control-flow predicate computation before following the control-flow arc. This introduces extra
space in the global schedule allowingmore time and hence, generally requiring fewer FUs.

Ensuring sequential consistency (Section 4.5) imposes a further constraint on scheduling order, since
for certain blocks, the order of operationsmust be (partially) respected. For instance, if a packet is
stored in a sharedmemory and then signalled ready with a write to a flag or pointer in the same RAM,
the signalling operationmust be last. (This is not aWaWhazard since the writes are to different
addresses in the RAM.) Observing these limits typically results in an expansion of the overall schedule.

The HLS of multithreaded programs or those with parallel annotations (Section 6.9.1) takes into
account whether the various user threads operate in lockstep, like a systolic array (Section 6.8.1), or
asynchronously. Compilers such asKiwi HLS [37] target heterogeneous threads. As well as using
conventional auto-parallelisation, this tool comprehends the parallel programming constructs of the
input HLL. For Kiwi, this is C#, which has a rich set of operators that are commonly used for database
and big data applications. Each thread undergoes classical HLS to generate a static schedule for that
thread, but in the resulting hardware, the threads interact dynamically using arbiters, mutexes and
FIFO queues.

6.9.1 Discovering Parallelism and Shared Variables in Iterations
HLS compilers attempt to discover instruction-level parallelism in a user program. The programmay
bemanually annotated with parallel markup. For example, in C++OpenMP, wewrite:

\#pragma omp parallel for

In C#, we canmap a delegate using:

Parallel.For(0, matARows, i => ...)

347

Modern SoCDesign

additional FUs. Per-FU utilisation is also bound to be be lower if more FUs are used for the same
system throughput. Once the schedule is computed, it is then fairly simple to render a sequencer
circuit and the additional holding registers as needed. Integer linear programming problems occur in
many fields, so there aremany general-purpose solver packages.

Pipelined Scheduling between Basic Blocks
Programs do not consist of just one basic block. They typically have loops and data-dependent control
flow. Due to the high level of pipelining inherent in an efficient hardware implementation of a single
basic block, multiple basic blocks, even fromone thread, will be executing at once. Frequently, an inner
loop consists of one basic block repeated, and so it is competing with itself for structural resources
and data hazards. This is loop pipelining. If an outer loop has to be pipelined, all loops inside it must be
pipelined too. The inter-block scheduling problem grows exponentially with a base equal to the
average control-flow fanout, but only a finite part needs to be governed by themaximal block length.

Example:
 Block 1, postpad=0, is followed by another instance of itself or Block 2.
 Block 2, postpad=1, is always followed by Block 3 (no control phase).
 Block 3ʼs followers (and hence postpad) are not drawn for clarity.

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

D4

Block 1

C0+D0

C1+D1

D2

D3

Block 2

D0

D1

D1

D1

D1

Block 2

Block 2

Block 2

Block 2

D1

Block 3

C0+D0

D1

D2

Block 3

C0+D0

D1

D2

Block 3

C0+D0

D1

D2

D0

D0

D0

D0

Block 1

C0+D0

C1+D1

TI
M

E

Across any horizontal time
slot there must be no structural
hazards.

Vertically there must be no
RaW or WaW hazards.

Control-flow
edge

Highlighted time slot

Figure 6.41 Fragment of an example inter-block initiation and hazard graph. Block 1may be followed by itself or by block 2. Each block schedule contains
both C (control flow) predicate evaluation and D (data) computation operations

Each block has its own static schedule of determined length (Figure 6.41). The shortest possible
schedule arises from commencing each operation as soon as all of its arguments are ready and
instantiating a fresh FU to compute the operation, if no free one is available. This results in an
as-soon-as-possible schedule. The early part of the schedule generally contains control-flow
predicate computation to determine which block will run next. This can take several cycles (if
predicates depend on synchronous RAM contents) or be null if the block is the initialisation code for a
subsequent loop (i.e. the basic block ends on a branch destination rather than on a conditional
branch). The later part of a block contains data reads, data writes and ALU computations. Data
operations can also occur in the control phase, but if resources are tight (typically memory read

346

Chapter 6 | Architectural Design Exploration

bandwidth), the control work should be given a higher scheduling priority and hence, remain at the
top of the schedule. At most one control section will be running at any time per thread. However, a
number of data sections from successors and from predecessors may still be running.

In the highlighted time slot in Figure 6.41, the D3 operations of the first block are concurrent with the
control and data operations (C1+D1) of a later copy of itself when it has looped back or with the D1
phase of block 2, if it has exited from its tight loop.

Each time offset in a block schedule needs to be checked for structural hazards (Section 6.3) against
the resource use of all other blocks that are potentially running at the same time. As well as avoiding
structural hazards, the schedule must not contain RaWorWaWhazards. So a blockmust read a
datum at a point in its schedule after any earlier block that might be running has written it. If this can
occur at the same time, forwarding logic must be synthesised.

It may be necessary to add a ‘postpad’ to relax the schedule. This is a delay beyondwhat is needed by
the control-flow predicate computation before following the control-flow arc. This introduces extra
space in the global schedule allowingmore time and hence, generally requiring fewer FUs.

Ensuring sequential consistency (Section 4.5) imposes a further constraint on scheduling order, since
for certain blocks, the order of operationsmust be (partially) respected. For instance, if a packet is
stored in a sharedmemory and then signalled ready with a write to a flag or pointer in the same RAM,
the signalling operationmust be last. (This is not aWaWhazard since the writes are to different
addresses in the RAM.) Observing these limits typically results in an expansion of the overall schedule.

The HLS of multithreaded programs or those with parallel annotations (Section 6.9.1) takes into
account whether the various user threads operate in lockstep, like a systolic array (Section 6.8.1), or
asynchronously. Compilers such asKiwi HLS [37] target heterogeneous threads. As well as using
conventional auto-parallelisation, this tool comprehends the parallel programming constructs of the
input HLL. For Kiwi, this is C#, which has a rich set of operators that are commonly used for database
and big data applications. Each thread undergoes classical HLS to generate a static schedule for that
thread, but in the resulting hardware, the threads interact dynamically using arbiters, mutexes and
FIFO queues.

6.9.1 Discovering Parallelism and Shared Variables in Iterations
HLS compilers attempt to discover instruction-level parallelism in a user program. The programmay
bemanually annotated with parallel markup. For example, in C++OpenMP, wewrite:

\#pragma omp parallel for

In C#, we canmap a delegate using:

Parallel.For(0, matARows, i => ...)

347

Modern SoCDesign

Similar primitives exist in other libraries and languages, such as Cilk for C++ or CUDA andOpenCL for
GPU. Data-sharing patterns between potentially parallel elements always need to have the correct
degree of isolation to achieve high performance. The programmermust always pay attention to the
values read andwritten by a loop body. If one body reads a value written by another, the order of
scheduling is likely tomake a difference. However, commutable effects, such as increment, summation
and bit set, can be detected by compilers and rearranged to remove obstacles to parallelism.

A loop can be at the top level or nested inside another. The way that outer loops influence inner loop
bounds and the way that successive iterations of a single loop influence each other typically follow
one of a number of named design patterns. If the loop bounds of one loop are set by the value of an
outer loop variable, the inner loop is said to be polyhedral (Section 6.9.1). The way that data and
control interact between one loop body and another affects which loop bodies can be run in what
order or in parallel with each other. A natural loop has a single entry and exit point. A bounded loop
has its limits determined before entry. If a loop variable evolves linearly, the variables and expressions
in the body that depend only linearly on the loop variable are termed induction variables and
induction expressions, respectively, and can be ignored for loop classification, since their values are
always independently available in each loop bodywithminimal overhead.

public static int associative_reduction_example(int starting)
{

int vr = 0;
for (int i=0;i<15;i++) // or also i+=4

{
int vx = (i+starting)*(i+3)*(i+5); // Mapped computation
vr ^= ((vx&128)>0 ? 1:0); // Associative reduction

}
return vr;

}

Figure 6.42 An iteration that performs associative reduction (in vr)

For a single loop, the well-knownmap-reduce paradigm describes a factorisation of the loop body
into a part that can be computed in isolated parallel silos followed by an associative reduction
operator that gives the same answer under any bracketing (the associative principle). Figure 6.42
illustrates a basic map-reduce paradigm. The variable i is the induction variable and vr is the scalar
accumulator. Common associative operators are addition, multiplication, maximum and bitwise OR.
The example uses XOR.

A loop-carried dependencymeans that parallelisation of consecutive loop bodies is not possible. In
Figure 6.43, the output from one iteration is an input to the next iteration. This breaks the
map-reduce paradigm, despite there still being a scalar reduction in the result. Often such a loop body
can be split into a part that is and a part that is not dependent on the previous iteration, with at least
the independent part being run in parallel. This occurs in the example. Here, xf1() is free of the loop
dependency, so the available parallel speedup is given by Amdahl’s rule based on the relative partition
of work between xf1() and xf2() (Section 4.2).

348

Chapter 6 | Architectural Design Exploration

double loop_carried_example(double seed, double arg0)
{

double vr = 0.0, vd = seed;
for (int i=0;i<15;i++)
{

double vd = xf1(i*arg0); // Parallelisable
vd = xf2(vd + vd) * 3.14; // Non-parallelisable
vr += vd;

}
return vr;

}

Figure 6.43 An iteration that has a loop-carried data dependency (through variable vd)

static int [] foos = new int [10];
static int ipos = 0;
public static int loop_forwarding_example(int newdata)
{

foos[ipos ++] = newdata;
ipos %= foos.Length;
int sum = 0;
for (int i=0;i<foos.Length-1;i++)

{
int dv = foos[i]^foos[i+1]; // Two adjacent locations are read
sum += dv; // Associative scalar reduction in sum

}
return sum;

}

Figure 6.44 A loop where data fetched in one iteration (foo[i]) can usefully be forwarded to a subsequent iteration

A value read from an array in one iteration can be loop forwarded from one iteration to another. This
can overcome structural hazards and optimises memory bus bandwidth. Given the code of
Figure 6.44, an HLS compiler should use only one read port on the array foo[], making one access per
clock cycle. It will deploy a holding register to forward the value read in the current iteration to the
next.

Data-dependent control flow and loop exit conditions also complicate auto-parallelisation.
Figure 6.45 gives a generic example. Typical loops have various special cases at their boundaries. It is
important to ensure that this seldom-executed boundary code does not degrade the performance of
themajority of iterations. Careful coding, perhaps using predicating and bounded loops, can help, but
the HLS compiler should ideally always automate the process. DRAM access mechanisms inevitably
round data fetched up to the next burst size multiple (Section 2.6.6). The predicated approach
advances the loop variable to its a priori bounded end value, but implements amechanism to discard
unwanted side effects beyond the true end, such as not storing the result. How early in a loop body

349

Modern SoCDesign

Similar primitives exist in other libraries and languages, such as Cilk for C++ or CUDA andOpenCL for
GPU. Data-sharing patterns between potentially parallel elements always need to have the correct
degree of isolation to achieve high performance. The programmermust always pay attention to the
values read andwritten by a loop body. If one body reads a value written by another, the order of
scheduling is likely tomake a difference. However, commutable effects, such as increment, summation
and bit set, can be detected by compilers and rearranged to remove obstacles to parallelism.

A loop can be at the top level or nested inside another. The way that outer loops influence inner loop
bounds and the way that successive iterations of a single loop influence each other typically follow
one of a number of named design patterns. If the loop bounds of one loop are set by the value of an
outer loop variable, the inner loop is said to be polyhedral (Section 6.9.1). The way that data and
control interact between one loop body and another affects which loop bodies can be run in what
order or in parallel with each other. A natural loop has a single entry and exit point. A bounded loop
has its limits determined before entry. If a loop variable evolves linearly, the variables and expressions
in the body that depend only linearly on the loop variable are termed induction variables and
induction expressions, respectively, and can be ignored for loop classification, since their values are
always independently available in each loop bodywithminimal overhead.

public static int associative_reduction_example(int starting)
{

int vr = 0;
for (int i=0;i<15;i++) // or also i+=4

{
int vx = (i+starting)*(i+3)*(i+5); // Mapped computation
vr ^= ((vx&128)>0 ? 1:0); // Associative reduction

}
return vr;

}

Figure 6.42 An iteration that performs associative reduction (in vr)

For a single loop, the well-knownmap-reduce paradigm describes a factorisation of the loop body
into a part that can be computed in isolated parallel silos followed by an associative reduction
operator that gives the same answer under any bracketing (the associative principle). Figure 6.42
illustrates a basic map-reduce paradigm. The variable i is the induction variable and vr is the scalar
accumulator. Common associative operators are addition, multiplication, maximum and bitwise OR.
The example uses XOR.

A loop-carried dependencymeans that parallelisation of consecutive loop bodies is not possible. In
Figure 6.43, the output from one iteration is an input to the next iteration. This breaks the
map-reduce paradigm, despite there still being a scalar reduction in the result. Often such a loop body
can be split into a part that is and a part that is not dependent on the previous iteration, with at least
the independent part being run in parallel. This occurs in the example. Here, xf1() is free of the loop
dependency, so the available parallel speedup is given by Amdahl’s rule based on the relative partition
of work between xf1() and xf2() (Section 4.2).

348

Chapter 6 | Architectural Design Exploration

double loop_carried_example(double seed, double arg0)
{

double vr = 0.0, vd = seed;
for (int i=0;i<15;i++)
{

double vd = xf1(i*arg0); // Parallelisable
vd = xf2(vd + vd) * 3.14; // Non-parallelisable
vr += vd;

}
return vr;

}

Figure 6.43 An iteration that has a loop-carried data dependency (through variable vd)

static int [] foos = new int [10];
static int ipos = 0;
public static int loop_forwarding_example(int newdata)
{

foos[ipos ++] = newdata;
ipos %= foos.Length;
int sum = 0;
for (int i=0;i<foos.Length-1;i++)

{
int dv = foos[i]^foos[i+1]; // Two adjacent locations are read
sum += dv; // Associative scalar reduction in sum

}
return sum;

}

Figure 6.44 A loop where data fetched in one iteration (foo[i]) can usefully be forwarded to a subsequent iteration

A value read from an array in one iteration can be loop forwarded from one iteration to another. This
can overcome structural hazards and optimises memory bus bandwidth. Given the code of
Figure 6.44, an HLS compiler should use only one read port on the array foo[], making one access per
clock cycle. It will deploy a holding register to forward the value read in the current iteration to the
next.

Data-dependent control flow and loop exit conditions also complicate auto-parallelisation.
Figure 6.45 gives a generic example. Typical loops have various special cases at their boundaries. It is
important to ensure that this seldom-executed boundary code does not degrade the performance of
themajority of iterations. Careful coding, perhaps using predicating and bounded loops, can help, but
the HLS compiler should ideally always automate the process. DRAM access mechanisms inevitably
round data fetched up to the next burst size multiple (Section 2.6.6). The predicated approach
advances the loop variable to its a priori bounded end value, but implements amechanism to discard
unwanted side effects beyond the true end, such as not storing the result. How early in a loop body

349

Modern SoCDesign

public static int data_dependent_controlflow_example(int seed)
{

int vr = 0;
int i;
for (i=0;i<20;i++)

{
vr += i*i*seed;
if (vr > 1111) break; // Early loop exit

}
return i;

}

Figure 6.45 A loop that has data-dependent control flow (the loop exit depends on variable vr)

the exit condition can be determined is an important consideration and compilers do this at the start
of the block schedule (as illustrated in Figure 6.39).

Memory Banking andWide Data
Whether computing on standard CPUs or FPGA, DRAMmemory bandwidth is often themain
performance bottleneck. The design space for DRAMbanks was introduced in Section 4.5. Since the
data transfer rate per bit for a read or write port is fixed, twoways to increasememory bandwidth are
to usemultiple banks orwidememories. Multiple banks (aka channels) can be accessed
simultaneously at different locations, whereasmemories with a wider word are accessed at just one
location at a time (per port). Both yieldmore data for each access. Both alsomay ormay not need lane
steering or a crossbar routingmatrix, depending on the application and allowable mappings of data to
processing units. The performance of GPUs can be increased by not using lane steering . In this case,
the data are partitionedwith close association to PEs, which avoids combinational delays in the
routingmatrix and improves the clock speed, but this is unsuitable for some algorithmic kernels (e.g.
FFT, Section 6.9.1).

There are some important binding decisions for memory:

Which user arrays should have their own RAMs? Which should share? Which should be put into
DRAM?

Should a user array be spread over RAMs or DRAM channels to increase the bandwidth?

How are data to be packed into words in the RAMs?

Should extra copies of a ROMbe freely deployed to increase the read bandwidth?

Should data bemirrored in RAMs, as this requires additional work whenwriting to keep the copies
in step (Section 4.5)?

350

Chapter 6 | Architectural Design Exploration

How should data be organised over DRAM rows? Should data even be stored in DRAMmore than
oncewith different row alignments?

It is informative to consider the best data layout for several standard algorithms. As well as
consideringmapping and the interleaving of a logical address space over various DRAM channels, two
paradigms pertain to layout within an address space. An array of structs is themost common layout in
HLLs, especially object-oriented languages. All fields of a class are adjacent in an on-heap record. The
alternative, a struct of arrays, requires fewer page activations if a loop examines only certain fields
within the data, which is common.

Example 1: Data Layout for the Burrows--Wheeler Transform

int ranks(int row, char cc)
 { return Ranks[row, cc];
 }

int Ranks[y, x]

x=1..alphasize
y=0..haystack.Length

e.g
128 x 1e9 = 128e9

Ranks 2-D Array

Bw
t.Length

alphasize (alphabet arity)

Ranks Index Operation - Full Index

int [,] Ranks = new int [Bwt.Length, alphasize];
int [] lranks = new int [alphasize];

for (int i=0; i<Bwt.Length; i++)
 { char cc = Bwt[i];
 if (cc != eos) lranks[cc] += 1;
 for (int xx=0; xx<alphasize; xx++)
 Ranks[i,xx] = lranks[xx];
 }

Precompute Ranks from Bwt[]

public void bwt_find_string(char [] Needle)
 { int start=0, end=Bwt.Length-1;
 rpair_init(ref start, ref end);
 for (int idx = Needle.Length-1; idx >= 0; idx --)
 { char ccc = Needle[idx];
 int nn = Tots_before [ccc];
 start = nn + ranks(start-1, ccc);
 end = nn + ranks(end-1, ccc);
 if (start == end) raise NotFound;
 }
 Console.WriteLine("Found {0} instances", end-start);
 }

Lookup a Needle in the Haystack

Figure 6.46 Lookup procedure when searching for a string using the BWT. A haystack has been transformed and stored in Bwt[]. An index Ranks[] is
computed for it. Looking for the string in Needle is then very fast

TheBurrows–Wheeler transform (BWT) of a string of lengthm characters is another string of the
same length and alphabet. In accordance with the definition of a transform, it preserves information
and has an inverse. The BWT has various useful properties. It can be used as a pre-step for lossless
compression since the BWT of a string usually compresses much better undermany simple schemes.
It also encodes all substrings of the original string in sorted order, so a needle of lengthm can be
searched in a haystack string of lengthmwith O(m logn) cost [38].

The code in Figure 6.46 follows [39]. It efficiently finds perfect stringmatches of the contents of the
Needle[] array in the BWT of a haystack, which is stored in Bwt[]. The code in the inset at the bottom
right has pre-computed an index. The Tots_before[] array is very small and easily fits in BRAM

351

Modern SoCDesign

public static int data_dependent_controlflow_example(int seed)
{

int vr = 0;
int i;
for (i=0;i<20;i++)

{
vr += i*i*seed;
if (vr > 1111) break; // Early loop exit

}
return i;

}

Figure 6.45 A loop that has data-dependent control flow (the loop exit depends on variable vr)

the exit condition can be determined is an important consideration and compilers do this at the start
of the block schedule (as illustrated in Figure 6.39).

Memory Banking andWide Data
Whether computing on standard CPUs or FPGA, DRAMmemory bandwidth is often themain
performance bottleneck. The design space for DRAMbanks was introduced in Section 4.5. Since the
data transfer rate per bit for a read or write port is fixed, twoways to increasememory bandwidth are
to usemultiple banks orwidememories. Multiple banks (aka channels) can be accessed
simultaneously at different locations, whereasmemories with a wider word are accessed at just one
location at a time (per port). Both yieldmore data for each access. Both alsomay ormay not need lane
steering or a crossbar routingmatrix, depending on the application and allowable mappings of data to
processing units. The performance of GPUs can be increased by not using lane steering . In this case,
the data are partitionedwith close association to PEs, which avoids combinational delays in the
routingmatrix and improves the clock speed, but this is unsuitable for some algorithmic kernels (e.g.
FFT, Section 6.9.1).

There are some important binding decisions for memory:

Which user arrays should have their own RAMs? Which should share? Which should be put into
DRAM?

Should a user array be spread over RAMs or DRAM channels to increase the bandwidth?

How are data to be packed into words in the RAMs?

Should extra copies of a ROMbe freely deployed to increase the read bandwidth?

Should data bemirrored in RAMs, as this requires additional work whenwriting to keep the copies
in step (Section 4.5)?

350

Chapter 6 | Architectural Design Exploration

How should data be organised over DRAM rows? Should data even be stored in DRAMmore than
oncewith different row alignments?

It is informative to consider the best data layout for several standard algorithms. As well as
consideringmapping and the interleaving of a logical address space over various DRAM channels, two
paradigms pertain to layout within an address space. An array of structs is themost common layout in
HLLs, especially object-oriented languages. All fields of a class are adjacent in an on-heap record. The
alternative, a struct of arrays, requires fewer page activations if a loop examines only certain fields
within the data, which is common.

Example 1: Data Layout for the Burrows--Wheeler Transform

int ranks(int row, char cc)
 { return Ranks[row, cc];
 }

int Ranks[y, x]

x=1..alphasize
y=0..haystack.Length

e.g
128 x 1e9 = 128e9

Ranks 2-D Array

Bw
t.Length

alphasize (alphabet arity)

Ranks Index Operation - Full Index

int [,] Ranks = new int [Bwt.Length, alphasize];
int [] lranks = new int [alphasize];

for (int i=0; i<Bwt.Length; i++)
 { char cc = Bwt[i];
 if (cc != eos) lranks[cc] += 1;
 for (int xx=0; xx<alphasize; xx++)
 Ranks[i,xx] = lranks[xx];
 }

Precompute Ranks from Bwt[]

public void bwt_find_string(char [] Needle)
 { int start=0, end=Bwt.Length-1;
 rpair_init(ref start, ref end);
 for (int idx = Needle.Length-1; idx >= 0; idx --)
 { char ccc = Needle[idx];
 int nn = Tots_before [ccc];
 start = nn + ranks(start-1, ccc);
 end = nn + ranks(end-1, ccc);
 if (start == end) raise NotFound;
 }
 Console.WriteLine("Found {0} instances", end-start);
 }

Lookup a Needle in the Haystack

Figure 6.46 Lookup procedure when searching for a string using the BWT. A haystack has been transformed and stored in Bwt[]. An index Ranks[] is
computed for it. Looking for the string in Needle is then very fast

TheBurrows–Wheeler transform (BWT) of a string of lengthm characters is another string of the
same length and alphabet. In accordance with the definition of a transform, it preserves information
and has an inverse. The BWT has various useful properties. It can be used as a pre-step for lossless
compression since the BWT of a string usually compresses much better undermany simple schemes.
It also encodes all substrings of the original string in sorted order, so a needle of lengthm can be
searched in a haystack string of lengthmwith O(m logn) cost [38].

The code in Figure 6.46 follows [39]. It efficiently finds perfect stringmatches of the contents of the
Needle[] array in the BWT of a haystack, which is stored in Bwt[]. The code in the inset at the bottom
right has pre-computed an index. The Tots_before[] array is very small and easily fits in BRAM

351

Modern SoCDesign

(Section 8.5.2) on an FPGA. The array Ranks is large. It is 2-D, indexed by character and contains
integers ranging up to the haystack size (requiringmore bits than a character from the alphabet).

However, for big data, such as the billion bases in a genome, the Ranks arraymay be too big for the
available DRAM. The solution is to decimate the Ranks array by some factor, such as 32, and then
store only every 32nd row inmemory. If the search string is not in a stored row, the contents of the
relevant row are interpolated on the fly. This requires that the original string is stored, but this may be
useful for many other related purposes anyway.

int ranks(int row, char cc) // decimated lookup
 { int r0 = row / rank_decimation_factor;
 int rem = row % rank_decimation_factor;
 int ans = RanksD[r0, cc];
 if (rem != 0)
 { r0 *= rank_decimation_factor;
 while (rem != 0)
 { rem --;
 r0 ++;
 char c1 = Bwt[r0];
 if (c1 != eos && c1 == cc) ans ++;
 }
 }
 return ans;
 }

Decimate Ranks by factor of 32

x=1..alphasize
y=0..haystack.Length/32

e.g
128 x 312150e3 = 4e9

But need to store Bwt[]
additionally.

B
w

t.L
e

n
g

th

alphasize (alphabet arity)

int RanksD[y, x]

Ranks Index Operation - Decimated Index

A Possible Actual Organisation In DRAM Row (1024 bytes).

RanksD[r0, <>] Bwt[r0 ... r0+31]

DRAM[r0]

Spare

Figure 6.47 Compacted Ranks array for BWT, redefinition of the ranks() routine for an interpolated lookup and a sensible layout in a DRAM row

The decimation is illustrated in Figure 6.47. Access patterns to the RanksD[] array do not have spatial
or temporal locality, especially at the start of the search when start and end are well separated. If
only one bank channel of DRAM is available, then random access delays dominate. (The only way to
get better performance is task-level parallelism. Multiple needles could be searched for concurrently,
which at least overcomes the round-trip latency to the DRAM, but not the low performance intrinsic
to not having spatial locality.) However, one good idea is to store the BWT fragment in the same
DRAM row as the ranking information. Then only one row activation is needed per needle character.

For what factor of decimation is the interpolator not on the critical path? This will dependmainly on
howmuch the HLS compiler chooses (or is commanded via pragmas) to unwind it. In general, when
aligning data in DRAM rows, sometimes a pair of items that are known to be needed by both can be
split into different rows. In this case, storing everything twicemay help, with one copy offset by half a
row length from the other, since then it is possible to address the copymanually due to the good
alignment.

352

Chapter 6 | Architectural Design Exploration

An interesting research question is whether HLS compilers should attempt to replicate the
information as suggested.

Example 2: Data Dependencies in the Smith--WatermanAlgorithm
The Smith–Waterman algorithm [40] matches two very similar strings to find the alignment with the
minimum edit distance. The strings are typically a whole DNA genome and a variant or a fragment
thought to have come from it. A quadratic algorithm based on dynamic programming is used. Entries
in a 2-D array have a score that depends on the three immediate neighbours with lower index, as
shown in Figure 6.48. Zeros are inserted for negative subscripts at the edges. The entry with
maximum score is then found.

String 1 G1[x]

String 2 G
2[y]

S(x-1,y-1)

S(x-1, y)

S(x, y-1)

S(x,y)

Smith-Waterman Stencil:
 S(x,y) = F(G2[x], G1[y],
 S(x-1,y), S(x-1,y-1), S(x, y-1))

Figure 6.48 Data dependencies (slightly simplified) in the Smith–Waterman alignment-finding algorithm

A naive implementation is a pair of nested for loops that iterate over each dimension. However,
acceleration is achieved by computing as many scores in parallel as possible. There is no simple
nesting of two for loops that canwork. Instead, items on the anti-diagonal frontier must be computed
in parallel. This is a simple example of polyhedral address mapping.

Polyhedral AddressMapping
A set of nested loops where the bounds of inner loops depend on linear combinations of surrounding
induction variables defines a polyhedral space or polytope. This space is scanned by a vector
consisting of the induction variables. Under a polyhedral mapping, the loop nesting order may be
changed and affine transformations are applied tomany of the loop variables with the aim of
exposing parallelism or repacking the array subscripts to use less overall memory. Affine
transformations include linear scaling, translations, axis interchanges and other rotations.

Overall, a useful transformation is one that compacts sparse access patterns into a packed form or
partitions array read subscripts into disjoint sets so that they can be served in parallel by different
memories. If data dependencies are sufficiently determined, thread-future reads can be started at the
earliest point after the supporting writes have beenmade tomeet all the RaWdata dependencies.

Although the input codemay have beenwritten without much thought for automatic parallelisation,
there is often a structure that can be usefully mined and exploited. The pattern of array subscriptions

353

Modern SoCDesign

(Section 8.5.2) on an FPGA. The array Ranks is large. It is 2-D, indexed by character and contains
integers ranging up to the haystack size (requiringmore bits than a character from the alphabet).

However, for big data, such as the billion bases in a genome, the Ranks arraymay be too big for the
available DRAM. The solution is to decimate the Ranks array by some factor, such as 32, and then
store only every 32nd row inmemory. If the search string is not in a stored row, the contents of the
relevant row are interpolated on the fly. This requires that the original string is stored, but this may be
useful for many other related purposes anyway.

int ranks(int row, char cc) // decimated lookup
 { int r0 = row / rank_decimation_factor;
 int rem = row % rank_decimation_factor;
 int ans = RanksD[r0, cc];
 if (rem != 0)
 { r0 *= rank_decimation_factor;
 while (rem != 0)
 { rem --;
 r0 ++;
 char c1 = Bwt[r0];
 if (c1 != eos && c1 == cc) ans ++;
 }
 }
 return ans;
 }

Decimate Ranks by factor of 32

x=1..alphasize
y=0..haystack.Length/32

e.g
128 x 312150e3 = 4e9

But need to store Bwt[]
additionally.

B
w

t.L
e

n
g

th

alphasize (alphabet arity)

int RanksD[y, x]

Ranks Index Operation - Decimated Index

A Possible Actual Organisation In DRAM Row (1024 bytes).

RanksD[r0, <>] Bwt[r0 ... r0+31]

DRAM[r0]

Spare

Figure 6.47 Compacted Ranks array for BWT, redefinition of the ranks() routine for an interpolated lookup and a sensible layout in a DRAM row

The decimation is illustrated in Figure 6.47. Access patterns to the RanksD[] array do not have spatial
or temporal locality, especially at the start of the search when start and end are well separated. If
only one bank channel of DRAM is available, then random access delays dominate. (The only way to
get better performance is task-level parallelism. Multiple needles could be searched for concurrently,
which at least overcomes the round-trip latency to the DRAM, but not the low performance intrinsic
to not having spatial locality.) However, one good idea is to store the BWT fragment in the same
DRAM row as the ranking information. Then only one row activation is needed per needle character.

For what factor of decimation is the interpolator not on the critical path? This will dependmainly on
howmuch the HLS compiler chooses (or is commanded via pragmas) to unwind it. In general, when
aligning data in DRAM rows, sometimes a pair of items that are known to be needed by both can be
split into different rows. In this case, storing everything twicemay help, with one copy offset by half a
row length from the other, since then it is possible to address the copymanually due to the good
alignment.

352

Chapter 6 | Architectural Design Exploration

An interesting research question is whether HLS compilers should attempt to replicate the
information as suggested.

Example 2: Data Dependencies in the Smith--WatermanAlgorithm
The Smith–Waterman algorithm [40] matches two very similar strings to find the alignment with the
minimum edit distance. The strings are typically a whole DNA genome and a variant or a fragment
thought to have come from it. A quadratic algorithm based on dynamic programming is used. Entries
in a 2-D array have a score that depends on the three immediate neighbours with lower index, as
shown in Figure 6.48. Zeros are inserted for negative subscripts at the edges. The entry with
maximum score is then found.

String 1 G1[x]

String 2 G
2[y]

S(x-1,y-1)

S(x-1, y)

S(x, y-1)

S(x,y)

Smith-Waterman Stencil:
 S(x,y) = F(G2[x], G1[y],
 S(x-1,y), S(x-1,y-1), S(x, y-1))

Figure 6.48 Data dependencies (slightly simplified) in the Smith–Waterman alignment-finding algorithm

A naive implementation is a pair of nested for loops that iterate over each dimension. However,
acceleration is achieved by computing as many scores in parallel as possible. There is no simple
nesting of two for loops that canwork. Instead, items on the anti-diagonal frontier must be computed
in parallel. This is a simple example of polyhedral address mapping.

Polyhedral AddressMapping
A set of nested loops where the bounds of inner loops depend on linear combinations of surrounding
induction variables defines a polyhedral space or polytope. This space is scanned by a vector
consisting of the induction variables. Under a polyhedral mapping, the loop nesting order may be
changed and affine transformations are applied tomany of the loop variables with the aim of
exposing parallelism or repacking the array subscripts to use less overall memory. Affine
transformations include linear scaling, translations, axis interchanges and other rotations.

Overall, a useful transformation is one that compacts sparse access patterns into a packed form or
partitions array read subscripts into disjoint sets so that they can be served in parallel by different
memories. If data dependencies are sufficiently determined, thread-future reads can be started at the
earliest point after the supporting writes have beenmade tomeet all the RaWdata dependencies.

Although the input codemay have beenwritten without much thought for automatic parallelisation,
there is often a structure that can be usefully mined and exploited. The pattern of array subscriptions

353

Modern SoCDesign

is extracted by the compiler andmatched against standard decidable theory schemas. If a decidable
subscript pattern is found, then the compiler can be completely sure which data dependencies and
anti-dependencies exist and, more importantly, definitely do not exist. A data dependency is present
in the normal case when an array location has to bewritten before it is read. An anti-dependency
occurs when an array location cannot be updatedwith a fresh value because one ormore reads of the
old valuemust first take place. If neither such dependency exists, the work can be performed in
parallel without an interlock.

Standard decidable theories include integer linear inequalities (linear programming), Presburger
arithmetic (one operand of amultiplicationmust be constant) and the octagon domain (themaximum
difference between two subscripts is constrained by a natural number). Although these schemas vary
in expressivity and their provers can sometimes take hours to run, they can all rapidly handle the
common cases, such as determining that A[x] is always a different location from A[x+1], which is the
basic requirement for doing work in parallel. Determining at compile timewhether two array
subscript expressions are equal is called the name alias hazard (Section 6.3.3).

for (i = 1; i < N; i++) for (j = 1; j < N; j++)
 g[j][i] = f1(u[j][i], u[j-1][i], u[j+1][i], u[j][i-1], u[j][i+1]);

for (i = 1; i < N; i++) for (j = 1; j < N; j++)
 u[j][i] = f2(u[j][i], u[j][i+1], u[j][i-1],u[j+1][i],u[j-1][i],
 g[j][i+1], g[j][i-1], g[j+1][i], g[j-1][i]);

for (i1= 1; i1 < 2 * N -2; i1++) for (j1 = max(i1-N+1, 0); j1 < min(N-1, i1); j1++)
 g[i1-j1][j1] = f1(u[i1-j1][j1], u[i1-j1][j1-1], u[i1-j1-1][j1], u[i1-j1+1][j1], u[i1-j1][j1+1]);

for (i1 = 1; i1 < 2 * N -2; i1++) for (j1 = max(i1-N+1, 0); j1 < min(N-1, i1); j1++)
 u[i1-j1][j1] = f2(u[i1-j1][j1], u[i1-j1][j1-1], u[i1-j1-1][j1], u[i1-j1+1][j1], u[i1-j1][j1+1],
 g[i1-j1][j1-1], g[i1-j1-1][j1], g[i1-j1+1][j1], g[i1-j1][j1+1]);

j

i

j1

... ...Ti
m

e

Nest 1 Nest 2

Nest 1

Nest 2

Nest 2 stencilNest 1 stencil

Transformed nest 1

Transformed nest 2

Parallel access lines Loop skewing Parallelisation and pipelining

...
...i1 (Time)

Figure 6.49 Affine transformation examples, adapted from [41]. Nest 1 runs after nest 2, but by skewing the access pattern of each loop, there is increased
parallelism available within each nest and pipelining becomes possible. Nest 2 commences just after nest 1 has produced its first diagonal output

Polyhedral mappings must sometimes be designed to facilitate streaming input and output data so
that an efficient pipeline can be established. For big data, at least one of the loop bounds is commonly
an iteration over a file streamed from secondary storage. For example, in Figure 6.49, the kernel code
from a standard image-processing de-noiser is presented in abstract form. This is taken from [41]. The
data generated in g[i,j] from the first loop nest is the input to the following process, which is nest 2.
Both the inner and outer loop bounds are transformed. As with the Smith–Waterman example,

354

Chapter 6 | Architectural Design Exploration

skewing the inner loop in each nest increases the locally available parallelism. Each item on the
anti-diagonals, as highlighted at bottom left, can run simultaneously. Moreover, by suitably matching
the loop structures of the two nests (in this case they are identical), nest 2 can commence operation as
soon as the first data have been generated by nest 1. Hence, a cut-through pipeline is created.

As well as enabling successive pipeline stages tomesh efficiently, loop structures are commonly
modified for two other reasons. The first is tominimise the storage footprint by converting to (largely)
in-place form. Here, thememory locations that contained the input data are used for the output data.
The second relates, as always, to optimising DRAM row activation patterns, such as using a nest of six
for loops for arraymultiplication instead of the textbook three.

Example 3: The Perfect Shuffle Network, an FFT Example

for (int pass=1;
 pass<log_2(data.Length); pass++)
 { int t = 0;
 while (t<data.Length)
 { int s = 0, phase = 0;
 while (s < w)
 { int a = s + t;
 int b = a + w;
 butterfly_radix2(fwd, phase,
 ref data[a], ref data[b]);
 phase += phase_delta;
 s = s + 1;
 }
 t = t + w + w;
 }
 w = w + w;
 phase_delta = phase_delta >> 1;
 }

phase

[a]

[b]

[a]

[b]

Butterfly.

Single-threaded code.

Figure 6.50 Shuffle data flow for an FFT (left), elemental butterfly (top right) and code (bottom right)

Not all algorithms are amenable to polyhedral mapping, despite their datamovements having a
regular structure, such as a fast Fourier transform (FFT). Figure 6.50 shows a 16-point FFT, but
typically applications have hundreds or thousands of points. For anN-point FFT, log2(N) passes are
required, eachwithN/2 elemental computations known as butterflies. The butterfly operator has two
operands (which are, generally, both complex numbers) and delivers two results. Internally it contains
a rotation and two arithmetic operators (top right), but the details are unimportant for the current
purposes. The successive passes can be done in place on one array. The operands are passed by
reference to the butterfly (bottom right).

This pattern of datamovement is known as a shuffle. It is also used inmany switching and sorting
algorithms. From the data dependencies in the figure, it is clear that a parallel speedup (Section 4.2) of
N/2=8 is potentially available, since each of the eight butterflies in a pass is independent of the
others. However, the downside of shuffle computations for acceleration is that no packing of the data

355

Modern SoCDesign

is extracted by the compiler andmatched against standard decidable theory schemas. If a decidable
subscript pattern is found, then the compiler can be completely sure which data dependencies and
anti-dependencies exist and, more importantly, definitely do not exist. A data dependency is present
in the normal case when an array location has to bewritten before it is read. An anti-dependency
occurs when an array location cannot be updatedwith a fresh value because one ormore reads of the
old valuemust first take place. If neither such dependency exists, the work can be performed in
parallel without an interlock.

Standard decidable theories include integer linear inequalities (linear programming), Presburger
arithmetic (one operand of amultiplicationmust be constant) and the octagon domain (themaximum
difference between two subscripts is constrained by a natural number). Although these schemas vary
in expressivity and their provers can sometimes take hours to run, they can all rapidly handle the
common cases, such as determining that A[x] is always a different location from A[x+1], which is the
basic requirement for doing work in parallel. Determining at compile timewhether two array
subscript expressions are equal is called the name alias hazard (Section 6.3.3).

for (i = 1; i < N; i++) for (j = 1; j < N; j++)
 g[j][i] = f1(u[j][i], u[j-1][i], u[j+1][i], u[j][i-1], u[j][i+1]);

for (i = 1; i < N; i++) for (j = 1; j < N; j++)
 u[j][i] = f2(u[j][i], u[j][i+1], u[j][i-1],u[j+1][i],u[j-1][i],
 g[j][i+1], g[j][i-1], g[j+1][i], g[j-1][i]);

for (i1= 1; i1 < 2 * N -2; i1++) for (j1 = max(i1-N+1, 0); j1 < min(N-1, i1); j1++)
 g[i1-j1][j1] = f1(u[i1-j1][j1], u[i1-j1][j1-1], u[i1-j1-1][j1], u[i1-j1+1][j1], u[i1-j1][j1+1]);

for (i1 = 1; i1 < 2 * N -2; i1++) for (j1 = max(i1-N+1, 0); j1 < min(N-1, i1); j1++)
 u[i1-j1][j1] = f2(u[i1-j1][j1], u[i1-j1][j1-1], u[i1-j1-1][j1], u[i1-j1+1][j1], u[i1-j1][j1+1],
 g[i1-j1][j1-1], g[i1-j1-1][j1], g[i1-j1+1][j1], g[i1-j1][j1+1]);

j

i

j1

... ...Ti
m

e

Nest 1 Nest 2

Nest 1

Nest 2

Nest 2 stencilNest 1 stencil

Transformed nest 1

Transformed nest 2

Parallel access lines Loop skewing Parallelisation and pipelining

...
...i1 (Time)

Figure 6.49 Affine transformation examples, adapted from [41]. Nest 1 runs after nest 2, but by skewing the access pattern of each loop, there is increased
parallelism available within each nest and pipelining becomes possible. Nest 2 commences just after nest 1 has produced its first diagonal output

Polyhedral mappings must sometimes be designed to facilitate streaming input and output data so
that an efficient pipeline can be established. For big data, at least one of the loop bounds is commonly
an iteration over a file streamed from secondary storage. For example, in Figure 6.49, the kernel code
from a standard image-processing de-noiser is presented in abstract form. This is taken from [41]. The
data generated in g[i,j] from the first loop nest is the input to the following process, which is nest 2.
Both the inner and outer loop bounds are transformed. As with the Smith–Waterman example,

354

Chapter 6 | Architectural Design Exploration

skewing the inner loop in each nest increases the locally available parallelism. Each item on the
anti-diagonals, as highlighted at bottom left, can run simultaneously. Moreover, by suitably matching
the loop structures of the two nests (in this case they are identical), nest 2 can commence operation as
soon as the first data have been generated by nest 1. Hence, a cut-through pipeline is created.

As well as enabling successive pipeline stages tomesh efficiently, loop structures are commonly
modified for two other reasons. The first is tominimise the storage footprint by converting to (largely)
in-place form. Here, thememory locations that contained the input data are used for the output data.
The second relates, as always, to optimising DRAM row activation patterns, such as using a nest of six
for loops for arraymultiplication instead of the textbook three.

Example 3: The Perfect Shuffle Network, an FFT Example

for (int pass=1;
 pass<log_2(data.Length); pass++)
 { int t = 0;
 while (t<data.Length)
 { int s = 0, phase = 0;
 while (s < w)
 { int a = s + t;
 int b = a + w;
 butterfly_radix2(fwd, phase,
 ref data[a], ref data[b]);
 phase += phase_delta;
 s = s + 1;
 }
 t = t + w + w;
 }
 w = w + w;
 phase_delta = phase_delta >> 1;
 }

phase

[a]

[b]

[a]

[b]

Butterfly.

Single-threaded code.

Figure 6.50 Shuffle data flow for an FFT (left), elemental butterfly (top right) and code (bottom right)

Not all algorithms are amenable to polyhedral mapping, despite their datamovements having a
regular structure, such as a fast Fourier transform (FFT). Figure 6.50 shows a 16-point FFT, but
typically applications have hundreds or thousands of points. For anN-point FFT, log2(N) passes are
required, eachwithN/2 elemental computations known as butterflies. The butterfly operator has two
operands (which are, generally, both complex numbers) and delivers two results. Internally it contains
a rotation and two arithmetic operators (top right), but the details are unimportant for the current
purposes. The successive passes can be done in place on one array. The operands are passed by
reference to the butterfly (bottom right).

This pattern of datamovement is known as a shuffle. It is also used inmany switching and sorting
algorithms. From the data dependencies in the figure, it is clear that a parallel speedup (Section 4.2) of
N/2=8 is potentially available, since each of the eight butterflies in a pass is independent of the
others. However, the downside of shuffle computations for acceleration is that no packing of the data

355

Modern SoCDesign

(structural partitioning of the data array) into spatially separatememoriesworkswell for all of the
passes. What is good at the start is poor at the end. Generating a good parallel implementation for
large FFTs remains a challenge for HLS tools and is perhaps best tackled using a hybrid system of local
and shared scratchpads that behave like a CMP cachedmemory. The compile-time knowledge of the
eviction pattern eliminates the need for an associative lookup at runtime.

6.10 Summary
SoCs contain a number of processors, memories and I/O devices. In the simplest architecture, all the
CPUswould be identical. There would be a single flat address space to span all thememory and every
I/O device would bemapped into that same address space. A generic interrupt controller could
enable any I/O device to interrupt any core with either a static mapping or a load-based distribution
algorithm (Section 2.5). This approach is simple, flexible and homogeneous but is typically not good
enough in terms of power, performance and area (PPA).

The performance of vonNeumann cores is easily improvedwith custom hardware, which has no
fetch-execute overhead. Moreover, the fetch-execute overhead of today’s advanced out-of-order
cores is up to two orders of magnitude less energy efficient [5, 6]. For example, for 32-bit addition, up
to 100× the energy of the addition is consumed in deciding whether to do it, selecting the operands
and storing the result in a dynamically renamed register.

More transistors in VLSI are now produced in the form of dark silicon, which is switched off most of
the time (Section 8.2). Thus, implementing standard kernels as custom hardware cores is attractive
due to the power saved. In the conservation cores approach [42], the inner loops of mature
computations, such as several popular Android applications, were to be implemented in silicon on
futuremobile phones.

Accelerators can be tightly coupled with a conventional core or can be a separate bus-connected IP
block. The choice depends onwhether the processor core has something better to dowhile the
accelerator is running andwhether there is sufficient data bandwidth for them to share a single bus
connection tomainmemory. Whether the data are likely to be in or needed in a given L1 data cache
greatly influences the trade-off.

Design exploration takes place onmultiple levels. These span the system architecture and design
partition, the interconnect and themicroarchitecture of subsystems. Automatic interconnect
generators, HLS andmodern design languages are starting to automate the second and third of these.
For the first – the top-level architecture – experimental automated co-synthesis tools have been
developed, but these have not yet seen industrial traction.

Whether usingmanual design partition and co-design, or automatic co-synthesis, design starts with a
top-level specification. This may be directly executable [43], but preferably it dictates as little as
possible about the final system structure, so that there aremaximal opportunities for exploration and
optimisation. The task dependency graphmust be partitioned over storage and execution resources

356

Chapter 6 | Architectural Design Exploration

tomeet PPA objectives. Design partition then determines storage locations, the degree of replication,
whether hardware or software is used at each point and how the different subsystems communicate.

Automated co-synthesis procedures were brieflymentioned in Section 1.4.3. They can potentially be
used at both the partitioning stage and in the design of individual subsystems. The partitioning stage
uses high-level heuristics [44], but these are in their infancy. A good solution would render system
architects redundant, so from an employment perspective, we are perhaps glad that automated
co-synthesis is immature. However, these tool flows can help with the automatic design of
hardware/software interfaces in terms of register layout, device driver header files and code stubs.
The automatic implementation of a subsystem starts with its specification and typically uses a
heuristic-driven sequence of stepwise refinements, each of which preserves the specified behaviour.
Refinement is complete when the subsystem exists as a fully imperative implementation [45]. A
typical refinement step is that if A is specified to be the same as B and one of them is already known,
then an assignment is made from the known to the unknown. There aremany alternative algorithms
for generating logic from formal specifications, such as those based on SAT solvers [46] and interface
automata [47].

From this chapter, the reader should understand the principles that motivate the partition of a design
over pieces of silicon and over PEs within those chips. These include technology constraints as well as
engineering and commercial considerations, such as design portability and economies of scale.
Memory bandwidth dimensioning is nearly always a key consideration. The asymptotic analysis
examples of Section 6.6 emphasised that simple equations that capture general trends can steer the
architect to a good design. The in-depth study of three options for RTL design entry shouldmotivate
RTL engineers to exploit higher-level design expression languages, both for their clarity of design
intent and their flexible time/space trade-off exploration.

There is no single best design flow for design exploration. Hopefully, this chapter has discussed a
sufficient diversity of techniques. The exercises give further food for thought.

6.10.1 Exercises
1. Consider the design of a high-quality digital movie camera. Sketch a feasible top-level block

diagram, remembering to include a viewfinder and audio subsystem, but youmay ignore
autofocusing. Howmany circuit boards, SoCs and processors should it have? Tomitigate against
the camera shaking, what are the relative costs of implementing a vision stabiliser using voice-coil
prism hardware comparedwith an electronic/software-only implementation.

2. An algorithm performs a task that is essentially the same as completing a jigsaw puzzle. Input
values and output results are to be held in DRAM. Describe input and output data formats that
might be suitable for a jigsawwith a plain image but nomating edge that can falsely mate with the
wrong edge. The input data set is approximately 1Gbyte. By considering howmanyDRAM row
activations and data transfers are needed, estimate how fast this problem can be solved by a

357

Modern SoCDesign

(structural partitioning of the data array) into spatially separatememoriesworkswell for all of the
passes. What is good at the start is poor at the end. Generating a good parallel implementation for
large FFTs remains a challenge for HLS tools and is perhaps best tackled using a hybrid system of local
and shared scratchpads that behave like a CMP cachedmemory. The compile-time knowledge of the
eviction pattern eliminates the need for an associative lookup at runtime.

6.10 Summary
SoCs contain a number of processors, memories and I/O devices. In the simplest architecture, all the
CPUswould be identical. There would be a single flat address space to span all thememory and every
I/O device would bemapped into that same address space. A generic interrupt controller could
enable any I/O device to interrupt any core with either a static mapping or a load-based distribution
algorithm (Section 2.5). This approach is simple, flexible and homogeneous but is typically not good
enough in terms of power, performance and area (PPA).

The performance of vonNeumann cores is easily improvedwith custom hardware, which has no
fetch-execute overhead. Moreover, the fetch-execute overhead of today’s advanced out-of-order
cores is up to two orders of magnitude less energy efficient [5, 6]. For example, for 32-bit addition, up
to 100× the energy of the addition is consumed in deciding whether to do it, selecting the operands
and storing the result in a dynamically renamed register.

More transistors in VLSI are now produced in the form of dark silicon, which is switched off most of
the time (Section 8.2). Thus, implementing standard kernels as custom hardware cores is attractive
due to the power saved. In the conservation cores approach [42], the inner loops of mature
computations, such as several popular Android applications, were to be implemented in silicon on
futuremobile phones.

Accelerators can be tightly coupled with a conventional core or can be a separate bus-connected IP
block. The choice depends onwhether the processor core has something better to dowhile the
accelerator is running andwhether there is sufficient data bandwidth for them to share a single bus
connection tomainmemory. Whether the data are likely to be in or needed in a given L1 data cache
greatly influences the trade-off.

Design exploration takes place onmultiple levels. These span the system architecture and design
partition, the interconnect and themicroarchitecture of subsystems. Automatic interconnect
generators, HLS andmodern design languages are starting to automate the second and third of these.
For the first – the top-level architecture – experimental automated co-synthesis tools have been
developed, but these have not yet seen industrial traction.

Whether usingmanual design partition and co-design, or automatic co-synthesis, design starts with a
top-level specification. This may be directly executable [43], but preferably it dictates as little as
possible about the final system structure, so that there aremaximal opportunities for exploration and
optimisation. The task dependency graphmust be partitioned over storage and execution resources

356

Chapter 6 | Architectural Design Exploration

tomeet PPA objectives. Design partition then determines storage locations, the degree of replication,
whether hardware or software is used at each point and how the different subsystems communicate.

Automated co-synthesis procedures were brieflymentioned in Section 1.4.3. They can potentially be
used at both the partitioning stage and in the design of individual subsystems. The partitioning stage
uses high-level heuristics [44], but these are in their infancy. A good solution would render system
architects redundant, so from an employment perspective, we are perhaps glad that automated
co-synthesis is immature. However, these tool flows can help with the automatic design of
hardware/software interfaces in terms of register layout, device driver header files and code stubs.
The automatic implementation of a subsystem starts with its specification and typically uses a
heuristic-driven sequence of stepwise refinements, each of which preserves the specified behaviour.
Refinement is complete when the subsystem exists as a fully imperative implementation [45]. A
typical refinement step is that if A is specified to be the same as B and one of them is already known,
then an assignment is made from the known to the unknown. There aremany alternative algorithms
for generating logic from formal specifications, such as those based on SAT solvers [46] and interface
automata [47].

From this chapter, the reader should understand the principles that motivate the partition of a design
over pieces of silicon and over PEs within those chips. These include technology constraints as well as
engineering and commercial considerations, such as design portability and economies of scale.
Memory bandwidth dimensioning is nearly always a key consideration. The asymptotic analysis
examples of Section 6.6 emphasised that simple equations that capture general trends can steer the
architect to a good design. The in-depth study of three options for RTL design entry shouldmotivate
RTL engineers to exploit higher-level design expression languages, both for their clarity of design
intent and their flexible time/space trade-off exploration.

There is no single best design flow for design exploration. Hopefully, this chapter has discussed a
sufficient diversity of techniques. The exercises give further food for thought.

6.10.1 Exercises
1. Consider the design of a high-quality digital movie camera. Sketch a feasible top-level block

diagram, remembering to include a viewfinder and audio subsystem, but youmay ignore
autofocusing. Howmany circuit boards, SoCs and processors should it have? Tomitigate against
the camera shaking, what are the relative costs of implementing a vision stabiliser using voice-coil
prism hardware comparedwith an electronic/software-only implementation.

2. An algorithm performs a task that is essentially the same as completing a jigsaw puzzle. Input
values and output results are to be held in DRAM. Describe input and output data formats that
might be suitable for a jigsawwith a plain image but nomating edge that can falsely mate with the
wrong edge. The input data set is approximately 1Gbyte. By considering howmanyDRAM row
activations and data transfers are needed, estimate how fast this problem can be solved by a

357

Modern SoCDesign

uniprocessor, a multi-core PRAMmodel (Section 2.3) and a hardware accelerator. State any
assumptions.

3. Two processes that run largely independently occasionally have to access a stateless function
that is best implemented using about 1mm2 of silicon. Two instances could be put down or one
instance could be shared. What considerations affect whether sharing or replication is best? If
shared, what sharingmechanismsmight be appropriate andwhat would they look like at the
hardware level?

4. Consider the following kernel, which tallies the set bit count in each word. Such bit-level
operations are inefficient using general-purpose CPU instruction sets. If hardware support is to
be added, what might be the best way of making the functionality available to low-level software?

for (int xx=0; xx<1024; xx++)
{

unsigned int d = Data[xx];
int count = 0;
while (d > 0) { if (d&1) count ++; d >>= 1; }
if (!xx || count > maxcount) { maxcount = count; where = xx; }

}

5. Data loss can be avoided during a transfer between adjacent synchronous components by using a
bidirectional handshake or performance guarantees. Explain these principles. What would be
needed for such components to be imported into an IP-XACT-based system integrator tool if the
tool allows easy interconnection but can also ensure that connections are always lossless?

6. What is a fully pipelined component? What is the principal problemwith an RTL logic synthesiser
automatically instantiating pipelined ALUs? A fully pipelinedmultiplier has a latency of three
clock cycles. What is its throughput in terms of multiplications per clock cycle?

7. A bus carries data values, one per clock cycle, forming a sequence X(t) as illustrated in
Figure 6.51. Also shown is a circuit that computes a value Y(t-3). It uses two adders that have a
pipeline latency of 2 and an initiation interval of 1. The circuit was designed to compute the
running sum of bus values. Check that it does this or else design an equivalent circuit that works
but uses the same adder components.

A possible running sum circuit
using II=1, L=2 diadic adders.

X(t)

Y(t-3)

Figure 6.51 A circuit intended to compute the running sum of streaming data values

358

Chapter 6 | Architectural Design Exploration

8. Does strength reduction help save area, energy or both? Give an expression that can benefit from
three different strength reduction rules.

9. Is a NoC that uses store-and-forward elements with cut-through routing amulti-access NoC?
Doesmulti-access lead tomore or fewer chances of deadlocking?

10. Does either of the following two loops have dependencies or anti-dependencies between
iterations? How can they be parallelised? See reference [48].

loop1: for (i=0; i<N; i++) A[i] := (A[i] + A[N-1-i])/2
loop2: for (i=0; i<N; i++) A[2*i] = A[i] + 0.5f;

References
[1] D. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, Mass, 1968. ISBN 0-201-03801-3.
[2] Holger Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications. Morgan Kaufmann

Publishers Inc, San Francisco, CA, USA, 2004.
[3] Tensorflow: An end-to-end open sourcemachine learning platform. https://www.tensorflow.org, 2020.
[4] AndréM. DeHon. Location, location, location: The role of spatial locality in asymptotic energyminimization.

In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’13, pages
137–146, NewYork, NY, USA, 2013. Association for ComputingMachinery. ISBN 9781450318877. doi:
10.1145/2435264.2435291. URL https://doi.org/10.1145/2435264.2435291.

[5] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones. Comparing energy efficiency of CPU,
GPU and FPGA implementations for vision kernels. In 2019 IEEE International Conference on Embedded
Software and Systems (ICESS), pages 1–8, 2019. doi: 10.1109/ICESS.2019.8782524.

[6] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. A performance and energy comparison of
FPGAs, GPUs, andmulticores for sliding-window applications. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’12, pages 47–56, New York, NY, USA, 2012.
Association for ComputingMachinery. ISBN 9781450311557. doi: 10.1145/2145694.2145704. URL
https://doi.org/10.1145/2145694.2145704.

[7] INMOS Limited. Transputer ReferenceManual. Prentice Hall International (UK) Ltd, GBR, 1988. ISBN
013929001X.

[8] Giovanni Patane, Giuseppe Campobello, andMarco Russo. Parallel CRC realization. IEEE Transactions on
Computers, 52:1312–1319, 2003. doi: 10.1109/TC.2003.1234528.

[9] Federal Information Processing Standards Publication. Announcing the advanced encryption standard
(AES). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf, 2001.

[10] A.M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,
J. Kim, D. Lo, T. Massengill, K. Ovtcharov,M. Papamichael, L.Woods, S. Lanka, D. Chiou, and D. Burger. A
cloud-scale acceleration architecture. In 49th Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO), pages 1–13, 2016. doi: 10.1109/MICRO.2016.7783710.

[11] Louise H. Crockett and Ross A. Elliot. The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the
Xilinx Zynq-7000 All Programmable SoC. Strathclyde AcademicMedia, Glasgow, United Kingdom, 2014. ISBN
978-0-9929787-0-9.

359

Modern SoCDesign

uniprocessor, a multi-core PRAMmodel (Section 2.3) and a hardware accelerator. State any
assumptions.

3. Two processes that run largely independently occasionally have to access a stateless function
that is best implemented using about 1mm2 of silicon. Two instances could be put down or one
instance could be shared. What considerations affect whether sharing or replication is best? If
shared, what sharingmechanismsmight be appropriate andwhat would they look like at the
hardware level?

4. Consider the following kernel, which tallies the set bit count in each word. Such bit-level
operations are inefficient using general-purpose CPU instruction sets. If hardware support is to
be added, what might be the best way of making the functionality available to low-level software?

for (int xx=0; xx<1024; xx++)
{

unsigned int d = Data[xx];
int count = 0;
while (d > 0) { if (d&1) count ++; d >>= 1; }
if (!xx || count > maxcount) { maxcount = count; where = xx; }

}

5. Data loss can be avoided during a transfer between adjacent synchronous components by using a
bidirectional handshake or performance guarantees. Explain these principles. What would be
needed for such components to be imported into an IP-XACT-based system integrator tool if the
tool allows easy interconnection but can also ensure that connections are always lossless?

6. What is a fully pipelined component? What is the principal problemwith an RTL logic synthesiser
automatically instantiating pipelined ALUs? A fully pipelinedmultiplier has a latency of three
clock cycles. What is its throughput in terms of multiplications per clock cycle?

7. A bus carries data values, one per clock cycle, forming a sequence X(t) as illustrated in
Figure 6.51. Also shown is a circuit that computes a value Y(t-3). It uses two adders that have a
pipeline latency of 2 and an initiation interval of 1. The circuit was designed to compute the
running sum of bus values. Check that it does this or else design an equivalent circuit that works
but uses the same adder components.

A possible running sum circuit
using II=1, L=2 diadic adders.

X(t)

Y(t-3)

Figure 6.51 A circuit intended to compute the running sum of streaming data values

358

Chapter 6 | Architectural Design Exploration

8. Does strength reduction help save area, energy or both? Give an expression that can benefit from
three different strength reduction rules.

9. Is a NoC that uses store-and-forward elements with cut-through routing amulti-access NoC?
Doesmulti-access lead tomore or fewer chances of deadlocking?

10. Does either of the following two loops have dependencies or anti-dependencies between
iterations? How can they be parallelised? See reference [48].

loop1: for (i=0; i<N; i++) A[i] := (A[i] + A[N-1-i])/2
loop2: for (i=0; i<N; i++) A[2*i] = A[i] + 0.5f;

References
[1] D. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, Mass, 1968. ISBN 0-201-03801-3.
[2] Holger Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications. Morgan Kaufmann

Publishers Inc, San Francisco, CA, USA, 2004.
[3] Tensorflow: An end-to-end open sourcemachine learning platform. https://www.tensorflow.org, 2020.
[4] AndréM. DeHon. Location, location, location: The role of spatial locality in asymptotic energyminimization.

In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’13, pages
137–146, NewYork, NY, USA, 2013. Association for ComputingMachinery. ISBN 9781450318877. doi:
10.1145/2435264.2435291. URL https://doi.org/10.1145/2435264.2435291.

[5] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones. Comparing energy efficiency of CPU,
GPU and FPGA implementations for vision kernels. In 2019 IEEE International Conference on Embedded
Software and Systems (ICESS), pages 1–8, 2019. doi: 10.1109/ICESS.2019.8782524.

[6] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. A performance and energy comparison of
FPGAs, GPUs, andmulticores for sliding-window applications. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’12, pages 47–56, New York, NY, USA, 2012.
Association for ComputingMachinery. ISBN 9781450311557. doi: 10.1145/2145694.2145704. URL
https://doi.org/10.1145/2145694.2145704.

[7] INMOS Limited. Transputer ReferenceManual. Prentice Hall International (UK) Ltd, GBR, 1988. ISBN
013929001X.

[8] Giovanni Patane, Giuseppe Campobello, andMarco Russo. Parallel CRC realization. IEEE Transactions on
Computers, 52:1312–1319, 2003. doi: 10.1109/TC.2003.1234528.

[9] Federal Information Processing Standards Publication. Announcing the advanced encryption standard
(AES). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf, 2001.

[10] A.M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,
J. Kim, D. Lo, T. Massengill, K. Ovtcharov,M. Papamichael, L.Woods, S. Lanka, D. Chiou, and D. Burger. A
cloud-scale acceleration architecture. In 49th Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO), pages 1–13, 2016. doi: 10.1109/MICRO.2016.7783710.

[11] Louise H. Crockett and Ross A. Elliot. The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the
Xilinx Zynq-7000 All Programmable SoC. Strathclyde AcademicMedia, Glasgow, United Kingdom, 2014. ISBN
978-0-9929787-0-9.

359

Modern SoCDesign

[12] Andrew Putnam, AdrianM. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, JohnDemme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray,Michael Haselman, Scott Hauck,
StephenHeil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-scale
datacenter services. In Proceeding of the 41st Annual International Symposium on Computer Architecture, ISCA
’14, pages 13–24. IEEE Press, 2014. ISBN 9781479943944.

[13] Arm Ltd. big.LITTLE Technology: The Future ofMobile: Making very high performance available in amobile
envelopewithout sacrificing energy efficiency. https://img.hexus.net/v2/press_releases/arm/big.LITTLE.
Whitepaper.pdf, 2013.

[14] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time. Technical report, Google, 2010.
[15] Dongkook Park, Aniruddha Vaidya, Akhilesh Kumar, andMani Azimi. MoDe-X:Microarchitecture of a

layout-awaremodular decoupled crossbar for on-chip interconnects. IEEE Transactions on Computers, 63:
622–636, 2014. doi: 10.1109/TC.2012.203.

[16] A. Agrawal, S. K. Lee, J. Silberman,M. Ziegler, M. Kang, S. Venkataramani, N. Cao, B. Fleischer, M. Guillorn,
M. Cohen, S. Mueller, J. Oh,M. Lutz, J. Jung, S. Koswatta, C. Zhou, V. Zalani, J. Bonanno, R. Casatuta, C. Y.
Chen, J. Choi, H. Haynie, A. Herbert, R. Jain, M. Kar, K. H. Kim, Y. Li, Z. Ren, S. Rider, M. Schaal, K. Schelm,
M. Scheuermann, X. Sun, H. Tran, N.Wang,W.Wang, X. Zhang, V. Shah, B. Curran, V. Srinivasan, P. F. Lu, S.
Shukla, L. Chang, and K. Gopalakrishnan. 9.1 a 7nm 4-core AI chip with 25.6TFLOPS hybrid FP8 training,
102.4TOPS INT4 inference andworkload-aware throttling. In 2021 IEEE International Solid-State Circuits
Conference (ISSCC), volume 64, pages 144–146, 2021. doi: 10.1109/ISSCC42613.2021.9365791.

[17] The Software FreedomConservancy. QEMU the fast processor emulator. https://www.qemu.org/, 2020.
[18] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A.Wood. The Gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL https://doi.org/
10.1145/2024716.2024718.

[19] David J. Greaves andM. Yasin. TLMPOWER3: Power estimationmethodology for SystemC TLM2.0. In
Proceedings of the 2012 Forum on Specification and Design Languages, pages 106–111, 2012.

[20] Changsoo Je andHyung-Min Park. Optimized hierarchical blockmatching for fast and accurate image
registration. Signal Processing: Image Communication, 28:779–791, 2013. doi: 10.1016/j.image.2013.04.002.

[21] AndrewKinane, Daniel Larkin, and Noel O’Connor. Energy-efficient acceleration ofMPEG-4 compression
tools. EURASIP Journal on Embedded Systems, 2007:1–18, 2007. doi: 10.1155/2007/28735.

[22] Shih-HaoWang,Wen-Hsiao Peng, YuwenHe, Guan-Yi Lin, Cheng-Yi Lin, Shih-Chien Chang, Chung-Neng
Wang, and Tihao Chiang. A software-hardware co-implementation ofMPEG-4 advanced video coding
(AVC) decoder with block level pipelining. VLSI Signal Processing, 41:93–110, 2005. doi:
10.1007/s11265-005-6253-3.

[23] Luz Garcia, Victor Reyes, Dacil Barreto, GustavoMarrero, Tomas Bautista, and Antonio Nuñez. Analysis of
MPEG-4 advanced simple profile (ASP) architectures using a system-level designmethodology. In XX
Conference on Design of Circuits and Integrated Systems, Proceedings of DCIS, 2005.

[24] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collector with low overhead and consistent
utilization. ACM SIGPLANNotices, 38(1):285–298, 2003.

[25] Florent Dinechin, Jérémie Detrey, Octavian Cret̨, and Radu Tudoran.When FPGAs are better at
floating-point thanmicroprocessors, January 2008. LIP research report RR2007-40.

[26] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows. IEEE,
2014. Std 1685-2014 (Revision of Std 1685-2009).

360

Chapter 6 | Architectural Design Exploration

[27] Intel Corporation. Platform designer (formerly called QSys). https://www.intel.com/content/www/us/en/
programmable/support/support-resources/design-software/qsys.html, 2020.

[28] Xilinx Inc. SDSoC development environment. https://www.xilinx.com/products/design-tools/
software-zone/sdsoc.html.

[29] Arm Ltd. Arm Socrates user guide version 1.5 (9th release). https://developer.arm.com/documentation/
101399/0105/Introduction/About-Socrates, 2020.

[30] Arm Ltd. Corelink CMN-600 coherent mesh network. https://developer.arm.com/ip-products/system-
ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600,
2020.

[31] Arm Ltd. ArmCoreLink NI-700Network-on-Chip Interconnect, Technical ReferenceManual.
https://developer.arm.com/documentation/101566/0100/Introduction/About-the-CoreLink-NI-700-
Network-on-Chip-Interconnect, 2020.

[32] Per Bjesse, Koen Claessen,Mary Sheeran, and Satnam Singh. Lava: Hardware design in Haskell. In
Proceedings of the 3rd ACM SIGPLAN International Conference on Functional Programming, ICFP ’98, pages
174–184, NewYork, NY, USA, 1998. Association for ComputingMachinery. ISBN 1581130244. doi:
10.1145/289423.289440. URL https://doi.org/10.1145/289423.289440.

[33] BahramN. Uchevler, Kjetil Svarstad, Jan Kuper, and Christiaan Baaij. System-level modelling of dynamic
reconfigurable designs using functional programming abstractions. In International Symposium on Quality
Electronic Design, pages 379–385. IEEE, 2013. doi: 10.1109/ISQED.2013.6523639. URL https://doi.org/
10.1109/ISQED.2013.6523639.

[34] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, AndrewWaterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a Scala embedded language. In
Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages 1216–1225, NewYork, NY,
USA, 2012. Association for ComputingMachinery. ISBN 9781450311991. doi:
10.1145/2228360.2228584. URL https://doi.org/10.1145/2228360.2228584.

[35] M. Arvind. Bluespec: A language for hardware design, simulation, synthesis and verification. In Proceedings
of the First ACM and IEEE International Conference on Formal Methods andModels for Co-Design, MEMOCODE
’03, page 249, USA, 2003. IEEE Computer Society. ISBN 0769519237.

[36] P. Sittel, M. Kumm, J. Oppermann, K.Möller, P. Zipf, and A. Koch. ILP-basedmodulo scheduling and binding
for register minimization. In 28th International Conference on Field Programmable Logic and Applications (FPL),
pages 265–2656. IEEE, 2018. doi: 10.1109/FPL.2018.00053.

[37] David J. Greaves and S. Singh. Kiwi: Designing application specific circuits with concurrent C# programs. In
Proceedings of the 8th ACM/IEEE International Conference on Formal Methods andModels for Codesign,
MEMOCODE ’10, pages 21–30, USA, 2010. IEEE Computer Society. ISBN 9781424478866. doi:
10.1109/MEMCOD.2010.5558627. URL https://doi.org/10.1109/MEMCOD.2010.5558627.

[38] T. Bell, M. Powell, A. Mukherjee, and D. Adjeroh. Searching BWT compressed text with the Boyer-Moore
algorithm and binary search. In Proceedings of the Data Compression Conference, pages 112–121, 2002. doi:
10.1109/DCC.2002.999949.

[39] Paul T. Draghicescu, Greg Edvenson, and Corey B. Olson. Inexact search acceleration on FPGAs using the
Burrows–Wheeler transform. Technical report, Pico Computing Inc, 2012.

[40] T. Smith andM.Waterman. Identification of commonmolecular subsequences. Journal of Molecular Biology,
147 1:195–197, 1981.

361

Modern SoCDesign

[12] Andrew Putnam, AdrianM. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, JohnDemme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray,Michael Haselman, Scott Hauck,
StephenHeil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-scale
datacenter services. In Proceeding of the 41st Annual International Symposium on Computer Architecture, ISCA
’14, pages 13–24. IEEE Press, 2014. ISBN 9781479943944.

[13] Arm Ltd. big.LITTLE Technology: The Future ofMobile: Making very high performance available in amobile
envelopewithout sacrificing energy efficiency. https://img.hexus.net/v2/press_releases/arm/big.LITTLE.
Whitepaper.pdf, 2013.

[14] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time. Technical report, Google, 2010.
[15] Dongkook Park, Aniruddha Vaidya, Akhilesh Kumar, andMani Azimi. MoDe-X:Microarchitecture of a

layout-awaremodular decoupled crossbar for on-chip interconnects. IEEE Transactions on Computers, 63:
622–636, 2014. doi: 10.1109/TC.2012.203.

[16] A. Agrawal, S. K. Lee, J. Silberman,M. Ziegler, M. Kang, S. Venkataramani, N. Cao, B. Fleischer, M. Guillorn,
M. Cohen, S. Mueller, J. Oh,M. Lutz, J. Jung, S. Koswatta, C. Zhou, V. Zalani, J. Bonanno, R. Casatuta, C. Y.
Chen, J. Choi, H. Haynie, A. Herbert, R. Jain, M. Kar, K. H. Kim, Y. Li, Z. Ren, S. Rider, M. Schaal, K. Schelm,
M. Scheuermann, X. Sun, H. Tran, N.Wang,W.Wang, X. Zhang, V. Shah, B. Curran, V. Srinivasan, P. F. Lu, S.
Shukla, L. Chang, and K. Gopalakrishnan. 9.1 a 7nm 4-core AI chip with 25.6TFLOPS hybrid FP8 training,
102.4TOPS INT4 inference andworkload-aware throttling. In 2021 IEEE International Solid-State Circuits
Conference (ISSCC), volume 64, pages 144–146, 2021. doi: 10.1109/ISSCC42613.2021.9365791.

[17] The Software FreedomConservancy. QEMU the fast processor emulator. https://www.qemu.org/, 2020.
[18] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A.Wood. The Gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL https://doi.org/
10.1145/2024716.2024718.

[19] David J. Greaves andM. Yasin. TLMPOWER3: Power estimationmethodology for SystemC TLM2.0. In
Proceedings of the 2012 Forum on Specification and Design Languages, pages 106–111, 2012.

[20] Changsoo Je andHyung-Min Park. Optimized hierarchical blockmatching for fast and accurate image
registration. Signal Processing: Image Communication, 28:779–791, 2013. doi: 10.1016/j.image.2013.04.002.

[21] AndrewKinane, Daniel Larkin, and Noel O’Connor. Energy-efficient acceleration ofMPEG-4 compression
tools. EURASIP Journal on Embedded Systems, 2007:1–18, 2007. doi: 10.1155/2007/28735.

[22] Shih-HaoWang,Wen-Hsiao Peng, YuwenHe, Guan-Yi Lin, Cheng-Yi Lin, Shih-Chien Chang, Chung-Neng
Wang, and Tihao Chiang. A software-hardware co-implementation ofMPEG-4 advanced video coding
(AVC) decoder with block level pipelining. VLSI Signal Processing, 41:93–110, 2005. doi:
10.1007/s11265-005-6253-3.

[23] Luz Garcia, Victor Reyes, Dacil Barreto, GustavoMarrero, Tomas Bautista, and Antonio Nuñez. Analysis of
MPEG-4 advanced simple profile (ASP) architectures using a system-level designmethodology. In XX
Conference on Design of Circuits and Integrated Systems, Proceedings of DCIS, 2005.

[24] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collector with low overhead and consistent
utilization. ACM SIGPLANNotices, 38(1):285–298, 2003.

[25] Florent Dinechin, Jérémie Detrey, Octavian Cret̨, and Radu Tudoran.When FPGAs are better at
floating-point thanmicroprocessors, January 2008. LIP research report RR2007-40.

[26] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows. IEEE,
2014. Std 1685-2014 (Revision of Std 1685-2009).

360

Chapter 6 | Architectural Design Exploration

[27] Intel Corporation. Platform designer (formerly called QSys). https://www.intel.com/content/www/us/en/
programmable/support/support-resources/design-software/qsys.html, 2020.

[28] Xilinx Inc. SDSoC development environment. https://www.xilinx.com/products/design-tools/
software-zone/sdsoc.html.

[29] Arm Ltd. Arm Socrates user guide version 1.5 (9th release). https://developer.arm.com/documentation/
101399/0105/Introduction/About-Socrates, 2020.

[30] Arm Ltd. Corelink CMN-600 coherent mesh network. https://developer.arm.com/ip-products/system-
ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600,
2020.

[31] Arm Ltd. ArmCoreLink NI-700Network-on-Chip Interconnect, Technical ReferenceManual.
https://developer.arm.com/documentation/101566/0100/Introduction/About-the-CoreLink-NI-700-
Network-on-Chip-Interconnect, 2020.

[32] Per Bjesse, Koen Claessen,Mary Sheeran, and Satnam Singh. Lava: Hardware design in Haskell. In
Proceedings of the 3rd ACM SIGPLAN International Conference on Functional Programming, ICFP ’98, pages
174–184, NewYork, NY, USA, 1998. Association for ComputingMachinery. ISBN 1581130244. doi:
10.1145/289423.289440. URL https://doi.org/10.1145/289423.289440.

[33] BahramN. Uchevler, Kjetil Svarstad, Jan Kuper, and Christiaan Baaij. System-level modelling of dynamic
reconfigurable designs using functional programming abstractions. In International Symposium on Quality
Electronic Design, pages 379–385. IEEE, 2013. doi: 10.1109/ISQED.2013.6523639. URL https://doi.org/
10.1109/ISQED.2013.6523639.

[34] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, AndrewWaterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a Scala embedded language. In
Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages 1216–1225, NewYork, NY,
USA, 2012. Association for ComputingMachinery. ISBN 9781450311991. doi:
10.1145/2228360.2228584. URL https://doi.org/10.1145/2228360.2228584.

[35] M. Arvind. Bluespec: A language for hardware design, simulation, synthesis and verification. In Proceedings
of the First ACM and IEEE International Conference on Formal Methods andModels for Co-Design, MEMOCODE
’03, page 249, USA, 2003. IEEE Computer Society. ISBN 0769519237.

[36] P. Sittel, M. Kumm, J. Oppermann, K.Möller, P. Zipf, and A. Koch. ILP-basedmodulo scheduling and binding
for register minimization. In 28th International Conference on Field Programmable Logic and Applications (FPL),
pages 265–2656. IEEE, 2018. doi: 10.1109/FPL.2018.00053.

[37] David J. Greaves and S. Singh. Kiwi: Designing application specific circuits with concurrent C# programs. In
Proceedings of the 8th ACM/IEEE International Conference on Formal Methods andModels for Codesign,
MEMOCODE ’10, pages 21–30, USA, 2010. IEEE Computer Society. ISBN 9781424478866. doi:
10.1109/MEMCOD.2010.5558627. URL https://doi.org/10.1109/MEMCOD.2010.5558627.

[38] T. Bell, M. Powell, A. Mukherjee, and D. Adjeroh. Searching BWT compressed text with the Boyer-Moore
algorithm and binary search. In Proceedings of the Data Compression Conference, pages 112–121, 2002. doi:
10.1109/DCC.2002.999949.

[39] Paul T. Draghicescu, Greg Edvenson, and Corey B. Olson. Inexact search acceleration on FPGAs using the
Burrows–Wheeler transform. Technical report, Pico Computing Inc, 2012.

[40] T. Smith andM.Waterman. Identification of commonmolecular subsequences. Journal of Molecular Biology,
147 1:195–197, 1981.

361

Modern SoCDesign

[41] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. Improving high level synthesis
optimization opportunity through polyhedral transformations. In Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA ’13, pages 9–18, New York, NY, USA,
2013. Association for ComputingMachinery. ISBN 9781450318877. doi: 10.1145/2435264.2435271.
URL https://doi.org/10.1145/2435264.2435271.

[42] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose
Lugo-Martinez, Steven Swanson, andMichael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. In Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XV, pages 205–218, NewYork, NY, USA, 2010.
Association for ComputingMachinery. ISBN 9781605588391. doi: 10.1145/1736020.1736044. URL
https://doi.org/10.1145/1736020.1736044.

[43] Norbert E. Fuchs. Specifications are (preferably) executable. Softw. Eng. J., 7(5):323–334, September 1992.
ISSN 0268-6961. doi: 10.1049/sej.1992.0033. URL https://doi.org/10.1049/sej.1992.0033.

[44] ImeneMhadhbi, Slim BenOthman, and Slim Ben Saoud. An efficient technique for hardware/software
partitioning process in codesign. Scientific Programming, 2016:1–11, 2016. doi: 10.1155/2016/6382765.

[45] Ralph-Johan Back and Joakim vonWright. Correctness and refinement of statements. In Refinement
Calculus, pages 269–298. Springer, 1998. ISBN 978-0-387-98417-9. doi: 10.1007/978-1-4612- 1674-2_17.

[46] David J. Greaves. Automated hardware synthesis from formal specification using SAT solvers. In Proceedings
of the 15th IEEE InternationalWorkshop on Rapid System Prototyping, pages 15–20, 2004. doi: 10.1109/
IWRSP.2004.1311089.

[47] David J. Greaves andM. J. Nam. Synthesis of glue logic, transactors, multiplexors and serialisors from
protocol specifications. IET Conference Proceedings, pages 171–177(6), January 2010. URL https://digital-
library.theiet.org/content/conferences/10.1049/ic.2010.0148.

[48] J. Liu, J.Wickerson, and G. A. Constantinides. Loop splitting for efficient pipelining in high-level synthesis. In
24th Annual International Symposium on Field-Programmable Custom ComputingMachines, pages 72–79. IEEE,
2016. doi: 10.1109/FCCM.2016.27.

362

Chapter 7
FormalMethods and
Assertion-based Design

Modern SoCDesign

[41] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. Improving high level synthesis
optimization opportunity through polyhedral transformations. In Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA ’13, pages 9–18, New York, NY, USA,
2013. Association for ComputingMachinery. ISBN 9781450318877. doi: 10.1145/2435264.2435271.
URL https://doi.org/10.1145/2435264.2435271.

[42] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose
Lugo-Martinez, Steven Swanson, andMichael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. In Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XV, pages 205–218, NewYork, NY, USA, 2010.
Association for ComputingMachinery. ISBN 9781605588391. doi: 10.1145/1736020.1736044. URL
https://doi.org/10.1145/1736020.1736044.

[43] Norbert E. Fuchs. Specifications are (preferably) executable. Softw. Eng. J., 7(5):323–334, September 1992.
ISSN 0268-6961. doi: 10.1049/sej.1992.0033. URL https://doi.org/10.1049/sej.1992.0033.

[44] ImeneMhadhbi, Slim BenOthman, and Slim Ben Saoud. An efficient technique for hardware/software
partitioning process in codesign. Scientific Programming, 2016:1–11, 2016. doi: 10.1155/2016/6382765.

[45] Ralph-Johan Back and Joakim vonWright. Correctness and refinement of statements. In Refinement
Calculus, pages 269–298. Springer, 1998. ISBN 978-0-387-98417-9. doi: 10.1007/978-1-4612- 1674-2_17.

[46] David J. Greaves. Automated hardware synthesis from formal specification using SAT solvers. In Proceedings
of the 15th IEEE InternationalWorkshop on Rapid System Prototyping, pages 15–20, 2004. doi: 10.1109/
IWRSP.2004.1311089.

[47] David J. Greaves andM. J. Nam. Synthesis of glue logic, transactors, multiplexors and serialisors from
protocol specifications. IET Conference Proceedings, pages 171–177(6), January 2010. URL https://digital-
library.theiet.org/content/conferences/10.1049/ic.2010.0148.

[48] J. Liu, J.Wickerson, and G. A. Constantinides. Loop splitting for efficient pipelining in high-level synthesis. In
24th Annual International Symposium on Field-Programmable Custom ComputingMachines, pages 72–79. IEEE,
2016. doi: 10.1109/FCCM.2016.27.

362

Chapter 7
FormalMethods and
Assertion-based Design

Modern SoCDesign

SmallCheck says: ‘If a program does not fail in any simple case, it hardly ever fails in any case.’ [1].

Testbench
components
and stimulus

Formal
assertions over

testbench and DUT
required behaviour

Device
under
test

(DUT)

Simulator

Behaviour
waveforms
and logs

Proof
tool

Counter-
example

Correctness
report

Guidance

Yes/No
checker

Assertion
failures Undetermined

Figure 7.1 Comparing simulation (left) with a formal proof of correctness (right)

A formal proof of correctness for a system or component requires a formal specification of what it is
supposed to do or not do. Figure 7.1 illustrates the principal difference between simulation and
formal correctness for a device under test (DUT). A simulation requires models of the surrounding
components or stimulus. These determine what is fed into the DUT during the simulation. The
simulator writes logs containing the console output, waveforms and other data. A checker can
examine the logs and yield a pass or fail based on the observable output. An assertion is a statement
that is either true or false. An assertion is normally expected to hold universally, but it can have a
guard condition that qualifies where or when it is required to hold. An assertion checkermay be built
into a simulator for dynamic validation (Section 7.3.1). Amajor shortcoming of simulation is that any
run can feasibly simulate only a small amount of the possible input behaviour and hence, the possible
behaviour of the DUT. For instance, if a DUT has 200 flip-flops, it is not possible for a simulation to
enter every one of the 2200 possible states in the lifetime of the universe. Hence, simulations are far
from perfect and hardly ever catch rare errors:

Anerrorwhichoccursonce inmanymillionsof clock cycleswill never randomlybeencoun-
tered in simulationbut is likely tobehitwithina fewsecondsofpoweringup thereal silicon.
– David J. Greaves.

However, a component rarely needs to operate correctly over all possible inputs. When a component
is integrated into a system, and hence, composedwith other components, the possible behaviour of
each component is limited, since certain inputs will not be generated under certain circumstances. A
component design specification typically has numerous associated don’t-care input conditions for
which any behaviour is allowable (Section 8.3.8). For a formal proof of correctness, the simulator and
the concrete stimulus are replacedwith a proof tool and environmental constraints, whichmodel the
behaviour of the other system components and are typically given in the form of assumptions, which
together specify the full range of possible input stimulus patterns.

364

Chapter 7 | FormalMethods and Assertion-based Design

Parts of the test bench used for a simulation can often be reused for a formal proof. A proof tool does
not require a clear distinction between the DUT and its test bench provided both are expressed in a
language that the tool can understand, because it can treat the combination of the test bench and the
true DUT as a composite DUT. This technique increases code reuse and is sometimes preferred by
engineers since it is often easier andmore useful to implement behaviour directly in a thin test bench
(known as a shim) than to specify that behaviour as environmental constraints.

Unlike a simulator, a formal tool attempts to prove that an assertion holds over all possible test bench
and stimulus patterns. Such input sequencesmay be infinite, but inductive techniques can often cope
with these. As well as assertions, which can be checked during a simulation, a larger class of
properties involving future behaviours, like the absence of a deadlock, can also be proved.

Using formal techniques has becomemainstream in hardware design. The synthesisable subsets of
Verilog and VHDL are described in [2] and [3], respectively. They have the same set of core semantics,
as presented in Section 8.3. These languages and core ideas were extended to the property
specification language (PSL) [4] and SystemVerilog Assertions (SVA) [5], which also share a common
core set of concepts. They both define formal semantics for temporal logic expressions that are
widely used in various ways, for example, to define the allowable transactions on standard busses.

In many industries, a formally verified result may be required by the end customer. As explained later,
the requirement is typically in the form of test coveragemetricswith separate quotas being
applicable for dynamic simulations and formal proofs (Section 7.1.1). Another form of semi-formal
quality assurance is based on dynamic coverage checks (which log that the flow of control has passed
a point or that a property was held).

7.1 Formal Languages and Tools
As defined in Section 6.8, the twomain styles of programming languages are imperative and
declarative. Many programming languages are imperative. In an imperative language, a sequence of
commands successively changes the values of variables, so that the order of commandsmatters. For
instance, the value read from a variable depends onwhether it has already beenwritten to. In
contrast, for a declarative language, the order of the statements does not matter. For instance, the
clauses of a legal contract can be listed in any order without affecting what is andwhat is not allowed
under that contract. Declarative languages are typically used to express properties that need to be
proven. Everydaymathematics can be thought of as a declarative language. Axioms (such as 1+1=2)
and theorems (such as ∀x ∃y such that y> x) can be listed in any order, although to prove a theorem,
some axioms and earlier theorems are generally needed.

For digital systems, assertions are naturally phrased in terms of digital conditions. For mixed-signal
simulations (Section 8.3.7) that include continuous quantities such as voltage and pressure, Boolean
predicates over analogue variables are used. A predicate is any function that returns true or false. For
certain proofs, thesemay be augmented using the rules of linearity or metric spaces, such as

365

Modern SoCDesign

SmallCheck says: ‘If a program does not fail in any simple case, it hardly ever fails in any case.’ [1].

Testbench
components
and stimulus

Formal
assertions over

testbench and DUT
required behaviour

Device
under
test

(DUT)

Simulator

Behaviour
waveforms
and logs

Proof
tool

Counter-
example

Correctness
report

Guidance

Yes/No
checker

Assertion
failures Undetermined

Figure 7.1 Comparing simulation (left) with a formal proof of correctness (right)

A formal proof of correctness for a system or component requires a formal specification of what it is
supposed to do or not do. Figure 7.1 illustrates the principal difference between simulation and
formal correctness for a device under test (DUT). A simulation requires models of the surrounding
components or stimulus. These determine what is fed into the DUT during the simulation. The
simulator writes logs containing the console output, waveforms and other data. A checker can
examine the logs and yield a pass or fail based on the observable output. An assertion is a statement
that is either true or false. An assertion is normally expected to hold universally, but it can have a
guard condition that qualifies where or when it is required to hold. An assertion checkermay be built
into a simulator for dynamic validation (Section 7.3.1). Amajor shortcoming of simulation is that any
run can feasibly simulate only a small amount of the possible input behaviour and hence, the possible
behaviour of the DUT. For instance, if a DUT has 200 flip-flops, it is not possible for a simulation to
enter every one of the 2200 possible states in the lifetime of the universe. Hence, simulations are far
from perfect and hardly ever catch rare errors:

Anerrorwhichoccursonce inmanymillionsof clock cycleswill never randomlybeencoun-
tered in simulationbut is likely tobehitwithina fewsecondsofpoweringup thereal silicon.
– David J. Greaves.

However, a component rarely needs to operate correctly over all possible inputs. When a component
is integrated into a system, and hence, composedwith other components, the possible behaviour of
each component is limited, since certain inputs will not be generated under certain circumstances. A
component design specification typically has numerous associated don’t-care input conditions for
which any behaviour is allowable (Section 8.3.8). For a formal proof of correctness, the simulator and
the concrete stimulus are replacedwith a proof tool and environmental constraints, whichmodel the
behaviour of the other system components and are typically given in the form of assumptions, which
together specify the full range of possible input stimulus patterns.

364

Chapter 7 | FormalMethods and Assertion-based Design

Parts of the test bench used for a simulation can often be reused for a formal proof. A proof tool does
not require a clear distinction between the DUT and its test bench provided both are expressed in a
language that the tool can understand, because it can treat the combination of the test bench and the
true DUT as a composite DUT. This technique increases code reuse and is sometimes preferred by
engineers since it is often easier andmore useful to implement behaviour directly in a thin test bench
(known as a shim) than to specify that behaviour as environmental constraints.

Unlike a simulator, a formal tool attempts to prove that an assertion holds over all possible test bench
and stimulus patterns. Such input sequencesmay be infinite, but inductive techniques can often cope
with these. As well as assertions, which can be checked during a simulation, a larger class of
properties involving future behaviours, like the absence of a deadlock, can also be proved.

Using formal techniques has becomemainstream in hardware design. The synthesisable subsets of
Verilog and VHDL are described in [2] and [3], respectively. They have the same set of core semantics,
as presented in Section 8.3. These languages and core ideas were extended to the property
specification language (PSL) [4] and SystemVerilog Assertions (SVA) [5], which also share a common
core set of concepts. They both define formal semantics for temporal logic expressions that are
widely used in various ways, for example, to define the allowable transactions on standard busses.

In many industries, a formally verified result may be required by the end customer. As explained later,
the requirement is typically in the form of test coveragemetricswith separate quotas being
applicable for dynamic simulations and formal proofs (Section 7.1.1). Another form of semi-formal
quality assurance is based on dynamic coverage checks (which log that the flow of control has passed
a point or that a property was held).

7.1 Formal Languages and Tools
As defined in Section 6.8, the twomain styles of programming languages are imperative and
declarative. Many programming languages are imperative. In an imperative language, a sequence of
commands successively changes the values of variables, so that the order of commandsmatters. For
instance, the value read from a variable depends onwhether it has already beenwritten to. In
contrast, for a declarative language, the order of the statements does not matter. For instance, the
clauses of a legal contract can be listed in any order without affecting what is andwhat is not allowed
under that contract. Declarative languages are typically used to express properties that need to be
proven. Everydaymathematics can be thought of as a declarative language. Axioms (such as 1+1=2)
and theorems (such as ∀x ∃y such that y> x) can be listed in any order, although to prove a theorem,
some axioms and earlier theorems are generally needed.

For digital systems, assertions are naturally phrased in terms of digital conditions. For mixed-signal
simulations (Section 8.3.7) that include continuous quantities such as voltage and pressure, Boolean
predicates over analogue variables are used. A predicate is any function that returns true or false. For
certain proofs, thesemay be augmented using the rules of linearity or metric spaces, such as

365

Modern SoCDesign

x> y ∧ y> z =⇒ x> z. (In formal languages, it is common to use∧ and∨ instead of && and || to denote
logical AND andOR.We call these connectives conjunction and disjunction, respectively.)

All subsystems in a SoC evolve over time, as the values of registers andmemory locations change and
interfaces carry ordered sequences of values and handshake transitions. Hence, a temporal algebra is
nearly always required to relate values at one time to those that immediately follow or will occur
some time later. Formal languages for hardware description, indeed, have a large vocabulary of
temporal operators. These include various ‘before’ and ‘until’ operators as well as the the suffix
implications we present for PSL in Section 7.4.

Formal proof engines are either automatic or manual. An automatic prover requires no input from
the engineer in proving correctness or generating a counterexample, thoughmany of them do benefit
from various command-line hints and heuristic weights. Themost important type of automatic proof
tool is amodel checker, which starts from the reset state and considers all possible next states arising
from all possible input values. Hence, it essentially performs a breadth-first search of the state space.
Some tools are, indeed, directly implemented in this way using an enormous bit map stored in
gigabytes of mainmemory to check whether a state has already been visited. Other tools implement
boundedmodel checking, which considers only a limited number of steps from the reset state (e.g. 20
to 100).

Themanual alternative is a theorem prover, although these generally contain a significant amount of
automation to assist with repetitive steps and to suggest or explore possible next steps in the proof. A
theorem prover has a database of axioms, logic rules and already derived theorems. The primary
operation is to apply an inference rule to existing results to generate a new theoremwith the
intention of eventually generating the theorem the user set out to prove. A theorem prover ensures
that whatever sequence of operations is selected, it is impossible to create an incorrect theorem.
However, it is certainly possible to generate vast numbers of irrelevant or useless theorems. Hence,
manual assistance is nearly always required to guide the system to the desired result. However, as
said, the semi-automatic application of rules is commonly supported (where the automation is called a
tactic). Previous proofs can be saved as tactics for replay in the current proof.

In practice, proving theorems requires considerable effort and only a small percentage of formal work
is conducted this way. Theorem-proving teams are often quite small, even in a very large
semiconductor house. Hence, this approach is practically applicable only for a fewwell-defined
problems. Amainstream example is the floating-point data path in an FPU (Section 6.4). Such circuits
are less amenable to automatic model checking due to themany XOR gates (whichmeans that there is
no good sort order in BDD-based checking, for instance). However, once correctness is demonstrated,
it is exhaustive – an actual proof!

A binary decision diagram (BDD) is a compact representation of the truth table used insidemany
formal tools. Comparing functions for equivalence is instant using BDD representations. Many other
useful operations are also quick, such as the logic functions for conjunction (AND), disjunction (OR)
and negation (NOT) applied between or on a BDD. Existential checks, such as whether a function is

366

Chapter 7 | FormalMethods and Assertion-based Design

satisfiable under certain conditions, have the same cost as a conjunction. Their main disadvantage is
that their compactness depends on their sort order, which is an ancillary total ordering of all the
variables in an expression. It is relatively easy to find a good sort order for a function, but this may not
be a good sort order for another function. Conjunctions and disjunctions require the operands to be in
the same sort order. Hence, BDD packages often spend themajority of their timemaking
heuristic-based searches for a good sort order or rearranging a BDD from one order to another.

7.1.1 Verification Coverage
Digital computers are, theoretically speaking, finite-statemachines (FSMs). Across even a large set of
simulations, only a subset of the states will be entered. Thus, only a subset of the possible set of
state-to-state transitions will be executed. The number of states entered can be expressed as a
percentage of the total number of states to give a test coveragemetric for a simulation trace or test
program. The ideal coverage is 100 per cent. However, state-based test coverage is seldom used. The
main alternatives are fault coverage and functional coverage.

The fault coverage is the percentage of stuck-at faults discovered by a set of simulations. It is often
used for production test programs, and so is explained in Section 8.8. In basic terms, a stuck-at fault
occurs when a net is permanently at logic one or zero, regardless of its driving logic. The denominator
for this metric is twice the number of nets, since a net can be stuck either high or low.

There aremany similar ways of defining functional coverage. Thesemay be expressed in terms of
high-level design goals but are not necessarily easy to automate. For a simulation, common coverage
measures reported by tools include:

1. Lines or statements: Howmany lines of codewere executed? In general software, a common
coveragemetric is the percentage of the lines of code that were executed. The samemetric readily
applies to RTL simulations.

2. Branches: Howmany branches of conditional statements were executed?

3. Expressions: Howmany of the possible values of a sub-expression were hit? For arithmetic, this is
generally unrealistic tomeasure, but for a Boolean expression with logical operators, the 2n growth
of possibilities in terms of number of inputs is more feasible to explore.

4. Path coverage: If there are unavoidable correlations between conditional branches, only some of
the paths through block-structured behavioural RTL or software can possibly be taken. Such
correlations arise when a succession of if statements apply to a set of similar supporting inputs. A
set of simulations is likely to execute fewer still paths. Tools can check for obvious correlations and
determine a denominator for pairs or triples of successive conditional branches. Hence, a valuable
coveragemetric can be reported, although decidability implies the denominator may be too high,
giving a coverage lower than the true value.

5. Toggle coverage: How often did a state bit transition from zero to one or from one to zero?

367

Modern SoCDesign

x> y ∧ y> z =⇒ x> z. (In formal languages, it is common to use∧ and∨ instead of && and || to denote
logical AND andOR.We call these connectives conjunction and disjunction, respectively.)

All subsystems in a SoC evolve over time, as the values of registers andmemory locations change and
interfaces carry ordered sequences of values and handshake transitions. Hence, a temporal algebra is
nearly always required to relate values at one time to those that immediately follow or will occur
some time later. Formal languages for hardware description, indeed, have a large vocabulary of
temporal operators. These include various ‘before’ and ‘until’ operators as well as the the suffix
implications we present for PSL in Section 7.4.

Formal proof engines are either automatic or manual. An automatic prover requires no input from
the engineer in proving correctness or generating a counterexample, thoughmany of them do benefit
from various command-line hints and heuristic weights. Themost important type of automatic proof
tool is amodel checker, which starts from the reset state and considers all possible next states arising
from all possible input values. Hence, it essentially performs a breadth-first search of the state space.
Some tools are, indeed, directly implemented in this way using an enormous bit map stored in
gigabytes of mainmemory to check whether a state has already been visited. Other tools implement
boundedmodel checking, which considers only a limited number of steps from the reset state (e.g. 20
to 100).

Themanual alternative is a theorem prover, although these generally contain a significant amount of
automation to assist with repetitive steps and to suggest or explore possible next steps in the proof. A
theorem prover has a database of axioms, logic rules and already derived theorems. The primary
operation is to apply an inference rule to existing results to generate a new theoremwith the
intention of eventually generating the theorem the user set out to prove. A theorem prover ensures
that whatever sequence of operations is selected, it is impossible to create an incorrect theorem.
However, it is certainly possible to generate vast numbers of irrelevant or useless theorems. Hence,
manual assistance is nearly always required to guide the system to the desired result. However, as
said, the semi-automatic application of rules is commonly supported (where the automation is called a
tactic). Previous proofs can be saved as tactics for replay in the current proof.

In practice, proving theorems requires considerable effort and only a small percentage of formal work
is conducted this way. Theorem-proving teams are often quite small, even in a very large
semiconductor house. Hence, this approach is practically applicable only for a fewwell-defined
problems. Amainstream example is the floating-point data path in an FPU (Section 6.4). Such circuits
are less amenable to automatic model checking due to themany XOR gates (whichmeans that there is
no good sort order in BDD-based checking, for instance). However, once correctness is demonstrated,
it is exhaustive – an actual proof!

A binary decision diagram (BDD) is a compact representation of the truth table used insidemany
formal tools. Comparing functions for equivalence is instant using BDD representations. Many other
useful operations are also quick, such as the logic functions for conjunction (AND), disjunction (OR)
and negation (NOT) applied between or on a BDD. Existential checks, such as whether a function is

366

Chapter 7 | FormalMethods and Assertion-based Design

satisfiable under certain conditions, have the same cost as a conjunction. Their main disadvantage is
that their compactness depends on their sort order, which is an ancillary total ordering of all the
variables in an expression. It is relatively easy to find a good sort order for a function, but this may not
be a good sort order for another function. Conjunctions and disjunctions require the operands to be in
the same sort order. Hence, BDD packages often spend themajority of their timemaking
heuristic-based searches for a good sort order or rearranging a BDD from one order to another.

7.1.1 Verification Coverage
Digital computers are, theoretically speaking, finite-statemachines (FSMs). Across even a large set of
simulations, only a subset of the states will be entered. Thus, only a subset of the possible set of
state-to-state transitions will be executed. The number of states entered can be expressed as a
percentage of the total number of states to give a test coveragemetric for a simulation trace or test
program. The ideal coverage is 100 per cent. However, state-based test coverage is seldom used. The
main alternatives are fault coverage and functional coverage.

The fault coverage is the percentage of stuck-at faults discovered by a set of simulations. It is often
used for production test programs, and so is explained in Section 8.8. In basic terms, a stuck-at fault
occurs when a net is permanently at logic one or zero, regardless of its driving logic. The denominator
for this metric is twice the number of nets, since a net can be stuck either high or low.

There aremany similar ways of defining functional coverage. Thesemay be expressed in terms of
high-level design goals but are not necessarily easy to automate. For a simulation, common coverage
measures reported by tools include:

1. Lines or statements: Howmany lines of codewere executed? In general software, a common
coveragemetric is the percentage of the lines of code that were executed. The samemetric readily
applies to RTL simulations.

2. Branches: Howmany branches of conditional statements were executed?

3. Expressions: Howmany of the possible values of a sub-expression were hit? For arithmetic, this is
generally unrealistic tomeasure, but for a Boolean expression with logical operators, the 2n growth
of possibilities in terms of number of inputs is more feasible to explore.

4. Path coverage: If there are unavoidable correlations between conditional branches, only some of
the paths through block-structured behavioural RTL or software can possibly be taken. Such
correlations arise when a succession of if statements apply to a set of similar supporting inputs. A
set of simulations is likely to execute fewer still paths. Tools can check for obvious correlations and
determine a denominator for pairs or triples of successive conditional branches. Hence, a valuable
coveragemetric can be reported, although decidability implies the denominator may be too high,
giving a coverage lower than the true value.

5. Toggle coverage: How often did a state bit transition from zero to one or from one to zero?

367

Modern SoCDesign

Measuring the number of hits of each coverage point indicates howwell a simulation test bench
explored the design space. Typically, each point will be expected to be hit many times overall.

Thesemeasures can also be used to produce formal cover properties, which can be used as
reachability checks. Formal coverage is normally computed by amodel checker and differs from a
simulation, since demonstrating that a cover is reachable says nothing directly about the quality of the
other assertions. However, a formal trace for a cover can identify theminimum number of cycles that
must be searched before that point is exercised. Oncewe have theseminimum depths, there are
variousways of using them to gauge the usefulness of the undetermined results, which are, otherwise,
so hard to quantify.

Several standard types of coveragemetric are used to ensure that a set of assertions cover an
acceptable amount of the design space:

The PSL cover directive (Section 7.4): This keeps activation statistics for each assertion.
Assertions in the form of an implication that have low or zero activations of their antecedents (the
expression on the left-hand side of the implication operator) do not contribute.

COI coverage: Howmuch of the design is included in the driving logic of at least one assertion? The
cone of influence (COI) of a net or variable encompasses the nets and variables that it depends on.
These are known as its sequential support or combinational support. For a combinational net, the
COI extends backwards to flip-flop outputs. The sequential support extends throughD-types and
can easily be very large, such as a complete clock domain. The COI is important when repipelining a
design (Section 4.4.2).

COI reachability: If an assertion is explored only forN clock cycles by themodel checker, how does
that compare with the number of cycles required to affect the state elements in its driving logic?

Proof core: Some elements in the COI of an assertionmay not actually be required to reason about
the assertion’s correctness. Howmuch of the design state is actually required by at least one
assertion?

COI coverage is used at early stages to help direct the work to areas of the design for which no check
currently exists.

COI reachability is useful duringmodel checking, as it can identify properties that the tool is
struggling to explore to ameaningful depth. Attention can then be brought to bear on these, for
example, by using divide-and-conquer techniques (such as case splitting and assume-guarantee
methods) or by overconstraining the environment or the design to reduce the state space being
explored. Alternatively, helper properties may be devised that aremore easily proven andwhich help
themodel checker to exclude irrelevant states.

368

Chapter 7 | FormalMethods and Assertion-based Design

Achieving 100 per cent coverage in every part of a design is, typically, impossible, and so coverage
targets are set. It is often best to set these at the beginning of a project, so that they are not
negatively influenced during design work as deadlines approach and difficult areas are revealed.
Medical, defence and aerospace applications generally require much higher percentage coverage
than commercial products and contracts. Safety standardsmay require aminimum coverage level.
Meeting coverage targets does not mean that the design has been completely verified, but any
missing coverage is a strong indication that something has been left unchecked. Scaling of formal
checking is a practical problem. Today’s tools certainly cannot check a complete SoC in one pass. An
incremental approach based around individual subsystems is used in practice.

7.1.2 Property Completeness
How can a designer determine whether adding a new assertion improves the proof? When should
they stop adding assertions? As we have said, a design team should set good coverage targets
beforehand, but they also need confidence that all parts of the design have been observed.

Once a design hasmet its verification targets, using designmutations can be useful for detecting
further behaviour that is not covered by the existing properties. In this technique, the DUT is changed
ormutated, such by as forcing a sub-expression to be stuck at zero or one or by altering an operator
from addition to subtraction. If the set of verification properties is truly complete, then onewould
expect that this mutation will cause a related property to fail. If themutated DUT does not affect the
verification then this may indicate an area of the DUT that is not fully checked by the verification
properties.

In practice, there can be false positives, in particular if themutated element is not functional but
rather a performance optimisation. For example, if a DUT is permitted, but not required, to merge
some transactions, then the absence of a property that fires when themerging logic is broken is not a
functional failure. In fact, a reasonable verification property is something like: ‘If transactions are
merged then the conditions for merging exist’ and not ‘When the conditions for merging exist then
transactionsmust bemerged.’ However, if a design is mature and few coverage holes are expected,
mutationmay be a useful technique.

7.1.3 When Is a Formal Specification Complete?
When is a formal specification complete?

Does it fully define an actual implementation (this is overly restrictive)?

Does it exactly prescribe all allowable and observable behaviours?

By ‘formal’ wemean amachine-readable description of what is correct or incorrect behaviour. A
complete specification could describe all allowable behaviours and prohibit all remaining behaviours,
but most formal definitions today are not complete in this sense. For instance, a definition that

369

Modern SoCDesign

Measuring the number of hits of each coverage point indicates howwell a simulation test bench
explored the design space. Typically, each point will be expected to be hit many times overall.

Thesemeasures can also be used to produce formal cover properties, which can be used as
reachability checks. Formal coverage is normally computed by amodel checker and differs from a
simulation, since demonstrating that a cover is reachable says nothing directly about the quality of the
other assertions. However, a formal trace for a cover can identify theminimum number of cycles that
must be searched before that point is exercised. Oncewe have theseminimum depths, there are
variousways of using them to gauge the usefulness of the undetermined results, which are, otherwise,
so hard to quantify.

Several standard types of coveragemetric are used to ensure that a set of assertions cover an
acceptable amount of the design space:

The PSL cover directive (Section 7.4): This keeps activation statistics for each assertion.
Assertions in the form of an implication that have low or zero activations of their antecedents (the
expression on the left-hand side of the implication operator) do not contribute.

COI coverage: Howmuch of the design is included in the driving logic of at least one assertion? The
cone of influence (COI) of a net or variable encompasses the nets and variables that it depends on.
These are known as its sequential support or combinational support. For a combinational net, the
COI extends backwards to flip-flop outputs. The sequential support extends throughD-types and
can easily be very large, such as a complete clock domain. The COI is important when repipelining a
design (Section 4.4.2).

COI reachability: If an assertion is explored only forN clock cycles by themodel checker, how does
that compare with the number of cycles required to affect the state elements in its driving logic?

Proof core: Some elements in the COI of an assertionmay not actually be required to reason about
the assertion’s correctness. Howmuch of the design state is actually required by at least one
assertion?

COI coverage is used at early stages to help direct the work to areas of the design for which no check
currently exists.

COI reachability is useful duringmodel checking, as it can identify properties that the tool is
struggling to explore to ameaningful depth. Attention can then be brought to bear on these, for
example, by using divide-and-conquer techniques (such as case splitting and assume-guarantee
methods) or by overconstraining the environment or the design to reduce the state space being
explored. Alternatively, helper properties may be devised that aremore easily proven andwhich help
themodel checker to exclude irrelevant states.

368

Chapter 7 | FormalMethods and Assertion-based Design

Achieving 100 per cent coverage in every part of a design is, typically, impossible, and so coverage
targets are set. It is often best to set these at the beginning of a project, so that they are not
negatively influenced during design work as deadlines approach and difficult areas are revealed.
Medical, defence and aerospace applications generally require much higher percentage coverage
than commercial products and contracts. Safety standardsmay require aminimum coverage level.
Meeting coverage targets does not mean that the design has been completely verified, but any
missing coverage is a strong indication that something has been left unchecked. Scaling of formal
checking is a practical problem. Today’s tools certainly cannot check a complete SoC in one pass. An
incremental approach based around individual subsystems is used in practice.

7.1.2 Property Completeness
How can a designer determine whether adding a new assertion improves the proof? When should
they stop adding assertions? As we have said, a design team should set good coverage targets
beforehand, but they also need confidence that all parts of the design have been observed.

Once a design hasmet its verification targets, using designmutations can be useful for detecting
further behaviour that is not covered by the existing properties. In this technique, the DUT is changed
ormutated, such by as forcing a sub-expression to be stuck at zero or one or by altering an operator
from addition to subtraction. If the set of verification properties is truly complete, then onewould
expect that this mutation will cause a related property to fail. If themutated DUT does not affect the
verification then this may indicate an area of the DUT that is not fully checked by the verification
properties.

In practice, there can be false positives, in particular if themutated element is not functional but
rather a performance optimisation. For example, if a DUT is permitted, but not required, to merge
some transactions, then the absence of a property that fires when themerging logic is broken is not a
functional failure. In fact, a reasonable verification property is something like: ‘If transactions are
merged then the conditions for merging exist’ and not ‘When the conditions for merging exist then
transactionsmust bemerged.’ However, if a design is mature and few coverage holes are expected,
mutationmay be a useful technique.

7.1.3 When Is a Formal Specification Complete?
When is a formal specification complete?

Does it fully define an actual implementation (this is overly restrictive)?

Does it exactly prescribe all allowable and observable behaviours?

By ‘formal’ wemean amachine-readable description of what is correct or incorrect behaviour. A
complete specification could describe all allowable behaviours and prohibit all remaining behaviours,
but most formal definitions today are not complete in this sense. For instance, a definition that

369

Modern SoCDesign

consists of a list of safety assertions and a few liveness assertions could still allow all sorts of
behaviours that the designer knows are wrong. A complete specification can be defined as one that
describes all observable behaviours. Such a specification does not restrict or proscribe the internal
implementation in black box terms since this is not observable.

7.2 Assertions
An assertion is a statement about whether a property holds. Asmentioned earlier, assertionsmay be
true or false. An assertion about the current state of a system can vary as the system changes state.
This is called a state property. Many assertions have a guard condition, which identifies when the
property is expected to hold, which can be always, at some point in the future or at certain clock edges.

Wewill describe threemain forms of assertion: procedural assertions, safety assertions and liveness
assertions. In assertion theory, a procedural assertion is just a specific form of safety assertion.
Indeed, there are techniques for mapping any number of safety and liveness assertions into just one
safety assertion [6], but this typically adds additional state that needs to be checked. For a
non-specialist, it is easier to handle safety and liveness separately, and, if it is helpful, to allow the tools
to automate any suchmappings. However, as we discuss in Section 7.9, if a tool does not explicitly
support liveness, a liveness assertion can be expressed as a safety assertion.

Immediate Assertions
In imperative software languages, programmers are used to embedding procedural assertions at
critical points. For instance, in C++, the assert.h header is commonly used (Figure 7.2).

assert(x<4);
x := x + 1000;
assert(x<1004);

Figure 7.2 Examples of imperative or procedural safety assertions in a software language such as C++. These conditions must hold when reached by the
program’s flow of control

These are called procedural assertions or immediate assertions. VHDL has an equivalent statement
using its assert, report and severity keywords. Similarly, in SystemVerilog, the expect statement
provides the same functionality. However, most VHDL and Verilog coders today use the equivalents
in the property specification language (PSL)whereas SystemVerilog users use SystemVerilog
Assertions (SVA). These are described shortly in Section 7.4.

Safety Assertions
A safety assertion states a property that must always hold. It embodies the essence of a declaration,
such as a declaration of human rights. However, in electronics it is likely to be less grand such as, for an
indicator panel: ‘Never is light A on at the same time as light B’ (with the word order following the
syntax illustrated below). An example that conveys the concept of real-world safety is: ‘Never are

370

Chapter 7 | FormalMethods and Assertion-based Design

both the inner door and outer door of the airlock open at the same time unless the ship is surrounded
by a breathable atmosphere.’

Another word for a safety declaration is a system invariant. An assertion that holds at all times is
often called a concurrent assertion to distinguish it from an immediate or procedural assertion. The
keywords always and never are used to introduce a concurrent safety declaration. The following
examples of equivalent safety assertions show that a list of safety assertions is the same as a
conjunction of their predicates:

always S1, S2; // A list of safety predicates could be separated by commas.
always S1; always S2; // Or they could be listed as separate statements.
always S1 && S2; // Or they could use a single `safety' keyword and a conjunction.
never !S1; // The opposite of `always' is `never'.
never !S2; // So `always S2' can be written as `never !S2'.

These examples demonstrate a guarded safety assertion, which holds only under certain conditions.
In hardware, a guard condition could be a state predicate, a clock edge or a combination of these:

whenever (P1) P2; // The `whenever' construct guardedly asserts that P1 implies P2.
always !P1 || P2; // Implication can be expanded to when P1 does not hold, P2 must.

Liveness Assertions
A liveness assertion is a property that needs to be fulfillable at some later time. A guarded example is:
‘If the emergency button is pressed, eventually at least one of the doors will become unlocked.’
Liveness properties normally use keywords such as eventually or phrases such as it will always be
possible to. The door unlocking example is a liveness assertion despite not having a subordinate ‘if’
clause.

If a safety property is contravened, the trace of events forms a counterexample and that trace will
have a specific finite length. It is sometimes claimed that a liveness failure cannot have a
counterexample with a finite trace. However, many liveness failures can have a trace that ends in a
deadlock, which is a finite trace if we consider that the world stops at the deadlock. Likewise, if a trace
enters a livelock and it is clear that the systemwill never return to normal operation, there is a finite
number of steps before the livelock.

Liveness assertions are not the same as reachability assertions. A reachable assertion specifies that a
future state or sequence is possible under at least one forward path but is not guaranteed to be
possible under all other intermediate paths.

The opposite of liveness, roughly speaking, is a deadlock, as introduced in Section 3.4.3. For instance,
in older motor cars, it used to be easy to lock the car keys in the boot (or trunk in the USA), since a key
was not needed to lock the boot. However, the only way to reopen the boot is to use the key, which is
impossible if the only key is in the boot. Hence, this is a deadlock. Modernmotor cars have a wireless

371

Modern SoCDesign

consists of a list of safety assertions and a few liveness assertions could still allow all sorts of
behaviours that the designer knows are wrong. A complete specification can be defined as one that
describes all observable behaviours. Such a specification does not restrict or proscribe the internal
implementation in black box terms since this is not observable.

7.2 Assertions
An assertion is a statement about whether a property holds. Asmentioned earlier, assertionsmay be
true or false. An assertion about the current state of a system can vary as the system changes state.
This is called a state property. Many assertions have a guard condition, which identifies when the
property is expected to hold, which can be always, at some point in the future or at certain clock edges.

Wewill describe threemain forms of assertion: procedural assertions, safety assertions and liveness
assertions. In assertion theory, a procedural assertion is just a specific form of safety assertion.
Indeed, there are techniques for mapping any number of safety and liveness assertions into just one
safety assertion [6], but this typically adds additional state that needs to be checked. For a
non-specialist, it is easier to handle safety and liveness separately, and, if it is helpful, to allow the tools
to automate any suchmappings. However, as we discuss in Section 7.9, if a tool does not explicitly
support liveness, a liveness assertion can be expressed as a safety assertion.

Immediate Assertions
In imperative software languages, programmers are used to embedding procedural assertions at
critical points. For instance, in C++, the assert.h header is commonly used (Figure 7.2).

assert(x<4);
x := x + 1000;
assert(x<1004);

Figure 7.2 Examples of imperative or procedural safety assertions in a software language such as C++. These conditions must hold when reached by the
program’s flow of control

These are called procedural assertions or immediate assertions. VHDL has an equivalent statement
using its assert, report and severity keywords. Similarly, in SystemVerilog, the expect statement
provides the same functionality. However, most VHDL and Verilog coders today use the equivalents
in the property specification language (PSL)whereas SystemVerilog users use SystemVerilog
Assertions (SVA). These are described shortly in Section 7.4.

Safety Assertions
A safety assertion states a property that must always hold. It embodies the essence of a declaration,
such as a declaration of human rights. However, in electronics it is likely to be less grand such as, for an
indicator panel: ‘Never is light A on at the same time as light B’ (with the word order following the
syntax illustrated below). An example that conveys the concept of real-world safety is: ‘Never are

370

Chapter 7 | FormalMethods and Assertion-based Design

both the inner door and outer door of the airlock open at the same time unless the ship is surrounded
by a breathable atmosphere.’

Another word for a safety declaration is a system invariant. An assertion that holds at all times is
often called a concurrent assertion to distinguish it from an immediate or procedural assertion. The
keywords always and never are used to introduce a concurrent safety declaration. The following
examples of equivalent safety assertions show that a list of safety assertions is the same as a
conjunction of their predicates:

always S1, S2; // A list of safety predicates could be separated by commas.
always S1; always S2; // Or they could be listed as separate statements.
always S1 && S2; // Or they could use a single `safety' keyword and a conjunction.
never !S1; // The opposite of `always' is `never'.
never !S2; // So `always S2' can be written as `never !S2'.

These examples demonstrate a guarded safety assertion, which holds only under certain conditions.
In hardware, a guard condition could be a state predicate, a clock edge or a combination of these:

whenever (P1) P2; // The `whenever' construct guardedly asserts that P1 implies P2.
always !P1 || P2; // Implication can be expanded to when P1 does not hold, P2 must.

Liveness Assertions
A liveness assertion is a property that needs to be fulfillable at some later time. A guarded example is:
‘If the emergency button is pressed, eventually at least one of the doors will become unlocked.’
Liveness properties normally use keywords such as eventually or phrases such as it will always be
possible to. The door unlocking example is a liveness assertion despite not having a subordinate ‘if’
clause.

If a safety property is contravened, the trace of events forms a counterexample and that trace will
have a specific finite length. It is sometimes claimed that a liveness failure cannot have a
counterexample with a finite trace. However, many liveness failures can have a trace that ends in a
deadlock, which is a finite trace if we consider that the world stops at the deadlock. Likewise, if a trace
enters a livelock and it is clear that the systemwill never return to normal operation, there is a finite
number of steps before the livelock.

Liveness assertions are not the same as reachability assertions. A reachable assertion specifies that a
future state or sequence is possible under at least one forward path but is not guaranteed to be
possible under all other intermediate paths.

The opposite of liveness, roughly speaking, is a deadlock, as introduced in Section 3.4.3. For instance,
in older motor cars, it used to be easy to lock the car keys in the boot (or trunk in the USA), since a key
was not needed to lock the boot. However, the only way to reopen the boot is to use the key, which is
impossible if the only key is in the boot. Hence, this is a deadlock. Modernmotor cars have a wireless

371

Modern SoCDesign

link to the key, which detects whether the key is in the boot. The system, thus, disallows a route that
leads only to a deadlock, which is known as deadlock avoidance.

Q0

Q4

Q3 Q5

Q6

Q2

F

Q1

Livelock
set

Q7Deadlock
state

Start state

Q8

Q9

UnreachableLasso stem Core
live
set

Figure 7.3 FSM transition diagramwith liveness, fairness and deadlock indications

Temporal logic defines at least three distinct forms of liveness: simple liveness, progress and liveness
with fairness. Figure 7.3 illustrates an FSMwith 10 states. State Q0 is the initial state, entered on
reset. In reality, the edges would be guardedwith conditions for when theymight be taken, but the
edge conditions are not important as long as they at least hold sometimes. The states can be classified
into five classes:

1. Unreachable: States Q8 andQ9 are unreachable since there is no normal route to them. However,
extraordinary events, such as a single-event upset (SEU) (Section 8.2.1), could possibly cause entry
to such a state. For safety-critical systems, an exit arc should be providedwherever practical, such
as raising an interrupt or, as shown, ensuring there is an arc back to normal operation: Q8→Q9→
Q3.

2. Start-up stem: Certain states are used only at system start-up. In the figure, the start-up stem
consists of Q0 andQ1. In formal phraseology, this is known as the lasso stem.

3. Live set: For most systems, there is a core live set. Each state is reachable, in some number of
steps, from every other state in the set. In the figure, this is the subset Q2, Q3 andQ4. These form
the loop of the lasso. They represent themain runtime behaviour of the system.

4. Deadlock: A deadlock state has no successor. In the figure, Q7 has no successor, so if the system
ever enters this state, nothing further will happen.

5. Livelock set: Often there is a small set of states that are tantamount to a deadlock in that no useful
progress occurs if any of them are entered. The system, from then on, stays in the livelock set,
transitioning between them, but not doing anything useful and never returning to the core live set.
In the figure, Q5 andQ6 form a livelock set.

A livelock set is, technically speaking, a live set, since eachmember is reachable from all others.
However, from the designer’s point of view, a livelock set is dead. This distinction commonly needs to
be communicated to formal tools. Oneway to do this is with a fairness annotation. In the figure, the

372

Chapter 7 | FormalMethods and Assertion-based Design

letter ‘F’ onQ4 shows that it has been denoted as amember of the fair set. If fairness markers are
used, then they define the live set. Hence, the core live set is now constrained to be the {Q2, Q3, Q4}
subset and not the {Q5, Q6} subset. Every state in the fair set needs to be reachable by all others in
that set. In the example, any or all of Q2, Q3 or Q4 could bemarked as fair to achieve the required
effect.

A common real-world design pattern for a server uses an eternal process loop. This is an infinite loop
whose first statementmakes a blocking dequeue from awork FIFO buffer. It then performs that work
(known as dispatching the action) before returning to the head of the loop for the next work item. In
this pattern, a fairness annotation for the head of the loop is sufficient to ensure that nowork item
holds up the server indefinitely.

7.2.1 Predicate and Property Forms
As defined earlier, a predicate is any function that returns true or false. Predicates are used in
properties and properties are used in assertions. Themost simple form of predicate directly uses the
Boolean state of the target digital system. For instance in ‘Never is light A off when light B is on’, two
predicates are combined to form a property using the ‘when’ keyword and the whole becomes an
assertion when ‘never’ is prefixed. More complex predicates have numeric values. For instance: ‘The
value in register X is always less than the value in register Y.’ For digital systems, the registers have
finite states and such predicates can readily be converted to a Boolean form by bit blasting
(Section 8.3.8). Many tools take this approach, but it is somewhat crude and can become overly
verbose for complex arithmetic expressions because the laws and identities of mathematics provide,
ultimately, a simpler route.

A state property is a Boolean expression involving state predicates. It interprets variables in just the
current state. For instance: ‘Light A is off and register X≤ 12.’ A path property, on the other hand,
relates successive state properties to each other. For instance: ‘Light A always goes off before light B
comes on.’

An assertion can use assertion variables. An assertion variable does not exist outside the formal
context, and it is used just in a single assertion. It has local scope, so that it does not clash with any
other assertions that use the same variable name or any other concurrently running instances of the
assertion. In formal logic, variables are commonly either universally or existentially quantified, such
as x and y, respectively, in ∀x ∃y such that y> x. However, in hardware, especially when checkedwith
dynamic validation, assertion variables are frequently bound in the antecedent of an implication and
used in the consequent.

Typically, for an interconnect component or network, an important requirement is data conservation:
the data that go in come out the other side. Similar devices, such as a demultiplexer, essentially filter
the output data using some sort of routing predicate, such as addresses within a given range. Such
predicates are intrinsically already in formal form! The conservation of data is a symbolic path

373

Modern SoCDesign

link to the key, which detects whether the key is in the boot. The system, thus, disallows a route that
leads only to a deadlock, which is known as deadlock avoidance.

Q0

Q4

Q3 Q5

Q6

Q2

F

Q1

Livelock
set

Q7Deadlock
state

Start state

Q8

Q9

UnreachableLasso stem Core
live
set

Figure 7.3 FSM transition diagramwith liveness, fairness and deadlock indications

Temporal logic defines at least three distinct forms of liveness: simple liveness, progress and liveness
with fairness. Figure 7.3 illustrates an FSMwith 10 states. State Q0 is the initial state, entered on
reset. In reality, the edges would be guardedwith conditions for when theymight be taken, but the
edge conditions are not important as long as they at least hold sometimes. The states can be classified
into five classes:

1. Unreachable: States Q8 andQ9 are unreachable since there is no normal route to them. However,
extraordinary events, such as a single-event upset (SEU) (Section 8.2.1), could possibly cause entry
to such a state. For safety-critical systems, an exit arc should be providedwherever practical, such
as raising an interrupt or, as shown, ensuring there is an arc back to normal operation: Q8→Q9→
Q3.

2. Start-up stem: Certain states are used only at system start-up. In the figure, the start-up stem
consists of Q0 andQ1. In formal phraseology, this is known as the lasso stem.

3. Live set: For most systems, there is a core live set. Each state is reachable, in some number of
steps, from every other state in the set. In the figure, this is the subset Q2, Q3 andQ4. These form
the loop of the lasso. They represent themain runtime behaviour of the system.

4. Deadlock: A deadlock state has no successor. In the figure, Q7 has no successor, so if the system
ever enters this state, nothing further will happen.

5. Livelock set: Often there is a small set of states that are tantamount to a deadlock in that no useful
progress occurs if any of them are entered. The system, from then on, stays in the livelock set,
transitioning between them, but not doing anything useful and never returning to the core live set.
In the figure, Q5 andQ6 form a livelock set.

A livelock set is, technically speaking, a live set, since eachmember is reachable from all others.
However, from the designer’s point of view, a livelock set is dead. This distinction commonly needs to
be communicated to formal tools. Oneway to do this is with a fairness annotation. In the figure, the

372

Chapter 7 | FormalMethods and Assertion-based Design

letter ‘F’ onQ4 shows that it has been denoted as amember of the fair set. If fairness markers are
used, then they define the live set. Hence, the core live set is now constrained to be the {Q2, Q3, Q4}
subset and not the {Q5, Q6} subset. Every state in the fair set needs to be reachable by all others in
that set. In the example, any or all of Q2, Q3 or Q4 could bemarked as fair to achieve the required
effect.

A common real-world design pattern for a server uses an eternal process loop. This is an infinite loop
whose first statementmakes a blocking dequeue from awork FIFO buffer. It then performs that work
(known as dispatching the action) before returning to the head of the loop for the next work item. In
this pattern, a fairness annotation for the head of the loop is sufficient to ensure that nowork item
holds up the server indefinitely.

7.2.1 Predicate and Property Forms
As defined earlier, a predicate is any function that returns true or false. Predicates are used in
properties and properties are used in assertions. Themost simple form of predicate directly uses the
Boolean state of the target digital system. For instance in ‘Never is light A off when light B is on’, two
predicates are combined to form a property using the ‘when’ keyword and the whole becomes an
assertion when ‘never’ is prefixed. More complex predicates have numeric values. For instance: ‘The
value in register X is always less than the value in register Y.’ For digital systems, the registers have
finite states and such predicates can readily be converted to a Boolean form by bit blasting
(Section 8.3.8). Many tools take this approach, but it is somewhat crude and can become overly
verbose for complex arithmetic expressions because the laws and identities of mathematics provide,
ultimately, a simpler route.

A state property is a Boolean expression involving state predicates. It interprets variables in just the
current state. For instance: ‘Light A is off and register X≤ 12.’ A path property, on the other hand,
relates successive state properties to each other. For instance: ‘Light A always goes off before light B
comes on.’

An assertion can use assertion variables. An assertion variable does not exist outside the formal
context, and it is used just in a single assertion. It has local scope, so that it does not clash with any
other assertions that use the same variable name or any other concurrently running instances of the
assertion. In formal logic, variables are commonly either universally or existentially quantified, such
as x and y, respectively, in ∀x ∃y such that y> x. However, in hardware, especially when checkedwith
dynamic validation, assertion variables are frequently bound in the antecedent of an implication and
used in the consequent.

Typically, for an interconnect component or network, an important requirement is data conservation:
the data that go in come out the other side. Similar devices, such as a demultiplexer, essentially filter
the output data using some sort of routing predicate, such as addresses within a given range. Such
predicates are intrinsically already in formal form! The conservation of data is a symbolic path

373

Modern SoCDesign

property. The use of assertion variables for data conservation by a FIFO device is explored
in Section 7.6.4.

In black-box testing, assertions can range only over the externally visible behaviour of the DUT, i.e.
the behaviour of its output terminals. In principle, a black-box test is portable over any
implementation of a device, since the testing does not rely on how the internal state is held. If an
implementation has a variable input-to-output latency, the black-box specificationmust be coded in a
form that supports temporally floating ports. It cannot simply say: ‘The word that goes in port A in
the current clock cycle will come out of port B three cycles later.’ For example, a FIFO buffer allows
any amount of time delay. On the other hand, inwhite-box testing, the internal state variables of the
DUT can be inspected.

Some specifications prescribe that there are no combinational paths between various inputs and
outputs. This is easy to check with a variant of a static timing analyser (Section 8.12.1). Others specify
that there are no sequential dependencies. For instance, for the standard synchronous handshake, as
used in the AXI bus standard (Section 3.1.5), the ready signal is normally not allowed to wait for the
valid signal, since the connected component could bewaiting in the reverse direction, which would
result in a deadlock. Such causality is a liveness property checked by amodel checker.

7.2.2 Assertion-based Design
Assertion-based design (ABD) is a SoC design approach that encourages assertions to bewritten as
early as possible, preferably before coding or implementation starts. Many assertions can be applied
equally as well to a high-level behavioural model of a SoC as to the final implementation. For instance,
in amemory-accuratemodel (Section 5.1), it may be that several memory locations or registers should
only ever have zero, except for one of them, which has a non-zero value. This is the safety invariant.
Typically, these registers can holdmutual exclusion locks. There are no such locks in a single-threaded
functional model of the SoC, but once the first threadedmodel is created, they will be present.

Hence, ABD recommends:

1. Writing assertions when capturing the high-level design before detailed coding starts.

2. Writing further assertions as coding and development take place. The high-level assertions are
applied to ESL, RTL and net-level implementations.

3. Using the same assertions in product testing.

4. Potentially embedding some of the assertions as runtimemonitors in the product for reporting,
automatic shutdowns or as a fail-safe.

Assertions can be locally coded, reused from previous designs or be associated with a bus standard or
IP block. SoC designs always use amodule hierarchy. Assertions are supplied along with each IP block

374

Chapter 7 | FormalMethods and Assertion-based Design

as part of IP delivery. For a protocol or bus standard, all IP blocks that conform to that standard can
share the assertions that embody that standard. Thesemay be supplied as formal verification IP in a
verification IP (VIP) block (Section 7.5).

7.2.3 Regression Testing
If a test of SoC that has passed begins to fail again after some change, the system is said to have
regressed. Regression testing seeks to identify such regressions. If an ABDmethodology is followed,
then as the SoC project evolves, the number of assertions and tests that can be run increases. A test
suite is a namedmixture of formal and simulation-based tests of a design. RTL simulations are
discussed in Section 8.3.3. Non-functional tests, such asmeasuring total area or delay using static
timing analysis (Section 8.12.1), can also be included. When a designer implements or modifies a
particular subsystem, they will manually create or run the relevant test suite that concentrates on
that component.

A test of a single subsystem in isolation is called a unit test. It is common to have a number of separate
unit tests for different aspects of a subsystem. Running each of these sequentially or in parallel is also
a unit test for that subsystem. Unit tests can be quite thorough and vary greatly in complexity. A unit
test that triggers just the built-in self-test (BIST) logic of a subsystem (Section 4.7.6) will be very
short. However, unit tests that model complex interaction with the surrounding components can be
time-consuming to create. Instead, the teamwill rely onwhole-system tests, which exercise thewhole
SoC in some specific or limited way, perhaps involving device drivers and other software.

A full regression test typically runs overnight on a server farm. The suite should be as extensive as
possible, but usually cannot include every possible test. For a nominated time zone, it is typically run
during the seven-hour window between the last check-in of engineering work at midnight and the
quick teammeeting at the start of the next working day. As well as having limited time, it could be
limited by the availability of software licences for EDA tools and the available budget for CPU time.

A SoC design is held in a revision control system, which tracks which engineer madewhich edit to the
design. A regression suite manager can generate reports and logs of passed and failed tests. Each
failed test is associated with amodule instance, so that a regression can be attributed to an engineer
based on the nearest edit in both the revision history and the design hierarchy. Thus, an automated
email can be sent to the engineer and it can be logged as a bug.

7.3 Simulationwith Assertions
Assertions can be checked both with formal tools and by simulations. The latter is known as dynamic
validation. Simulation is less thorough than a formal method, since it considers only one possible next
step from the current state. Some formal tools are limited in the number of steps that they can
consider (Section 7.1), whereas simulation is far less constrained in terms of path depth. Assertions
and rules can also be used to create a simulation stimulus for directed random validation
(Section 7.3.2).

375

Modern SoCDesign

property. The use of assertion variables for data conservation by a FIFO device is explored
in Section 7.6.4.

In black-box testing, assertions can range only over the externally visible behaviour of the DUT, i.e.
the behaviour of its output terminals. In principle, a black-box test is portable over any
implementation of a device, since the testing does not rely on how the internal state is held. If an
implementation has a variable input-to-output latency, the black-box specificationmust be coded in a
form that supports temporally floating ports. It cannot simply say: ‘The word that goes in port A in
the current clock cycle will come out of port B three cycles later.’ For example, a FIFO buffer allows
any amount of time delay. On the other hand, inwhite-box testing, the internal state variables of the
DUT can be inspected.

Some specifications prescribe that there are no combinational paths between various inputs and
outputs. This is easy to check with a variant of a static timing analyser (Section 8.12.1). Others specify
that there are no sequential dependencies. For instance, for the standard synchronous handshake, as
used in the AXI bus standard (Section 3.1.5), the ready signal is normally not allowed to wait for the
valid signal, since the connected component could bewaiting in the reverse direction, which would
result in a deadlock. Such causality is a liveness property checked by amodel checker.

7.2.2 Assertion-based Design
Assertion-based design (ABD) is a SoC design approach that encourages assertions to bewritten as
early as possible, preferably before coding or implementation starts. Many assertions can be applied
equally as well to a high-level behavioural model of a SoC as to the final implementation. For instance,
in amemory-accuratemodel (Section 5.1), it may be that several memory locations or registers should
only ever have zero, except for one of them, which has a non-zero value. This is the safety invariant.
Typically, these registers can holdmutual exclusion locks. There are no such locks in a single-threaded
functional model of the SoC, but once the first threadedmodel is created, they will be present.

Hence, ABD recommends:

1. Writing assertions when capturing the high-level design before detailed coding starts.

2. Writing further assertions as coding and development take place. The high-level assertions are
applied to ESL, RTL and net-level implementations.

3. Using the same assertions in product testing.

4. Potentially embedding some of the assertions as runtimemonitors in the product for reporting,
automatic shutdowns or as a fail-safe.

Assertions can be locally coded, reused from previous designs or be associated with a bus standard or
IP block. SoC designs always use amodule hierarchy. Assertions are supplied along with each IP block

374

Chapter 7 | FormalMethods and Assertion-based Design

as part of IP delivery. For a protocol or bus standard, all IP blocks that conform to that standard can
share the assertions that embody that standard. Thesemay be supplied as formal verification IP in a
verification IP (VIP) block (Section 7.5).

7.2.3 Regression Testing
If a test of SoC that has passed begins to fail again after some change, the system is said to have
regressed. Regression testing seeks to identify such regressions. If an ABDmethodology is followed,
then as the SoC project evolves, the number of assertions and tests that can be run increases. A test
suite is a namedmixture of formal and simulation-based tests of a design. RTL simulations are
discussed in Section 8.3.3. Non-functional tests, such asmeasuring total area or delay using static
timing analysis (Section 8.12.1), can also be included. When a designer implements or modifies a
particular subsystem, they will manually create or run the relevant test suite that concentrates on
that component.

A test of a single subsystem in isolation is called a unit test. It is common to have a number of separate
unit tests for different aspects of a subsystem. Running each of these sequentially or in parallel is also
a unit test for that subsystem. Unit tests can be quite thorough and vary greatly in complexity. A unit
test that triggers just the built-in self-test (BIST) logic of a subsystem (Section 4.7.6) will be very
short. However, unit tests that model complex interaction with the surrounding components can be
time-consuming to create. Instead, the teamwill rely onwhole-system tests, which exercise thewhole
SoC in some specific or limited way, perhaps involving device drivers and other software.

A full regression test typically runs overnight on a server farm. The suite should be as extensive as
possible, but usually cannot include every possible test. For a nominated time zone, it is typically run
during the seven-hour window between the last check-in of engineering work at midnight and the
quick teammeeting at the start of the next working day. As well as having limited time, it could be
limited by the availability of software licences for EDA tools and the available budget for CPU time.

A SoC design is held in a revision control system, which tracks which engineer madewhich edit to the
design. A regression suite manager can generate reports and logs of passed and failed tests. Each
failed test is associated with amodule instance, so that a regression can be attributed to an engineer
based on the nearest edit in both the revision history and the design hierarchy. Thus, an automated
email can be sent to the engineer and it can be logged as a bug.

7.3 Simulationwith Assertions
Assertions can be checked both with formal tools and by simulations. The latter is known as dynamic
validation. Simulation is less thorough than a formal method, since it considers only one possible next
step from the current state. Some formal tools are limited in the number of steps that they can
consider (Section 7.1), whereas simulation is far less constrained in terms of path depth. Assertions
and rules can also be used to create a simulation stimulus for directed random validation
(Section 7.3.2).

375

Modern SoCDesign

7.3.1 Simulations andDynamic Validation
Using a proof tool to check a property is commonly called static validation since it does not execute
the system. Instead, it statically ‘stares’ at the source code. On the other hand, dynamic validation
runs a simulation, or performs some other form of execution, while checking properties. A dynamic
validation run considers only one state trajectory and, unlike a formal proof, can never guarantee that
all possible state trajectories will satisfy all the required properties. A safety property violation can be
reported as soon as it is encountered. However, dynamic validation cannot prove that safety is never
violated.

Dynamic validation tends not to be as useful for checking liveness properties since any simulation has
a finite length and a liveness property may not be satisfied until after the stopping point. However,
simulations are normally orders of magnitude longer than the typical temporal extent of a liveness
assertion, somost liveness assertions are checked at least once during a run. Liveness properties are
often phrased in implication form, such as: ‘After every A there will be a B.’ So, a dynamic validation
run can check that there has been coverage of the property, if there is at least one occurrence of A
followed by a B. It can flag a warning at the stopping point if there is an A that has not yet been
followed by a B.

7.3.2 Automated Stimulus Generation: Directed and Constrained RandomVerification
Any simulation of a subsystem needs stimulus sequences for its inputs. The clock and reset inputs are
generally straightforward, and can be stimulated with generic behavioural models, as shown
in Section 7.3.2. Other inputs require application-specific waveforms. A directed test uses
handcrafted input waveforms to examine a specific behaviour. Directed tests are normally designed
to be easy to analyse in terms of their expected output, but they tend to lack the levels of parallel
activity found in real-world use cases. Even if a large number of directed tests are available, systems
may still have hidden defects that are found only when there is a specific ordering or overlapping of
the directed tests.

Hence, it is very common also to use undirected testing, which invokes a random sequence of feasible
activities. This is especially useful for dynamic equivalence validation if there are two ormore
implementations of the DUT, such as a high-level model and an RTLmodel. A typical example is a
processor core, which can be testedwith a random, yet valid, instruction stream. The stream is padded
at both ends with NOP (no operation) instructions so the pipeline is idle at the start and end of the
test. The effect on the register file and caches can then simply be compared between the twomodels.

It is generally not sensible to perform random testswith totally unconstrained inputs. In the processor
instruction stream example, only valid instructions should be fed in. Implementations of amodel from
different parts of the design flow almost always vary in terms of their behaviour for don’t-care input
values due to design optimisations. Hence, constrained random verification (CRV) is used. CRV uses
a formal description of the allowable input values and sequences. With some CRV tools, the reactive
behaviour of external components can also be specified, such as a given input being the disjunction of

376

Chapter 7 | FormalMethods and Assertion-based Design

two outputs delayed by two clock cycles, or whatever. SystemVerilog has native support for CRV, so a
hardware engineer can easily include such test-bench behaviour as part of a CRV test.

Arm’s weakmemory coherencymodel is formally specified in the Cat language. The Diy7 tool from
the University of Cambridge and Inria [7] can generate an almost infinite set of short, random,
concurrent programs that act as litmus tests for exercising the concurrencymodel and checking the
outcomes. This is another form of CRV. These programs can be run on real silicon or in a RTL and ESL
simulation to validate dynamically that each implementation conforms to the specification. Arm
reports having found silicon errata using this technique.

SystemVerilog has several constructs that enable a collection of variables to be set to constrained
random values. A variable can be declared with the randmodifier as part of its type. New random
values are assignedwith a call to the randomize() system function and constraints are specified using
the constraint and with keywords. If the variables are over-constrained, such that no setting can be
found, the randomize() call returns zero instead of one.

The following example shows a SystemVerilog class definition. The three fields are randomised.
Moreover, there is a constraint on the relative order of the start and stop values and that the index
fieldmust be between the pointers:

class region_ptr;
rand bit [31:0] index;
rand bit [31:0] start_index, stop_index;
constraint index_sanity { stop_index >= start_index; index >= start_index; index < stop_index; }

endclass
...
region_ptr rp0 = new;
testno = 0;
while (testno < test_max) begin

rp0.randomize() with { start_index > 32'h1000; index-start_index >= 32'h100; };
...
end

When instantiated, each call to the randomizemethodwill assign new random values to the fields that
satisfy all the constraints. Using the with qualifier, additional constraints can be passed in to each
randomize call so that specific regions of interest can be explored as required. By altering the
constraints, different phases of the test program can be successive explored and so on.

The problem of generating a vector of constrained random variables is not straightforward. A naive
approach canwaste an inordinate amount of time generating and discarding vectors. If a linear range
is required, the well-knownmodulo technique is typically used, such as random()%100, which returns
a number in the range 0 to 99. For complex sets of constraints, themost straightforward approach is
to convert the constraints to aBoolean satisfiability problem (SAT) by bit blasting (Section 8.3.8). A
SAT solver finds solutions to such problems (Section 7.6.1). There are various SAT algorithms, but
many of them can be seededwith a set of random starting values and they will converge on a nearby

377

Modern SoCDesign

7.3.1 Simulations andDynamic Validation
Using a proof tool to check a property is commonly called static validation since it does not execute
the system. Instead, it statically ‘stares’ at the source code. On the other hand, dynamic validation
runs a simulation, or performs some other form of execution, while checking properties. A dynamic
validation run considers only one state trajectory and, unlike a formal proof, can never guarantee that
all possible state trajectories will satisfy all the required properties. A safety property violation can be
reported as soon as it is encountered. However, dynamic validation cannot prove that safety is never
violated.

Dynamic validation tends not to be as useful for checking liveness properties since any simulation has
a finite length and a liveness property may not be satisfied until after the stopping point. However,
simulations are normally orders of magnitude longer than the typical temporal extent of a liveness
assertion, somost liveness assertions are checked at least once during a run. Liveness properties are
often phrased in implication form, such as: ‘After every A there will be a B.’ So, a dynamic validation
run can check that there has been coverage of the property, if there is at least one occurrence of A
followed by a B. It can flag a warning at the stopping point if there is an A that has not yet been
followed by a B.

7.3.2 Automated Stimulus Generation: Directed and Constrained RandomVerification
Any simulation of a subsystem needs stimulus sequences for its inputs. The clock and reset inputs are
generally straightforward, and can be stimulated with generic behavioural models, as shown
in Section 7.3.2. Other inputs require application-specific waveforms. A directed test uses
handcrafted input waveforms to examine a specific behaviour. Directed tests are normally designed
to be easy to analyse in terms of their expected output, but they tend to lack the levels of parallel
activity found in real-world use cases. Even if a large number of directed tests are available, systems
may still have hidden defects that are found only when there is a specific ordering or overlapping of
the directed tests.

Hence, it is very common also to use undirected testing, which invokes a random sequence of feasible
activities. This is especially useful for dynamic equivalence validation if there are two ormore
implementations of the DUT, such as a high-level model and an RTLmodel. A typical example is a
processor core, which can be testedwith a random, yet valid, instruction stream. The stream is padded
at both ends with NOP (no operation) instructions so the pipeline is idle at the start and end of the
test. The effect on the register file and caches can then simply be compared between the twomodels.

It is generally not sensible to perform random testswith totally unconstrained inputs. In the processor
instruction stream example, only valid instructions should be fed in. Implementations of amodel from
different parts of the design flow almost always vary in terms of their behaviour for don’t-care input
values due to design optimisations. Hence, constrained random verification (CRV) is used. CRV uses
a formal description of the allowable input values and sequences. With some CRV tools, the reactive
behaviour of external components can also be specified, such as a given input being the disjunction of

376

Chapter 7 | FormalMethods and Assertion-based Design

two outputs delayed by two clock cycles, or whatever. SystemVerilog has native support for CRV, so a
hardware engineer can easily include such test-bench behaviour as part of a CRV test.

Arm’s weakmemory coherencymodel is formally specified in the Cat language. The Diy7 tool from
the University of Cambridge and Inria [7] can generate an almost infinite set of short, random,
concurrent programs that act as litmus tests for exercising the concurrencymodel and checking the
outcomes. This is another form of CRV. These programs can be run on real silicon or in a RTL and ESL
simulation to validate dynamically that each implementation conforms to the specification. Arm
reports having found silicon errata using this technique.

SystemVerilog has several constructs that enable a collection of variables to be set to constrained
random values. A variable can be declared with the randmodifier as part of its type. New random
values are assignedwith a call to the randomize() system function and constraints are specified using
the constraint and with keywords. If the variables are over-constrained, such that no setting can be
found, the randomize() call returns zero instead of one.

The following example shows a SystemVerilog class definition. The three fields are randomised.
Moreover, there is a constraint on the relative order of the start and stop values and that the index
fieldmust be between the pointers:

class region_ptr;
rand bit [31:0] index;
rand bit [31:0] start_index, stop_index;
constraint index_sanity { stop_index >= start_index; index >= start_index; index < stop_index; }

endclass
...
region_ptr rp0 = new;
testno = 0;
while (testno < test_max) begin

rp0.randomize() with { start_index > 32'h1000; index-start_index >= 32'h100; };
...
end

When instantiated, each call to the randomizemethodwill assign new random values to the fields that
satisfy all the constraints. Using the with qualifier, additional constraints can be passed in to each
randomize call so that specific regions of interest can be explored as required. By altering the
constraints, different phases of the test program can be successive explored and so on.

The problem of generating a vector of constrained random variables is not straightforward. A naive
approach canwaste an inordinate amount of time generating and discarding vectors. If a linear range
is required, the well-knownmodulo technique is typically used, such as random()%100, which returns
a number in the range 0 to 99. For complex sets of constraints, themost straightforward approach is
to convert the constraints to aBoolean satisfiability problem (SAT) by bit blasting (Section 8.3.8). A
SAT solver finds solutions to such problems (Section 7.6.1). There are various SAT algorithms, but
many of them can be seededwith a set of random starting values and they will converge on a nearby

377

Modern SoCDesign

solution. Hence, a randomly seeded SAT run often generates a fresh result. Previous solutions can be
readily stored in RAM and automatically avoided if regenerated.

Since formal specifications for many standard interfaces are widely available as formal VIPs
(Section 7.5), CRV forms the basis for streams of synthetic data corresponding to all sorts of protocols.
The following example from Specman Elite [8] generates streams of IEEE 802.2 logic-link layer frames:

struct LLCHeader { v: int(bits:2); 0: int(bits 14); }

struct frame {
llc: LLCHeader;
destAddr: uint (bits:48);
srcAddr: uint (bits:48);
size: int (bits:32);
payload: list of byte;
keep payload.size() in [0..size];

}

An hierarchy of specifications and constraints is supported. One can compose and extend a
specification to restrict its possible behaviours. For instance, the following construct ensures that the
frames generated have zero payload size:

// Subclass the frame to make it more specialised:
extend frame { keep size == 0; };

7.3.3 Simulation versus Formal Checking
It is sometimes stated that simulations are effective in findingmany early bugs in a design. This may
simply be because designers tend to simulate beforemaking formal checks. Often, early bugs are just
low-hanging fruit, which both simulation and formal checking are good at finding! The key difference
between formal checking and simulation is that a formal approach explores all possible next states,
albeit slowly, whereas a simulation explores a single pathmore rapidly. A simulation can be partly
formal, using busmonitors for dynamic validation and CRV (Section 7.3.2) to create a stimulus.

Simulation is effective at finding bugs that can be observed only in system states that takemany
cycles to reach. Comparedwithmodel checking, which tends to explore each clock cycle exhaustively
before progressing to the next, a simulation can rapidly executemany clock cycles and reach such
deep states. However, this may require the careful generation of a random stimulus or even a
manually constructed stimulus. If a stimulus can be created that is expected to reach such buggy deep
states, then it may also be possible to create constraints that describe the corresponding set of states
and use these to beginmodel checking from a constrained non-reset state. Although such an analysis
will not provide an exhaustive proof, it is often a very effective bug-hunting technique.

378

Chapter 7 | FormalMethods and Assertion-based Design

Once the early low-hanging bugs are fixed, a formal proof may bemore effective at finding the
remainder. These tend to lurk in unusual corner cases, where particular alignments or conjunctions of
conditions are not handled correctly.

A simulation is generally easier to understand. A simulationmeasures performance. It can produce a
golden output that can be compared against a stored result to give a pass or fail. Alternatively, it is
common to compute a CRC or other hash digest of themain outputs (Section 9.1.1) using a few
additional lines of RTL. The digest is comparedwith a known good value at the end of the simulation
to likewise give a pass or fail.

The benefits of formal techniques in theory (and challenges in practice):

We capture what the system is supposed to do.

They are theoretically complete (but how canwe define or determine this?) (Section 7.1.3).

They are scalable (but tools are limited in practice).

Rare corner situations in the exponential state space (unusual conjunctions of events) are covered.

Although extensive simulation is time-consuming, it may not be exhaustive. Nonetheless simulations
are needed for:

performance analysis and general design confidence

generating some production test vectors (Section 8.8.2).

Most formal tools fail to span the hardware/software divide adequately, whichmeans that if a
property relies on complex or custom interactions between the hardware and software, then proving
correctness may be difficult. The general approach for fully certified systems, like the CakeML stack
[9], is to use layers of proven abstractions, with the principal abstraction being that the hardware
correctly implements the ISA semantics of the programmer’s model. Hence, the proof that the
program is correct assumes that the hardware is correct, which is verified independently.
Alternatively, for very small microcontroller applications, both the ISA description and the program
can be converted to a single formal representation [10].

In practice, simulation and formal tools symbiotically feed each other in the verification flow:

If a counterexample is found by a formal method, it is often output in a form that can constrain the
simulation stimulus. This means that the simulator can rapidly reproduce the bug. Engineers find it
easier to analyse bugs with a familiar simulator. For instance, the net waveforms and design
hierarchymay be presented in amore readable form.

379

Modern SoCDesign

solution. Hence, a randomly seeded SAT run often generates a fresh result. Previous solutions can be
readily stored in RAM and automatically avoided if regenerated.

Since formal specifications for many standard interfaces are widely available as formal VIPs
(Section 7.5), CRV forms the basis for streams of synthetic data corresponding to all sorts of protocols.
The following example from Specman Elite [8] generates streams of IEEE 802.2 logic-link layer frames:

struct LLCHeader { v: int(bits:2); 0: int(bits 14); }

struct frame {
llc: LLCHeader;
destAddr: uint (bits:48);
srcAddr: uint (bits:48);
size: int (bits:32);
payload: list of byte;
keep payload.size() in [0..size];

}

An hierarchy of specifications and constraints is supported. One can compose and extend a
specification to restrict its possible behaviours. For instance, the following construct ensures that the
frames generated have zero payload size:

// Subclass the frame to make it more specialised:
extend frame { keep size == 0; };

7.3.3 Simulation versus Formal Checking
It is sometimes stated that simulations are effective in findingmany early bugs in a design. This may
simply be because designers tend to simulate beforemaking formal checks. Often, early bugs are just
low-hanging fruit, which both simulation and formal checking are good at finding! The key difference
between formal checking and simulation is that a formal approach explores all possible next states,
albeit slowly, whereas a simulation explores a single pathmore rapidly. A simulation can be partly
formal, using busmonitors for dynamic validation and CRV (Section 7.3.2) to create a stimulus.

Simulation is effective at finding bugs that can be observed only in system states that takemany
cycles to reach. Comparedwithmodel checking, which tends to explore each clock cycle exhaustively
before progressing to the next, a simulation can rapidly executemany clock cycles and reach such
deep states. However, this may require the careful generation of a random stimulus or even a
manually constructed stimulus. If a stimulus can be created that is expected to reach such buggy deep
states, then it may also be possible to create constraints that describe the corresponding set of states
and use these to beginmodel checking from a constrained non-reset state. Although such an analysis
will not provide an exhaustive proof, it is often a very effective bug-hunting technique.

378

Chapter 7 | FormalMethods and Assertion-based Design

Once the early low-hanging bugs are fixed, a formal proof may bemore effective at finding the
remainder. These tend to lurk in unusual corner cases, where particular alignments or conjunctions of
conditions are not handled correctly.

A simulation is generally easier to understand. A simulationmeasures performance. It can produce a
golden output that can be compared against a stored result to give a pass or fail. Alternatively, it is
common to compute a CRC or other hash digest of themain outputs (Section 9.1.1) using a few
additional lines of RTL. The digest is comparedwith a known good value at the end of the simulation
to likewise give a pass or fail.

The benefits of formal techniques in theory (and challenges in practice):

We capture what the system is supposed to do.

They are theoretically complete (but how canwe define or determine this?) (Section 7.1.3).

They are scalable (but tools are limited in practice).

Rare corner situations in the exponential state space (unusual conjunctions of events) are covered.

Although extensive simulation is time-consuming, it may not be exhaustive. Nonetheless simulations
are needed for:

performance analysis and general design confidence

generating some production test vectors (Section 8.8.2).

Most formal tools fail to span the hardware/software divide adequately, whichmeans that if a
property relies on complex or custom interactions between the hardware and software, then proving
correctness may be difficult. The general approach for fully certified systems, like the CakeML stack
[9], is to use layers of proven abstractions, with the principal abstraction being that the hardware
correctly implements the ISA semantics of the programmer’s model. Hence, the proof that the
program is correct assumes that the hardware is correct, which is verified independently.
Alternatively, for very small microcontroller applications, both the ISA description and the program
can be converted to a single formal representation [10].

In practice, simulation and formal tools symbiotically feed each other in the verification flow:

If a counterexample is found by a formal method, it is often output in a form that can constrain the
simulation stimulus. This means that the simulator can rapidly reproduce the bug. Engineers find it
easier to analyse bugs with a familiar simulator. For instance, the net waveforms and design
hierarchymay be presented in amore readable form.

379

Modern SoCDesign

A bug found by a simulator can be used for a new regression test associated with the bug to ensure
that the fix remains fixed. Also, the state trajectory can be extended into those corners that are
hard to reach in a simulation.

Given the scalability issues of formal checking, bugs that require many cycles of activity before
they occurmay be difficult or impossible to find usingmodel checking, butmay be found during long
simulation runs. In some cases, triaging a simulation trace can reveal the key events that led to the
bug. For example, a bugmay occur whenever a transaction of type A is initiated before an in-flight
transaction of type B completes on the interconnect. Such events can be expressed as cover
properties, which guide themodel checker in a semi-exhaustive bug-huntingmode. Themodel
checker searches for the first event (start of transaction B) and, once found, it uses the generalised
state for that as the initial state of a new exhaustive search. In this way, a model checker can reach
deeper states thanwith an exhaustive search from the reset. If a deep bug has taken large amounts
of simulation to discover, this technique can be useful for finding related bugs. The technique is also
applicable to post-silicon debugging, where complete traces are not available, but a few key state
values can be extracted. These then form the cover points and used to reproduce a complete failure
trace with a formal approach.

7.4 Property Specification Language
The property specification language (PSL)was defined by a consortium of EDA companies working
within the Accellera trade body and finally standardised as IEEE 1850 [4]. It has several concrete
syntaxes for embedding in different languages, such as Verilog, VHDL and SystemC. Each concrete
syntax is a ‘sugaring’ of standard temporal algebra constructs, as the original name for PSLwas ‘Sugar’.

The core of PSL is a linear-time temporal logic algebra designed for RTL engineering. In a linear-time
temporal algebra, path properties relate a state to its successors and predecessors. Each state has
just one successor. PSL also defines an optional branching extension, which goes beyond this core by
allowing a state to havemultiple successors. This results in branching-time temporal logic, which is a
form of combinational tree logic. Branching time is required if an assertion explicitly ranges over all
possible futures. The core of the linear-time language is compatible with dynamic validation whereas
the optional branching extension requires a suitable formal proof engine (model checker or theorem
prover).

Consider the two PSL examples in Figure 7.4. The assertions start with a label that is a textual name,
which is reported in any failuremessages alongside the conventional line number and file name of the
failing assertion. The rd_or_wr_1 assertion fails on any clock cycle where both the read and write
nets hold. This is a state property inside a safety assertion. The req_grant_2 assertion uses temporal
operators and is a path property. It states that on any clock edgewhere the req net holds, the grant
net will hold in one of the clock cycles starting two, three or four cycles later.

380

Chapter 7 | FormalMethods and Assertion-based Design

Assertion label

Verification directive
(assert, fairness, cover,

assume, ...)
Leading temporal

quantifier

rd_or_wr_1: assert never (read && write)
req_grant_2: assert always (req -> next_e[2:4] (grant))

Qualifiers
such as clock edge

@(posedge clk);
@(posedge clk);

Temporal expression to be checked
(ranging from a simple state expression

to a complex temporal expression)

Figure 7.4 Two simple PSL assertions

The verification directive comes after the assertion label. In our examples, it is assert. Three further
directives are worth highlighting. They each have the same syntactic form as the assert directive:

The cover directive defines a property that should be included in coverage reports (Section 7.1.1).
In dynamic validation, the number of times it is encountered is reported, with a warning if this is
zero. For a static proof, it can be reported whether the property holds in the reachable trajectory
space, which is the set of all paths taken between all reachable states.

The argument to an assume directive is assumed to always hold true in any static verification run.
This directivemust be used carefully, since anything false that is assumed, or any pair of
assumptions that contradict each other, in theory, would allow any result at all to be proved
(technically, this is an implication with an invalid antecedent). However, the tools typically issue a
warning if they detect a completely incompatible set of assumptions.

The argument to a fairness directive defines a point in the live set that is assumed during liveness
property checking (Section 7.2).

After the verification directive comes the property to be checked. This tends to start with a leading
temporal quantifier but many forms are possible, including always, eventually, in the next step,
in at least one possible future and various forms of before and until. These can be nested
inside each other, leading to complicated expressions that are very hard to understand. Many of them
can be expressed in terms of others, somost of them are not strictly needed. The choice of which to
support primitively is a language design issue. PSL includes about 31 in its core set, with a further 16
in the optional branching extension. It also provides the sequence implication operators, |-> and |=>,
which wewill cover shortly.

In most simple cases, an assertion is a simple safety or liveness assertion. It has a leading temporal
quantifier, as in the two examples above, which used always and never. The always quantifier
introduces a safety property. The following expressionmust hold every time the qualifying expression
holds. The never directive behaves the same as an always quantifier but with a negated argument.
The eventually! directive introduces a liveness property that relates to the future. It is suffixedwith
a bang sign to indicate that it is a so-called strong property that cannot be (fully) checked in a
simulation. A liveness assertion does not always start with eventually!, as that keyword can be in

381

Modern SoCDesign

A bug found by a simulator can be used for a new regression test associated with the bug to ensure
that the fix remains fixed. Also, the state trajectory can be extended into those corners that are
hard to reach in a simulation.

Given the scalability issues of formal checking, bugs that require many cycles of activity before
they occurmay be difficult or impossible to find usingmodel checking, butmay be found during long
simulation runs. In some cases, triaging a simulation trace can reveal the key events that led to the
bug. For example, a bugmay occur whenever a transaction of type A is initiated before an in-flight
transaction of type B completes on the interconnect. Such events can be expressed as cover
properties, which guide themodel checker in a semi-exhaustive bug-huntingmode. Themodel
checker searches for the first event (start of transaction B) and, once found, it uses the generalised
state for that as the initial state of a new exhaustive search. In this way, a model checker can reach
deeper states thanwith an exhaustive search from the reset. If a deep bug has taken large amounts
of simulation to discover, this technique can be useful for finding related bugs. The technique is also
applicable to post-silicon debugging, where complete traces are not available, but a few key state
values can be extracted. These then form the cover points and used to reproduce a complete failure
trace with a formal approach.

7.4 Property Specification Language
The property specification language (PSL)was defined by a consortium of EDA companies working
within the Accellera trade body and finally standardised as IEEE 1850 [4]. It has several concrete
syntaxes for embedding in different languages, such as Verilog, VHDL and SystemC. Each concrete
syntax is a ‘sugaring’ of standard temporal algebra constructs, as the original name for PSLwas ‘Sugar’.

The core of PSL is a linear-time temporal logic algebra designed for RTL engineering. In a linear-time
temporal algebra, path properties relate a state to its successors and predecessors. Each state has
just one successor. PSL also defines an optional branching extension, which goes beyond this core by
allowing a state to havemultiple successors. This results in branching-time temporal logic, which is a
form of combinational tree logic. Branching time is required if an assertion explicitly ranges over all
possible futures. The core of the linear-time language is compatible with dynamic validation whereas
the optional branching extension requires a suitable formal proof engine (model checker or theorem
prover).

Consider the two PSL examples in Figure 7.4. The assertions start with a label that is a textual name,
which is reported in any failuremessages alongside the conventional line number and file name of the
failing assertion. The rd_or_wr_1 assertion fails on any clock cycle where both the read and write
nets hold. This is a state property inside a safety assertion. The req_grant_2 assertion uses temporal
operators and is a path property. It states that on any clock edgewhere the req net holds, the grant
net will hold in one of the clock cycles starting two, three or four cycles later.

380

Chapter 7 | FormalMethods and Assertion-based Design

Assertion label

Verification directive
(assert, fairness, cover,

assume, ...)
Leading temporal

quantifier

rd_or_wr_1: assert never (read && write)
req_grant_2: assert always (req -> next_e[2:4] (grant))

Qualifiers
such as clock edge

@(posedge clk);
@(posedge clk);

Temporal expression to be checked
(ranging from a simple state expression

to a complex temporal expression)

Figure 7.4 Two simple PSL assertions

The verification directive comes after the assertion label. In our examples, it is assert. Three further
directives are worth highlighting. They each have the same syntactic form as the assert directive:

The cover directive defines a property that should be included in coverage reports (Section 7.1.1).
In dynamic validation, the number of times it is encountered is reported, with a warning if this is
zero. For a static proof, it can be reported whether the property holds in the reachable trajectory
space, which is the set of all paths taken between all reachable states.

The argument to an assume directive is assumed to always hold true in any static verification run.
This directivemust be used carefully, since anything false that is assumed, or any pair of
assumptions that contradict each other, in theory, would allow any result at all to be proved
(technically, this is an implication with an invalid antecedent). However, the tools typically issue a
warning if they detect a completely incompatible set of assumptions.

The argument to a fairness directive defines a point in the live set that is assumed during liveness
property checking (Section 7.2).

After the verification directive comes the property to be checked. This tends to start with a leading
temporal quantifier but many forms are possible, including always, eventually, in the next step,
in at least one possible future and various forms of before and until. These can be nested
inside each other, leading to complicated expressions that are very hard to understand. Many of them
can be expressed in terms of others, somost of them are not strictly needed. The choice of which to
support primitively is a language design issue. PSL includes about 31 in its core set, with a further 16
in the optional branching extension. It also provides the sequence implication operators, |-> and |=>,
which wewill cover shortly.

In most simple cases, an assertion is a simple safety or liveness assertion. It has a leading temporal
quantifier, as in the two examples above, which used always and never. The always quantifier
introduces a safety property. The following expressionmust hold every time the qualifying expression
holds. The never directive behaves the same as an always quantifier but with a negated argument.
The eventually! directive introduces a liveness property that relates to the future. It is suffixedwith
a bang sign to indicate that it is a so-called strong property that cannot be (fully) checked in a
simulation. A liveness assertion does not always start with eventually!, as that keyword can be in

381

Modern SoCDesign

the consequent of an implication or it can be expressedwithout the keyword at all, using arbitrary
repetition followed by amatch.

Finally, there is a sensitivity guard, such as a clock edge and any enable signals to denote at which time
or under what conditions the assertion should be expected to hold. The assertion is ignored at other
times. The enable signals can equally well be factored into the property expression. A report clause is
a string that is printed on success or failure.

7.4.1 PSL Four-level Syntax Structure
Since PSL is embedded in the concrete syntax of several other languages, the details vary from one
embedding to another. However, all implementations use roughly the same abstract syntax, which has
four principal layers:

1. Modelling layer: This is the lowest level. Essentially, it is the surrounding language. It is used in
particular for creating state predicates that range over the nets and variables of the host language.
However, other auxiliary structures are sometimes needed to support verification or constrain a
stimulus, such as for the FIFO example in Section 7.6.4. Note that PSL cannot understand
non-Boolean constructs in the DUT. Hence, scalar values must be reduced to Booleans and any
predicates, such as comparing scalars with each other or constants, must be defined in this layer.
Hence, the primary and essential purpose of this layer is to create state predicates that the
temporal logic can range over. For instance:

reg [7:0] temperature;
wire temp_low = temperature <= 8'd2;
wire temp_ok = temperature < 8'd99;

A new form added to the host language by themodelling layer is non-deterministic choice using
the union keyword. This binary operator allows a simulator to randomly choose one of two values
as part of CRV (Section 7.3.2). For example:

reg [7:0] temperature; // Explore a random-walk in 1-D
always @posedge(clk) temperature <= (temperature + 1) union (temperature - 1);

This construct is more powerful in a formal proof since the tool will explore every possible
combination of non-deterministic choices for the design.

2. Boolean layer: All high-level languages and RTLs have their own syntax for Boolean operators and
this can be usedwithin themodelling layer. However, Boolean combinations can also be formed
using the Boolean layer. The concrete syntax of this layer is typically identical to that of the
surrounding language to avoid confusion, whichmeans the Boolean layer is commonly not needed.

382

Chapter 7 | FormalMethods and Assertion-based Design

3. Temporal layer: This is used to define named sub-expressions and properties that use all the
temporal quantifiers and operators. The following example defines two SERES sequences and then
defines a property with them using a sequence implication. These terms are defined later in this
chapter.

wire en = ifc_req && ifc_ack; // Conjunction of standard synch fwd and rev handshakes

// Sequence definitions
sequence s0 is { (en && ifc_dfirst); (en[*1 to 100]); (en && ifc_dlast) };

sequence s1 is { (en && ifc_dfirst); (en[*1 to 100]); (en && ifc_aborted) };

// Property definition uses previously defined sequences s0 and s1
property p1 is ifc_end_of_reset |=> {s0; s1};

demo1: assert always p1 @(posedge clk);

4. Verification layer: This implements the declarative language. It includes themain keywords, such
as assert and cover.

7.4.2 Extended Regular Expressions and SERES
One of themost distinctive features of PSL are Sugar extended regular expressions (SERES), which
are a form of regular expression. As said, Sugar was the original name for PSL. These are also known
as sequences.

Table 7.1 The three principal regular expression operators and concise derived shorthands

Syntax Fundamental Description
{A;B} Core Semicolon denotes sequence concatenation
{A[*]} Core A postfix asterisk denotes arbitrary repetition
{A|B} Core Vertical bar (stile) denotes alternation
{A[+]} Derived One ormore occurrences of A
{A[*n]} Derived Repeat n times
{A[=n]} Derived Repeat n times non-consecutively
{A[->n]} Derived As =n but ending on the last occurrence
{A:B} Derived Fusion concatenation (last of A occurs during first of B)

There are three primary operators for everyday regular expressions in computer science:
concatenation, alternation and arbitrary repetition (Table 7.1). Accordingly, these are the three core
constructs in SERES, but with catenation being interpreted in the time domain, advancing one token
for each event detected by the sensitivity clause. A SERES is defined inside curly braces. Like everyday
regular expressions, a large number of syntactic shorthands are built on top of the core operators,
such as {A[+]}, which is short for {A;A[*]}. Bothmean one ormore occurrences of A. Likewise,
{B[3]} is short for three consecutive occurrences of B, so is short for {B;B;B}. As a third example,
{C[->3]} is short for skipping to the third next occurrence of C, but with gaps allowed, whichmaps to
{C;1[*];C;1[*];C}. In these examples, A, B and C could be Boolean expressions from themodelling

383

Modern SoCDesign

the consequent of an implication or it can be expressedwithout the keyword at all, using arbitrary
repetition followed by amatch.

Finally, there is a sensitivity guard, such as a clock edge and any enable signals to denote at which time
or under what conditions the assertion should be expected to hold. The assertion is ignored at other
times. The enable signals can equally well be factored into the property expression. A report clause is
a string that is printed on success or failure.

7.4.1 PSL Four-level Syntax Structure
Since PSL is embedded in the concrete syntax of several other languages, the details vary from one
embedding to another. However, all implementations use roughly the same abstract syntax, which has
four principal layers:

1. Modelling layer: This is the lowest level. Essentially, it is the surrounding language. It is used in
particular for creating state predicates that range over the nets and variables of the host language.
However, other auxiliary structures are sometimes needed to support verification or constrain a
stimulus, such as for the FIFO example in Section 7.6.4. Note that PSL cannot understand
non-Boolean constructs in the DUT. Hence, scalar values must be reduced to Booleans and any
predicates, such as comparing scalars with each other or constants, must be defined in this layer.
Hence, the primary and essential purpose of this layer is to create state predicates that the
temporal logic can range over. For instance:

reg [7:0] temperature;
wire temp_low = temperature <= 8'd2;
wire temp_ok = temperature < 8'd99;

A new form added to the host language by themodelling layer is non-deterministic choice using
the union keyword. This binary operator allows a simulator to randomly choose one of two values
as part of CRV (Section 7.3.2). For example:

reg [7:0] temperature; // Explore a random-walk in 1-D
always @posedge(clk) temperature <= (temperature + 1) union (temperature - 1);

This construct is more powerful in a formal proof since the tool will explore every possible
combination of non-deterministic choices for the design.

2. Boolean layer: All high-level languages and RTLs have their own syntax for Boolean operators and
this can be usedwithin themodelling layer. However, Boolean combinations can also be formed
using the Boolean layer. The concrete syntax of this layer is typically identical to that of the
surrounding language to avoid confusion, whichmeans the Boolean layer is commonly not needed.

382

Chapter 7 | FormalMethods and Assertion-based Design

3. Temporal layer: This is used to define named sub-expressions and properties that use all the
temporal quantifiers and operators. The following example defines two SERES sequences and then
defines a property with them using a sequence implication. These terms are defined later in this
chapter.

wire en = ifc_req && ifc_ack; // Conjunction of standard synch fwd and rev handshakes

// Sequence definitions
sequence s0 is { (en && ifc_dfirst); (en[*1 to 100]); (en && ifc_dlast) };

sequence s1 is { (en && ifc_dfirst); (en[*1 to 100]); (en && ifc_aborted) };

// Property definition uses previously defined sequences s0 and s1
property p1 is ifc_end_of_reset |=> {s0; s1};

demo1: assert always p1 @(posedge clk);

4. Verification layer: This implements the declarative language. It includes themain keywords, such
as assert and cover.

7.4.2 Extended Regular Expressions and SERES
One of themost distinctive features of PSL are Sugar extended regular expressions (SERES), which
are a form of regular expression. As said, Sugar was the original name for PSL. These are also known
as sequences.

Table 7.1 The three principal regular expression operators and concise derived shorthands

Syntax Fundamental Description
{A;B} Core Semicolon denotes sequence concatenation
{A[*]} Core A postfix asterisk denotes arbitrary repetition
{A|B} Core Vertical bar (stile) denotes alternation
{A[+]} Derived One ormore occurrences of A
{A[*n]} Derived Repeat n times
{A[=n]} Derived Repeat n times non-consecutively
{A[->n]} Derived As =n but ending on the last occurrence
{A:B} Derived Fusion concatenation (last of A occurs during first of B)

There are three primary operators for everyday regular expressions in computer science:
concatenation, alternation and arbitrary repetition (Table 7.1). Accordingly, these are the three core
constructs in SERES, but with catenation being interpreted in the time domain, advancing one token
for each event detected by the sensitivity clause. A SERES is defined inside curly braces. Like everyday
regular expressions, a large number of syntactic shorthands are built on top of the core operators,
such as {A[+]}, which is short for {A;A[*]}. Bothmean one ormore occurrences of A. Likewise,
{B[3]} is short for three consecutive occurrences of B, so is short for {B;B;B}. As a third example,
{C[->3]} is short for skipping to the third next occurrence of C, but with gaps allowed, whichmaps to
{C;1[*];C;1[*];C}. In these examples, A, B and C could be Boolean expressions from themodelling

383

Modern SoCDesign

layer, or any other PSL property, including nested SERES and expressions with further temporal
quantifiers such as eventually!. Variants of the repetition operator accept ranges. For instance,
{D[2:4]} is short for the alternation {D[2]|D[3]|D[4]}. The repetition counts and rangesmust be
compile-time constants for most of today’s tools (i.e. they cannot depend on quantified variables).

Table 7.2 Summary of the main SERES temporal conjunction and sequencing dyadic operators

Operator Syntax Description
Simple conjunction A & B A and B finishmatching at once
Length-matching conjunction A && B A and B occur at once with common duration (lengthmatching)
Simple conjunction A within B A occurred at some point during B
Strong positive sequencing A until B A held at all times until B started
Weak positive sequencing A before B A held before B held
Sequence implication A |=> B Whenever A finishes, B immediately starts
Fusion implication A |-> B The same, but with the last event of B coincident with the first of A

The disjunction (OR) of a pair of sequences is supported by the SERES alternation operator, but there
are numerous forms of conjunction and sequencing that combine a pair of SERES. Thesemay be
nested for more complex combinations. Table 7.2 shows three conjunction and four sequencing
operators. The conjunction operators take two operands and, in essence, run twomatching
sub-operations in parallel. The various operators differ in terms of the truth function that combines
the output of the sub-operations. The sequencing operators again run two sub-operations, but
instead of being in parallel, they run one after the other. See [4, 11] for full details, but wewill shortly
use some of these in our examples. For convenience, as shown in Table 7.3, PSL defines some simple
path-to-statemacros, many of which resemble similar built-in primitives in VHDL.

Table 7.3 Some built-in primitive macros in PSL

Macro function Description
rose(X) X changed from zero to one
fell(X) X changed from one to zero
stable(X) X did not change
changed(X) X did change
onehot(X) X is a power of 2
onehot0(X) X is zero or a power of 2

7.4.3 SystemVerilog Assertions
PSLwas lightly modified to become the language SystemVerilog Assertions (SVA) [5]. For instance,
##n is used in a sequence instead of next[n] to wait for n sensitivity events (typically, clock cycles).
Moreover, A[*] in PSL, which stands for any number of occurrences of A, must be writtenmore
verbosely as the consecutive range A[*0:$], meaning a repeat count in the range zero to infinity,
where the dollar sign denotes infinity (or end of the simulation). The choice of temporal quantifiers
and operators selected for SVA is slightly different from PSL, but the core language has similar
expressibility. SVA does not have an optional branching extension, but it provides better support for
assertion variables. Wewill use SVA examples, rather than PSL, in the rest of this chapter.

384

Chapter 7 | FormalMethods and Assertion-based Design

If an SVA assertion fails, rather than simply creating a log entry or stopping the simulation, a System
Verilog action block enables the result of an assertion to trigger further SystemVerilog code, so that
assertion handlers or recovery actions can be implementedmore easily in SystemVerilog.
Additionally, the sensitivity language for SystemVerilog, which is normally just used for detecting
clock edge and reset conditions, is extended to range over complex temporal logic expressions using
the SVA syntax.

7.5 Formal Interface Protocol Checkers
A formal VIP block is supplied by an IP block vendor in the sameway as a regular IP block, but instead
of providing an instantiable subsystem, it provides a set of verification conditions or test vectors. A
VIP is often codedmainly in SystemVerilog, following UVM (Section 8.8.1). VIPs are available for all
widely used bus standards, including DRAM, AXI, Ethernet, PCIe, USB, SATA, SD card andHDMI. As
well as formal specifications, such an IP block can include test bench components, such as synthetic
data sources that create an endless stream of traffic conforming to a protocol.

A bus usually conforms to a well-established protocol, and investment in a formal specification of the
protocol is normally worthwhile. When verifying a SoC interconnect, the interface protocols provide
a good layer of abstraction, which can be used to verify the properties of the interconnect. IP blocks
connected via a standard protocol can be treated as black boxes. For example, reasoning about
interconnect properties relating to the correct delivery of packets from one location to another does
not require information about the detailed behaviour of the connected IP blocks. With appropriate
models of the connected blocks, including fairness assumptions, constraints on the types of packets,
etc., it should be possible to verify the significant behaviour of the interconnect without knowing the
functionality of the IP block.

Several families of commercial products have formal protocol checkers (PCs). These check properties
derived from the protocol specification. There are twomain types of PC: interface PCs and system
PCs. An interface PC inspects transactions at an interface in isolation and ensures that each one
conforms to the protocol specification. Thesemay track some state at a single interface. For example,
a response received at the interfacemay be deemed illegal based on the known history of requests at
that interface.

A systemPC ensures that the transactions at an interface are consistent with the known system
state. For example, a cache coherency protocol may require that an IP block does not respond to a
read request with valid data if it has received an invalidation request. System PCsmodel more
complex dependencies for transactions that interface with checkers.

Formal PCs can be configured in one of twomainmodes. These reflect whether the IP is a producer or
a consumer. In practice, this involves determining which properties of the PC are assumed andwhich
are asserted. It is a form of verification based on assumptions and guarantees. If an IP block has been
verified against a formal PC in producer mode, then it can be assumed that one can verify the
interconnect with the same PC in consumermodewith the IP block being absent or treated as a black

385

Modern SoCDesign

layer, or any other PSL property, including nested SERES and expressions with further temporal
quantifiers such as eventually!. Variants of the repetition operator accept ranges. For instance,
{D[2:4]} is short for the alternation {D[2]|D[3]|D[4]}. The repetition counts and rangesmust be
compile-time constants for most of today’s tools (i.e. they cannot depend on quantified variables).

Table 7.2 Summary of the main SERES temporal conjunction and sequencing dyadic operators

Operator Syntax Description
Simple conjunction A & B A and B finishmatching at once
Length-matching conjunction A && B A and B occur at once with common duration (lengthmatching)
Simple conjunction A within B A occurred at some point during B
Strong positive sequencing A until B A held at all times until B started
Weak positive sequencing A before B A held before B held
Sequence implication A |=> B Whenever A finishes, B immediately starts
Fusion implication A |-> B The same, but with the last event of B coincident with the first of A

The disjunction (OR) of a pair of sequences is supported by the SERES alternation operator, but there
are numerous forms of conjunction and sequencing that combine a pair of SERES. Thesemay be
nested for more complex combinations. Table 7.2 shows three conjunction and four sequencing
operators. The conjunction operators take two operands and, in essence, run twomatching
sub-operations in parallel. The various operators differ in terms of the truth function that combines
the output of the sub-operations. The sequencing operators again run two sub-operations, but
instead of being in parallel, they run one after the other. See [4, 11] for full details, but wewill shortly
use some of these in our examples. For convenience, as shown in Table 7.3, PSL defines some simple
path-to-statemacros, many of which resemble similar built-in primitives in VHDL.

Table 7.3 Some built-in primitive macros in PSL

Macro function Description
rose(X) X changed from zero to one
fell(X) X changed from one to zero
stable(X) X did not change
changed(X) X did change
onehot(X) X is a power of 2
onehot0(X) X is zero or a power of 2

7.4.3 SystemVerilog Assertions
PSLwas lightly modified to become the language SystemVerilog Assertions (SVA) [5]. For instance,
##n is used in a sequence instead of next[n] to wait for n sensitivity events (typically, clock cycles).
Moreover, A[*] in PSL, which stands for any number of occurrences of A, must be writtenmore
verbosely as the consecutive range A[*0:$], meaning a repeat count in the range zero to infinity,
where the dollar sign denotes infinity (or end of the simulation). The choice of temporal quantifiers
and operators selected for SVA is slightly different from PSL, but the core language has similar
expressibility. SVA does not have an optional branching extension, but it provides better support for
assertion variables. Wewill use SVA examples, rather than PSL, in the rest of this chapter.

384

Chapter 7 | FormalMethods and Assertion-based Design

If an SVA assertion fails, rather than simply creating a log entry or stopping the simulation, a System
Verilog action block enables the result of an assertion to trigger further SystemVerilog code, so that
assertion handlers or recovery actions can be implementedmore easily in SystemVerilog.
Additionally, the sensitivity language for SystemVerilog, which is normally just used for detecting
clock edge and reset conditions, is extended to range over complex temporal logic expressions using
the SVA syntax.

7.5 Formal Interface Protocol Checkers
A formal VIP block is supplied by an IP block vendor in the sameway as a regular IP block, but instead
of providing an instantiable subsystem, it provides a set of verification conditions or test vectors. A
VIP is often codedmainly in SystemVerilog, following UVM (Section 8.8.1). VIPs are available for all
widely used bus standards, including DRAM, AXI, Ethernet, PCIe, USB, SATA, SD card andHDMI. As
well as formal specifications, such an IP block can include test bench components, such as synthetic
data sources that create an endless stream of traffic conforming to a protocol.

A bus usually conforms to a well-established protocol, and investment in a formal specification of the
protocol is normally worthwhile. When verifying a SoC interconnect, the interface protocols provide
a good layer of abstraction, which can be used to verify the properties of the interconnect. IP blocks
connected via a standard protocol can be treated as black boxes. For example, reasoning about
interconnect properties relating to the correct delivery of packets from one location to another does
not require information about the detailed behaviour of the connected IP blocks. With appropriate
models of the connected blocks, including fairness assumptions, constraints on the types of packets,
etc., it should be possible to verify the significant behaviour of the interconnect without knowing the
functionality of the IP block.

Several families of commercial products have formal protocol checkers (PCs). These check properties
derived from the protocol specification. There are twomain types of PC: interface PCs and system
PCs. An interface PC inspects transactions at an interface in isolation and ensures that each one
conforms to the protocol specification. Thesemay track some state at a single interface. For example,
a response received at the interfacemay be deemed illegal based on the known history of requests at
that interface.

A systemPC ensures that the transactions at an interface are consistent with the known system
state. For example, a cache coherency protocol may require that an IP block does not respond to a
read request with valid data if it has received an invalidation request. System PCsmodel more
complex dependencies for transactions that interface with checkers.

Formal PCs can be configured in one of twomainmodes. These reflect whether the IP is a producer or
a consumer. In practice, this involves determining which properties of the PC are assumed andwhich
are asserted. It is a form of verification based on assumptions and guarantees. If an IP block has been
verified against a formal PC in producer mode, then it can be assumed that one can verify the
interconnect with the same PC in consumermodewith the IP block being absent or treated as a black

385

Modern SoCDesign

box. Alternatively, if both the producer and consumer are present in full, then the PCwill be
configuredwith all properties as assertions. In this situation, any assumptions would potentially
over-constrain the design andmask bugs.

BusMonitor and Interface Checker Example
The upper diagram in Figure 7.5 illustrates a bus PC that connects to a classical system bus. The lower
diagram showsmultiple interface checkers, as might be usedwith amodern switched SoC bus. In
either case, the checkers monitor the net-level transitions during a simulation run. The checker can
report protocol violations, keep statistics regarding datamovement and check coverage for each form
of transaction that can potentially be conveyed.

Device 1 Device 2 Device N Bus
monitor

Error

Coverage
statistics

System bus

Device 1 Interface
checker

Switching fabric

Device 2 Device NInterface
checker

Interface
checker

Figure 7.5 Dynamic validation: Monitoring bus operation with an RTL checker (top) or interface PCs (bottom)

There are numerous potential implementation forms and uses for such checkers:

They can be implemented formally in PSL or SVA for dynamic validation in a proof of correctness.

They can be compiled from a formal specification to an RTL-level FSM, again for dynamic validation.
This is useful if SystemC or an old simulator (e.g. a Verilog interpreter) is being used that does not
natively support PSL or other temporal logic. All temporal logic constructs can be compiled to a
hardware FSM that can detect property satisfaction and violation.

They can be compiled to RTL, synthesised into silicon and used at runtime to provide assurances in
a safety-critical application.

When used for dynamic validation, coverage and error outputs are updated as execution progresses.
Safety and liveness properties differ in how they can be reported:

For a safety property, violations can be indicated immediately, as soon as an illegal state or
sequence is detected.

For a liveness property, themonitor can indicate whether it has been tested at least once and also
whether there is a pending antecedent that is yet to be satisfied.

386

Chapter 7 | FormalMethods and Assertion-based Design

Q0
Q1

Start dfirst && !dlast

!dfirst && dlast

req
rdy

dfirst
dlast

data[7:0]
req
rdy

dfirst
dlast

data[7:0]

!dfirst
&&

!dlastdfirst
&&

dlast

Interface checker

Figure 7.6 Framed standard synchronous connection, with interface checker instance (left) and allowable protocol transitions (right). Only allowed qualified
edges are shown. Any other qualified transitions are protocol errors

The left-hand side of Figure 7.6 is an example of a simple concrete interface checker. The two
components communicate using the framed standard synchronous interface from Section 3.1.3. An
interface checkermonitors the protocol. Under the protocol, byte-wide data are transferred only on
clock cycles where both req and rdy hold. The dfirst and dlast nets convey an additional packet
framing protocol. The statemachine for the framing protocol is show on the right-hand side of the
diagram. In a cycle where both dfirst and dlast hold, a single-byte frame is transferred. Otherwise,
these two nets denote the first and last bytes of a frame, respectively. There are three protocol
constraints, C1 to C3. In natural language, they can be expressed as:

C1: It is illegal to start a framewhile one is in progress.

C2: It is illegal to end a frame that has not started.

C3: It is illegal to transfer a byte that is not part of a frame.

Figure 7.7 shows a suitable fragment of a VIP block in the form of an RTL PC that can be connected to
any such interface. This is fairly easy for an experienced RTL engineer to write. The checker uses only
Verilog 2000 constructs. It indicates which constraint was violated with a warningmessage and an
error code stored in a local variable that can be traced in a waveform viewer.

Figure 7.8 is an alternative to an RTL checker. It uses SVA, which does not have the various until and
before operators of PSL, so some temporal expressions are a little more verbose. The upper
assertion, sva_transaction, allowsmulti-word frames, using sequence implication (Table 7.2).
dfirstmust be followed by a dlast after zero or more cycles without another dfirst. However, this
assertion does not detect C3 errors (bytes outside any frame). The lower assertion, good_Q0, relates
to behaviour after a reset or the end of a previous frame. It insists that the only actions allowable at
those points are an idle cycle or a cycle where dfirst holds.

387

Modern SoCDesign

box. Alternatively, if both the producer and consumer are present in full, then the PCwill be
configuredwith all properties as assertions. In this situation, any assumptions would potentially
over-constrain the design andmask bugs.

BusMonitor and Interface Checker Example
The upper diagram in Figure 7.5 illustrates a bus PC that connects to a classical system bus. The lower
diagram showsmultiple interface checkers, as might be usedwith amodern switched SoC bus. In
either case, the checkers monitor the net-level transitions during a simulation run. The checker can
report protocol violations, keep statistics regarding datamovement and check coverage for each form
of transaction that can potentially be conveyed.

Device 1 Device 2 Device N Bus
monitor

Error

Coverage
statistics

System bus

Device 1 Interface
checker

Switching fabric

Device 2 Device NInterface
checker

Interface
checker

Figure 7.5 Dynamic validation: Monitoring bus operation with an RTL checker (top) or interface PCs (bottom)

There are numerous potential implementation forms and uses for such checkers:

They can be implemented formally in PSL or SVA for dynamic validation in a proof of correctness.

They can be compiled from a formal specification to an RTL-level FSM, again for dynamic validation.
This is useful if SystemC or an old simulator (e.g. a Verilog interpreter) is being used that does not
natively support PSL or other temporal logic. All temporal logic constructs can be compiled to a
hardware FSM that can detect property satisfaction and violation.

They can be compiled to RTL, synthesised into silicon and used at runtime to provide assurances in
a safety-critical application.

When used for dynamic validation, coverage and error outputs are updated as execution progresses.
Safety and liveness properties differ in how they can be reported:

For a safety property, violations can be indicated immediately, as soon as an illegal state or
sequence is detected.

For a liveness property, themonitor can indicate whether it has been tested at least once and also
whether there is a pending antecedent that is yet to be satisfied.

386

Chapter 7 | FormalMethods and Assertion-based Design

Q0
Q1

Start dfirst && !dlast

!dfirst && dlast

req
rdy

dfirst
dlast

data[7:0]
req
rdy

dfirst
dlast

data[7:0]

!dfirst
&&

!dlastdfirst
&&

dlast

Interface checker

Figure 7.6 Framed standard synchronous connection, with interface checker instance (left) and allowable protocol transitions (right). Only allowed qualified
edges are shown. Any other qualified transitions are protocol errors

The left-hand side of Figure 7.6 is an example of a simple concrete interface checker. The two
components communicate using the framed standard synchronous interface from Section 3.1.3. An
interface checkermonitors the protocol. Under the protocol, byte-wide data are transferred only on
clock cycles where both req and rdy hold. The dfirst and dlast nets convey an additional packet
framing protocol. The statemachine for the framing protocol is show on the right-hand side of the
diagram. In a cycle where both dfirst and dlast hold, a single-byte frame is transferred. Otherwise,
these two nets denote the first and last bytes of a frame, respectively. There are three protocol
constraints, C1 to C3. In natural language, they can be expressed as:

C1: It is illegal to start a framewhile one is in progress.

C2: It is illegal to end a frame that has not started.

C3: It is illegal to transfer a byte that is not part of a frame.

Figure 7.7 shows a suitable fragment of a VIP block in the form of an RTL PC that can be connected to
any such interface. This is fairly easy for an experienced RTL engineer to write. The checker uses only
Verilog 2000 constructs. It indicates which constraint was violated with a warningmessage and an
error code stored in a local variable that can be traced in a waveform viewer.

Figure 7.8 is an alternative to an RTL checker. It uses SVA, which does not have the various until and
before operators of PSL, so some temporal expressions are a little more verbose. The upper
assertion, sva_transaction, allowsmulti-word frames, using sequence implication (Table 7.2).
dfirstmust be followed by a dlast after zero or more cycles without another dfirst. However, this
assertion does not detect C3 errors (bytes outside any frame). The lower assertion, good_Q0, relates
to behaviour after a reset or the end of a previous frame. It insists that the only actions allowable at
those points are an idle cycle or a cycle where dfirst holds.

387

Modern SoCDesign

module framed_standard_sync_monitor(
input reset,
input clk, // Clock input. ALL CONNECTIONS ARE INPUTS!
input req, // Request signal
input rdy, // Ready signal, for the reverse direction
input [7:0] data, // Data bus
input dfirst, // First word of packet indicator
input dlast); // Last word indicator

bit q1; integer error_flag;
always @(posedge clk)

if (reset) q1 = 0;
else begin
error_flag = 0;
if (req && rdy && !q1) begin

if (dfirst && !dlast) q1 = 1; // Frame start
else if (dlast && !dfirst) begin

$display("%m: %1t: C2: End outside of frame.", $time); error_flag = 2;
end

else if (!dlast && !dfirst) begin
$display("%m: %1t: C3: Byte outside a frame.", $time); error_flag = 3;
end

end
else if (req && rdy && q1) begin

if (!dfirst && dlast) q1 = 0; // Frame end
else if (dlast && dlast) begin

$display("%m: %1t: C1b: One-word frame during existing frame.", $time); error_flag = 1;
end

else if (!dlast && dfirst) begin
$display("%m: %1t: C1a: Frame start during existing frame.", $time); error_flag = 1;
end

end
end

endmodule

Figure 7.7 Example of a PC for the framed interface implemented using an RTL state machine

wire en = req && rdy;

// The transition from Q0 -> Q1 -> ... -> Q1 -> Q0:
sva_transaction: assert property (@(posedge clk)

((en && dfirst && !dlast) |=> (!en || (!dfirst && !dlast))[*0:$] ##0 (en && !dfirst && dlast)))

// Forbid any exit from Q0 except with dfirst:
good_Q0: assert property (@(posedge clk)

((en && dlast) || reset |=> (!(en && dfirst))[*0:$] ##0 (en && dfirst)))

Figure 7.8 Comparable example of the PC implemented with SVA. The ##0 form is an idiomatic marker that merely separates successive SERES components

388

Chapter 7 | FormalMethods and Assertion-based Design

7.6 Equivalence Checking
Oftenwe have two versions or implementations of a subsystem or component that we need to check
are equivalent. The two implementations can be expressed in a common language or different
languages. When different, either the designs can be converted to a common language with
translators or extractors, or else the checker tool can directly read in the various designs andmap
them internally. Several equivalence checking tasks are illustrated in Figure 8.1, which is a physical
flow diagram. An example translator is the netlist extractor used tomask polygons in Section 8.7.6.

There are two categories of tools for equivalence checking: those that compare only combinational
logic and those that can compare behaviour across flop boundaries. The former is known asBoolean
equivalence checking or logical equivalence checking (LEC)whilst the latter is sequential
equivalence checking (SEC). A special case of SEC isX-propagation checking, which is commonly
used to ensure that RTL don’t-care values do not affect the observable behaviour of a system. These
three techniques are described in the following sections.

7.6.1 Boolean Equivalence Checking
ABoolean equivalence problem can be expressed as follows: Do two functions produce the same
output? Boolean equivalence checking compares two implementations of a combinational structure
modulo the input conditions that are specifically denoted as don’t-care. It is a LEC problem. If
synthesis is constrained not to introduce any state re-encoding or D-typemigration (Section 4.4.2),
the next-state function of two implementations should be identical and hence, LEC can form the basis
of SEC. Otherwise, more advanced techniquesmust be used, as in Section 7.6.2. For instance, if a logic
synthesiser is usedwith state re-encoding disabled, the two versions for equivalence checking are:

the RTL input to the logic synthesiser

the gate-level netlist, output by the tool, post-synthesis.

A basic method for LEC, illustrated in Figure 7.9, is to create an equivalencemitre of the two designs
using a disjunction of XOR gate outputs. Then, a negation of themitre is fed into a SAT solver to see if
it can find any input conditions that produce a one on the output. Applying a SAT solver is a matter of
trying all input combinations, so has exponential cost in theory and is NP-complete. However,
specialist SAT solvers, such as zChaff [12], have variousmechanisms that can discover the hidden
structure in most real-world problems, so that they are normally quite quick at finding an answer,
taking hours instead of multiples of the lifetime of the universe. If a SAT solver reports that there are
no input combinations such that themitre indicates there is a functionality difference, then the
designs are equivalent.

In practice, synthesis tools may optimise the driving logic in ways that alter the combinational
behaviour. Themain example is the exploitation of don’t-care conditions. Often a don’t-care state can
be readily captured and expressed as another Boolean function of the input. The Boolean function is
called the don’t-care predicate. It can be inferred from synthesisable RTL from the reachable state

389

Modern SoCDesign

module framed_standard_sync_monitor(
input reset,
input clk, // Clock input. ALL CONNECTIONS ARE INPUTS!
input req, // Request signal
input rdy, // Ready signal, for the reverse direction
input [7:0] data, // Data bus
input dfirst, // First word of packet indicator
input dlast); // Last word indicator

bit q1; integer error_flag;
always @(posedge clk)

if (reset) q1 = 0;
else begin
error_flag = 0;
if (req && rdy && !q1) begin

if (dfirst && !dlast) q1 = 1; // Frame start
else if (dlast && !dfirst) begin

$display("%m: %1t: C2: End outside of frame.", $time); error_flag = 2;
end

else if (!dlast && !dfirst) begin
$display("%m: %1t: C3: Byte outside a frame.", $time); error_flag = 3;
end

end
else if (req && rdy && q1) begin

if (!dfirst && dlast) q1 = 0; // Frame end
else if (dlast && dlast) begin

$display("%m: %1t: C1b: One-word frame during existing frame.", $time); error_flag = 1;
end

else if (!dlast && dfirst) begin
$display("%m: %1t: C1a: Frame start during existing frame.", $time); error_flag = 1;
end

end
end

endmodule

Figure 7.7 Example of a PC for the framed interface implemented using an RTL state machine

wire en = req && rdy;

// The transition from Q0 -> Q1 -> ... -> Q1 -> Q0:
sva_transaction: assert property (@(posedge clk)

((en && dfirst && !dlast) |=> (!en || (!dfirst && !dlast))[*0:$] ##0 (en && !dfirst && dlast)))

// Forbid any exit from Q0 except with dfirst:
good_Q0: assert property (@(posedge clk)

((en && dlast) || reset |=> (!(en && dfirst))[*0:$] ##0 (en && dfirst)))

Figure 7.8 Comparable example of the PC implemented with SVA. The ##0 form is an idiomatic marker that merely separates successive SERES components

388

Chapter 7 | FormalMethods and Assertion-based Design

7.6 Equivalence Checking
Oftenwe have two versions or implementations of a subsystem or component that we need to check
are equivalent. The two implementations can be expressed in a common language or different
languages. When different, either the designs can be converted to a common language with
translators or extractors, or else the checker tool can directly read in the various designs andmap
them internally. Several equivalence checking tasks are illustrated in Figure 8.1, which is a physical
flow diagram. An example translator is the netlist extractor used tomask polygons in Section 8.7.6.

There are two categories of tools for equivalence checking: those that compare only combinational
logic and those that can compare behaviour across flop boundaries. The former is known asBoolean
equivalence checking or logical equivalence checking (LEC)whilst the latter is sequential
equivalence checking (SEC). A special case of SEC isX-propagation checking, which is commonly
used to ensure that RTL don’t-care values do not affect the observable behaviour of a system. These
three techniques are described in the following sections.

7.6.1 Boolean Equivalence Checking
ABoolean equivalence problem can be expressed as follows: Do two functions produce the same
output? Boolean equivalence checking compares two implementations of a combinational structure
modulo the input conditions that are specifically denoted as don’t-care. It is a LEC problem. If
synthesis is constrained not to introduce any state re-encoding or D-typemigration (Section 4.4.2),
the next-state function of two implementations should be identical and hence, LEC can form the basis
of SEC. Otherwise, more advanced techniquesmust be used, as in Section 7.6.2. For instance, if a logic
synthesiser is usedwith state re-encoding disabled, the two versions for equivalence checking are:

the RTL input to the logic synthesiser

the gate-level netlist, output by the tool, post-synthesis.

A basic method for LEC, illustrated in Figure 7.9, is to create an equivalencemitre of the two designs
using a disjunction of XOR gate outputs. Then, a negation of themitre is fed into a SAT solver to see if
it can find any input conditions that produce a one on the output. Applying a SAT solver is a matter of
trying all input combinations, so has exponential cost in theory and is NP-complete. However,
specialist SAT solvers, such as zChaff [12], have variousmechanisms that can discover the hidden
structure in most real-world problems, so that they are normally quite quick at finding an answer,
taking hours instead of multiples of the lifetime of the universe. If a SAT solver reports that there are
no input combinations such that themitre indicates there is a functionality difference, then the
designs are equivalent.

In practice, synthesis tools may optimise the driving logic in ways that alter the combinational
behaviour. Themain example is the exploitation of don’t-care conditions. Often a don’t-care state can
be readily captured and expressed as another Boolean function of the input. The Boolean function is
called the don’t-care predicate. It can be inferred from synthesisable RTL from the reachable state

389

Modern SoCDesign

Implementation A

Implementation B

Input
Stimulus

If any XOR
gate generates
a one for any

input condition
then A and B are not

the same.

Combinational
logic

function.

Combinational
logic

function.

MITRE

FAIL

Figure 7.9 Amitre compares the outputs from a pair of supposedly equivalent combinational components

space (Section 7.1.1) and fromRTL sites where an X is assigned to a net or from conditions not covered
in case statements. The input to a SAT solver is normally given in conjunctive normal form (CNF),
which is a list of clauses expressing a product of sums, such as (a+b).(c).(a+d). Hence, the negation
of the don’t-care predicate can be appended to the SAT solver input as additional CNF clauses so that
the FAIL output will not be satisfied in a don’t-care situation. However, in practice, the reachable state
space is a subset of that apparent fromRTL analysis due to unknown additional input pattern
constraints.

Commercial equivalence tools are highly integratedwith each other, so that changesmade for power
or timing optimisation or for an engineering change order (ECO) are often sufficiently well
documented that false negatives can be avoided. Alternatively, they can highlight the specific changes
that have beenmade deliberately. For instance, a logic synthesis tool (Section 8.3.8) can provide hints
about potential differences between the RTL and gate-level designs. The widely used Formality tool
embodies a wide variety of solver engines under a uniform user interface [13]. It includes ECO
highlighting (Section 8.10).

7.6.2 Sequential Equivalence Checking
Whilst Boolean equivalence checking is useful for ensuring that synthesised logic has preserved the
behaviour of the original RTL, it is limited in that it cannot check behaviours that evolve overmultiple
clock cycles. Asmentioned, if a logic synthesiser makes a change to the state encoding, there will no
longer be logical equivalence for the next-state functions. Indeed, the number of such flip-flopsmay
be different, as would be the case with amapping to one-hot encoding.

Determining whether two implementations of a sequential subsystem have the same observable
behaviour is called sequential equivalence checking (SEC). For example, two implementations of the

390

Chapter 7 | FormalMethods and Assertion-based Design

same functionality could be implemented in a pipelined style, but with different functionality in each
stage or with different numbers of pipeline stages.

In formal terms, two implementations of a sequential function are said to bisimulate each other if
they have identical observable behaviour. Bisimulation tools find aminimum-complexity FSM that
produces the required behaviour. Any actual implementation has a nominal mapping from its state
encoding to the states in theminimal model. Amodel checker is a general-purpose tool that can
reason about suchmulti-cycle behaviour. Accordingly, engineers commonly use their favourite model
checker tool for SEC problems, instead of a bespoke tool.

Figure 7.10 is an SEC example. It shows two implementations of a two-bit shift register. They have
equivalent observable behaviour (ignoring any glitches) but differ greatly in the amount of internal
state and how it is used. This is in contrast to simply adding a pipeline stage, as illustrated in
Figure 4.14, where the behaviour of the existing state is largely unchanged. Note, when implementing
longer shift registers, the design based onmultiplexers (right) would usemore logic and less power
than the design based on shifting (left), since fewer nets toggle on each clock edge.

D Q
D Q

D Q

D Q

MUX2

DFF

CEN

D
Q

always @(posedge clk)
if (cen) Q <= D;

D Q D Q

always @(posedge clk) begin
 q1 <= D;
 Q <= q1;
 end

D Q

MUX2

always @(posedge clk) begin
 T <= !T;
 if (T) QA <= D;
 else QB <= D;
 end

assign Q = (T) ? QA:QB;

D

Q

QA

T

QB

Figure 7.10 A two-bit shift register (left) with a conventional design. By using a clock-enabled flip-flop (centre), an alternative implementation is possible
(right). The state encoding is totally different, but the observable black-box behaviour is identical

The question wewish to answer with SEC is: Does each pair of designs follow the same state
trajectory? However, there are several possible notions of sameness:

1. There is a one-to-onemapping of flip-flop outputs between the two designs such that themembers
of a mapped pair always agree.

2. For each symbol in the alphabet enumerated by all possible states of one design, there is a
corresponding symbol in the alphabet enumerated by the other, and these symbols always agree.

3. For an observable subset of the state (e.g. theMoore output nets for an interface) and a set of
functions of the state (e.g. theMealy outputs at the interface), the output symbols in the subset (i.e.
at the interface) always agree.

391

Modern SoCDesign

Implementation A

Implementation B

Input
Stimulus

If any XOR
gate generates
a one for any

input condition
then A and B are not

the same.

Combinational
logic

function.

Combinational
logic

function.

MITRE

FAIL

Figure 7.9 Amitre compares the outputs from a pair of supposedly equivalent combinational components

space (Section 7.1.1) and fromRTL sites where an X is assigned to a net or from conditions not covered
in case statements. The input to a SAT solver is normally given in conjunctive normal form (CNF),
which is a list of clauses expressing a product of sums, such as (a+b).(c).(a+d). Hence, the negation
of the don’t-care predicate can be appended to the SAT solver input as additional CNF clauses so that
the FAIL output will not be satisfied in a don’t-care situation. However, in practice, the reachable state
space is a subset of that apparent fromRTL analysis due to unknown additional input pattern
constraints.

Commercial equivalence tools are highly integratedwith each other, so that changesmade for power
or timing optimisation or for an engineering change order (ECO) are often sufficiently well
documented that false negatives can be avoided. Alternatively, they can highlight the specific changes
that have beenmade deliberately. For instance, a logic synthesis tool (Section 8.3.8) can provide hints
about potential differences between the RTL and gate-level designs. The widely used Formality tool
embodies a wide variety of solver engines under a uniform user interface [13]. It includes ECO
highlighting (Section 8.10).

7.6.2 Sequential Equivalence Checking
Whilst Boolean equivalence checking is useful for ensuring that synthesised logic has preserved the
behaviour of the original RTL, it is limited in that it cannot check behaviours that evolve overmultiple
clock cycles. Asmentioned, if a logic synthesiser makes a change to the state encoding, there will no
longer be logical equivalence for the next-state functions. Indeed, the number of such flip-flopsmay
be different, as would be the case with amapping to one-hot encoding.

Determining whether two implementations of a sequential subsystem have the same observable
behaviour is called sequential equivalence checking (SEC). For example, two implementations of the

390

Chapter 7 | FormalMethods and Assertion-based Design

same functionality could be implemented in a pipelined style, but with different functionality in each
stage or with different numbers of pipeline stages.

In formal terms, two implementations of a sequential function are said to bisimulate each other if
they have identical observable behaviour. Bisimulation tools find aminimum-complexity FSM that
produces the required behaviour. Any actual implementation has a nominal mapping from its state
encoding to the states in theminimal model. Amodel checker is a general-purpose tool that can
reason about suchmulti-cycle behaviour. Accordingly, engineers commonly use their favourite model
checker tool for SEC problems, instead of a bespoke tool.

Figure 7.10 is an SEC example. It shows two implementations of a two-bit shift register. They have
equivalent observable behaviour (ignoring any glitches) but differ greatly in the amount of internal
state and how it is used. This is in contrast to simply adding a pipeline stage, as illustrated in
Figure 4.14, where the behaviour of the existing state is largely unchanged. Note, when implementing
longer shift registers, the design based onmultiplexers (right) would usemore logic and less power
than the design based on shifting (left), since fewer nets toggle on each clock edge.

D Q
D Q

D Q

D Q

MUX2

DFF

CEN

D
Q

always @(posedge clk)
if (cen) Q <= D;

D Q D Q

always @(posedge clk) begin
 q1 <= D;
 Q <= q1;
 end

D Q

MUX2

always @(posedge clk) begin
 T <= !T;
 if (T) QA <= D;
 else QB <= D;
 end

assign Q = (T) ? QA:QB;

D

Q

QA

T

QB

Figure 7.10 A two-bit shift register (left) with a conventional design. By using a clock-enabled flip-flop (centre), an alternative implementation is possible
(right). The state encoding is totally different, but the observable black-box behaviour is identical

The question wewish to answer with SEC is: Does each pair of designs follow the same state
trajectory? However, there are several possible notions of sameness:

1. There is a one-to-onemapping of flip-flop outputs between the two designs such that themembers
of a mapped pair always agree.

2. For each symbol in the alphabet enumerated by all possible states of one design, there is a
corresponding symbol in the alphabet enumerated by the other, and these symbols always agree.

3. For an observable subset of the state (e.g. theMoore output nets for an interface) and a set of
functions of the state (e.g. theMealy outputs at the interface), the output symbols in the subset (i.e.
at the interface) always agree.

391

Modern SoCDesign

4. Under stuttering equivalence, one design becomes out of step with the other due to the different
number of allowed idle symbols on an interface, but the trajectory of non-idle symbols remains
identical. (For a standard synchronous interface (Section 3.1.3), the idle symbol is conveyed on any
clock cycle where there is no conjunction of valid and ready.)

5. Any of the above, but when inputs are wired to an external FSM (i.e. when interfacing with a
reactive automaton).

For the first notion of sameness above, a mitre arrangement, similar to that used in Boolean
equivalence checking, can be used, but with each part of themitre also including clocked elements
instead of only the combinational logic sections. Many commercial tools provide SEC-specific
commands for creating such a check.

One useful application of simplemitre-based SEC is verifying that clock gating conditions are correct
(Section 4.6.9). When introduced to a design, clock gating should not affect the design behaviour, only
its energy use. When testing for behavioural changes, the two designs to be compared should be
identical except that the clock enable conditions in one design should all be tied to their active value
whereas those in the other are left under the control of the clock gating logic. An SEC analysis should
then identify a stimulus that is handled differently with andwithout the clock gating.

Most other situations aremore complex due to state re-encoding or because they are from different
design flows. However, the two versions should have the same set of ports (same port signature). If
the two designs have different throughputs or latency, somework is required to design an
appropriate shim beforemodel checking. Some EDA tools support conditional fields that specify the
time and state requirements for each pair of comparison points. For example, a tool may have
conditions such as when an output in one designmatches the other design’s output with a difference
of five cycles, but only if the valid flag is high one cycle before. In SVA, if the two design instances are
called spec and imp, this could be expressed as a comparison property of the form:

(spec.validOut ## 1) |-> (##5 (imp.dataOut == $past(spec.dataOut, 5))

Typically, we are interested only in the observable behaviour at outputs under some stimulus
constraints. This is point 5 above.

7.6.3 X-propagation Checking
A specific form of SEC is known asX-propagation checking. Recall that HDLs use the symbol X as a
logic value. It represents an unknown in a simulation and don’t-care in logic synthesis. As explained by
Turpin in ‘The dangers of living with an X’ [14], the semantics of X in RTL can be dangerous because
RTL bugs can bemasked, especially if a formal tool treats the buggy condition as a don’t-care. In
X-propagation checking, the sequential equivalence of a design is checked against itself. Onemight
think that every design is trivially equivalent to itself. However, although a silicon implementation of a

392

Chapter 7 | FormalMethods and Assertion-based Design

DUTmay have only 1’s or 0’s in its registers, a simulation statemay also contain X-values. Such
simulation states are abstractions of multiple possible real-world states.

There are two distinct sources of uncertain values in typical logic designs:

1. X-values arise in simulation and reality from a register that is not reset. Such registers are used to
optimise the area, power and layout of a design. The value of such a register can be zero or one
after a system reset. It may be useful to verify that these non-reset values do not unduly influence
the observable behaviour of the DUT. Uninitialisedmemory is also a common source of X-values. A
simulation propagates such X-values through expressions and assignments, whereas a formal
approach can separately analyse all possible actual values. The way that a simulation propagates
X-values through everyday logic gates follows common sense and is spelled out in Figure 8.15.

2. X-valuesmay be introduced to a DUT externally because it is very common for don’t-cares to
appear in protocol and interface specifications. For example, the standard synchronous interface
(Section 3.1.3) conveys a sequence of valid and idle symbols. A valid symbol is any word on the data
bus on any clock cycle where valid and ready both hold. However, the data bus can have any value
during an idle symbol (as it is a don’t-care). Any action taken that is based on that value is unjustified.

X-propagation checking of a design ensures that replacing a don’t-care with a real logic value does not
have any consequences for output values that are not don’t-cares. (Don’t-care values on inputs are, of
course, allowed to affect the values of don’t-care outputs because, um…, we don’t care about them.)
An effective way of ensuring this is to express it in the formal specification of the interfaces of the
DUT. The property to check is that if no unknown values were passed in as valid data, then no output
values, qualified as valid, are unknown. In short, for either an input or output port, the formal
specification is essentially: ‘If valid, the data are not X.’

A model checker can be used for X-propagation checking by taking two instances of a DUT, feeding
themwith very similar input values and checking for divergence in their output using amitre. The
DUT is assumed to behave deterministically if operating correctly. This is normal for mainstream
digital logic, with the exception of certain niche applications such as PUF generators (Section 8.8.2).
Hence, any divergence between the two instances arises either from uninitialised registers or from
inappropriately acting on don’t-care values passed in.

X-propagation Example
Figure 7.11 shows aminimal concrete example that uses a simple DUTwith a data bus of just one bit.
The bus has a valid qualifier. For further clarity, we assume that any reverse-direction ready
handshake net is always asserted and so is not shown. Two instances of the DUT aremitred for
X-propagation checking using the illustrated formal glue shim logic placed around the instances.

Interface specifications should be reusable over all such port instances. Our DUT has the same
signature and protocol for its output as for its input, so there is only one interface specification to
consider. The X-propagation rules for an interface specification are:

393

Modern SoCDesign

4. Under stuttering equivalence, one design becomes out of step with the other due to the different
number of allowed idle symbols on an interface, but the trajectory of non-idle symbols remains
identical. (For a standard synchronous interface (Section 3.1.3), the idle symbol is conveyed on any
clock cycle where there is no conjunction of valid and ready.)

5. Any of the above, but when inputs are wired to an external FSM (i.e. when interfacing with a
reactive automaton).

For the first notion of sameness above, a mitre arrangement, similar to that used in Boolean
equivalence checking, can be used, but with each part of themitre also including clocked elements
instead of only the combinational logic sections. Many commercial tools provide SEC-specific
commands for creating such a check.

One useful application of simplemitre-based SEC is verifying that clock gating conditions are correct
(Section 4.6.9). When introduced to a design, clock gating should not affect the design behaviour, only
its energy use. When testing for behavioural changes, the two designs to be compared should be
identical except that the clock enable conditions in one design should all be tied to their active value
whereas those in the other are left under the control of the clock gating logic. An SEC analysis should
then identify a stimulus that is handled differently with andwithout the clock gating.

Most other situations aremore complex due to state re-encoding or because they are from different
design flows. However, the two versions should have the same set of ports (same port signature). If
the two designs have different throughputs or latency, somework is required to design an
appropriate shim beforemodel checking. Some EDA tools support conditional fields that specify the
time and state requirements for each pair of comparison points. For example, a tool may have
conditions such as when an output in one designmatches the other design’s output with a difference
of five cycles, but only if the valid flag is high one cycle before. In SVA, if the two design instances are
called spec and imp, this could be expressed as a comparison property of the form:

(spec.validOut ## 1) |-> (##5 (imp.dataOut == $past(spec.dataOut, 5))

Typically, we are interested only in the observable behaviour at outputs under some stimulus
constraints. This is point 5 above.

7.6.3 X-propagation Checking
A specific form of SEC is known asX-propagation checking. Recall that HDLs use the symbol X as a
logic value. It represents an unknown in a simulation and don’t-care in logic synthesis. As explained by
Turpin in ‘The dangers of living with an X’ [14], the semantics of X in RTL can be dangerous because
RTL bugs can bemasked, especially if a formal tool treats the buggy condition as a don’t-care. In
X-propagation checking, the sequential equivalence of a design is checked against itself. Onemight
think that every design is trivially equivalent to itself. However, although a silicon implementation of a

392

Chapter 7 | FormalMethods and Assertion-based Design

DUTmay have only 1’s or 0’s in its registers, a simulation statemay also contain X-values. Such
simulation states are abstractions of multiple possible real-world states.

There are two distinct sources of uncertain values in typical logic designs:

1. X-values arise in simulation and reality from a register that is not reset. Such registers are used to
optimise the area, power and layout of a design. The value of such a register can be zero or one
after a system reset. It may be useful to verify that these non-reset values do not unduly influence
the observable behaviour of the DUT. Uninitialisedmemory is also a common source of X-values. A
simulation propagates such X-values through expressions and assignments, whereas a formal
approach can separately analyse all possible actual values. The way that a simulation propagates
X-values through everyday logic gates follows common sense and is spelled out in Figure 8.15.

2. X-valuesmay be introduced to a DUT externally because it is very common for don’t-cares to
appear in protocol and interface specifications. For example, the standard synchronous interface
(Section 3.1.3) conveys a sequence of valid and idle symbols. A valid symbol is any word on the data
bus on any clock cycle where valid and ready both hold. However, the data bus can have any value
during an idle symbol (as it is a don’t-care). Any action taken that is based on that value is unjustified.

X-propagation checking of a design ensures that replacing a don’t-care with a real logic value does not
have any consequences for output values that are not don’t-cares. (Don’t-care values on inputs are, of
course, allowed to affect the values of don’t-care outputs because, um…, we don’t care about them.)
An effective way of ensuring this is to express it in the formal specification of the interfaces of the
DUT. The property to check is that if no unknown values were passed in as valid data, then no output
values, qualified as valid, are unknown. In short, for either an input or output port, the formal
specification is essentially: ‘If valid, the data are not X.’

A model checker can be used for X-propagation checking by taking two instances of a DUT, feeding
themwith very similar input values and checking for divergence in their output using amitre. The
DUT is assumed to behave deterministically if operating correctly. This is normal for mainstream
digital logic, with the exception of certain niche applications such as PUF generators (Section 8.8.2).
Hence, any divergence between the two instances arises either from uninitialised registers or from
inappropriately acting on don’t-care values passed in.

X-propagation Example
Figure 7.11 shows aminimal concrete example that uses a simple DUTwith a data bus of just one bit.
The bus has a valid qualifier. For further clarity, we assume that any reverse-direction ready
handshake net is always asserted and so is not shown. Two instances of the DUT aremitred for
X-propagation checking using the illustrated formal glue shim logic placed around the instances.

Interface specifications should be reusable over all such port instances. Our DUT has the same
signature and protocol for its output as for its input, so there is only one interface specification to
consider. The X-propagation rules for an interface specification are:

393

Modern SoCDesign

data

valid

reset

dataIn

validIn

dataOut

validOut

data

valid

reset

dataIn

validIn

dataOut

validOut

1

0

Pass
0 (X)

0 (X)

0 (X)

0

0

0

0

1

0

1

(X)

(X)

1 (X)

0

0

(X)0

Figure 7.11 An X-propagation mitre around two instances of a simple DUT. The equivalence comparison is modified to ignore mismatches on the data bus if
the valid output from the upper instance does not hold. A counterexample, as found by a model checker, is denoted in red. The alternative values that would
be encountered in a simulation are in blue

1. By convention, reset is not allowed to be unknown.

2. The value of valid is not unknown (unless reset holds).

3. The value of data cannot be unknownwhen valid holds (unless reset holds).

The input and output shim structures are constructed to reflect these rules. Both instances of the
design have their reset inputs tied together. This ensures that the value of reset in both is either one
or zero and reflects the first rule. The second rule is a property that is a guarantee of the environment
for an input andmust be honoured by the DUT for an output. Accordingly, the validIn inputs to both
instances are also tied together to reflect proper environment behaviour. (Themodel checker will not
generate don’t-care values for free inputs.) The third rule is honoured on the input side using the
multiplexor for the dataIn input. This ensures the two instances receive the same data when validIn
holds, whereas they can be different when it is false.

For the output signals, due to the determinacy of the design, we expect to see lockstep values except
where a deviation is allowed. For the output, the third rule is expanded as: when validOut is high,
dataOut is not allowed to be unknown. The XNOR gates that compare the outputs between the two
instances follow the classical mitre pattern. They generate true logic values while the twoDUTs
match; hence, the Pass output should be at a constant logic one. The subtlety is that the datamatch

394

Chapter 7 | FormalMethods and Assertion-based Design

can be ignored if either of the validOut qualifiers does not hold. It does not matter which is selected,
since if the other disagrees, this disagreement generates a failure.

The X-propagation check is conducted by applying amodel checker to the whole assembly, which
consists of the two instances and the input and output shims. In model checking, the verification
condition is that the Pass output always holds. All the inputs on the left are free and all possible
sequences of values are explored to see if any sequence leads to a counterexample. The failure is any
situation where validOut holds while the two dataOut values differ.

The example DUT is manifestly poorly designed. Its validOut output is a function of the value in the
data register, which is updated every clock cycle, whether or not the validIn qualifier holds. Our
experiment will find this fault. The red annotations in the figure show a possible counterexample on a
cycle after validInwas held low. During that cycle, to model the arrival of an X-value, themodel
checker was free to provide different values on the two dataIn ports. As a result, the data registers
now hold different values. Since the outputs of the twoDUTs are different, a counterexample has
been found. In a white-box approach, similar mitre logic, as applied to the DUT output, can also be
applied between corresponding registers or nets inside the DUT. This may find a counterexample
more quickly.

Note that at this point, if wewere just simulating the DUT, there would be an X-value at dataOut, as
shownwith the blue annotations. The simulation state is an abstraction of the two states we see in
Figure 7.11. In this instance, the simulator would also propagate an X-value to validOut. Hence, even
without themitre, a simulation would demonstrate the propagation of an X-value to an output.

data

valid

reset

dataIn

validIn

dataOut

validOut

data

valid

reset

dataIn

validIn

dataOut

validOut

1

0

Pass

0

0

0

1

0

0

0

1

0

0

1
(X)0

1

1(X)

(X)
(X)

(X)

0

(X)

(X)

(X)

Figure 7.12 An alternative DUT. The circuit produces a false negative under X-propagation simulation. The blue annotations show CRV simulation values,
whereas model checker values, in red, correctly indicate that the DUT has passed the test

395

Modern SoCDesign

data

valid

reset

dataIn

validIn

dataOut

validOut

data

valid

reset

dataIn

validIn

dataOut

validOut

1

0

Pass
0 (X)

0 (X)

0 (X)

0

0

0

0

1

0

1

(X)

(X)

1 (X)

0

0

(X)0

Figure 7.11 An X-propagation mitre around two instances of a simple DUT. The equivalence comparison is modified to ignore mismatches on the data bus if
the valid output from the upper instance does not hold. A counterexample, as found by a model checker, is denoted in red. The alternative values that would
be encountered in a simulation are in blue

1. By convention, reset is not allowed to be unknown.

2. The value of valid is not unknown (unless reset holds).

3. The value of data cannot be unknownwhen valid holds (unless reset holds).

The input and output shim structures are constructed to reflect these rules. Both instances of the
design have their reset inputs tied together. This ensures that the value of reset in both is either one
or zero and reflects the first rule. The second rule is a property that is a guarantee of the environment
for an input andmust be honoured by the DUT for an output. Accordingly, the validIn inputs to both
instances are also tied together to reflect proper environment behaviour. (Themodel checker will not
generate don’t-care values for free inputs.) The third rule is honoured on the input side using the
multiplexor for the dataIn input. This ensures the two instances receive the same data when validIn
holds, whereas they can be different when it is false.

For the output signals, due to the determinacy of the design, we expect to see lockstep values except
where a deviation is allowed. For the output, the third rule is expanded as: when validOut is high,
dataOut is not allowed to be unknown. The XNOR gates that compare the outputs between the two
instances follow the classical mitre pattern. They generate true logic values while the twoDUTs
match; hence, the Pass output should be at a constant logic one. The subtlety is that the datamatch

394

Chapter 7 | FormalMethods and Assertion-based Design

can be ignored if either of the validOut qualifiers does not hold. It does not matter which is selected,
since if the other disagrees, this disagreement generates a failure.

The X-propagation check is conducted by applying amodel checker to the whole assembly, which
consists of the two instances and the input and output shims. In model checking, the verification
condition is that the Pass output always holds. All the inputs on the left are free and all possible
sequences of values are explored to see if any sequence leads to a counterexample. The failure is any
situation where validOut holds while the two dataOut values differ.

The example DUT is manifestly poorly designed. Its validOut output is a function of the value in the
data register, which is updated every clock cycle, whether or not the validIn qualifier holds. Our
experiment will find this fault. The red annotations in the figure show a possible counterexample on a
cycle after validInwas held low. During that cycle, to model the arrival of an X-value, themodel
checker was free to provide different values on the two dataIn ports. As a result, the data registers
now hold different values. Since the outputs of the twoDUTs are different, a counterexample has
been found. In a white-box approach, similar mitre logic, as applied to the DUT output, can also be
applied between corresponding registers or nets inside the DUT. This may find a counterexample
more quickly.

Note that at this point, if wewere just simulating the DUT, there would be an X-value at dataOut, as
shownwith the blue annotations. The simulation state is an abstraction of the two states we see in
Figure 7.11. In this instance, the simulator would also propagate an X-value to validOut. Hence, even
without themitre, a simulation would demonstrate the propagation of an X-value to an output.

data

valid

reset

dataIn

validIn

dataOut

validOut

data

valid

reset

dataIn

validIn

dataOut

validOut

1

0

Pass

0

0

0

1

0

0

0

1

0

0

1
(X)0

1

1(X)

(X)
(X)

(X)

0

(X)

(X)

(X)

Figure 7.12 An alternative DUT. The circuit produces a false negative under X-propagation simulation. The blue annotations show CRV simulation values,
whereas model checker values, in red, correctly indicate that the DUT has passed the test

395

Modern SoCDesign

ThemodifiedDUT in Figure 7.12 demonstrates the limitation of CRV. It has an additional XOR gate.
Themodification, as illustrated, makes no sense in a real design, but real designs commonly contain
logic that essentially has this structure, especially if there are test modemultiplexers (Section 8.8.2).
As shownwith the blue values, an X-propagation test using an CRV simulation would propagate an
X-value to validOut if the data register has an X-value. However, no failure is reported when using a
model checker for formal SEC. This is correct, since the output of the XOR gate can never be one, as
the data cannot influence the validOut signal.

7.6.4 Model Checking the Items in a Data Path
The correctness of many components depends on various forms of data conservation, whichmeans
that the data that entered subsequently come out again. The data values are opaque, whichmeans
that there is no structure or meaning to any particular value. Hence, they are represented
symbolically (i.e. with a variable) in a formal specification. Two approaches to proving correctness are:
(1) to write assertions using language extensions that include assertion variables and (2) as in
X-propagation, a shim of formal glue coded in RTL can be placed around such a component.

We consider a LIFO stack example. Using temporal logic for the first approach, we need to write that
for all times t, if a value SD is pushed into the FIFO buffer, then the same value is popped out at future
time t′:

∀t Push(t,SD) =⇒ ∃t′ Pop(t′)= SD
This can be coded in SVA using an assertion variable:

(Push, SD=dataIn) 1[0:\$] (Pop && (SD==dataOut))

The assertion variable SD is given a value and then dataOut is checked against it later. However, this is
not sufficient, since this would also describe a FIFO buffer or allow the same data to come out any
number of times. Hence, the current number of items in the DUTmust be included in the
specification. For most engineers, the second approach, using an RTL shim, is easier to use than
advanced assertions. In fact, unlike an SMT tool, which typically has a theory of natural numbers as an
installed library, the problem cannot be expressed in PSL or SVAwithout alsomanually spelling out
the behaviour of an up/down counter in bit-blasted form.

Figure 7.13 is a suitable shim for demonstrating the correctness of a LIFO stack. It formswhat is
known as a stable oracle. It canmodel ∀-style universal quantification. This formal glue harness
around the LIFODUT could be simulated, using CRV (Section 7.3.2) or otherwise, but it serves as a
complete check of data conservation duringmodel checking.

The test runs as follows. The first push operation where the externally driven SampleNow input is
asserted is checked in detail. The value pushed is stored in the shim broadside register SD, which acts
as an assertion variable. Flip-flop QA is then set, which enables the shim’s up/down counter to track
further pushes and pops before the datum of interest is popped. When that datum emerges, the

396

Chapter 7 | FormalMethods and Assertion-based Design

=0

Equality
mitreBroadside Register.

Holds some arbitrary input value.

LIFO stack

dataOut

popCommand

dataIn

pushCommand

D Q

D Q

ce

Detect failure
condition

D Q

Synchrounous
up/down counter

n

n n

n

FAIL

DUT - device under test

sampleNow

SD

QA QB

sampledPush

updownIsZero

Figure 7.13 A formal glue shim around a data path component (a LIFO stack). This enables symbolic verification using a basic model checker. All inputs on
the left are unconstrained, as is the pop input on the right. No stimulus pattern should make the FAIL output hold

up/down counter will again be zero and, at this time, the word coming out is mitred against the held SD
value. If they disagree, the test has failed, as flagged by the FAIL output. This would be checkedwith
LIFO_CORRECT_1:

LIFO_CORRECT_1: assert property (@(posedge clk) !FAIL)

Alternatively, LIFO_CORRECT_2 could be used, but would be harder to trace in a waveform viewer:

LIFO_CORRECT_2: assert property (@(posedge clk) !(QB && updownIsZero && dataOut!=SD))

The shim checks just one datum in any simulation run, since there is only one first timewhen
SampleNow is asserted during a push. However, in model checking, all possible data values at all
possible time offsets and interleavings of push and pop are checked. That is the nature of model
checkers. Rather than a complex temporal logic assertion, the complexity is in the RTL shim and the
simple never assertion is all that is applied to the FAIL output. This output should never hold for a
working DUT. To avoid spurious errors arising from FIFO overflows or under-runs, the push and pop
inputs can be ANDedwith the not-full and not-empty outputs found on real-world FIFO buffers.
Overall, this harness enables a symbolic condition (i.e. one containing quantified free variables) to be
checked by a simplemodel checker that accepts only temporal logic assertions over Boolean
predicates.

397

Modern SoCDesign

ThemodifiedDUT in Figure 7.12 demonstrates the limitation of CRV. It has an additional XOR gate.
Themodification, as illustrated, makes no sense in a real design, but real designs commonly contain
logic that essentially has this structure, especially if there are test modemultiplexers (Section 8.8.2).
As shownwith the blue values, an X-propagation test using an CRV simulation would propagate an
X-value to validOut if the data register has an X-value. However, no failure is reported when using a
model checker for formal SEC. This is correct, since the output of the XOR gate can never be one, as
the data cannot influence the validOut signal.

7.6.4 Model Checking the Items in a Data Path
The correctness of many components depends on various forms of data conservation, whichmeans
that the data that entered subsequently come out again. The data values are opaque, whichmeans
that there is no structure or meaning to any particular value. Hence, they are represented
symbolically (i.e. with a variable) in a formal specification. Two approaches to proving correctness are:
(1) to write assertions using language extensions that include assertion variables and (2) as in
X-propagation, a shim of formal glue coded in RTL can be placed around such a component.

We consider a LIFO stack example. Using temporal logic for the first approach, we need to write that
for all times t, if a value SD is pushed into the FIFO buffer, then the same value is popped out at future
time t′:

∀t Push(t,SD) =⇒ ∃t′ Pop(t′)= SD
This can be coded in SVA using an assertion variable:

(Push, SD=dataIn) 1[0:\$] (Pop && (SD==dataOut))

The assertion variable SD is given a value and then dataOut is checked against it later. However, this is
not sufficient, since this would also describe a FIFO buffer or allow the same data to come out any
number of times. Hence, the current number of items in the DUTmust be included in the
specification. For most engineers, the second approach, using an RTL shim, is easier to use than
advanced assertions. In fact, unlike an SMT tool, which typically has a theory of natural numbers as an
installed library, the problem cannot be expressed in PSL or SVAwithout alsomanually spelling out
the behaviour of an up/down counter in bit-blasted form.

Figure 7.13 is a suitable shim for demonstrating the correctness of a LIFO stack. It formswhat is
known as a stable oracle. It canmodel ∀-style universal quantification. This formal glue harness
around the LIFODUT could be simulated, using CRV (Section 7.3.2) or otherwise, but it serves as a
complete check of data conservation duringmodel checking.

The test runs as follows. The first push operation where the externally driven SampleNow input is
asserted is checked in detail. The value pushed is stored in the shim broadside register SD, which acts
as an assertion variable. Flip-flop QA is then set, which enables the shim’s up/down counter to track
further pushes and pops before the datum of interest is popped. When that datum emerges, the

396

Chapter 7 | FormalMethods and Assertion-based Design

=0

Equality
mitreBroadside Register.

Holds some arbitrary input value.

LIFO stack

dataOut

popCommand

dataIn

pushCommand

D Q

D Q

ce

Detect failure
condition

D Q

Synchrounous
up/down counter

n

n n

n

FAIL

DUT - device under test

sampleNow

SD

QA QB

sampledPush

updownIsZero

Figure 7.13 A formal glue shim around a data path component (a LIFO stack). This enables symbolic verification using a basic model checker. All inputs on
the left are unconstrained, as is the pop input on the right. No stimulus pattern should make the FAIL output hold

up/down counter will again be zero and, at this time, the word coming out is mitred against the held SD
value. If they disagree, the test has failed, as flagged by the FAIL output. This would be checkedwith
LIFO_CORRECT_1:

LIFO_CORRECT_1: assert property (@(posedge clk) !FAIL)

Alternatively, LIFO_CORRECT_2 could be used, but would be harder to trace in a waveform viewer:

LIFO_CORRECT_2: assert property (@(posedge clk) !(QB && updownIsZero && dataOut!=SD))

The shim checks just one datum in any simulation run, since there is only one first timewhen
SampleNow is asserted during a push. However, in model checking, all possible data values at all
possible time offsets and interleavings of push and pop are checked. That is the nature of model
checkers. Rather than a complex temporal logic assertion, the complexity is in the RTL shim and the
simple never assertion is all that is applied to the FAIL output. This output should never hold for a
working DUT. To avoid spurious errors arising from FIFO overflows or under-runs, the push and pop
inputs can be ANDedwith the not-full and not-empty outputs found on real-world FIFO buffers.
Overall, this harness enables a symbolic condition (i.e. one containing quantified free variables) to be
checked by a simplemodel checker that accepts only temporal logic assertions over Boolean
predicates.

397

Modern SoCDesign

To provide some help with symbolic assertions (those containing quantified variables), SVA supports
local variables inside property definitions. Unlike a variable or register defined in the surrounding
RTL, there is a fresh instance of local variables declared in a property for each activation of the
property. There are concurrent activations if the property is spatially usedmore than once or lasts
multiple clock cycles. A single-use site starts fresh instancesmore frequently. After declaration, the
variable must be assigned a value before it is used. The assignment is typically in the antecedent to a
sequence implication:

property data_conserve; @(posedge clk)
logic [31:0] SD; // Local variable
(sampledPush, SD = dataIn) |=> ##[1:$] (popCommand && updownIsZero && SD == dataOut);

endproperty

Such an assignment before use is a limitation of several current tools, but, in theory, a variable can be
read before assignment using variable unification, as in logic programming languages such as Prolog.
With unification, there is no distinction betweenwrite and read operations; rather, the value is the
same at each use site.

7.7 Connectivity Checking
When assembling a SoC design, it is important to ensure that the connections between blocks are
implemented correctly. There are potentially thousands of such connections, each with their own
conditions for being active, varying latencies and dynamic read/write behaviours, so they can be a rich
source of bugs. A formal application known as a connectivity checker can be used to verify that an
implementationmeets its specification. Some tools can generate a specification from an
implementation. This can be used for a regression test or to generate an initial specification from a
known good design, which can be refined to provide a specification for a new design.

Such tools vary in how the connectivity specification is provided, but typically they have a format that
can express:

source to destination points for a connection

dynamic conditions, including temporal expressions, under which the connection is active

permitted latencies between the end points

default values for points when not connected.

These specifications are used to create assertions, which can be used by a standard HDLmodel
checker to ensure that the implementation has the required connectivity.

398

Chapter 7 | FormalMethods and Assertion-based Design

7.8 Checking the Security Policy
With the increasing importance of ensuring security in devices of all kinds, there is growing interest in
techniques for verifying security requirements. A general approach is emerging. It begins by taking
known high-level attackmodels and characterising their dependencies and impact at the device level.
Each of these can be used to identify secure assets and securemodes of operation and the ways that
these are expected to interact. For example, a policy may state that a specific register cannot be read
unless the device is in a secure executionmode. A requirements analysis could demonstrate that this
is adequate protection against a specific attackmodel. If these secure assets and securemodes can be
mapped to HDL elements and state, it is possible to use formal security-checking applications to
ensure that any secure data are visible only in accordance with the policy.

Tools with this capability typically express security policies in terms of assets and the conditions
under which they can hold secure data. In the register read example, the register content may be
specified as always secure, but the security level of the read data port for the encompassing register
file may vary according to the processingmode of the subsystem. With this information, a model
checker can look for a counterexample where non-secure data at the read port are influenced by
secure data in the register. The technique for detecting such taint traces is basically similar to that for
X-propagation (Section 7.6.3).

Such policy checksmay require extra information to copewith timing, pipelining or more complex
interactions. For example, theremay be some latency, so that if secure register data are read during
secure executionmode, the datamay still be visible at the read port exactly one cycle after a switch to
non-secure executionmode. Although it would usually be forbidden for the read port to hold secure
data during that cycle, other control logic might be able to ensure that the secure data are not
propagated to non-secure observers. In such special cases, additional logic or conditions on the
secure status of the datamay be required.

Work on standardising the documentation of this style of security policy is currently being
undertaken by the Accellera IP Security AssuranceWorking Group [15]. Their current white paper
[16] proposes a standard notation for sharing security policies between IP vendors and SoC
developers that is very close to the style of the policy described above.

7.9 Summary
ABD in SoC design often focuses on safety and liveness properties of systems and the formal
specifications of the protocols at the ports of a system. However, there aremany other useful
properties wemaywish to ensure or reason about, such as those involving counting and data
conservation. These are less well embodied in contemporary tools.

PSL deals with concrete values rather than symbolic values. Many interesting properties relate to
symbolic data (e.g. specifying the correct behaviour of a FIFO buffer). Using PSL, all symbolic tokens
must bewrapped up in themodelling layer, which is not the core language. SVA is essentially the same,

399

Modern SoCDesign

To provide some help with symbolic assertions (those containing quantified variables), SVA supports
local variables inside property definitions. Unlike a variable or register defined in the surrounding
RTL, there is a fresh instance of local variables declared in a property for each activation of the
property. There are concurrent activations if the property is spatially usedmore than once or lasts
multiple clock cycles. A single-use site starts fresh instancesmore frequently. After declaration, the
variable must be assigned a value before it is used. The assignment is typically in the antecedent to a
sequence implication:

property data_conserve; @(posedge clk)
logic [31:0] SD; // Local variable
(sampledPush, SD = dataIn) |=> ##[1:$] (popCommand && updownIsZero && SD == dataOut);

endproperty

Such an assignment before use is a limitation of several current tools, but, in theory, a variable can be
read before assignment using variable unification, as in logic programming languages such as Prolog.
With unification, there is no distinction betweenwrite and read operations; rather, the value is the
same at each use site.

7.7 Connectivity Checking
When assembling a SoC design, it is important to ensure that the connections between blocks are
implemented correctly. There are potentially thousands of such connections, each with their own
conditions for being active, varying latencies and dynamic read/write behaviours, so they can be a rich
source of bugs. A formal application known as a connectivity checker can be used to verify that an
implementationmeets its specification. Some tools can generate a specification from an
implementation. This can be used for a regression test or to generate an initial specification from a
known good design, which can be refined to provide a specification for a new design.

Such tools vary in how the connectivity specification is provided, but typically they have a format that
can express:

source to destination points for a connection

dynamic conditions, including temporal expressions, under which the connection is active

permitted latencies between the end points

default values for points when not connected.

These specifications are used to create assertions, which can be used by a standard HDLmodel
checker to ensure that the implementation has the required connectivity.

398

Chapter 7 | FormalMethods and Assertion-based Design

7.8 Checking the Security Policy
With the increasing importance of ensuring security in devices of all kinds, there is growing interest in
techniques for verifying security requirements. A general approach is emerging. It begins by taking
known high-level attackmodels and characterising their dependencies and impact at the device level.
Each of these can be used to identify secure assets and securemodes of operation and the ways that
these are expected to interact. For example, a policy may state that a specific register cannot be read
unless the device is in a secure executionmode. A requirements analysis could demonstrate that this
is adequate protection against a specific attackmodel. If these secure assets and securemodes can be
mapped to HDL elements and state, it is possible to use formal security-checking applications to
ensure that any secure data are visible only in accordance with the policy.

Tools with this capability typically express security policies in terms of assets and the conditions
under which they can hold secure data. In the register read example, the register content may be
specified as always secure, but the security level of the read data port for the encompassing register
file may vary according to the processingmode of the subsystem. With this information, a model
checker can look for a counterexample where non-secure data at the read port are influenced by
secure data in the register. The technique for detecting such taint traces is basically similar to that for
X-propagation (Section 7.6.3).

Such policy checksmay require extra information to copewith timing, pipelining or more complex
interactions. For example, theremay be some latency, so that if secure register data are read during
secure executionmode, the datamay still be visible at the read port exactly one cycle after a switch to
non-secure executionmode. Although it would usually be forbidden for the read port to hold secure
data during that cycle, other control logic might be able to ensure that the secure data are not
propagated to non-secure observers. In such special cases, additional logic or conditions on the
secure status of the datamay be required.

Work on standardising the documentation of this style of security policy is currently being
undertaken by the Accellera IP Security AssuranceWorking Group [15]. Their current white paper
[16] proposes a standard notation for sharing security policies between IP vendors and SoC
developers that is very close to the style of the policy described above.

7.9 Summary
ABD in SoC design often focuses on safety and liveness properties of systems and the formal
specifications of the protocols at the ports of a system. However, there aremany other useful
properties wemaywish to ensure or reason about, such as those involving counting and data
conservation. These are less well embodied in contemporary tools.

PSL deals with concrete values rather than symbolic values. Many interesting properties relate to
symbolic data (e.g. specifying the correct behaviour of a FIFO buffer). Using PSL, all symbolic tokens
must bewrapped up in themodelling layer, which is not the core language. SVA is essentially the same,

399

Modern SoCDesign

although its support for assertion variables increases its expressivity. SVA does not have an
eventually! E construct, so liveness must be expressed using constructs such as 1[0:$] E.

Formal methods are taking over from simulation, with the percentage of bugs being found by formal
methods growing. However, there is a lack of formal design entry. Low-level languages, such as
Verilog, do not seamlessly mix with automatic synthesis from a formal specification and so the
double-entry of designs is common.

If a bug has a one in tenmillion chance of being found by simulation, then it will likely bemissed, since
fewer than that number of clock cycles are typically simulated over all the development simulation
runs. However, for a clock frequency of just 10MHz, the bugmight show up in the real hardware in
one second!

Many specifications of the functionality required or for operational safety are expressed in plain
English. In natural language terms, an executable specification is one that is sufficient for an
implementation team to start work without further significant design decisions being needed. In a
formal specification, an executable specification is one that can be run as a program to generate some
output [17]. Manual inspection of that output gives confidence that the specification is correct. This is
very helpful if the team has little experience with the specification language. A principal objection to
executable specifications, raised in [18], is that ‘executable specifications can produce particular
results in cases where amore implicit specificationmay allow a number of different results’. However,
this is only to be expected. For example, Prolog is themost widely used executable logic language. A
user can take the first answer a Prolog program generates or instead ask the system to enumerate
every possible answer, even if there is an infinite number of them.

Asmentioned at the start of this chapter, there are twomain styles of mechanised proof tool:
automatic andmanual. Automatic proof tools nominally require nomanual input. Themain example is
a model checker. Their grander descendant, checker tools based on satisfiability modulo theories
(SMT), have expanded the application space for automatic proofs by combining various knowledge
domains for sets, integer formulae, linked lists and so on. Well-known general-purposemodel
checkers are SMV [19] and Spin. Yices and Z3 are SMT solvers.

Industrial SoC designmostly uses fully automated provers, whereas research into specification and
verification often usesmanually guided provers. The latter maymake suggestions about proof steps
but their main role is to check whether the result has been derivedwithout a false step. Manual proof
tools include HOL, Isabelle, ACL2 and Coq.

EDA formal tool packages include Cadence JasperGold, Mentor QuestaFormal and Synopsys
VCFormal.

400

Chapter 7 | FormalMethods and Assertion-based Design

7.9.1 Exercises
1. Define the following classifications of programming languages and systems: declarative, functional,
imperative, behavioural and logic. What class are the following languages: Prolog, SQL, Verilog,
C++, Specman Elite, PSL and LISP?

2. The synchronous subsystem in Figure 7.14 has three inputs: clock, reset and start. It has one
output calledQ. It must generate two output pulses for each zero-to-one transition of the start
input (unless it is already generating pulses). Give an RTL implementation of the component. Write
a formal specification for it using PSL or SVA. Speculate whether your RTL implementation could
have been synthesised from your formal specification.

clk

reset

start

Q
Q

reset

start

clk

reset

start

Q

Figure 7.14 A pulse generator: schematic symbol and timing waveforms

3. Create a formal glue shim like the one in Figure 7.13 to check the correctness of a FIFO component.

4. Create a similar formal proof of the correctness of a RAM, showing that writes to different
locations do not interfere with each other.

5. Prove the equivalence of the two designs in Figure 7.10 by naming each state in each design and
defining aminimal FSMwhose states are each labelled with the list of states in each input design
that theymodel.

6. Implement the checker described in the bus-checker folder of the additional material.

References
[1] Colin Runciman,MatthewNaylor, and Fredrik Lindblad. SmallCheck and Lazy SmallCheck: Automatic

exhaustive testing for small values. In Proceedings of the First ACM SIGPLAN Symposium on Haskell, Haskell
’08, pages 37–48, New York, NY, USA, 2008. Association for ComputingMachinery. ISBN 9781605580647.
doi: 10.1145/1411286.1411292. URL https://doi.org/10.1145/1411286.1411292.

[2] IEEE Standard for VHDL Language ReferenceManual. IEEE, 2019. Std 1076-2019.
[3] IEC/IEEE International Standard – Verilog(R) Register Transfer Level Synthesis. IEEE, 2002. IEC 62142-2005,

First edition, 2005-06, Std 1364.1.
[4] IEEE Standard for Property Specification Language (PSL). IEEE, 2010. Std 1850-2010.
[5] IEEE Standard for System Verilog – Unified Hardware Design, Specification, and Verification Language. IEEE, 2018.

Std 1800-2017 (Revision of Std 1800-2012).

401

Modern SoCDesign

although its support for assertion variables increases its expressivity. SVA does not have an
eventually! E construct, so liveness must be expressed using constructs such as 1[0:$] E.

Formal methods are taking over from simulation, with the percentage of bugs being found by formal
methods growing. However, there is a lack of formal design entry. Low-level languages, such as
Verilog, do not seamlessly mix with automatic synthesis from a formal specification and so the
double-entry of designs is common.

If a bug has a one in tenmillion chance of being found by simulation, then it will likely bemissed, since
fewer than that number of clock cycles are typically simulated over all the development simulation
runs. However, for a clock frequency of just 10MHz, the bugmight show up in the real hardware in
one second!

Many specifications of the functionality required or for operational safety are expressed in plain
English. In natural language terms, an executable specification is one that is sufficient for an
implementation team to start work without further significant design decisions being needed. In a
formal specification, an executable specification is one that can be run as a program to generate some
output [17]. Manual inspection of that output gives confidence that the specification is correct. This is
very helpful if the team has little experience with the specification language. A principal objection to
executable specifications, raised in [18], is that ‘executable specifications can produce particular
results in cases where amore implicit specificationmay allow a number of different results’. However,
this is only to be expected. For example, Prolog is themost widely used executable logic language. A
user can take the first answer a Prolog program generates or instead ask the system to enumerate
every possible answer, even if there is an infinite number of them.

Asmentioned at the start of this chapter, there are twomain styles of mechanised proof tool:
automatic andmanual. Automatic proof tools nominally require nomanual input. Themain example is
a model checker. Their grander descendant, checker tools based on satisfiability modulo theories
(SMT), have expanded the application space for automatic proofs by combining various knowledge
domains for sets, integer formulae, linked lists and so on. Well-known general-purposemodel
checkers are SMV [19] and Spin. Yices and Z3 are SMT solvers.

Industrial SoC designmostly uses fully automated provers, whereas research into specification and
verification often usesmanually guided provers. The latter maymake suggestions about proof steps
but their main role is to check whether the result has been derivedwithout a false step. Manual proof
tools include HOL, Isabelle, ACL2 and Coq.

EDA formal tool packages include Cadence JasperGold, Mentor QuestaFormal and Synopsys
VCFormal.

400

Chapter 7 | FormalMethods and Assertion-based Design

7.9.1 Exercises
1. Define the following classifications of programming languages and systems: declarative, functional,
imperative, behavioural and logic. What class are the following languages: Prolog, SQL, Verilog,
C++, Specman Elite, PSL and LISP?

2. The synchronous subsystem in Figure 7.14 has three inputs: clock, reset and start. It has one
output calledQ. It must generate two output pulses for each zero-to-one transition of the start
input (unless it is already generating pulses). Give an RTL implementation of the component. Write
a formal specification for it using PSL or SVA. Speculate whether your RTL implementation could
have been synthesised from your formal specification.

clk

reset

start

Q
Q

reset

start

clk

reset

start

Q

Figure 7.14 A pulse generator: schematic symbol and timing waveforms

3. Create a formal glue shim like the one in Figure 7.13 to check the correctness of a FIFO component.

4. Create a similar formal proof of the correctness of a RAM, showing that writes to different
locations do not interfere with each other.

5. Prove the equivalence of the two designs in Figure 7.10 by naming each state in each design and
defining aminimal FSMwhose states are each labelled with the list of states in each input design
that theymodel.

6. Implement the checker described in the bus-checker folder of the additional material.

References
[1] Colin Runciman,MatthewNaylor, and Fredrik Lindblad. SmallCheck and Lazy SmallCheck: Automatic

exhaustive testing for small values. In Proceedings of the First ACM SIGPLAN Symposium on Haskell, Haskell
’08, pages 37–48, New York, NY, USA, 2008. Association for ComputingMachinery. ISBN 9781605580647.
doi: 10.1145/1411286.1411292. URL https://doi.org/10.1145/1411286.1411292.

[2] IEEE Standard for VHDL Language ReferenceManual. IEEE, 2019. Std 1076-2019.
[3] IEC/IEEE International Standard – Verilog(R) Register Transfer Level Synthesis. IEEE, 2002. IEC 62142-2005,

First edition, 2005-06, Std 1364.1.
[4] IEEE Standard for Property Specification Language (PSL). IEEE, 2010. Std 1850-2010.
[5] IEEE Standard for System Verilog – Unified Hardware Design, Specification, and Verification Language. IEEE, 2018.

Std 1800-2017 (Revision of Std 1800-2012).

401

Modern SoCDesign

[6] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking. Electronic Notes in
Theoretical Computer Science, 66(2):160–177, 2002.

[7] Jade Alglave, LucMaranget, Susmit Sarkar, and Peter Sewell. Fences in weakmemorymodels. In Proceedings
of the 22nd International Conference on Computer Aided Verification, CAV’10, pages 258–272, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 364214294X. doi: 10.1007/978-3-642-14295-6_25. URL
https://doi.org/10.1007/978-3-642-14295-6_25.

[8] Cadence Design Systems Ltd. Specman Elite: Verification automation from block to chip to system levels.
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-
design-verification/specman-elite-ds.pdf, 2020.

[9] Ramana Kumar, MagnusO.Myreen,Michael Norrish, and Scott Owens. CakeML: A Verified
Implementation ofML. SIGPLANNot., 49(1):179–191, January 2014. ISSN 0362-1340. doi: 10.1145/
2578855.2535841. URL https://doi.org/10.1145/2578855.2535841.

[10] David J. Greaves. Model checking a CAN network of PIC CPUs. https://www.cl.cam.ac.uk/research/
srg/han/Lambda, 2006.

[11] Doulos Global Training. The designer’s guide to PSL. https://www.doulos.com/knowhow/psl, 2021.
[12] Yogesh S.Mahajan, Zhaohui Fu, and SharadMalik. Zchaff2004: An efficient SAT solver. In Holger H. Hoos

andDavid G.Mitchell, editors, Theory and Applications of Satisfiability Testing, pages 360–375, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31580-3.

[13] Synopsys Inc. Formality equivalence checking. https://www.synopsys.com/implementation-and-
signoff/signoff/formality-equivalence-checking.html, 2020.

[14] Mike Turpin. The dangers of living with an X (bugs hidden in your Verilog). In Synopsys Users GroupMeeting,
2003.

[15] IP Security AssuranceWorking Group. https://www.accellera.org/activities/working-groups/ip-
security-assurance, 2021.

[16] Brent Sherman,Mike Borza, James Pangburn, Ambar Sarkar,Wen Chenand, Anders Nordstrom,
Kathy Herring Hayashi, MichaelMunsey, JohnHallman, Alric Althoff, Jonathan Valamehr, Adam Sherer,
Ireneusz Sobanski, Sohrab Aftabjahani, and Sridhar Nimmagadda. IP security assurance standard
whitepaper. Technical report, Accellera, 2019.

[17] Norbert E. Fuchs. Specifications are (preferably) executable. Softw. Eng. J., 7(5):323–334, September 1992.
ISSN 0268-6961. doi: 10.1049/sej.1992.0033. URL https://doi.org/10.1049/ sej1992.0033.

[18] Ian Hayes and C. B. Jones. Specifications are not (necessarily) executable. Softw. Eng. J., 4(6):330–338,
November 1989. ISSN 0268-6961. doi: 10.1049/sej.1989.0045. URL https://doi.org/10.1049/
sej.1989.0045.

[19] Kenneth L. McMillan. The SMV system. In Symbolic Model Checking, pages 61–85. Springer, 1993. ISBN
978-1-4615-3190-6. doi: 10.1007/978-1-4615-3190-6_4. URL https://doi.org/10.1007/978-1-4615-
3190-6_4.

402

Chapter 8
Fabrication and Production

Modern SoCDesign

[6] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking. Electronic Notes in
Theoretical Computer Science, 66(2):160–177, 2002.

[7] Jade Alglave, LucMaranget, Susmit Sarkar, and Peter Sewell. Fences in weakmemorymodels. In Proceedings
of the 22nd International Conference on Computer Aided Verification, CAV’10, pages 258–272, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 364214294X. doi: 10.1007/978-3-642-14295-6_25. URL
https://doi.org/10.1007/978-3-642-14295-6_25.

[8] Cadence Design Systems Ltd. Specman Elite: Verification automation from block to chip to system levels.
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-
design-verification/specman-elite-ds.pdf, 2020.

[9] Ramana Kumar, MagnusO.Myreen,Michael Norrish, and Scott Owens. CakeML: A Verified
Implementation ofML. SIGPLANNot., 49(1):179–191, January 2014. ISSN 0362-1340. doi: 10.1145/
2578855.2535841. URL https://doi.org/10.1145/2578855.2535841.

[10] David J. Greaves. Model checking a CAN network of PIC CPUs. https://www.cl.cam.ac.uk/research/
srg/han/Lambda, 2006.

[11] Doulos Global Training. The designer’s guide to PSL. https://www.doulos.com/knowhow/psl, 2021.
[12] Yogesh S.Mahajan, Zhaohui Fu, and SharadMalik. Zchaff2004: An efficient SAT solver. In Holger H. Hoos

andDavid G.Mitchell, editors, Theory and Applications of Satisfiability Testing, pages 360–375, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31580-3.

[13] Synopsys Inc. Formality equivalence checking. https://www.synopsys.com/implementation-and-
signoff/signoff/formality-equivalence-checking.html, 2020.

[14] Mike Turpin. The dangers of living with an X (bugs hidden in your Verilog). In Synopsys Users GroupMeeting,
2003.

[15] IP Security AssuranceWorking Group. https://www.accellera.org/activities/working-groups/ip-
security-assurance, 2021.

[16] Brent Sherman,Mike Borza, James Pangburn, Ambar Sarkar,Wen Chenand, Anders Nordstrom,
Kathy Herring Hayashi, MichaelMunsey, JohnHallman, Alric Althoff, Jonathan Valamehr, Adam Sherer,
Ireneusz Sobanski, Sohrab Aftabjahani, and Sridhar Nimmagadda. IP security assurance standard
whitepaper. Technical report, Accellera, 2019.

[17] Norbert E. Fuchs. Specifications are (preferably) executable. Softw. Eng. J., 7(5):323–334, September 1992.
ISSN 0268-6961. doi: 10.1049/sej.1992.0033. URL https://doi.org/10.1049/ sej1992.0033.

[18] Ian Hayes and C. B. Jones. Specifications are not (necessarily) executable. Softw. Eng. J., 4(6):330–338,
November 1989. ISSN 0268-6961. doi: 10.1049/sej.1989.0045. URL https://doi.org/10.1049/
sej.1989.0045.

[19] Kenneth L. McMillan. The SMV system. In Symbolic Model Checking, pages 61–85. Springer, 1993. ISBN
978-1-4615-3190-6. doi: 10.1007/978-1-4615-3190-6_4. URL https://doi.org/10.1007/978-1-4615-
3190-6_4.

402

Chapter 8
Fabrication and Production

Modern SoCDesign

In this chapter, we discuss the back end of the SoC flow, including RTL simulation and synthesis and
chip layout and testing. This is sometimes called the physical flow. The design andmanufacture of
SoCs are generally separate processes, carried out by different companies. Devices are normally
made at a foundry. There are various possible interfaces with foundry services, but wewill consider
themost basic flow, in which the SoC house sends a file in GDS format (graphical database system)
containing a layout and also a purchase order to the foundry and receives back packaged or unpacked
dies (Section 8.9). In this chapter, we also cover aspects of design verification not covered in Chapter 7
(on formal methods) andwe cover production testing.

The design flow in electronic design automation (EDA) is partitioned at the RTL level between the
front end and the back end. Themain tool that bridges the two halves is a logic synthesiser
(Section 8.3.8), but other tools such as a floor-plan layout editor and verification flows cross the gap.
The principal distinction between them is that the front end is largely technology-independent
whereas the back end is based around a particular fabrication technology and specific chip instance.
We do not expect to be able to reuse any of the back-end effort in another design, whereas the
front-end IP is portable and parameterisable.

Themainstream approach in a physical SoC flow is called semi-custom design, which uses a standard
cell library, as described in Section 8.4.1. A cell library defines individual gates, flip-flops and other
components such as I/O pads and clock generators. Static RAMs from amemory generator
(Section 8.3.10) are also treated as cells.

Figure 8.1 shows themain back-end stages of a physical SoC flow. Later, wewill add the design
verification checks to this diagram (Figure 8.45). The articulation point between the front and back
ends is synthesisable RTL, which is discussed in Section 8.3. The diagram shows a linear progression
of steps. However, design decisionsmade at one step alter the feasibility and performance of
subsequent steps, so an iterative approach has to be used. The degree of iteration is greatly reduced
withmodern EDA tools since the tool for each step can anticipate what might happen in the next step
using heuristic estimators. Such tools are said to be physically aware. For example, if a signal needs to
be delivered to several points around a chip, different buffering approaches would use different
numbers and types of buffers, which would vary in their power, performance and area. These three
metrics are collectively known as the PPApower, performance and area (PPA) parameters for a design.
The chip, as a whole, will have targets for the sums of each of thesemetrics. Physical design closure is
the process of adjusting these aspects of the design details so that the global targets aremet.

As well as the succession of operations on the primary data structures representing the circuitry, the
left of the figure shows a parallel cascade of plans that map logic and I/O connections to named zones.
A zone is a floor plan area or a clock or power domain. Together these combine to document the
high-level layout of the chip. The tools at each step consult the plans.

404

Chapter 8 | Fabrication and Production

Figure 8.1 Back-end stages in the synthesis and physical design of a SoC, showing representative diagrams for five of the stages. The red track on the left is
the physical intent flow

8.1 Evolution of Design Closure
The design of a chip wasmuch simpler in the early days of very large-scale integration (VLSI). The
first microprocessors in the 1970s integrated a few thousand logic gates and operated at low
frequencies. For instance, the Z80microprocessor was fabricated from 18mm2 of 4-µmNMOS
silicon and clocked 7000 transistors at 4MHz. Devices used one layer of metal wiring with all net
crossings implemented using a polysilicon FET gate layer for wiring in the orthogonal direction.
Manufacturing design rules were soon established. Initially, only very simple rules were needed,
mostly regarding theminimum distance between polygon features. A chip was guaranteed to work if
all the design rules were obeyed. Nowadays, SoCs that integrate hundreds of millions of logic circuits
with clocks of frequencies above 1GHz are not unusual.

A design hasmust-have and nice-to-have parameters. For example, it may bemandatory for themain
clock to be at least xMHz so that it can connect to an existing interface or communication protocol. It
may be nice to have a total area of less than ymm2. Meeting the area target will increase profitability,
withmore dies possible on a single wafer, but it is not always an obligation. The role of the back-end

405

Modern SoCDesign

In this chapter, we discuss the back end of the SoC flow, including RTL simulation and synthesis and
chip layout and testing. This is sometimes called the physical flow. The design andmanufacture of
SoCs are generally separate processes, carried out by different companies. Devices are normally
made at a foundry. There are various possible interfaces with foundry services, but wewill consider
themost basic flow, in which the SoC house sends a file in GDS format (graphical database system)
containing a layout and also a purchase order to the foundry and receives back packaged or unpacked
dies (Section 8.9). In this chapter, we also cover aspects of design verification not covered in Chapter 7
(on formal methods) andwe cover production testing.

The design flow in electronic design automation (EDA) is partitioned at the RTL level between the
front end and the back end. Themain tool that bridges the two halves is a logic synthesiser
(Section 8.3.8), but other tools such as a floor-plan layout editor and verification flows cross the gap.
The principal distinction between them is that the front end is largely technology-independent
whereas the back end is based around a particular fabrication technology and specific chip instance.
We do not expect to be able to reuse any of the back-end effort in another design, whereas the
front-end IP is portable and parameterisable.

Themainstream approach in a physical SoC flow is called semi-custom design, which uses a standard
cell library, as described in Section 8.4.1. A cell library defines individual gates, flip-flops and other
components such as I/O pads and clock generators. Static RAMs from amemory generator
(Section 8.3.10) are also treated as cells.

Figure 8.1 shows themain back-end stages of a physical SoC flow. Later, wewill add the design
verification checks to this diagram (Figure 8.45). The articulation point between the front and back
ends is synthesisable RTL, which is discussed in Section 8.3. The diagram shows a linear progression
of steps. However, design decisionsmade at one step alter the feasibility and performance of
subsequent steps, so an iterative approach has to be used. The degree of iteration is greatly reduced
withmodern EDA tools since the tool for each step can anticipate what might happen in the next step
using heuristic estimators. Such tools are said to be physically aware. For example, if a signal needs to
be delivered to several points around a chip, different buffering approaches would use different
numbers and types of buffers, which would vary in their power, performance and area. These three
metrics are collectively known as the PPApower, performance and area (PPA) parameters for a design.
The chip, as a whole, will have targets for the sums of each of thesemetrics. Physical design closure is
the process of adjusting these aspects of the design details so that the global targets aremet.

As well as the succession of operations on the primary data structures representing the circuitry, the
left of the figure shows a parallel cascade of plans that map logic and I/O connections to named zones.
A zone is a floor plan area or a clock or power domain. Together these combine to document the
high-level layout of the chip. The tools at each step consult the plans.

404

Chapter 8 | Fabrication and Production

Figure 8.1 Back-end stages in the synthesis and physical design of a SoC, showing representative diagrams for five of the stages. The red track on the left is
the physical intent flow

8.1 Evolution of Design Closure
The design of a chip wasmuch simpler in the early days of very large-scale integration (VLSI). The
first microprocessors in the 1970s integrated a few thousand logic gates and operated at low
frequencies. For instance, the Z80microprocessor was fabricated from 18mm2 of 4-µmNMOS
silicon and clocked 7000 transistors at 4MHz. Devices used one layer of metal wiring with all net
crossings implemented using a polysilicon FET gate layer for wiring in the orthogonal direction.
Manufacturing design rules were soon established. Initially, only very simple rules were needed,
mostly regarding theminimum distance between polygon features. A chip was guaranteed to work if
all the design rules were obeyed. Nowadays, SoCs that integrate hundreds of millions of logic circuits
with clocks of frequencies above 1GHz are not unusual.

A design hasmust-have and nice-to-have parameters. For example, it may bemandatory for themain
clock to be at least xMHz so that it can connect to an existing interface or communication protocol. It
may be nice to have a total area of less than ymm2. Meeting the area target will increase profitability,
withmore dies possible on a single wafer, but it is not always an obligation. The role of the back-end

405

Modern SoCDesign

design team is to satisfy all the constraints, which is called design closure. As well as meeting all the
other design rules, this principally comprises power closure and timing closure (Section 8.12.16).

Miniaturisation has been possible thanks tomany improvements in the processing of siliconmaterials.
However, miniaturisation generates a virtuous circle of increasingly dense faster transistors that
consume less and less power. The downside is that electronic chips have becomemore andmore
sensitive to power supply noise, electric field coupling between conductors and temperature
variations. SoC design engineers must consider all possible process variations and external
sensitivities to guarantee the proper functioning of the whole system.

Therefore, designers need to close designs that are increasingly more complex. The dimensions of the
elementary components are continuously decreasing and have now reached a few nanometres.
Moore’s law predicted that the number of transistors on a silicon chip should double every two years,
which has largely held true for the last few decades. This is mapped in the International Technology
Roadmap for Semiconductors (ITRS) and discussed in Section 8.2.

The challenges of design closure aremet using advanced computer-aided design (CAD) tools and
sophisticated electronic design automation (EDA) flows. As the transistors and nets have become
ever smaller, the EDA flow has evolved from a simple concatenation of sequential tasks to an iterative
flowwith complex interdependencies. The stages of the back-end EDA flow (Figure 8.1) are described
in the subsequent sections of this chapter. In short, they are:

Logic synthesis: The RTL code is translated into circuits realising Boolean functions and sequential
elements. These aremapped into a netlist of technology cells, which is the gate-level structural
netlist. This netlist is a circuit diagram showing the connections between components
(Section 8.3.1). It is optimised before and after technologymapping to reduce the area and power
and to increase performance (Section 8.3.8).

Design for testability (DfT): Various test structures (e.g. scan chains) are inserted into the
synthesised netlist (Section 4.7.5).

Floor planning: Various nodes of the hierarchic RTL representation of a SoC are assigned to a
polygonmap representing areas of the chip. Large objects, such as SRAMs, analogue IP blocks and
CPU cores, are placed in logic areas and I/O pins are spread over the chip or at its periphery
according to the package that is to be used (Section 8.3.12 and Section 8.6).

Power planning: As part of floor planning, the power supply arrangement for the device is
determined, taking into account the position of power-gated regions and any on-chip voltage
regulators. The arrangementmay have to ensure that power rails do not swapmetallisation layers
(Section 8.6.1).

406

Chapter 8 | Fabrication and Production

Placement: Zones of the chip that are to be populated with logic (typically, standard cells) have a
placement grid sketched out in accordance with the power-gating plan. The technology cells are
then placed on the grid according to design constraints (e.g. no overlaps) (Section 8.7.1).

Clock tree insertion: The clock within each clock domainmust be suitably buffered so as tomeet
performance goals but without over-engineering, which would waste power. (Section 8.7.2).

Routing: The wires that connect the gates in the netlist are routed (Section 8.7.3).

Post-routing optimisation: Any issue that limits performance or prevents targets from being
achievedmust be fixed. Further enhancements aremade to enhancemanufacturability
(Section 8.7.5).

Sign-off checks: The SoC design is exhaustively verified to ensure that all design rules are
respected, that it is logically correct and that the performance will bemet. Separate sign-offs are
required for functionality (Section 8.7.8), timing (Section 8.12), power and the test program
(Section 8.8.2).

Tapeout, data preparation and photomask generation: A SoC design drawing is converted into
photomasks for photolithography (Section 8.7.8).

8.1.1 Physically Aware Design Flows
The aim of an EDA flow is to convert a conceptualised idea into polygons that respect all the timing
and electrical constraints to ensure that the SoCworks. EDA flows are becomingmore andmore
complex, andmoreover, the number of timing and electrical constraints is increasing.

The timing and electrical constraints represent the performance and low-power criteria of a working
SoC. As discussed in Chapter 6, the power, performance and area (PPA)metrics for a SoC result from
very complex interactions at many levels of the design flow. Front-end design engineers must write
efficient RTL code and use themost efficient specialist cells available in the target technology, such as
ALU bit slices. Choosing the best data layout, algorithm and interconnect technology is always
critically important. However, back-end engineers can also apply their expertise by significantly
improving themajor metrics. For an RTL input file, a logic synthesiser can produce a very large
number of possible outputs, depending on additional synthesis intent settings (Section 8.3.8). As well
as optimising the floor plan and power plan, back-end engineers control the regeneration strategy to
buffer or pipeline long nets across the die. Theymay promote long nets to less resistivemetal layers
to reduce propagation times. Other advanced techniques for the back end include clock skewing
(Section 4.9.6) to balance up slack time in logic paths.

Modern SoC designers are aware that the constraints need to be defined increasingly earlier in the
EDA flow, since these have increasing global influence on the design of the SoC as a whole. There is
more flexibility to address a constraint if it is addressed earlier in the flow, but it is alsomore difficult
to predict the convergence of a constraint when it is addressed earlier. For example, inserting a

407

Modern SoCDesign

design team is to satisfy all the constraints, which is called design closure. As well as meeting all the
other design rules, this principally comprises power closure and timing closure (Section 8.12.16).

Miniaturisation has been possible thanks tomany improvements in the processing of siliconmaterials.
However, miniaturisation generates a virtuous circle of increasingly dense faster transistors that
consume less and less power. The downside is that electronic chips have becomemore andmore
sensitive to power supply noise, electric field coupling between conductors and temperature
variations. SoC design engineers must consider all possible process variations and external
sensitivities to guarantee the proper functioning of the whole system.

Therefore, designers need to close designs that are increasingly more complex. The dimensions of the
elementary components are continuously decreasing and have now reached a few nanometres.
Moore’s law predicted that the number of transistors on a silicon chip should double every two years,
which has largely held true for the last few decades. This is mapped in the International Technology
Roadmap for Semiconductors (ITRS) and discussed in Section 8.2.

The challenges of design closure aremet using advanced computer-aided design (CAD) tools and
sophisticated electronic design automation (EDA) flows. As the transistors and nets have become
ever smaller, the EDA flow has evolved from a simple concatenation of sequential tasks to an iterative
flowwith complex interdependencies. The stages of the back-end EDA flow (Figure 8.1) are described
in the subsequent sections of this chapter. In short, they are:

Logic synthesis: The RTL code is translated into circuits realising Boolean functions and sequential
elements. These aremapped into a netlist of technology cells, which is the gate-level structural
netlist. This netlist is a circuit diagram showing the connections between components
(Section 8.3.1). It is optimised before and after technologymapping to reduce the area and power
and to increase performance (Section 8.3.8).

Design for testability (DfT): Various test structures (e.g. scan chains) are inserted into the
synthesised netlist (Section 4.7.5).

Floor planning: Various nodes of the hierarchic RTL representation of a SoC are assigned to a
polygonmap representing areas of the chip. Large objects, such as SRAMs, analogue IP blocks and
CPU cores, are placed in logic areas and I/O pins are spread over the chip or at its periphery
according to the package that is to be used (Section 8.3.12 and Section 8.6).

Power planning: As part of floor planning, the power supply arrangement for the device is
determined, taking into account the position of power-gated regions and any on-chip voltage
regulators. The arrangementmay have to ensure that power rails do not swapmetallisation layers
(Section 8.6.1).

406

Chapter 8 | Fabrication and Production

Placement: Zones of the chip that are to be populated with logic (typically, standard cells) have a
placement grid sketched out in accordance with the power-gating plan. The technology cells are
then placed on the grid according to design constraints (e.g. no overlaps) (Section 8.7.1).

Clock tree insertion: The clock within each clock domainmust be suitably buffered so as tomeet
performance goals but without over-engineering, which would waste power. (Section 8.7.2).

Routing: The wires that connect the gates in the netlist are routed (Section 8.7.3).

Post-routing optimisation: Any issue that limits performance or prevents targets from being
achievedmust be fixed. Further enhancements aremade to enhancemanufacturability
(Section 8.7.5).

Sign-off checks: The SoC design is exhaustively verified to ensure that all design rules are
respected, that it is logically correct and that the performance will bemet. Separate sign-offs are
required for functionality (Section 8.7.8), timing (Section 8.12), power and the test program
(Section 8.8.2).

Tapeout, data preparation and photomask generation: A SoC design drawing is converted into
photomasks for photolithography (Section 8.7.8).

8.1.1 Physically Aware Design Flows
The aim of an EDA flow is to convert a conceptualised idea into polygons that respect all the timing
and electrical constraints to ensure that the SoCworks. EDA flows are becomingmore andmore
complex, andmoreover, the number of timing and electrical constraints is increasing.

The timing and electrical constraints represent the performance and low-power criteria of a working
SoC. As discussed in Chapter 6, the power, performance and area (PPA)metrics for a SoC result from
very complex interactions at many levels of the design flow. Front-end design engineers must write
efficient RTL code and use themost efficient specialist cells available in the target technology, such as
ALU bit slices. Choosing the best data layout, algorithm and interconnect technology is always
critically important. However, back-end engineers can also apply their expertise by significantly
improving themajor metrics. For an RTL input file, a logic synthesiser can produce a very large
number of possible outputs, depending on additional synthesis intent settings (Section 8.3.8). As well
as optimising the floor plan and power plan, back-end engineers control the regeneration strategy to
buffer or pipeline long nets across the die. Theymay promote long nets to less resistivemetal layers
to reduce propagation times. Other advanced techniques for the back end include clock skewing
(Section 4.9.6) to balance up slack time in logic paths.

Modern SoC designers are aware that the constraints need to be defined increasingly earlier in the
EDA flow, since these have increasing global influence on the design of the SoC as a whole. There is
more flexibility to address a constraint if it is addressed earlier in the flow, but it is alsomore difficult
to predict the convergence of a constraint when it is addressed earlier. For example, inserting a

407

Modern SoCDesign

pipeline stage into a huge logic function within the RTL code can have amuch greater impact on the
performance of the whole SoC than amanual correction during post-routing optimisation. Moreover,
even if the design engineers use advanced EDA tools, it is very difficult for them to predict what will
work. For example, before the chip logic is synthesised, placed and routed, it is hard to predict
whether a change in RTL coding will help to achieve the target performance.

In the sameway that they are timing-aware, modern EDA tools are power-aware and are driven by a
power intent file. This file commonly uses the universal power format (UPF) defined by Synopsys and
standardised as IEEE-1801 [1]. It contains an abstract description of how the SoC power supplies are
to be structured, with details of the external supply roots, voltage levels, which components can be
switched off andwhich components must always remain on.
upf_version 2.0

####################################

Supply Nets and Ports

####################################

create_supply_port VDD_MASTER -direction in

create_supply_port VDD_EXTERNAL -direction in

create_supply_port VSS

create_supply_net VDD_MASTER

create_supply_net VDD_EXTERNAL -resolve parallel

create_supply_net VSS

connect_supply_net VDD_MASTER -ports VDD_MASTER

connect_supply_net VDD_EXTERNAL -ports VDD_EXTERNAL

connect_supply_net VSS -ports VSS

####################################

Primary supply sets

####################################

create_supply_set ss_VDD_MASTER \

 -function { power VDD_MASTER } \

 -function { nwell VDD_MASTER } \

 -function { pwell vss } \

 -function { ground vss }

create_supply_set ss_VDD_EXTERNAL \

 -function { power VDD_EXTERNAL } \

 -function { nwell VDD_EXTERNAL} \

 -function { pwell vss} \

 -function { ground VSS }

####################################

Define power domains

####################################

create_power_domain PD_MASTER \

 -include_scope \

 -supply {primary ss_VDD_MASTER}

create_power_domain PD_EXTERNAL \

 -elements "instance_corel" \

 -supply {primary ss_VDD_EXTERNAL}

set_port_attributes -ports "ISO_MASTER2EXTERNAL DFTISODISABLE" -driver_supply ss_VDD_EXTERNAL -clamp_value 0

####################################

Define power states

####################################

#Supply Set Level Power State

add_power_state PD_MASTER.primary -state ON { -supply_expr { power == ‘{ FULL_ON, 0.85} && ground == ‘{FULL_ON, 0.0}}}

add_power_state PD_MASTER.primary -state OFF { -supply_expr { power == OFF && ground == ‘{ FULL_ON, 0.0}}}

add_power_state PD_EXTERNAL.primary -state ON { -supply_expr { power == ‘{ FULL_ON, 1.00} && ground == ‘{FULL_ON, 0.0}}}

add_power_state PD_EXTERNAL.primary -state low { -supply_expr { power == ‘{ FULL_ON, 0.85} && ground == ‘{FULL_ON, 0.0}}}

A power domain holds a collection of components that all share
the same power supply requirements.

A supply set is a named set of rails.

The power state table defines what the states are and what
combinations of them over different domains is legal.
These add_power_state commands define three states: ON, OFF and low.
Constraints over voltages and logic net values can be stored in each state definition.

The create_supply_port command defines the
external supply pins.

The create_supply_net command
defines internal PDN rail names.

The connect_supply_net command joins
nets to ports.

Figure 8.2 A small example of a universal power format (UPF) file

Figure 8.2 shows aminimal UPF example. UPF commands are embedded in the tool command
language (TCL). The example defines threemain power rails, two power domains and three power
states. There is no set_scope command, so it uses a hierarchy with just one level. In general, the
format is hierarchic. It defines a tree of domains in which a node takes on its parent’s properties
unless explicitly changed. The set_retention command defines signals for gate control inputs to

408

Chapter 8 | Fabrication and Production

volatile memories while neighbouring domains power down. Commands such as set_level_shifter
control the instantiation of level shifters between domains.

The synthesis and placement steps automatically insert an appropriate number of power-gating
switches and isolation cells at the required boundaries in the logical hierarchy and between physical
regions. SinceCAD tools are iterated to fix any timing violations to hit performance targets, it is amust
that they are power-aware because they update the number, location and properties of these cells.

Area Dependencies
As electronic chips become smaller, more chips can fit on a siliconwafer. Moreover, the cost per chip is
lower. A yield and cost trade-off is presented in Section 8.11.1. Asmanufacturing and lithography
process improve, the size of transistors and nets decreases. Recent technology nodes require explicit
consideration of delay propagation along some non-clock nets, since this is no longer negligible for the
finest wires available (Section 4.6.4). Clock networks, of course, are always subjected to very detailed
modelling.

PPA targets normally involve a trade-off betweenmaximising performance, minimising power
consumption andminimising area. For example, should an adder be a ripple-carry adder or use
look-ahead? The propagation delay is smaller in a look-ahead adder than for ripple carry, but the
additional logic of a look-ahead adder requires more silicon area (Section 8.3.8).

Back-end EDAflows have seenmajor changes in the last 30 years and are still changing. CAD tools are
evolving as CMOSmanufacturing technology is downscaled, leading to new challenges, such as signal
integrity, leakage power and reliability. We highly recommend that design engineers working on
high-performance designs use a physical back-end design flow rather than the older non-physical
synthesis flows. A physical synthesis flow includes net length estimates at all stages prior to routing,
if they are known. The flow revolves around a floor plan, instead of using only the physical data
available within the technology libraries. Thanks to the floor plan, tools can anticipate an approximate
location for each cell and can estimatemore accurately the wiring length between cells. They can also
use the gate density and routing congestion to estimate howmuch spacemust be left for net routing
beyond the area used by logic. A floor-plan-aware approach generally accelerates design closure and
meets PPA targets.

Formerly, an RTL designer performed the principal logic synthesis, while the back-end team only
placed and routed the cells. Today, logic synthesisers are still used by RTL designers to get quick
feedback on the impact of an RTL change. However, to meet the PPA objectives, the principal
synthesis is now handled by the back-end team.

Introducing the physical constraints into the flow sooner gives better results for signal timing, area
and also design time. Physically aware flows give amore accurate view of the issues that the designer
would have encountered later in older flows. Thus, design engineers no longer need to usemultiple
long iteration loops.

409

Modern SoCDesign

pipeline stage into a huge logic function within the RTL code can have amuch greater impact on the
performance of the whole SoC than amanual correction during post-routing optimisation. Moreover,
even if the design engineers use advanced EDA tools, it is very difficult for them to predict what will
work. For example, before the chip logic is synthesised, placed and routed, it is hard to predict
whether a change in RTL coding will help to achieve the target performance.

In the sameway that they are timing-aware, modern EDA tools are power-aware and are driven by a
power intent file. This file commonly uses the universal power format (UPF) defined by Synopsys and
standardised as IEEE-1801 [1]. It contains an abstract description of how the SoC power supplies are
to be structured, with details of the external supply roots, voltage levels, which components can be
switched off andwhich components must always remain on.
upf_version 2.0

####################################

Supply Nets and Ports

####################################

create_supply_port VDD_MASTER -direction in

create_supply_port VDD_EXTERNAL -direction in

create_supply_port VSS

create_supply_net VDD_MASTER

create_supply_net VDD_EXTERNAL -resolve parallel

create_supply_net VSS

connect_supply_net VDD_MASTER -ports VDD_MASTER

connect_supply_net VDD_EXTERNAL -ports VDD_EXTERNAL

connect_supply_net VSS -ports VSS

####################################

Primary supply sets

####################################

create_supply_set ss_VDD_MASTER \

 -function { power VDD_MASTER } \

 -function { nwell VDD_MASTER } \

 -function { pwell vss } \

 -function { ground vss }

create_supply_set ss_VDD_EXTERNAL \

 -function { power VDD_EXTERNAL } \

 -function { nwell VDD_EXTERNAL} \

 -function { pwell vss} \

 -function { ground VSS }

####################################

Define power domains

####################################

create_power_domain PD_MASTER \

 -include_scope \

 -supply {primary ss_VDD_MASTER}

create_power_domain PD_EXTERNAL \

 -elements "instance_corel" \

 -supply {primary ss_VDD_EXTERNAL}

set_port_attributes -ports "ISO_MASTER2EXTERNAL DFTISODISABLE" -driver_supply ss_VDD_EXTERNAL -clamp_value 0

####################################

Define power states

####################################

#Supply Set Level Power State

add_power_state PD_MASTER.primary -state ON { -supply_expr { power == ‘{ FULL_ON, 0.85} && ground == ‘{FULL_ON, 0.0}}}

add_power_state PD_MASTER.primary -state OFF { -supply_expr { power == OFF && ground == ‘{ FULL_ON, 0.0}}}

add_power_state PD_EXTERNAL.primary -state ON { -supply_expr { power == ‘{ FULL_ON, 1.00} && ground == ‘{FULL_ON, 0.0}}}

add_power_state PD_EXTERNAL.primary -state low { -supply_expr { power == ‘{ FULL_ON, 0.85} && ground == ‘{FULL_ON, 0.0}}}

A power domain holds a collection of components that all share
the same power supply requirements.

A supply set is a named set of rails.

The power state table defines what the states are and what
combinations of them over different domains is legal.
These add_power_state commands define three states: ON, OFF and low.
Constraints over voltages and logic net values can be stored in each state definition.

The create_supply_port command defines the
external supply pins.

The create_supply_net command
defines internal PDN rail names.

The connect_supply_net command joins
nets to ports.

Figure 8.2 A small example of a universal power format (UPF) file

Figure 8.2 shows aminimal UPF example. UPF commands are embedded in the tool command
language (TCL). The example defines threemain power rails, two power domains and three power
states. There is no set_scope command, so it uses a hierarchy with just one level. In general, the
format is hierarchic. It defines a tree of domains in which a node takes on its parent’s properties
unless explicitly changed. The set_retention command defines signals for gate control inputs to

408

Chapter 8 | Fabrication and Production

volatile memories while neighbouring domains power down. Commands such as set_level_shifter
control the instantiation of level shifters between domains.

The synthesis and placement steps automatically insert an appropriate number of power-gating
switches and isolation cells at the required boundaries in the logical hierarchy and between physical
regions. SinceCAD tools are iterated to fix any timing violations to hit performance targets, it is amust
that they are power-aware because they update the number, location and properties of these cells.

Area Dependencies
As electronic chips become smaller, more chips can fit on a siliconwafer. Moreover, the cost per chip is
lower. A yield and cost trade-off is presented in Section 8.11.1. Asmanufacturing and lithography
process improve, the size of transistors and nets decreases. Recent technology nodes require explicit
consideration of delay propagation along some non-clock nets, since this is no longer negligible for the
finest wires available (Section 4.6.4). Clock networks, of course, are always subjected to very detailed
modelling.

PPA targets normally involve a trade-off betweenmaximising performance, minimising power
consumption andminimising area. For example, should an adder be a ripple-carry adder or use
look-ahead? The propagation delay is smaller in a look-ahead adder than for ripple carry, but the
additional logic of a look-ahead adder requires more silicon area (Section 8.3.8).

Back-end EDAflows have seenmajor changes in the last 30 years and are still changing. CAD tools are
evolving as CMOSmanufacturing technology is downscaled, leading to new challenges, such as signal
integrity, leakage power and reliability. We highly recommend that design engineers working on
high-performance designs use a physical back-end design flow rather than the older non-physical
synthesis flows. A physical synthesis flow includes net length estimates at all stages prior to routing,
if they are known. The flow revolves around a floor plan, instead of using only the physical data
available within the technology libraries. Thanks to the floor plan, tools can anticipate an approximate
location for each cell and can estimatemore accurately the wiring length between cells. They can also
use the gate density and routing congestion to estimate howmuch spacemust be left for net routing
beyond the area used by logic. A floor-plan-aware approach generally accelerates design closure and
meets PPA targets.

Formerly, an RTL designer performed the principal logic synthesis, while the back-end team only
placed and routed the cells. Today, logic synthesisers are still used by RTL designers to get quick
feedback on the impact of an RTL change. However, to meet the PPA objectives, the principal
synthesis is now handled by the back-end team.

Introducing the physical constraints into the flow sooner gives better results for signal timing, area
and also design time. Physically aware flows give amore accurate view of the issues that the designer
would have encountered later in older flows. Thus, design engineers no longer need to usemultiple
long iteration loops.

409

Modern SoCDesign

Physically aware logic synthesisers are distinct from place-and-route tools, but these are becoming
evermore closely integrated and the emergence of a single tool is widely predicted. Note that some
modern SoCs are so complex that in some cases a non-physical synthesis flowwill provide better
results than a physical synthesis flow.

8.2 VLSI Geometry
The feature size of aVLSI circuit is historically called λ, as popularised byMead and Conway [2]. It is
essentially the smallest separation between different mask polygons so that the features remain
reliably isolated during fabrication. It is half the drawn gate width, so for a 45 nm geometry,
λ=22.5nm.

Table 8.1 Representative microprocessors

Year introduced Microprocessor No of transistors Geometry
2007 Dual-core Intel Itanium 2 1.6 billion 90nm
2010 8-core Intel Nehalem 2.3 billion 45nm
2010 Altera Stratix IV FPGA 2.5 billion 40nm
2015 Intel CPU circa 10 billion 19nm
2020 Nvidia’s GA100 Ampere 54 billion 7 nm

ThemainstreamVLSI technology from 2004 to 2008was 90nm (Table 8.1). This had low leakage and
very high wafer yields. Now, the industry is commonly using 14 nm or smaller, taking us into the
so-called deep submicron era. The definition and usefulness of λ aremore complex for these
advanced technology nodes, but it still remains a useful unit for speaking about the size of gates, RAM
cells andwiring pitch. As λ has decreased, the number of transistors per squaremillimetre has
increased, and slightly larger chips have also been routinely made. Progress has roughly tracked
Moore’s law, with examples plotted in Figure 8.3.

In 1971, Robert Dennard presented a seminal workshop paper (now lost) that first predicted that as
transistors get smaller in VLSI, their power density would remain constant. The consequence is that
power use is proportional to area, as both voltage and current scale (downward) with length. This
became known as theDennard scaling rule [3]. The rule held for many decades andwas greatly
assisted by amove from 5V logic swings down to around about 0.9V, with a corresponding quadratic
energy saving (Section 4.6.8). This relationmeant that no new heat extraction technology was needed
as VLSI capabilities improved. However, as Horowitz pointed out in 2007 [4], once the supply voltage
was 1V, with the silicon CMOS threshold voltage VT being in the range 0.4 to 0.6V, depending on
device construction, logic cannot be run at much lower voltages without greatly increasing the
leakage (static power) (Section 4.6.3).

The end of Dennard scaling is generally considered to have occurred in about 2006. Although
geometry scaling has continued to enable more andmore logic to be integrated on a single chip, this
logic cannot all be in operation at once while a cheapmetallic heat spreader (Section 4.4.1) or ethanol
heat pipe is still used as themain cooling component. This limitation is often called the powerwall.

410

Chapter 8 | Fabrication and Production

Figure 8.3 Technology scaling scatter plot (source: ourworldindata.org, Hannah Ritchie andMax Roser, 2018. From: https://ourworldindata.org/uploads/
2019/05/Transistor-Count-over-time-to-2018.png (2019 version). Reproduced under the terms of the Creative Commons Attribution Share-Alike Licence,
CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>)

Transistors are still beingmade smaller and smaller but the sizes of the atoms is a problem. The
spacing of silicon atoms is about 0.2 nm, so 7 nm technology is just tens of atomswide. The
intersection of VLSI technology and the size of an atomwas historically called the silicon end point.
The power wall and electron tunnelling through small features have turned out instead to be the
limitations. These can possibly be overcome using graphene and carbon nanotubes as substrates.

Gallium arsenide (GaAs) has been a feasible alternative to silicon for decades. It has four times higher
electronmobility, so a transistor of a given size switches about four times faster. Integrated circuits
(ICs) using JFET technology have been built fromGaAs, but it has been hard tomake large low-energy
chips fromGaAs due to the forward current from a gate into the channel of the JFET diode.
Alternatives to silicon for mainstream logic remain in their infancy.

Just making silicon chips physically smaller does not exploit today’s VLSI manufacturing technology.
Making a chip about 1 cm on a side still gives a good yield. The only way forward is either to use
expensive and esoteric heat extraction technology or to accept dark silicon. If power gating
(Section 4.6.10) is used to disable large regions of the die, power dissipation is no longer a problem.
Domains that are switched off to save power are known as dark silicon regions. Figure 8.4 shows the
amount of a typical chip that may be active at any instant, given typical SoC heat-spreader technology,
as the process geometry is reduced.

411

Modern SoCDesign

Physically aware logic synthesisers are distinct from place-and-route tools, but these are becoming
evermore closely integrated and the emergence of a single tool is widely predicted. Note that some
modern SoCs are so complex that in some cases a non-physical synthesis flowwill provide better
results than a physical synthesis flow.

8.2 VLSI Geometry
The feature size of aVLSI circuit is historically called λ, as popularised byMead and Conway [2]. It is
essentially the smallest separation between different mask polygons so that the features remain
reliably isolated during fabrication. It is half the drawn gate width, so for a 45 nm geometry,
λ=22.5nm.

Table 8.1 Representative microprocessors

Year introduced Microprocessor No of transistors Geometry
2007 Dual-core Intel Itanium 2 1.6 billion 90nm
2010 8-core Intel Nehalem 2.3 billion 45nm
2010 Altera Stratix IV FPGA 2.5 billion 40nm
2015 Intel CPU circa 10 billion 19nm
2020 Nvidia’s GA100 Ampere 54 billion 7 nm

ThemainstreamVLSI technology from 2004 to 2008was 90nm (Table 8.1). This had low leakage and
very high wafer yields. Now, the industry is commonly using 14 nm or smaller, taking us into the
so-called deep submicron era. The definition and usefulness of λ aremore complex for these
advanced technology nodes, but it still remains a useful unit for speaking about the size of gates, RAM
cells andwiring pitch. As λ has decreased, the number of transistors per squaremillimetre has
increased, and slightly larger chips have also been routinely made. Progress has roughly tracked
Moore’s law, with examples plotted in Figure 8.3.

In 1971, Robert Dennard presented a seminal workshop paper (now lost) that first predicted that as
transistors get smaller in VLSI, their power density would remain constant. The consequence is that
power use is proportional to area, as both voltage and current scale (downward) with length. This
became known as theDennard scaling rule [3]. The rule held for many decades andwas greatly
assisted by amove from 5V logic swings down to around about 0.9V, with a corresponding quadratic
energy saving (Section 4.6.8). This relationmeant that no new heat extraction technology was needed
as VLSI capabilities improved. However, as Horowitz pointed out in 2007 [4], once the supply voltage
was 1V, with the silicon CMOS threshold voltage VT being in the range 0.4 to 0.6V, depending on
device construction, logic cannot be run at much lower voltages without greatly increasing the
leakage (static power) (Section 4.6.3).

The end of Dennard scaling is generally considered to have occurred in about 2006. Although
geometry scaling has continued to enable more andmore logic to be integrated on a single chip, this
logic cannot all be in operation at once while a cheapmetallic heat spreader (Section 4.4.1) or ethanol
heat pipe is still used as themain cooling component. This limitation is often called the powerwall.

410

Chapter 8 | Fabrication and Production

Figure 8.3 Technology scaling scatter plot (source: ourworldindata.org, Hannah Ritchie andMax Roser, 2018. From: https://ourworldindata.org/uploads/
2019/05/Transistor-Count-over-time-to-2018.png (2019 version). Reproduced under the terms of the Creative Commons Attribution Share-Alike Licence,
CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>)

Transistors are still beingmade smaller and smaller but the sizes of the atoms is a problem. The
spacing of silicon atoms is about 0.2 nm, so 7 nm technology is just tens of atomswide. The
intersection of VLSI technology and the size of an atomwas historically called the silicon end point.
The power wall and electron tunnelling through small features have turned out instead to be the
limitations. These can possibly be overcome using graphene and carbon nanotubes as substrates.

Gallium arsenide (GaAs) has been a feasible alternative to silicon for decades. It has four times higher
electronmobility, so a transistor of a given size switches about four times faster. Integrated circuits
(ICs) using JFET technology have been built fromGaAs, but it has been hard tomake large low-energy
chips fromGaAs due to the forward current from a gate into the channel of the JFET diode.
Alternatives to silicon for mainstream logic remain in their infancy.

Just making silicon chips physically smaller does not exploit today’s VLSI manufacturing technology.
Making a chip about 1 cm on a side still gives a good yield. The only way forward is either to use
expensive and esoteric heat extraction technology or to accept dark silicon. If power gating
(Section 4.6.10) is used to disable large regions of the die, power dissipation is no longer a problem.
Domains that are switched off to save power are known as dark silicon regions. Figure 8.4 shows the
amount of a typical chip that may be active at any instant, given typical SoC heat-spreader technology,
as the process geometry is reduced.

411

Modern SoCDesign

2008 2014 2020

45nm 22nm 11nm 8nm

100% 50% 20% 5%

Year (approx)

Feature size

Exploitable
area

2017

Figure 8.4 Dark silicon (using data from [5, 6])

8.2.1 VLSI Evolution
As sketched in Figure 8.51, a VLSI IC is made on awafer of silicon that is about 0.3mm thick and large
enough to hold hundreds of devices. The wafer is a single crystal of silicon that is nearly completely
free from dislocations. In this chapter, we assume that the reader understands the fundamentals of IC
manufacturing, so here we just summarise the key steps.

Nearly all digital circuits aremade from field-effect transistors (FETs) based on complementary
oxide of silicon (CMOS) fabrication. As sketched in Figure 8.5, the transistors are either P- or N-type
according to the underlying doping of thewafer in the regionwhere they are constructed. The doping,
like all othermanufacturing steps, is laid down by ion injection or photolithography from themasks for
each layer using high-frequency light to cure a layer of photoresist. A traditional planar FET is formed
when a strip of opposite doping, called the channel, is interrupted by a short break, called the gate.
The gate consists of a very thin layer of silicon dioxide with a track of polysilicon on top. Unlike the
monosilicon of the wafer, which is only lightly doped, the polysilicon is heavily doped so that it
conducts electricity reasonably well, but not as well as themetal deposited on the higher levels.

p-substrate
n-well(p well)

p++n++ p++n++

N-type
FET

Ground
(VSS)

Supply
rail

(VDD)Transistor
gates

P-type
FET

M1
M2
M3
M4
M5

M6

M7

p++

Via

Substrate
tie

n++

Tub tieChannel length

TiN or other barrier

High-k
gate

insulator

Figure 8.5 Basic layers in planar CMOS VLSI. Cross section through an invertor fabricated using planar transistors (not FinFETs) in a twin-well process and
metal layers, M1 toM7 (not to scale)

CMOS uses enhancementmode FETs. These have no electrical connection between the gate and the
channel. They are switched off when there is no potential difference between the gate and the well
they are constructed in. AnN-channel FET is built in a Pwell or on the base wafer, which has been

412

Chapter 8 | Fabrication and Production

lightly doped as P to have an excess of holes. The wafer and anywell are connected to the ground
supply rail using a substrate tie or Pwell tub tie (not shown). Hence, the ground rail is also known as
Vss for CMOS devices. For P-channel transistors, everything is reversed. The well is connected to the
positive supply rail and they start to conductwhen their gate is negativewith respect to that potential.

The switching performance of a FET is inversely proportional to its channel length, which in a CMOS
process is the smallest feature (e.g. 22 nm). The thickness of the gate insulation is, typically, an order
of magnitude smaller and is also a critical parameter. The channel thickness does not depend on the
mask, but is instead controlled by the fabrication recipe in terms of the amount of deposition and
etching used. It can consist of just five layers of silicon dioxide atoms, which is about 1 nm in thickness.
A downside of the thinness is the comparatively high electrostatic field. The field strength across the
insulator can be 109 V/mwhen there is a 1V gate to the substrate potential. For comparison, only
three times this field strength is needed for air to break down completely and turn into a conducting
spark. Even before the breakdown potential is reached, significant leakage is caused by electron
tunnelling in the supposed insulator. Oneway to reduce the field strength is simply to use a thicker
insulating layer, but this would reduce the effective capacitance of the gate, reducing its effect on the
channel and so degrading the transistor. In all modern processes, rather than just using SiO2 as the
gate insulator, a layer of a high permittivitymaterial (κ or ϵr), such as Al2O3, is added between the gate
conductor (the polysilicon) and the gate insulator. This processing step is also useful whenmaking
capacitors for other purposes, especially as the storage element in DRAM.

On top of the transistor layer, there are alternating layers of metal (conductors) and silicon dioxide
(insulators). Vertical holes are cut through the layers and filled with the samemetal tomake vias,
which are conducting joints between layers. Themetal layersM1 andM2 provide a local
interconnection for the power and logic signals (nets). The higher layers of metal are used for longer
distance nets and clock distribution. The highest layers form the power delivery network (PDN).

Before 1980, aluminiumwas exclusively used as themetal for an interconnect. It is easy to deposit as
a wafer-wide layer and can be etched selectively. Aluminium has a resistivity of 2.7×10−8Ωm. With
successively finer tracks at smaller geometries, the RC time constants (Section 4.9.5) became a
problem andmotivated a switch to copper, which has a lower resistivity of 1.7×10−8Ωm. Copper
also suffers less from electromigration (Section 8.4.5), but it requires an isolation layer, such as
titanium nitride (TiN), shown in black in the figure, to stop the copper leaching into the silicon.

One of the largest problemswith small-geometry transistors is their leakage. As was presented in
Section 4.6.3, this is the current they pass when they are supposedly off. Smaller-geometry transistors
have a lower threshold voltage VT, but this has not fallen in proportion to the reductions in supply
voltage. Figure 8.5 shows conventional planar transistors that aremade below the planar surface of
the starting wafer. Leakage can be reduced by switching to non-planar FinFET structures.

FinFET designsmake greater use of the third dimension by extending the channel upwards, with the
gate wrapping around the channel, which increases the contact area. The gate is thenmore effective
in controlling the channel. A thin and short channel is needed for good performance. Extending the

413

Modern SoCDesign

2008 2014 2020

45nm 22nm 11nm 8nm

100% 50% 20% 5%

Year (approx)

Feature size

Exploitable
area

2017

Figure 8.4 Dark silicon (using data from [5, 6])

8.2.1 VLSI Evolution
As sketched in Figure 8.51, a VLSI IC is made on awafer of silicon that is about 0.3mm thick and large
enough to hold hundreds of devices. The wafer is a single crystal of silicon that is nearly completely
free from dislocations. In this chapter, we assume that the reader understands the fundamentals of IC
manufacturing, so here we just summarise the key steps.

Nearly all digital circuits aremade from field-effect transistors (FETs) based on complementary
oxide of silicon (CMOS) fabrication. As sketched in Figure 8.5, the transistors are either P- or N-type
according to the underlying doping of thewafer in the regionwhere they are constructed. The doping,
like all othermanufacturing steps, is laid down by ion injection or photolithography from themasks for
each layer using high-frequency light to cure a layer of photoresist. A traditional planar FET is formed
when a strip of opposite doping, called the channel, is interrupted by a short break, called the gate.
The gate consists of a very thin layer of silicon dioxide with a track of polysilicon on top. Unlike the
monosilicon of the wafer, which is only lightly doped, the polysilicon is heavily doped so that it
conducts electricity reasonably well, but not as well as themetal deposited on the higher levels.

p-substrate
n-well(p well)

p++n++ p++n++

N-type
FET

Ground
(VSS)

Supply
rail

(VDD)Transistor
gates

P-type
FET

M1
M2
M3
M4
M5

M6

M7

p++

Via

Substrate
tie

n++

Tub tieChannel length

TiN or other barrier

High-k
gate

insulator

Figure 8.5 Basic layers in planar CMOS VLSI. Cross section through an invertor fabricated using planar transistors (not FinFETs) in a twin-well process and
metal layers, M1 toM7 (not to scale)

CMOS uses enhancementmode FETs. These have no electrical connection between the gate and the
channel. They are switched off when there is no potential difference between the gate and the well
they are constructed in. AnN-channel FET is built in a Pwell or on the base wafer, which has been

412

Chapter 8 | Fabrication and Production

lightly doped as P to have an excess of holes. The wafer and anywell are connected to the ground
supply rail using a substrate tie or Pwell tub tie (not shown). Hence, the ground rail is also known as
Vss for CMOS devices. For P-channel transistors, everything is reversed. The well is connected to the
positive supply rail and they start to conductwhen their gate is negativewith respect to that potential.

The switching performance of a FET is inversely proportional to its channel length, which in a CMOS
process is the smallest feature (e.g. 22 nm). The thickness of the gate insulation is, typically, an order
of magnitude smaller and is also a critical parameter. The channel thickness does not depend on the
mask, but is instead controlled by the fabrication recipe in terms of the amount of deposition and
etching used. It can consist of just five layers of silicon dioxide atoms, which is about 1 nm in thickness.
A downside of the thinness is the comparatively high electrostatic field. The field strength across the
insulator can be 109 V/mwhen there is a 1V gate to the substrate potential. For comparison, only
three times this field strength is needed for air to break down completely and turn into a conducting
spark. Even before the breakdown potential is reached, significant leakage is caused by electron
tunnelling in the supposed insulator. Oneway to reduce the field strength is simply to use a thicker
insulating layer, but this would reduce the effective capacitance of the gate, reducing its effect on the
channel and so degrading the transistor. In all modern processes, rather than just using SiO2 as the
gate insulator, a layer of a high permittivitymaterial (κ or ϵr), such as Al2O3, is added between the gate
conductor (the polysilicon) and the gate insulator. This processing step is also useful whenmaking
capacitors for other purposes, especially as the storage element in DRAM.

On top of the transistor layer, there are alternating layers of metal (conductors) and silicon dioxide
(insulators). Vertical holes are cut through the layers and filled with the samemetal tomake vias,
which are conducting joints between layers. Themetal layersM1 andM2 provide a local
interconnection for the power and logic signals (nets). The higher layers of metal are used for longer
distance nets and clock distribution. The highest layers form the power delivery network (PDN).

Before 1980, aluminiumwas exclusively used as themetal for an interconnect. It is easy to deposit as
a wafer-wide layer and can be etched selectively. Aluminium has a resistivity of 2.7×10−8Ωm. With
successively finer tracks at smaller geometries, the RC time constants (Section 4.9.5) became a
problem andmotivated a switch to copper, which has a lower resistivity of 1.7×10−8Ωm. Copper
also suffers less from electromigration (Section 8.4.5), but it requires an isolation layer, such as
titanium nitride (TiN), shown in black in the figure, to stop the copper leaching into the silicon.

One of the largest problemswith small-geometry transistors is their leakage. As was presented in
Section 4.6.3, this is the current they pass when they are supposedly off. Smaller-geometry transistors
have a lower threshold voltage VT, but this has not fallen in proportion to the reductions in supply
voltage. Figure 8.5 shows conventional planar transistors that aremade below the planar surface of
the starting wafer. Leakage can be reduced by switching to non-planar FinFET structures.

FinFET designsmake greater use of the third dimension by extending the channel upwards, with the
gate wrapping around the channel, which increases the contact area. The gate is thenmore effective
in controlling the channel. A thin and short channel is needed for good performance. Extending the

413

Modern SoCDesign

channel upwards gives it a fin-like shape, hence, the name, and increases the channel cross-sectional
area, which reduces the on-resistance. Nonetheless, multiple FinFETs, typically, need to bewired in
parallel to produce a suitable drive strength.

A FinFET has amore elaborate construction than a planar FET, but switches faster and uses less
silicon area. Figure 8.6 shows the basic structure of a FinFET along with three possible layouts that
havemultiple FinFETs in parallel. Four in parallel have one quarter the on-resistance and switch 4×
faster when driving a net of given capacitance. The second diagram shows two FETs in parallel. Each
polysilicon gate line (in red) is called a finger, so this is a multi-finger design. Alternatively, as shown in
the third diagram, the same finger can run overmultiple fins. Finally, as shown in the fourth diagram, a
hybrid approach can be used: two fingers such that each gate has two fins.

Source

Gate

Drain
Drain

Gate

Source

Gate
Source

Drain

Gate
Drain

Source

1 finger, 4 fins.1 finger, 1 fin. 2 fingers. Each has 1 fin. 2x2

Figure 8.6 Generic 3-D structure of a FinFET (left). The gate is wrapped around the channel. To get a sufficiently low on-resistance, a number of FETs are
arranged in parallel using techniques shown in the other three diagrams, which are in 2-D plan view

Figure 8.7 shows the lower layers of a section of a typical traditional standard cell design. Each row
shown contains about six gates. The power rail widths are nominally 10λ, but where they abut in the
twomiddle rows, the resultant width is 20λ. Overall, the cell height is about 80λ and hence, 8 times
the width of the power rail. The total size of a simple two-input NOR gate is about 400λ2. The black
squares are vertical vias. Multiple vias are used to connect to the drain or source end of the FET
channel to achieve low ohmic resistance. Note also that the P-type diffusion has twice the width of
the N-type. This is required to get equal on-resistances for the two types of FET given the
approximately double resistivity of the P-typematerial at optimal doping levels.

Cells vary in complexity. A two-input NOR gate uses just four transistors in CMOS, but such small
cells have inefficient area use if heavily used. So it is common to usemulti-function gates, such as the
AND-OR-INVERT gate of Section 8.3.8, which has four inputs and uses eight transistors in a compact
layout. A D-type flip-flop is normally counted as the equivalent of 6 two-input logic gates (based on
the classic dual RS latch circuit from the TTL handbook [7]). From these figures, a rule-of-thumb
density for realistic logic is about 1000 to 2000λ2 per cell. An SRAM cell (six transistors) also typically
uses about 1000λ2 with row and and column control and sense logic using further area.

Each chip on awafer is individually tested during the production test (Section 8.8). Then the wafer is
diced into individual chips, which are packaged singly or inmulti-chipmodules (MCMs) (Section 8.9)
for soldering to the printed-circuit board (PCB). However, high-energy alpha particles are common in
outer space and happen sufficiently often on Earth to be a problem to small electronic components,
such as the transistors in modern VLSI. A single-event upset (SEU) arises from a burst of radiation

414

Chapter 8 | Fabrication and Production

Figure 8.7 Typical first-generation standard cell layout showing three rows of cells. Power rails of alternating polarity run horizontally using the metal M1
layer (blue). This is also used for the internal wiring within the cells. N- and P-type diffusion zones are shown in green and yellow. FET gates are formed
where the polysilicon (orange) crosses a diffusion layer. The violet and brown indicate metal wiring layers used for inter-cell connections. The brown layer is
predominantly used for horizontal net segments and the violet for vertical segments (source: Reproduced with permission from J. Rabaey, University of
California at Berkeley)

incident on the silicon. This can be detected by parity (Section 3.1.7) and corrected inmemory using
an error-correcting code (ECC) (Section 4.7.6). This is called a soft hardware error because the next
time the circuit is used, the error will not be present.

The top layer of a chip is a thick layer of silicon dioxide known as the passivation layer. Although a
device canwork correctly without passivation, this layer provides protection against water in the
atmosphere and offers radiation hardness. An additional layer of high bandgap dielectric may also be
painted onto the top of a chip for further radiation protection. If a device is to be probed for
debugging, it is better to use onewhere these final layers have not been added or have been removed.

8.2.2 Typical and Future Values
It is helpful to list some concrete numbers. Consider a fictional device with just standard cell logic at
22 nm. Its track capacitance will vary across layers, but might be about 0.3 fF/µm. Hence, the energy
stored in a 1mmnet that is at logic one using a supply Vdd =1V is 0.15 pJ. This energy will be
dissipated to groundwhen the net is discharged and an equal amount of energy will be lost in the
supply network on the zero-to-one transition.

Assuming a region with a core utilisation ratio of nearly 100 per cent (Section 8.3.12) and given the
2000λ2 area for an AOI, the area needed per gate with λ=11nm is one quarter of a squaremicron.
This would give a logic density for densely packed zones of about 5million gates per square

415

Modern SoCDesign

channel upwards gives it a fin-like shape, hence, the name, and increases the channel cross-sectional
area, which reduces the on-resistance. Nonetheless, multiple FinFETs, typically, need to bewired in
parallel to produce a suitable drive strength.

A FinFET has amore elaborate construction than a planar FET, but switches faster and uses less
silicon area. Figure 8.6 shows the basic structure of a FinFET along with three possible layouts that
havemultiple FinFETs in parallel. Four in parallel have one quarter the on-resistance and switch 4×
faster when driving a net of given capacitance. The second diagram shows two FETs in parallel. Each
polysilicon gate line (in red) is called a finger, so this is a multi-finger design. Alternatively, as shown in
the third diagram, the same finger can run overmultiple fins. Finally, as shown in the fourth diagram, a
hybrid approach can be used: two fingers such that each gate has two fins.

Source

Gate

Drain
Drain

Gate

Source

Gate
Source

Drain

Gate
Drain

Source

1 finger, 4 fins.1 finger, 1 fin. 2 fingers. Each has 1 fin. 2x2

Figure 8.6 Generic 3-D structure of a FinFET (left). The gate is wrapped around the channel. To get a sufficiently low on-resistance, a number of FETs are
arranged in parallel using techniques shown in the other three diagrams, which are in 2-D plan view

Figure 8.7 shows the lower layers of a section of a typical traditional standard cell design. Each row
shown contains about six gates. The power rail widths are nominally 10λ, but where they abut in the
twomiddle rows, the resultant width is 20λ. Overall, the cell height is about 80λ and hence, 8 times
the width of the power rail. The total size of a simple two-input NOR gate is about 400λ2. The black
squares are vertical vias. Multiple vias are used to connect to the drain or source end of the FET
channel to achieve low ohmic resistance. Note also that the P-type diffusion has twice the width of
the N-type. This is required to get equal on-resistances for the two types of FET given the
approximately double resistivity of the P-typematerial at optimal doping levels.

Cells vary in complexity. A two-input NOR gate uses just four transistors in CMOS, but such small
cells have inefficient area use if heavily used. So it is common to usemulti-function gates, such as the
AND-OR-INVERT gate of Section 8.3.8, which has four inputs and uses eight transistors in a compact
layout. A D-type flip-flop is normally counted as the equivalent of 6 two-input logic gates (based on
the classic master–slave circuit from the TTL handbook [7]). From these figures, a rule-of-thumb
density for realistic logic is about 1000 to 2000λ2 per cell. An SRAM cell (six transistors) also typically
uses about 1000λ2 with row and and column control and sense logic using further area.

Each chip on awafer is individually tested during the production test (Section 8.8). Then the wafer is
diced into individual chips, which are packaged singly or inmulti-chipmodules (MCMs) (Section 8.9)
for soldering to the printed-circuit board (PCB). However, high-energy alpha particles are common in
outer space and happen sufficiently often on Earth to be a problem to small electronic components,
such as the transistors in modern VLSI. A single-event upset (SEU) arises from a burst of radiation

414

Chapter 8 | Fabrication and Production

Figure 8.7 Typical first-generation standard cell layout showing three rows of cells. Power rails of alternating polarity run horizontally using the metal M1
layer (blue). This is also used for the internal wiring within the cells. N- and P-type diffusion zones are shown in green and yellow. FET gates are formed
where the polysilicon (orange) crosses a diffusion layer. The violet and brown indicate metal wiring layers used for inter-cell connections. The brown layer is
predominantly used for horizontal net segments and the violet for vertical segments (source: Reproduced with permission from J. Rabaey, University of
California at Berkeley)

incident on the silicon. This can be detected by parity (Section 3.1.7) and corrected inmemory using
an error-correcting code (ECC) (Section 4.7.6). This is called a soft hardware error because the next
time the circuit is used, the error will not be present.

The top layer of a chip is a thick layer of silicon dioxide known as the passivation layer. Although a
device canwork correctly without passivation, this layer provides protection against water in the
atmosphere and offers radiation hardness. An additional layer of high bandgap dielectric may also be
painted onto the top of a chip for further radiation protection. If a device is to be probed for
debugging, it is better to use onewhere these final layers have not been added or have been removed.

8.2.2 Typical and Future Values
It is helpful to list some concrete numbers. Consider a fictional device with just standard cell logic at
22 nm. Its track capacitance will vary across layers, but might be about 0.3 fF/µm. Hence, the energy
stored in a 1mmnet that is at logic one using a supply Vdd =1V is 0.15 pJ. This energy will be
dissipated to groundwhen the net is discharged and an equal amount of energy will be lost in the
supply network on the zero-to-one transition.

Assuming a region with a core utilisation ratio of nearly 100 per cent (Section 8.3.12) and given the
2000λ2 area for an AOI, the area needed per gate with λ=11nm is one quarter of a squaremicron.
This would give a logic density for densely packed zones of about 5million gates per square

415

Modern SoCDesign

millimetre. The area of a 1000-gate subsystemwould, therefore, be about 200µm2, which with a
square aspect ratio would be 14µm on a side. By Rent’s rule (Section 5.6.6) or otherwise, the average
net lengthmight be one third of this, which is about 4 µm. Thus, with 0.3 fF/µm, the average net would
have a capacitance of about 1 fF.

Table 8.2 ITRS roadmap projection for geometry, supply voltage, transistor properties and FO3 gate energy. Predictions are made for both high-performance
(HP) and low-performance (LP) transistors (source: Reproduced with permission from the Semiconductor Industry Association)

Year of production 2015 2017 2019 2021 2024 2027 2030
Logic device technology names P70M56 P48M36 P42M24 P32M20 P24M12G1 P24M12G2 P24M12G3
Logic industry node range label (nm) 16/14 11/10 8/7 6/5 4/3 3/2.5 2/1.5

FinFET FinFET FinFET FinFET VGAA VGAA VGAA
Logic device structure FDSOI FDSOI LGAA LGAA M3D M3D M3D

VGAA
Device Electrical Specifications
Power supply voltage, Vdd (V) 0.80 0.75 0.70 0.65 0.55 0.45 0.40
Sub-threshold slope (mV/decade) 75 70 68 65 40 25 25
Inversion layer thickness (nm) 1.10 1.00 0.90 0.85 0.80 0.80 0.80
VT sat (mV) at Ioff =100nA/µm, HP logic 129 129 133 136 84 52 52
VT sat (mV) at Ioff =100nA/µm, LP logic 351 336 333 326 201 125 125
Effectivemobility (cm2 V−1 s−1) 200 150 120 100 100 100 100
Rext (Ωm), HP Logic 280 238 202 172 146 124 106
Ballisticity: injection velocity (cm/s) 1.20×10−7 1.32×10−7 1.45×10−7 1.60×10−7 1.76×10−7 1.93×10−7 2.13×10−7

Vdsat (V), HP logic 0.115 0.127 0.136 0.128 0.141 0.155 0.170
Vdsat (V), LP logic 0.125 0.141 0.155 0.153 0.169 0.186 0.204
Ion (A/m) at Ioff =100nA/µm, HP logic
with Rext =0

2311 2541 2782 2917 3001 2670 2408

Ion (A/m) at Ioff =100nA/µm, HP logic
after Rext

1177 1287 1397 1476 1546 1456 1391

Ion (A/m) at Ioff =100pA/µm, LP logic
with Rext =0

1455 1567 1614 1603 2008 1933 1582

Ion (A/m) at Ioff =100pA/µm, LP logic
after Rext

596 637 637 629 890 956 821

Cch, total (fF/µm2), HP/LP logic 31.38 34.52 38.35 40.61 43.14 43.14 43.14
Cgate, total (fF/µm), HP logic 1.81 1.49 1.29 0.97 1.04 1.04 1.04
Cgate, total (fF/µm), LP Logic 1.96 1.66 1.47 1.17 1.24 1.24 1.24
CV/I (ps), FO3 load, HP logic 3.69 2.61 1.94 1.29 1.11 0.96 0.89
I/(CV) (1/ps), FO3 load, HP logic 0.27 0.38 0.52 0.78 0.90 1.04 1.12
Energy per switching (CV2) (fJ/switching),
FO3 load, HP logic

3.47 2.52 1.89 1.24 0.94 0.63 0.50

The dynamic energy use depends on the clock frequency andmean toggle ratio. Assuming a busy
subsystemwith a highmean toggle ratio of 0.2 and a clock frequency of 500MHz, the subsystem
power consumption when running from a 1V supply would be

Ngates×C×V2× (trf/2)=1000×10−15×12×
(
0.2×500×106

2

)
,

416

Chapter 8 | Fabrication and Production

which is 50microwatts (50 µW). A high activity ratio reflects very busy logic. Nets in XOR-rich
circuity, such as an AES encoder, essentially have random values, which change every other clock cycle
on average. Most subsystems have lower activity ratios when in use and the long-term average
activity ratio depends on how frequently the block is used.

Theoretically, the number of such systems on a chip that has a square of active silicon of length 1 cm
could be: (0.01

14×10−6

)2
≈500×103

It would consume 25watts if they were all active at once. A real chip will also have longer distance
nets on higher metal layers, and thesemay use the same amount of energy again. The static power
also needs to be included. This could be asmuch as a third again, although this depends greatly on
power gating ratios andwhether the transistors are fast or low leakage. The I/O pads also need to be
considered. These are likely to consume a similar amount of power as the core, but generally with a
higher static power component if there are a large number of LVDS connections (Section 3.8).

Heat dissipation levels in the tens ofWatts require expensive cooling arrangements, as used in
high-performance games consoles and cloud computing blades. In an embedded SoC, much lower
average activity ratios are typically encountered and power gating is heavily used to reduce the static
energy component.

The future trajectory for VLSI is predicted bymarket analysts and trade bodies such as the
International Technology Roadmap for Semiconductors (ITRS) and the International Roadmap for Devices
and Systems (IRDS). Table 8.2 is taken from the ITRS Executive Summary published in 2015 [8]. It
predicts a move from FinFET to vertical gate all around (VGAA) transistors where the source, gate
and drain are in a vertical stack. Vdd is predicted to reduce to under half a volt by 2030. The bottom
line shows that the energy per operation per gate is predicted to improve by a factor of 4 in roughly a
decade, which implies roughly four timesmore transistors can be active within the dark silicon power
envelope. The 2020Update to the roadmap [9] extends the time frame to 2034 and continues to
show exponential growth in the number of gates andDRAMbits per mm2, as reproduced in Table 8.3.
The ITRS projections tend to become self-fulfilling since semiconductor manufacturers often use the
roadmap figures as their own target.

Table 8.3 ITRS predictions from [9] for the gate density and DRAM density for future silicon nodes, and the expected number of cores in an 80mm2 CMP

Year Gate density DRAMdensity No of cores
(Mgates/mm2) (Mbits/mm2)

2020 17 47 27
2022 23 58 36
2025 29 68 46
2028 37 78 58
2031 71 164 112
2034 142 329 224

417

Modern SoCDesign

millimetre. The area of a 1000-gate subsystemwould, therefore, be about 200µm2, which with a
square aspect ratio would be 14µm on a side. By Rent’s rule (Section 5.6.6) or otherwise, the average
net lengthmight be one third of this, which is about 4 µm. Thus, with 0.3 fF/µm, the average net would
have a capacitance of about 1 fF.

Table 8.2 ITRS roadmap projection for geometry, supply voltage, transistor properties and FO3 gate energy. Predictions are made for both high-performance
(HP) and low-performance (LP) transistors (source: Reproduced with permission from the Semiconductor Industry Association)

Year of production 2015 2017 2019 2021 2024 2027 2030
Logic device technology names P70M56 P48M36 P42M24 P32M20 P24M12G1 P24M12G2 P24M12G3
Logic industry node range label (nm) 16/14 11/10 8/7 6/5 4/3 3/2.5 2/1.5

FinFET FinFET FinFET FinFET VGAA VGAA VGAA
Logic device structure FDSOI FDSOI LGAA LGAA M3D M3D M3D

VGAA
Device Electrical Specifications
Power supply voltage, Vdd (V) 0.80 0.75 0.70 0.65 0.55 0.45 0.40
Sub-threshold slope (mV/decade) 75 70 68 65 40 25 25
Inversion layer thickness (nm) 1.10 1.00 0.90 0.85 0.80 0.80 0.80
VT sat (mV) at Ioff =100nA/µm, HP logic 129 129 133 136 84 52 52
VT sat (mV) at Ioff =100nA/µm, LP logic 351 336 333 326 201 125 125
Effectivemobility (cm2 V−1 s−1) 200 150 120 100 100 100 100
Rext (Ωm), HP Logic 280 238 202 172 146 124 106
Ballisticity: injection velocity (cm/s) 1.20×10−7 1.32×10−7 1.45×10−7 1.60×10−7 1.76×10−7 1.93×10−7 2.13×10−7

Vdsat (V), HP logic 0.115 0.127 0.136 0.128 0.141 0.155 0.170
Vdsat (V), LP logic 0.125 0.141 0.155 0.153 0.169 0.186 0.204
Ion (A/m) at Ioff =100nA/µm, HP logic
with Rext =0

2311 2541 2782 2917 3001 2670 2408

Ion (A/m) at Ioff =100nA/µm, HP logic
after Rext

1177 1287 1397 1476 1546 1456 1391

Ion (A/m) at Ioff =100pA/µm, LP logic
with Rext =0

1455 1567 1614 1603 2008 1933 1582

Ion (A/m) at Ioff =100pA/µm, LP logic
after Rext

596 637 637 629 890 956 821

Cch, total (fF/µm2), HP/LP logic 31.38 34.52 38.35 40.61 43.14 43.14 43.14
Cgate, total (fF/µm), HP logic 1.81 1.49 1.29 0.97 1.04 1.04 1.04
Cgate, total (fF/µm), LP Logic 1.96 1.66 1.47 1.17 1.24 1.24 1.24
CV/I (ps), FO3 load, HP logic 3.69 2.61 1.94 1.29 1.11 0.96 0.89
I/(CV) (1/ps), FO3 load, HP logic 0.27 0.38 0.52 0.78 0.90 1.04 1.12
Energy per switching (CV2) (fJ/switching),
FO3 load, HP logic

3.47 2.52 1.89 1.24 0.94 0.63 0.50

The dynamic energy use depends on the clock frequency andmean toggle ratio. Assuming a busy
subsystemwith a highmean toggle ratio of 0.2 and a clock frequency of 500MHz, the subsystem
power consumption when running from a 1V supply would be

Ngates×C×V2× (trf/2)=1000×10−15×12×
(
0.2×500×106

2

)
,

416

Chapter 8 | Fabrication and Production

which is 50microwatts (50 µW). A high activity ratio reflects very busy logic. Nets in XOR-rich
circuity, such as an AES encoder, essentially have random values, which change every other clock cycle
on average. Most subsystems have lower activity ratios when in use and the long-term average
activity ratio depends on how frequently the block is used.

Theoretically, the number of such systems on a chip that has a square of active silicon of length 1 cm
could be: (0.01

14×10−6

)2
≈500×103

It would consume 25watts if they were all active at once. A real chip will also have longer distance
nets on higher metal layers, and thesemay use the same amount of energy again. The static power
also needs to be included. This could be asmuch as a third again, although this depends greatly on
power gating ratios andwhether the transistors are fast or low leakage. The I/O pads also need to be
considered. These are likely to consume a similar amount of power as the core, but generally with a
higher static power component if there are a large number of LVDS connections (Section 3.8).

Heat dissipation levels in the tens ofWatts require expensive cooling arrangements, as used in
high-performance games consoles and cloud computing blades. In an embedded SoC, much lower
average activity ratios are typically encountered and power gating is heavily used to reduce the static
energy component.

The future trajectory for VLSI is predicted bymarket analysts and trade bodies such as the
International Technology Roadmap for Semiconductors (ITRS) and the International Roadmap for Devices
and Systems (IRDS). Table 8.2 is taken from the ITRS Executive Summary published in 2015 [8]. It
predicts a move from FinFET to vertical gate all around (VGAA) transistors where the source, gate
and drain are in a vertical stack. Vdd is predicted to reduce to under half a volt by 2030. The bottom
line shows that the energy per operation per gate is predicted to improve by a factor of 4 in roughly a
decade, which implies roughly four timesmore transistors can be active within the dark silicon power
envelope. The 2020Update to the roadmap [9] extends the time frame to 2034 and continues to
show exponential growth in the number of gates andDRAMbits per mm2, as reproduced in Table 8.3.
The ITRS projections tend to become self-fulfilling since semiconductor manufacturers often use the
roadmap figures as their own target.

Table 8.3 ITRS predictions from [9] for the gate density and DRAM density for future silicon nodes, and the expected number of cores in an 80mm2 CMP

Year Gate density DRAMdensity No of cores
(Mgates/mm2) (Mbits/mm2)

2020 17 47 27
2022 23 58 36
2025 29 68 46
2028 37 78 58
2031 71 164 112
2034 142 329 224

417

Modern SoCDesign

Before 2000, the gate length was roughly the same as the node’s feature size, λ, which is half the
spacing between tracks on theM1metal layer (Section 8.2.1). Moving towards 2010, the effective
gate length could bemade shorter than theM1 feature size by techniques such as over etching of the
gatematerial duringmanufacture, leading to gates with length perhaps one third of themetal half
pitch with the advertised feature size being somewhere in between [10]. With the advent of FinFETs
and recent discrepancies between the ITRS technology node name and the actual transistor size,
things havemoved back the other waywith the transistors being bigger than the advertised feature
size. This has become confusing.

A relatively sane example is presented in Table 8.4. This gives figures for a 28-nm lithographic
technology node that was implemented using a shrink of a cell library designed for 32 nm. In early
VLSI technologies, optical shrinking of the image projected by a photomask could be used to increase
the density for a known reliable design. Shrinking a layout is no longer as easy, but the approach is still
useful. The design effort invested in a node can be given a longer lifetime by linearly scaling all
dimensions by a small factor.

Table 8.4Main parameters for an example CMOS lithographic node (TSMC 28nm)

Parameter Value
Approximate year 2010
Structure 1P8M (one poly layer, eight metal layers), HKMG (high-Kmetal gate)
Transistors CMOS, high performance, low leakage
Cell structure 12 track, Tapless
M1wiring pitch 90nm (three times the advertised feature size!)
Gate length 28nm = (30 nm pre-shrink) × (0.9 shrink factor)
Contacted poly pitch 130nm (sets themaximum density of gates)
Raw gate density 2 945000 gates/mm2

Supply voltage DVFS between 1.0V and 1.8V

The deployed cell library uses a 12-track cell height with tapless wells. This means the tub ties shown
in Figure 8.5 are not present on every transistor, but instead placed at regular intervals, such as
between cells. This increases the density. The cited gate density gives the average area per gate as
about 0.4 µm2, although some of this area is just wiring channels, depending on the core utilisation
ratio. With ametal pitch of 90 nm, the cell height would be 12×90nm, which is approximately 1 µm.
Theminimum cell width needs to be around one third of this to achieve the quotedmaximum gate
density.

8.3 Register Transfer Languages
A register transfer level (RTL) language describes what is loaded into a register on a clock edge.
Verilog and VHDL are the predominant RTLs, but they include various other constructs beyond
register transfer primitives. Themost recent major change to the Verilog languages was System
Verilog, which is not always compatible with older Verilog dialects. In this book, we use Verilog,
SystemVerilog and VHDL synonymously. RTLs provide twomain functions: simulation and synthesis.
Both Verilog and VHDL support both simulation and synthesis with nearly identical paradigms. Older

418

Chapter 8 | Fabrication and Production

versions of Verilog weremissing several useful features comparedwith VHDL, such as user-defined
types to describe net-level interfaces, but these were added to SystemVerilog.

RTL can be generatedmanually by engineers using a text editor but another major source is
higher-level tools, such as interconnect synthesisers (Section 6.8.2), high-level synthesis (HLS;
Section 6.9), Chisel (Section 6.8.3) and Bluespec (Section 6.8.5). As Figure 8.8 shows, RTL is processed
by twomain EDA tools. On the left, a simulation generates waveforms and console logs. On the right,
the RTL is compiled to logic gate instances from a target cell technology library using a process called
logic synthesis. A logic synthesiser also accepts design intents andmetrics, which influence how it
optimises for speed, area, power and testability. The output from a logic synthesiser is a gate-level
netlist, which is usually in structural RTL format. Hence, the output can be fed into a gate-level
simulation, as shown by the curved blue arrow.

Structural
netlist (.v, .vhd)

Logic
synthesiser

RTL
design (.v, .vhd)

always @(posedge clk) begin
 if (g) r1 <= r2;
 r2 <= r3;
 end

assign d_out = (r2 != r3);

Waveform
trace (.vcd)

RTL
simulator

Console
output

Cell technology
library

Intent
goals

Higher-level tools
and manual authoring

Figure 8.8 EDA tools applied to synthesisable RTL for a simulation (left) and the synthesis to a gate-level or structural netlist (right)

A number of EDA vendors provide synthesis and simulation tools for RTL. A noteworthy synthesis
tool, which has been themainstay of the industry for decades, is Design Compiler from Synopsys, but
Genus fromCadence is also widely used.

The constructs available in RTL can essentially be divided into five classes:

1. Structural netlists: These enable an hierarchic component tree to be instantiated. They describe
the net-level wiring between components (Section 8.3.1).

2. Unordered lists of assignment statements: These define combinational logic (Section 8.3.1). The
right-hand expression describes potentially complex logic using a rich set of integer operators,
including all those found in software languages such as C++ and Java. In Verilog, these statements
are called continuous assignment statements and in VHDL they are known as concurrent signal
assignments but their structure follows class 4 below.

419

Modern SoCDesign

Before 2000, the gate length was roughly the same as the node’s feature size, λ, which is half the
spacing between tracks on theM1metal layer (Section 8.2.1). Moving towards 2010, the effective
gate length could bemade shorter than theM1 feature size by techniques such as over etching of the
gatematerial duringmanufacture, leading to gates with length perhaps one third of themetal half
pitch with the advertised feature size being somewhere in between [10]. With the advent of FinFETs
and recent discrepancies between the ITRS technology node name and the actual transistor size,
things havemoved back the other waywith the transistors being bigger than the advertised feature
size. This has become confusing.

A relatively sane example is presented in Table 8.4. This gives figures for a 28-nm lithographic
technology node that was implemented using a shrink of a cell library designed for 32 nm. In early
VLSI technologies, optical shrinking of the image projected by a photomask could be used to increase
the density for a known reliable design. Shrinking a layout is no longer as easy, but the approach is still
useful. The design effort invested in a node can be given a longer lifetime by linearly scaling all
dimensions by a small factor.

Table 8.4Main parameters for an example CMOS lithographic node (TSMC 28nm)

Parameter Value
Approximate year 2010
Structure 1P8M (one poly layer, eight metal layers), HKMG (high-Kmetal gate)
Transistors CMOS, high performance, low leakage
Cell structure 12 track, Tapless
M1wiring pitch 90nm (three times the advertised feature size!)
Gate length 28nm = (30 nm pre-shrink) × (0.9 shrink factor)
Contacted poly pitch 130nm (sets themaximum density of gates)
Raw gate density 2 945000 gates/mm2

Supply voltage DVFS between 1.0V and 1.8V

The deployed cell library uses a 12-track cell height with tapless wells. This means the tub ties shown
in Figure 8.5 are not present on every transistor, but instead placed at regular intervals, such as
between cells. This increases the density. The cited gate density gives the average area per gate as
about 0.4 µm2, although some of this area is just wiring channels, depending on the core utilisation
ratio. With ametal pitch of 90 nm, the cell height would be 12×90nm, which is approximately 1 µm.
Theminimum cell width needs to be around one third of this to achieve the quotedmaximum gate
density.

8.3 Register Transfer Languages
A register transfer level (RTL) language describes what is loaded into a register on a clock edge.
Verilog and VHDL are the predominant RTLs, but they include various other constructs beyond
register transfer primitives. Themost recent major change to the Verilog languages was System
Verilog, which is not always compatible with older Verilog dialects. In this book, we use Verilog,
SystemVerilog and VHDL synonymously. RTLs provide twomain functions: simulation and synthesis.
Both Verilog and VHDL support both simulation and synthesis with nearly identical paradigms. Older

418

Chapter 8 | Fabrication and Production

versions of Verilog weremissing several useful features comparedwith VHDL, such as user-defined
types to describe net-level interfaces, but these were added to SystemVerilog.

RTL can be generatedmanually by engineers using a text editor but another major source is
higher-level tools, such as interconnect synthesisers (Section 6.8.2), high-level synthesis (HLS;
Section 6.9), Chisel (Section 6.8.3) and Bluespec (Section 6.8.5). As Figure 8.8 shows, RTL is processed
by twomain EDA tools. On the left, a simulation generates waveforms and console logs. On the right,
the RTL is compiled to logic gate instances from a target cell technology library using a process called
logic synthesis. A logic synthesiser also accepts design intents andmetrics, which influence how it
optimises for speed, area, power and testability. The output from a logic synthesiser is a gate-level
netlist, which is usually in structural RTL format. Hence, the output can be fed into a gate-level
simulation, as shown by the curved blue arrow.

Structural
netlist (.v, .vhd)

Logic
synthesiser

RTL
design (.v, .vhd)

always @(posedge clk) begin
 if (g) r1 <= r2;
 r2 <= r3;
 end

assign d_out = (r2 != r3);

Waveform
trace (.vcd)

RTL
simulator

Console
output

Cell technology
library

Intent
goals

Higher-level tools
and manual authoring

Figure 8.8 EDA tools applied to synthesisable RTL for a simulation (left) and the synthesis to a gate-level or structural netlist (right)

A number of EDA vendors provide synthesis and simulation tools for RTL. A noteworthy synthesis
tool, which has been themainstay of the industry for decades, is Design Compiler from Synopsys, but
Genus fromCadence is also widely used.

The constructs available in RTL can essentially be divided into five classes:

1. Structural netlists: These enable an hierarchic component tree to be instantiated. They describe
the net-level wiring between components (Section 8.3.1).

2. Unordered lists of assignment statements: These define combinational logic (Section 8.3.1). The
right-hand expression describes potentially complex logic using a rich set of integer operators,
including all those found in software languages such as C++ and Java. In Verilog, these statements
are called continuous assignment statements and in VHDL they are known as concurrent signal
assignments but their structure follows class 4 below.

419

Modern SoCDesign

3. Unordered lists of pure register transfers (Section 8.3.1): There is nominally one list per
synchronous clock domain that is the concatenation of each smaller such list in the various
component modules. Each list has the same structure as that of class 2, except that the lists of class
2 are not associated with a clock edge.

4. Synthesisable behavioural RTL: This uses a thread to describe behaviour. A threadmaywrite a
variable more than once (Section 8.3.1). In Verilog, a thread is introducedwith the always keyword.
In VHDL, the keyword is process. Both sequential and combinational logic are generated in this
way.

5. The remainder of the language contains the so-called non-synthesisable constructs, for which
there are no hardware generation rules (Section 8.3.2).

The first four classes are the synthesisable subset. Only constructs in these classes can be processed
by logic synthesisers. The remaining constructs are ignored or generate compilation errors and
warnings. All the constructs, however, are used in a simulation.

To be acceptable to logic synthesis tools, evenwithin the four allowed classes, tight coding rules need
to be followed. For instance, a continuously assigned variable must not be assigned inmore than one
place and a register must not be updated bymore than one clock domain. Floating-point expressions
cannot be synthesised. Also, comparedwith general-purpose languages such as C/C++, there are
much tighter restrictions onwhat a thread can do. It cannot leave themodule where it was defined
and the thread blocking and synchronisation primitives are restricted to waiting for a clock edge of
one clock. As languages used to describemassively concurrent systems, RTLs are very primitive. They
reflect what is possible with a localised projection into hardware.

8.3.1 RTL Structural Elaboration
When an RTL file has been parsed by an EDA tool, it must be elaborated. Command line or TCL tool
interfaces to logic synthesisers generally have separate commands to read an RTL file and to
elaborate it. Often the details of an RTL design are unimportant since only themodule signature is
required. VHDL allows the signature (the list of input and output connections) to be held in a separate
file, but Verilog does not. Elaborating RTL consists of various stages presented here. The output from
elaboration is a technology-independent representation of the design using a small set of basic
primitives for sequential and combinational elements.

All hardware description languages and RTLs contain further constructs for structural elaboration,
which is the process of evaluatingmacro-like commands at compile time. A generate statement is an
iterative construct that is executed (elaborated) at compile time to generatemultiple instances of a
component and the associatedwiring. Chisel (Section 6.8.3) and Bluespec (Section 6.8.5) use powerful
higher-order functional languages to achieve structural elaboration. Older RTLs support amore
mundane style such as the Verilog example in Figure 8.9. The example uses a simple for loop and a
generate variable, declared with the genvar keyword, which disappears during elaboration. Another

420

Chapter 8 | Fabrication and Production

process, used in some logic synthesisers to facilitate inter-module optimisations, is flattening
(Section 8.3.1).

wire dout[39:0];
reg[3:0] values[0:4] = {5, 6, 7, 8, 15};

generate
genvar i;
for (i=0; i<5; i++) begin

MUT mut[i] (
.out(dout[i*8+7:i*8]),
.value_in(values[i]),
.clk(clk),
);

end
endgenerate

5 out 6 out 7 out 8 out 15 out

dout

Figure 8.9 Example of a generate statement in Verilog RTL (left) and the resulting structural netlist (right)

Any delay time values in RTL are ignored during synthesis. Components are synthesisable whether
they have delays in them or not. So that zero-delay components can be simulated deterministically, a
simulator core implements delta cycles. Theoretically, anything written in RTL that describes
deterministic and finite-state behaviour ought to be synthesisable. However, the community wanted
a simple set of rules for generating hardware fromRTL, so that engineers could retain good control
over circuit structures based onwhat they hadwritten in RTL.

Today, onemight argue that designers and programmers should not be forced into using such
low-level expressions with the resulting excessively parallel thought patterns. Certainly, it is good
that programmers are forced to express designs in ways that can be parallelised, but the compiler
should havemuchmore freedom regarding the details of how to allocate events to clock cycles and
the state encoding.

RTL synthesis tools are not normally expected to greatly re-time a design by altering the amount of
state or state encodings. Newer languages and flows (such as Bluespec andHLS) still encourage the
user to express a design in parallel terms, yet provide easier-to-use constructs with the expectation
that detailed timing and encodingmight be chosen by the tool. However, if a design is worthy of a
considerable amount of low-level handcrafting, such as for a high-performance processor
microarchitecture, the ability to tightly prescribe the precise structure of the generated logic is still
needed.

Structural Verilog
Figure 8.10 is an example of a structural netlist with a hierarchy. The flip-flip components have
component kind DFFR and instance names Ff_i. This style of RTL is generated by a logic synthesiser. If
fed into a logic synthesiser, it might be unprocessed, especially if marked upwith a do-not-touch
macro, or else it may bemodified. For instance, the cells in the input librarymay be replacedwith cells
from the synthesis library. Alternatively, if several of these components are instantiated, eachmight

421

Modern SoCDesign

3. Unordered lists of pure register transfers (Section 8.3.1): There is nominally one list per
synchronous clock domain that is the concatenation of each smaller such list in the various
component modules. Each list has the same structure as that of class 2, except that the lists of class
2 are not associated with a clock edge.

4. Synthesisable behavioural RTL: This uses a thread to describe behaviour. A threadmaywrite a
variable more than once (Section 8.3.1). In Verilog, a thread is introducedwith the always keyword.
In VHDL, the keyword is process. Both sequential and combinational logic are generated in this
way.

5. The remainder of the language contains the so-called non-synthesisable constructs, for which
there are no hardware generation rules (Section 8.3.2).

The first four classes are the synthesisable subset. Only constructs in these classes can be processed
by logic synthesisers. The remaining constructs are ignored or generate compilation errors and
warnings. All the constructs, however, are used in a simulation.

To be acceptable to logic synthesis tools, evenwithin the four allowed classes, tight coding rules need
to be followed. For instance, a continuously assigned variable must not be assigned inmore than one
place and a register must not be updated bymore than one clock domain. Floating-point expressions
cannot be synthesised. Also, comparedwith general-purpose languages such as C/C++, there are
much tighter restrictions onwhat a thread can do. It cannot leave themodule where it was defined
and the thread blocking and synchronisation primitives are restricted to waiting for a clock edge of
one clock. As languages used to describemassively concurrent systems, RTLs are very primitive. They
reflect what is possible with a localised projection into hardware.

8.3.1 RTL Structural Elaboration
When an RTL file has been parsed by an EDA tool, it must be elaborated. Command line or TCL tool
interfaces to logic synthesisers generally have separate commands to read an RTL file and to
elaborate it. Often the details of an RTL design are unimportant since only themodule signature is
required. VHDL allows the signature (the list of input and output connections) to be held in a separate
file, but Verilog does not. Elaborating RTL consists of various stages presented here. The output from
elaboration is a technology-independent representation of the design using a small set of basic
primitives for sequential and combinational elements.

All hardware description languages and RTLs contain further constructs for structural elaboration,
which is the process of evaluatingmacro-like commands at compile time. A generate statement is an
iterative construct that is executed (elaborated) at compile time to generatemultiple instances of a
component and the associatedwiring. Chisel (Section 6.8.3) and Bluespec (Section 6.8.5) use powerful
higher-order functional languages to achieve structural elaboration. Older RTLs support amore
mundane style such as the Verilog example in Figure 8.9. The example uses a simple for loop and a
generate variable, declared with the genvar keyword, which disappears during elaboration. Another

420

Chapter 8 | Fabrication and Production

process, used in some logic synthesisers to facilitate inter-module optimisations, is flattening
(Section 8.3.1).

wire dout[39:0];
reg[3:0] values[0:4] = {5, 6, 7, 8, 15};

generate
genvar i;
for (i=0; i<5; i++) begin

MUT mut[i] (
.out(dout[i*8+7:i*8]),
.value_in(values[i]),
.clk(clk),
);

end
endgenerate

5 out 6 out 7 out 8 out 15 out

dout

Figure 8.9 Example of a generate statement in Verilog RTL (left) and the resulting structural netlist (right)

Any delay time values in RTL are ignored during synthesis. Components are synthesisable whether
they have delays in them or not. So that zero-delay components can be simulated deterministically, a
simulator core implements delta cycles. Theoretically, anything written in RTL that describes
deterministic and finite-state behaviour ought to be synthesisable. However, the community wanted
a simple set of rules for generating hardware fromRTL, so that engineers could retain good control
over circuit structures based onwhat they hadwritten in RTL.

Today, onemight argue that designers and programmers should not be forced into using such
low-level expressions with the resulting excessively parallel thought patterns. Certainly, it is good
that programmers are forced to express designs in ways that can be parallelised, but the compiler
should havemuchmore freedom regarding the details of how to allocate events to clock cycles and
the state encoding.

RTL synthesis tools are not normally expected to greatly re-time a design by altering the amount of
state or state encodings. Newer languages and flows (such as Bluespec andHLS) still encourage the
user to express a design in parallel terms, yet provide easier-to-use constructs with the expectation
that detailed timing and encodingmight be chosen by the tool. However, if a design is worthy of a
considerable amount of low-level handcrafting, such as for a high-performance processor
microarchitecture, the ability to tightly prescribe the precise structure of the generated logic is still
needed.

Structural Verilog
Figure 8.10 is an example of a structural netlist with a hierarchy. The flip-flip components have
component kind DFFR and instance names Ff_i. This style of RTL is generated by a logic synthesiser. If
fed into a logic synthesiser, it might be unprocessed, especially if marked upwith a do-not-touch
macro, or else it may bemodified. For instance, the cells in the input librarymay be replacedwith cells
from the synthesis library. Alternatively, if several of these components are instantiated, eachmight

421

Modern SoCDesign

module subcircuit(
input clk,
input rst,
output q2);
wire q1, q3, a;
DFFR Ff_1(clk, rst, a, q1, qb1),

Ff_2(clk, rst, q1, q2, qb2),
Ff_3(clk, rst, q2, q3, qb3);

NOR2 Nor2_1(a, q2, q3);
endmodule

D QD QD Q

Clock

Ff1 Ff2 Ff3

rst
subcircuit

Figure 8.10 A structural RTL example (left) and the net-level circuit it defines (a divide-by-five Johnson counter, right)

be optimised to suit its environment (e.g. the reset input may not be used) or deleted entirely if its
output is not used by anything.

Continuous Assignment
Figure 8.11 demonstrates how a combinational logic circuit can be defined using the Verilog assign
keyword, whichmakes a continuous assignment of an expression to a net. The example uses 1-bit
expressions, but operations on busses (known as vectors in Verilog) are also allowed. However,
operators likemultiply or add onwide busses are often synthesised into a circuit with toomuch delay.
The explicit instantiation of synchronous or pipelined library components is better. The circuit as
shownwould be generated only if the logic synthesiser were operating in a special literal-translate
mode, since straightforward logicminimisation tells us thatmultiplexing against the don’t-care value X
can always be neglected. Other optimisations are likely to be implemented usingminimisation based
on a Karnaughmap of the remaining single-output functionwith three inputs. These are influenced by
the surrounding logic and the need to share sub-expressions with other parts of the local design. The
choice of logic gate is influenced bywhether this circuit is on the critical path (Section 4.4.2) of the
encompassing clock domain.

aa
bb

cc

ss

yy

X

 assign yy = (ss) ? !(aa & bb) || (bb ^ cc) ? 1’bX;

Figure 8.11 A combinational RTL example (top) and the naive net-level circuit it defines (bottom)

The order in which continuous assignments are listed in the source file is unimportant. Tools often
insist that continuous logic is loop-free, otherwise intentional or unintentional level-sensitive latches
may be formed (e.g. the RS latch of Figure 8.17). To be synthesisable, each net must be either
combinationally or sequentially assigned but not both. If combinational, each bit needs to be assigned
exactly once. Bit inserts to vectors are allowed on the left-hand sides (but not combinational array
writes):

422

Chapter 8 | Fabrication and Production

assign d[0] = 0; // A single-bit insert
assign d[31:1] = e[30:0]; // A bit field insert (lhs) and field extract (rhs)

Pure RTL
Pure RTL is an unordered list of synchronous register transfers associated with a clock edge. In
Verilog, the transfers are listed inside an always block. In SystemVerilog, the keyword is always_ff.
It does not matter howmany lists are used or which list an assignment is in. So the left and right
fragments in the following are equivalent. The order of the always statements in the file is
insignificant and the order of assignments inside the always block is also insignificant:

always @(posedge clk) a <= (b) ? c : d;
always @(posedge clk) b <= c - d;
always @(posedge clk) c <= 22 - c;

always @(posedge clk) begin
a <= (b) ? c : d;
b <= c - d;
c <= 22 - c;

end

Pure RTL is not very expressive and used only in relatively simple cases. However, it is important since
all the other synthesisable constructs are first converted to pure RTL or continuous assignments
during the elaboration stage of logic synthesis. An engineer writing RTL sometimes needs to be aware
of this, especially if they are trying to debug the output of the logic synthesiser.

Behavioural RTL
Behavioural RTL builds on pure RTL by supporting the if, then, else, switch, case, default and
break constructs found inmost block-structured high-level languages. Unlike pure RTL, a variable can
be assignedmore than once or not at all. If a particular flow of control does not make an assignment,
the variable retains its previous value. This either involves generating a clock-enable expression for
the register or instantiating amultiplexor and feedback path so that the previous value is reloaded on
the clock edge. If a variable is updatedmore than once, the last value assigned before the thread
pauses is loaded into the hardware register by the generated logic.

The following CTR16 example shows a simple use of the if statement. The comments show the pure
RTL produced by elaboration.

module CTR16(
input mainclk,
input din,
output o);

reg [3:0] count; // A 4-bit register
reg flip; // A single flip-flop
always @(posedge mainclk) begin // These two become pure RTL as:

if (din) count <= count + 1; // count <= (din) ? count+1 : count;
else flip <= !flip; // flip <= (din) ? flip : !flip;

423

Modern SoCDesign

module subcircuit(
input clk,
input rst,
output q2);
wire q1, q3, a;
DFFR Ff_1(clk, rst, a, q1, qb1),

Ff_2(clk, rst, q1, q2, qb2),
Ff_3(clk, rst, q2, q3, qb3);

NOR2 Nor2_1(a, q2, q3);
endmodule

D QD QD Q

Clock

Ff1 Ff2 Ff3

rst
subcircuit

Figure 8.10 A structural RTL example (left) and the net-level circuit it defines (a divide-by-five Johnson counter, right)

be optimised to suit its environment (e.g. the reset input may not be used) or deleted entirely if its
output is not used by anything.

Continuous Assignment
Figure 8.11 demonstrates how a combinational logic circuit can be defined using the Verilog assign
keyword, whichmakes a continuous assignment of an expression to a net. The example uses 1-bit
expressions, but operations on busses (known as vectors in Verilog) are also allowed. However,
operators likemultiply or add onwide busses are often synthesised into a circuit with toomuch delay.
The explicit instantiation of synchronous or pipelined library components is better. The circuit as
shownwould be generated only if the logic synthesiser were operating in a special literal-translate
mode, since straightforward logicminimisation tells us thatmultiplexing against the don’t-care value X
can always be neglected. Other optimisations are likely to be implemented usingminimisation based
on a Karnaughmap of the remaining single-output functionwith three inputs. These are influenced by
the surrounding logic and the need to share sub-expressions with other parts of the local design. The
choice of logic gate is influenced bywhether this circuit is on the critical path (Section 4.4.2) of the
encompassing clock domain.

aa
bb

cc

ss

yy

X

 assign yy = (ss) ? !(aa & bb) || (bb ^ cc) ? 1’bX;

Figure 8.11 A combinational RTL example (top) and the naive net-level circuit it defines (bottom)

The order in which continuous assignments are listed in the source file is unimportant. Tools often
insist that continuous logic is loop-free, otherwise intentional or unintentional level-sensitive latches
may be formed (e.g. the RS latch of Figure 8.17). To be synthesisable, each net must be either
combinationally or sequentially assigned but not both. If combinational, each bit needs to be assigned
exactly once. Bit inserts to vectors are allowed on the left-hand sides (but not combinational array
writes):

422

Chapter 8 | Fabrication and Production

assign d[0] = 0; // A single-bit insert
assign d[31:1] = e[30:0]; // A bit field insert (lhs) and field extract (rhs)

Pure RTL
Pure RTL is an unordered list of synchronous register transfers associated with a clock edge. In
Verilog, the transfers are listed inside an always block. In SystemVerilog, the keyword is always_ff.
It does not matter howmany lists are used or which list an assignment is in. So the left and right
fragments in the following are equivalent. The order of the always statements in the file is
insignificant and the order of assignments inside the always block is also insignificant:

always @(posedge clk) a <= (b) ? c : d;
always @(posedge clk) b <= c - d;
always @(posedge clk) c <= 22 - c;

always @(posedge clk) begin
a <= (b) ? c : d;
b <= c - d;
c <= 22 - c;

end

Pure RTL is not very expressive and used only in relatively simple cases. However, it is important since
all the other synthesisable constructs are first converted to pure RTL or continuous assignments
during the elaboration stage of logic synthesis. An engineer writing RTL sometimes needs to be aware
of this, especially if they are trying to debug the output of the logic synthesiser.

Behavioural RTL
Behavioural RTL builds on pure RTL by supporting the if, then, else, switch, case, default and
break constructs found inmost block-structured high-level languages. Unlike pure RTL, a variable can
be assignedmore than once or not at all. If a particular flow of control does not make an assignment,
the variable retains its previous value. This either involves generating a clock-enable expression for
the register or instantiating amultiplexor and feedback path so that the previous value is reloaded on
the clock edge. If a variable is updatedmore than once, the last value assigned before the thread
pauses is loaded into the hardware register by the generated logic.

The following CTR16 example shows a simple use of the if statement. The comments show the pure
RTL produced by elaboration.

module CTR16(
input mainclk,
input din,
output o);

reg [3:0] count; // A 4-bit register
reg flip; // A single flip-flop
always @(posedge mainclk) begin // These two become pure RTL as:

if (din) count <= count + 1; // count <= (din) ? count+1 : count;
else flip <= !flip; // flip <= (din) ? flip : !flip;

423

Modern SoCDesign

end

// Note ^ is the exclusive-or operator
assign o = count[3] ^ flip;

endmodule

Pure RTL directly corresponds to synchronous hardware, which updates all the registers on the active
edge of the clock. The next-state function is evaluated based on the current contents of the registers.
All the next values are committed atomically. Hence, the right-hand expressions in pure RTL are
unaffected by any assignments to these variables in the list of assignments. In hardware, this is
implemented using the two stages of latching inside an edge-triggered flip-flop. In an RTL simulation,
this is implemented using the compute/commit paradigm as part of the delta cyclemechanism
(Section 8.3.6).

However, this behaviour is totally different from that of regular imperative programming languages,
such as C/C++. In these languages, the order of assignments in a list is important. Writing a value
affects the values read by the right-hand expressions of subsequent writes. This software-like
programming paradigm is arguably more useful for expressing complex behaviour than pure RTL,
which is better at describing hardware-like constructs, such as shift registers. Each RTL provides
mechanisms for accessing both programming styles. Verilog provides two assignment operators
whereas the behaviour of VHDL and SystemC depends on the type of variable being assigned.

In Verilog, all registers can be assignedwith the non-blocking operator <=, as seen in pure RTL. They
can also be assignedwith the blocking operator =. Blocking assignments have an immediate effect, as
subsequent reads of the assigned variables by the same thread see the new value. It is possible to use
both assignments for a single variable, but this is generally discouraged since the resulting behaviour
is hard to follow. The names ‘blocking’ and ‘non-blocking’ are also a bit obscure since they relate to the
behaviour arising when delays are included in the right-hand expressions, but these are seldom if ever
used in practice. In VHDL and SystemC, assignments to variables behave as expected, using the
Verilog blocking semantic. However, assignments to signals follow the compute/commit paradigm.
The detailed operation is presented in Section 8.3.6.

Here is a concrete example:

always @(posedge clk) begin
if (k) foo = y;
bar = !foo;
end

always @(posedge clk) begin
foo <= (k) ? y: foo;
bar <= !((k) ? y: foo);
end

In Verilog, the behavioural code on the left uses blocking assignments. It is equivalent to the pure RTL
code on the right, which uses non-blocking assignments. One of the elaboration steps in a logic
synthesiser makes this transformation.

424

Chapter 8 | Fabrication and Production

The value stored in the hardware version of the left-hand side is the last value assigned by the thread
before the thread pauses to wait for the next event. (Asmentioned in Section 5.3.1, a SystemC
sc_signal is implementedwith a current and a next value and it is necessary to use the net.read()
method to read the value of a SystemC signal because C++ does not allow a read operator to be
overridden.) For logic to be synthesisable, registers must be assigned by exactly one always block.

The case statement in Verilog differs from that in C/C++ in a number of syntactic ways: (1) The case
tags do not have to be constant. (2) There is no fall-through from one branch to the next. (3) An
explicit begin/end block is required to placemore than one statement in a branch. Aside from these
details, there are some subtler coding issues regarding logic minimisation. The following two
fragments have the same behaviour (ignoring simulation details where e1 has the unknown value X
and further relevant differences between the === and == comparison operators):

case (e1) // synthesis PPP
1 : y <= e2;
2 : y <= e3;

default : y <= 32'bx;

if (e1==1) y <= e2;
else if (e1==2) y <= e3;
else y <= 32'bx;

Both fragments assign the don’t-care value X to the output in the default branch. This is good coding
practice since it can grant significant design space to the logic minimiser, which can choose an
implementation that meets the design intent. Most logic synthesisers check for pragmas inside the
comment containing PPP. Twowidely used pragmas are full_case and parallel_case.

The full_case annotation has no effect if a default clause is present, but manually writing the default
clause is laborious and error-prone if many nets are updated in the case statement, rather than just
the one shown. A full_case pragma tells the logic synthesiser that no cases beyond those listed are
important and it is allowed to dowhat it likes in the remaining situations.

A logic synthesiser converts a case statement to a series of if statements as part of its elaboration, as
in the above example. The commandwith the first matching tag is executed. To preserve this
behaviour when converting to pure RTL during logic synthesis, the negation of all previous guards
must be AND’edwith the guard of the current command. Our example shows simple integer case tags.
These aremanifestly disjoint, but Verilog allowsmore complex tags in its casex and casez variants
that include wild cards. With these, more than one branch canmatch. Also, as said, the case tags do
not have to be constants. If they are expressions, it is possible for several case tags to have the same
value. Again, more than one canmatch simultaneously. The parallel_case annotation allows the
logic synthesiser to consider each case condition in parallel and non-deterministically merge the
effects of more than onematching branch. This is not a nice programming style. However, the
advantage is that for a high-arity case statement (onewithmany tags), less combinational logic is
chained together during the elaboration, resulting in a shorter critical path (Section 4.4.2). Essentially,
the parallel_case pragma is an assertion by the engineer to the logic synthesiser that the case

425

Modern SoCDesign

end

// Note ^ is the exclusive-or operator
assign o = count[3] ^ flip;

endmodule

Pure RTL directly corresponds to synchronous hardware, which updates all the registers on the active
edge of the clock. The next-state function is evaluated based on the current contents of the registers.
All the next values are committed atomically. Hence, the right-hand expressions in pure RTL are
unaffected by any assignments to these variables in the list of assignments. In hardware, this is
implemented by themaster–slave pair inside a D-type flip-flop. In an RTL simulation, this is
implemented using the compute/commit paradigm as part of the delta cyclemechanism
(Section 8.3.6).

However, this behaviour is totally different from that of regular imperative programming languages,
such as C/C++. In these languages, the order of assignments in a list is important. Writing a value
affects the values read by the right-hand expressions of subsequent writes. This software-like
programming paradigm is arguably more useful for expressing complex behaviour than pure RTL,
which is better at describing hardware-like constructs, such as shift registers. Each RTL provides
mechanisms for accessing both programming styles. Verilog provides two assignment operators
whereas the behaviour of VHDL and SystemC depends on the type of variable being assigned.

In Verilog, all registers can be assignedwith the non-blocking operator <=, as seen in pure RTL. They
can also be assignedwith the blocking operator =. Blocking assignments have an immediate effect, as
subsequent reads of the assigned variables by the same thread see the new value. It is possible to use
both assignments for a single variable, but this is generally discouraged since the resulting behaviour
is hard to follow. The names ‘blocking’ and ‘non-blocking’ are also a bit obscure since they relate to the
behaviour arising when delays are included in the right-hand expressions, but these are seldom if ever
used in practice. In VHDL and SystemC, assignments to variables behave as expected, using the
Verilog blocking semantic. However, assignments to signals follow the compute/commit paradigm.
The detailed operation is presented in Section 8.3.6.

Here is a concrete example:

always @(posedge clk) begin
if (k) foo = y;
bar = !foo;
end

always @(posedge clk) begin
foo <= (k) ? y: foo;
bar <= !((k) ? y: foo);
end

In Verilog, the behavioural code on the left uses blocking assignments. It is equivalent to the pure RTL
code on the right, which uses non-blocking assignments. One of the elaboration steps in a logic
synthesiser makes this transformation.

424

Chapter 8 | Fabrication and Production

The value stored in the hardware version of the left-hand side is the last value assigned by the thread
before the thread pauses to wait for the next event. (Asmentioned in Section 5.3.1, a SystemC
sc_signal is implementedwith a current and a next value and it is necessary to use the net.read()
method to read the value of a SystemC signal because C++ does not allow a read operator to be
overridden.) For logic to be synthesisable, registers must be assigned by exactly one always block.

The case statement in Verilog differs from that in C/C++ in a number of syntactic ways: (1) The case
tags do not have to be constant. (2) There is no fall-through from one branch to the next. (3) An
explicit begin/end block is required to placemore than one statement in a branch. Aside from these
details, there are some subtler coding issues regarding logic minimisation. The following two
fragments have the same behaviour (ignoring simulation details where e1 has the unknown value X
and further relevant differences between the === and == comparison operators):

case (e1) // synthesis PPP
1 : y <= e2;
2 : y <= e3;

default : y <= 32'bx;

if (e1==1) y <= e2;
else if (e1==2) y <= e3;
else y <= 32'bx;

Both fragments assign the don’t-care value X to the output in the default branch. This is good coding
practice since it can grant significant design space to the logic minimiser, which can choose an
implementation that meets the design intent. Most logic synthesisers check for pragmas inside the
comment containing PPP. Twowidely used pragmas are full_case and parallel_case.

The full_case annotation has no effect if a default clause is present, but manually writing the default
clause is laborious and error-prone if many nets are updated in the case statement, rather than just
the one shown. A full_case pragma tells the logic synthesiser that no cases beyond those listed are
important and it is allowed to dowhat it likes in the remaining situations.

A logic synthesiser converts a case statement to a series of if statements as part of its elaboration, as
in the above example. The commandwith the first matching tag is executed. To preserve this
behaviour when converting to pure RTL during logic synthesis, the negation of all previous guards
must be AND’edwith the guard of the current command. Our example shows simple integer case tags.
These aremanifestly disjoint, but Verilog allowsmore complex tags in its casex and casez variants
that include wild cards. With these, more than one branch canmatch. Also, as said, the case tags do
not have to be constants. If they are expressions, it is possible for several case tags to have the same
value. Again, more than one canmatch simultaneously. The parallel_case annotation allows the
logic synthesiser to consider each case condition in parallel and non-deterministically merge the
effects of more than onematching branch. This is not a nice programming style. However, the
advantage is that for a high-arity case statement (onewithmany tags), less combinational logic is
chained together during the elaboration, resulting in a shorter critical path (Section 4.4.2). Essentially,
the parallel_case pragma is an assertion by the engineer to the logic synthesiser that the case

425

Modern SoCDesign

branches aremutually exclusive even though this cannot be statically determined (except possibly by
reachable state space formal methods; Section 7.1.1).

One downside of advanced or RTL coding styles arises when debugging a design or tool. If the RTL is
very abstract, it is more complex tomatch one line of RTL codewith the output generated by the
synthesis tool. It is not uncommon for a back-end engineer to performmanual reverse engineering to
tie up a gate or net with its high-level origin.

Structural Flattening
Parts of a module instantiation tree can be collapsed into an equivalent single module instance by
flattening. The resultingmodule has the same signature as the root module in the tree, but the
contents of each instantiated component are directly included in the newmodule. Several consecutive
levels of the hierarchy can be flattened at once. A fully flattened netlist has one component definition
with no child instances or instances only of components that are leaf cells. A leaf cell is one that is not
defined in the RTL. Leaf cells are either primitives in the RTL, such as the Verilog bufif0 cell, which
defines a tri-state buffer, or else provided by an external cell library. Figure 8.12 shows structural RTL
before and after flattening as well as a circuit diagram showing the component boundaries.

module MOD1(output b, input a);
 wire c;
 INV inv1(c, a);
 MODX modx1(b, c);
endmodule

module MOD2(output q, input s, input r);
 wire c;
 INV inv2(c, s);
 MODY mody1(q, c, r);
endmodule

module MODTOP(output rr, input aa, input bb);
 wire l, m;
 MOD1 m(l, aa);
 MOD1 n(m, bb);
 MOD2 o(rr, l, m);
endmodule

MODX

MODYMOD1 / m

c ba

cs
q

r

MOD2 / o

MODX

MOD1 / n

c ba

aa
l

bb
m

rr

MODTOP

Hierarchic Netlist Equivalent Flattened Netlist

module MODTOP (output rr, input aa, input bb);
 wire l, m;
 wire m_c, n_c, o_c;

 INV m_inv1(m_c, aa);
 INV n_inv1(n_c, bb);
 INV o_inv2(o_c, l);
 MODX m_modx1(m_c, l);
 MODX n_modx1(n_c, m);
 MODY o_mody1(rr, o_c, m);

endmodule

Figure 8.12 Example RTL fragment, before and after flattening. For many designs, the flattened netlist is often bigger than the hierarchic netlist owing to
multiple instances of the same component. Here it was smaller

426

Chapter 8 | Fabrication and Production

Some tools intrinsically flatten a design during analysis, for instance, to get a total gate count.
Moreover, an engineering teammay sometimesmake an explicit flattening decision and synthesise
several layers of hierarchy as one unit. This can be useful for capturing higher-level aspects of SoC
partitioning, e.g. after several rounds of experimental synthesis and prototyping the floor plan.
Flattening can also provide amore compact result since inter-module optimisationmay remove
functionality that will not be used, such as redundant outputs, tied-off inputs or other behavioural
constraints arising from the composition.

8.3.2 Unsynthesisable RTL
Not all RTL is officially synthesisable, as defined by the language standards. However, commercial
tools tend to support larger subsets than the official standards. The example shows RTLwith event
control in the body of a thread. This defines a statemachine for a simulation and is synthesised as
such by some tools. The statemachine requires a register for a program counter that was not in the
source code.

input clk, din;
output reg [3:0] q; // Four bits of state are defined here

always begin
q <= 1;
@(posedge clk) q <= 2;
if (din) @(posedge clk) q <= 3;
q <= 4;
end

Since the thread can pause at two places, one bit of state is required to indicate in which of the two
states themachine sits. Does the output q ever take on the value 4? No, the thread loops to the top
after that assignment and the new value of 1 is stored straight away.

set_clock

clear_clock

Q output

Q output

set_clock

clear_clock
set_clock

clear_clock

Q output

module PHASECOMP(
 input set_clock,
 input clear_clock,
 output reg Q);

 always @(posedge set_clock) Q = 1;
 always @(posedge clear_clock) Q = 0;
endmodule

Figure 8.13 Schematic symbol, Verilog model, timing diagram and possible implementation for a dual-edge-triggered RS flop

427

Modern SoCDesign

branches aremutually exclusive even though this cannot be statically determined (except possibly by
reachable state space formal methods; Section 7.1.1).

One downside of advanced or RTL coding styles arises when debugging a design or tool. If the RTL is
very abstract, it is more complex tomatch one line of RTL codewith the output generated by the
synthesis tool. It is not uncommon for a back-end engineer to performmanual reverse engineering to
tie up a gate or net with its high-level origin.

Structural Flattening
Parts of a module instantiation tree can be collapsed into an equivalent single module instance by
flattening. The resultingmodule has the same signature as the root module in the tree, but the
contents of each instantiated component are directly included in the newmodule. Several consecutive
levels of the hierarchy can be flattened at once. A fully flattened netlist has one component definition
with no child instances or instances only of components that are leaf cells. A leaf cell is one that is not
defined in the RTL. Leaf cells are either primitives in the RTL, such as the Verilog bufif0 cell, which
defines a tri-state buffer, or else provided by an external cell library. Figure 8.12 shows structural RTL
before and after flattening as well as a circuit diagram showing the component boundaries.

module MOD1(output b, input a);
 wire c;
 INV inv1(c, a);
 MODX modx1(b, c);
endmodule

module MOD2(output q, input s, input r);
 wire c;
 INV inv2(c, s);
 MODY mody1(q, c, r);
endmodule

module MODTOP(output rr, input aa, input bb);
 wire l, m;
 MOD1 m(l, aa);
 MOD1 n(m, bb);
 MOD2 o(rr, l, m);
endmodule

MODX

MODYMOD1 / m

c ba

cs
q

r

MOD2 / o

MODX

MOD1 / n

c ba

aa
l

bb
m

rr

MODTOP

Hierarchic Netlist Equivalent Flattened Netlist

module MODTOP (output rr, input aa, input bb);
 wire l, m;
 wire m_c, n_c, o_c;

 INV m_inv1(m_c, aa);
 INV n_inv1(n_c, bb);
 INV o_inv2(o_c, l);
 MODX m_modx1(m_c, l);
 MODX n_modx1(n_c, m);
 MODY o_mody1(rr, o_c, m);

endmodule

Figure 8.12 Example RTL fragment, before and after flattening. For many designs, the flattened netlist is often bigger than the hierarchic netlist owing to
multiple instances of the same component. Here it was smaller

426

Chapter 8 | Fabrication and Production

Some tools intrinsically flatten a design during analysis, for instance, to get a total gate count.
Moreover, an engineering teammay sometimesmake an explicit flattening decision and synthesise
several layers of hierarchy as one unit. This can be useful for capturing higher-level aspects of SoC
partitioning, e.g. after several rounds of experimental synthesis and prototyping the floor plan.
Flattening can also provide amore compact result since inter-module optimisationmay remove
functionality that will not be used, such as redundant outputs, tied-off inputs or other behavioural
constraints arising from the composition.

8.3.2 Unsynthesisable RTL
Not all RTL is officially synthesisable, as defined by the language standards. However, commercial
tools tend to support larger subsets than the official standards. The example shows RTLwith event
control in the body of a thread. This defines a statemachine for a simulation and is synthesised as
such by some tools. The statemachine requires a register for a program counter that was not in the
source code.

input clk, din;
output reg [3:0] q; // Four bits of state are defined here

always begin
q <= 1;
@(posedge clk) q <= 2;
if (din) @(posedge clk) q <= 3;
q <= 4;
end

Since the thread can pause at two places, one bit of state is required to indicate in which of the two
states themachine sits. Does the output q ever take on the value 4? No, the thread loops to the top
after that assignment and the new value of 1 is stored straight away.

set_clock

clear_clock

Q output

Q output

set_clock

clear_clock
set_clock

clear_clock

Q output

module PHASECOMP(
 input set_clock,
 input clear_clock,
 output reg Q);

 always @(posedge set_clock) Q = 1;
 always @(posedge clear_clock) Q = 0;
endmodule

Figure 8.13 Schematic symbol, Verilog model, timing diagram and possible implementation for a dual-edge-triggered RS flop

427

Modern SoCDesign

As a second non-synthesisable example, consider the dual-edge-triggered flip-flop of Figure 8.13.
This useful component is used as the phase comparator in phase-locked loops (PLLs; Section 4.9.5).
The output is set by the positive edge of one input and cleared by the positive edge of the other.
Comparedwith a simple AND-gate comparator, this component is not sensitive to the duty cycle of
the inputs and operates over a full 360° of phase difference instead of the 180° of an AND gate. A
suitable Verilogmodel is often needed inmixed-signal simulations Section 8.3.7 and is easily coded
(top right of figure). Here a variable is updated bymore than one thread. However, although it can be
modelled in Verilog and has a net-level equivalent, such structures are not supported in Verilog
synthesis. A handcrafted circuit for the edge-triggered reset-set (RS) flop is used in practice. The
implementation at bottom right has eight NAND gates in a relatively complex arrangement. We do
not expect general-purpose logic synthesis tools to create such circuits. This circuit was handcrafted
by experts in previous decades.

A third common use of non-synthesisable RTL code is for test benches, which generate stimulus to
exercise the device under test (DUT). They commonly use delays to space out events, whereas logic
synthesisers ignore all delay annotations in the source RTL. To generate a clock and reset signal in the
top level of a simulation, RTL like the following Verilog is typically used:

// Typical RTL test bench for stimulus generation

// Set the time in seconds for each clock unit
`timescale 1 ns

reg clk, reset;
initial begin clk=0; forever #5 clk = !clk; end // Clock source 100 MHz
initial begin reset = 1; # 125 reset = 0; end // Power-on reset generator

A final common use of non-synthesisable RTL is for abstract models of components. For instance, only
a tiny percentage of the content space of a DRAM chipmay be accessed in a simulation run. A
simulationmodel that has a directly indexed array to store the whole of a DRAM chip’s content may
break various simulation tools, whereas an associative structure that is totally different from the real
implementationmay be able to simulate the chip properly. Alternatively, ESL to RTL hybridmodels
that use transactors to build SystemCmodels (Section 5.4.8) can be used to avoid writing abstract
component models in low-level RTL.

As a form of summary or cheat sheet, Figure 8.14 shows synthesisable Verilog fragments as well as
the circuits typically generated. However, logic synthesisers cannot be expected to synthesise into
hardware the full set of constructs of a rich RTL. Inevitably, there are problemswith:

unbounded loops

recursive functions

library functions, whichmay access file or screen I/O.

428

Chapter 8 | Fabrication and Production

assign y = ~(a & b);

if (cond) yy = e1;
else yy = e0;

yy = (cond) ? e1 : e0;

reg [15..0] qb;
input [15..0] data
always @(posedge clk) qb <= qb+data;

always @(posedge clk)
q <= d;

module PGEN(
 input d,
 input clk,
 output op);
 reg op;
 reg v1, v2;

 always @(posedge clk)
 begin
 v1 <= d;
 v2 <= v1;
 op <= v1 & ~v2;
 end

endmodule

NAND gate. 2-input mux.

D-type FF. Accumulator.

Small circuit (pulse generator).

a
b y

qb

data

clk

D

Q 1616

16

+

Dd

clk

q

Q

d

clk

v1

op
v2

PGEN

QD
QDQD

e0

e1

cond

0

1

yy

QDd

g

q

Transparent latch.

always @(g or d)
if (g) q <= d;

Figure 8.14 Simple synthesisable Verilog examples, including a transparent latch

8.3.3 RTL Simulation Algorithms
A digital simulator takes a binary view of the voltage on each net, as it should be either a one or a zero.
A cycle-accurate simulation (Section 5.1) typically uses just these two states, giving a so-called
two-value logic system. A minimum of two additional states is needed to simulate themajority of
everyday logic gates. This gives a four-value logic systemwhose behaviour with six common gates is
illustrated in Figure 8.15. In a four-value logic system, each net (wire or signal), at a particular time,
has one of the following logic values:

0 = logic zero

1 = logic one

429

Modern SoCDesign

As a second non-synthesisable example, consider the dual-edge-triggered flip-flop of Figure 8.13.
This useful component is used as the phase comparator in phase-locked loops (PLLs; Section 4.9.5).
The output is set by the positive edge of one input and cleared by the positive edge of the other.
Comparedwith a simple AND-gate comparator, this component is not sensitive to the duty cycle of
the inputs and operates over a full 360° of phase difference instead of the 180° of an AND gate. A
suitable Verilogmodel is often needed inmixed-signal simulations Section 8.3.7 and is easily coded
(top right of figure). Here a variable is updated bymore than one thread. However, although it can be
modelled in Verilog and has a net-level equivalent, such structures are not supported in Verilog
synthesis. A handcrafted circuit for the edge-triggered reset-set (RS) flop is used in practice. The
implementation at bottom right has eight NAND gates in a relatively complex arrangement. We do
not expect general-purpose logic synthesis tools to create such circuits. This circuit was handcrafted
by experts in previous decades.

A third common use of non-synthesisable RTL code is for test benches, which generate stimulus to
exercise the device under test (DUT). They commonly use delays to space out events, whereas logic
synthesisers ignore all delay annotations in the source RTL. To generate a clock and reset signal in the
top level of a simulation, RTL like the following Verilog is typically used:

// Typical RTL test bench for stimulus generation

// Set the time in seconds for each clock unit
`timescale 1 ns

reg clk, reset;
initial begin clk=0; forever #5 clk = !clk; end // Clock source 100 MHz
initial begin reset = 1; # 125 reset = 0; end // Power-on reset generator

A final common use of non-synthesisable RTL is for abstract models of components. For instance, only
a tiny percentage of the content space of a DRAM chipmay be accessed in a simulation run. A
simulationmodel that has a directly indexed array to store the whole of a DRAM chip’s content may
break various simulation tools, whereas an associative structure that is totally different from the real
implementationmay be able to simulate the chip properly. Alternatively, ESL to RTL hybridmodels
that use transactors to build SystemCmodels (Section 5.4.8) can be used to avoid writing abstract
component models in low-level RTL.

As a form of summary or cheat sheet, Figure 8.14 shows synthesisable Verilog fragments as well as
the circuits typically generated. However, logic synthesisers cannot be expected to synthesise into
hardware the full set of constructs of a rich RTL. Inevitably, there are problemswith:

unbounded loops

recursive functions

library functions, whichmay access file or screen I/O.

428

Chapter 8 | Fabrication and Production

assign y = ~(a & b);

if (cond) yy = e1;
else yy = e0;

yy = (cond) ? e1 : e0;

reg [15..0] qb;
input [15..0] data
always @(posedge clk) qb <= qb+data;

always @(posedge clk)
q <= d;

module PGEN(
 input d,
 input clk,
 output op);
 reg op;
 reg v1, v2;

 always @(posedge clk)
 begin
 v1 <= d;
 v2 <= v1;
 op <= v1 & ~v2;
 end

endmodule

NAND gate. 2-input mux.

D-type FF. Accumulator.

Small circuit (pulse generator).

a
b y

qb

data

clk

D

Q 1616

16

+

Dd

clk

q

Q

d

clk

v1

op
v2

PGEN

QD
QDQD

e0

e1

cond

0

1

yy

QDd

g

q

Transparent latch.

always @(g or d)
if (g) q <= d;

Figure 8.14 Simple synthesisable Verilog examples, including a transparent latch

8.3.3 RTL Simulation Algorithms
A digital simulator takes a binary view of the voltage on each net, as it should be either a one or a zero.
A cycle-accurate simulation (Section 5.1) typically uses just these two states, giving a so-called
two-value logic system. A minimum of two additional states is needed to simulate themajority of
everyday logic gates. This gives a four-value logic systemwhose behaviour with six common gates is
illustrated in Figure 8.15. In a four-value logic system, each net (wire or signal), at a particular time,
has one of the following logic values:

0 = logic zero

1 = logic one

429

Modern SoCDesign

Z = high impedance: not driven at themoment

X = uncertain: the simulator does not know.

Note that Z behaves as an X inmost input contexts, but a pass transistor (Section 8.5.1) or
transmission-gate two-input multiplexor will output a Zwhen the selected input is a Z. Note also that
themeaning of the symbol ‘X’ depends on the tool applied. It means ‘uncertain’ during simulation and
‘don’t-care’ during logic synthesis. The don’t-care in logic synthesis enables logic minimisation
(Section 8.3.8).

0 1 X Z

1 0 1 X X

Z 0 X X X

X 0 X X X

0 0 0 0 0

A

B

A

B

AND gate

0 1 X Z

1 1 1 1 1

Z X 1 X X

X X 1 X X

0 0 1 X X

A

B

A

B

OR gate

0 1 X ZR

Y

R Y

Inverter

1 0 X X

I Y

Tri-state buffer

0 D0

D1

1 D1

Y

D1 Y

Two-input mux

D0 X X

Z X

D0S
SE

1 0

1 1

0 X

0

1

Z

E YI

0 1 X ZR

Y

R Y

Open-drain or
open-collecter buffer

1 Z X X

Figure 8.15 Four-value logic-level encoding and its behaviour for six common gates

The four-value system is insufficient for modelling configurations like the bus keeper of Section 4.6.2
and other configurations, such as an SRAMwrite (Section 2.6.4) in which a gate with a light drive
capability is intentionally overwhelmed by a gate with larger output transistors. Verilog and VHDL
usemore complex logic systems. Verilog uses a hard-coded seven-level drive-strength system. There
are three strengths for each of logic zero and one, and another for high impedance. Each net is
modelled as being in a range of values delimited by two values from the seven-value range, leading to
28 possible values. This enables a net-resolution function to be applied when a net is driven bymore
than one source. For instance, if one and zero have the same drive strength, then this will resolve to an
X, but the stronger will win when the strengths are not matched. Weak effects, such as those from
pull-up resistors or due to signal degradation in pass transistors, can also bemodelled. VHDL
originally supported a pluggable logic modelling system, but most modern tools use a coding called
std_logic that has two drive strengths and distinguishes between unknown and uninitialised values.

430

Chapter 8 | Fabrication and Production

8.3.4 Event-driven Simulation
The principal algorithm for simulating RTL is event-driven simulation (EDS) augmentedwith delta
cycles. Another name for EDS is discrete-event simulation. A faster alternative is cycle-accurate
simulation (Section 5.1), as implemented by tools such as Verilator (Section 5.5.1). EDS uses an EDS
kernel, whichmaintains an event queue together with behavioural models of the components being
simulated. Figure 8.16 shows an example event queue. The kernel maintains a pointer to the current
event, which is the event at the head of the queue. It alsomaintains the simulation time tnow, which is
the timewhen the last event was removed from the queue. In a hardware simulation, an event is a
change in the value of a net at some simulation time. An event queue is in ascending order, and newly
generated events are inserted so as to preserve this property.

Time Net New Logic Value Next EventEvent List Pointer

100 a 1

Current Time Value

tnow

Time Net New Logic Value Next Event

Time Net New Logic Value Next Event

105 b 1

200 f x

100

Figure 8.16 EDS event queue, which is a linked list, sorted in ascending temporal order

On start-up, the simulator must first elaborate themodule hierarchy and any generate statements
(Section 8.3.1), so that each individual net in multiply instanced components is stored inmemory as a
net name and current value. Current values are normally all initialised to X, denoting ‘don’t know’. For
each component instance, a record or object is allocated tomaintain its local state. The simulator then
generates a sensitivity matrix that records whichmodels are sensitive to changes onwhich nets. This
could be every input to amodel, but for sequential circuits, such as the 10-bit counter of Figure 5.2,
this could be just the clock and any asynchronous reset inputs. The simulator then enters themain
simulation loop. The loop takes the next event from the head of the queue and dispatches it, which
means changing the net to that value and chaining to the next event. All component models that are
sensitive to changes on that net then run, potentially generating new events that are inserted into the
event queue in order. When the queue is empty, nothing furtherwill happen and the simulation is over.
Initial events are typically created by the clock and reset generators, as described in Section 8.3.2.

8.3.5 Inertial and Transport Delays
Two types of delay need to bemodelled. Consider a simple two-input NOR gatemodel with a 250ps
delay. The behavioural code inside themodel, in SystemC-like syntax, is something like this:

431

Modern SoCDesign

Z = high impedance: not driven at themoment

X = uncertain: the simulator does not know.

Note that Z behaves as an X inmost input contexts, but a pass transistor (Section 8.5.1) or
transmission-gate two-input multiplexor will output a Zwhen the selected input is a Z. Note also that
themeaning of the symbol ‘X’ depends on the tool applied. It means ‘uncertain’ during simulation and
‘don’t-care’ during logic synthesis. The don’t-care in logic synthesis enables logic minimisation
(Section 8.3.8).

0 1 X Z

1 0 1 X X

Z 0 X X X

X 0 X X X

0 0 0 0 0

A

B

A

B

AND gate

0 1 X Z

1 1 1 1 1

Z X 1 X X

X X 1 X X

0 0 1 X X

A

B

A

B

OR gate

0 1 X ZR

Y

R Y

Inverter

1 0 X X

I Y

Tri-state buffer

0 D0

D1

1 D1

Y

D1 Y

Two-input mux

D0 X X

Z X

D0S
SE

1 0

1 1

0 X

0

1

Z

E YI

0 1 X ZR

Y

R Y

Open-drain or
open-collecter buffer

1 Z X X

Figure 8.15 Four-value logic-level encoding and its behaviour for six common gates

The four-value system is insufficient for modelling configurations like the bus keeper of Section 4.6.2
and other configurations, such as an SRAMwrite (Section 2.6.4) in which a gate with a light drive
capability is intentionally overwhelmed by a gate with larger output transistors. Verilog and VHDL
usemore complex logic systems. Verilog uses a hard-coded seven-level drive-strength system. There
are three strengths for each of logic zero and one, and another for high impedance. Each net is
modelled as being in a range of values delimited by two values from the seven-value range, leading to
28 possible values. This enables a net-resolution function to be applied when a net is driven bymore
than one source. For instance, if one and zero have the same drive strength, then this will resolve to an
X, but the stronger will win when the strengths are not matched. Weak effects, such as those from
pull-up resistors or due to signal degradation in pass transistors, can also bemodelled. VHDL
originally supported a pluggable logic modelling system, but most modern tools use a coding called
std_logic that has two drive strengths and distinguishes between unknown and uninitialised values.

430

Chapter 8 | Fabrication and Production

8.3.4 Event-driven Simulation
The principal algorithm for simulating RTL is event-driven simulation (EDS) augmentedwith delta
cycles. Another name for EDS is discrete-event simulation. A faster alternative is cycle-accurate
simulation (Section 5.1), as implemented by tools such as Verilator (Section 5.5.1). EDS uses an EDS
kernel, whichmaintains an event queue together with behavioural models of the components being
simulated. Figure 8.16 shows an example event queue. The kernel maintains a pointer to the current
event, which is the event at the head of the queue. It alsomaintains the simulation time tnow, which is
the timewhen the last event was removed from the queue. In a hardware simulation, an event is a
change in the value of a net at some simulation time. An event queue is in ascending order, and newly
generated events are inserted so as to preserve this property.

Time Net New Logic Value Next EventEvent List Pointer

100 a 1

Current Time Value

tnow

Time Net New Logic Value Next Event

Time Net New Logic Value Next Event

105 b 1

200 f x

100

Figure 8.16 EDS event queue, which is a linked list, sorted in ascending temporal order

On start-up, the simulator must first elaborate themodule hierarchy and any generate statements
(Section 8.3.1), so that each individual net in multiply instanced components is stored inmemory as a
net name and current value. Current values are normally all initialised to X, denoting ‘don’t know’. For
each component instance, a record or object is allocated tomaintain its local state. The simulator then
generates a sensitivity matrix that records whichmodels are sensitive to changes onwhich nets. This
could be every input to amodel, but for sequential circuits, such as the 10-bit counter of Figure 5.2,
this could be just the clock and any asynchronous reset inputs. The simulator then enters themain
simulation loop. The loop takes the next event from the head of the queue and dispatches it, which
means changing the net to that value and chaining to the next event. All component models that are
sensitive to changes on that net then run, potentially generating new events that are inserted into the
event queue in order. When the queue is empty, nothing furtherwill happen and the simulation is over.
Initial events are typically created by the clock and reset generators, as described in Section 8.3.2.

8.3.5 Inertial and Transport Delays
Two types of delay need to bemodelled. Consider a simple two-input NOR gatemodel with a 250ps
delay. The behavioural code inside themodel, in SystemC-like syntax, is something like this:

431

Modern SoCDesign

SC_MODULE(NOR2)
{ sc_in < bool > i1, i2; sc_out < bool > y;

void behaviour()
{ y.write(!(i1.read() || i2.read()), SC_TIME(250, SC_PS));
}
SC_CTOR(NOR2) { SC_METHOD(behaviour); sensitive << i1 << i2;

}

This model is run when either of its inputs changes. This causes a new event to be placed in the event
queue 250ps later, which results in a pure transport delay becausemultiple changes on the input
within 250ps will potentially result in multiple changes on the output that time later (Figure 8.17).
This is unrealistic. A NOR gatemade of transistors will not respond to rapid changes on its input. It
will decisively change its output only when the inputs have been stable for 250ps. In other words, it
exhibits inertia. Tomodel inertial delay, the event queue insert functionmust scan for any existing
scheduled changes to a different value before the one about to be inserted and delete them. This
involves little overhead, since ordered insertion involves scanning down the event queue anyway.

RTL: pair of continuous assignments
 assign q = !(qb | clear);
 assign qb = !(q | set)

gate
delay

set

qb

q

q

qb

clear

set

(very short pulse)

Figure 8.17 Behaviour of a runt pulse in an RS latch whenmodelling with transport delay

8.3.6 Compute/CommitModelling and the Delta Cycle
VHDL, Verilog RTL and SystemC all support the compute/commit paradigm, which is also known as
the evaluate/update paradigm, using delta cycles. Tomodel the edge-triggered behaviour of D-type
flip-flops, RTL simulators must not immediately commit the new value of a register once it has been
computed. Instead, theymust hold the new value as a pending update in a separate variable. The
pending updates can be committed only when all customers of the current value have read this
existing value. For a clock domain, theymust all be committed at once, in the sameway that real
hardware copies the value from the first latch inside the flip-flop to the second.

Accordingly, as well as the event queue, RTL simulators maintain a set of pending updates as another
data structure. Non-blocking assigns in Verilog and signal assigns in VHDL and SystemC are added as
new pending updates to the set, replacing any existing pending update for the same left-hand side.
These assigns do not go via the event queue. The EDS kernel is enhanced so that it periodically

432

Chapter 8 | Fabrication and Production

empties the pending update set by committing the updates it contains. If moving to the next event on
the event queuewould increase the tnow value, that is, the next event on the event queue has a time
greater than the one just processed, then the pending set is emptied. When delta cycles aremodelled,
as introduced shortly, tnow can increase by such a small amount that its numerical value does not
actually change, but this must be treated like an advance, in that it causes a commit of pending
updates.

The following fragment of codewill not correctly simulate without the pending updatemechanism. If
the new assignment is made to A before it is read for the assignment to B, this would be a
shoot-through (Section 4.6.9) and the old value of Awould be lost entirely.

// Example: Swap data between a pair of registers
reg [7:0] A, B;
always @(posedge clock) begin

A <= B;
B <= A;
end

// e.g. If A=3 and B=42 then B becomes 3 and A becomes 42.
clock

D Q D Q
A B8

Figure 8.18 RTL code fragment and logical function for swapping data between a pair of registers

Generic RTL is codedwithout knowing the target technology, since during the early stages of design
exploration, the target technologymay be uncertain. To ensure the correct behaviour of synchronous
edge-triggered hardware, the clock-to-Q propagation delay of D-typesmust be greater than their
hold time (Section 4.4.2). Rather than requiring arbitrary delay values to be inserted in a
technology-neutral model, RTL simulators provide the delta cycle mechanism, which supports
zero-delaymodels. A zero-delaymodel does not model the clock-to-Q propagation time. Instead, it
changes its output directly after the clock event. Moreover, no setup or hold-time parameters are
stored for reporting timing violations. Gates likewise have a zero propagation delay.

The committed pending updates are sometimes to nets that models are sensitive to. This is certainly
the case for gated clocks and resets, but is also likely for signals that feed combinational logic. Hence,
new events and new pending updates are often created as a result of committing a batch of pending
updates. With zero-delaymodels, much of this newwork is at the current simulation time. However,
when triggering a commit of pending updates, this newwork is treated as an infinitesimally small
progression into the future, which does cause them to be committed. This is called a delta cycle.

Hardware simulators commonly support the compute/commit or signal paradigm for non-blocking
updates. The signal has current and next values.

8.3.7 Mixed Analogue andDigital Simulation
The real world is analogue and not all electronics is digital. For standalonemodelling of analogue
electronics, a simulator such as SPICE is often used (Section 4.6.7). SPICE-like simulators can operate
in numerous ways, but commonly they first solve the nodal simultaneous equations defined by
Kirchhoff’s laws over the analogue circuit netlist to get a DC operating point and then they apply

433

Modern SoCDesign

SC_MODULE(NOR2)
{ sc_in < bool > i1, i2; sc_out < bool > y;

void behaviour()
{ y.write(!(i1.read() || i2.read()), SC_TIME(250, SC_PS));
}
SC_CTOR(NOR2) { SC_METHOD(behaviour); sensitive << i1 << i2;

}

This model is run when either of its inputs changes. This causes a new event to be placed in the event
queue 250ps later, which results in a pure transport delay becausemultiple changes on the input
within 250ps will potentially result in multiple changes on the output that time later (Figure 8.17).
This is unrealistic. A NOR gatemade of transistors will not respond to rapid changes on its input. It
will decisively change its output only when the inputs have been stable for 250ps. In other words, it
exhibits inertia. Tomodel inertial delay, the event queue insert functionmust scan for any existing
scheduled changes to a different value before the one about to be inserted and delete them. This
involves little overhead, since ordered insertion involves scanning down the event queue anyway.

RTL: pair of continuous assignments
 assign q = !(qb | clear);
 assign qb = !(q | set)

gate
delay

set

qb

q

q

qb

clear

set

(very short pulse)

Figure 8.17 Behaviour of a runt pulse in an RS latch whenmodelling with transport delay

8.3.6 Compute/CommitModelling and the Delta Cycle
VHDL, Verilog RTL and SystemC all support the compute/commit paradigm, which is also known as
the evaluate/update paradigm, using delta cycles. Tomodel themaster–slave behaviour of
edge-triggered flip-flops, RTL simulators must not immediately commit the new value of a register
once it has been computed. Instead, theymust hold the new value as a pending update in a separate
variable. The pending updates can be committed only when all customers of the current value have
read this existing value. For a clock domain, theymust all be committed at once, in the sameway that
real hardware copies the value from themaster section of the flip-flop to the slave.

Accordingly, as well as the event queue, RTL simulators maintain a set of pending updates as another
data structure. Non-blocking assigns in Verilog and signal assigns in VHDL and SystemC are added as
new pending updates to the set, replacing any existing pending update for the same left-hand side.
These assigns do not go via the event queue. The EDS kernel is enhanced so that it periodically

432

Chapter 8 | Fabrication and Production

empties the pending update set by committing the updates it contains. If moving to the next event on
the event queuewould increase the tnow value, that is, the next event on the event queue has a time
greater than the one just processed, then the pending set is emptied. When delta cycles aremodelled,
as introduced shortly, tnow can increase by such a small amount that its numerical value does not
actually change, but this must be treated like an advance, in that it causes a commit of pending
updates.

The following fragment of codewill not correctly simulate without the pending updatemechanism. If
the new assignment is made to A before it is read for the assignment to B, this would be a
shoot-through (Section 4.6.9) and the old value of Awould be lost entirely.

// Example: Swap data between a pair of registers
reg [7:0] A, B;
always @(posedge clock) begin

A <= B;
B <= A;
end

// e.g. If A=3 and B=42 then B becomes 3 and A becomes 42.
clock

D Q D Q
A B8

Figure 8.18 RTL code fragment and logical function for swapping data between a pair of registers

Generic RTL is codedwithout knowing the target technology, since during the early stages of design
exploration, the target technologymay be uncertain. To ensure the correct behaviour of synchronous
edge-triggered hardware, the clock-to-Q propagation delay of D-typesmust be greater than their
hold time (Section 4.4.2). Rather than requiring arbitrary delay values to be inserted in a
technology-neutral model, RTL simulators provide the delta cycle mechanism, which supports
zero-delaymodels. A zero-delaymodel does not model the clock-to-Q propagation time. Instead, it
changes its output directly after the clock event. Moreover, no setup or hold-time parameters are
stored for reporting timing violations. Gates likewise have a zero propagation delay.

The committed pending updates are sometimes to nets that models are sensitive to. This is certainly
the case for gated clocks and resets, but is also likely for signals that feed combinational logic. Hence,
new events and new pending updates are often created as a result of committing a batch of pending
updates. With zero-delaymodels, much of this newwork is at the current simulation time. However,
when triggering a commit of pending updates, this newwork is treated as an infinitesimally small
progression into the future, which does cause them to be committed. This is called a delta cycle.

Hardware simulators commonly support the compute/commit or signal paradigm for non-blocking
updates. The signal has current and next values.

8.3.7 Mixed Analogue andDigital Simulation
The real world is analogue and not all electronics is digital. For standalonemodelling of analogue
electronics, a simulator such as SPICE is often used (Section 4.6.7). SPICE-like simulators can operate
in numerous ways, but commonly they first solve the nodal simultaneous equations defined by
Kirchhoff’s laws over the analogue circuit netlist to get a DC operating point and then they apply

433

Modern SoCDesign

Euler’s methodwith a dynamic time step in a numerical integration using piecewise linear
approximations. EDA vendors provide various gatewaymechanisms between simulator tools to
enable digital co-simulation. This enables an EDS-based RTL simulator to interwork with analogue
models. The demand for such hybrid systemmodelling is growing with the prevalence of IoT
controller devices in fuel pumps, enginemanagement systems, cooling plants, etc. These are known as
cyber-physical systems.

Figure 8.19 shows themain components of one example, a hybrid power and automatic braking
system for amotor car. The analogue components of such systems are defined by a few differential
equations and it is possible to simulate them alongside the controlling SoC using themodest analogue
andmixed signal (AMS) extensions now commonly found in RTL simulators andwithin SystemC. In
this example, themain analogue state variables could be the road and flywheel velocities, assuming
the clutch decouples these to some extent, and also the fuel and battery charge levels. Velocity is the
integral of acceleration, and the fuel level is the integral of fuel consumption. The battery level is the
integral of the difference between the charge in and out. The SoCmodel can be either RTL or ESL, so
that the embedded software that couples the user interface to the drive system responds realistically.

Fuel Tank

Battery EngineFlywheel

Fuel
Level

Battery
Voltage

Throttle

Comfort Switch
Sport/Economy

Gear Select

Gear Selected

Digital
Control
System

(fly-by-wire)

Drive
Motor

Transmission

Generator

Road Wheel

Road Wheel

RPM

RPM

RPM

SoC
User

Interface

Throttle
Control

RPM Fuel Brake

Figure 8.19 Hybrid automobile transmission system

SystemC defines three AMSmodelling formalisms: TDF, LSF and ELN. In the timed data flow (TDF)
model, components exchange analogue values with each other periodically at some sampling rate,
such as every 10µs. By the sampling theorem, this would be sufficient to convey signals of up to
50MHz bandwidth without aliasing artefacts. A TDFmodel defines amethod called processing(),
which is invoked at the appropriate rate as the simulation time advances. A so-called cluster ofmodels
share a static schedule of when they should communicate. This sets the relative ordering of the calls
to the processing()methods of each TDF instance in the cluster. The periodic behaviour of TDF
allows it to operate independently of themain SystemC event-driven kernel used for digital logic.

The SystemC linear signal flow (LSF) library provides a set of primitive analogue operators, such as
adders and differentiators, which enable all the basic structures in differential equations to be
constructed in a self-documenting and executable form. The advantage of constructing the system
from a standard operator library is that reflection is possible. In general programming, reflection

434

Chapter 8 | Fabrication and Production

means that a program can read its own source code. Thus, other code can analyse the structure and
perform analytic differentiation, summation, integration and other forms of analysis, such as a
sensitivity analysis, to determine a good time step. This would not be possible for an implementation
with ad hoc coding.

The SystemC library of electrical linear networks (ELN) provides a set of standard electrical
components that enable SPICE-like simulations to be run. The three basic components (resistors,
capacitors and inductors) are, of course, available. Further voltage-controlled variants, such as a
transconductance amplifier (voltage-controlled current generator), enable most FET and other
semiconductor models to be readily created.

The current flowing in an ELN network of resistors can be represented as a set of nodal equations,
and solutions can be foundwith a suitable simultaneous equation solver. Euler’s method is typically
used tomodel time-varying components, such as capacitors and inductors, since Euler’s method is a
simple approach for solving finite-difference time-domain (FDTD) problems. For instance, to
simulate the capacitor charge on the left in Figure 8.21, a time step delta_t is selected that is,
typically, about 1 per cent of the time constant. The iteration on the bottom right is then executed.

Ground

R

C

V(t)

V0

V0

time

V(t)

V(t)=V0
(
1−e−t/CR

)

V := 0;
time := 0;
while (1)
{

time += delta_t;
V += delta_t * (Vo-V)/(R*C);

}

Figure 8.20 Capacitor charging circuit

The error in Euler’s method decreases quadratically with shrinking time step, but an overly small time
step results in a slow simulation for a complex finite-element simulation. However, this is not a
problem in situations where part of a complex SoC or plant controller is run alongside a plant model
that has just a few state variables, like a car transmission system, because there are orders of
magnitude difference in the time constants (e.g. a 100-MHz clock versus the 1ms shortest inertial
time constant). Simulating the analogue subsystem inside the RTL simulator thenmakes sense.
Moreover, most plant control approaches use closed-loop negative feedback, and the controller is just
as good at managing a slightly errored plant model as the real model.

The extensions to RTL to support AMS include:

As well as digital net declarations, analogue variables can be declared in a component module to
represent voltage potentials, current flows, or other plant state variables. A new type of formal

435

Modern SoCDesign

Euler’s methodwith a dynamic time step in a numerical integration using piecewise linear
approximations. EDA vendors provide various gatewaymechanisms between simulator tools to
enable digital co-simulation. This enables an EDS-based RTL simulator to interwork with analogue
models. The demand for such hybrid systemmodelling is growing with the prevalence of IoT
controller devices in fuel pumps, enginemanagement systems, cooling plants, etc. These are known as
cyber-physical systems.

Figure 8.19 shows themain components of one example, a hybrid power and automatic braking
system for amotor car. The analogue components of such systems are defined by a few differential
equations and it is possible to simulate them alongside the controlling SoC using themodest analogue
andmixed signal (AMS) extensions now commonly found in RTL simulators andwithin SystemC. In
this example, themain analogue state variables could be the road and flywheel velocities, assuming
the clutch decouples these to some extent, and also the fuel and battery charge levels. Velocity is the
integral of acceleration, and the fuel level is the integral of fuel consumption. The battery level is the
integral of the difference between the charge in and out. The SoCmodel can be either RTL or ESL, so
that the embedded software that couples the user interface to the drive system responds realistically.

Fuel Tank

Battery EngineFlywheel

Fuel
Level

Battery
Voltage

Throttle

Comfort Switch
Sport/Economy

Gear Select

Gear Selected

Digital
Control
System

(fly-by-wire)

Drive
Motor

Transmission

Generator

Road Wheel

Road Wheel

RPM

RPM

RPM

SoC
User

Interface

Throttle
Control

RPM Fuel Brake

Figure 8.19 Hybrid automobile transmission system

SystemC defines three AMSmodelling formalisms: TDF, LSF and ELN. In the timed data flow (TDF)
model, components exchange analogue values with each other periodically at some sampling rate,
such as every 10µs. By the sampling theorem, this would be sufficient to convey signals of up to
50MHz bandwidth without aliasing artefacts. A TDFmodel defines amethod called processing(),
which is invoked at the appropriate rate as the simulation time advances. A so-called cluster ofmodels
share a static schedule of when they should communicate. This sets the relative ordering of the calls
to the processing()methods of each TDF instance in the cluster. The periodic behaviour of TDF
allows it to operate independently of themain SystemC event-driven kernel used for digital logic.

The SystemC linear signal flow (LSF) library provides a set of primitive analogue operators, such as
adders and differentiators, which enable all the basic structures in differential equations to be
constructed in a self-documenting and executable form. The advantage of constructing the system
from a standard operator library is that reflection is possible. In general programming, reflection

434

Chapter 8 | Fabrication and Production

means that a program can read its own source code. Thus, other code can analyse the structure and
perform analytic differentiation, summation, integration and other forms of analysis, such as a
sensitivity analysis, to determine a good time step. This would not be possible for an implementation
with ad hoc coding.

The SystemC library of electrical linear networks (ELN) provides a set of standard electrical
components that enable SPICE-like simulations to be run. The three basic components (resistors,
capacitors and inductors) are, of course, available. Further voltage-controlled variants, such as a
transconductance amplifier (voltage-controlled current generator), enable most FET and other
semiconductor models to be readily created.

The current flowing in an ELN network of resistors can be represented as a set of nodal equations,
and solutions can be foundwith a suitable simultaneous equation solver. Euler’s method is typically
used tomodel time-varying components, such as capacitors and inductors, since Euler’s method is a
simple approach for solving finite-difference time-domain (FDTD) problems. For instance, to
simulate the capacitor charge on the left in Figure 8.21, a time step delta_t is selected that is,
typically, about 1 per cent of the time constant. The iteration on the bottom right is then executed.

Ground

R

C

V(t)

V0

V0

time

V(t)

V(t)=V0
(
1−e−t/CR

)

V := 0;
time := 0;
while (1)
{
time += delta_t;
V += delta_t * (Vo-V)/(R*C);

}

Figure 8.20 Capacitor charging circuit

The error in Euler’s method decreases quadratically with shrinking time step, but an overly small time
step results in a slow simulation for a complex finite-element simulation. However, this is not a
problem in situations where part of a complex SoC or plant controller is run alongside a plant model
that has just a few state variables, like a car transmission system, because there are orders of
magnitude difference in the time constants (e.g. a 100-MHz clock versus the 1ms shortest inertial
time constant). Simulating the analogue subsystem inside the RTL simulator thenmakes sense.
Moreover, most plant control approaches use closed-loop negative feedback, and the controller is just
as good at managing a slightly errored plant model as the real model.

The extensions to RTL to support AMS include:

As well as digital net declarations, analogue variables can be declared in a component module to
represent voltage potentials, current flows, or other plant state variables. A new type of formal

435

Modern SoCDesign

parameter, the electrical contact, enables analoguewiring to pass between components in a
structural netlist.

A new type of analogue procedural block can appear in amodule alongside standard behavioural
code for digital models (the initial and always blocks in Verilog).

Digital signal values can be set (write operations) from any context outside an analogue procedural
block, as normal.

Analogue potentials and flows can receive contributions (write operations) only from inside an
analogue procedural block.

An analog initial begin ... end statement sets up initial analogue variable values, such as the
initial charge in a battery or fuel levels in a tank.

A new sensitivity enables analogue behaviour to trigger actions in either the digital or analogue
domain. For instance, the Verilog AMS cross keyword can be used in contexts where posedge and
negedgewould normally be used. Hence,

always @(cross(fuel_level - 1.0))
begin low_fuel_alarm <= (fuel_level < 1.0); end

updates the low-fuel signal each time the fuel_level crosses the value 1.0.

Here are two examples for a three-cell battery and a simple resistor:

// Three 1.5 cells in series make a 4.5-V battery
module Battery4V5(input voltage anode, output voltage cathode);

voltage t1, t2;
analog begin

V(anode) <+ 1.5 + V(t2);
V(t2) <+ 1.5 + V(t1);
V(t2) <+ 1.5 + V(cathode);

end
endmodule

module resistor (inout electrical a, inout electrical b);
parameter real R = 4700;
analog V(a,b) <+ R * I(a,b);

endmodule

Under the ELN formalism, the SystemC initialisation and simulation cycles are extended to solve the
nodal flow equations. Nodal equations are generally solved iteratively rather than using direct
methods such as Gaussian elimination or usingmatrix inverses. Iterativemethods tend to bemore

436

Chapter 8 | Fabrication and Production

stable and are fast when the state has advanced only slightly from the previous time step. When the
kernel dequeues a time-advancing event from the event queue, the simulation time is advanced. The
analogue part of the simulator maintains a time quantum beyondwhich the nodal equations need to
be recomputed. This quantum is dynamically adjusted depending on the behaviour of the equations. If
the equations are ‘bendy’, meaning that linear extrapolation using Euler’s method over the quantum
will lead to toomuch error, the time step can be reduced, otherwise it can be gradually enlarged at
each step. Overall, two forms of iteration are needed. The first is iteration at a time step to solve the
nodal equations to a sufficient accuracy. The second is between time steps. In a simple
implementation, once the simulation time has advanced beyond the Euler quantum, the analogue
subsystem is re-solved. If the extrapolation errors are too great, the simulatormust go back to the last
time step and simulate forward again using a smaller analogue quantum. This mechanism is also the
basis for SPICE simulations (Section 4.6.7). Each analogue variable that is the argument to a cross, or
other analogue sensitivity, is then examined to see if new digital domain work has been triggered. If
so, new events are injected on the discrete event queue for the current simulation time.

An interesting problem attributable to Zeno
A common problemwithmixed simulation configurations is that the Euler quantum can get
exponentially smaller and a significant amount of time is wasted simulating artefacts of no interest.
The classic example was phrased by Zeno as a race between Achilles and a tortoise (Figure 8.21):

‘In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach
the point whence the pursued started, so that the slowermust always hold a lead … and so you
can never catch up,’ the tortoise concluded sympathetically.

Figure 8.21 Zeno wondered whether Achilles could ever catch the tortoise, but we know that the sum of a geometric progression often converges

Amore typical problem in a hybrid system simulation is the infinite bouncing frequency that occurs
when a ball is dropped. Effective simulation of either system requires a solution to the Zeno paradox.
A Zeno hybrid systemmodelmakes an infinite number of discrete transitions during a finite time
interval. Below is AMS-style code for such a ball drop. Figure 8.22 is the corresponding time plot.
Although a pen-and-paper analysis clearly shows that the ball will stop bouncing at a definite time, its
approach to that time is infinitely detailed.

437

Modern SoCDesign

parameter, the electrical contact, enables analoguewiring to pass between components in a
structural netlist.

A new type of analogue procedural block can appear in amodule alongside standard behavioural
code for digital models (the initial and always blocks in Verilog).

Digital signal values can be set (write operations) from any context outside an analogue procedural
block, as normal.

Analogue potentials and flows can receive contributions (write operations) only from inside an
analogue procedural block.

An analog initial begin ... end statement sets up initial analogue variable values, such as the
initial charge in a battery or fuel levels in a tank.

A new sensitivity enables analogue behaviour to trigger actions in either the digital or analogue
domain. For instance, the Verilog AMS cross keyword can be used in contexts where posedge and
negedgewould normally be used. Hence,

always @(cross(fuel_level - 1.0))
begin low_fuel_alarm <= (fuel_level < 1.0); end

updates the low-fuel signal each time the fuel_level crosses the value 1.0.

Here are two examples for a three-cell battery and a simple resistor:

// Three 1.5 cells in series make a 4.5-V battery
module Battery4V5(input voltage anode, output voltage cathode);

voltage t1, t2;
analog begin

V(anode) <+ 1.5 + V(t2);
V(t2) <+ 1.5 + V(t1);
V(t2) <+ 1.5 + V(cathode);

end
endmodule

module resistor (inout electrical a, inout electrical b);
parameter real R = 4700;
analog V(a,b) <+ R * I(a,b);

endmodule

Under the ELN formalism, the SystemC initialisation and simulation cycles are extended to solve the
nodal flow equations. Nodal equations are generally solved iteratively rather than using direct
methods such as Gaussian elimination or usingmatrix inverses. Iterativemethods tend to bemore

436

Chapter 8 | Fabrication and Production

stable and are fast when the state has advanced only slightly from the previous time step. When the
kernel dequeues a time-advancing event from the event queue, the simulation time is advanced. The
analogue part of the simulator maintains a time quantum beyondwhich the nodal equations need to
be recomputed. This quantum is dynamically adjusted depending on the behaviour of the equations. If
the equations are ‘bendy’, meaning that linear extrapolation using Euler’s method over the quantum
will lead to toomuch error, the time step can be reduced, otherwise it can be gradually enlarged at
each step. Overall, two forms of iteration are needed. The first is iteration at a time step to solve the
nodal equations to a sufficient accuracy. The second is between time steps. In a simple
implementation, once the simulation time has advanced beyond the Euler quantum, the analogue
subsystem is re-solved. If the extrapolation errors are too great, the simulatormust go back to the last
time step and simulate forward again using a smaller analogue quantum. This mechanism is also the
basis for SPICE simulations (Section 4.6.7). Each analogue variable that is the argument to a cross, or
other analogue sensitivity, is then examined to see if new digital domain work has been triggered. If
so, new events are injected on the discrete event queue for the current simulation time.

An interesting problem attributable to Zeno
A common problemwithmixed simulation configurations is that the Euler quantum can get
exponentially smaller and a significant amount of time is wasted simulating artefacts of no interest.
The classic example was phrased by Zeno as a race between Achilles and a tortoise (Figure 8.21):

‘In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach
the point whence the pursued started, so that the slowermust always hold a lead … and so you
can never catch up,’ the tortoise concluded sympathetically.

Figure 8.21 Zeno wondered whether Achilles could ever catch the tortoise, but we know that the sum of a geometric progression often converges

Amore typical problem in a hybrid system simulation is the infinite bouncing frequency that occurs
when a ball is dropped. Effective simulation of either system requires a solution to the Zeno paradox.
A Zeno hybrid systemmodelmakes an infinite number of discrete transitions during a finite time
interval. Below is AMS-style code for such a ball drop. Figure 8.22 is the corresponding time plot.
Although a pen-and-paper analysis clearly shows that the ball will stop bouncing at a definite time, its
approach to that time is infinitely detailed.

437

Modern SoCDesign

// AMS simulation of a ball bouncing -> infinite bouncing frequency!
module ballbounce();

real height, velocity;

analog initial begin height = 7.0; velocity = 0.0; end

analog begin // We want auto-time step selection for this FDTD
height <+ -velocity; // Falling downwards
velocity <+ 9.8; // Acceleration due to gravity

end

// We want discrete event triggered execution here
always @(cross height) begin

velocity = -0.75 * velocity; // Inelastic bounce
height = 0.000001; // Hmm, some fudge here!

end
endmodule
// NB: The syntax above may not work in all AMS tools

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

Ba
ll

H
ei

gh
t (

m
et

re
s)

Time (seconds)

Figure 8.22 Hybrid model simulation of a bouncing ball dropped from 7.0m. It stops completely at 9.366 s

A brute-force approach to solving Zenomodels is to set aminimum time quantum belowwhich
detailedmodelling will be ignored. Sadly, this is insufficient for modellingmany behaviours of real
interest, especially those with close to discontinuous behaviour and critical inflection points, such as
the positive feedback used inside a common Schmitt trigger. A Schmitt trigger is a single-input
voltage comparator with hysteresis. Having hysteresis means that its output turns from zero to one
when the input voltage is above a hardwired upper trigger level, but does not return to zero until the
input has fallen below a slightly lower trigger level. When the input voltage is between these trigger
levels, it exhibits a memory effect that is useful for rejecting noise on the input. Research into Zeno
suppression is ongoing, but solutions involve recognising patterns in the automatic quantum
adjustment and flagging these as an unmodelled Zeno episodewith X-values in the traces.

438

Chapter 8 | Fabrication and Production

8.3.8 Logic Synthesis
Logic synthesis is the process of converting synthesisable RTL into a structural netlist. As Figure 8.8
showed, apart from the RTL, the synthesiser needs a cell library specification and intent metrics.
Using a physical flow, afloor planmay also be provided that gives or allocates the area(s) available and
specifies the location of some inputs and outputs. Theremay also be technology-specific information,
such as the wiring resistance for each layer of metallisation.

Figure 8.23 Fragment of a synthesised netlist rendered in a schematic viewer

Logic synthesis is an under-constrained optimisation problem. Anyonewho has solvedKarnaugh
maps by handwill recall that more than one set of cubes can be used to generate a given output. The
process of choosing which cubes to use and finding which sub-expressions are useful when generating
several output functions becomes exponentially complex. Iteration and hill climbingmust be used.
The Espresso algorithm [11] expresses the on-set and the off-set for a logic function using lists of
cubes. It iterates, expanding the cubes to their maximum valid size and then contracting themdown to
aminimum size again. Two iterations are commonly sufficient. Additionally, a logic synthesiser will
sometimes re-encode a state so that, for instance, an output function is simple to decode and can be
generated quickly after the clock edge (Section 4.4.2).

A logic synthesiser is generally structured into three phases:

1. Elaboration: The RTL input is translated into an internal representation, based on Boolean
functions. In this form, the tool implements basic logic optimisation, removes redundant logic and
may apply standard optimisation algorithms, such as constant folding and common sub-expression
sharing, which are technology independent. Constant folding is the process of performing work at
compile time that does not require any runtime values, such as adding constants together or
discardingmultiplexor input expressions that will never be used.

2. Mapping: The tool converts the optimised internal representation into target technology cells. It
will insert testability structures, such as scan chains and boundary-scan cells (Section 4.7.5). If the
intent specifies the power domains, the tool will insert level shifters and isolation cells where
domains are crossed (Section 4.6.10) and power-gating cells as required (Section 4.6.10). After this
phase, the designer can get a first estimation of PPA for a power- andDfT-aware design. If
automatic clock gating is used (Section 4.6.9), the clock gates and their enabling expressions are
inserted.

439

Modern SoCDesign

// AMS simulation of a ball bouncing -> infinite bouncing frequency!
module ballbounce();

real height, velocity;

analog initial begin height = 7.0; velocity = 0.0; end

analog begin // We want auto-time step selection for this FDTD
height <+ -velocity; // Falling downwards
velocity <+ 9.8; // Acceleration due to gravity

end

// We want discrete event triggered execution here
always @(cross height) begin

velocity = -0.75 * velocity; // Inelastic bounce
height = 0.000001; // Hmm, some fudge here!

end
endmodule
// NB: The syntax above may not work in all AMS tools

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

Ba
ll

H
ei

gh
t (

m
et

re
s)

Time (seconds)

Figure 8.22 Hybrid model simulation of a bouncing ball dropped from 7.0m. It stops completely at 9.366 s

A brute-force approach to solving Zenomodels is to set aminimum time quantum belowwhich
detailedmodelling will be ignored. Sadly, this is insufficient for modellingmany behaviours of real
interest, especially those with close to discontinuous behaviour and critical inflection points, such as
the positive feedback used inside a common Schmitt trigger. A Schmitt trigger is a single-input
voltage comparator with hysteresis. Having hysteresis means that its output turns from zero to one
when the input voltage is above a hardwired upper trigger level, but does not return to zero until the
input has fallen below a slightly lower trigger level. When the input voltage is between these trigger
levels, it exhibits a memory effect that is useful for rejecting noise on the input. Research into Zeno
suppression is ongoing, but solutions involve recognising patterns in the automatic quantum
adjustment and flagging these as an unmodelled Zeno episodewith X-values in the traces.

438

Chapter 8 | Fabrication and Production

8.3.8 Logic Synthesis
Logic synthesis is the process of converting synthesisable RTL into a structural netlist. As Figure 8.8
showed, apart from the RTL, the synthesiser needs a cell library specification and intent metrics.
Using a physical flow, afloor planmay also be provided that gives or allocates the area(s) available and
specifies the location of some inputs and outputs. Theremay also be technology-specific information,
such as the wiring resistance for each layer of metallisation.

Figure 8.23 Fragment of a synthesised netlist rendered in a schematic viewer

Logic synthesis is an under-constrained optimisation problem. Anyonewho has solvedKarnaugh
maps by handwill recall that more than one set of cubes can be used to generate a given output. The
process of choosing which cubes to use and finding which sub-expressions are useful when generating
several output functions becomes exponentially complex. Iteration and hill climbingmust be used.
The Espresso algorithm [11] expresses the on-set and the off-set for a logic function using lists of
cubes. It iterates, expanding the cubes to their maximum valid size and then contracting themdown to
aminimum size again. Two iterations are commonly sufficient. Additionally, a logic synthesiser will
sometimes re-encode a state so that, for instance, an output function is simple to decode and can be
generated quickly after the clock edge (Section 4.4.2).

A logic synthesiser is generally structured into three phases:

1. Elaboration: The RTL input is translated into an internal representation, based on Boolean
functions. In this form, the tool implements basic logic optimisation, removes redundant logic and
may apply standard optimisation algorithms, such as constant folding and common sub-expression
sharing, which are technology independent. Constant folding is the process of performing work at
compile time that does not require any runtime values, such as adding constants together or
discardingmultiplexor input expressions that will never be used.

2. Mapping: The tool converts the optimised internal representation into target technology cells. It
will insert testability structures, such as scan chains and boundary-scan cells (Section 4.7.5). If the
intent specifies the power domains, the tool will insert level shifters and isolation cells where
domains are crossed (Section 4.6.10) and power-gating cells as required (Section 4.6.10). After this
phase, the designer can get a first estimation of PPA for a power- andDfT-aware design. If
automatic clock gating is used (Section 4.6.9), the clock gates and their enabling expressions are
inserted.

439

Modern SoCDesign

3. Technology-based optimisation: The netlist is optimised tomeet the PPA constraints better. The
drive strength of logic cells may be upsized or downsized, or the cells may be cloned ormerged if
better sub-expression-sharing opportunities exist. If a physical synthesis flow is floor-plan-aware,
repeaters are inserted since the tool can estimate net lengths. The tool can also resize gates when
splitting and distributing them along long wires. Such optimisations are iterated until the PPA
targets are achieved. Sometimes the tool cannot find anyway to close the design. If the PPA targets
are not achieved, the designer must look at the RTL code and see how it can bewritten differently,
or else revise the PPA constraints.

module TC(input clk, input cen);
reg [1:0] count;
always @(posedge clk) if (cen) count<=count+1;

endmodule

module TC(input clk, input cen);
wire u10022, u10021, u10020, u10019;
wire [1:0] count;
input cen; input clk;
CVINV i10021(u10021, count[0]);
CVMUX2 i10022(u10022, cen, u10021, count[0]);
CVDFF u10023(count[0], u10022, clk, 1'b1, 1'b0, 1'b0);
CVXOR2 i10019(u10019, count[0], count[1]);
CVMUX2 i10020(u10020, cen, u10019, count[1]);
CVDFF u10024(count[1], u10020, clk, 1'b1, 1'b0, 1'b0);

endmodule

Figure 8.24 Baseline RTL elaboration example showing synthesisable RTL input (left) and structural netlist output that uses generic gates (right)

Figure 8.24 shows example input and output for the RTL elaboration phase. The RTL input was
converted to an implementation technology that included invertors, multiplexers, D-type flip-flops
and XOR gates. For each gate, the output is the first-listed terminal. For a two-bit counter, there is no
difference between the various types of adders, but for wider words, the synthesiser would have to
decide which carry structure to use. The RTL elaboration phase can be implementedwith three steps:

E1: Convert behavioural code to pure RTL. Each variable is assigned only once.

E2: Convert each assignment that is made to amulti-bit vector to a list of assignments, one for each
bit of the vector.

E3: Convert the right-hand side of each bit assignment to a network of gates and other cells.

As with the simulator, a logic synthesiser elaborates generate constructs before starting synthesis. It
also does some flattening (Section 8.3.1) to facilitate inter-module optimisation, but it may need to
preserve aspects of the design hierarchy because this contains some information about how long nets
are likely to be. Moreover, module instance names need to be associated with labels in the floor plan
in a physical synthesis flow.

In step E1, all points where variables are assigned are scanned. The assignments on the left-hand side
are collated. This results in exactly one input expression for each register, regardless of howmany

440

Chapter 8 | Fabrication and Production

times it is assigned. As was described in Section 8.3.1, control flow constructs lead tomultiplexer
expressions. Reads of nets already given blocking assignments are elaborated accordingly.

In step E2, for each register that is more than 1bit wide, separate assignments must be created for
each bit. This procedure is colloquially known as bit blasting. The process removes all arithmetic
operators and leaves only Boolean operators, which can then be directly implemented in gates. This is
trivial for bitwise logic operations, such as an XOR of twowords, but for adders, the type of adder
must be chosen. Well-known adding techniques formed from simple gates use ripple carry,
look-ahead or Kogge–Stone structures. A cell librarymay contain specialist adder cells. A recoding
optimisation stepmay convert them to carry-save adders etc.

Multiplication is more complex due to its quadratic logic cost. Only small multipliers can sensibly be
generated from standard gates inside a logic synthesiser. Therefore, the asterisk operator should be
applied only to arguments if the sumof the argument bit widths is less than about 16. Beyond that, the
engineer shouldmanually instantiate amultiplier component. However, if one operand is a constant,
standard compiler strength reduction techniques are deployed andmuch larger operands can safely
be synthesised. For instance, multiplying by any constant that only has a few bits different from a
power of two can be turned into that number of adders. Indeed, multiplying by a power of two is just a
shift, implemented bywiring without gate cost. Synthesis of RTL containing a division should
generally be avoided for all but tiny bit widths unless the denominator is a constant. Figure 8.25
shows a practical division example. For all the arithmetic operators, instantiating a generic functional
unit (Section 6.8.1) may be preferable during elaboration, with these then being expanded or replaced
during the technologymapping phase.

reg [31:0] q, n;
...
q = n / 10;
return q;

reg [31:0] q, n;
...
q = (n >> 1) + (n >> 2);
q += (q >> 4);
q += (q >> 8);
q += (q >> 16);
return q >> 3;

Figure 8.25 Essence of logic synthesised for integer division of the 32-bit value n by the constant 10 using just adders, based on 8/10 being 0.11001100
recurring. A logic synthesiser can create similar bespoke divide circuits for any constant denominator

Figure 8.26 shows a component that is commonly used, both as a technology-independent gate at the
output of elaboration and in cell technology libraries. This is the four-inputAND-OR-INVERT (AOI)
gate. It includes a fair amount of useful functionality in a structure that is directly realisable in CMOS
with amaximum of two transistors in series between the supply and output. Degenerate forms of it
with one input tied off to either logic level are also widely useful. Because it inverts on every path
from input to output, pulse shrinkage is minimised (Section 4.9.5).

441

Modern SoCDesign

3. Technology-based optimisation: The netlist is optimised tomeet the PPA constraints better. The
drive strength of logic cells may be upsized or downsized, or the cells may be cloned ormerged if
better sub-expression-sharing opportunities exist. If a physical synthesis flow is floor-plan-aware,
repeaters are inserted since the tool can estimate net lengths. The tool can also resize gates when
splitting and distributing them along long wires. Such optimisations are iterated until the PPA
targets are achieved. Sometimes the tool cannot find anyway to close the design. If the PPA targets
are not achieved, the designer must look at the RTL code and see how it can bewritten differently,
or else revise the PPA constraints.

module TC(input clk, input cen);
reg [1:0] count;
always @(posedge clk) if (cen) count<=count+1;

endmodule

module TC(input clk, input cen);
wire u10022, u10021, u10020, u10019;
wire [1:0] count;
input cen; input clk;
CVINV i10021(u10021, count[0]);
CVMUX2 i10022(u10022, cen, u10021, count[0]);
CVDFF u10023(count[0], u10022, clk, 1'b1, 1'b0, 1'b0);
CVXOR2 i10019(u10019, count[0], count[1]);
CVMUX2 i10020(u10020, cen, u10019, count[1]);
CVDFF u10024(count[1], u10020, clk, 1'b1, 1'b0, 1'b0);

endmodule

Figure 8.24 Baseline RTL elaboration example showing synthesisable RTL input (left) and structural netlist output that uses generic gates (right)

Figure 8.24 shows example input and output for the RTL elaboration phase. The RTL input was
converted to an implementation technology that included invertors, multiplexers, D-type flip-flops
and XOR gates. For each gate, the output is the first-listed terminal. For a two-bit counter, there is no
difference between the various types of adders, but for wider words, the synthesiser would have to
decide which carry structure to use. The RTL elaboration phase can be implementedwith three steps:

E1: Convert behavioural code to pure RTL. Each variable is assigned only once.

E2: Convert each assignment that is made to amulti-bit vector to a list of assignments, one for each
bit of the vector.

E3: Convert the right-hand side of each bit assignment to a network of gates and other cells.

As with the simulator, a logic synthesiser elaborates generate constructs before starting synthesis. It
also does some flattening (Section 8.3.1) to facilitate inter-module optimisation, but it may need to
preserve aspects of the design hierarchy because this contains some information about how long nets
are likely to be. Moreover, module instance names need to be associated with labels in the floor plan
in a physical synthesis flow.

In step E1, all points where variables are assigned are scanned. The assignments on the left-hand side
are collated. This results in exactly one input expression for each register, regardless of howmany

440

Chapter 8 | Fabrication and Production

times it is assigned. As was described in Section 8.3.1, control flow constructs lead tomultiplexer
expressions. Reads of nets already given blocking assignments are elaborated accordingly.

In step E2, for each register that is more than 1bit wide, separate assignments must be created for
each bit. This procedure is colloquially known as bit blasting. The process removes all arithmetic
operators and leaves only Boolean operators, which can then be directly implemented in gates. This is
trivial for bitwise logic operations, such as an XOR of twowords, but for adders, the type of adder
must be chosen. Well-known adding techniques formed from simple gates use ripple carry,
look-ahead or Kogge–Stone structures. A cell librarymay contain specialist adder cells. A recoding
optimisation stepmay convert them to carry-save adders etc.

Multiplication is more complex due to its quadratic logic cost. Only small multipliers can sensibly be
generated from standard gates inside a logic synthesiser. Therefore, the asterisk operator should be
applied only to arguments if the sumof the argument bit widths is less than about 16. Beyond that, the
engineer shouldmanually instantiate amultiplier component. However, if one operand is a constant,
standard compiler strength reduction techniques are deployed andmuch larger operands can safely
be synthesised. For instance, multiplying by any constant that only has a few bits different from a
power of two can be turned into that number of adders. Indeed, multiplying by a power of two is just a
shift, implemented bywiring without gate cost. Synthesis of RTL containing a division should
generally be avoided for all but tiny bit widths unless the denominator is a constant. Figure 8.25
shows a practical division example. For all the arithmetic operators, instantiating a generic functional
unit (Section 6.8.1) may be preferable during elaboration, with these then being expanded or replaced
during the technologymapping phase.

reg [31:0] q, n;
...
q = n / 10;
return q;

reg [31:0] q, n;
...
q = (n >> 1) + (n >> 2);
q += (q >> 4);
q += (q >> 8);
q += (q >> 16);
return q >> 3;

Figure 8.25 Essence of logic synthesised for integer division of the 32-bit value n by the constant 10 using just adders, based on 8/10 being 0.11001100
recurring. A logic synthesiser can create similar bespoke divide circuits for any constant denominator

Figure 8.26 shows a component that is commonly used, both as a technology-independent gate at the
output of elaboration and in cell technology libraries. This is the four-inputAND-OR-INVERT (AOI)
gate. It includes a fair amount of useful functionality in a structure that is directly realisable in CMOS
with amaximum of two transistors in series between the supply and output. Degenerate forms of it
with one input tied off to either logic level are also widely useful. Because it inverts on every path
from input to output, pulse shrinkage is minimised (Section 4.9.5).

441

Modern SoCDesign

Y

VDD

GND

A1

Y

A0

B1

B0

A1

A0

B1

B0

Figure 8.26 AND-OR-INVERT gate, logical function (left) and actual circuit when realised in CMOS (right)

In the third elaboration step, E3, a gate-level circuit is generated for each of the bits assigned to each
register. A very wide selection of circuits and cells in a cell library can achieve a given function.
Wherever the RTL assigns don’t-care X values, an evenwider choice of circuits becomes available and
the tool is better able to select a design that best meets the design intents. The tool minimises the
logic usingmulti-output versions of classic algorithms such as Quine–McCluskey and Espresso. The
classic algorithms give the implementation with the lowest logic cost for a single-output function, but
since a different logic function is typically needed for each D-type input, algorithms that make the
best use of shared sub-expressions will give a lower aggregate complexity. As shown in brown in
Figure 8.45, an equivalence checker (Section 7.6) is commonly used to compare a synthesised
gate-level circuit with the pre-synthesis RTL.

Liberal use of the X don’t-care designation in the source RTL allows the synthesis tool freedom to
perform this logic minimisation.

8.3.9 Arrays and RAM Inference in RTL
RTLs support bits, bit vectors (words) and arrays of bit vectors (RAMs). Arrays in the RTL can be
synthesised to structural instances of SSRAM (Section 2.6.4) or else to register files made of flip-flops.
With some tools, certain patterns of array use are defined to triggerRAM inference, which
instantiates a RAM in the generated netlist. A typical pattern is shown in Figure 8.27. There are two
essential rules for inferring synchronous RAM:

1. One expressionmust be clearly recognisable as the address for each port.

2. The data read out must be registered by the required number of pipeline broadside registers to
match the latency of the target technology without using (peeking at) any of the data in that
pipeline.

442

Chapter 8 | Fabrication and Production

module SSRAM(
input clk, // Synchronous reads and writes
input ren, // Read enable (optional)
input wen, // Write enable
input [14:0] addr, // Address input
input [31:0] wdata, // Write data in
output reg [31:0] rdata); // Read data out
reg [31:0] myram [32767:0]; // 32k words of 32 bits each
always @(posedge clk) begin

if (ren) rdata <= myram[addr];
if (wen) myram[addr] <= wdata;
end

endmodule

nA

nD
wdata

wen

addr

ren rdata

clk

nD

wen

wdata

en

addr
rdata

Figure 8.27 Typical RTL coding style for RAM inference. Data out is registered once without otherwise being used and the same subscript expression is used
in both the read and write contexts

RAM inference is mainly used by logic synthesis tools for field-programmable gate arrays (FPGAs).
ASIC designs, however, normally require the RTL to contain explicit structural instances that have
been generated by a RAM compiler (see below). This is because ancillary fabrication information
needs to be collected for an ASIC, including, perhaps, per RAM licence fees.

Collating assignments to arrays with dynamic subscriptions is more problematic than for scalars. The
name alias problem is that at compile time it is not always possible to determine whether a pair of
subscripts are going to be the same or different at runtime, and hence, for blocking variable assigns,
the tool cannot look up the already assigned values. Instead, it must generate amultiplexer to forward
undecidable assigns. Reads also present a problem. The infix array subscript operator in RTL, denoted
with square brackets, A[s], cannot be directly translated into a read of synchronous SRAM.
Synchronous SRAM, as in Figure 8.27, requires the address to be presented the cycle before.
Moreover, a structural hazard (Section 6.3) is raised by expressions such as A[s1]+A[s2], which require
the SRAM to be read at two locations at once, which is impossible if it has a single port. These
problems are overcome in higher-level tools by using automatically generated schedules, as in HLS
(Section 6.9) and Bluespec HDL (Section 6.8.5).

8.3.10 MemoryMacrocell Compiler
An average SoCmay have about 75 per cent of its area devoted to RAM, which, typically, is generated
by amemory compiler. The input parameters are:

Size: Wordwidth and number of words

Port description: Each port has an address input. It can be read only, read-write or write only. For a
read-write port, the old data from the addressedword are typically read out as well as being
replacedwith a fresh value. Depending on the number and combination, there are threemain forms
of SRAM. The twomain flavours are single-ported (SP_SRAM) and dual-ported (DP_SRAM;
Section 2.6.5). There is also two-port SRAM (TP_SRAM), which exclusively dedicates one port to

443

Modern SoCDesign

Y

VDD

GND

A1

Y

A0

B1

B0

A1

A0

B1

B0

Figure 8.26 AND-OR-INVERT gate, logical function (left) and actual circuit when realised in CMOS (right)

In the third elaboration step, E3, a gate-level circuit is generated for each of the bits assigned to each
register. A very wide selection of circuits and cells in a cell library can achieve a given function.
Wherever the RTL assigns don’t-care X values, an evenwider choice of circuits becomes available and
the tool is better able to select a design that best meets the design intents. The tool minimises the
logic usingmulti-output versions of classic algorithms such as Quine–McCluskey and Espresso. The
classic algorithms give the implementation with the lowest logic cost for a single-output function, but
since a different logic function is typically needed for each D-type input, algorithms that make the
best use of shared sub-expressions will give a lower aggregate complexity. As shown in brown in
Figure 8.45, an equivalence checker (Section 7.6) is commonly used to compare a synthesised
gate-level circuit with the pre-synthesis RTL.

Liberal use of the X don’t-care designation in the source RTL allows the synthesis tool freedom to
perform this logic minimisation.

8.3.9 Arrays and RAM Inference in RTL
RTLs support bits, bit vectors (words) and arrays of bit vectors (RAMs). Arrays in the RTL can be
synthesised to structural instances of SSRAM (Section 2.6.4) or else to register files made of flip-flops.
With some tools, certain patterns of array use are defined to triggerRAM inference, which
instantiates a RAM in the generated netlist. A typical pattern is shown in Figure 8.27. There are two
essential rules for inferring synchronous RAM:

1. One expressionmust be clearly recognisable as the address for each port.

2. The data read out must be registered by the required number of pipeline broadside registers to
match the latency of the target technology without using (peeking at) any of the data in that
pipeline.

442

Chapter 8 | Fabrication and Production

module SSRAM(
input clk, // Synchronous reads and writes
input ren, // Read enable (optional)
input wen, // Write enable
input [14:0] addr, // Address input
input [31:0] wdata, // Write data in
output reg [31:0] rdata); // Read data out
reg [31:0] myram [32767:0]; // 32k words of 32 bits each
always @(posedge clk) begin

if (ren) rdata <= myram[addr];
if (wen) myram[addr] <= wdata;
end

endmodule

nA

nD
wdata

wen

addr

ren rdata

clk

nD

wen

wdata

en

addr
rdata

Figure 8.27 Typical RTL coding style for RAM inference. Data out is registered once without otherwise being used and the same subscript expression is used
in both the read and write contexts

RAM inference is mainly used by logic synthesis tools for field-programmable gate arrays (FPGAs).
ASIC designs, however, normally require the RTL to contain explicit structural instances that have
been generated by a RAM compiler (see below). This is because ancillary fabrication information
needs to be collected for an ASIC, including, perhaps, per RAM licence fees.

Collating assignments to arrays with dynamic subscriptions is more problematic than for scalars. The
name alias problem is that at compile time it is not always possible to determine whether a pair of
subscripts are going to be the same or different at runtime, and hence, for blocking variable assigns,
the tool cannot look up the already assigned values. Instead, it must generate amultiplexer to forward
undecidable assigns. Reads also present a problem. The infix array subscript operator in RTL, denoted
with square brackets, A[s], cannot be directly translated into a read of synchronous SRAM.
Synchronous SRAM, as in Figure 8.27, requires the address to be presented the cycle before.
Moreover, a structural hazard (Section 6.3) is raised by expressions such as A[s1]+A[s2], which require
the SRAM to be read at two locations at once, which is impossible if it has a single port. These
problems are overcome in higher-level tools by using automatically generated schedules, as in HLS
(Section 6.9) and Bluespec HDL (Section 6.8.5).

8.3.10 MemoryMacrocell Compiler
An average SoCmay have about 75 per cent of its area devoted to RAM, which, typically, is generated
by amemory compiler. The input parameters are:

Size: Wordwidth and number of words

Port description: Each port has an address input. It can be read only, read-write or write only. For a
read-write port, the old data from the addressedword are typically read out as well as being
replacedwith a fresh value. Depending on the number and combination, there are threemain forms
of SRAM. The twomain flavours are single-ported (SP_SRAM) and dual-ported (DP_SRAM;
Section 2.6.5). There is also two-port SRAM (TP_SRAM), which exclusively dedicates one port to

443

Modern SoCDesign

write operations and the other to read operations. This type of memory is particularly suitable for
an area-optimised FIFO buffer in a clock-domain crossing context (Section 3.7.1).

Clocking information: This is the frequency and latency for synchronous RAMor the access time
andwrite-pulse width for asynchronous RAM.

Resolution: What to do onwrite/write andwrite/read conflicts between ports.

The outputs from a RAM compiler are a data sheet for the RAM, RTL and ESL simulationmodels and a
list of the polygons required for the fabricationmasks. There are similar generators for FIFO buffers
andmasked ROM.

Sometimes self-test modules are also generated along with the RAM. Built-in self-tests (BISTs) were
discussed in Section 4.7.6. For example, Mentor’sMBIST ArchitectTM generates an RTL BISTwith the
memory. Arm/Artisan’s generator generates a wrapper that allows a RAM to self-repair by diverting
access from a fault row to a spare row as a form of redundancy zapping (Section 8.8.4).

8.3.11 Conventional RTL Comparedwith Software
Theword behaviour, when applied to a style of RTL or software coding, tends to simply mean that a
sequential thread is used to express the sequential execution of the statements. Despite the apparent
power of this form of expression, there are severe limitations in the defined synthesisable subsets of
Verilog and VHDL.

Comparedwithmulti-threaded software, the limitations include, for instance, that each variable must
be written to by only one thread and that a thread is unable to leave the current file or module to
execute subroutines or methods in other parts of the design. RTL is statically allocated (i.e. no user
data are stored on a stack or heap). Threads do not leave their starting context and all communication
is through shared variables that denote wires. There are no thread synchronisation primitives, except
to wait on a clock edge. RTL requires the programmer to think in amassively parallel way and leaves
no freedom for the execution platform to reschedule the design.

Software, on the other hand, uses far fewer threads. The writer puts them just where they are needed
for asynchronous behaviour to exploit parallelismwhere it needs to be explicit. The threadsmay pass
from onemodule to another and thread blocking is used to control the flow of the data.

An RTL behavioural model is a short program, generally containing unsynthesisable constructs, that
serves to replace a complex hardware subsystem, such as a DRAMDIMM (Section 2.6.6). A
behavioural model produces the same useful result but executesmuchmore quickly because it does
not model the values of all the internal nets and pipeline stages (which provide no benefit until
converted to actual parallel hardware). In some instances, an RTLmodel of a subsystemmay not be
available due to IP copy protection, although RTL simulators can, typically, read encrypted RTL.

444

Chapter 8 | Fabrication and Production

RTL is not as expressive for algorithms or data structures as most software programming languages.
In a concurrencymodel, everything executes in lockstep. The programmer has to keep track of all this
concurrency. Theymust generate their own bespoke handshaking and flow control between
components. Moreover, except for the occasional use of don’t-cares, Verilog andVHDL do not express
when a register is livewith data. Hence, automatic refactoring and certain correctness proofs are
impossible without additional annotation. More advanced RTLs, such as Bluespec (Section 6.8.5),
have addressedmany of these issues. If a programmerwants to use conventional software paradigms,
HLS (Section 6.9) can be applied to (stylised) software to produce RTL.

8.3.12 Synthesis Intent and Goals
The logic synthesiser chooses a design based on sets of guidingmetrics that are known as the
synthesis intent. Four common optimisation targets are:

Area: Achieving the smallest area normally means using the lowest number of gates and careful
optimisation when factorising logic functions into sub-expressions that are to be shared bymore
than one output function. Using very small technology cells obviously helps meet area targets.
However, small cells have a higher wiring density. The design can then becomewiring ormetal
limited instead of transistor limited, so that more care is required in designing the wiring between
gates than in howmany transistors are deployed. Thin wires are possible, leading to high-resistance
tracking with greater RC delays. Fewer tracks of greater thickness occupy the same area in a wiring
layer andmay be better. Another alternative is to compute the same expression in several places.
For instance, it takes less energy to compute a 32-bit addition than to communicate the result a
distance of 1mm.

Performance: A performance intent specifies that a subsystemmustmeet a target clock frequency,
such as 500MHz, or it may specify various logic paths that must meet target delays, such as 150 ps
between input P and output Q. Performance targets are evaluated by determining the critical paths
using static timing analysis (Section 8.12.1). Theymay bemet by adjusting circuit structures. Cell
libraries often provide cell variants with different propagation delays and drive strengths. These
differ in their consumption of area and power. Hence, timing targets can also bemet by selecting
appropriate cells taking into account the expected net load capacitance and track resistance.

With FinFET technology nodes (Section 8.2.1), starting with 14nm and below, the propagation
delay in nets is as important as the propagation delay through the logic cells. This is why physically
aware synthesis tools that estimate the net delay are critical.

Energy: Static energy use is greatly affected bywhether low- or high-leakage cells are used, but is
largely correlated with area for a given technology. Power gating helps (Section 4.6.10). Dynamic
power is affected by the detailed logic design, but not a great deal. Glitches in certain
combinational logic structures, especially those containingmany XOR gates, can consume a
significant amount of energy. This can be reduced by adding redundant cubes during logic
minimisation, but this is not always feasible for CRC generators and fast adders. Clock gating

445

Modern SoCDesign

write operations and the other to read operations. This type of memory is particularly suitable for
an area-optimised FIFO buffer in a clock-domain crossing context (Section 3.7.1).

Clocking information: This is the frequency and latency for synchronous RAMor the access time
andwrite-pulse width for asynchronous RAM.

Resolution: What to do onwrite/write andwrite/read conflicts between ports.

The outputs from a RAM compiler are a data sheet for the RAM, RTL and ESL simulationmodels and a
list of the polygons required for the fabricationmasks. There are similar generators for FIFO buffers
andmasked ROM.

Sometimes self-test modules are also generated along with the RAM. Built-in self-tests (BISTs) were
discussed in Section 4.7.6. For example, Mentor’sMBIST ArchitectTM generates an RTL BISTwith the
memory. Arm/Artisan’s generator generates a wrapper that allows a RAM to self-repair by diverting
access from a fault row to a spare row as a form of redundancy zapping (Section 8.8.4).

8.3.11 Conventional RTL Comparedwith Software
Theword behaviour, when applied to a style of RTL or software coding, tends to simply mean that a
sequential thread is used to express the sequential execution of the statements. Despite the apparent
power of this form of expression, there are severe limitations in the defined synthesisable subsets of
Verilog and VHDL.

Comparedwithmulti-threaded software, the limitations include, for instance, that each variable must
be written to by only one thread and that a thread is unable to leave the current file or module to
execute subroutines or methods in other parts of the design. RTL is statically allocated (i.e. no user
data are stored on a stack or heap). Threads do not leave their starting context and all communication
is through shared variables that denote wires. There are no thread synchronisation primitives, except
to wait on a clock edge. RTL requires the programmer to think in amassively parallel way and leaves
no freedom for the execution platform to reschedule the design.

Software, on the other hand, uses far fewer threads. The writer puts them just where they are needed
for asynchronous behaviour to exploit parallelismwhere it needs to be explicit. The threadsmay pass
from onemodule to another and thread blocking is used to control the flow of the data.

An RTL behavioural model is a short program, generally containing unsynthesisable constructs, that
serves to replace a complex hardware subsystem, such as a DRAMDIMM (Section 2.6.6). A
behavioural model produces the same useful result but executesmuchmore quickly because it does
not model the values of all the internal nets and pipeline stages (which provide no benefit until
converted to actual parallel hardware). In some instances, an RTLmodel of a subsystemmay not be
available due to IP copy protection, although RTL simulators can, typically, read encrypted RTL.

444

Chapter 8 | Fabrication and Production

RTL is not as expressive for algorithms or data structures as most software programming languages.
In a concurrencymodel, everything executes in lockstep. The programmer has to keep track of all this
concurrency. Theymust generate their own bespoke handshaking and flow control between
components. Moreover, except for the occasional use of don’t-cares, Verilog andVHDL do not express
when a register is livewith data. Hence, automatic refactoring and certain correctness proofs are
impossible without additional annotation. More advanced RTLs, such as Bluespec (Section 6.8.5),
have addressedmany of these issues. If a programmerwants to use conventional software paradigms,
HLS (Section 6.9) can be applied to (stylised) software to produce RTL.

8.3.12 Synthesis Intent and Goals
The logic synthesiser chooses a design based on sets of guidingmetrics that are known as the
synthesis intent. Four common optimisation targets are:

Area: Achieving the smallest area normally means using the lowest number of gates and careful
optimisation when factorising logic functions into sub-expressions that are to be shared bymore
than one output function. Using very small technology cells obviously helps meet area targets.
However, small cells have a higher wiring density. The design can then becomewiring ormetal
limited instead of transistor limited, so that more care is required in designing the wiring between
gates than in howmany transistors are deployed. Thin wires are possible, leading to high-resistance
tracking with greater RC delays. Fewer tracks of greater thickness occupy the same area in a wiring
layer andmay be better. Another alternative is to compute the same expression in several places.
For instance, it takes less energy to compute a 32-bit addition than to communicate the result a
distance of 1mm.

Performance: A performance intent specifies that a subsystemmustmeet a target clock frequency,
such as 500MHz, or it may specify various logic paths that must meet target delays, such as 150 ps
between input P and output Q. Performance targets are evaluated by determining the critical paths
using static timing analysis (Section 8.12.1). Theymay bemet by adjusting circuit structures. Cell
libraries often provide cell variants with different propagation delays and drive strengths. These
differ in their consumption of area and power. Hence, timing targets can also bemet by selecting
appropriate cells taking into account the expected net load capacitance and track resistance.

With FinFET technology nodes (Section 8.2.1), starting with 14nm and below, the propagation
delay in nets is as important as the propagation delay through the logic cells. This is why physically
aware synthesis tools that estimate the net delay are critical.

Energy: Static energy use is greatly affected bywhether low- or high-leakage cells are used, but is
largely correlated with area for a given technology. Power gating helps (Section 4.6.10). Dynamic
power is affected by the detailed logic design, but not a great deal. Glitches in certain
combinational logic structures, especially those containingmany XOR gates, can consume a
significant amount of energy. This can be reduced by adding redundant cubes during logic
minimisation, but this is not always feasible for CRC generators and fast adders. Clock gating

445

Modern SoCDesign

(Section 4.6.9) is one of the best methods for reducing dynamic power. It is best implemented
automatically inside the logic synthesiser, based on power intent pragmas.

Testability: A production test of some logic structures may require many test vectors
(Section 8.8.2). This is a problem if the depreciation of the testing equipment while in use is similar
to the cost of the die being tested. Logic circuits with few outputs or which include fail-safe
mechanisms, such asmajority voting, can be hard to test. They can bemademore accessible by
asking the logic synthesiser to avoid them or to perform scan-chain insertion (Section 4.7.5).
Alternatively, they can be tested using additional dedicated testmodes invokedwith a test input pin
that is strapped off under normal operation.

Floor plan: An additional intent in physical synthesis is to fit a specific floor plan, which describes
the shape of the available silicon area. This may not be a rectangle or it may havemasked-out
regions into which other circuits will later be inserted. For multi-chip and die-stacked designs
(Section 8.9.1), the vias between devices determine where inter-chip connectionsmust be situated.
The position of the I/O and the general shape of the silicon region affect the buffering strategies for
signals that need to pass through the region. It may be pointless to factorise a logic expression such
that a term can be used for two purposes if the two purposes are physically separated.

The core utilisation ratio is the percentage area taken up by cells within a region of a SoC. Early VLSI
had very fewmetal layers, so cell rows had to be spacedwell apart. Perhaps twice as much area was
devoted to wiring channels than for active logic cells, and the core utilisation ratio was about 33 per
cent. Sincemanymetal layers are available today, wiring can freely run over the top of cells, using
separate layers from themetal that forms part of the cell itself. The core utilisation ratio is nowwell
above 80 per cent. Further layers on top carry long-distance nets, clocks and power supplies.
However, a wider cell in which the wiring contacts are spread out more can sometimes be preferable
to a dense cell. A wider cell may havemuchmore drive strength and does not need several repeaters,
helping to reduce the propagation delays.

Figure 8.28 illustrates the relationship among utilisation ratio, core area and performance. The
highest utilisation ratios occur for low-frequency operations. The convex hull of best performing
points is plotted as the black dashed line. It switches back and forth among the utilisation ratios in the
vicinity of 84 per cent at low frequencies. Some lines kink back on themselves beyond the best design
point. Moreover, the area significantly increases as the frequency increases, since higher drive
strengths and hence, bigger cells are needed, which results in higher manufacturing costs.

Several standard cell architectures are usually developed for a process node (Section 8.4). They vary
in cell height. The cell height is usually counted as the number of equivalent routing tracks in the first
horizontal routing layer. The cell width, on the other hand, varies from cell to cell, according to
complexity. Note that for standard cell systems, the term horizontal is used to denote the direction of
the power rails, as illustrated in Figure 8.7. A flipped row has its ground at the top, as in themiddle row
in that figure. In reality, rows of cells in different subsystems are often run in orthogonal directions,

446

Chapter 8 | Fabrication and Production

Figure 8.28 Scatter plot of area versus operating frequency for a design (Arm Cortex-A9 Falcon) on a common process node and cell library for different core
utilisation ratios. The best performers are highlighted with black crosses (and joined together with the black dashed line)

with ‘horizontal’ for one being at right angles to ‘horizontal’ for another. The directionmakes no
difference to functionality, andmay be chosen to assist with the design of the PDN or whatever.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 2 4 6 8 10 12 14 16

N
or

m
al

ize
d

in
ve

rt
er

ar
ea

Number of ns

9-track

7.5-track

6-track

Figure 8.29 FinFET invertor area versus number of fins for different cell heights at a process node

For a given cell height, there is an equivalent maximum FETwidth or maximum number of FinFET fins
inmodern processes. As an example, a 6-track height has two fins per FET finger, a 7.5-track has three
fins and 9-track four fins at maximum. Increasing the cell drive strength is achieved by increasing the
number of fins proportionally. The cell area increases with the number of FET fingers. A taller cell
quickly becomesmore area efficient than a smaller cell as the number of fins is increased. In the

447

Modern SoCDesign

(Section 4.6.9) is one of the best methods for reducing dynamic power. It is best implemented
automatically inside the logic synthesiser, based on power intent pragmas.

Testability: A production test of some logic structures may require many test vectors
(Section 8.8.2). This is a problem if the depreciation of the testing equipment while in use is similar
to the cost of the die being tested. Logic circuits with few outputs or which include fail-safe
mechanisms, such asmajority voting, can be hard to test. They can bemademore accessible by
asking the logic synthesiser to avoid them or to perform scan-chain insertion (Section 4.7.5).
Alternatively, they can be tested using additional dedicated testmodes invokedwith a test input pin
that is strapped off under normal operation.

Floor plan: An additional intent in physical synthesis is to fit a specific floor plan, which describes
the shape of the available silicon area. This may not be a rectangle or it may havemasked-out
regions into which other circuits will later be inserted. For multi-chip and die-stacked designs
(Section 8.9.1), the vias between devices determine where inter-chip connectionsmust be situated.
The position of the I/O and the general shape of the silicon region affect the buffering strategies for
signals that need to pass through the region. It may be pointless to factorise a logic expression such
that a term can be used for two purposes if the two purposes are physically separated.

The core utilisation ratio is the percentage area taken up by cells within a region of a SoC. Early VLSI
had very fewmetal layers, so cell rows had to be spacedwell apart. Perhaps twice as much area was
devoted to wiring channels than for active logic cells, and the core utilisation ratio was about 33 per
cent. Sincemanymetal layers are available today, wiring can freely run over the top of cells, using
separate layers from themetal that forms part of the cell itself. The core utilisation ratio is nowwell
above 80 per cent. Further layers on top carry long-distance nets, clocks and power supplies.
However, a wider cell in which the wiring contacts are spread out more can sometimes be preferable
to a dense cell. A wider cell may havemuchmore drive strength and does not need several repeaters,
helping to reduce the propagation delays.

Figure 8.28 illustrates the relationship among utilisation ratio, core area and performance. The
highest utilisation ratios occur for low-frequency operations. The convex hull of best performing
points is plotted as the black dashed line. It switches back and forth among the utilisation ratios in the
vicinity of 84 per cent at low frequencies. Some lines kink back on themselves beyond the best design
point. Moreover, the area significantly increases as the frequency increases, since higher drive
strengths and hence, bigger cells are needed, which results in higher manufacturing costs.

Several standard cell architectures are usually developed for a process node (Section 8.4). They vary
in cell height. The cell height is usually counted as the number of equivalent routing tracks in the first
horizontal routing layer. The cell width, on the other hand, varies from cell to cell, according to
complexity. Note that for standard cell systems, the term horizontal is used to denote the direction of
the power rails, as illustrated in Figure 8.7. A flipped row has its ground at the top, as in themiddle row
in that figure. In reality, rows of cells in different subsystems are often run in orthogonal directions,

446

Chapter 8 | Fabrication and Production

Figure 8.28 Scatter plot of area versus operating frequency for a design (Arm Cortex-A9 Falcon) on a common process node and cell library for different core
utilisation ratios. The best performers are highlighted with black crosses (and joined together with the black dashed line)

with ‘horizontal’ for one being at right angles to ‘horizontal’ for another. The directionmakes no
difference to functionality, andmay be chosen to assist with the design of the PDN or whatever.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 2 4 6 8 10 12 14 16

N
or

m
al

ize
d

in
ve

rt
er

ar
ea

Number of ns

9-track

7.5-track

6-track

Figure 8.29 FinFET invertor area versus number of fins for different cell heights at a process node

For a given cell height, there is an equivalent maximum FETwidth or maximum number of FinFET fins
inmodern processes. As an example, a 6-track height has two fins per FET finger, a 7.5-track has three
fins and 9-track four fins at maximum. Increasing the cell drive strength is achieved by increasing the
number of fins proportionally. The cell area increases with the number of FET fingers. A taller cell
quickly becomesmore area efficient than a smaller cell as the number of fins is increased. In the

447

Modern SoCDesign

example shown in Figure 8.29, it is clear that the 6-track cell (blue line) is more area efficient for a low
drive strength whereas it is the least area efficient for higher drive strength cells withmore fins.

The high drive strength and better area efficiency of taller cells results in better area usage when
operating at higher frequencies where the need for a higher drive strength is more common.
However, many nets are short in some kinds of subsystem, and then the higher drive strength is not
needed for the cells that drive these shorter nets. Thus, a taller cell may bewasteful. Moreover, the
area of a block of logic is dominated by themore complex cells. Flip-flops aremore complex than
typical gates, and the flip-flop area could be 40 per cent of the block area. Complex cells tend to have a
lower fraction of their area devoted to transistors that drive their output net (or nets), hence, being
taller is less beneficial for such cells.

Figure 8.30 Scatter plot of area versus operating frequency for a given design (Arm Cortex-A9 Falcon) and standard cell libraries on a common process node
that vary in cell height, measured in track equivalents

The complex effects of changing the cell height is demonstrated in Figure 8.30. This shows how the
core area for a given RTL processor design varied with target frequency for different cell heights for a
given process node. For each library, the design was synthesised for different area and performance
intents. As just explained, it is often assumed that a smaller cell architecture will deliver a smaller
block area at low frequency intent, but this is clearly not always true (the blue line is below the green
line throughout). Smaller cells have fewer horizontal routing tracks so that routingmay becomemore
difficult and not enable a high core utilisation rate. A lower utilisation ratemay counteract the
advantage of the smaller cell area. But taller cell architectures do generally deliver better
high-frequency results. Hence the best choice of cell architecture also depends on the design type, as
characterised by the ratio of gates to flip-flops and the net length distribution.

8.4 Chip Types and Classifications
There are different types of chip manufacturer based onwhere their silicon is manufactured and how
they sell it. Manufacturers can broadly be classified as:

448

Chapter 8 | Fabrication and Production

1. Integrated devicemanufacturers (IDMs) or vertical market chipmakers, such as Samsung and Intel,
which design, manufacture and sell chips, and sometimes the products they go in

2. Fablessmanufacturers, such as NVIDIA and Xilinx, which design and sell chips but outsource
manufacturing to foundries

3. Foundry companies, which own the fabrication equipment and associated IP, such as cell libraries,
andmanufacture chips designed and sold by their customers under their customer’s brand.

Theworld’s major foundries famously include SMC and TSMC, but IDMsmay also offer foundry
services if they have spare capacity or older processes no longer suitable for their new products. Each
foundry offers a number of process nodes, introducing a new one every year or so while still
continuing to offer the older ones at reduced prices. A process node is a manufacturing geometry (e.g.
14 nm) together with all the ancillary information, such as the resistivity of the variousmaterials,
wafer size and transconductance of the transistors. Each parameter is characterised at the various
PVT corners (Section 8.4.4).

Commodity part

Super FPGAs

Semi-custom
standard cell

Full Custom

Flatpanel
controller

DRAM

x86 CPU

Flash

CPLD
(complex programmable logic device)

Antenna
pre-amp

GSM
modem

74series

Field-programmable

Standard part

Multi-standard
digital TV chipset.

Standard part

ASICsMicrocontroller

PAL
(programmable array logic)

FPGA
(field-programmable gate array)

Video effects
processor

IoT
controller

Gate array

Miscellaneous
SoC

DAB
radio

ASSPs

Figure 8.31 A broad-brush classification of digital ICs into full-custom, semi-custom and field-programmable classes with some example device roles

Figure 8.31 illustrates ways of classifying ICs. The outer ellipses represent the threemain design
approaches for physical silicon: full custom, semi-custom and field-programmable. Many chips include
a combination of all three design techniques. Within each outer ellipse, there are possible
subdivisions into standard parts and application-specific integrated circuits (ASICs).

Electronic equipment designers prefer to use a standard part if one is already available and the
resulting bill of materials (BoM) is acceptable, but build their ownASIC or use FPGAs (Section 8.5.2) if
this is cheaper when the non-recurring expense (NRE) is adequately amortised over the production

449

Modern SoCDesign

example shown in Figure 8.29, it is clear that the 6-track cell (blue line) is more area efficient for a low
drive strength whereas it is the least area efficient for higher drive strength cells withmore fins.

The high drive strength and better area efficiency of taller cells results in better area usage when
operating at higher frequencies where the need for a higher drive strength is more common.
However, many nets are short in some kinds of subsystem, and then the higher drive strength is not
needed for the cells that drive these shorter nets. Thus, a taller cell may bewasteful. Moreover, the
area of a block of logic is dominated by themore complex cells. Flip-flops aremore complex than
typical gates, and the flip-flop area could be 40 per cent of the block area. Complex cells tend to have a
lower fraction of their area devoted to transistors that drive their output net (or nets), hence, being
taller is less beneficial for such cells.

Figure 8.30 Scatter plot of area versus operating frequency for a given design (Arm Cortex-A9 Falcon) and standard cell libraries on a common process node
that vary in cell height, measured in track equivalents

The complex effects of changing the cell height is demonstrated in Figure 8.30. This shows how the
core area for a given RTL processor design varied with target frequency for different cell heights for a
given process node. For each library, the design was synthesised for different area and performance
intents. As just explained, it is often assumed that a smaller cell architecture will deliver a smaller
block area at low frequency intent, but this is clearly not always true (the blue line is below the green
line throughout). Smaller cells have fewer horizontal routing tracks so that routingmay becomemore
difficult and not enable a high core utilisation rate. A lower utilisation ratemay counteract the
advantage of the smaller cell area. But taller cell architectures do generally deliver better
high-frequency results. Hence the best choice of cell architecture also depends on the design type, as
characterised by the ratio of gates to flip-flops and the net length distribution.

8.4 Chip Types and Classifications
There are different types of chip manufacturer based onwhere their silicon is manufactured and how
they sell it. Manufacturers can broadly be classified as:

448

Chapter 8 | Fabrication and Production

1. Integrated devicemanufacturers (IDMs) or vertical market chipmakers, such as Samsung and Intel,
which design, manufacture and sell chips, and sometimes the products they go in

2. Fablessmanufacturers, such as NVIDIA and Xilinx, which design and sell chips but outsource
manufacturing to foundries

3. Foundry companies, which own the fabrication equipment and associated IP, such as cell libraries,
andmanufacture chips designed and sold by their customers under their customer’s brand.

Theworld’s major foundries famously include SMC and TSMC, but IDMsmay also offer foundry
services if they have spare capacity or older processes no longer suitable for their new products. Each
foundry offers a number of process nodes, introducing a new one every year or so while still
continuing to offer the older ones at reduced prices. A process node is a manufacturing geometry (e.g.
14 nm) together with all the ancillary information, such as the resistivity of the variousmaterials,
wafer size and transconductance of the transistors. Each parameter is characterised at the various
PVT corners (Section 8.4.4).

Commodity part

Super FPGAs

Semi-custom
standard cell

Full Custom

Flatpanel
controller

DRAM

x86 CPU

Flash

CPLD
(complex programmable logic device)

Antenna
pre-amp

GSM
modem

74series

Field-programmable

Standard part

Multi-standard
digital TV chipset.

Standard part

ASICsMicrocontroller

PAL
(programmable array logic)

FPGA
(field-programmable gate array)

Video effects
processor

IoT
controller

Gate array

Miscellaneous
SoC

DAB
radio

ASSPs

Figure 8.31 A broad-brush classification of digital ICs into full-custom, semi-custom and field-programmable classes with some example device roles

Figure 8.31 illustrates ways of classifying ICs. The outer ellipses represent the threemain design
approaches for physical silicon: full custom, semi-custom and field-programmable. Many chips include
a combination of all three design techniques. Within each outer ellipse, there are possible
subdivisions into standard parts and application-specific integrated circuits (ASICs).

Electronic equipment designers prefer to use a standard part if one is already available and the
resulting bill of materials (BoM) is acceptable, but build their ownASIC or use FPGAs (Section 8.5.2) if
this is cheaper when the non-recurring expense (NRE) is adequately amortised over the production

449

Modern SoCDesign

volume (Section 8.11). A standard part could be an application-specific standard part (ASSP). If a
standard part is not suitable, the choice between full custom, semi-custom and field-programmable
approaches has to bemade, depending on performance, production volume and cost requirements.
These terms are defined as follows:

In a full-custom design, detailed, manual design effort is put into the circuit details, including
transistor sizes and the physical layout. This should achieve the preferred optimum compromise of
speed, density and power consumption for a given target technology. It is used for devices that will
be produced in very large quantities, e.g. millions of parts, if the design cost is justified. Processor
ALU, register files and related data paths are often full custom, as aremultiplier circuits. SRAM and
DRAMalso use full-custom designs for the bit cells, line drivers and sense amplifiers.

In a semi-custom design, logic gates are taken from a cell technology library (Section 8.4.1). Each
cell has a fixed design that is repeated each time it is used, both within a chip and across any devices
that use the library, which simplifies the design process. Performance and areamargins
conservatively enable portable use. Hence, for instance, the drive power of the cell is not optimised
for each instance, but two or three variants of a cell may bemade. These vary in their delay and load
derating factors (Section 4.6.4).

For field-programmable devices, specialised standard parts are customisedwith programmable
wiring for a specific function. The programming is done quickly without expensive equipment. This
results inNRE of close to zero, but device performance is significantly degraded. Comparedwith a
semi-custom chip, up to 50 per cent more area is used and a reduction of the clock frequency by
between 3× and 15× is typical.

Semi-custom chips for general-purpose VLSI designs are built using a library of logic cells.

Standard Parts
A standard part is essentially any chip that a chipmanufacturer is prepared to sell to someone else
alongwith a data sheet and supporting EDAmodels. The designmay previously have been an ASIC for
a specific customer that is now on general release. Many standard parts are general-purpose logic,
memory ormicroprocessor devices. These are frequently full-custom chips designed in-house by an
IDM and specifically optimised tomake themost of an in-house fabrication line, perhaps using
optimisations not made available to others who use the line, such as a foundry. Other standard parts
include graphics controllers, digital TV chip sets, GPS receivers andmiscellaneous useful chips needed
in high volumes. These are all ASSPs.

Other standard parts are completely generic. This class notably includesmost memory devices and
devices with a long history, such as the 74-series ICs. These parts are interchangeably made by a
variety of semiconductor houses. Equipmentmanufacturers do not particularly mindwhich supplier
is used, since cost is themost important factor. For such devices, futures can be purchased on
commodity stock exchanges or spot markets, especially for flash andDRAM. Customers usually seek
at least a second-source supplier for non-commodity parts, so that production can continue if the

450

Chapter 8 | Fabrication and Production

primary supplier has a financial or technical problem. Another option is to put the IP for the product
into secure escrow.

Application-Specific Integrated Circuits
An application-specific integrated circuit (ASIC) is a custom chip designed for a specific application.
The costs of developing and using an ASIC are comparedwith the costs of using an existing or
field-programmable part. An existing part may not perform the required function exactly, requiring
either a design specification change or some additional glue logic to adapt the part to the application.
The other main reasons for designing an ASIC include protecting valuable design or algorithm IP,
avoiding licensing costs, minimising customs duty, and simplifying and protecting the supply chain for
a product. These reasons are important in their own right and can bemore significant than cost
savings relating to the BoM.

Mixing a variety of technologies on a single silicon chip can be cost-effective but may require extra
masks and typically involves compromises in performance comparedwith building the circuit with a
process that is appropriately optimised. More than one ASICmay be needed if application-specific
functions are physically distant, require different technologies or are just too big for one chip. In some
cases, an ASIC is used to split the costs and risks or because part of the systemwill be subsequently
reused. Circuit structures that motivate the use of multiple different chips with different fabrication
recipes are:

power consumption limitations (power above 5Wneeds special attention)

die size limitations (chips above 11mmon a sidemight have significantly higher costs per mm2)

special considerations:

- special static, dynamic or non-volatile RAMneeds

- analogue IP blocks that need low noise supplies or shielding structures

- very high-frequency operation, perhaps needing GaAs instead of silicon

- heavy current or high voltage output capabilities for load control, e.g. solenoids and driving a
motor/

Silicon fabrication lines are, typically, priced per wafer. Hence, the customer is charged per unit area
of silicon processed. Applications that switch heavy load currents need large-area transistors. It is
wasteful to build these on a high-performance low-geometry fabrication line. Therefore, power
output stages are, typically, put onto a separate chip and fabricated by an older and hence,
larger-geometry, fabrication line, although a standard part is often sufficient.

451

Modern SoCDesign

volume (Section 8.11). A standard part could be an application-specific standard part (ASSP). If a
standard part is not suitable, the choice between full custom, semi-custom and field-programmable
approaches has to bemade, depending on performance, production volume and cost requirements.
These terms are defined as follows:

In a full-custom design, detailed, manual design effort is put into the circuit details, including
transistor sizes and the physical layout. This should achieve the preferred optimum compromise of
speed, density and power consumption for a given target technology. It is used for devices that will
be produced in very large quantities, e.g. millions of parts, if the design cost is justified. Processor
ALU, register files and related data paths are often full custom, as aremultiplier circuits. SRAM and
DRAMalso use full-custom designs for the bit cells, line drivers and sense amplifiers.

In a semi-custom design, logic gates are taken from a cell technology library (Section 8.4.1). Each
cell has a fixed design that is repeated each time it is used, both within a chip and across any devices
that use the library, which simplifies the design process. Performance and areamargins
conservatively enable portable use. Hence, for instance, the drive power of the cell is not optimised
for each instance, but two or three variants of a cell may bemade. These vary in their delay and load
derating factors (Section 4.6.4).

For field-programmable devices, specialised standard parts are customisedwith programmable
wiring for a specific function. The programming is done quickly without expensive equipment. This
results inNRE of close to zero, but device performance is significantly degraded. Comparedwith a
semi-custom chip, up to 50 per cent more area is used and a reduction of the clock frequency by
between 3× and 15× is typical.

Semi-custom chips for general-purpose VLSI designs are built using a library of logic cells.

Standard Parts
A standard part is essentially any chip that a chipmanufacturer is prepared to sell to someone else
alongwith a data sheet and supporting EDAmodels. The designmay previously have been an ASIC for
a specific customer that is now on general release. Many standard parts are general-purpose logic,
memory ormicroprocessor devices. These are frequently full-custom chips designed in-house by an
IDM and specifically optimised tomake themost of an in-house fabrication line, perhaps using
optimisations not made available to others who use the line, such as a foundry. Other standard parts
include graphics controllers, digital TV chip sets, GPS receivers andmiscellaneous useful chips needed
in high volumes. These are all ASSPs.

Other standard parts are completely generic. This class notably includesmost memory devices and
devices with a long history, such as the 74-series ICs. These parts are interchangeably made by a
variety of semiconductor houses. Equipmentmanufacturers do not particularly mindwhich supplier
is used, since cost is themost important factor. For such devices, futures can be purchased on
commodity stock exchanges or spot markets, especially for flash andDRAM. Customers usually seek
at least a second-source supplier for non-commodity parts, so that production can continue if the

450

Chapter 8 | Fabrication and Production

primary supplier has a financial or technical problem. Another option is to put the IP for the product
into secure escrow.

Application-Specific Integrated Circuits
An application-specific integrated circuit (ASIC) is a custom chip designed for a specific application.
The costs of developing and using an ASIC are comparedwith the costs of using an existing or
field-programmable part. An existing part may not perform the required function exactly, requiring
either a design specification change or some additional glue logic to adapt the part to the application.
The other main reasons for designing an ASIC include protecting valuable design or algorithm IP,
avoiding licensing costs, minimising customs duty, and simplifying and protecting the supply chain for
a product. These reasons are important in their own right and can bemore significant than cost
savings relating to the BoM.

Mixing a variety of technologies on a single silicon chip can be cost-effective but may require extra
masks and typically involves compromises in performance comparedwith building the circuit with a
process that is appropriately optimised. More than one ASICmay be needed if application-specific
functions are physically distant, require different technologies or are just too big for one chip. In some
cases, an ASIC is used to split the costs and risks or because part of the systemwill be subsequently
reused. Circuit structures that motivate the use of multiple different chips with different fabrication
recipes are:

power consumption limitations (power above 5Wneeds special attention)

die size limitations (chips above 11mmon a sidemight have significantly higher costs per mm2)

special considerations:

- special static, dynamic or non-volatile RAMneeds

- analogue IP blocks that need low noise supplies or shielding structures

- very high-frequency operation, perhaps needing GaAs instead of silicon

- heavy current or high voltage output capabilities for load control, e.g. solenoids and driving a
motor/

Silicon fabrication lines are, typically, priced per wafer. Hence, the customer is charged per unit area
of silicon processed. Applications that switch heavy load currents need large-area transistors. It is
wasteful to build these on a high-performance low-geometry fabrication line. Therefore, power
output stages are, typically, put onto a separate chip and fabricated by an older and hence,
larger-geometry, fabrication line, although a standard part is often sufficient.

451

Modern SoCDesign

chassis/ground

+12V
from battery

Power transistor

Shunt resistor

Die

CAN
bus Headlight

Figure 8.32 SoC application diagram for an automotive headlight controller. A heavy load is connected to a controller-area network (CAN) bus

Applications such as the car headlight controller of Figure 8.32would bemade on an old-technology
line. This device has nearly all of its silicon area devoted to one transistor, which controls the heavy
load. Another large component on the chip is a small-value current-sensing resistor, which is used for
fault detection. Although there aremany thousands of transistors in a network interface and
embedded application controller (if not hard-coded), these can bemade in a very large geometry
process, since only low performance is required. The silicon area for the controller will still amount to
a small fraction of the total die.

8.4.1 Semi-custom (Cell-based) Design
There are two forms of semi-custom design: standard cells and gate arrays. Gate arrays are discussed
in Section 8.5). Standard cells are far more common for SoC applications. Both aremasked ASICs.
This means that they are application-specific designs needing fabricationmasks. At least some of a
mask embodies the design and themask is used only for that device. Masked ROMs (Section 2.6.2) are
specific for an application. They have onemask that embodies the data to be stored but do not have
custom logic.

VDD

VSS

Y

A

B

VDD

VSS

Y

A B

P
well

Figure 8.33 Two-input NOR gate, circuit schematic (left) and several layers of a standard cell layout (right). Blue is the bottom layer of metal, red is
polysilicon, green is channel diffusion and yellow is the P well in which the N-channel FETs are constructed

452

Chapter 8 | Fabrication and Production

Standard cell designs use a set of well-proven logic cells from a target technology library, also known
as the cell library. Figure 8.33 shows a schematic and physical layout of an elementary standard cell.
Cells share a common height so that when they are adjacent to each other in rows on the chip, the
power supply rails join up and runwithout interruptions from cell to cell. Cells vary in width according
to their complexity and have predefined coordinates for each contact where inter-cell wiringmust be
connected. All the N-type transistors are in the half of the cell adjacent to the VSS, so that a shared P
well of diffusion can be put downwith low resolution in an early fabrication step. Likewise, the P-type
transistors, which conduct when their gate is low, are at the top.

As well as logic gates and registers, a basic cell library contains level shifters, clock buffers, power
domain isolation cells (Section 4.6.10) and I/O pads of various sorts (Section 4.8.1). The output pads
buffer the on-chip signals generating themuch greater drive power needed to drive PCB traces. Input
pads provide protection against static electricity and board-level fault conditions. There are also
various specialist cells for clock generation and distribution.

The internal structure of a cell can be flipped horizontally if this helps in reducing the wiring. Similarly,
a whole row of cells can be flipped vertically, for the same reason. Thewiring generator will correctly
swap over the supply connections. The domain supply will come from one of the upper layers of metal.
Upper layer masks cannot be deposited with high accuracy and so aremore suitable for heavy-duty
purposes, such as a supply PDN.

Standard cells are definedwith different drive strengths tomatch the output load they need to drive.
The drive strength affects the output drive transistor width or the number of transistors connected in
parallel within the cell. For example, INV_X4 refers to an invertor with four-finger FETs. As explained
in Section 4.6.4, an output load consists of the sum of the input capacitances of the driven cells and
the capacitances of the wires used to interconnect the cells. Usually a multi-drive cell has similar
timing performance to a single-drive cell if the output load is increased by the samemultiple.
Moreover, the power used by amulti-drive cell is increased from that for a single-drive cell by,
approximately, the samemultiple.

Figure 8.34 shows a cell from the human-readable data book for a standard cell library. The cell is a
four-input NAND gate. Themachine-readable version has hundreds of parameters for each cell.
Slightly odd functions, such as !(a.b + c.d), which is known as AND-OR-INVERT (AOI), are also
available, since such patterns are commonly generated in logic synthesis and have a compact circuit
(Section 8.3.8). A data sheet gives the logic function, the structural RTL that needs to be generated to
instantiate it, and detailed timing figures. As also explained in Section 4.6.4, the timingmodel includes
an intrinsic delay and derating per output load unit. These figures are different for each input and for
each polarity of output transition. The illustrated device has twice the normal drive strength; hence,
its delay derating factors are likely to be about half those for a 1× version of the cell. Amore detailed
data sheet may indicate the static and dynamic energy use.

453

Modern SoCDesign

chassis/ground

+12V
from battery

Power transistor

Shunt resistor

Die

CAN
bus Headlight

Figure 8.32 SoC application diagram for an automotive headlight controller. A heavy load is connected to a controller-area network (CAN) bus

Applications such as the car headlight controller of Figure 8.32would bemade on an old-technology
line. This device has nearly all of its silicon area devoted to one transistor, which controls the heavy
load. Another large component on the chip is a small-value current-sensing resistor, which is used for
fault detection. Although there aremany thousands of transistors in a network interface and
embedded application controller (if not hard-coded), these can bemade in a very large geometry
process, since only low performance is required. The silicon area for the controller will still amount to
a small fraction of the total die.

8.4.1 Semi-custom (Cell-based) Design
There are two forms of semi-custom design: standard cells and gate arrays. Gate arrays are discussed
in Section 8.5). Standard cells are far more common for SoC applications. Both aremasked ASICs.
This means that they are application-specific designs needing fabricationmasks. At least some of a
mask embodies the design and themask is used only for that device. Masked ROMs (Section 2.6.2) are
specific for an application. They have onemask that embodies the data to be stored but do not have
custom logic.

VDD

VSS

Y

A

B

VDD

VSS

Y

A B

P
well

Figure 8.33 Two-input NOR gate, circuit schematic (left) and several layers of a standard cell layout (right). Blue is the bottom layer of metal, red is
polysilicon, green is channel diffusion and yellow is the P well in which the N-channel FETs are constructed

452

Chapter 8 | Fabrication and Production

Standard cell designs use a set of well-proven logic cells from a target technology library, also known
as the cell library. Figure 8.33 shows a schematic and physical layout of an elementary standard cell.
Cells share a common height so that when they are adjacent to each other in rows on the chip, the
power supply rails join up and runwithout interruptions from cell to cell. Cells vary in width according
to their complexity and have predefined coordinates for each contact where inter-cell wiringmust be
connected. All the N-type transistors are in the half of the cell adjacent to the VSS, so that a shared P
well of diffusion can be put downwith low resolution in an early fabrication step. Likewise, the P-type
transistors, which conduct when their gate is low, are at the top.

As well as logic gates and registers, a basic cell library contains level shifters, clock buffers, power
domain isolation cells (Section 4.6.10) and I/O pads of various sorts (Section 4.8.1). The output pads
buffer the on-chip signals generating themuch greater drive power needed to drive PCB traces. Input
pads provide protection against static electricity and board-level fault conditions. There are also
various specialist cells for clock generation and distribution.

The internal structure of a cell can be flipped horizontally if this helps in reducing the wiring. Similarly,
a whole row of cells can be flipped vertically, for the same reason. Thewiring generator will correctly
swap over the supply connections. The domain supply will come from one of the upper layers of metal.
Upper layer masks cannot be deposited with high accuracy and so aremore suitable for heavy-duty
purposes, such as a supply PDN.

Standard cells are definedwith different drive strengths tomatch the output load they need to drive.
The drive strength affects the output drive transistor width or the number of transistors connected in
parallel within the cell. For example, INV_X4 refers to an invertor with four-finger FETs. As explained
in Section 4.6.4, an output load consists of the sum of the input capacitances of the driven cells and
the capacitances of the wires used to interconnect the cells. Usually a multi-drive cell has similar
timing performance to a single-drive cell if the output load is increased by the samemultiple.
Moreover, the power used by amulti-drive cell is increased from that for a single-drive cell by,
approximately, the samemultiple.

Figure 8.34 shows a cell from the human-readable data book for a standard cell library. The cell is a
four-input NAND gate. Themachine-readable version has hundreds of parameters for each cell.
Slightly odd functions, such as !(a.b + c.d), which is known as AND-OR-INVERT (AOI), are also
available, since such patterns are commonly generated in logic synthesis and have a compact circuit
(Section 8.3.8). A data sheet gives the logic function, the structural RTL that needs to be generated to
instantiate it, and detailed timing figures. As also explained in Section 4.6.4, the timingmodel includes
an intrinsic delay and derating per output load unit. These figures are different for each input and for
each polarity of output transition. The illustrated device has twice the normal drive strength; hence,
its delay derating factors are likely to be about half those for a 1× version of the cell. Amore detailed
data sheet may indicate the static and dynamic energy use.

453

Modern SoCDesign

Simulator/HDL Call

NAND4 Standard Cell
4 input NAND gate with x2 drive

Schematic Symbol

NAND4X2(f, a, b, c, d);

ELECTRICAL SPECIFICATION
Switching characteristics : Nominal delays (25 deg C, 1.1 Volt, signal rise and fall 50ps)

Inputs Outputs
O/P Falling O/P Rising

A
B
C
D

F
F
F
F

(ps) ps/LU ps ps/LU

14.2
16.1
16.5
17.0

3.7
3.7
3.7
3.7

19.8
24.9
29.3
32.6

3.3
3.3
3.3
3.4

Min and Max delays depend upon temperature range, supply voltage, input edge speed and process
spreads. The timing information is for guidance only. Accurate delays are used by the UDC.

: (One load unit = 49 fF)

Parameters

Input loading

Drive capability

Pin

a
b
c
d

f

Value

2.1
2.1
2.1
2.0

35

Load units

Load units

Units

a

b

c

d

f
Logical Function

F = NOT(a & b & c & d)

Library: CBG 22nm

X2

CELL PARAMETERS

Figure 8.34 Typical cell data sheet from a human-readable version of a standard cell library

8.4.2 Standard Cell Data
For each cell in a library, a number of different machine-readable data types are needed. These are
split over a number of files and cover the functionality, layout, schematic symbol, timing analysis,
power analysis, noise analysis and variability analysis. Themain file forms are:

Symbol: The logic symbol shows the contacts (external connections) to the cell. It gives their
directions and names, as well as the preferred layout as a schematic view. Theremay be a simple set
of port connection constraints, which stop outputs from being connected to each other in a
schematic GUI.

Schematic: The internal cell circuit is a transistor-level description of the cell. It is needed for a
SPICE simulation (Section 8.4.3) and occasionally needs to be inspected for other purposes.

Liberty: A Liberty (lib) file contains themainmachine-readable data sheet for each cell
(Section 8.12.6). It repeats the name and direction of each contact, but also contains all the
electrical features. It is used for the timing, power, variability and signal integrity analyses. The

454

Chapter 8 | Fabrication and Production

pin-to-pin timing is given, including setup and hold-times for edge-sensitive logic. Many parameters
are provided for the nine PVT positions (Section 8.4.4). Much of the data will have been generated
by SPICE simulations of each cell. The Liberty file also documents the various drive waveformswith
the different transition times used during characterisation.

RTL: An RTLmodel or truth table defines the logical function of the cell, which is needed both for
the logic synthesis and a net-level simulation. Continuous assignment suffices for a logic gate. For a
more-complex component, such as a PLL, a behavioural model is needed.

LEF: A library exchange format (LEF) file contains an abstract or physical representation of the cell
sufficient for placement and routing. The primary information is the cell size and locations of the
contacts within the cell, along with rules that restrict what is put above or nearby.

DEF: A design exchange format (DEF) file contains the complete physical view of the cell used for
the tapeout. This builds on the abstract view by listing the polygons required on all affected layer
masks. The upper wiring levels are normally not affected and can be used for power or signal wiring
over the cell.

For complex cells, the production test requirements, including the required test coverage, are also
provided. Further data are also needed, but thesemay need to be combinedwith per process
information from fabrication for them to be usable. Such data include electromigration (Section 8.4.5)
and IR-drop analyses.

Supercells or HardMacros
Within a semi-custom design, a mechanism is needed to support islands of full-custom design. Thus, a
full-custom component is treated as a supercell, also known as a hardmacro or hard layoutmacro.
For the semi-custom design tools, a supercell is no different from an everyday logic gate; it is just
much larger and hasmanymore net-level connections andmay usemoremetal layers. Memory, CPU
cores, PLLs (Section 4.9.5) and SERDES (Section 3.8) are themain examples of supercells.

8.4.3 SPICE Characterisation
Before a cell library can be used, it must be characterised. Themain tool is analogue simulation,
typically performedwith SPICE (Section 4.6.7). Selected results are verified usingmeasurements of
real silicon. The amount of data generated is huge. A set of Liberty files can sometimes be terabytes in
size. Characterising a librarymay require several thousands of CPU hours, so a CPU farmmust be
used. CMOS processes have transistors with different threshold voltages (multi-VT) and different
channel lengths. A library usually targets one threshold voltage and one channel length, so there can
be asmany libraries as different threshold voltages and channel lengths. Some cells use amix of
threshold voltages. Modern circuits often use amix of different VT libraries to optimise the PPA. Cells
with the lowest VT corresponding to the fastest transistors are used for themost critical paths in
terms of timing, thus defining themaximum performance of the circuit. Other VT values and channel

455

Modern SoCDesign

Simulator/HDL Call

NAND4 Standard Cell
4 input NAND gate with x2 drive

Schematic Symbol

NAND4X2(f, a, b, c, d);

ELECTRICAL SPECIFICATION
Switching characteristics : Nominal delays (25 deg C, 1.1 Volt, signal rise and fall 50ps)

Inputs Outputs
O/P Falling O/P Rising

A
B
C
D

F
F
F
F

(ps) ps/LU ps ps/LU

14.2
16.1
16.5
17.0

3.7
3.7
3.7
3.7

19.8
24.9
29.3
32.6

3.3
3.3
3.3
3.4

Min and Max delays depend upon temperature range, supply voltage, input edge speed and process
spreads. The timing information is for guidance only. Accurate delays are used by the UDC.

: (One load unit = 49 fF)

Parameters

Input loading

Drive capability

Pin

a
b
c
d

f

Value

2.1
2.1
2.1
2.0

35

Load units

Load units

Units

a

b

c

d

f
Logical Function

F = NOT(a & b & c & d)

Library: CBG 22nm

X2

CELL PARAMETERS

Figure 8.34 Typical cell data sheet from a human-readable version of a standard cell library

8.4.2 Standard Cell Data
For each cell in a library, a number of different machine-readable data types are needed. These are
split over a number of files and cover the functionality, layout, schematic symbol, timing analysis,
power analysis, noise analysis and variability analysis. Themain file forms are:

Symbol: The logic symbol shows the contacts (external connections) to the cell. It gives their
directions and names, as well as the preferred layout as a schematic view. Theremay be a simple set
of port connection constraints, which stop outputs from being connected to each other in a
schematic GUI.

Schematic: The internal cell circuit is a transistor-level description of the cell. It is needed for a
SPICE simulation (Section 8.4.3) and occasionally needs to be inspected for other purposes.

Liberty: A Liberty (lib) file contains themainmachine-readable data sheet for each cell
(Section 8.12.6). It repeats the name and direction of each contact, but also contains all the
electrical features. It is used for the timing, power, variability and signal integrity analyses. The

454

Chapter 8 | Fabrication and Production

pin-to-pin timing is given, including setup and hold-times for edge-sensitive logic. Many parameters
are provided for the nine PVT positions (Section 8.4.4). Much of the data will have been generated
by SPICE simulations of each cell. The Liberty file also documents the various drive waveformswith
the different transition times used during characterisation.

RTL: An RTLmodel or truth table defines the logical function of the cell, which is needed both for
the logic synthesis and a net-level simulation. Continuous assignment suffices for a logic gate. For a
more-complex component, such as a PLL, a behavioural model is needed.

LEF: A library exchange format (LEF) file contains an abstract or physical representation of the cell
sufficient for placement and routing. The primary information is the cell size and locations of the
contacts within the cell, along with rules that restrict what is put above or nearby.

DEF: A design exchange format (DEF) file contains the complete physical view of the cell used for
the tapeout. This builds on the abstract view by listing the polygons required on all affected layer
masks. The upper wiring levels are normally not affected and can be used for power or signal wiring
over the cell.

For complex cells, the production test requirements, including the required test coverage, are also
provided. Further data are also needed, but thesemay need to be combinedwith per process
information from fabrication for them to be usable. Such data include electromigration (Section 8.4.5)
and IR-drop analyses.

Supercells or HardMacros
Within a semi-custom design, a mechanism is needed to support islands of full-custom design. Thus, a
full-custom component is treated as a supercell, also known as a hardmacro or hard layoutmacro.
For the semi-custom design tools, a supercell is no different from an everyday logic gate; it is just
much larger and hasmanymore net-level connections andmay usemoremetal layers. Memory, CPU
cores, PLLs (Section 4.9.5) and SERDES (Section 3.8) are themain examples of supercells.

8.4.3 SPICE Characterisation
Before a cell library can be used, it must be characterised. Themain tool is analogue simulation,
typically performedwith SPICE (Section 4.6.7). Selected results are verified usingmeasurements of
real silicon. The amount of data generated is huge. A set of Liberty files can sometimes be terabytes in
size. Characterising a librarymay require several thousands of CPU hours, so a CPU farmmust be
used. CMOS processes have transistors with different threshold voltages (multi-VT) and different
channel lengths. A library usually targets one threshold voltage and one channel length, so there can
be asmany libraries as different threshold voltages and channel lengths. Some cells use amix of
threshold voltages. Modern circuits often use amix of different VT libraries to optimise the PPA. Cells
with the lowest VT corresponding to the fastest transistors are used for themost critical paths in
terms of timing, thus defining themaximum performance of the circuit. Other VT values and channel

455

Modern SoCDesign

lengths are used to reduce the static power leakage, since a higher VT or longer channel transistors
have a lower leakage current.

8.4.4 PVTVariations
The electrical features of manufactured silicon devices vary fromwafer to wafer, across the wafer
from die to die, and across the die (local variations). This is known as process variation. Two further
forms of variation occur during operation. These arise from the supply voltage used and the operating
temperature. These three dimensions of variation define the principal process, voltage and
temperature (PVT) space. Each of these has a nominal, minimum andmaximum value. Example
ranges are shown in Table 8.5. The nominal value is also called the typical value when it is measured
instead of being applied. Correct operation is required under all possible variations of these
parameters. The limits of the principal PVT values basically define a cuboid space, which has eight
corners. A ninth point is the nominal operating point in the centre of the cube. The silicon is
characterised at all nine points.

Table 8.5 Example of process, voltage and temperature (PVT) ranges

Parameter Values
Process variation 0.9 to 1.1
Supply voltage range 0.85 to 1.1V
Temperature range 0 to 70°C

The slow and fast process variation limits correspond to a given standard deviation from the average,
usually 3σ for a Gaussian distribution. In reality, process variation can be split into further dimensions.
Rather than just a line between fast and slow, non-systematic variationsmust be explored, such as
where the P andN resistances vary in opposite directions, as discussed in Section 8.12.4. Variations of
the net resistance and the dielectric constant for the insulator between conductors also need to be
taken into account. Amanufacturing foundry provides specificmodels of the resistance and
capacitance of the different metal layers composing themetal stack of the process. Variation outside
this range can occur, but devices that fail should be spotted during the production test.

Two points of special interest are the fast corner and the slow corner. The slow point is at the highest
temperature with the lowest supply voltage on the slowest silicon. The fast point is the opposite
corner. For a quick verification, a simulation of just these two corners can be used. An all-corner
simulation is needed prior to sign-off (Section 8.7.7).

8.4.5 Electromigration
Electric currents movemetallic materials fromwhere they were placed duringmanufacture, which is
called electromigration. The atomsmove along the line of a strong current density, which is a thermally
activated physical mechanism. Themagnitude depends on the line temperature, which is fixed by the
global temperature of the circuit and the heat dissipated by Joule heating along the line. Thus, the

456

Chapter 8 | Fabrication and Production

resistance of themetal line varies over the lifetime of the circuit, which significantly impacts its timing
behaviour and can lead to non-functionality.

A standard cell library uses themaximum electromigration conditions for temperature (e.g. 100°C)
and lifetime (e.g. 10 years). These conditions apply when a circuit is in continuous operation. Circuit
lifetime can exceed the electromigration lifetime if the circuit is in standbymode for a significant
amount of time. The temperaturemay also vary during the circuit lifetime, typically for automotive
applications. In this case, the electromigration specification has an equivalent average temperature
and lifetime accounting for the different lengths of time at each temperature.

The electromigration limit of a metal line depends on its width and length. Foundries provide
mathematical models for calculating the electromigration limit under three different
characterisations: average (DC), root mean squared (rms) and peak current. For each net, it is
necessary to check that none of the three types of current will exceed the electromigration limits of
the conductors deployed.

A significant DC current flows only in the PDN. The signal nets and vias conveying logic values
experience only bidirectional currents, which arise from the rise and fall transitions as they charge
and discharge the associated capacitance. This results in a net-zero DC current. So, only rms and peak
electromigration limits apply to signal nets.

A DC current can simply be estimated from:

IDC =CloadVddF

where Cload is the output load, Vdd the power supply voltage and F the frequency. If IEMDC is the
maximum electromigration DC limit of the output conductor, it is possible to determine themaximum
load and frequency product limit:

CloadF=
IEMDC
Vdd

Themaximum output load can then be determined once the operating frequency has been set. The
same process can be applied to the rms and peak currents. Themost limiting condition of the DC, rms
and peak currents fixes themaximum CloadF product.

For high-frequency switching currents, a larger voltage can develop due to the parasitic inductance of
a conductor than to the IR drop because of conductor resistance. Multiple wires, spread out in
parallel, have a lower total inductance than a single wire with the same cross-sectional area. The
asymptotic limit of this approach is a ground plane, commonly used on PCBs, which has the
theoretical minimum inductance. Moreover, it is no longer possible to widen the routing wires at
advanced process nodes, as this blocks toomany routing opportunities. Thus, the effective
electromigration limit can be increased by using several narrowwires in parallel, connected together
with via arrays, thus enabling the current to be shared over the different branches.

457

Modern SoCDesign

lengths are used to reduce the static power leakage, since a higher VT or longer channel transistors
have a lower leakage current.

8.4.4 PVTVariations
The electrical features of manufactured silicon devices vary fromwafer to wafer, across the wafer
from die to die, and across the die (local variations). This is known as process variation. Two further
forms of variation occur during operation. These arise from the supply voltage used and the operating
temperature. These three dimensions of variation define the principal process, voltage and
temperature (PVT) space. Each of these has a nominal, minimum andmaximum value. Example
ranges are shown in Table 8.5. The nominal value is also called the typical value when it is measured
instead of being applied. Correct operation is required under all possible variations of these
parameters. The limits of the principal PVT values basically define a cuboid space, which has eight
corners. A ninth point is the nominal operating point in the centre of the cube. The silicon is
characterised at all nine points.

Table 8.5 Example of process, voltage and temperature (PVT) ranges

Parameter Values
Process variation 0.9 to 1.1
Supply voltage range 0.85 to 1.1V
Temperature range 0 to 70°C

The slow and fast process variation limits correspond to a given standard deviation from the average,
usually 3σ for a Gaussian distribution. In reality, process variation can be split into further dimensions.
Rather than just a line between fast and slow, non-systematic variationsmust be explored, such as
where the P andN resistances vary in opposite directions, as discussed in Section 8.12.4. Variations of
the net resistance and the dielectric constant for the insulator between conductors also need to be
taken into account. Amanufacturing foundry provides specificmodels of the resistance and
capacitance of the different metal layers composing themetal stack of the process. Variation outside
this range can occur, but devices that fail should be spotted during the production test.

Two points of special interest are the fast corner and the slow corner. The slow point is at the highest
temperature with the lowest supply voltage on the slowest silicon. The fast point is the opposite
corner. For a quick verification, a simulation of just these two corners can be used. An all-corner
simulation is needed prior to sign-off (Section 8.7.7).

8.4.5 Electromigration
Electric currents movemetallic materials fromwhere they were placed duringmanufacture, which is
called electromigration. The atomsmove along the line of a strong current density, which is a thermally
activated physical mechanism. Themagnitude depends on the line temperature, which is fixed by the
global temperature of the circuit and the heat dissipated by Joule heating along the line. Thus, the

456

Chapter 8 | Fabrication and Production

resistance of themetal line varies over the lifetime of the circuit, which significantly impacts its timing
behaviour and can lead to non-functionality.

A standard cell library uses themaximum electromigration conditions for temperature (e.g. 100°C)
and lifetime (e.g. 10 years). These conditions apply when a circuit is in continuous operation. Circuit
lifetime can exceed the electromigration lifetime if the circuit is in standbymode for a significant
amount of time. The temperaturemay also vary during the circuit lifetime, typically for automotive
applications. In this case, the electromigration specification has an equivalent average temperature
and lifetime accounting for the different lengths of time at each temperature.

The electromigration limit of a metal line depends on its width and length. Foundries provide
mathematical models for calculating the electromigration limit under three different
characterisations: average (DC), root mean squared (rms) and peak current. For each net, it is
necessary to check that none of the three types of current will exceed the electromigration limits of
the conductors deployed.

A significant DC current flows only in the PDN. The signal nets and vias conveying logic values
experience only bidirectional currents, which arise from the rise and fall transitions as they charge
and discharge the associated capacitance. This results in a net-zero DC current. So, only rms and peak
electromigration limits apply to signal nets.

A DC current can simply be estimated from:

IDC =CloadVddF

where Cload is the output load, Vdd the power supply voltage and F the frequency. If IEMDC is the
maximum electromigration DC limit of the output conductor, it is possible to determine themaximum
load and frequency product limit:

CloadF=
IEMDC
Vdd

Themaximum output load can then be determined once the operating frequency has been set. The
same process can be applied to the rms and peak currents. Themost limiting condition of the DC, rms
and peak currents fixes themaximum CloadF product.

For high-frequency switching currents, a larger voltage can develop due to the parasitic inductance of
a conductor than to the IR drop because of conductor resistance. Multiple wires, spread out in
parallel, have a lower total inductance than a single wire with the same cross-sectional area. The
asymptotic limit of this approach is a ground plane, commonly used on PCBs, which has the
theoretical minimum inductance. Moreover, it is no longer possible to widen the routing wires at
advanced process nodes, as this blocks toomany routing opportunities. Thus, the effective
electromigration limit can be increased by using several narrowwires in parallel, connected together
with via arrays, thus enabling the current to be shared over the different branches.

457

Modern SoCDesign

8.4.6 Waveform-based Cell Characterisation
As alreadymentioned, characterisation data for standard cells are nearly always obtained from a
SPICE simulation. This is done by applying a signal to the input pin andmeasuring either the output
voltage or current signal. Alternatively, the current in the power supply or the input pin capacitance
can bemeasured. Running SPICE requires a supplied or extracted SPICE netlist for the cell. This is a
translation of the schematics into the long-established format used by SPICE. A SPICE simulation for
an invertor was presented in Section 4.6.7.

Manufacturing foundries provide SPICEmodel cards for each type of transistor for different VT
values and channel lengths. An extraction deck is also provided. This has the resistive and capacitive
components of each wire extracted from the layout of the cell. (The term deck is an old-fashioned
name for a computer file, dating from the days of punched cards.) The resistance and capacitance are
based on the size of the nets and the spacing between them. When used in a physical implementation
of a circuit, each standard cell is abutted to other standard cells. Routing nets may fly over the cells
andmay add capacitive components that modify the electrical features of the cell. Since SPICE FET
models account for proximity effects, it is necessary to extract the cell netlist from a realistic
environment. To avoid the need to consider all possible cases of neighbour cells and routing over the
cell, the cell netlist is extracted for the worst-case and best-case configurations, which are then
associated with the worst-case and best-case timing corners.

The slew rate of a logic net is the rate of change of its voltage when switching between logic values. It
can be expressed in volts per picosecond. As presented in Section 4.6.4, historically, the signal applied
to the input pin of a cell was a simple signal: a linear voltage ramp ranging from 0 to the power-supply
voltage Vdd. Net transition times cannot bemeasured from 0 to 100 per cent of the output signal
given the non-linear shapes; instead, they aremeasured between selected low and high ratios, typical
values being 20–80 per cent or 30–70 per cent. The low and high ratios are usually picked tomaximise
the accuracy of the timing analysis compared to a SPICE simulation. The output current waveform
depends on the derivative of the output voltage across the output load and hence, the slew rate.

For more advanced process nodes, using a linear segment input signal has proven to be inaccurate, as
it is not sufficiently representative of the actual voltage waveform. Thus, the linear input signal has
been replaced by a driver waveform corresponding to the output signal of a selected cell, usually an
invertor or a buffer, under different net length loading conditions. There are as many driver
waveforms as different input transition times used to build the lookup tables (LUTs), each waveform
corresponding to an input transition time. The driver waveform for a transition time is obtained by
adjusting its output load, the transition time still beingmeasured between the low and high voltages.
Figure 8.35 shows how themeasured gate delay increases as the input transition times become
longer. The plotted lines are parallel under heavy output load conditions, which shows that that a slow
input waveform interacts only non-linearly with output load derating for light output loads.

TheMiller effect is the amplification of the capacitance from the output of an inverting voltage
amplifier back to its input. JohnMiltonMiller identified this effect while working on vacuum tubes in
1920, but it also applies to CMOS logic gates. Any parasitic capacitance between the input and output

458

Chapter 8 | Fabrication and Production

Figure 8.35 Delay versus output loading capacitance for various input transition rates

of an inverting gate is amplified because the input and output are switching in opposite directions, as
shown in Figure 8.36. As transistors have shrunk, theMiller capacitance has becomemore significant
because the distance between the drain and gate has decreased and because the switching time has
decreased. TheMiller capacitance also distorts waveforms andmust be factored into delaymodels.

Figure 8.36 Input capacitance is augmented or diminished due to theMiller effect. It is augmented by the opposite-moving plate potentials arising from an
inverting configuration, which is the common case

459

Modern SoCDesign

8.4.6 Waveform-based Cell Characterisation
As alreadymentioned, characterisation data for standard cells are nearly always obtained from a
SPICE simulation. This is done by applying a signal to the input pin andmeasuring either the output
voltage or current signal. Alternatively, the current in the power supply or the input pin capacitance
can bemeasured. Running SPICE requires a supplied or extracted SPICE netlist for the cell. This is a
translation of the schematics into the long-established format used by SPICE. A SPICE simulation for
an invertor was presented in Section 4.6.7.

Manufacturing foundries provide SPICEmodel cards for each type of transistor for different VT
values and channel lengths. An extraction deck is also provided. This has the resistive and capacitive
components of each wire extracted from the layout of the cell. (The term deck is an old-fashioned
name for a computer file, dating from the days of punched cards.) The resistance and capacitance are
based on the size of the nets and the spacing between them. When used in a physical implementation
of a circuit, each standard cell is abutted to other standard cells. Routing nets may fly over the cells
andmay add capacitive components that modify the electrical features of the cell. Since SPICE FET
models account for proximity effects, it is necessary to extract the cell netlist from a realistic
environment. To avoid the need to consider all possible cases of neighbour cells and routing over the
cell, the cell netlist is extracted for the worst-case and best-case configurations, which are then
associated with the worst-case and best-case timing corners.

The slew rate of a logic net is the rate of change of its voltage when switching between logic values. It
can be expressed in volts per picosecond. As presented in Section 4.6.4, historically, the signal applied
to the input pin of a cell was a simple signal: a linear voltage ramp ranging from 0 to the power-supply
voltage Vdd. Net transition times cannot bemeasured from 0 to 100 per cent of the output signal
given the non-linear shapes; instead, they aremeasured between selected low and high ratios, typical
values being 20–80 per cent or 30–70 per cent. The low and high ratios are usually picked tomaximise
the accuracy of the timing analysis compared to a SPICE simulation. The output current waveform
depends on the derivative of the output voltage across the output load and hence, the slew rate.

For more advanced process nodes, using a linear segment input signal has proven to be inaccurate, as
it is not sufficiently representative of the actual voltage waveform. Thus, the linear input signal has
been replaced by a driver waveform corresponding to the output signal of a selected cell, usually an
invertor or a buffer, under different net length loading conditions. There are as many driver
waveforms as different input transition times used to build the lookup tables (LUTs), each waveform
corresponding to an input transition time. The driver waveform for a transition time is obtained by
adjusting its output load, the transition time still beingmeasured between the low and high voltages.
Figure 8.35 shows how themeasured gate delay increases as the input transition times become
longer. The plotted lines are parallel under heavy output load conditions, which shows that that a slow
input waveform interacts only non-linearly with output load derating for light output loads.

TheMiller effect is the amplification of the capacitance from the output of an inverting voltage
amplifier back to its input. JohnMiltonMiller identified this effect while working on vacuum tubes in
1920, but it also applies to CMOS logic gates. Any parasitic capacitance between the input and output

458

Chapter 8 | Fabrication and Production

Figure 8.35 Delay versus output loading capacitance for various input transition rates

of an inverting gate is amplified because the input and output are switching in opposite directions, as
shown in Figure 8.36. As transistors have shrunk, theMiller capacitance has becomemore significant
because the distance between the drain and gate has decreased and because the switching time has
decreased. TheMiller capacitance also distorts waveforms andmust be factored into delaymodels.

Figure 8.36 Input capacitance is augmented or diminished due to theMiller effect. It is augmented by the opposite-moving plate potentials arising from an
inverting configuration, which is the common case

459

Modern SoCDesign

Figure 8.37 Real-world gate, with a linear slew input waveform, showing the timing behaviour of Vin , Vout and Iout

Figure 8.37 shows real-world timing waveforms, illustrating theMiller effect and limited slew input
signals. To increase timing accuracy, the output current and voltage waveforms are sampled and
stored in LUTs in the Liberty file (Section 8.12.6) for each input transition time and output load. The
cell timing accuracy is not improved, as the timingmeasurement still depends on the delay and the
output transition time for an input transition time and output load. These waveforms are used to
improve the timing accuracy in the wires, which aremodelled as distributed RC networks.

8.4.7 Noise Characterisation
For digital logic to remain digital, noise levels must be kept under control. If the noise level exceeds
the noisemargins (Section 2.6.3), the logic will behave in analogueways, meaning zeros and onesmay
not be adequately distinguished. There are twomain forms of circuit noise in digital electronics:

1. Signal crosstalk arises when two nets run together for a long distance in parallel. Because of the
stray capacitance, if one experiences a noise voltage then the other makes a transition. Inductive
coupling is a potential issue too. Both effects are exacerbated if the transition has a high slew rate,
since they are proportional to the rate of change of voltage and current in the conductor,
respectively.

2. Power supply noise arises when the current that gates draw from the supply or dissipate into the
ground rail changes. This is mostly due to the inductance of the power rails, but resistance is also
important, especially in power-gating transistors (Figure 4.35). In CMOS, the dynamic current is
always greater than the static current and it also varies muchmore, as its name suggests. The

460

Chapter 8 | Fabrication and Production

supply current changes when a gate driving a long net charges and discharges its capacitive load,
lookingmuch like the output current in Figure 8.37. Both the resistive and inductive elements of
the supply network develop noise proportional to the output slew rate. For the resistive element,
this is because the net output current depends on the slew rate. For the inductive element, this is
intrinsic since V= LdI/dt. Power supply noise is reduced by arranging the power supply structures
in a grid and adding decoupling capacitors between the rails to reduce locally the effective supply
impedance (Section 8.6.1). Such capacitors can be fabricated in VLSI using reverse-biased diodes,
which can be built in a high-walled trench to increase their effective plate area while not consuming
toomuch real estate.

If the ground potential of a gate rises as its output switches from one to zero, this so-called ground
bounce causes the effective voltage on its input contacts to decrease. In the worst case, the gate
experiences a one-to-zero glitch on some inputs. For CMOSVLSI, the supply rail is the voltage
reference for the P-type transistors, and so there is a similar effect for the supply rail too. The level of
general activity in nearby cells causes a slightly different effect, called supply droop, which comprises
lower-frequency variations in the operating voltage that cause the supply to be reduced for a period
of several gate switching times.

The noise characterisation for a cell includes several types of sampled data: (1) the static voltage
transfer curve, (2) the output impedance as a function of the input and output voltages, (3) the output
voltage waveform for a few selected input transition times under various output load values and (4)
the output voltage waveform in response to an input triangular signal of fixed height (voltage) and
width (time). The output impedance of a cell alters how susceptible its output network is to crosstalk.
The triangle simulates a rail bounce. At all points, the instantaneous derivative of the transfer function
is critical, since if this is greater than unity in absolute terms, noise will be amplified by the cell.

8.5 Gate Arrays
In standard cell designs, cells from the library can freely be placed anywhere on the silicon and the
number of I/O pads and the size of the die can freely be chosen. Clearly, this requires that all the
masks used for a chip are unique to that design and cannot be used again. On the other hand, a gate
array is a piece of silicon with a predefined component layout such that a particular design can be
implemented using customwiring between the available components.

Silicon vendors offer a range of chip sizes for gate array designs. Each size of chip has a fixed layout
and the location of each transistor, resistor and I/O pad is common to every design that uses that size.
A particular design is fabricated on the smallest array onwhich it can fit, but, nonetheless, a fair
percentage of the logic cells are not used. This can lead to a low density of active silicon, especially if
many hard IP blocks are present as macrocells that are unused.

Gate arrays can bemask-programmed or field-programmed. Formask-programmed devices, the
customwiring is implemented using two or three layers of custommetal wiring. Therefore, only two
or three custommasks are needed for a new design. Fixed-pin arrangements also amortise design

461

Modern SoCDesign

Figure 8.37 Real-world gate, with a linear slew input waveform, showing the timing behaviour of Vin , Vout and Iout

Figure 8.37 shows real-world timing waveforms, illustrating theMiller effect and limited slew input
signals. To increase timing accuracy, the output current and voltage waveforms are sampled and
stored in LUTs in the Liberty file (Section 8.12.6) for each input transition time and output load. The
cell timing accuracy is not improved, as the timingmeasurement still depends on the delay and the
output transition time for an input transition time and output load. These waveforms are used to
improve the timing accuracy in the wires, which aremodelled as distributed RC networks.

8.4.7 Noise Characterisation
For digital logic to remain digital, noise levels must be kept under control. If the noise level exceeds
the noisemargins (Section 2.6.3), the logic will behave in analogueways, meaning zeros and onesmay
not be adequately distinguished. There are twomain forms of circuit noise in digital electronics:

1. Signal crosstalk arises when two nets run together for a long distance in parallel. Because of the
stray capacitance, if one experiences a noise voltage then the other makes a transition. Inductive
coupling is a potential issue too. Both effects are exacerbated if the transition has a high slew rate,
since they are proportional to the rate of change of voltage and current in the conductor,
respectively.

2. Power supply noise arises when the current that gates draw from the supply or dissipate into the
ground rail changes. This is mostly due to the inductance of the power rails, but resistance is also
important, especially in power-gating transistors (Figure 4.35). In CMOS, the dynamic current is
always greater than the static current and it also varies muchmore, as its name suggests. The

460

Chapter 8 | Fabrication and Production

supply current changes when a gate driving a long net charges and discharges its capacitive load,
lookingmuch like the output current in Figure 8.37. Both the resistive and inductive elements of
the supply network develop noise proportional to the output slew rate. For the resistive element,
this is because the net output current depends on the slew rate. For the inductive element, this is
intrinsic since V= LdI/dt. Power supply noise is reduced by arranging the power supply structures
in a grid and adding decoupling capacitors between the rails to reduce locally the effective supply
impedance (Section 8.6.1). Such capacitors can be fabricated in VLSI using reverse-biased diodes,
which can be built in a high-walled trench to increase their effective plate area while not consuming
toomuch real estate.

If the ground potential of a gate rises as its output switches from one to zero, this so-called ground
bounce causes the effective voltage on its input contacts to decrease. In the worst case, the gate
experiences a one-to-zero glitch on some inputs. For CMOSVLSI, the supply rail is the voltage
reference for the P-type transistors, and so there is a similar effect for the supply rail too. The level of
general activity in nearby cells causes a slightly different effect, called supply droop, which comprises
lower-frequency variations in the operating voltage that cause the supply to be reduced for a period
of several gate switching times.

The noise characterisation for a cell includes several types of sampled data: (1) the static voltage
transfer curve, (2) the output impedance as a function of the input and output voltages, (3) the output
voltage waveform for a few selected input transition times under various output load values and (4)
the output voltage waveform in response to an input triangular signal of fixed height (voltage) and
width (time). The output impedance of a cell alters how susceptible its output network is to crosstalk.
The triangle simulates a rail bounce. At all points, the instantaneous derivative of the transfer function
is critical, since if this is greater than unity in absolute terms, noise will be amplified by the cell.

8.5 Gate Arrays
In standard cell designs, cells from the library can freely be placed anywhere on the silicon and the
number of I/O pads and the size of the die can freely be chosen. Clearly, this requires that all the
masks used for a chip are unique to that design and cannot be used again. On the other hand, a gate
array is a piece of silicon with a predefined component layout such that a particular design can be
implemented using customwiring between the available components.

Silicon vendors offer a range of chip sizes for gate array designs. Each size of chip has a fixed layout
and the location of each transistor, resistor and I/O pad is common to every design that uses that size.
A particular design is fabricated on the smallest array onwhich it can fit, but, nonetheless, a fair
percentage of the logic cells are not used. This can lead to a low density of active silicon, especially if
many hard IP blocks are present as macrocells that are unused.

Gate arrays can bemask-programmed or field-programmed. Formask-programmed devices, the
customwiring is implemented using two or three layers of custommetal wiring. Therefore, only two
or three custommasks are needed for a new design. Fixed-pin arrangements also amortise design

461

Modern SoCDesign

efforts in packaging design and characterisation. Mask-programmed arrays were popular in the
1990s but today tend to be used only for niche applications, such as for ultra-high frequencies (above
20GHz), perhaps using GaAs instead of silicon as the semiconductor. Figure 8.38 shows themetal
layers of an example of amask-programmed gate array. The regular layout is clear. The bond pads can
be seen around the edge. Thewhite patches are areas of wasted silicon.

Figure 8.38Metal layers in a mask-programmed gate array (ECL codec for fibre optic ring network [12])

On the other hand, FPGAs are used very widely today and account for more than one fifth of the
semiconductor market by revenue. The programming in an FPGA is purely electronic and takes place
at device power-up time. Both the logic elements and the wiring are programmable in an FPGA. The
wiring is programmed using pass-transistor multiplexers.

8.5.1 Pass-transistorMultiplexers
A transmission gate, also known as a bilateral switch, acts like an electromechanical relay. When
closed, it can carry an analogue or digital signal in either direction andwhen open, the contacts are
isolated. Figure 8.39 shows a circuit and typical symbols. A pair of FETs connect terminals P andQ
together when the S input is high, but when S is low, neither conducts. Two transistors are used since
each has a region of poor conduction where the other has good conduction. The poor conduction
region for theN-FET is where the input voltage (on either P orQ) is high, since the potential difference
between the gate and the ends of the channel is close to zero. When enabled, such circuits are very

462

Chapter 8 | Fabrication and Production

fast at conveying signals between the two terminals since the transistors are essentially already on
when the signal arrives.

P

S

Q

Vss

Vdd

P-FET

N-FET

P

S

Q

P

S

Q

Figure 8.39 Transmission gate or bilateral switch: internal wiring (left) and schematic symbols (right)

It is common to remove one of the FETs from a transmission gate. This gives a pass-transistor
configuration. A P-FET requires more area for the same on-resistance as an N-FET, so, generally, it is
the P-FET that is removed to save themost area. A pass transistor is a cheap (in terms of area) and
efficient (in delay terms) form of programmable wiring, but, comparedwith a logic gate, it attenuates
rather than amplifies the signal. A good quality logic one voltage fed into a pass transistor comes out
degraded. Such a signal must not be used as the control input to a further pass transistor since this will
approximately double the degrading, but it can be passed through another pass transistor without
problem provided that the transistor has the full logic one voltage on its gate.

Hence, subject to wiring constraints, a pass transistor is a high-performance low-area input channel
for amultiplexer. Figure 8.40 compares two types of pass-transistor multiplexer with an active logic
two-input multiplexer. If wide busses are to bemultiplexed, the logic driving the gates of each bit line
does not need to be replicated. The structure is easy to lay out, as the gate net crosses the channel
diffusion regions of multiple bit lanes. Moreover, multiple gates can cross the same channel diffusion
line, creating a succession of pass transistors in series, as shown on the right. An alternative structure,
which has a lower on-resistance and hence, lower delay, at the expense of control logic, is to use a pass
transistor per input and use a controlling binary-to-unary decoder. Again, for large words, the
decoder area is amortised over all bit lanes.

X0

X1

S

Y

a) Active multiplexer

X0

X1

S

Y

b) Pass transistor multiplexer

Vss

Vss

X0

X1

S0

Y

c) 4-to-1, pass-transistor multiplexer

X2

X3

S1

Figure 8.40 An active multiplexer (a) needs more silicon area than a pass-transistor multiplexer (b), but restores logic levels rather than degrading the signal.
Larger pass-transistor multiplexers (c) are efficient and easy to lay out

463

Modern SoCDesign

efforts in packaging design and characterisation. Mask-programmed arrays were popular in the
1990s but today tend to be used only for niche applications, such as for ultra-high frequencies (above
20GHz), perhaps using GaAs instead of silicon as the semiconductor. Figure 8.38 shows themetal
layers of an example of amask-programmed gate array. The regular layout is clear. The bond pads can
be seen around the edge. Thewhite patches are areas of wasted silicon.

Figure 8.38Metal layers in a mask-programmed gate array (ECL codec for fibre optic ring network [12])

On the other hand, FPGAs are used very widely today and account for more than one fifth of the
semiconductor market by revenue. The programming in an FPGA is purely electronic and takes place
at device power-up time. Both the logic elements and the wiring are programmable in an FPGA. The
wiring is programmed using pass-transistor multiplexers.

8.5.1 Pass-transistorMultiplexers
A transmission gate, also known as a bilateral switch, acts like an electromechanical relay. When
closed, it can carry an analogue or digital signal in either direction andwhen open, the contacts are
isolated. Figure 8.39 shows a circuit and typical symbols. A pair of FETs connect terminals P andQ
together when the S input is high, but when S is low, neither conducts. Two transistors are used since
each has a region of poor conduction where the other has good conduction. The poor conduction
region for theN-FET is where the input voltage (on either P orQ) is high, since the potential difference
between the gate and the ends of the channel is close to zero. When enabled, such circuits are very

462

Chapter 8 | Fabrication and Production

fast at conveying signals between the two terminals since the transistors are essentially already on
when the signal arrives.

P

S

Q

Vss

Vdd

P-FET

N-FET

P

S

Q

P

S

Q

Figure 8.39 Transmission gate or bilateral switch: internal wiring (left) and schematic symbols (right)

It is common to remove one of the FETs from a transmission gate. This gives a pass-transistor
configuration. A P-FET requires more area for the same on-resistance as an N-FET, so, generally, it is
the P-FET that is removed to save themost area. A pass transistor is a cheap (in terms of area) and
efficient (in delay terms) form of programmable wiring, but, comparedwith a logic gate, it attenuates
rather than amplifies the signal. A good quality logic one voltage fed into a pass transistor comes out
degraded. Such a signal must not be used as the control input to a further pass transistor since this will
approximately double the degrading, but it can be passed through another pass transistor without
problem provided that the transistor has the full logic one voltage on its gate.

Hence, subject to wiring constraints, a pass transistor is a high-performance low-area input channel
for amultiplexer. Figure 8.40 compares two types of pass-transistor multiplexer with an active logic
two-input multiplexer. If wide busses are to bemultiplexed, the logic driving the gates of each bit line
does not need to be replicated. The structure is easy to lay out, as the gate net crosses the channel
diffusion regions of multiple bit lanes. Moreover, multiple gates can cross the same channel diffusion
line, creating a succession of pass transistors in series, as shown on the right. An alternative structure,
which has a lower on-resistance and hence, lower delay, at the expense of control logic, is to use a pass
transistor per input and use a controlling binary-to-unary decoder. Again, for large words, the
decoder area is amortised over all bit lanes.

X0

X1

S

Y

a) Active multiplexer

X0

X1

S

Y

b) Pass transistor multiplexer

Vss

Vss

X0

X1

S0

Y

c) 4-to-1, pass-transistor multiplexer

X2

X3

S1

Figure 8.40 An active multiplexer (a) needs more silicon area than a pass-transistor multiplexer (b), but restores logic levels rather than degrading the signal.
Larger pass-transistor multiplexers (c) are efficient and easy to lay out

463

Modern SoCDesign

8.5.2 Field-programmable Gate Arrays
As already stated, over 20 per cent of chip sales revenue is now from field-programmable logic
devices. These chips can be programmed electronically on the user’s site to provide the desired
function. Programmable array logic (PAL) and complex programmable logic devices (CPLDs) are
forms of programmable logic that are fast and small. They are used for high-performance glue logic to
create interfaces between standard parts. Field-programmable devices are normally volatile (with
programming being required after every power-up), reprogrammable or one-time programmable,
which depends on how the programming information is stored inside the device, such as in RAM cells
or in any of the ways used for ROM, such as electrostatic charge storage (e.g. flash).

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLBCLB CLB

CLB

SWITCH
MATRIX

CLB

CLB

SWITCH
MATRIX

SWITCH
MATRIX

Bond
pad

IOB

Bond
pad

IOB

Bond
pad

IOB

Bond
pad

Bond
pad IOBBond

pad IOBBond
pad IOB

Edge of die

Figure 8.41 FPGA, showing the I/O blocks around the edge, the interconnection matrix blocks and the configurable logic blocks. Recently, the regular
structure has been broken up by custom blocks, including RAM andmultiplier (aka DSP) blocks

Themost important field-programmable devices today are field-programmable gate arrays (FPGAs).
An FPGAmainly consists of an array of configurable logic blocks (CLBs) and programmable wiring
structures, as shown in Figure 8.41. Not shown is a fair amount of hidden logic and configuration
memory, which are used just for programming it. Also, some I/O pins are dedicated to programming.

464

Chapter 8 | Fabrication and Production

Figure 8.42 shows the basic structure of aminimal CLB and an I/O block (IOB). This CLB contains two
D-types and two lookup tables (LUTs). A bypass multiplexor per D-type enables it to be ignored for
combinational logic use. The LUT required in this example is a 32×1 SRAM. It can implement any logic
function with five inputs. The CLB contains two such LUTswith additional steering logic allowing local
feedback to replace inputs from the inter-CLBwiring. Modern structures allow the flexible sharing of
LUT RAMbetween up to four D-types. The RAM can be fractured in various ways to implement, for
instance, two functions of five inputs or one function of six inputs.

General
inputs

Combinatorial
function

generator

Clock input

First output

Second Output

Programmable
multiplexers

D Q

D Q

Bond PAD

Input buffer

Input

Output

Tristate
control

Output
enable

Programmable
multiplexor

1
0

Output buffer

Connections
to

central
array.

Figure 8.42 CLB (left) and an IOB (right) for a simple FPGA

The IOB illustrated can be programmed to be an input, an output or a tri-state output. Modern IOBs
use 20 or so programming bits to alter fine-grained aspects (such as the slew rate and logic levels) as
well as pull-up and series-termination resistors. Also, many IOBs are switchable between
general-purpose use and direct wiring to a hard I/Omacro block such as an EthernetMAC or a
SERDES (Section 3.8).

Much of the area of an FPGA has programmable wiring. A switchmatrix is implemented using
pass-transistormultiplexers (Section 8.5.1). Thematrix supports only a limited fraction of the possible
interconnection patterns between its terminals, but this tends to bemitigated by additional
programmablemultiplexers to select which fabric nets are fed as inputs into the CLBs. Dedicated,
low-skew or low-delay wiring for clock nets or for fast ripple-carry adders is available in most FPGAs.
Most also contain a long line for sending signals long distances without switching, which helps to
overcome the 2-D planar limitations (Section 3.4).

The first FPGA devices were developed in about 1990. These were devices like the Xilinx XC2064,
which had 64 logic blocks. However, capacities have grown enormously, followingMoore’s law. Key
statistics for some contemporary devices are listed in Table 6.4. Modern FPGAs have several million
flip-flops, manymegabytes of on-chip RAM and a good assortment of peripheral devices, such as 3
and 75Gb/s serial transceivers (Section 3.8). These FPGAs allow the LUT RAM to be used as user
RAM and also provide two other forms of dedicated RAMblock. The so-called block RAMs can be
configured to act withmany different wordwidths, different numbers of words and be single- or
dual-ported . They even have a FIFOmode. UltraRAM is a recent architectural addition. It has a
higher density and uses internal error correction (Section 4.7.6).

465

Modern SoCDesign

8.5.2 Field-programmable Gate Arrays
As already stated, over 20 per cent of chip sales revenue is now from field-programmable logic
devices. These chips can be programmed electronically on the user’s site to provide the desired
function. Programmable array logic (PAL) and complex programmable logic devices (CPLDs) are
forms of programmable logic that are fast and small. They are used for high-performance glue logic to
create interfaces between standard parts. Field-programmable devices are normally volatile (with
programming being required after every power-up), reprogrammable or one-time programmable,
which depends on how the programming information is stored inside the device, such as in RAM cells
or in any of the ways used for ROM, such as electrostatic charge storage (e.g. flash).

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLB

SWITCH
MATRIX

CLBCLB CLB

CLB

SWITCH
MATRIX

CLB

CLB

SWITCH
MATRIX

SWITCH
MATRIX

Bond
pad

IOB

Bond
pad

IOB

Bond
pad

IOB

Bond
pad

Bond
pad IOBBond

pad IOBBond
pad IOB

Edge of die

Figure 8.41 FPGA, showing the I/O blocks around the edge, the interconnection matrix blocks and the configurable logic blocks. Recently, the regular
structure has been broken up by custom blocks, including RAM andmultiplier (aka DSP) blocks

Themost important field-programmable devices today are field-programmable gate arrays (FPGAs).
An FPGAmainly consists of an array of configurable logic blocks (CLBs) and programmable wiring
structures, as shown in Figure 8.41. Not shown is a fair amount of hidden logic and configuration
memory, which are used just for programming it. Also, some I/O pins are dedicated to programming.

464

Chapter 8 | Fabrication and Production

Figure 8.42 shows the basic structure of aminimal CLB and an I/O block (IOB). This CLB contains two
D-types and two lookup tables (LUTs). A bypass multiplexor per D-type enables it to be ignored for
combinational logic use. The LUT required in this example is a 32×1 SRAM. It can implement any logic
function with five inputs. The CLB contains two such LUTswith additional steering logic allowing local
feedback to replace inputs from the inter-CLBwiring. Modern structures allow the flexible sharing of
LUT RAMbetween up to four D-types. The RAM can be fractured in various ways to implement, for
instance, two functions of five inputs or one function of six inputs.

General
inputs

Combinatorial
function

generator

Clock input

First output

Second Output

Programmable
multiplexers

D Q

D Q

Bond PAD

Input buffer

Input

Output

Tristate
control

Output
enable

Programmable
multiplexor

1
0

Output buffer

Connections
to

central
array.

Figure 8.42 CLB (left) and an IOB (right) for a simple FPGA

The IOB illustrated can be programmed to be an input, an output or a tri-state output. Modern IOBs
use 20 or so programming bits to alter fine-grained aspects (such as the slew rate and logic levels) as
well as pull-up and series-termination resistors. Also, many IOBs are switchable between
general-purpose use and direct wiring to a hard I/Omacro block such as an EthernetMAC or a
SERDES (Section 3.8).

Much of the area of an FPGA has programmable wiring. A switchmatrix is implemented using
pass-transistormultiplexers (Section 8.5.1). Thematrix supports only a limited fraction of the possible
interconnection patterns between its terminals, but this tends to bemitigated by additional
programmablemultiplexers to select which fabric nets are fed as inputs into the CLBs. Dedicated,
low-skew or low-delay wiring for clock nets or for fast ripple-carry adders is available in most FPGAs.
Most also contain a long line for sending signals long distances without switching, which helps to
overcome the 2-D planar limitations (Section 3.4).

The first FPGA devices were developed in about 1990. These were devices like the Xilinx XC2064,
which had 64 logic blocks. However, capacities have grown enormously, followingMoore’s law. Key
statistics for some contemporary devices are listed in Table 6.4. Modern FPGAs have several million
flip-flops, manymegabytes of on-chip RAM and a good assortment of peripheral devices, such as 3
and 75Gb/s serial transceivers (Section 3.8). These FPGAs allow the LUT RAM to be used as user
RAM and also provide two other forms of dedicated RAMblock. The so-called block RAMs can be
configured to act withmany different wordwidths, different numbers of words and be single- or
dual-ported . They even have a FIFOmode. UltraRAM is a recent architectural addition. It has a
higher density and uses internal error correction (Section 4.7.6).

465

Modern SoCDesign

As well as RAM, fast paths for adder carry chains were soon added to FPGA architectures.
Multiply–accumulate blocks, called digital signal processing (DSP) blocks, were another another
important addition because implementingmultipliers from LUTs is highly inefficient.

Figure 8.43 shows the DSP block from a Xilinx Virtex family FPGA. ADSP block like this mainly
contains amultiplier that delivers a 48-bit result and an adder for summing intermediate results from
longmultiplication. The output from one block has a high-performance programmable connection to
the summation input of a neighbour. Themultiplier operands are two’s complement 25- and 18-bit
operands. For a 32- or 64-bit multiplier, an appropriate number of these need to be combined using
longmultiplication implemented in user wiring but exploiting the fast summation path.
Single-precision floating-point arithmetic has a 24-bit unsignedmantissa; hence, 25-bit signed
operationmeans the full mantissa can bemultiplied with twoDSP blocks.

Figure 8.43 The DSP block in the Xilinx Virtex 7 family (©Xilinx Inc). The main functions offered are multiply–accumulate andmultiply–sum for long
multiplication of wider words than supported by the 25×18 base unit

The logic density can be 10–20 per cent of that of masked ASIC, leading to considerably larger dies for
the same functionality [13]. Hence, there aremuch greater per unit costs (Section 8.11.1). Moreover,
comparedwith standard cell logic, FPGAs tend to be slow, achieving perhaps one third of the clock
frequency of the equivalent masked ASIC. The slowness arises from the longer nets spanning the
larger die area and because the signals pass through programmable wiring junctions and the
pass-transistor resistance increases the time constant.

FPGAs have a number of key use cases:

Low-volumeASIC replacement: Due to the high NRE (Section 8.11) of a masked device and the
very lowNRE for implementing an FPGA, FPGAs are preferred to ASICs for low-volume production
runs. For instance, television and sound recording equipment, such asmixing desks and effects
processors, have production runs of just thousands. If the silicon cost for an FPGA is around £1000

466

Chapter 8 | Fabrication and Production

and the NRE for an equivalent SoC is several million, an equipmentmanufacturer will generally opt
to use an FPGA for their products.

ASIC prototyping: If a new IP blockmust interface with a real-time peripheral, an FPGA
implementation of the logic is generally used for functional verification. Examples include printers,
scanners, modems and radio-frequency links. Because the achievable FPGA clock frequency is
generally lower than the ASIC equivalent, a degree of manual reorganisation of the logic is
sometimes needed, such as using a wider bus from the AFE (Section 2.7.6) to themain logic.
However, this will be structured so that as much RTL as possible is identical with that in the ASIC
version. The ASIC prototypemay also contain a greater amount of instrumentation that captures
details to trace buffers.

ASIC emulation: Aside fromRTL simulation, ASIC emulation can have either a hardware or
software approach. ESL softwaremodels and Verilog-to-C flows are increasingly popular, as
discussed in Section 5.1.1, but FPGA-based emulation boxes are also still used. These are described
in Section 8.5.4.

Algorithm acceleration: FPGAs are increasingly seen as computing elements in their own right,
alongside CPUs and GPUs. Cloud computing, such as AmazonWeb Services, offers FPGA blades to
rent by theminute (Section 6.4). Energy savings of two orders of magnitude are often seenwhen a
suitable application is accelerated on FPGA. Due to themassively increased parallelism, commonly
the execution speed can also increase, although this is hampered by the order of magnitude
reduction in the clock frequency comparedwith a CPU (e.g. 200MHz instead of 2GHz).

8.5.3 Structured ASIC
If an FPGA-based product has a considerable product uptake, one way to reduce production costs is
to replace the FPGAwith a structured ASIC, which closes the gap between ASICs and FPGAs. The
design is prototyped on FPGA and early customer shipments likewise. However, the FPGA vendor
offers a turnkey cost reduction path. For example, two implementations of the same design (Xilinx
EasyPath in 2005) cross over at 6250 units:

Device NRE Unit cost
Spartan-3 FPGA 0 $12
EasyPath E3S1500 $75000 hphantom0$1

It is also possible to sell a customer a cost-reduced FPGA device that has partially failed its production
test. This is acceptable provided the faults are known to be irrelevant for the customer’s application.
However, the option of going from FPGA to ASICmay be preferred since the die will be significantly
smaller (e.g. 1/30th the size [13]).

8.5.4 FPGA SoC Emulators
Aswell as themanual development of FPGA prototypes, FPGAs can be used as part of a turnkey EDA
accelerator. Such tools aim to simulate a complete SoC at above one tenth the target clock frequency,

467

Modern SoCDesign

As well as RAM, fast paths for adder carry chains were soon added to FPGA architectures.
Multiply–accumulate blocks, called digital signal processing (DSP) blocks, were another another
important addition because implementingmultipliers from LUTs is highly inefficient.

Figure 8.43 shows the DSP block from a Xilinx Virtex family FPGA. ADSP block like this mainly
contains amultiplier that delivers a 48-bit result and an adder for summing intermediate results from
longmultiplication. The output from one block has a high-performance programmable connection to
the summation input of a neighbour. Themultiplier operands are two’s complement 25- and 18-bit
operands. For a 32- or 64-bit multiplier, an appropriate number of these need to be combined using
longmultiplication implemented in user wiring but exploiting the fast summation path.
Single-precision floating-point arithmetic has a 24-bit unsignedmantissa; hence, 25-bit signed
operationmeans the full mantissa can bemultiplied with twoDSP blocks.

Figure 8.43 The DSP block in the Xilinx Virtex 7 family (©Xilinx Inc). The main functions offered are multiply–accumulate andmultiply–sum for long
multiplication of wider words than supported by the 25×18 base unit

The logic density can be 10–20 per cent of that of masked ASIC, leading to considerably larger dies for
the same functionality [13]. Hence, there aremuch greater per unit costs (Section 8.11.1). Moreover,
comparedwith standard cell logic, FPGAs tend to be slow, achieving perhaps one third of the clock
frequency of the equivalent masked ASIC. The slowness arises from the longer nets spanning the
larger die area and because the signals pass through programmable wiring junctions and the
pass-transistor resistance increases the time constant.

FPGAs have a number of key use cases:

Low-volumeASIC replacement: Due to the high NRE (Section 8.11) of a masked device and the
very lowNRE for implementing an FPGA, FPGAs are preferred to ASICs for low-volume production
runs. For instance, television and sound recording equipment, such asmixing desks and effects
processors, have production runs of just thousands. If the silicon cost for an FPGA is around £1000

466

Chapter 8 | Fabrication and Production

and the NRE for an equivalent SoC is several million, an equipmentmanufacturer will generally opt
to use an FPGA for their products.

ASIC prototyping: If a new IP blockmust interface with a real-time peripheral, an FPGA
implementation of the logic is generally used for functional verification. Examples include printers,
scanners, modems and radio-frequency links. Because the achievable FPGA clock frequency is
generally lower than the ASIC equivalent, a degree of manual reorganisation of the logic is
sometimes needed, such as using a wider bus from the AFE (Section 2.7.6) to themain logic.
However, this will be structured so that as much RTL as possible is identical with that in the ASIC
version. The ASIC prototypemay also contain a greater amount of instrumentation that captures
details to trace buffers.

ASIC emulation: Aside fromRTL simulation, ASIC emulation can have either a hardware or
software approach. ESL softwaremodels and Verilog-to-C flows are increasingly popular, as
discussed in Section 5.1.1, but FPGA-based emulation boxes are also still used. These are described
in Section 8.5.4.

Algorithm acceleration: FPGAs are increasingly seen as computing elements in their own right,
alongside CPUs and GPUs. Cloud computing, such as AmazonWeb Services, offers FPGA blades to
rent by theminute (Section 6.4). Energy savings of two orders of magnitude are often seenwhen a
suitable application is accelerated on FPGA. Due to themassively increased parallelism, commonly
the execution speed can also increase, although this is hampered by the order of magnitude
reduction in the clock frequency comparedwith a CPU (e.g. 200MHz instead of 2GHz).

8.5.3 Structured ASIC
If an FPGA-based product has a considerable product uptake, one way to reduce production costs is
to replace the FPGAwith a structured ASIC, which closes the gap between ASICs and FPGAs. The
design is prototyped on FPGA and early customer shipments likewise. However, the FPGA vendor
offers a turnkey cost reduction path. For example, two implementations of the same design (Xilinx
EasyPath in 2005) cross over at 6250 units:

Device NRE Unit cost
Spartan-3 FPGA 0 $12
EasyPath E3S1500 $75000 hphantom0$1

It is also possible to sell a customer a cost-reduced FPGA device that has partially failed its production
test. This is acceptable provided the faults are known to be irrelevant for the customer’s application.
However, the option of going from FPGA to ASICmay be preferred since the die will be significantly
smaller (e.g. 1/30th the size [13]).

8.5.4 FPGA SoC Emulators
Aswell as themanual development of FPGA prototypes, FPGAs can be used as part of a turnkey EDA
accelerator. Such tools aim to simulate a complete SoC at above one tenth the target clock frequency,

467

Modern SoCDesign

but withminimal manual intervention and little or nomanual modification to the RTL. Examples are
Protium fromCadence Design Systems and Veloce fromMentor Graphics.

The SoC RTL is refactored by a compiler that is part of the SoC emulator. It is then automatically
partitioned and placed on a number of physical FPGAs, which are the companion part of the emulator
package. The partition is made invisible by the compiler andmay involvemultiplexing a number of
design nets on a single inter-FPGA net. FPGAs do not easily support a significant amount of clock
gating (as few special nets are optimised for clock distribution), so a processing step converts from a
gated clock to a clock-enable form. The number of clock and power domains will, typically, be reduced
as well.

The idea is that the FPGAs are largely hidden from the RTL engineer, although, in reality, RTL
engineers are fully familiar with FPGAs and able to compensate for where the idealised flow breaks
down. A SoC uses licensed IP blocks from third parties. Automated substitution of alternative IP
blocks tends to work effectively for RAM and ALUs, but a DRAM likely uses different parts and
channel structure. Other IP blocks correspond to hardenedmacros on the FPGAs in the emulator, so
automatic substitution can be applied. If an IP block is supplied in synthesisable form, it can be
synthesised in the FPGA programmable fabric. Many FPGAs contain Arm cores, as domany SoCs, but
more than likely, there will be differences in the Arm core version provided.

Despite these shortcomings, FPGA emulation provides a high-performance platform that can be
useful for real-time or near real-timewhole-system evaluation. Such emulators are often leased by
the day and can be cloud-based, so it is easy for amanager tomake a cost trade-off against slower
virtual platforms that may also be running in the cloud. An emulator has workflowmanagement tools,
such as a job queue, so that various teams can exploit it back to back. A cloud-based emulator can
consecutively run different tests for companies with competing products!

8.6 Floor and Power Planning
The floor plan of a SoC depends onmany factors, including the location of important I/O pads for
power supplies, DRAMbanks, low-noise analogue devices, multi-chip stack/MCMvias and so on. The
shape of hardmacros cannot be changed, so thesemust be considered first. Subsystems that run from
the same clock or in the same power-gating domain ideally need to be adjacent.

8.6.1 Power Planning
In a power plan, each subsystem is allocated to a supply rail and power-gating domain
(Section 4.6.10). The power plan depends strongly on the power intent files supplied to the logic
synthesiser, but the precise details vary according to the EDA tool vendor.

Figure 8.44 shows themain ingredients of a power supply design. The illustrated device uses four
external power supplies and internally generates two further supplies. The twomain supplies are
3.3V for the I/O pad ring and 1.1V for themain core logic. It is common to require a higher supply

468

Chapter 8 | Fabrication and Production

voltage to drive signals off-chip than for the core, but evenwhen a common voltage is used, the two
supplies are always fed in separately so that heavy switching currents in the I/O supply do not induce
voltages drops in the inevitable supply wiring inductance that would couple noise into the core logic
(Section 8.12.10). The core logic is run as low as possible due to the V2 energy effect (Section 4.6.1).

AFE

On-chip
regulator

Pad ring
supply

Logic
island 0

(always on)

Logic island 1
(power gated)

Battery
backed
RAM

Battery

ADC

single-bit
DAC

Analogue
supply

Logic island 2
(dynamic voltage scaled)

PLL

GND

+12V

+12V

GND

1V1

3V3

Core logic
supply

P
S
U
C

P
S
U
C

3V3

Figure 8.44 Power and floor plan for a simple SoC along with the external supply, which uses battery-backed RAM (left) and buck regulators (right). PSUC:
power supply controller

Bothmain supplies are from an external 12-V rail. Themain power supply canmore efficiently
generate 12V than 3.3V since the current is correspondingly lower for the same power and the
Schottky rectifier diodes will drop the same voltage, more or less, regardless of the current delivered,
hence, will waste less power. TheMOSFETs in the buck regulators are, however, highly efficient as
they have a very low on-resistance of far less than 1Ω.

The device has a small amount of analogue electronics in its AFE (Section 2.7.6), which is highly
sensitive to supply noise. Hence, its supply and ground are kept separate and have additional filtering
external to the device package.

The fourth external supply is for the battery-backed RAM. Since RAM is volatile, a battery backup is
oneway to preserve the contents during a system power-down. The RAM is powered from themain
supply during normal operation, so the battery needs to supply only aminimal retention voltage to
overcome static leakage in the RAM cells (Section 4.6.10).

Each subsystem or IP block is allocated to a power island in the power intent file. The power and floor
plan then typically arranges each island as a contiguous region that tessellates with the others. Three
core islands are illustrated in our simple example. Island 0 is permanently connected to the 1.1-V core
supply. Island 1 is power-gated off or on (Section 4.6.10). Island 2 has its supply voltage adjusted by an
on-chip regulator, either for data retention or for DVFS (Section 4.6.8). An on-chip regulator is,
typically, a linear regulator instead of a switching regulator because linear regulators do not require
inductors or large capacitors. Although linear regulators are inefficient, wasting energy as heat, there
is still an overall energy saving since a lower current drops the same potential (P=VI) comparedwith
having the island permanently on the full supply voltage.

469

Modern SoCDesign

but withminimal manual intervention and little or nomanual modification to the RTL. Examples are
Protium fromCadence Design Systems and Veloce fromMentor Graphics.

The SoC RTL is refactored by a compiler that is part of the SoC emulator. It is then automatically
partitioned and placed on a number of physical FPGAs, which are the companion part of the emulator
package. The partition is made invisible by the compiler andmay involvemultiplexing a number of
design nets on a single inter-FPGA net. FPGAs do not easily support a significant amount of clock
gating (as few special nets are optimised for clock distribution), so a processing step converts from a
gated clock to a clock-enable form. The number of clock and power domains will, typically, be reduced
as well.

The idea is that the FPGAs are largely hidden from the RTL engineer, although, in reality, RTL
engineers are fully familiar with FPGAs and able to compensate for where the idealised flow breaks
down. A SoC uses licensed IP blocks from third parties. Automated substitution of alternative IP
blocks tends to work effectively for RAM and ALUs, but a DRAM likely uses different parts and
channel structure. Other IP blocks correspond to hardenedmacros on the FPGAs in the emulator, so
automatic substitution can be applied. If an IP block is supplied in synthesisable form, it can be
synthesised in the FPGA programmable fabric. Many FPGAs contain Arm cores, as domany SoCs, but
more than likely, there will be differences in the Arm core version provided.

Despite these shortcomings, FPGA emulation provides a high-performance platform that can be
useful for real-time or near real-timewhole-system evaluation. Such emulators are often leased by
the day and can be cloud-based, so it is easy for amanager tomake a cost trade-off against slower
virtual platforms that may also be running in the cloud. An emulator has workflowmanagement tools,
such as a job queue, so that various teams can exploit it back to back. A cloud-based emulator can
consecutively run different tests for companies with competing products!

8.6 Floor and Power Planning
The floor plan of a SoC depends onmany factors, including the location of important I/O pads for
power supplies, DRAMbanks, low-noise analogue devices, multi-chip stack/MCMvias and so on. The
shape of hardmacros cannot be changed, so thesemust be considered first. Subsystems that run from
the same clock or in the same power-gating domain ideally need to be adjacent.

8.6.1 Power Planning
In a power plan, each subsystem is allocated to a supply rail and power-gating domain
(Section 4.6.10). The power plan depends strongly on the power intent files supplied to the logic
synthesiser, but the precise details vary according to the EDA tool vendor.

Figure 8.44 shows themain ingredients of a power supply design. The illustrated device uses four
external power supplies and internally generates two further supplies. The twomain supplies are
3.3V for the I/O pad ring and 1.1V for themain core logic. It is common to require a higher supply

468

Chapter 8 | Fabrication and Production

voltage to drive signals off-chip than for the core, but evenwhen a common voltage is used, the two
supplies are always fed in separately so that heavy switching currents in the I/O supply do not induce
voltages drops in the inevitable supply wiring inductance that would couple noise into the core logic
(Section 8.12.10). The core logic is run as low as possible due to the V2 energy effect (Section 4.6.1).

AFE

On-chip
regulator

Pad ring
supply

Logic
island 0

(always on)

Logic island 1
(power gated)

Battery
backed
RAM

Battery

ADC

single-bit
DAC

Analogue
supply

Logic island 2
(dynamic voltage scaled)

PLL

GND

+12V

+12V

GND

1V1

3V3

Core logic
supply

P
S
U
C

P
S
U
C

3V3

Figure 8.44 Power and floor plan for a simple SoC along with the external supply, which uses battery-backed RAM (left) and buck regulators (right). PSUC:
power supply controller

Bothmain supplies are from an external 12-V rail. Themain power supply canmore efficiently
generate 12V than 3.3V since the current is correspondingly lower for the same power and the
Schottky rectifier diodes will drop the same voltage, more or less, regardless of the current delivered,
hence, will waste less power. TheMOSFETs in the buck regulators are, however, highly efficient as
they have a very low on-resistance of far less than 1Ω.

The device has a small amount of analogue electronics in its AFE (Section 2.7.6), which is highly
sensitive to supply noise. Hence, its supply and ground are kept separate and have additional filtering
external to the device package.

The fourth external supply is for the battery-backed RAM. Since RAM is volatile, a battery backup is
oneway to preserve the contents during a system power-down. The RAM is powered from themain
supply during normal operation, so the battery needs to supply only aminimal retention voltage to
overcome static leakage in the RAM cells (Section 4.6.10).

Each subsystem or IP block is allocated to a power island in the power intent file. The power and floor
plan then typically arranges each island as a contiguous region that tessellates with the others. Three
core islands are illustrated in our simple example. Island 0 is permanently connected to the 1.1-V core
supply. Island 1 is power-gated off or on (Section 4.6.10). Island 2 has its supply voltage adjusted by an
on-chip regulator, either for data retention or for DVFS (Section 4.6.8). An on-chip regulator is,
typically, a linear regulator instead of a switching regulator because linear regulators do not require
inductors or large capacitors. Although linear regulators are inefficient, wasting energy as heat, there
is still an overall energy saving since a lower current drops the same potential (P=VI) comparedwith
having the island permanently on the full supply voltage.

469

Modern SoCDesign

If flash or dynamic body bias (Section 4.6.10) is used, additional supplies need to be created on-chip
using switched-capacitor invertors. Flash requires voltages of up to 10V or so to drive electron
tunnelling. In this context, an invertor is an electronic circuit that produces a higher voltage from a
lower voltage. Transformers are commonly used in general electrical situations, but on-chip inductors
and transformers of any significant capacity cannot easily be implemented. It is easier tomake on-chip
capacitors.

A switched-capacitor invertor uses one ormore capacitors connected to amesh of diodes and
transistors. An oscillator or clock alternately connects the capacitors in parallel to the local
low-voltage supply and then in series to generate the required higher voltage. While in series, the
charge is coupled into another tank capacitor, which provides smoothing. The purpose of smoothing
is tomaintain the potential while the charge-ferrying capacitors are in the alternate state.

A power planmust be strongly coupled with the chip package design, particularly with respect to
supply pin positioning and any on-chip or in-package decoupling capacitors. A decoupling capacitor is
simply a capacitor between the power and ground that acts as a local energy source for when a
sudden heavy demand arises. It prevents the power supply voltage drooping as a result of the supply
resistance and inductance. An on-chip capacitor is made from a reverse-biased diodewith as large a
junction area as possible. This is achieved in the sameway as for DRAMbit cells by exploiting the third
dimension. The diodes are built in a high-walled trench that increases their effective plate area
without consuming toomuch real estate.

8.7 Flow Steps
As shown in Figure 8.45, the twomain flow steps in a back-end flow, after logic synthesis, are
placement and routing. Power plane and clock distribution networksmust also be synthesised, along
with localised optimisations. As wewill see, a back-end flow involves an enormous amount of design
verification and closure checking. The term ‘closure’ refers to repeatedly makingmodifications until
allmust-have design conditions aremet.

8.7.1 Placement
Placement is the process of assigning (x,y,z) coordinates to each part. The active layer of silicon is
planar, so z=0 for components on-chip, but is higher for themetallisation layers for wiring. Normally,
the goal of placement is tominimise the total length of conductor needed to wire up the design. The
module hierarchy of a design is referred to when looking for closely interconnected cliques of
components that could become neighbours (but this information is lost if there is toomuch flattening).
Placement can be performed by software or manually, or with any level of human participation in
between. Clearly, for a design withmillions of gates, a completely manual approach is impractical.

The layout view of a cell contains all the front-end and back-end layers required to generate the
masks for siliconmanufacturing. The physical implementation of a logic block consists of placing the
cells within a floor plan and connecting them together (routing) withmetal wires. The full layout view

470

Chapter 8 | Fabrication and Production

Gate-level
RTL simulation

Formal Equiv
Checking

Back Annotation

MASK MAKING

Annotated RTL
simulation

Circuit
equivalence

Foundry fabrication
(e.g. TSMC)

Silicon Chips

STRUCTURAL RTL NETLIST

Target Technology
Cell Library

ANNOTATED RTL NETLIST

PASS/FAIL

PASS/FAIL

 ...
AND2 g102(o23, w3, r[4]);
OR2 g103(o24, o23, r[5]);
DFF d99(o25, clk, rst, o24);
...

 ...
AND2 #12 g102(o23, w3, r[4]);
OR2 #31 g103(o24, o23, r[5]);
DFF #121d99(o25, clk, rst, o24);
...

Static-timing
analyser (STA)

LAYOUT
PLACE AND ROUTE

RTL SYNTHESIS
aka

LOGIC SYNTHESIS

Packaging

Timing
signoff

Physical DRC
+ verification

SYNTHESISABLE RTL
Design changes

are required

Figure 8.45Macroscopic back-end flow highlighting the verification flow paths. Figure 8.1 is a detailed flow diagram

VDD

VSS

I0

I1

Y

VDD

VSS

VDD

VSS

I0

I1

Y

VDD

VSS

Figure 8.46 Standard cell polygons for a two-input NOR gate. The abstract view (left) identifies the power connections (top and bottom strips) and the input
and output contact sites (denoted with asterisks) on theM1 andM2metal layers, respectively (shades of blue). The full polygon set (right) is required for final
design rule checking and tapeout. In reality, the right-hand polysilicon layer (red) could be under theM2 output strip but is here shown displaced for clarity

471

Modern SoCDesign

If flash or dynamic body bias (Section 4.6.10) is used, additional supplies need to be created on-chip
using switched-capacitor invertors. Flash requires voltages of up to 10V or so to drive electron
tunnelling. In this context, an invertor is an electronic circuit that produces a higher voltage from a
lower voltage. Transformers are commonly used in general electrical situations, but on-chip inductors
and transformers of any significant capacity cannot easily be implemented. It is easier tomake on-chip
capacitors.

A switched-capacitor invertor uses one ormore capacitors connected to amesh of diodes and
transistors. An oscillator or clock alternately connects the capacitors in parallel to the local
low-voltage supply and then in series to generate the required higher voltage. While in series, the
charge is coupled into another tank capacitor, which provides smoothing. The purpose of smoothing
is tomaintain the potential while the charge-ferrying capacitors are in the alternate state.

A power planmust be strongly coupled with the chip package design, particularly with respect to
supply pin positioning and any on-chip or in-package decoupling capacitors. A decoupling capacitor is
simply a capacitor between the power and ground that acts as a local energy source for when a
sudden heavy demand arises. It prevents the power supply voltage drooping as a result of the supply
resistance and inductance. An on-chip capacitor is made from a reverse-biased diodewith as large a
junction area as possible. This is achieved in the sameway as for DRAMbit cells by exploiting the third
dimension. The diodes are built in a high-walled trench that increases their effective plate area
without consuming toomuch real estate.

8.7 Flow Steps
As shown in Figure 8.45, the twomain flow steps in a back-end flow, after logic synthesis, are
placement and routing. Power plane and clock distribution networksmust also be synthesised, along
with localised optimisations. As wewill see, a back-end flow involves an enormous amount of design
verification and closure checking. The term ‘closure’ refers to repeatedly makingmodifications until
allmust-have design conditions aremet.

8.7.1 Placement
Placement is the process of assigning (x,y,z) coordinates to each part. The active layer of silicon is
planar, so z=0 for components on-chip, but is higher for themetallisation layers for wiring. Normally,
the goal of placement is tominimise the total length of conductor needed to wire up the design. The
module hierarchy of a design is referred to when looking for closely interconnected cliques of
components that could become neighbours (but this information is lost if there is toomuch flattening).
Placement can be performed by software or manually, or with any level of human participation in
between. Clearly, for a design withmillions of gates, a completely manual approach is impractical.

The layout view of a cell contains all the front-end and back-end layers required to generate the
masks for siliconmanufacturing. The physical implementation of a logic block consists of placing the
cells within a floor plan and connecting them together (routing) withmetal wires. The full layout view

470

Chapter 8 | Fabrication and Production

Gate-level
RTL simulation

Formal Equiv
Checking

Back Annotation

MASK MAKING

Annotated RTL
simulation

Circuit
equivalence

Foundry fabrication
(e.g. TSMC)

Silicon Chips

STRUCTURAL RTL NETLIST

Target Technology
Cell Library

ANNOTATED RTL NETLIST

PASS/FAIL

PASS/FAIL

 ...
AND2 g102(o23, w3, r[4]);
OR2 g103(o24, o23, r[5]);
DFF d99(o25, clk, rst, o24);
...

 ...
AND2 #12 g102(o23, w3, r[4]);
OR2 #31 g103(o24, o23, r[5]);
DFF #121d99(o25, clk, rst, o24);
...

Static-timing
analyser (STA)

LAYOUT
PLACE AND ROUTE

RTL SYNTHESIS
aka

LOGIC SYNTHESIS

Packaging

Timing
signoff

Physical DRC
+ verification

SYNTHESISABLE RTL
Design changes

are required

Figure 8.45Macroscopic back-end flow highlighting the verification flow paths. Figure 8.1 is a detailed flow diagram

VDD

VSS

I0

I1

Y

VDD

VSS

VDD

VSS

I0

I1

Y

VDD

VSS

Figure 8.46 Standard cell polygons for a two-input NOR gate. The abstract view (left) identifies the power connections (top and bottom strips) and the input
and output contact sites (denoted with asterisks) on theM1 andM2metal layers, respectively (shades of blue). The full polygon set (right) is required for final
design rule checking and tapeout. In reality, the right-hand polysilicon layer (red) could be under theM2 output strip but is here shown displaced for clarity

471

Modern SoCDesign

is not required, as a simplified abstract viewwith only themetal shapes in the cells is used by the
router. Figure 8.46 shows both views of the same cell.

Each cell is identified by its boundary, which defines its width and height. Cells are horizontally
abutted to the left and right boundaries of adjacent cells. The width of a cell is a multiple of a
repetitive pitch. For advanced process nodes, this is usually the FET gate pitch. It is also called the
contacted poly pitch. Cells are abutted in a row and generally flipped vertically from row to row. Each
row is delimited by the shared power-supply (VDD) and ground (VSS) rails.

Cells occupy the lower layers of a chip and have exclusive use of the active semiconductor layers. The
lowest metal layer, M1, is mainly used by a cell for its input and output contacts as well as some
internal wiring. TheM2 layer is used inmany cells as well. Hence, a cell has routing constraints and
obstacles. The constraints arise from the contact sites. The obstacles arise from a cell’s use of layers
also used for inter-cell routing.

Cell are normally placed tominimise the inter-cell net length, which is the principal aim of placement.
Figure 8.47 shows a placed row of cells, and Figure 8.7 shows several horizontal rows. A constructive
algorithm (Section 6.2.0) may be used to create an initial placement, which is then, typically, optimised
using simulated annealing (Section 6.2). Depending on themanufacturing process, some cells cannot
be abutted without violating the design rules. This can be solved by adding an attribute to the edge of
the cell that would violate a design rule with respect to another abutted cell. An input file is then
created to indicate to the placer the additional spacing required between the two specified edge
attributes. For example, say a cell has edge attribute A and another cell has edge attribute B. A rule
could be that attribute Amust be spaced two contacted poly pitches from attribute B.

Figure 8.47 A placed horizontal strip of standard cells showing the polygons significant for routing, as rendered in a layout editor. The power and ground rails
are a distinctive feature

The logic block areamust be as small as possible tominimise the circuit area. This results in a
reduction of themanufacturing cost sincemore circuits can be fitted onto the silicon wafer. An
implementation aims to achieve themaximum utilisation rate for a given performance. The utilisation
rate is equivalent to the active cell density, which is the total active cell area divided by the floor-plan
area. The inactive area is filled by inactive cells called filler cells or it may be used to add decoupling
capacitors. A logic block requires specific finishing inactive cells at the end of rows and columns and at
inner or outer corners, depending on the shape of the floor plan.

472

Chapter 8 | Fabrication and Production

8.7.2 Clock Tree Insertion
A SoCwithmillions of transistors may use only a handful of different clocks, so an individual clock
must often be distributed to thousands of flip-flops or other clocked primitives, such as an SRAMor
CPU core. The use of H-trees and PLLs for clock distribution was covered in Section 4.9.4. Many
clocks need to be clock-gated (Section 4.6.9), so the H-tree structural hierarchymust be suitable for
accepting the clock gate inputs at appropriate points. The delay through the gates must be suitably
matched against paths that have no gates to avoid shoot-throughs (Section 4.6.9).

Physical distances are neededwhen generating a clock tree, so clock tree synthesis takes place after
placement and before or as part of routing. A routing tool works best when there is no existing wiring
on themetal layers it will use. Hence, clock trees should be routed before general logic nets.
Long-distance clocks mostly use the lowermiddle layers, such asM4 andM5. Once the clock is
designed, the router can further use these layers as it wishes, typically for longer-distance data nets
and busses. Rather than using a dedicated tool, clock tree routing is generally implemented as a
sequence of commands for a generic router, e.g. scripted using TCL.

In an advanced flow, rather than attempting to deliver the clock to every point at once, deliberate
clock skewing (Section 4.9.6) may be used tomaximise timingmargins. If many registers would
nominally toggle together at the same time, then light clock skewing is performed automatically by
the tool to reduce the supply rail noise. A parameter sets themaximum skew value as a percentage of
the fastest clock, usually 15 per cent. Manual edits can also implementmore extreme clock skewing
among consecutive registers of a pipeline. This is needed if the combinational logic is not properly
balanced over the stages. A trial-and-error approachmay be necessary tomeet timing and supply
noise targets simultaneously.

8.7.3 Routing
Once the cells are placed, their pins are interconnected using a succession of metal segments across
themetal stack. Routing is the process of determining the route for the conductors that make up the
design: it joins up all the required contacts. Normally, power supplies are given their own layers (for
circuit boards and chips). Aminimum of two layers of signal routing are needed. A heuristic that
allocates mostly x direction sections on one layer and y direction sections on the next layer is
generally used, since conductors cannot cross each other within one layer. Routing uses a regular
pitch grid for eachmetal layer, as metal wires follow routing tracks. Themetal segments are
connected together with process vias, called cuts in a routing environment. Figure 8.48 shows the
resulting wiring, and Figure 8.49 is a close-up.

Routing is difficult, since inserting a conductor can block the route for another. Finding the optimum
routings and placements for a design has a complexity of at least NP-hard. Hence, heuristic
approaches are always used, along with fairly sophisticated algorithms, such as a greedy algorithm,
plus much trial and error. Some routers use a shove-aside approach, whichmoves already routed
conductors sideways a bit to introduce room for the latest conductor. Themost recent routers first

473

Modern SoCDesign

is not required, as a simplified abstract viewwith only themetal shapes in the cells is used by the
router. Figure 8.46 shows both views of the same cell.

Each cell is identified by its boundary, which defines its width and height. Cells are horizontally
abutted to the left and right boundaries of adjacent cells. The width of a cell is a multiple of a
repetitive pitch. For advanced process nodes, this is usually the FET gate pitch. It is also called the
contacted poly pitch. Cells are abutted in a row and generally flipped vertically from row to row. Each
row is delimited by the shared power-supply (VDD) and ground (VSS) rails.

Cells occupy the lower layers of a chip and have exclusive use of the active semiconductor layers. The
lowest metal layer, M1, is mainly used by a cell for its input and output contacts as well as some
internal wiring. TheM2 layer is used inmany cells as well. Hence, a cell has routing constraints and
obstacles. The constraints arise from the contact sites. The obstacles arise from a cell’s use of layers
also used for inter-cell routing.

Cell are normally placed tominimise the inter-cell net length, which is the principal aim of placement.
Figure 8.47 shows a placed row of cells, and Figure 8.7 shows several horizontal rows. A constructive
algorithm (Section 6.2.0) may be used to create an initial placement, which is then, typically, optimised
using simulated annealing (Section 6.2). Depending on themanufacturing process, some cells cannot
be abutted without violating the design rules. This can be solved by adding an attribute to the edge of
the cell that would violate a design rule with respect to another abutted cell. An input file is then
created to indicate to the placer the additional spacing required between the two specified edge
attributes. For example, say a cell has edge attribute A and another cell has edge attribute B. A rule
could be that attribute Amust be spaced two contacted poly pitches from attribute B.

Figure 8.47 A placed horizontal strip of standard cells showing the polygons significant for routing, as rendered in a layout editor. The power and ground rails
are a distinctive feature

The logic block areamust be as small as possible tominimise the circuit area. This results in a
reduction of themanufacturing cost sincemore circuits can be fitted onto the silicon wafer. An
implementation aims to achieve themaximum utilisation rate for a given performance. The utilisation
rate is equivalent to the active cell density, which is the total active cell area divided by the floor-plan
area. The inactive area is filled by inactive cells called filler cells or it may be used to add decoupling
capacitors. A logic block requires specific finishing inactive cells at the end of rows and columns and at
inner or outer corners, depending on the shape of the floor plan.

472

Chapter 8 | Fabrication and Production

8.7.2 Clock Tree Insertion
A SoCwithmillions of transistors may use only a handful of different clocks, so an individual clock
must often be distributed to thousands of flip-flops or other clocked primitives, such as an SRAMor
CPU core. The use of H-trees and PLLs for clock distribution was covered in Section 4.9.4. Many
clocks need to be clock-gated (Section 4.6.9), so the H-tree structural hierarchymust be suitable for
accepting the clock gate inputs at appropriate points. The delay through the gates must be suitably
matched against paths that have no gates to avoid shoot-throughs (Section 4.6.9).

Physical distances are neededwhen generating a clock tree, so clock tree synthesis takes place after
placement and before or as part of routing. A routing tool works best when there is no existing wiring
on themetal layers it will use. Hence, clock trees should be routed before general logic nets.
Long-distance clocks mostly use the lowermiddle layers, such asM4 andM5. Once the clock is
designed, the router can further use these layers as it wishes, typically for longer-distance data nets
and busses. Rather than using a dedicated tool, clock tree routing is generally implemented as a
sequence of commands for a generic router, e.g. scripted using TCL.

In an advanced flow, rather than attempting to deliver the clock to every point at once, deliberate
clock skewing (Section 4.9.6) may be used tomaximise timingmargins. If many registers would
nominally toggle together at the same time, then light clock skewing is performed automatically by
the tool to reduce the supply rail noise. A parameter sets themaximum skew value as a percentage of
the fastest clock, usually 15 per cent. Manual edits can also implementmore extreme clock skewing
among consecutive registers of a pipeline. This is needed if the combinational logic is not properly
balanced over the stages. A trial-and-error approachmay be necessary tomeet timing and supply
noise targets simultaneously.

8.7.3 Routing
Once the cells are placed, their pins are interconnected using a succession of metal segments across
themetal stack. Routing is the process of determining the route for the conductors that make up the
design: it joins up all the required contacts. Normally, power supplies are given their own layers (for
circuit boards and chips). Aminimum of two layers of signal routing are needed. A heuristic that
allocates mostly x direction sections on one layer and y direction sections on the next layer is
generally used, since conductors cannot cross each other within one layer. Routing uses a regular
pitch grid for eachmetal layer, as metal wires follow routing tracks. Themetal segments are
connected together with process vias, called cuts in a routing environment. Figure 8.48 shows the
resulting wiring, and Figure 8.49 is a close-up.

Routing is difficult, since inserting a conductor can block the route for another. Finding the optimum
routings and placements for a design has a complexity of at least NP-hard. Hence, heuristic
approaches are always used, along with fairly sophisticated algorithms, such as a greedy algorithm,
plus much trial and error. Some routers use a shove-aside approach, whichmoves already routed
conductors sideways a bit to introduce room for the latest conductor. Themost recent routers first

473

Modern SoCDesign

Figure 8.48 Snapshot from a place-and-route tool, showing
hundreds of interlaced wires that are routed with several
metal layers, both vertically and horizontally

Figure 8.49 Enlargement of Figure 8.48, showing several wires
routed with several metal layers (one colour for each layer),
vertically and horizontally. Vias are marked with an X

place all the conductors by neglecting shorts and then iteratively swap layers and fragment
conductors by inserting vias until no shorts remain.

Physically aware routing is timing driven. The RC components of the connecting wires are extracted,
including the via resistances. The timing across logic paths is then calculated by accounting for the
delay due to additional wires. Place-and-route is repeated to achieve the best possible timing and to
reach the targeted operating frequency of the logic block.

It is desirable to have some interplay between the routing and the placement stages. Older EDA tools
did not automatically consider this. If routing is impossible for the given number of layers andwith the
given placement, then either the routing or the placement needs to be changed. If a routing tool fails,
it is common to adjust the placementmanually (using amouse and interactive tools) or just to run it
again with new seeds for the random number generators.

8.7.4 Timing and Power Verification
Once the system has been placed and routed, the length and type of each conductor is known. As
explained in Section 4.6.4, the detailed timing of every gate is affected by the stray capacitance of the
conductor it drives. In modern nodes, the resistance of the conductor is also important, since this
affects the delay along the net and the quality of the signal arriving at the cell. All this information is
extracted from the layout, typically in IEEE standard parasitic exchange format (SPEF).

Accurate delay information is used for three principal purposes:

1. It can be used by a logic simulator to check the functionality of the chip or systemwith themodified
timing. This is known as back annotation. It is possible that the new delays will prevent the system
from operating at the target speed.

2. The parasitic information can be used in static timing analysis (STA) (Section 8.12.1), not to
simulate the circuit, but rather to walk over it summing delay paths from outputs back to inputs to
flag possible timing errors.

3. It can be used to provide accurate estimates of the dynamic energy use for power sign-off.

474

Chapter 8 | Fabrication and Production

It is sometimes convenient to generate behavioural models for additional, fictional components,
which are instantiated in the simulation. Thesemonitor sequences of events on their inputs and flag
illegal or incorrect cases. An extreme example is a yes/no test wrapper, which is a complex test
component connected around the bulk of the signals to a chip or complexmodule. It simply outputs
‘yes’ or ‘no’ at the end of the simulation. These wrappers can be quite easy to write using the
behavioural constructs of a modern HDL.

After back annotation and parametric variation, the component delaymay have increased by a factor
of up to 2.

8.7.5 Post-routeOptimisation
A router is successful when all nets are routedwithout conflicts. However, the solution is not
necessarily optimal. For instance, the route for a net might include a complete loop, which is clearly
redundant and can be detected and eliminated by checking for any points where a net crosses itself on
another layer.

Another approach to optimisation is to randomly select a small group of routed nets, delete their
routes and then ask the router to reconnect them, whichmight generate a better solution. Some
optimisations have no cost or benefit but lead to a higher yield, such as removing unnecessary layer
swaps. Asmentioned, a common baseline approach is to use alternativemetal layers for primary
routing in the x and y directions and never to use diagonal nets. Such rules give a better chance of
obtaining a feasible routing result, but can be relaxed during optimisation.

8.7.6 Layout versus Schematic Check
Once themask polygons have been created in GDS-II form, a netlist extractor uses the polygons to
rebuild a transistor-level netlist. The same tool can convert an RTL netlist into a transistor-level
netlist. Then, as shown in green on the right-hand side of Figure 8.45, both transistor-level netlists are
compared to ensure that there is electrical equivalence. This is called a layout versus schematic
check.

8.7.7 Sign-off and Tapeout
The four major milestones in the physical flow areRTL freeze, sign-off, tapeout and samples back.
These are allocated dates spaced over 2months and are entered into Pert and Gantt charts from the
outset of the project. The RTL freeze is mandatedwhen the SoC RTL design is mature. System
designers are then no longer able tomodify the RTL. The physical flow team starts work while further
design verification of the RTL takes place in parallel. Only in exceptional circumstances, such as a
significant bug being found, will the chief engineer allow an RTL change after the freeze.

When the physical flow is complete, we have a release candidate. Because of the huge expense of a
set of masks (Section 8.11), before the release candidate is sent to a foundry, a rigorous quality
assurance process ensures that it meets the targets for functionality, clock frequency, power use, IP

475

Modern SoCDesign

Figure 8.48 Snapshot from a place-and-route tool, showing
hundreds of interlaced wires that are routed with several
metal layers, both vertically and horizontally

Figure 8.49 Enlargement of Figure 8.48, showing several wires
routed with several metal layers (one colour for each layer),
vertically and horizontally. Vias are marked with an X

place all the conductors by neglecting shorts and then iteratively swap layers and fragment
conductors by inserting vias until no shorts remain.

Physically aware routing is timing driven. The RC components of the connecting wires are extracted,
including the via resistances. The timing across logic paths is then calculated by accounting for the
delay due to additional wires. Place-and-route is repeated to achieve the best possible timing and to
reach the targeted operating frequency of the logic block.

It is desirable to have some interplay between the routing and the placement stages. Older EDA tools
did not automatically consider this. If routing is impossible for the given number of layers andwith the
given placement, then either the routing or the placement needs to be changed. If a routing tool fails,
it is common to adjust the placementmanually (using amouse and interactive tools) or just to run it
again with new seeds for the random number generators.

8.7.4 Timing and Power Verification
Once the system has been placed and routed, the length and type of each conductor is known. As
explained in Section 4.6.4, the detailed timing of every gate is affected by the stray capacitance of the
conductor it drives. In modern nodes, the resistance of the conductor is also important, since this
affects the delay along the net and the quality of the signal arriving at the cell. All this information is
extracted from the layout, typically in IEEE standard parasitic exchange format (SPEF).

Accurate delay information is used for three principal purposes:

1. It can be used by a logic simulator to check the functionality of the chip or systemwith themodified
timing. This is known as back annotation. It is possible that the new delays will prevent the system
from operating at the target speed.

2. The parasitic information can be used in static timing analysis (STA) (Section 8.12.1), not to
simulate the circuit, but rather to walk over it summing delay paths from outputs back to inputs to
flag possible timing errors.

3. It can be used to provide accurate estimates of the dynamic energy use for power sign-off.

474

Chapter 8 | Fabrication and Production

It is sometimes convenient to generate behavioural models for additional, fictional components,
which are instantiated in the simulation. Thesemonitor sequences of events on their inputs and flag
illegal or incorrect cases. An extreme example is a yes/no test wrapper, which is a complex test
component connected around the bulk of the signals to a chip or complexmodule. It simply outputs
‘yes’ or ‘no’ at the end of the simulation. These wrappers can be quite easy to write using the
behavioural constructs of a modern HDL.

After back annotation and parametric variation, the component delaymay have increased by a factor
of up to 2.

8.7.5 Post-routeOptimisation
A router is successful when all nets are routedwithout conflicts. However, the solution is not
necessarily optimal. For instance, the route for a net might include a complete loop, which is clearly
redundant and can be detected and eliminated by checking for any points where a net crosses itself on
another layer.

Another approach to optimisation is to randomly select a small group of routed nets, delete their
routes and then ask the router to reconnect them, whichmight generate a better solution. Some
optimisations have no cost or benefit but lead to a higher yield, such as removing unnecessary layer
swaps. Asmentioned, a common baseline approach is to use alternativemetal layers for primary
routing in the x and y directions and never to use diagonal nets. Such rules give a better chance of
obtaining a feasible routing result, but can be relaxed during optimisation.

8.7.6 Layout versus Schematic Check
Once themask polygons have been created in GDS-II form, a netlist extractor uses the polygons to
rebuild a transistor-level netlist. The same tool can convert an RTL netlist into a transistor-level
netlist. Then, as shown in green on the right-hand side of Figure 8.45, both transistor-level netlists are
compared to ensure that there is electrical equivalence. This is called a layout versus schematic
check.

8.7.7 Sign-off and Tapeout
The four major milestones in the physical flow areRTL freeze, sign-off, tapeout and samples back.
These are allocated dates spaced over 2months and are entered into Pert and Gantt charts from the
outset of the project. The RTL freeze is mandatedwhen the SoC RTL design is mature. System
designers are then no longer able tomodify the RTL. The physical flow team starts work while further
design verification of the RTL takes place in parallel. Only in exceptional circumstances, such as a
significant bug being found, will the chief engineer allow an RTL change after the freeze.

When the physical flow is complete, we have a release candidate. Because of the huge expense of a
set of masks (Section 8.11), before the release candidate is sent to a foundry, a rigorous quality
assurance process ensures that it meets the targets for functionality, clock frequency, power use, IP

475

Modern SoCDesign

block licences, testability and bond pad placement for the package. Once every aspect of the design
has been signed off by an appropriate engineeringmanager, it can be sent to a foundry for
mask-making and tomanufacture a prototype. A large-valued purchase order is also raised or ratified
for the work, which should ideally hit a pre-agreed slot in themanufacturer’s work cycle.

Mask-making is called ‘tapeout’ because the first ever integrated circuit masks were formed of
opaque sticky tapemanually applied to large sheets ofMylar film. The term can also be applied to the
final rendering of the GDS-II files, which also used to be sent as a tape in the post.

The first devices from fabrication are sent back as quickly as possible to the designers. These are
engineering samples. Some of the final stages of processingmay not have been completed, such as
passivation coatings for protection against oxidisation, reverse engineering and SEU (Section 8.2.1),
and testingmay not have been run, so theremay be some yield failures. The engineers will install the
chips on circuit boards that have been prepared in themeantime and switch them on. Hopefully,
everything will work first time. That should happen, given conservative design rules and extensive
pre-production verification.

8.8 Production Testing
There are twomain stages of SoC testing after manufacture: wafer probing (Section 8.8.3) and
packaged-device testing (Section 8.8.4). Both are fully automated by robotic handlingmachines and
can sharemany aspects of a common test program (Section 8.8.2). Device speed binning and
redundancy zapping (Section 8.8.4) are also performed in post-fabrication testing (Section 4.7.4).

Themain test program consists of a sequence of stimuli that must be applied to the device and it
contains the expected results. It may be a concatenation of individual test programs for various
subsystems. If the actual results do not match the expected results, then a fault has been detected.
Themain test program aims to check all aspects of SoC functionality. The percentage of nets actually
checked is known as the fault coverage. A fault simulator checks the fault coverage of the test
program. The level of fault coverage required is often a contractual parameter between a foundry or
assembly house and the designer. A good test programwill achieve 98 to 99.5 per cent fault coverage
in a few seconds of testing. Military, aerospace andmedical standard equipmentmay need to have
100 per cent coverage. Of course, a poor test programmay not find all faults. Without 100 per cent
coverage, a test program has the potential to deliver a false positive, indicating that a faulty chip is
usable. However, a large number of manufacturing errors, such as uneven exposure during
processing, dislocations in the silicon substrate crystal or caused by dirt particles, are likely to impact
on the behaviour of several nearby nets or transistors. Hence, with slightly less than 100 per cent
coverage, most fabrication faults are likely to be detected.

Parts of the test program can also be applied when the device is on a circuit board via a JTAG
boundary scan (Section 4.7.5), although this is not commonly needed. Certain production tests are
impossible in situ on a PCB once the device is soldered on. Pad capacitance and leakage tests cannot
be run due to board loading effects. The same goes for supply current use and the reverse breakdown

476

Chapter 8 | Fabrication and Production

voltage of protection diodes. Instead of testing every device shipped, however, such tests are,
typically, conducted under awindow lot discipline, in which between 100 and 300 samples are
selected at random. Wafers from the various processing corners, such as FS, SS and TT
(Section 8.12.4), are always sampled. The results are tabulated alongside the resistance of conductors
on each layer and the frequency of test oscillators fabricated along die scoring lines and extreme
corners of the circular wafer that can contain only a partial chip (Figure 8.51).

8.8.1 Universal VerificationMethodology andOpen VerificationMethodology
During IP block development, a large number of simulations and assertions will, typically, have been
used. Most IP blocks purchased from third parties are supplied with test programs. All of this material
can potentially be used as a basis for a production test program.

The universal verificationmethodology (UVM) is an industry-widemethodology with a supporting
library of building blocks for the systematic creation of documentation and verification harnesses for
IP blocks. It is verymuch based on the open verificationmethodology (OVM) but was augmented by
and has been standardised by theAccellera trade body and as IEEE-1800 [14]. Most of the resources
that are freely available are coded in SystemVerilog and SystemC, but themethodology can be
implemented in any RTL-like language, such as Chisel (Section 6.8.3).

A UVM-conforming IP block always has a prescribed set of unit tests. Every aspect follows a strict
coding style, which dictates the file structure and naming scheme for the various components. It
defines standardmethod names in the UVM application program interface (API). These are then
invokable by an off-the-shelf UVMdriver provided by an EDA vendor or used formultiple projects in a
design house.

The UVMAPI definesmethods for instantiating an IP block as the device under test (DUT), for
instantiating a corresponding test agent and for interconnecting these components at their
interfaces. Automatic wiring generation or automatic TLM binding is required. Further API
components cause the agent to run a test program on the DUT and to collect and log the results. The
agent may, typically, apply a set of canned test vectors (Section 8.8.2) or it may contain behavioural
code that exercises various sequences. A third test possibility, present from the earliest days of OVM,
is directed random sequence testing (Section 7.3.2). These different testing techniques can be freely
mixed together within the framework. The overall aim is that, whatever the complexity of the IP block,
the process of fully testing is turnkey. In other words, no fiddlymanual setup is needed to run the tests
provided. Design houses can also add their own tests under the same framework.

UVMemphasises verification reuse. If an IP block is embedded in a subsystem, the interfaces to the
IP block are less accessible. However, it is still desirable to run existing tests on that IP block in situ.
For tests based on programmed I/O (PIO), only the base address of a register file may need adjusting
in the test program. For tested based on scan chains (Section 4.7.5), the routing of test multiplexors
and offset in the bit streammay need to be adjusted. OVM tooling aims to automate these steps.

477

Modern SoCDesign

block licences, testability and bond pad placement for the package. Once every aspect of the design
has been signed off by an appropriate engineeringmanager, it can be sent to a foundry for
mask-making and tomanufacture a prototype. A large-valued purchase order is also raised or ratified
for the work, which should ideally hit a pre-agreed slot in themanufacturer’s work cycle.

Mask-making is called ‘tapeout’ because the first ever integrated circuit masks were formed of
opaque sticky tapemanually applied to large sheets ofMylar film. The term can also be applied to the
final rendering of the GDS-II files, which also used to be sent as a tape in the post.

The first devices from fabrication are sent back as quickly as possible to the designers. These are
engineering samples. Some of the final stages of processingmay not have been completed, such as
passivation coatings for protection against oxidisation, reverse engineering and SEU (Section 8.2.1),
and testingmay not have been run, so theremay be some yield failures. The engineers will install the
chips on circuit boards that have been prepared in themeantime and switch them on. Hopefully,
everything will work first time. That should happen, given conservative design rules and extensive
pre-production verification.

8.8 Production Testing
There are twomain stages of SoC testing after manufacture: wafer probing (Section 8.8.3) and
packaged-device testing (Section 8.8.4). Both are fully automated by robotic handlingmachines and
can sharemany aspects of a common test program (Section 8.8.2). Device speed binning and
redundancy zapping (Section 8.8.4) are also performed in post-fabrication testing (Section 4.7.4).

Themain test program consists of a sequence of stimuli that must be applied to the device and it
contains the expected results. It may be a concatenation of individual test programs for various
subsystems. If the actual results do not match the expected results, then a fault has been detected.
Themain test program aims to check all aspects of SoC functionality. The percentage of nets actually
checked is known as the fault coverage. A fault simulator checks the fault coverage of the test
program. The level of fault coverage required is often a contractual parameter between a foundry or
assembly house and the designer. A good test programwill achieve 98 to 99.5 per cent fault coverage
in a few seconds of testing. Military, aerospace andmedical standard equipmentmay need to have
100 per cent coverage. Of course, a poor test programmay not find all faults. Without 100 per cent
coverage, a test program has the potential to deliver a false positive, indicating that a faulty chip is
usable. However, a large number of manufacturing errors, such as uneven exposure during
processing, dislocations in the silicon substrate crystal or caused by dirt particles, are likely to impact
on the behaviour of several nearby nets or transistors. Hence, with slightly less than 100 per cent
coverage, most fabrication faults are likely to be detected.

Parts of the test program can also be applied when the device is on a circuit board via a JTAG
boundary scan (Section 4.7.5), although this is not commonly needed. Certain production tests are
impossible in situ on a PCB once the device is soldered on. Pad capacitance and leakage tests cannot
be run due to board loading effects. The same goes for supply current use and the reverse breakdown

476

Chapter 8 | Fabrication and Production

voltage of protection diodes. Instead of testing every device shipped, however, such tests are,
typically, conducted under awindow lot discipline, in which between 100 and 300 samples are
selected at random. Wafers from the various processing corners, such as FS, SS and TT
(Section 8.12.4), are always sampled. The results are tabulated alongside the resistance of conductors
on each layer and the frequency of test oscillators fabricated along die scoring lines and extreme
corners of the circular wafer that can contain only a partial chip (Figure 8.51).

8.8.1 Universal VerificationMethodology andOpen VerificationMethodology
During IP block development, a large number of simulations and assertions will, typically, have been
used. Most IP blocks purchased from third parties are supplied with test programs. All of this material
can potentially be used as a basis for a production test program.

The universal verificationmethodology (UVM) is an industry-widemethodology with a supporting
library of building blocks for the systematic creation of documentation and verification harnesses for
IP blocks. It is verymuch based on the open verificationmethodology (OVM) but was augmented by
and has been standardised by theAccellera trade body and as IEEE-1800 [14]. Most of the resources
that are freely available are coded in SystemVerilog and SystemC, but themethodology can be
implemented in any RTL-like language, such as Chisel (Section 6.8.3).

A UVM-conforming IP block always has a prescribed set of unit tests. Every aspect follows a strict
coding style, which dictates the file structure and naming scheme for the various components. It
defines standardmethod names in the UVM application program interface (API). These are then
invokable by an off-the-shelf UVMdriver provided by an EDA vendor or used formultiple projects in a
design house.

The UVMAPI definesmethods for instantiating an IP block as the device under test (DUT), for
instantiating a corresponding test agent and for interconnecting these components at their
interfaces. Automatic wiring generation or automatic TLM binding is required. Further API
components cause the agent to run a test program on the DUT and to collect and log the results. The
agent may, typically, apply a set of canned test vectors (Section 8.8.2) or it may contain behavioural
code that exercises various sequences. A third test possibility, present from the earliest days of OVM,
is directed random sequence testing (Section 7.3.2). These different testing techniques can be freely
mixed together within the framework. The overall aim is that, whatever the complexity of the IP block,
the process of fully testing is turnkey. In other words, no fiddlymanual setup is needed to run the tests
provided. Design houses can also add their own tests under the same framework.

UVMemphasises verification reuse. If an IP block is embedded in a subsystem, the interfaces to the
IP block are less accessible. However, it is still desirable to run existing tests on that IP block in situ.
For tests based on programmed I/O (PIO), only the base address of a register file may need adjusting
in the test program. For tested based on scan chains (Section 4.7.5), the routing of test multiplexors
and offset in the bit streammay need to be adjusted. OVM tooling aims to automate these steps.

477

Modern SoCDesign

Device register files contain amixture of read/write and read-only bits. Other common patterns exist,
such a the {set, reset, read} register triple. The set and reset registers are always read back as zero but
any ones written set or clear bits in the read register, whichmay be read only. UVM tooling should
understand the documentation for these design patterns, using IP-XACT or otherwise, and cleanly
integrate with tools that generate documentation and C header files for register files. The same
principles apply to RAMblocks accessible by PIO or a path scan.

8.8.2 Test ProgramGeneration
A test program generator works out a short sequence of tests for a subsystem that can reveal
stuck-at faults (Section 7.1.1), which occur when a net is stuck permanently at either logic zero or
one. For digital logic, various functional problems can arise, including short circuits and open circuits
for supply and logic nets and transistors that do not work. Stuck-at faults cover all such possibilities
and, consequently, most of the other faults in a SoC or subsystem.

If there are n nets, 2n individual faults could occur. Although faults tend not to occur in isolation, the
baselinemodel is that just one of these faults will occur. If a test program detects p stuck-at faults,
then its coverage is defined as 100×p/2n. A manufacturing fault will quite often affect more than one
net, which can compensate for a fault coverage of less than 100 per cent.

A test program for a chip (or PCB card) consists of a list of test vectors, generated from a simulation or
otherwise. Since testing can take up amajor part of the overall manufacturing time, the test program
must be as short as possible to hit the required fault coverage. The test program is applied to a set of
test probe points. These are, typically, the I/O pads of a chip or the bed of nails that a circuit board is
pushed onto. For a hardmacro inside a SoC, such as a CPU core, it encompasses a boundary scan of
themacro.

The length of each test vector is equal to the number of probe points. Typically, each element of a
vector holds one of these ASCII characters:

1 Apply a logic one to this probe point
0 Apply a logic zero to this probe point
z Apply high impedance to this probe point
H Expect logic one at this probe point
L Expect logic zero at this probe point
x Don’t care what happens at this point
c Clock this pin midway through the cycle
p Power pin or other signal not driven by the test program

Typically, other symbols enable special pulses or varying power supply voltages to be applied. The
nature of these special signals is specified in separate tables includedwith the test program. The
vectors are applied in sequence at some clock rate (e.g. 10million vectors per second). Theremay be
105 to 107 test vectors for a SoC. If any of the H or L points do not match, the DUT has failed.

478

Chapter 8 | Fabrication and Production

For example, the pinout and one part of the test program for a 74’ series logic device is shown in
Figure 8.50. Spaces are allowed in the vectors for clarity. For the first gate, pins 1 and 2 are inputs and
3 is the output. The four vectors fully test the first gate. A better program is obvious. It would
simultaneously test the other three gates. For sequential devices, generating a short program is tricky
and oftenmust be assisted with DfTmechanisms such as test modes.

1

2

3

4

5

6

7 8

9

10

11

12

13

14 VCC Supply

Ground

000 000 0 001 111 1
123 456 7 890 123 4

[00H 00H p H00 x00 p]
[01H 00H p H00 x00 p]
[10H 00H p H00 x00 p]
[11L 00H p H00 x00 p]

Figure 8.50 Pin connections for a 7400 quad NAND gate device and part of a test program

TestModes
For some designs, a very long test program is needed to test some functions. For example, the
leap-year circuitry in a digital watchmight need four years of clock pulses before being exercised.
Therefore, the throughput of the testing station is low. For other designs, the observability of an
internal state can be low. This occurs when there is a significant amount of internal state and few
outputs. For example, a credit card PIN checker need have only one output net, saying good or bad.
Many different test sets may have to be presented before the effect of every part of the internal logic
is felt at the output net. This either leads to low fault coverage or long test programs.

Testability can be increased at the design stage using a design for testability (DfT)methodology. This
involves:

1. Adding test outputs for different states of the internal nets. Thesemay not be bonded in the final
package for security or cost reasons but are accessible by a wafer probe.

2. Adding test inputs, which are tied off to one logic level during normal operation. These are used
during testing to shorten the length of count sequences or causemore of the internal state to be
accessible to the existing pins.

3. Exploiting the JTAG or other debug infrastructure (Section 4.7).

4. Running software on internal CPUs during the production test.

Certain subsystems are difficult to test thoroughly because they have random or deliberately
obfuscated details. A physically unclonable function (PUF) delivers a consistent response on a given
SoC but varies randomly between devices. A random number generator returns a random number
every time it is queried. These devices are common in smart cards and also as subsystems in

479

Modern SoCDesign

Device register files contain amixture of read/write and read-only bits. Other common patterns exist,
such a the {set, reset, read} register triple. The set and reset registers are always read back as zero but
any ones written set or clear bits in the read register, whichmay be read only. UVM tooling should
understand the documentation for these design patterns, using IP-XACT or otherwise, and cleanly
integrate with tools that generate documentation and C header files for register files. The same
principles apply to RAMblocks accessible by PIO or a path scan.

8.8.2 Test ProgramGeneration
A test program generator works out a short sequence of tests for a subsystem that can reveal
stuck-at faults (Section 7.1.1), which occur when a net is stuck permanently at either logic zero or
one. For digital logic, various functional problems can arise, including short circuits and open circuits
for supply and logic nets and transistors that do not work. Stuck-at faults cover all such possibilities
and, consequently, most of the other faults in a SoC or subsystem.

If there are n nets, 2n individual faults could occur. Although faults tend not to occur in isolation, the
baselinemodel is that just one of these faults will occur. If a test program detects p stuck-at faults,
then its coverage is defined as 100×p/2n. A manufacturing fault will quite often affect more than one
net, which can compensate for a fault coverage of less than 100 per cent.

A test program for a chip (or PCB card) consists of a list of test vectors, generated from a simulation or
otherwise. Since testing can take up amajor part of the overall manufacturing time, the test program
must be as short as possible to hit the required fault coverage. The test program is applied to a set of
test probe points. These are, typically, the I/O pads of a chip or the bed of nails that a circuit board is
pushed onto. For a hardmacro inside a SoC, such as a CPU core, it encompasses a boundary scan of
themacro.

The length of each test vector is equal to the number of probe points. Typically, each element of a
vector holds one of these ASCII characters:

1 Apply a logic one to this probe point
0 Apply a logic zero to this probe point
z Apply high impedance to this probe point
H Expect logic one at this probe point
L Expect logic zero at this probe point
x Don’t care what happens at this point
c Clock this pin midway through the cycle
p Power pin or other signal not driven by the test program

Typically, other symbols enable special pulses or varying power supply voltages to be applied. The
nature of these special signals is specified in separate tables includedwith the test program. The
vectors are applied in sequence at some clock rate (e.g. 10million vectors per second). Theremay be
105 to 107 test vectors for a SoC. If any of the H or L points do not match, the DUT has failed.

478

Chapter 8 | Fabrication and Production

For example, the pinout and one part of the test program for a 74’ series logic device is shown in
Figure 8.50. Spaces are allowed in the vectors for clarity. For the first gate, pins 1 and 2 are inputs and
3 is the output. The four vectors fully test the first gate. A better program is obvious. It would
simultaneously test the other three gates. For sequential devices, generating a short program is tricky
and oftenmust be assisted with DfTmechanisms such as test modes.

1

2

3

4

5

6

7 8

9

10

11

12

13

14 VCC Supply

Ground

000 000 0 001 111 1
123 456 7 890 123 4

[00H 00H p H00 x00 p]
[01H 00H p H00 x00 p]
[10H 00H p H00 x00 p]
[11L 00H p H00 x00 p]

Figure 8.50 Pin connections for a 7400 quad NAND gate device and part of a test program

TestModes
For some designs, a very long test program is needed to test some functions. For example, the
leap-year circuitry in a digital watchmight need four years of clock pulses before being exercised.
Therefore, the throughput of the testing station is low. For other designs, the observability of an
internal state can be low. This occurs when there is a significant amount of internal state and few
outputs. For example, a credit card PIN checker need have only one output net, saying good or bad.
Many different test sets may have to be presented before the effect of every part of the internal logic
is felt at the output net. This either leads to low fault coverage or long test programs.

Testability can be increased at the design stage using a design for testability (DfT)methodology. This
involves:

1. Adding test outputs for different states of the internal nets. Thesemay not be bonded in the final
package for security or cost reasons but are accessible by a wafer probe.

2. Adding test inputs, which are tied off to one logic level during normal operation. These are used
during testing to shorten the length of count sequences or causemore of the internal state to be
accessible to the existing pins.

3. Exploiting the JTAG or other debug infrastructure (Section 4.7).

4. Running software on internal CPUs during the production test.

Certain subsystems are difficult to test thoroughly because they have random or deliberately
obfuscated details. A physically unclonable function (PUF) delivers a consistent response on a given
SoC but varies randomly between devices. A random number generator returns a random number
every time it is queried. These devices are common in smart cards and also as subsystems in

479

Modern SoCDesign

general-purpose SoCs. They are used as the basis of cryptographic protocols. Physical
implementations of both types of device amplify random effects within the circuitry and give
unpredictable outputs that cannot be included in a standard test program. Instead, multiple samples
must be taken and a statistical analysis is used to check that the variations are sufficiently random.

Fault Simulators
A standard EDA tool that determines the fault coverage of a test program for a design is called a fault
simulator. Its outputs are the fault coverage percentage and a list of stuck-at faults not detected by
the test program. It is a variant of a normal simulator that has been augmented to keep a running set
of the faults that have been detected at the current point in the simulation. At the end of the
simulation, the list contains any faults undetectable by the test program. An engineer can inspect this
andmanually determine what additional tests are needed.

Automatic Test Generation
Another EDA tool is an automatic test program generator. This synthesises a good test program for a
subsystem by analysing the structure of the design. For largely combinational regions and the
next-state functions of sequential logic, themaximum possible fault coverage can be fairly accurately
determined by a static fault coverage analysis. An algorithm uses the set of detectable faults present
in the inputs of a gate to determine the set of detectable faults at the output of the gate. Repeated
application gives the externally observable faults. For sequential logic, a test program generator
automatically produces sequences of operations thatmanipulate the state of the subsystem, resulting
in a state trajectory that may be totally unlike any normal operational behaviour, but which gives good
fault coverage. Additional RTL can be fed into the logic synthesiser or the tool can be given DfT
directives that assist the test program generation. The synthesiser thenmodifies how
sub-expressions are shared in the logic design, addsmore logic or alters the test mode behaviour.

Today, these tools cannot automatically scale to cover a whole SoC, so the resulting programmust be
applied through a boundary scan of the target subsystem. Third-party IP blocks, such as a USB or
SATA controller, likewise have a subsystem test program that is applied through a block boundary
scan or run on an internal CPU during the production test.

8.8.3 Wafer Probe Testing
Figure 8.51 shows the typical layout of dies on a silicon wafer. Before dicing, the individual chips are
tested using a wafer probe (Figures 8.52 and 8.53).

480

Chapter 8 | Fabrication and Production

Figure 8.51 A wafer (6 to 10 inches diameter) is diced into chips (1 cm on a side or so)

Chip
under
probe

Probe needles

Load Card
Load Components

Load Components

Multicore
cable or

connector
to test vector

machine

Figure 8.52 Load card with wafer probe pins for testing a chip before the wafer is diced

481

Modern SoCDesign

general-purpose SoCs. They are used as the basis of cryptographic protocols. Physical
implementations of both types of device amplify random effects within the circuitry and give
unpredictable outputs that cannot be included in a standard test program. Instead, multiple samples
must be taken and a statistical analysis is used to check that the variations are sufficiently random.

Fault Simulators
A standard EDA tool that determines the fault coverage of a test program for a design is called a fault
simulator. Its outputs are the fault coverage percentage and a list of stuck-at faults not detected by
the test program. It is a variant of a normal simulator that has been augmented to keep a running set
of the faults that have been detected at the current point in the simulation. At the end of the
simulation, the list contains any faults undetectable by the test program. An engineer can inspect this
andmanually determine what additional tests are needed.

Automatic Test Generation
Another EDA tool is an automatic test program generator. This synthesises a good test program for a
subsystem by analysing the structure of the design. For largely combinational regions and the
next-state functions of sequential logic, themaximum possible fault coverage can be fairly accurately
determined by a static fault coverage analysis. An algorithm uses the set of detectable faults present
in the inputs of a gate to determine the set of detectable faults at the output of the gate. Repeated
application gives the externally observable faults. For sequential logic, a test program generator
automatically produces sequences of operations thatmanipulate the state of the subsystem, resulting
in a state trajectory that may be totally unlike any normal operational behaviour, but which gives good
fault coverage. Additional RTL can be fed into the logic synthesiser or the tool can be given DfT
directives that assist the test program generation. The synthesiser thenmodifies how
sub-expressions are shared in the logic design, addsmore logic or alters the test mode behaviour.

Today, these tools cannot automatically scale to cover a whole SoC, so the resulting programmust be
applied through a boundary scan of the target subsystem. Third-party IP blocks, such as a USB or
SATA controller, likewise have a subsystem test program that is applied through a block boundary
scan or run on an internal CPU during the production test.

8.8.3 Wafer Probe Testing
Figure 8.51 shows the typical layout of dies on a silicon wafer. Before dicing, the individual chips are
tested using a wafer probe (Figures 8.52 and 8.53).

480

Chapter 8 | Fabrication and Production

Figure 8.51 A wafer (6 to 10 inches diameter) is diced into chips (1 cm on a side or so)

Chip
under
probe

Probe needles

Load Card
Load Components

Load Components

Multicore
cable or

connector
to test vector

machine

Figure 8.52 Load card with wafer probe pins for testing a chip before the wafer is diced

481

Modern SoCDesign

Figure 8.53 General configuration of a wafer probe testing machine. The robotic staging system delivers wafers to and from conveyor systems as well as
stepping the probes over the wafer

8.8.4 PackagedDevice Testing
Diced chips need to be packaged. Today, several pieces of silicon are often placed in one package as a
multi-chipmodule (MCM) (Section 8.9.1). Decoupling capacitors may also be included in the package
to overcome the inductance of power supply traces. Although the dies are separately tested with a
wafer probe, the packagingmay suffer faults and the dies can be damaged during handling. Hence,
functional testing is also needed for a packaged assembly.

A package adds capacitive load to the signal nets and hence, final performance characterisation is best
done on the packaged assembly. Often a single base product is sold in a number of temperature and
clock frequency grades or with different DVFS parameters (Section 4.6.8). Themaximum clock
frequency at different supply voltages and temperatures is determined using a variety of proprietary
algorithms. Military and aerospace products need to operate over a wide temperature range and
higher reliability is also required. Increased reliability is also required for medical products, such as
pacemakers and healthcare equipment. Measurements of a packaged device are combinedwith the
per wafer process measurements described above.

Voltage and speed grading (or binning) is the process of assessing the performance of a component
usingmeasurements made after manufacture. Silicon process variations result in a spread of
performance at the nominal supply voltage. Each device can be labelled accordingly using automated
inkjet printing as the component exits themeasuring station.

482

Chapter 8 | Fabrication and Production

Another process typically performed during production test is per device programming. The
behaviour of a device is modified indelibly or its properties are recorded on it. This is colloquially
known as zapping the device. Physically, this can done bymelting fusible straps (aka links) with a
heavy current. Alternatively, floating-gate charge storage is used to program an unerasable
field-programmable ROM (Section 2.6.7). There are four main reasons for doing this:

1. Redundancymapping or column sparing: For devices with an array of similar elements, such as
memories and FPGAs, the yield can be increased by using an additional complete row or column. If
the production test identifies a single failed cell, its complete row or column is disabled and
replacedwith the redundant one.

2. Downgrading: A SoCwith four CPU cores could bemarketed as a device with only three if there is
a fabrication fault in one of the cores. The fourth core is permanently hidden from the
programmer’s view and physically powered down. This can also be usedwhenmarketing healthy
cores to address a different price/volume point.

3. Recording a unique identifier: This includes the address for themedia access controller (MAC) or
other unique information, such as a serial number or secret PKI key.

4. DVFSmapping: The appropriate LUT for supply voltage versus clock frequency can be enabled or
the thermal overload temperature for an on-die thermal monitor can be recorded.

8.9 Device Packaging andMCMs
Chips can be connected directly to themain PCB of a device. This is used for small chips in ultra-low
cost products, such as a digital thermometer. More commonly, the chip is mounted in a so-called
package soldered to the circuit board.

In one common form of chip package used for mid-range chips, the silicon die has bond pads around
the edge and it is welded to a copper sheet glued onto a small PCBmade of high-quality fibreglass.
The tracks on this substrate PCB are connected to the pads on the chip using bondwires that are
contact welded at each end, both to the chip and the copper trace on the circuit board. This cold
welding simply uses an appropriate mechanical force applied by an automated bondingmachine to
fuse thematerial together. The bondwires are very fragile, so the whole assembly is encapsulated in
moulded plastic. At the bottom of the PCB, the contacts are in a square grid. Solder bumps are used to
connect this PCB to themain PCB of the system. Several decoupling capacitors (Section 8.6.1), with a
combined capacitance of about 1 µF, are also often installed on the substrate PCB, either inside or
outside the plastic cover.

483

Modern SoCDesign

Figure 8.53 General configuration of a wafer probe testing machine. The robotic staging system delivers wafers to and from conveyor systems as well as
stepping the probes over the wafer

8.8.4 PackagedDevice Testing
Diced chips need to be packaged. Today, several pieces of silicon are often placed in one package as a
multi-chipmodule (MCM) (Section 8.9.1). Decoupling capacitors may also be included in the package
to overcome the inductance of power supply traces. Although the dies are separately tested with a
wafer probe, the packagingmay suffer faults and the dies can be damaged during handling. Hence,
functional testing is also needed for a packaged assembly.

A package adds capacitive load to the signal nets and hence, final performance characterisation is best
done on the packaged assembly. Often a single base product is sold in a number of temperature and
clock frequency grades or with different DVFS parameters (Section 4.6.8). Themaximum clock
frequency at different supply voltages and temperatures is determined using a variety of proprietary
algorithms. Military and aerospace products need to operate over a wide temperature range and
higher reliability is also required. Increased reliability is also required for medical products, such as
pacemakers and healthcare equipment. Measurements of a packaged device are combinedwith the
per wafer process measurements described above.

Voltage and speed grading (or binning) is the process of assessing the performance of a component
usingmeasurements made after manufacture. Silicon process variations result in a spread of
performance at the nominal supply voltage. Each device can be labelled accordingly using automated
inkjet printing as the component exits themeasuring station.

482

Chapter 8 | Fabrication and Production

Another process typically performed during production test is per device programming. The
behaviour of a device is modified indelibly or its properties are recorded on it. This is colloquially
known as zapping the device. Physically, this can done bymelting fusible straps (aka links) with a
heavy current. Alternatively, floating-gate charge storage is used to program an unerasable
field-programmable ROM (Section 2.6.7). There are four main reasons for doing this:

1. Redundancymapping or column sparing: For devices with an array of similar elements, such as
memories and FPGAs, the yield can be increased by using an additional complete row or column. If
the production test identifies a single failed cell, its complete row or column is disabled and
replacedwith the redundant one.

2. Downgrading: A SoCwith four CPU cores could bemarketed as a device with only three if there is
a fabrication fault in one of the cores. The fourth core is permanently hidden from the
programmer’s view and physically powered down. This can also be usedwhenmarketing healthy
cores to address a different price/volume point.

3. Recording a unique identifier: This includes the address for themedia access controller (MAC) or
other unique information, such as a serial number or secret PKI key.

4. DVFSmapping: The appropriate LUT for supply voltage versus clock frequency can be enabled or
the thermal overload temperature for an on-die thermal monitor can be recorded.

8.9 Device Packaging andMCMs
Chips can be connected directly to themain PCB of a device. This is used for small chips in ultra-low
cost products, such as a digital thermometer. More commonly, the chip is mounted in a so-called
package soldered to the circuit board.

In one common form of chip package used for mid-range chips, the silicon die has bond pads around
the edge and it is welded to a copper sheet glued onto a small PCBmade of high-quality fibreglass.
The tracks on this substrate PCB are connected to the pads on the chip using bondwires that are
contact welded at each end, both to the chip and the copper trace on the circuit board. This cold
welding simply uses an appropriate mechanical force applied by an automated bondingmachine to
fuse thematerial together. The bondwires are very fragile, so the whole assembly is encapsulated in
moulded plastic. At the bottom of the PCB, the contacts are in a square grid. Solder bumps are used to
connect this PCB to themain PCB of the system. Several decoupling capacitors (Section 8.6.1), with a
combined capacitance of about 1 µF, are also often installed on the substrate PCB, either inside or
outside the plastic cover.

483

Modern SoCDesign

An alternative approach is tomount the device the other way up. This is called a flip chip
arrangement. It was pioneered by IBM andmore or less exclusively used by IBM formany decades
before recently becomingmainstream. The advantage of a flip chip is its shorter wiring distance (less
inductance) and the ability to put the bond pads throughout the chip instead of having just one (or
perhaps two) rows around the perimeter. The disadvantage is that heat extraction through the back
of the chip is no longer straightforward and a plastic surroundwould be useless. Instead, a heavy-duty
metal casing is normally placed on top, pushing lightly against the back of the die, to provide a thermal
dissipation path. This configuration is preferable for fluid-cooled heat management, since the fluid
can pass through dedicated channels bored in themetal casing.

8.9.1 MCMs andDie-stacking
Recently,multi-chipmodules (MCMs) have become popular. AnMCM contains several pieces of
silicon arranged in a plane or in 3-Dwith inter-chip wiring. MCMs typically use a silicon, ceramic or
glass substrate instead of the fibreglass substrate of mid-range chips as mentioned above. However,
otherwise they are essentially the same. A finer interconnect can be reliably fabricated with these
higher-quality substratematerials. The substrate is typically now called an interposer. Chips that are
designed to be side by side can be interconnected with very short bondwires without the signals
passing through the interposer. These are sometimes called ‘chiplets’.

Rather than suffering the low yield that can arise when producing enormous chips, anMCM can
combine chiplets that have been individually tested. As shown in Figure 8.54, the chiplet long
dimensionmakesmaximumuse of onemask reticule dimensionwhile allowing a large number of short
bondwires to join between abutting chiplets.

C
H

IP
LE

T
1

C
H

IP
LE

T
2

C
H

IP
LE

T
3

DRAM 1

DRAM 2

DRAM 3

DRAM 4

25
 m

m

Decoupling
capacitor

Chiplet width maximises yield High performance DRAM chips
(possibly stacked)

MCM substrate Inter-chiplet bonds Hardened memory
controllers

MCM
susbstrate

C
hi

pl
et

 le
ng

th
 =

 m
ax

im
um

 fo
r r

et
ic

ul
e

Figure 8.54 An FPGA composed of several chiplets with broadside inter-chiplet bonding, connected closely to several DRAM chips in anMCM

484

Chapter 8 | Fabrication and Production

In die-stacking, one chip is placed upside down on top of another (Figure 5.27). The lower chip, which
is typically larger, mates with the upper chip using amatching bond pad. The inter-chip connections
can bemadewith solder balls that aremelted during assembly. Stackingmore than one chip is
possible using through-silicon vias, which behave like the vias betweenmetal layers within
conventional VLSI. A square hole is etched and filled withmoltenmetal (copper, aluminium or an
exotic, lowmelting point alloy) to form a connection in the third dimension.

The technology for chip packaging and interconnect is currently evolving rapidly. As with all scaling
gains in the last 70 years of computing, each time components are brought closer together, the stray
capacitance of the interconnect is reduced, which enables faster and lower-energy computing.

New devices are often proven using amulti-project wafer (MPW). Designs from a number of
companies and research institutions share a single reticule andmask set. The reticule is the area
exposed by one set of masks and this is stepped in the x and y directions to form a repeating pattern
over the wafer. A number of different chips can thereby be fabricated simultaneously. The cost of the
mask set is shared over the designs, as is the cost per wafer. MPWs are a standard part of chip design,
as it is very rare for a company to build a full mask set on the first run unless the timescales are very
tight and the confidence level is high. For instance, Europractice [15] producesMPWs and publishes
the costs and dates of runs for a variety of technology nodes on its website. It placesMPWdesigns
withmost of themain foundries. Many nodes are run four times per year. Prices are quoted in
thousands of euros per mm2. For instance, the 2021 price list quotes a run on the UMC40nm node at
aboute70000 for a 16mm2 chip.

8.10 Engineering ChangeOrders
Hopefully, no logic design errors will be discovered in themanufactured silicon. After a significant
error is found and understood, it must be corrected as quickly and cheaply as possible. Often a
temporary fix is required, either to satisfy urgent customers or to understand better the nature of the
problem to increase confidence that a long-term fixwill work.

A variety of fixes are possible with different trade-offs of time and cost:

A complete respin is the slowest andmost expensive solution. The fix is made at the RTL level or
above and all the back-endmanufacturing steps below this level are repeated. A complete respin
requires (nearly) a completely new set of masks. A respin should aim for zero orminimal disruption
of the floor plan, so that at least some of the previous engineering effort put into the back-end flow
can be reused.

485

Modern SoCDesign

An alternative approach is tomount the device the other way up. This is called a flip chip
arrangement. It was pioneered by IBM andmore or less exclusively used by IBM formany decades
before recently becomingmainstream. The advantage of a flip chip is its shorter wiring distance (less
inductance) and the ability to put the bond pads throughout the chip instead of having just one (or
perhaps two) rows around the perimeter. The disadvantage is that heat extraction through the back
of the chip is no longer straightforward and a plastic surroundwould be useless. Instead, a heavy-duty
metal casing is normally placed on top, pushing lightly against the back of the die, to provide a thermal
dissipation path. This configuration is preferable for fluid-cooled heat management, since the fluid
can pass through dedicated channels bored in themetal casing.

8.9.1 MCMs andDie-stacking
Recently,multi-chipmodules (MCMs) have become popular. AnMCM contains several pieces of
silicon arranged in a plane or in 3-Dwith inter-chip wiring. MCMs typically use a silicon, ceramic or
glass substrate instead of the fibreglass substrate of mid-range chips as mentioned above. However,
otherwise they are essentially the same. A finer interconnect can be reliably fabricated with these
higher-quality substratematerials. The substrate is typically now called an interposer. Chips that are
designed to be side by side can be interconnected with very short bondwires without the signals
passing through the interposer. These are sometimes called ‘chiplets’.

Rather than suffering the low yield that can arise when producing enormous chips, anMCM can
combine chiplets that have been individually tested. As shown in Figure 8.54, the chiplet long
dimensionmakesmaximumuse of onemask reticule dimensionwhile allowing a large number of short
bondwires to join between abutting chiplets.

C
H

IP
LE

T
1

C
H

IP
LE

T
2

C
H

IP
LE

T
3

DRAM 1

DRAM 2

DRAM 3

DRAM 4

25
 m

m

Decoupling
capacitor

Chiplet width maximises yield High performance DRAM chips
(possibly stacked)

MCM substrate Inter-chiplet bonds Hardened memory
controllers

MCM
susbstrate

C
hi

pl
et

 le
ng

th
 =

 m
ax

im
um

 fo
r r

et
ic

ul
e

Figure 8.54 An FPGA composed of several chiplets with broadside inter-chiplet bonding, connected closely to several DRAM chips in anMCM

484

Chapter 8 | Fabrication and Production

In die-stacking, one chip is placed upside down on top of another (Figure 5.27). The lower chip, which
is typically larger, mates with the upper chip using amatching bond pad. The inter-chip connections
can bemadewith solder balls that aremelted during assembly. Stackingmore than one chip is
possible using through-silicon vias, which behave like the vias betweenmetal layers within
conventional VLSI. A square hole is etched and filled withmoltenmetal (copper, aluminium or an
exotic, lowmelting point alloy) to form a connection in the third dimension.

The technology for chip packaging and interconnect is currently evolving rapidly. As with all scaling
gains in the last 70 years of computing, each time components are brought closer together, the stray
capacitance of the interconnect is reduced, which enables faster and lower-energy computing.

New devices are often proven using amulti-project wafer (MPW). Designs from a number of
companies and research institutions share a single reticule andmask set. The reticule is the area
exposed by one set of masks and this is stepped in the x and y directions to form a repeating pattern
over the wafer. A number of different chips can thereby be fabricated simultaneously. The cost of the
mask set is shared over the designs, as is the cost per wafer. MPWs are a standard part of chip design,
as it is very rare for a company to build a full mask set on the first run unless the timescales are very
tight and the confidence level is high. For instance, Europractice [15] producesMPWs and publishes
the costs and dates of runs for a variety of technology nodes on its website. It placesMPWdesigns
withmost of themain foundries. Many nodes are run four times per year. Prices are quoted in
thousands of euros per mm2. For instance, the 2021 price list quotes a run on the UMC40nm node at
aboute70000 for a 16mm2 chip.

8.10 Engineering ChangeOrders
Hopefully, no logic design errors will be discovered in themanufactured silicon. After a significant
error is found and understood, it must be corrected as quickly and cheaply as possible. Often a
temporary fix is required, either to satisfy urgent customers or to understand better the nature of the
problem to increase confidence that a long-term fixwill work.

A variety of fixes are possible with different trade-offs of time and cost:

A complete respin is the slowest andmost expensive solution. The fix is made at the RTL level or
above and all the back-endmanufacturing steps below this level are repeated. A complete respin
requires (nearly) a completely new set of masks. A respin should aim for zero orminimal disruption
of the floor plan, so that at least some of the previous engineering effort put into the back-end flow
can be reused.

485

Modern SoCDesign

A less costly and quicker solution is a manual mask-level engineering change order (ECO). The fix is
implemented by changing a fewmasks, with the remainder left unchanged. This may be done
manually or by re-synthesis. Ametal respin, also sometimes known as anA1 ECO, changes only the
metal layers. Changing just metal layersM1–M3, called anM1-2-3 respin, is considerably less
expensive than changing the 35 to 40 layers needed for a full respin. Figure 8.55 shows an example
of RTL for a sewing kit, which can be included in a design in anticipation of mask-level ECOs. The
sewing kit contains a number of disconnected standard cells with their inputs tied off. By changing
thewiring, the spare cells can be incorporated into the circuit. Amanual change involves editing the
polygons of the changedmask ormasks. The resulting ECO is a detailed list of the edits. Both netlist
verification (Section 8.7.6) and design rule checking (Section 8.1) must then be performed to
provide confidence in the edits.

module sewkit(// TSMC 0.18u library
intput clk,
input n_reset);

// verilint 630 on : Port connected to a NULL expression
dfcfb1 DZBRB1_1(.CDN(n_reset), .CPN(clk), .D(1'b0), .Q(), .QN());
dfcfb1 DZBRB1_2(.CDN(n_reset), .CPN(clk), .D(1'b0), .Q(), .QN());

nd02d2 ND02D2_1 (.A1(1'b0), .A2(1'b0), .ZN());
nd02d2 ND02D2_2 (.A1(1'b0), .A2(1'b0), .ZN());

inv0d2 INV0D2_1(.I(1'b0), .ZN());
inv0d2 INV0D2_2(.I(1'b0), .ZN());
inv0d2 INV0D4_1(.I(1'b0), .ZN());
inv0d2 INV0D4_2(.I(1'b0), .ZN());

buffd7 BUFFD1_1(.I(1'b0), .Z());
buffd7 BUFFD1_2(.I(1'b0), .Z());

mx02d2 MX02D1_1(.I0(1'b0), .I1(1'b0), .S(1'b0), .Z());
mx02d2 MX02D1_2(.I0(1'b0), .I1(1'b0), .S(1'b0), .Z());

nr02d2 NR02D2_1 (.A1(1'b0), .A2(1'b0), .ZN());
nr02d2 NR02D2_2 (.A1(1'b0), .A2(1'b0), .ZN());

aoi211d2 AOI311D1_1(.A(1'b0), .B(1'b0), .C1(1'b0), .C2(1'b0), .ZN());
aoi211d2 AOI311D1_2(.A(1'b0), .B(1'b0), .C1(1'b0), .C2(1'b0), .ZN());

endmodule

Figure 8.55 Example of structural Verilog RTL that instantiates disconnected standard cells as a ‘sewing kit’

Amask-level ECO reruns the back-end compilers to automatically regenerate the polygons for a
selected number of masks. This has become automatedwith the recent generation of back-end
tools, although interlayer fabrication optimisations are increasingly making this less possible in
practice. A new circuit diagram can be generated using ECO logic synthesis. The compiler reads in
the netlist output from a previous run and uses as much of that as possible. A router can then be
used in ECOmode to constrain the wiring differences to a limited number of masks.

A cheap solution for a limited number or samples or a tiny production runs uses a focussed ion
beam (FIB), which can be used to edit a chip after it has beenmade or duringmanufacture.

486

Chapter 8 | Fabrication and Production

Typically, the top layers of the chip need to be removed to get at the problem and then put back on
again. Like an electronmicroscope, a FIB scans one ormore chips in a vacuum using a focussed and
steered beam of particles. The chip is imaged bymeasuring the beam current during the scan.
Unlike normal electron beam devices, FIB tools use cathodes containing a selection of exotic
metals, such as gallium and rubidium. Once a place where a change in the target device has been
located, the beam current is increased from the low level used for scanning. This either cuts gaps in
the existingmetal tracks or deposits new conducting strips, depending on the cathodematerials.
Hence, this is a form of manual rewiring.

8.11 ASIC Costs: Recurring andNon-recurring Expenses
Table 8.6 Simplistic and rough estimates of recurring (RE) and non-recurring expenses (NRE) for the first production run of n wafers

Type of expense Item Item cost Total cost
NRE 6months: 10 software engineers $100k pa $500k
NRE 6months: 10 hardware engineers $250k pa $1250k
NRE 4months: 20 verification engineers $200k pa $1333k
NRE 1mask set (22 nm) $1500k $1500k
RE Per device IP licence fees ? $?? ×n
RE 6-inch wafer $5k $5k ×n
Total $4583k + 5k×n

The cost of developing and selling a SoC includes non-recurring expenses (NRE), whichmust be paid
once and for all, regardless of howmany chips aremade. The result of this non-recurring engineering
is a mask set. Masks can be used for a very long time to producemillions of chips. The other costs are
the per device cost of goods and the per device IP block licence fees. These are collectively known as
recurring expenses. Table 8.6 gives some approximate figures.

8.11.1 Chip Cost versus Area
The per device selling price depends on the die yield, the fraction of working dies from eachwafer.
The fraction of wafers where at least some of the die work is thewafer yield. In the 1980s and 1990s,
yields for large chips were quite low, but the lattice defect density in raw silicon ingots was reduced
andmanufacturing techniques improved, so that in the late 1990s, the wafer yield was typically close
to 100 per cent for mature 90nm fabrication processes. However, recently the yield has fallen as the
geometries have become smaller.

The die yield (often simply the yield) depends on the wafer impurity density and die size. It goes down
with chip area because, given a uniform defect density, there is a larger chance of a defect being
present in a larger chip. The fraction of devices that pass wafer probe testing (i.e. before the wafer is
diced; Section 8.8.3) and fail post-packaging tests is very low. However, full testing of analogue
sections or other lengthy operations are typically skipped at the wafer probe stage.

The cost of a working device grows quickly as the die size is increased. Assume that a processedwafer
costs $5000 (Table 8.6). A 6-inch diameter wafer has area πr2 ≈18000mm2. Suppose our device has

487

Modern SoCDesign

A less costly and quicker solution is a manual mask-level engineering change order (ECO). The fix is
implemented by changing a fewmasks, with the remainder left unchanged. This may be done
manually or by re-synthesis. Ametal respin, also sometimes known as anA1 ECO, changes only the
metal layers. Changing just metal layersM1–M3, called anM1-2-3 respin, is considerably less
expensive than changing the 35 to 40 layers needed for a full respin. Figure 8.55 shows an example
of RTL for a sewing kit, which can be included in a design in anticipation of mask-level ECOs. The
sewing kit contains a number of disconnected standard cells with their inputs tied off. By changing
thewiring, the spare cells can be incorporated into the circuit. Amanual change involves editing the
polygons of the changedmask ormasks. The resulting ECO is a detailed list of the edits. Both netlist
verification (Section 8.7.6) and design rule checking (Section 8.1) must then be performed to
provide confidence in the edits.

module sewkit(// TSMC 0.18u library
intput clk,
input n_reset);

// verilint 630 on : Port connected to a NULL expression
dfcfb1 DZBRB1_1(.CDN(n_reset), .CPN(clk), .D(1'b0), .Q(), .QN());
dfcfb1 DZBRB1_2(.CDN(n_reset), .CPN(clk), .D(1'b0), .Q(), .QN());

nd02d2 ND02D2_1 (.A1(1'b0), .A2(1'b0), .ZN());
nd02d2 ND02D2_2 (.A1(1'b0), .A2(1'b0), .ZN());

inv0d2 INV0D2_1(.I(1'b0), .ZN());
inv0d2 INV0D2_2(.I(1'b0), .ZN());
inv0d2 INV0D4_1(.I(1'b0), .ZN());
inv0d2 INV0D4_2(.I(1'b0), .ZN());

buffd7 BUFFD1_1(.I(1'b0), .Z());
buffd7 BUFFD1_2(.I(1'b0), .Z());

mx02d2 MX02D1_1(.I0(1'b0), .I1(1'b0), .S(1'b0), .Z());
mx02d2 MX02D1_2(.I0(1'b0), .I1(1'b0), .S(1'b0), .Z());

nr02d2 NR02D2_1 (.A1(1'b0), .A2(1'b0), .ZN());
nr02d2 NR02D2_2 (.A1(1'b0), .A2(1'b0), .ZN());

aoi211d2 AOI311D1_1(.A(1'b0), .B(1'b0), .C1(1'b0), .C2(1'b0), .ZN());
aoi211d2 AOI311D1_2(.A(1'b0), .B(1'b0), .C1(1'b0), .C2(1'b0), .ZN());

endmodule

Figure 8.55 Example of structural Verilog RTL that instantiates disconnected standard cells as a ‘sewing kit’

Amask-level ECO reruns the back-end compilers to automatically regenerate the polygons for a
selected number of masks. This has become automatedwith the recent generation of back-end
tools, although interlayer fabrication optimisations are increasingly making this less possible in
practice. A new circuit diagram can be generated using ECO logic synthesis. The compiler reads in
the netlist output from a previous run and uses as much of that as possible. A router can then be
used in ECOmode to constrain the wiring differences to a limited number of masks.

A cheap solution for a limited number or samples or a tiny production runs uses a focussed ion
beam (FIB), which can be used to edit a chip after it has beenmade or duringmanufacture.

486

Chapter 8 | Fabrication and Production

Typically, the top layers of the chip need to be removed to get at the problem and then put back on
again. Like an electronmicroscope, a FIB scans one ormore chips in a vacuum using a focussed and
steered beam of particles. The chip is imaged bymeasuring the beam current during the scan.
Unlike normal electron beam devices, FIB tools use cathodes containing a selection of exotic
metals, such as gallium and rubidium. Once a place where a change in the target device has been
located, the beam current is increased from the low level used for scanning. This either cuts gaps in
the existingmetal tracks or deposits new conducting strips, depending on the cathodematerials.
Hence, this is a form of manual rewiring.

8.11 ASIC Costs: Recurring andNon-recurring Expenses
Table 8.6 Simplistic and rough estimates of recurring (RE) and non-recurring expenses (NRE) for the first production run of n wafers

Type of expense Item Item cost Total cost
NRE 6months: 10 software engineers $100k pa $500k
NRE 6months: 10 hardware engineers $250k pa $1250k
NRE 4months: 20 verification engineers $200k pa $1333k
NRE 1mask set (22 nm) $1500k $1500k
RE Per device IP licence fees ? $?? ×n
RE 6-inch wafer $5k $5k ×n
Total $4583k + 5k×n

The cost of developing and selling a SoC includes non-recurring expenses (NRE), whichmust be paid
once and for all, regardless of howmany chips aremade. The result of this non-recurring engineering
is a mask set. Masks can be used for a very long time to producemillions of chips. The other costs are
the per device cost of goods and the per device IP block licence fees. These are collectively known as
recurring expenses. Table 8.6 gives some approximate figures.

8.11.1 Chip Cost versus Area
The per device selling price depends on the die yield, the fraction of working dies from eachwafer.
The fraction of wafers where at least some of the die work is thewafer yield. In the 1980s and 1990s,
yields for large chips were quite low, but the lattice defect density in raw silicon ingots was reduced
andmanufacturing techniques improved, so that in the late 1990s, the wafer yield was typically close
to 100 per cent for mature 90nm fabrication processes. However, recently the yield has fallen as the
geometries have become smaller.

The die yield (often simply the yield) depends on the wafer impurity density and die size. It goes down
with chip area because, given a uniform defect density, there is a larger chance of a defect being
present in a larger chip. The fraction of devices that pass wafer probe testing (i.e. before the wafer is
diced; Section 8.8.3) and fail post-packaging tests is very low. However, full testing of analogue
sections or other lengthy operations are typically skipped at the wafer probe stage.

The cost of a working device grows quickly as the die size is increased. Assume that a processedwafer
costs $5000 (Table 8.6). A 6-inch diameter wafer has area πr2 ≈18000mm2. Suppose our device has

487

Modern SoCDesign

area A, which can range between 2 and 200mm2 (including inter-die scoring lines). The number of
dies per wafer is 18000/A. The probability of a die working is the wafer yield multiplied by the die
yield. We assume that the wafer yield is 1.0, otherwise wewould need to factor in the wafer cost. Let
us assume that of the squaremillimetres of processed silicon, 99.5 per cent of them are defect-free.
The die yield is then:

P(All A squares work)=0.995A

The cost of each working die in dollars is then given by:
5000

(18000/A)0.995A
Table 8.7 gives typical values computed in this way. We see that the cost of a working chip rapidly
grows above the traditional sweet spot of about 11mmon a side (121mm2).

Table 8.7 Die yield. The cost for a working die given a 6-inch wafer with a processing cost of $5000 and a probability of a square millimetre being defect-free
of 99.55 per cent

Area (mm2) Number of wafer dies Number of working dies Cost per working die ($)
2 9000 8910 0.56
3 6000 5910 0.85
4 4500 4411 1.13
6 3000 2911 1.72
9 2000 1912 2.62
13 1385 1297 3.85
19 947 861 5.81
28 643 559 8.95
42 429 347 14.40
63 286 208 24.00
94 191 120 41.83
141 128 63 79.41
211 85 30 168.78
316 57 12 427.85
474 38 4 1416.89

8.12 Static Timing Analysis and Timing Sign-off
Static timing analysis (STA) checks the delay in every valid timing path in a cell-based design against a
set of timing constraints. The term ‘static’ indicates that there are no test vectors and no transient
simulations are necessary. Instead, all the possible paths that a logic signal can take are evaluated
more or less in parallel. STA is an integral part of logic synthesis, place-and-route optimisation and
final design sign-off.

Because static timing analysis is exhaustive and occurs frequently during an implementation flow, it
has to be very efficient. The delays for each cell are calculated, a priori, using abstract models as
described in Section 4.6.4. STA traces through the paths in a design to estimate the delays and
transition times as quickly and accurately as possible using the abstract timingmodels for cells and RC
networks representing the nets. The analyser reports by howmuch the rank paths violate the timing
constraints.

488

Chapter 8 | Fabrication and Production

8.12.1 STA Types: Maximum andMinimum
STA includes two basic forms of analysis known asmaximum andminimum.Maximum timing analysis
considers whether signals have settled before the setup time for a clocked cell (typically, a flip-flop).
As was defined in Section 4.4.2, the worst path is known as the critical path. On the other hand,
minimum timing analysis considers whether any hold timewill be violated. Here, an input value
changes before it has been properly registered in the clocked cell.

STA can identify themaximum clock frequency that a design can run at before over-clocking. If there
aremulti-cycle paths in a niche design, it can also report theminimum clock frequency (Section 4.9.6).
The results from an STA run depend greatly on the assumptions andmodelling used for the
components andwiring. Hence, different process corners (Section 8.12.4) yield different results. Fast
corners produce faster logic and aremore likely to fail in a minimum timing analysis (assuming the
hold-time specifications are less than proportionally scaled) whereas slower corners aremore likely
to fail in a maximum timing analysis. The situation is more complex for asymmetric corners and is
discussed in Section 8.12.5.

8.12.2 MaximumTiming Analysis
For bothmaximum andminimum STA, the two basic approaches for the final sign-off are traditional
graph-based analysis (GBA) and themore precise path-based analysis (PBA). We first consider how
to find themaximum timing under GBA.

Clock

Data D OutputQ

Clock

Data

Output

Propagation delay

Setup time

Hold time

Figure 8.56 The three main timing specifications for a sequential cell, such as a flip-flop (repeated from Figure 4.13)

Formaximum STA, the analyser discovers the longest event path through logic gates from one
sequential element in a clock domain to another. This starts with the clock-to-Q delay of a sequential
element such as a flip-flop or SSRAM (Figure 8.56). The longest path is generally the critical path,
which fixes themaximum clock frequency. However, sometimes this is a false result, since this path

489

Modern SoCDesign

area A, which can range between 2 and 200mm2 (including inter-die scoring lines). The number of
dies per wafer is 18000/A. The probability of a die working is the wafer yield multiplied by the die
yield. We assume that the wafer yield is 1.0, otherwise wewould need to factor in the wafer cost. Let
us assume that of the squaremillimetres of processed silicon, 99.5 per cent of them are defect-free.
The die yield is then:

P(All A squares work)=0.995A

The cost of each working die in dollars is then given by:
5000

(18000/A)0.995A
Table 8.7 gives typical values computed in this way. We see that the cost of a working chip rapidly
grows above the traditional sweet spot of about 11mmon a side (121mm2).

Table 8.7 Die yield. The cost for a working die given a 6-inch wafer with a processing cost of $5000 and a probability of a square millimetre being defect-free
of 99.55 per cent

Area (mm2) Number of wafer dies Number of working dies Cost per working die ($)
2 9000 8910 0.56
3 6000 5910 0.85
4 4500 4411 1.13
6 3000 2911 1.72
9 2000 1912 2.62
13 1385 1297 3.85
19 947 861 5.81
28 643 559 8.95
42 429 347 14.40
63 286 208 24.00
94 191 120 41.83
141 128 63 79.41
211 85 30 168.78
316 57 12 427.85
474 38 4 1416.89

8.12 Static Timing Analysis and Timing Sign-off
Static timing analysis (STA) checks the delay in every valid timing path in a cell-based design against a
set of timing constraints. The term ‘static’ indicates that there are no test vectors and no transient
simulations are necessary. Instead, all the possible paths that a logic signal can take are evaluated
more or less in parallel. STA is an integral part of logic synthesis, place-and-route optimisation and
final design sign-off.

Because static timing analysis is exhaustive and occurs frequently during an implementation flow, it
has to be very efficient. The delays for each cell are calculated, a priori, using abstract models as
described in Section 4.6.4. STA traces through the paths in a design to estimate the delays and
transition times as quickly and accurately as possible using the abstract timingmodels for cells and RC
networks representing the nets. The analyser reports by howmuch the rank paths violate the timing
constraints.

488

Chapter 8 | Fabrication and Production

8.12.1 STA Types: Maximum andMinimum
STA includes two basic forms of analysis known asmaximum andminimum.Maximum timing analysis
considers whether signals have settled before the setup time for a clocked cell (typically, a flip-flop).
As was defined in Section 4.4.2, the worst path is known as the critical path. On the other hand,
minimum timing analysis considers whether any hold timewill be violated. Here, an input value
changes before it has been properly registered in the clocked cell.

STA can identify themaximum clock frequency that a design can run at before over-clocking. If there
aremulti-cycle paths in a niche design, it can also report theminimum clock frequency (Section 4.9.6).
The results from an STA run depend greatly on the assumptions andmodelling used for the
components andwiring. Hence, different process corners (Section 8.12.4) yield different results. Fast
corners produce faster logic and aremore likely to fail in a minimum timing analysis (assuming the
hold-time specifications are less than proportionally scaled) whereas slower corners aremore likely
to fail in a maximum timing analysis. The situation is more complex for asymmetric corners and is
discussed in Section 8.12.5.

8.12.2 MaximumTiming Analysis
For bothmaximum andminimum STA, the two basic approaches for the final sign-off are traditional
graph-based analysis (GBA) and themore precise path-based analysis (PBA). We first consider how
to find themaximum timing under GBA.

Clock

Data D OutputQ

Clock

Data

Output

Propagation delay

Setup time

Hold time

Figure 8.56 The three main timing specifications for a sequential cell, such as a flip-flop (repeated from Figure 4.13)

Formaximum STA, the analyser discovers the longest event path through logic gates from one
sequential element in a clock domain to another. This starts with the clock-to-Q delay of a sequential
element such as a flip-flop or SSRAM (Figure 8.56). The longest path is generally the critical path,
which fixes themaximum clock frequency. However, sometimes this is a false result, since this path

489

Modern SoCDesign

might never be used during device operation. STA cannot detect this automatically, since that
requires a full reachable-state analysis (Section 7.1.1), which is too time-consuming, but such tools are
driven by configuration files that specify paths to ignore (either manually or as generated by a formal
analysis).

D

D QH

D QD

QC

Datum/Origin
D=0

Dc=Tclk+Tprop
 =Tprop

Dd=Tclk+Tprop
 =Tprop

Da

Db

De=Tprop+Max(Da, Tprop)

Df=Tprop+Max(Db, Tprop)

Dg=Tprop+Max(De. Db)
 =Tprop+Max(Tprop+Max(Da,Tprop))

Dh=Tclk+Tprop
 =Tprop+Max(Db, Tprop)+Tprop

Master clock
input.

Figure 8.57 An example circuit with static timing annotations for maximumGBA analysis

Figure 8.57 shows a typical maximum timing analysis scenario using GBA. Starting with some
reference point, taken as D=0, such as themaster clock input to a clock domain, we compute the
relative delay on the output of each gate and flop. For a combinational gate, the output delay is the
propagation time for the gate added onto themaximum of its input arrival times. For an
edge-triggered device, such as a D-type or JK flip-flop, there is no event path to the output from the D
or JK inputs, so the output delay is just the clock delay plus the flop’s clock-to-Q delay. For
asynchronous flop inputs, such as preset, reset or transparent latch inputs, further input-to-output
event pathsmust be considered. These are handled in the sameway as gate inputs.

The detailed characterisation of propagation delays may not be the same for all inputs to an output,
for all directions of transition or for all input slew rates. For instance, in a standard CMOSNOR gate, a
pull-down uses a parallel structure, leading tomatched input-to-output delays when going low, but a
pull-up uses a series transistor structure and the effective substrate potential of the two transistors
may not be the same, leading to a difference in the propagation delay depending onwhich input leads
to the output making a low-to-high transition.

Having different input-to-output delays is readily handled in GBA by considering themaximum of the
individual sums of input change times and propagation delays. Having different delays for each
direction of slew is also comparatively easy to handle bymodelling each arrival with a pair of times,
one for each direction, and taking into account whether there is inverting behaviour between the
input and output. For certain components, such as XOR gates, adders and toggling flip-flops, the
direction of transitions dynamically changes from inverting to non-inverting, so the worst case value

490

Chapter 8 | Fabrication and Production

must be conservatively used. On the other hand, certain transitions never create an event, such as the
de-assert of an asynchronous reset.

Note that for long paths of such logic, the result of a conservative analysis is likely to be significantly
worse than the average case. However, designs will normally be based onworst-casemargins (within
a process corner), so this is acceptable. Likewise, an arrival time can be extended beyond a pair to a
more complicated vector that also includes worst-case signal transition times in each direction and so
on, as used in non-linear delaymodelling (Section 8.12.6).

In PBA, the simplicity of using a single timing value (scalar or vector) per cell output is replacedwith a
separate analysis for every path through a combinational network. This converts a linear problem into
a quadratic problem, but the growth is typically just a scalar increase given that the overall cost of
analysis is dominated by the likely high number of disconnected combinatorial subnetworks spread
over the design. A slowdown by a factor of 100 is perfectly acceptable for timing sign-off.

Providing both graph-based and path-based options helps an engineeringmanager balance efficiency
and accuracy. The efficiency of GBA decreases the runtime of timing optimisations whereas the
accuracy of PBA is required for final timing sign-off.

8.12.3 MinimumTiming Analysis
Maximum timing considers the delay between one clock edge and the next, and hence, gives the
maximum clock frequency. Minimum timing is for just one clock edge andmust bemet regardless of
clock frequency. As also shown in Figure 8.56, the data input to a sequential cell such as a flip-flop
must meet the hold-time requirement. Minimum timing checks whether the data at the input of every
such sequential cell is reliably captured before it changes in response to the current clock cycle. Many
flip-flop designs ensure that the hold-time specification is less than the clock-to-Q propagation delay
time. This enables a simple shift register to be constructed. However, some components do not meet
this condition and rely on at least some combinational logic between their output and the input to
another component (or indeed the same one). If a path fails to meet minimum timing, the logic value
from the next clock cycle can race through the sequential cell, corrupting its state and causing a
shoot-through error (Section 4.6.9).

The algorithm for minimal timing analysis can likewise use scalar or vector timing information and use
GBA or PBA. The essential difference is that theminimum delay should be selected at each point
where the algorithm considers the worst case. The resulting figure is then comparedwith the
hold-time specification at the component receiving the signal.

Maximum timing defines the highest clock frequency at which the end product can operate. If a path
violates maximum timing constraints, then some slower parts may fail to function properly at the
desired frequency, but they will function reliably at a lower frequency, higher voltage or different
temperature. On the other hand, if a path violates minimum timing constraints under any condition,
some parts will fail to function reliably across some range of manufacturing tolerances and operating

491

Modern SoCDesign

might never be used during device operation. STA cannot detect this automatically, since that
requires a full reachable-state analysis (Section 7.1.1), which is too time-consuming, but such tools are
driven by configuration files that specify paths to ignore (either manually or as generated by a formal
analysis).

D

D QH

D QD

QC

Datum/Origin
D=0

Dc=Tclk+Tprop
 =Tprop

Dd=Tclk+Tprop
 =Tprop

Da

Db

De=Tprop+Max(Da, Tprop)

Df=Tprop+Max(Db, Tprop)

Dg=Tprop+Max(De. Db)
 =Tprop+Max(Tprop+Max(Da,Tprop))

Dh=Tclk+Tprop
 =Tprop+Max(Db, Tprop)+Tprop

Master clock
input.

Figure 8.57 An example circuit with static timing annotations for maximumGBA analysis

Figure 8.57 shows a typical maximum timing analysis scenario using GBA. Starting with some
reference point, taken as D=0, such as themaster clock input to a clock domain, we compute the
relative delay on the output of each gate and flop. For a combinational gate, the output delay is the
propagation time for the gate added onto themaximum of its input arrival times. For an
edge-triggered device, such as a D-type or JK flip-flop, there is no event path to the output from the D
or JK inputs, so the output delay is just the clock delay plus the flop’s clock-to-Q delay. For
asynchronous flop inputs, such as preset, reset or transparent latch inputs, further input-to-output
event pathsmust be considered. These are handled in the sameway as gate inputs.

The detailed characterisation of propagation delays may not be the same for all inputs to an output,
for all directions of transition or for all input slew rates. For instance, in a standard CMOSNOR gate, a
pull-down uses a parallel structure, leading tomatched input-to-output delays when going low, but a
pull-up uses a series transistor structure and the effective substrate potential of the two transistors
may not be the same, leading to a difference in the propagation delay depending onwhich input leads
to the output making a low-to-high transition.

Having different input-to-output delays is readily handled in GBA by considering themaximum of the
individual sums of input change times and propagation delays. Having different delays for each
direction of slew is also comparatively easy to handle bymodelling each arrival with a pair of times,
one for each direction, and taking into account whether there is inverting behaviour between the
input and output. For certain components, such as XOR gates, adders and toggling flip-flops, the
direction of transitions dynamically changes from inverting to non-inverting, so the worst case value

490

Chapter 8 | Fabrication and Production

must be conservatively used. On the other hand, certain transitions never create an event, such as the
de-assert of an asynchronous reset.

Note that for long paths of such logic, the result of a conservative analysis is likely to be significantly
worse than the average case. However, designs will normally be based onworst-casemargins (within
a process corner), so this is acceptable. Likewise, an arrival time can be extended beyond a pair to a
more complicated vector that also includes worst-case signal transition times in each direction and so
on, as used in non-linear delaymodelling (Section 8.12.6).

In PBA, the simplicity of using a single timing value (scalar or vector) per cell output is replacedwith a
separate analysis for every path through a combinational network. This converts a linear problem into
a quadratic problem, but the growth is typically just a scalar increase given that the overall cost of
analysis is dominated by the likely high number of disconnected combinatorial subnetworks spread
over the design. A slowdown by a factor of 100 is perfectly acceptable for timing sign-off.

Providing both graph-based and path-based options helps an engineeringmanager balance efficiency
and accuracy. The efficiency of GBA decreases the runtime of timing optimisations whereas the
accuracy of PBA is required for final timing sign-off.

8.12.3 MinimumTiming Analysis
Maximum timing considers the delay between one clock edge and the next, and hence, gives the
maximum clock frequency. Minimum timing is for just one clock edge andmust bemet regardless of
clock frequency. As also shown in Figure 8.56, the data input to a sequential cell such as a flip-flop
must meet the hold-time requirement. Minimum timing checks whether the data at the input of every
such sequential cell is reliably captured before it changes in response to the current clock cycle. Many
flip-flop designs ensure that the hold-time specification is less than the clock-to-Q propagation delay
time. This enables a simple shift register to be constructed. However, some components do not meet
this condition and rely on at least some combinational logic between their output and the input to
another component (or indeed the same one). If a path fails to meet minimum timing, the logic value
from the next clock cycle can race through the sequential cell, corrupting its state and causing a
shoot-through error (Section 4.6.9).

The algorithm for minimal timing analysis can likewise use scalar or vector timing information and use
GBA or PBA. The essential difference is that theminimum delay should be selected at each point
where the algorithm considers the worst case. The resulting figure is then comparedwith the
hold-time specification at the component receiving the signal.

Maximum timing defines the highest clock frequency at which the end product can operate. If a path
violates maximum timing constraints, then some slower parts may fail to function properly at the
desired frequency, but they will function reliably at a lower frequency, higher voltage or different
temperature. On the other hand, if a path violates minimum timing constraints under any condition,
some parts will fail to function reliably across some range of manufacturing tolerances and operating

491

Modern SoCDesign

conditions, and nothing can be done to recover the functionality. So, minimum timing should be
checkedwithmore rigour thanmaximum timing.

If there is no combinational path from the output of a logic gate back to one of its inputs, a design is
said to be loop-free. Most sequential logic is designed that way, with all loops being sequential loops
that pass through one ormore clocked elements. Level-sensitive latches, like an RS latch
(Section 8.3.1), deliberately have combinational paths, of course, but these are seldom used. However,
sometimes there are combinatorial paths in arbiter circuits and as a side effect of multiplexers for test
modes (Section 8.8.2). In these cases, STAmay not be able to distinguish properly the relevant paths
for timing analysis. In other cases, certain nets are known never to change value during normal
operation (e.g. a test mode control signal), and so should be ignoredwhen checking for timing path
violations. These situations need to bemanually described by the designer in the scripting files read in
by STA. An example of an STA driver file is given in Section 8.12.6. Examples of common sources of
timing error that result in timingmargins are listed in Table 8.8.

Table 8.8 Common sources of timing error

Source Marginmethod
PLL clock jitter Use clock uncertainty to reduce the clock period for maximum timing paths.

Hold constraint characterisation error
Use clock uncertainty to increase the hold-time constraints on sequential cells and reduce the risk of
minimum timing failures in silicon due to shortcomings in transistor simulationmodelling, RC
extraction ormodel abstraction.

Dynamic voltage noise Use cell delay timing derates to account for non-uniform instantaneous voltage droops on some
instances in the design if those voltages are unknown.

Wire variation Use net delay timing derates to account for non-uniformmetal and via layer capacitances and
resistances that are not captured in RC extraction.

8.12.4 Process Corners
Timingmust be checked across the range of manufacturing tolerances, usages and environmental
conditions that the end product is expected to encounter. These conditions are commonly supplied as
process, voltage and temperature (PVT) cornermodels for each cell. PVT variation was introduced in
Section 8.4.4, but process variations themselves also havemultiple corners, which we discuss here.

Voltage corners reflect the range of on-die voltages within which the end product is specified to
operate. If the product incorporates voltage and frequency scaling (Section 4.6.8), the operating
voltage rangemay span several hundredmillivolts. The voltage corners must also anticipate any
voltage regulation tolerances and potential voltage overshoot due to inductance or droop due to
resistance in the PDN. Thus, the voltage range for static timing analysis is always wider than the
specified operating voltage range.

Similarly, temperature corners reflect the range of on-die temperatures within which the end product
is specified to operate. This is determined by the environment in which the product may be used. As
explained in Section 4.4.1, products intended for use in industrial, automotive or space environments
are required to operate across more extreme temperature ranges than consumer products.

492

Chapter 8 | Fabrication and Production

A process corner acknowledges the variability inherent in a semiconductor manufacturing process. It
is impossible tomaintain uniform values for many parameters across an entire wafer, fromwafer to
wafer within the samemanufacturing lot, or between different lots manufactured on various pieces of
equipment at different times. The parameters that vary are implant concentrations, layer thicknesses
and feature dimensions. Process variations are classed as either front or back end-of-line variations.

A front end-of-line (FEOL) variation is a change in active component parameters, such as the gain, VT
or on-resistance of a FET. A back end-of-line (BEOL) variation is a change in unwanted parasitic
parameters, such as net resistance and stray capacitance. Figure 8.58 is a vertical cross-sectional slice
through a chip showing that FEOL affects the lowest active areas and BEOLmostly affects the
metallic interconnect.

To cover FEOL variations, a foundry provides simulationmodels with slow transistors (S), typical
transistors (T) and fast transistors (F), with the different process parameters varying within what are
considered to be acceptable limits. Process corners are namedwith at least two letters, the first
representing the process corner for the N-channel transistors and the second representing the
process corner for the P-channel transistors. A special challenge are the so-called skewed corners, for
which one type of transistor is fast and another slow. Each corner has a data file and the corner names
are, typically, included in the file name. Examples of strings in model names that denote PVT corners
are given in Table 8.9.

Table 8.9 Examples of process corners

String Meaning
ss_0p9v_m40c Slow P andN channel transistors at 0.9V and –40°C
tt_1p0v_25c Typical P andN channel transistors at 1.0V and room temperature
ff_1p1v_125c Fast P andN channel transistors at 1.1V and 125°C

Another type of process corner is an interconnect extraction corner. An interconnect is made up of
the wires and vias that are processed in the BEOL and is modelled by extracting the wire and via
geometries into a netlist of parasitic resistors and capacitors, an RC netlist. As explained
in Section 8.7.4, the extracted netlist is written in the IEEE standard parasitic exchange format
(SPEF). Foundries commonly provide at least five interconnect extraction corners tomodel the
expected extremes of layer thickness as well as geometry width and spacing. Examples of BEOL
corners are listed in Table 8.10.

Table 8.10 Examples of BEOL corners

BEOLCorner Meaning
Cmin or Cbest Narrowwires with wide spacing for the smallest capacitance component
RCmin or RCbest Thick wires with less resistance tominimise the RC product and net delay
Typical Wires and vias meet the target dimensions
RCmax or RCworst Thin wires withmore resistance tomaximise the RC product and net delay
Cmax or Cworst Widewires with narrow spacing for the largest capacitance component

493

Modern SoCDesign

conditions, and nothing can be done to recover the functionality. So, minimum timing should be
checkedwithmore rigour thanmaximum timing.

If there is no combinational path from the output of a logic gate back to one of its inputs, a design is
said to be loop-free. Most sequential logic is designed that way, with all loops being sequential loops
that pass through one ormore clocked elements. Level-sensitive latches, like an RS latch
(Section 8.3.1), deliberately have combinational paths, of course, but these are seldom used. However,
sometimes there are combinatorial paths in arbiter circuits and as a side effect of multiplexers for test
modes (Section 8.8.2). In these cases, STAmay not be able to distinguish properly the relevant paths
for timing analysis. In other cases, certain nets are known never to change value during normal
operation (e.g. a test mode control signal), and so should be ignoredwhen checking for timing path
violations. These situations need to bemanually described by the designer in the scripting files read in
by STA. An example of an STA driver file is given in Section 8.12.6. Examples of common sources of
timing error that result in timingmargins are listed in Table 8.8.

Table 8.8 Common sources of timing error

Source Marginmethod
PLL clock jitter Use clock uncertainty to reduce the clock period for maximum timing paths.

Hold constraint characterisation error
Use clock uncertainty to increase the hold-time constraints on sequential cells and reduce the risk of
minimum timing failures in silicon due to shortcomings in transistor simulationmodelling, RC
extraction ormodel abstraction.

Dynamic voltage noise Use cell delay timing derates to account for non-uniform instantaneous voltage droops on some
instances in the design if those voltages are unknown.

Wire variation Use net delay timing derates to account for non-uniformmetal and via layer capacitances and
resistances that are not captured in RC extraction.

8.12.4 Process Corners
Timingmust be checked across the range of manufacturing tolerances, usages and environmental
conditions that the end product is expected to encounter. These conditions are commonly supplied as
process, voltage and temperature (PVT) cornermodels for each cell. PVT variation was introduced in
Section 8.4.4, but process variations themselves also havemultiple corners, which we discuss here.

Voltage corners reflect the range of on-die voltages within which the end product is specified to
operate. If the product incorporates voltage and frequency scaling (Section 4.6.8), the operating
voltage rangemay span several hundredmillivolts. The voltage corners must also anticipate any
voltage regulation tolerances and potential voltage overshoot due to inductance or droop due to
resistance in the PDN. Thus, the voltage range for static timing analysis is always wider than the
specified operating voltage range.

Similarly, temperature corners reflect the range of on-die temperatures within which the end product
is specified to operate. This is determined by the environment in which the product may be used. As
explained in Section 4.4.1, products intended for use in industrial, automotive or space environments
are required to operate across more extreme temperature ranges than consumer products.

492

Chapter 8 | Fabrication and Production

A process corner acknowledges the variability inherent in a semiconductor manufacturing process. It
is impossible tomaintain uniform values for many parameters across an entire wafer, fromwafer to
wafer within the samemanufacturing lot, or between different lots manufactured on various pieces of
equipment at different times. The parameters that vary are implant concentrations, layer thicknesses
and feature dimensions. Process variations are classed as either front or back end-of-line variations.

A front end-of-line (FEOL) variation is a change in active component parameters, such as the gain, VT
or on-resistance of a FET. A back end-of-line (BEOL) variation is a change in unwanted parasitic
parameters, such as net resistance and stray capacitance. Figure 8.58 is a vertical cross-sectional slice
through a chip showing that FEOL affects the lowest active areas and BEOLmostly affects the
metallic interconnect.

To cover FEOL variations, a foundry provides simulationmodels with slow transistors (S), typical
transistors (T) and fast transistors (F), with the different process parameters varying within what are
considered to be acceptable limits. Process corners are namedwith at least two letters, the first
representing the process corner for the N-channel transistors and the second representing the
process corner for the P-channel transistors. A special challenge are the so-called skewed corners, for
which one type of transistor is fast and another slow. Each corner has a data file and the corner names
are, typically, included in the file name. Examples of strings in model names that denote PVT corners
are given in Table 8.9.

Table 8.9 Examples of process corners

String Meaning
ss_0p9v_m40c Slow P andN channel transistors at 0.9V and –40°C
tt_1p0v_25c Typical P andN channel transistors at 1.0V and room temperature
ff_1p1v_125c Fast P andN channel transistors at 1.1V and 125°C

Another type of process corner is an interconnect extraction corner. An interconnect is made up of
the wires and vias that are processed in the BEOL and is modelled by extracting the wire and via
geometries into a netlist of parasitic resistors and capacitors, an RC netlist. As explained
in Section 8.7.4, the extracted netlist is written in the IEEE standard parasitic exchange format
(SPEF). Foundries commonly provide at least five interconnect extraction corners tomodel the
expected extremes of layer thickness as well as geometry width and spacing. Examples of BEOL
corners are listed in Table 8.10.

Table 8.10 Examples of BEOL corners

BEOLCorner Meaning
Cmin or Cbest Narrowwires with wide spacing for the smallest capacitance component
RCmin or RCbest Thick wires with less resistance tominimise the RC product and net delay
Typical Wires and vias meet the target dimensions
RCmax or RCworst Thin wires withmore resistance tomaximise the RC product and net delay
Cmax or Cworst Widewires with narrow spacing for the largest capacitance component

493

Modern SoCDesign

Figure 8.58 CMOS chip structure, highlighting layers most affected by FEOL and BEOL variations

An interconnect extraction corner also has a temperature component since resistance increases as
temperature increases. So, the RC extraction temperature shouldmatch the PVT corner temperature.
There is a growing need for better statistical modelling of the variations in resistance and capacitance,
since net delays are becoming a larger proportion of the total path delay.

8.12.5 Early and Late Arrivals
If there are alternative timing paths between two end points or alternative timing arcs through the
cells, or any kind of timing variation to account for, it is useful to distinguish between timing paths that
aremore pessimistic in a corner where they become faster and timing paths that aremore pessimistic

494

Chapter 8 | Fabrication and Production

in a corner where they are slower. By pessimistic, wemeanmore likely to lead to failure of either
maximum orminimum timing.

Clock

reg1

ck1 ck2

reg2

late early

Q
D

launch
clock

capture
clock

lengthy
combinational logic

late delay

launch clock

capture clock

Clock

reg1

ck1 ck2

reg2

late

early

Q
D

launch
clock

capture
clock

short
combinational logic

early delay

launch clock

capture clock

Q
D

Clk-to-Q time

setup
time

hazard

hold time
hazardQ

D
Clk-to-Q time

Figure 8.59 Troublesome early and late path configurations for maximum (left) and minimum (right) timing. Late path components are shaded dark

An early path is one that becomesmore pessimistic when skewed to be faster (i.e. in a corner where
the path delay is lower). Undermaximum timing, as shown in Figure 8.59 (left), one form of early path
is the path to a flip-flop that captures data. This is because, if that path is faster, it reduces the
available clock period. Hence, it raises a setup-time risk if the combinational logic path is lengthy.
Conversely, the clock delay to a flip-flop that is launching data is part of a late path, as is the
combinational logic between the launching and capturing components. Similarly, a late path becomes
more pessimistic when skewed to be slower.

Underminimum timing, the late and early paths are the other way round, as shown in Figure 8.59
(right). Hold-time violations aremore likely if there is a fast path between one flip-flop and the next, a
situation that arises in shift register or pass-transistor (illustrated) structures. In this situation,
hold-time violations are exacerbatedwhen the clock to a receiving flip-flop is late.

Of course, a synchronous component both launches and receives data on a clock edge, so its clock
path is notionally always part of both a late path and an early path. However, typically, one or other of
these paths has greater slack and is not of concern. This is where clock skewing can be exploited
(Section 4.9.6).

Another form of variation arises between the relative performance of the P- andN-type transistors.
The two types of FET are based on different diffusion steps, so their variations are not correlated.
Hence, it is helpful to consider both the FS (fast N and slow P) and SF (slowN and fast P) corners.
These are called skewed or asymmetric corners. Figure 8.60 (left) illustrates a typical structure with a
gated clock. For this skewed SF corner, zero-to-one transitions are faster. A variation canmean that
the clock to the broadside register labelled Qwill arrive faster in that corner than arrivals for the
D-inputs that are in the tail of the distribution for arrivals. Hence, setup times will tend to be violated.
This is a maximum timing issue and can be solved by binning the whole part for a lowermaximum
clock frequency. However, for the logic being fed from Q, there is a minimal timing problem that

495

Modern SoCDesign

Figure 8.58 CMOS chip structure, highlighting layers most affected by FEOL and BEOL variations

An interconnect extraction corner also has a temperature component since resistance increases as
temperature increases. So, the RC extraction temperature shouldmatch the PVT corner temperature.
There is a growing need for better statistical modelling of the variations in resistance and capacitance,
since net delays are becoming a larger proportion of the total path delay.

8.12.5 Early and Late Arrivals
If there are alternative timing paths between two end points or alternative timing arcs through the
cells, or any kind of timing variation to account for, it is useful to distinguish between timing paths that
aremore pessimistic in a corner where they become faster and timing paths that aremore pessimistic

494

Chapter 8 | Fabrication and Production

in a corner where they are slower. By pessimistic, wemeanmore likely to lead to failure of either
maximum orminimum timing.

Clock

reg1

ck1 ck2

reg2

late early

Q
D

launch
clock

capture
clock

lengthy
combinational logic

late delay

launch clock

capture clock

Clock

reg1

ck1 ck2

reg2

late

early

Q
D

launch
clock

capture
clock

short
combinational logic

early delay

launch clock

capture clock

Q
D

Clk-to-Q time

setup
time

hazard

hold time
hazardQ

D
Clk-to-Q time

Figure 8.59 Troublesome early and late path configurations for maximum (left) and minimum (right) timing. Late path components are shaded dark

An early path is one that becomesmore pessimistic when skewed to be faster (i.e. in a corner where
the path delay is lower). Undermaximum timing, as shown in Figure 8.59 (left), one form of early path
is the path to a flip-flop that captures data. This is because, if that path is faster, it reduces the
available clock period. Hence, it raises a setup-time risk if the combinational logic path is lengthy.
Conversely, the clock delay to a flip-flop that is launching data is part of a late path, as is the
combinational logic between the launching and capturing components. Similarly, a late path becomes
more pessimistic when skewed to be slower.

Underminimum timing, the late and early paths are the other way round, as shown in Figure 8.59
(right). Hold-time violations aremore likely if there is a fast path between one flip-flop and the next, a
situation that arises in shift register or pass-transistor (illustrated) structures. In this situation,
hold-time violations are exacerbatedwhen the clock to a receiving flip-flop is late.

Of course, a synchronous component both launches and receives data on a clock edge, so its clock
path is notionally always part of both a late path and an early path. However, typically, one or other of
these paths has greater slack and is not of concern. This is where clock skewing can be exploited
(Section 4.9.6).

Another form of variation arises between the relative performance of the P- andN-type transistors.
The two types of FET are based on different diffusion steps, so their variations are not correlated.
Hence, it is helpful to consider both the FS (fast N and slow P) and SF (slowN and fast P) corners.
These are called skewed or asymmetric corners. Figure 8.60 (left) illustrates a typical structure with a
gated clock. For this skewed SF corner, zero-to-one transitions are faster. A variation canmean that
the clock to the broadside register labelled Qwill arrive faster in that corner than arrivals for the
D-inputs that are in the tail of the distribution for arrivals. Hence, setup times will tend to be violated.
This is a maximum timing issue and can be solved by binning the whole part for a lowermaximum
clock frequency. However, for the logic being fed from Q, there is a minimal timing problem that

495

Modern SoCDesign

cannot be solved by frequency binning. Instead, the part has to be binned for a narrower temperature
range or discarded entirely.

Figure 8.60 (right) illustrates that skewed corner asymmetry tends to cancel out over longer paths of
inverting logic, such as from d0 to y. However, for paths that go through just one gate, such as d2 to y,
there is no cancelling. Shorter paths are alsomore likely to suffer hold-time violations, so this is, again,
a more severe problem.

P Q

Dmax minD-Clk+0

Clock

d0

d2
y

enable
Clk+G

Faster 0-to-1 Faster 0-to-1
as well

Faster 0-to-1

Faster 0-to-1

Figure 8.60 A logic structure with a gated clock that could suffer in an FS process corner (left) and a combinational logic circuit with two paths that differ in
their levels of inversion

Generally, the clock path to a launching sequential element is very similar to the clock path of the
receiving element. In certain cases, the difference is often just in the final section of the path.
Sometimes the launcher and receiver are physically connected to the same clock net and sometimes
the launcher is the receiver. In these cases, it is overly pessimistic to consider the general worst-case
divergence between launching and capture clocks for the process corner. For the shared portion of
any two clock paths, it is impossible to have fast and slow skews simultaneously. STA performs
common-path pessimism removal (CPPR), which discounts the variation in clock time arising from
the common part of the clock distribution network that is shared between the launching and receiving
components. This is labelled CPPR in a timing report.

8.12.6 TimingModels: Liberty
Abstract timingmodels for cells are created by running SPICE simulations to characterise them. The
models are stored in text files that conform to the Liberty model format. The syntax of Liberty models
wasmade public and is controlled by the Liberty Technical Advisory Board (LTAB), which operates
under the Industry Standards and TechnologyOrganization (ISTO) of the IEEE.Models contain
information on function, input capacitance, cell delay for each timing arc, output transition times,
constraints, limitations, power and current.

Cell-level Constraints
Cell-level constraints are the timing relationships between different pins that must bemet to ensure
proper functioning. Themost common constraints relate to the setup and hold times of sequential
cells. The setup time is theminimum delay between new data arriving at the input of a sequential cell

496

Chapter 8 | Fabrication and Production

and the arrival of the clock. The hold time is theminimum delay between the arrival of the clock and
any change in the valid data on the input. If the data changewithin the timewindow defined by the
setup and hold times, the clock-to-output propagation delay of the sequential cell is no longer
modelled accurately because the internal latchesmay becomemetastable. Metastability means that
the internal voltage is not solid logic high or low but somewhere between (Section 3.7.2). Timing
diagrams of setup and hold constraints for a sequential cell are shown in Figure 8.36.

Non-linear DelayModels
The simplest form of a Liberty model (Section 8.12.6) consists of LUTs indexed by the input transition
time and output load. These values can be interpolated tomodel complex non-linear behaviour. Such
models are called non-linear delaymodels (NLDMs).

Current SourceModels
Simple NLDM tables make ideal assumptions about the shape of the input waveform and the
capacitive output load. However, in reality the nets are subject to charge injection due to the
switching activity of nearby nets, which distorts the waveforms. The input capacitance is also a
function of voltage and output switching. Tomodel any non-ideal behaviour, a Liberty model has
tables for the current indexed by input transition, output load and time. Liberty models with these
tables are called concurrent current source (CCS)models. Such CCSmodels are necessary for
achieving sufficient STA accuracy in modern process technologies.

A related format is called an effective current sourcemodel (ECSM). If suchmodels are supported by
the EDA software, then they can be used in place of, or in combination with, CCSmodels. ECSM is an
extension of the standard Liberty format that uses tables of voltage indexed by input transition,
output load and time.

STAConstraints Example
To run an STA tool, the netlist (RTL format) and cell library data (Liberty format) are needed, along
with the back annotations for the wiring delay (SPEF form) and a driver file. The de facto standard for
the driver file format is Synopsys Design Constraint (SDC), which, likemany EDA tools, is embedded
in the TCL language. An example of an SDC file demonstrating the concepts described above is shown
in Figure 8.61.

Some of themost common constraints are:

Create clocks: Clocks are created with a period andmay be associated with an input port or an
internal net. Clocks may be free-running, but a generated clock has a relationship with the
frequency or phase of another clock. A generated clock is often created by a clock-divider circuit
(Section 3.7.4). A virtual clock is not connected to any port or net. A virtual clock is often used to
specify timing relationships to things beyond the design, like the I/O ports.

I/O timing constraints: The timing at the ports is defined by imagining sequential cells outside the
design connected to the ports. These imaginary sequential cells are assignedminimum and

497

Modern SoCDesign

cannot be solved by frequency binning. Instead, the part has to be binned for a narrower temperature
range or discarded entirely.

Figure 8.60 (right) illustrates that skewed corner asymmetry tends to cancel out over longer paths of
inverting logic, such as from d0 to y. However, for paths that go through just one gate, such as d2 to y,
there is no cancelling. Shorter paths are alsomore likely to suffer hold-time violations, so this is, again,
a more severe problem.

P Q

Dmax minD-Clk+0

Clock

d0

d2
y

enable
Clk+G

Faster 0-to-1 Faster 0-to-1
as well

Faster 0-to-1

Faster 0-to-1

Figure 8.60 A logic structure with a gated clock that could suffer in an FS process corner (left) and a combinational logic circuit with two paths that differ in
their levels of inversion

Generally, the clock path to a launching sequential element is very similar to the clock path of the
receiving element. In certain cases, the difference is often just in the final section of the path.
Sometimes the launcher and receiver are physically connected to the same clock net and sometimes
the launcher is the receiver. In these cases, it is overly pessimistic to consider the general worst-case
divergence between launching and capture clocks for the process corner. For the shared portion of
any two clock paths, it is impossible to have fast and slow skews simultaneously. STA performs
common-path pessimism removal (CPPR), which discounts the variation in clock time arising from
the common part of the clock distribution network that is shared between the launching and receiving
components. This is labelled CPPR in a timing report.

8.12.6 TimingModels: Liberty
Abstract timingmodels for cells are created by running SPICE simulations to characterise them. The
models are stored in text files that conform to the Liberty model format. The syntax of Liberty models
wasmade public and is controlled by the Liberty Technical Advisory Board (LTAB), which operates
under the Industry Standards and TechnologyOrganization (ISTO) of the IEEE.Models contain
information on function, input capacitance, cell delay for each timing arc, output transition times,
constraints, limitations, power and current.

Cell-level Constraints
Cell-level constraints are the timing relationships between different pins that must bemet to ensure
proper functioning. Themost common constraints relate to the setup and hold times of sequential
cells. The setup time is theminimum delay between new data arriving at the input of a sequential cell

496

Chapter 8 | Fabrication and Production

and the arrival of the clock. The hold time is theminimum delay between the arrival of the clock and
any change in the valid data on the input. If the data changewithin the timewindow defined by the
setup and hold times, the clock-to-output propagation delay of the sequential cell is no longer
modelled accurately because the internal latchesmay becomemetastable. Metastability means that
the internal voltage is not solid logic high or low but somewhere between (Section 3.7.2). Timing
diagrams of setup and hold constraints for a sequential cell are shown in Figure 8.36.

Non-linear DelayModels
The simplest form of a Liberty model (Section 8.12.6) consists of LUTs indexed by the input transition
time and output load. These values can be interpolated tomodel complex non-linear behaviour. Such
models are called non-linear delaymodels (NLDMs).

Current SourceModels
Simple NLDM tables make ideal assumptions about the shape of the input waveform and the
capacitive output load. However, in reality the nets are subject to charge injection due to the
switching activity of nearby nets, which distorts the waveforms. The input capacitance is also a
function of voltage and output switching. Tomodel any non-ideal behaviour, a Liberty model has
tables for the current indexed by input transition, output load and time. Liberty models with these
tables are called concurrent current source (CCS)models. Such CCSmodels are necessary for
achieving sufficient STA accuracy in modern process technologies.

A related format is called an effective current sourcemodel (ECSM). If suchmodels are supported by
the EDA software, then they can be used in place of, or in combination with, CCSmodels. ECSM is an
extension of the standard Liberty format that uses tables of voltage indexed by input transition,
output load and time.

STAConstraints Example
To run an STA tool, the netlist (RTL format) and cell library data (Liberty format) are needed, along
with the back annotations for the wiring delay (SPEF form) and a driver file. The de facto standard for
the driver file format is Synopsys Design Constraint (SDC), which, likemany EDA tools, is embedded
in the TCL language. An example of an SDC file demonstrating the concepts described above is shown
in Figure 8.61.

Some of themost common constraints are:

Create clocks: Clocks are created with a period andmay be associated with an input port or an
internal net. Clocks may be free-running, but a generated clock has a relationship with the
frequency or phase of another clock. A generated clock is often created by a clock-divider circuit
(Section 3.7.4). A virtual clock is not connected to any port or net. A virtual clock is often used to
specify timing relationships to things beyond the design, like the I/O ports.

I/O timing constraints: The timing at the ports is defined by imagining sequential cells outside the
design connected to the ports. These imaginary sequential cells are assignedminimum and

497

Modern SoCDesign

maximum delay, setup and hold times to complete the timing beyond the design. A driving cell and
net can be assigned to input ports to represent the input waveform. A load cell or capacitance can
be assigned to output ports.

---- Create Clocks ----
create_clock -add -period $clock_period -name VCLK

foreach clock_name $clock_list {
create_clock -add -period $clock_period [get_ports $clock_name] -name $clock_name
set_clock_latency $clock_latency [get_clocks $clock_name]

}

set_clock_uncertainty [expr $setup_margin + $clock_jitter] -setup [all_clocks]
set_clock_uncertainty [expr $hold_margin] -hold [all_clocks]

set_driving_cell -lib_cell $clock_driving_cell \
-input_transition_rise $max_clock_transition \
-input_transition_fall $max_clock_transition \
[get_ports $clock_list]

---- I/O timing constraints ----
set_input_delay $max_input_constraint -max -clock VCLK \

[remove_from_collection [all_inputs] $clock_list]
set_input_delay $min_input_constraint -min -clock VCLK \

[remove_from_collection [all_inputs] $clock_list]

set_output_delay $max_output_constraint -max -clock VCLK [all_outputs]
set_output_delay $min_output_constraint -min -clock VCLK [all_outputs]

---- Path groups ----
group_path -name reg2reg -from [all_registers] -to [all_registers]

---- Timing exceptions ----
set_multicycle_path 2 -setup -end -from [get_ports DFT*]
set_multicycle_path 1 -hold -end -from [get_ports DFT*]
%
% # ---- Scan mode ----

Figure 8.61 An example of an SDC file. TCL commands are used to specify and constrain the STA behaviour

Path groups: Path groups are a convenient way to help focus optimisation and analysis on a subset
of paths. Paths can be selected based on their start points, end points or any common point in
between. They are assigned a name. Path groups can be givenweights to guide optimisation by
emphasising the resolution of timing violations. Timing reports can be created for specific path
groups.

Timing exceptions: Occasionally, paths in a design do not conform to the ordinary timing
constraints. These includemulti-cycle paths (Section 4.9.6), false paths and paths with disabled
timing arcs. If a designer expects that the logic will takemore than one clock period to resolve, a
multi-cycle path can be declared to delay the capture clock edge by amultiple of the clock period.

498

Chapter 8 | Fabrication and Production

An example of a false path is at the interface of asynchronous clock domains. In this case, the
interface is accomplished by inserting special synchronising sequential cells that are designed to
reduce the probability of metastability. As long as the synchronising cells are in place, any timing
paths between the asynchronous clock domains are false.

Case analysis: Most designs have configuration or reset signals that are not expected to change
during normal operation. If these signals do change state, then timing is carefully controlled by
external means and the design enters into a different operational mode. Case analysis is used to
force these signals to logic one or zero so that only the timing paths that are valid during eachmode
are checked. Themost common pair of modes for which a case analysis is used are scan and
functional modes, which are controlled by a scan enable signal (Section 4.7.5). It is necessary to
validate the timing using STA in bothmodes.

Timing constraints are an important part of any design. Anymistake can result in silicon that does not
function properly. Therefore, it is important to validate the constraints. EDA vendors provide
software to check clock and reset domain crossings and other timing constraints.

8.12.7 Multi-modeMulti-corner Analysis
Themassive increase in the number of PVT corners requiring verification at advanced technology
nodes has been called the process corner explosion, resulting in a need for greater CPU resources
and design time. When optimising a design, it is not uncommon for the optimisations performed for
onemode and corner combination to conflict with the requirements of another combination. Thus,
multiple optimisation algorithms are combined into a complete set of timing sign-off analyses called
multi-modemulti-corner (MMMC) analysis, which can accommodate the requirements of all
combinations simultaneously. Modes are defined by the timing constraints in an SDC file. A range of
PVT corners are associated with themodes and used to validate timing across the entire range of
corners that need to be validated. Table 8.11 lists some of the commonMMMCanalyses.

Table 8.11 Typical MMMC configurations, with 40 distinct analysis corners

Timing
analysis Mode Process corner Voltage Temperature Index

FEOL BEOL
Full-yieldmaximum-voltage frequency

Maximum Functional SS

Cworst
RCworst
Cworst
RCworst

0.90V
−40°C

125°C

1
2
3
4

Half-yieldmaximum-voltage frequency

Maximum Functional TT Typical 0.90V −40°C
125°C

5
6

Full-yield nominal-voltage frequency

Maximum Functional SS

Cworst
RCworst
Cworst
RCworst

0.81V
−40°C

125°C

7
8
9
10

499

Modern SoCDesign

maximum delay, setup and hold times to complete the timing beyond the design. A driving cell and
net can be assigned to input ports to represent the input waveform. A load cell or capacitance can
be assigned to output ports.

---- Create Clocks ----
create_clock -add -period $clock_period -name VCLK

foreach clock_name $clock_list {
create_clock -add -period $clock_period [get_ports $clock_name] -name $clock_name
set_clock_latency $clock_latency [get_clocks $clock_name]

}

set_clock_uncertainty [expr $setup_margin + $clock_jitter] -setup [all_clocks]
set_clock_uncertainty [expr $hold_margin] -hold [all_clocks]

set_driving_cell -lib_cell $clock_driving_cell \
-input_transition_rise $max_clock_transition \
-input_transition_fall $max_clock_transition \
[get_ports $clock_list]

---- I/O timing constraints ----
set_input_delay $max_input_constraint -max -clock VCLK \

[remove_from_collection [all_inputs] $clock_list]
set_input_delay $min_input_constraint -min -clock VCLK \

[remove_from_collection [all_inputs] $clock_list]

set_output_delay $max_output_constraint -max -clock VCLK [all_outputs]
set_output_delay $min_output_constraint -min -clock VCLK [all_outputs]

---- Path groups ----
group_path -name reg2reg -from [all_registers] -to [all_registers]

---- Timing exceptions ----
set_multicycle_path 2 -setup -end -from [get_ports DFT*]
set_multicycle_path 1 -hold -end -from [get_ports DFT*]
%
% # ---- Scan mode ----

Figure 8.61 An example of an SDC file. TCL commands are used to specify and constrain the STA behaviour

Path groups: Path groups are a convenient way to help focus optimisation and analysis on a subset
of paths. Paths can be selected based on their start points, end points or any common point in
between. They are assigned a name. Path groups can be givenweights to guide optimisation by
emphasising the resolution of timing violations. Timing reports can be created for specific path
groups.

Timing exceptions: Occasionally, paths in a design do not conform to the ordinary timing
constraints. These includemulti-cycle paths (Section 4.9.6), false paths and paths with disabled
timing arcs. If a designer expects that the logic will takemore than one clock period to resolve, a
multi-cycle path can be declared to delay the capture clock edge by amultiple of the clock period.

498

Chapter 8 | Fabrication and Production

An example of a false path is at the interface of asynchronous clock domains. In this case, the
interface is accomplished by inserting special synchronising sequential cells that are designed to
reduce the probability of metastability. As long as the synchronising cells are in place, any timing
paths between the asynchronous clock domains are false.

Case analysis: Most designs have configuration or reset signals that are not expected to change
during normal operation. If these signals do change state, then timing is carefully controlled by
external means and the design enters into a different operational mode. Case analysis is used to
force these signals to logic one or zero so that only the timing paths that are valid during eachmode
are checked. Themost common pair of modes for which a case analysis is used are scan and
functional modes, which are controlled by a scan enable signal (Section 4.7.5). It is necessary to
validate the timing using STA in bothmodes.

Timing constraints are an important part of any design. Anymistake can result in silicon that does not
function properly. Therefore, it is important to validate the constraints. EDA vendors provide
software to check clock and reset domain crossings and other timing constraints.

8.12.7 Multi-modeMulti-corner Analysis
Themassive increase in the number of PVT corners requiring verification at advanced technology
nodes has been called the process corner explosion, resulting in a need for greater CPU resources
and design time. When optimising a design, it is not uncommon for the optimisations performed for
onemode and corner combination to conflict with the requirements of another combination. Thus,
multiple optimisation algorithms are combined into a complete set of timing sign-off analyses called
multi-modemulti-corner (MMMC) analysis, which can accommodate the requirements of all
combinations simultaneously. Modes are defined by the timing constraints in an SDC file. A range of
PVT corners are associated with themodes and used to validate timing across the entire range of
corners that need to be validated. Table 8.11 lists some of the commonMMMCanalyses.

Table 8.11 Typical MMMC configurations, with 40 distinct analysis corners

Timing
analysis Mode Process corner Voltage Temperature Index

FEOL BEOL
Full-yieldmaximum-voltage frequency

Maximum Functional SS

Cworst
RCworst
Cworst
RCworst

0.90V
−40°C

125°C

1
2
3
4

Half-yieldmaximum-voltage frequency

Maximum Functional TT Typical 0.90V −40°C
125°C

5
6

Full-yield nominal-voltage frequency

Maximum Functional SS

Cworst
RCworst
Cworst
RCworst

0.81V
−40°C

125°C

7
8
9
10

499

Modern SoCDesign

Timing
analysis Mode Process corner Voltage Temperature Index

FEOL BEOL
Full-yieldminimum-voltage frequency

Maximum Functional SS

Cworst
RCworst
Cworst
RCworst

0.72V
−40°C

125°C

11
12
13
14

Maximum-voltage functional hold

Minimum Functional FF

Cbest
RCbest
Cworst
RCworst
Cbest
RCbest
Cworst
RCworst

1.10V

−40°C

125°C

15
16
17
18
19
20
21
22

Minimum-voltage functional hold

Minimum Functional SS

Cworst
RCworst
Cworst
RCworst

0.72V
−40°C

125°C

23
24
25
26

Scan frequency

Maximum Scan SS Typical
Cworst

0.72V −40°C
125°C

27
28

Maximum-voltage scan hold

Minimum Scan FF

Cbest
RCbest
Cworst
RCworst
Cbest
RCbest
Cworst
RCworst

1.10V

−40°C

125°C

29
30
31
32
33
34
35
36

Minimum-voltage scan hold

Minimum Scan SS

Cworst
RCworst
Cworst
RCworst

0.72V
−40°C

125°C

37
38
39
40

8.12.8 Signal Integrity
A signal integrity (SI) analysis looks at all the sources of noise on a signal that canmodify timing delays
and checks the signals against criteria such as noise threshold voltages and transition time limits.
These checks help to ensure that the timing results are accurate and that the design will not
propagate erroneous logic states.

8.12.9 Coupling Capacitance
When twowires cross over each other or run parallel with each other, they form a parasitic capacitor,
which imparts a coupling capacitance. When one of the wires switches, the coupling capacitance
transfers charge to the other wire, which can cause the voltage to deviate from a logic one or zero. If

500

Chapter 8 | Fabrication and Production

the other wire is also switching at about the same time, the two signals affect each other. If both are
switching in the same direction, their transition times can decrease, reducing the delay. Conversely, if
they are switching in opposite directions, their transition times can increase or become distorted,
which increases the delay. Coupling capacitors are included in the SPEF netlist and the STA software
algorithms include their effect on delays when an SI analysis is enabled.

8.12.10 Noise Analysis
Both coupling andMiller capacitance (Section 8.4.6) contribute to noise on the signals in a design. The
transistors in each gate have threshold voltages. Signal voltages that are coupled above ground or
below the power supply voltage by neighbouring nets switching and thus, surpass the transistor
threshold voltagemay cause unwanted activity or propagate erroneous logic states. Therefore, one
part of STA is to analyse the worst voltage noise and report any violations that surpass specified
threshold voltages. This is called noise analysis.

8.12.11 Transition Time Limits
Cells are characterised over a wide range of input transition times and output loads. However, if STA
determines that the transitions or loads are outside the characterised range, the timing accuracy is in
doubt. There can be several reasons for this. The first is that extrapolation beyond the characterised
timing table is inherently less accurate than interpolation. The second is that long transition times
mean that the driving cell is very weak or that the wire resistance is high relative to the load it is
driving. Any inaccuracies in RC extraction, SI analysis or the local instantaneous supply voltage can
result in large timing errors. Long transition times are likely to result in a poor quality of results from
timing optimisation andmay to lead to currents that exceed the electromigration current limits
(Section 8.4.5). Finally, long transition timesmean that both the N-channel and P-channel transistors
of the gate receiving the signal are turned on together for an extended time, leading to higher
short-circuit energy use (Section 4.6.2).

In summary, some of the reasons to check transition times against a constraint are:

avoid timing inaccuracies due to extrapolation

avoid exacerbating timing inaccuracies due to BEOL extraction, SI analysis or power supply noise

improve the quality of results from timing optimisations

remain within the electromigration current limits

lower the power by reducing the crowbar current.

501

Modern SoCDesign

Timing
analysis Mode Process corner Voltage Temperature Index

FEOL BEOL
Full-yieldminimum-voltage frequency

Maximum Functional SS

Cworst
RCworst
Cworst
RCworst

0.72V
−40°C

125°C

11
12
13
14

Maximum-voltage functional hold

Minimum Functional FF

Cbest
RCbest
Cworst
RCworst
Cbest
RCbest
Cworst
RCworst

1.10V

−40°C

125°C

15
16
17
18
19
20
21
22

Minimum-voltage functional hold

Minimum Functional SS

Cworst
RCworst
Cworst
RCworst

0.72V
−40°C

125°C

23
24
25
26

Scan frequency

Maximum Scan SS Typical
Cworst

0.72V −40°C
125°C

27
28

Maximum-voltage scan hold

Minimum Scan FF

Cbest
RCbest
Cworst
RCworst
Cbest
RCbest
Cworst
RCworst

1.10V

−40°C

125°C

29
30
31
32
33
34
35
36

Minimum-voltage scan hold

Minimum Scan SS

Cworst
RCworst
Cworst
RCworst

0.72V
−40°C

125°C

37
38
39
40

8.12.8 Signal Integrity
A signal integrity (SI) analysis looks at all the sources of noise on a signal that canmodify timing delays
and checks the signals against criteria such as noise threshold voltages and transition time limits.
These checks help to ensure that the timing results are accurate and that the design will not
propagate erroneous logic states.

8.12.9 Coupling Capacitance
When twowires cross over each other or run parallel with each other, they form a parasitic capacitor,
which imparts a coupling capacitance. When one of the wires switches, the coupling capacitance
transfers charge to the other wire, which can cause the voltage to deviate from a logic one or zero. If

500

Chapter 8 | Fabrication and Production

the other wire is also switching at about the same time, the two signals affect each other. If both are
switching in the same direction, their transition times can decrease, reducing the delay. Conversely, if
they are switching in opposite directions, their transition times can increase or become distorted,
which increases the delay. Coupling capacitors are included in the SPEF netlist and the STA software
algorithms include their effect on delays when an SI analysis is enabled.

8.12.10 Noise Analysis
Both coupling andMiller capacitance (Section 8.4.6) contribute to noise on the signals in a design. The
transistors in each gate have threshold voltages. Signal voltages that are coupled above ground or
below the power supply voltage by neighbouring nets switching and thus, surpass the transistor
threshold voltagemay cause unwanted activity or propagate erroneous logic states. Therefore, one
part of STA is to analyse the worst voltage noise and report any violations that surpass specified
threshold voltages. This is called noise analysis.

8.12.11 Transition Time Limits
Cells are characterised over a wide range of input transition times and output loads. However, if STA
determines that the transitions or loads are outside the characterised range, the timing accuracy is in
doubt. There can be several reasons for this. The first is that extrapolation beyond the characterised
timing table is inherently less accurate than interpolation. The second is that long transition times
mean that the driving cell is very weak or that the wire resistance is high relative to the load it is
driving. Any inaccuracies in RC extraction, SI analysis or the local instantaneous supply voltage can
result in large timing errors. Long transition times are likely to result in a poor quality of results from
timing optimisation andmay to lead to currents that exceed the electromigration current limits
(Section 8.4.5). Finally, long transition timesmean that both the N-channel and P-channel transistors
of the gate receiving the signal are turned on together for an extended time, leading to higher
short-circuit energy use (Section 4.6.2).

In summary, some of the reasons to check transition times against a constraint are:

avoid timing inaccuracies due to extrapolation

avoid exacerbating timing inaccuracies due to BEOL extraction, SI analysis or power supply noise

improve the quality of results from timing optimisations

remain within the electromigration current limits

lower the power by reducing the crowbar current.

501

Modern SoCDesign

8.12.12 On-chip Variation
Many factors affect timing in real silicon, and theymust be accounted for. Many of them are specific to
each instance of a design due to non-uniformity of PVT in location and time. They can be hard to
quantify since they are stochastic. Variation due to non-uniformity across a chip is called on-chip
variation (OCV).

Global OCV encompasses the entire range of manufacturing tolerances for all lots, wafers and die.
Themean of the global variation is a typical transistor that meets the target values for all parameters.
The extremes of the global variation are the fastest and slowest transistors that still fall within the
manufacturing tolerances even though they rarely occur.

Local OCV is limited to the range of transistors that exist on the same die, within an arbitrarily small
distance from one another. Themean of the local variation is themean transistor on the die, which
may be skewed to the slow or fast end of the global process distribution. Figure 8.62 illustrates how
local process variation is much narrower than global variation. Two example dies can potentially lie at
either ends of the global variation.

However, evenwithin one die, especially a large one, it is unlikely that all the devices will be
manufactured uniformly across the entire chip. Thus, process gradients add further variation to
timing paths that span large distances. This is known as spatial variation.

Figure 8.62 Global and localised views of process distributions

For some technologies, foundries may define two types of local process variation. The traditional
corner approach assumes that variations in the P-channel andN-channel transistor geometries are
unrelated, whichmeans that the transistor performance variations are uncorrelated. The other
approach assumes that the P-channel andN-channel transistors are arranged in a configuration with
CMOS standard cell gates so that some geometries are shared or in close proximity; therefore, the
variations of some parameters are correlated, which leads to less pessimistic timing.

There are a number of ways to estimate the impact of OCV timing. There are twomain ways for the
cells:

502

Chapter 8 | Fabrication and Production

1. Flat OCV: The simplest way to account for variation assumes that all cell instances or nets vary in
the same proportion and their timing can be scaled by a set of multiplicative derates. A derate is
usually expressed as a percentage of the delay. This approach is called flat OCV since it is not
specific to each instance of a cell or net but is applied broadly. Flat OCV can be usedwhenmore
accuratemethods are not available.

An example of flat OCV is shown in Figure 8.63Here, a process variation of±5 per cent was applied
to the delay for cells in clock paths,±3 per cent was applied to the delay for cells in data paths and
−10 per cent was applied to the net delay.

The reasons for these values are important to understand. Derates for process variation are
applied to both the early and late timing paths. That means that the cell-level timingmodels are
characterised at themean of a global process corner, the global slow corner in this case, and that
the percentages represent the potential effect of local process variation on the delay. The
percentages applied to clock paths are larger than those applied to data paths. This reflects the
desire to bemore cautious about clock timing and in theminimum analysis of hold constraints.
Because the BEOL extraction corner is RCworst, net delays already represent themaximum timing
of late paths. Therefore, a derate is applied to early paths to account for wires that are skewed
toward the faster end of the process distribution.

Timingmargins for the spatial variation within a single chip aremodelled using LUTs for flat delay
derates indexed by distance.

2. Stage-basedOCV: Flat OCV ignores the differences in variation between different cells and that
the delay in paths that havemore transistors statistically tends toward themean. This is addressed
by stage-basedOCV (SBOCV), which is more commonly known by its commercial nameAdvanced
OCV. SBOCV applies a derate to the cell delays from a table that is indexed by the cell type, rising
or falling edge, and path depth. Although SBOCV is better than flat OCV, it suffers from several
shortcomings. One of these is that only one delay derate table per cell type can be specified, so it is
not possible tomodel the variation for each specific timing arc through the cell, input transition
time and output load. Also, transition time variation is ignored.

To address the shortcomings of SBOCV, the LTAB approved the addition to Liberty models of tables
with early and late sigmas for every delay arc, transition time and constraint. These new tables are
commonly referred to as the Liberty Variation Format (LVF), although EDA vendors tend to use their
own proprietary names. The LVF format was later amended to support non-Gaussian distributions
with the addition of tables with the first threemoments of the distribution, themean shift, standard
deviation and skewness. Themean shift is the difference between the NLDMvalue and themean of
the distribution. The standard deviation is the sigma of the entire distribution, not just the early or late
half. Skewness describes the asymmetry of the distribution. Timing distributions tend to become less
Gaussian as the operating voltage decreases relative to the transistor threshold voltage (VT). With
these LVF tables, STA can efficiently and accurately calculate the FEOL timing variation for each path.

503

Modern SoCDesign

8.12.12 On-chip Variation
Many factors affect timing in real silicon, and theymust be accounted for. Many of them are specific to
each instance of a design due to non-uniformity of PVT in location and time. They can be hard to
quantify since they are stochastic. Variation due to non-uniformity across a chip is called on-chip
variation (OCV).

Global OCV encompasses the entire range of manufacturing tolerances for all lots, wafers and die.
Themean of the global variation is a typical transistor that meets the target values for all parameters.
The extremes of the global variation are the fastest and slowest transistors that still fall within the
manufacturing tolerances even though they rarely occur.

Local OCV is limited to the range of transistors that exist on the same die, within an arbitrarily small
distance from one another. Themean of the local variation is themean transistor on the die, which
may be skewed to the slow or fast end of the global process distribution. Figure 8.62 illustrates how
local process variation is much narrower than global variation. Two example dies can potentially lie at
either ends of the global variation.

However, evenwithin one die, especially a large one, it is unlikely that all the devices will be
manufactured uniformly across the entire chip. Thus, process gradients add further variation to
timing paths that span large distances. This is known as spatial variation.

Figure 8.62 Global and localised views of process distributions

For some technologies, foundries may define two types of local process variation. The traditional
corner approach assumes that variations in the P-channel andN-channel transistor geometries are
unrelated, whichmeans that the transistor performance variations are uncorrelated. The other
approach assumes that the P-channel andN-channel transistors are arranged in a configuration with
CMOS standard cell gates so that some geometries are shared or in close proximity; therefore, the
variations of some parameters are correlated, which leads to less pessimistic timing.

There are a number of ways to estimate the impact of OCV timing. There are twomain ways for the
cells:

502

Chapter 8 | Fabrication and Production

1. Flat OCV: The simplest way to account for variation assumes that all cell instances or nets vary in
the same proportion and their timing can be scaled by a set of multiplicative derates. A derate is
usually expressed as a percentage of the delay. This approach is called flat OCV since it is not
specific to each instance of a cell or net but is applied broadly. Flat OCV can be usedwhenmore
accuratemethods are not available.

An example of flat OCV is shown in Figure 8.63Here, a process variation of±5 per cent was applied
to the delay for cells in clock paths,±3 per cent was applied to the delay for cells in data paths and
−10 per cent was applied to the net delay.

The reasons for these values are important to understand. Derates for process variation are
applied to both the early and late timing paths. That means that the cell-level timingmodels are
characterised at themean of a global process corner, the global slow corner in this case, and that
the percentages represent the potential effect of local process variation on the delay. The
percentages applied to clock paths are larger than those applied to data paths. This reflects the
desire to bemore cautious about clock timing and in theminimum analysis of hold constraints.
Because the BEOL extraction corner is RCworst, net delays already represent themaximum timing
of late paths. Therefore, a derate is applied to early paths to account for wires that are skewed
toward the faster end of the process distribution.

Timingmargins for the spatial variation within a single chip aremodelled using LUTs for flat delay
derates indexed by distance.

2. Stage-basedOCV: Flat OCV ignores the differences in variation between different cells and that
the delay in paths that havemore transistors statistically tends toward themean. This is addressed
by stage-basedOCV (SBOCV), which is more commonly known by its commercial nameAdvanced
OCV. SBOCV applies a derate to the cell delays from a table that is indexed by the cell type, rising
or falling edge, and path depth. Although SBOCV is better than flat OCV, it suffers from several
shortcomings. One of these is that only one delay derate table per cell type can be specified, so it is
not possible tomodel the variation for each specific timing arc through the cell, input transition
time and output load. Also, transition time variation is ignored.

To address the shortcomings of SBOCV, the LTAB approved the addition to Liberty models of tables
with early and late sigmas for every delay arc, transition time and constraint. These new tables are
commonly referred to as the Liberty Variation Format (LVF), although EDA vendors tend to use their
own proprietary names. The LVF format was later amended to support non-Gaussian distributions
with the addition of tables with the first threemoments of the distribution, themean shift, standard
deviation and skewness. Themean shift is the difference between the NLDMvalue and themean of
the distribution. The standard deviation is the sigma of the entire distribution, not just the early or late
half. Skewness describes the asymmetry of the distribution. Timing distributions tend to become less
Gaussian as the operating voltage decreases relative to the transistor threshold voltage (VT). With
these LVF tables, STA can efficiently and accurately calculate the FEOL timing variation for each path.

503

Modern SoCDesign

LVF gives the user control over their confidence in STA through a LVF sigmamultiplier. Larger sigma
multipliers provide higher confidence in the timing yield but more timing paths need to be optimised.
Larger SoC products require higher confidence because they havemore timing paths. Figure 8.63
shows the distribution of delay for a timing path due to local variation in relation to the LVF table
parameters and the sigmamultiplier.

Figure 8.63 LVF path delay distribution and sigmamultiplier

Aminimum timing analysis requires higher confidence thanmaximum timing analysis for reasons
previously discussed. Amaximum timing confidence of 3σ results in a 99.86 per cent probability that
all the paths in a slow die will meet the timing. This is acceptable for maximum timing, since there are
relatively few critical setup paths and few slow dies. On the other hand, minimum timing confidence
needs to be higher because there are usually many near-critical hold paths and thesemust meet the
timing across the entire PVT range. Sigmamultipliers of 4.5 or greater may be necessary.

8.12.13 Net Delay Variation
Aswell as cell OCV, the propagation delay for a net may vary from one die or wafer to another.
Variation arises from inconsistencies in the dimensions of the tracks and vias that carry logic signals
between cells. These affect the parasitic resistance and capacitance, which, in turn, leads to variations
in the net delay. As discussed in Section 4.6.4, the net delay variation did not make up a large
proportion of the path delay for older VLSI nodes. However, as transistor and interconnect
geometries have reduced, the transistors are proportionally faster and the interconnect is more
resistive. This has made the net delay variation increasingly more important.

Since an interconnect often crosses metal layers, a net that uses many layers is manufacturedwith
many independent process steps. Thus, its overall performance will tend towards themean. However,
a net with few layers may be skewed towards one of the BEOL corners, as described earlier. Ideally,
the net delay variation is modelled with statistical methods, much like the FEOL variation is modelled
with LVF. As of this writing, the statistical modelling of FEOL variation is limited to a few via layers.
Themost commonway to account for net delay variations is to use flat derates.

504

Chapter 8 | Fabrication and Production

8.12.14 Voltage Variation
As introduced in Section 8.4.7, supply voltage variations, caused by switching activity, are known as
ground bounce or supply droop, depending on the time scale. These effects are highly correlatedwith
both local andmore global behaviour. Local effects whose duration is less than a gate switching time
are comparatively easy to integrate into cell characterisation, but themore global voltage droops
change in complex ways as instructions and data flow through the SoC.

Supply droops can be very difficult to predict and calculate. Hence, flat delay derates are usually
applied tomodel the timing variation approximately. However, as transistor and interconnect
geometries have reduced, the switching currents have become larger, the PDNs have becomemore
resistive and so the timing variations occasionally exceed the assumptions used to develop the
derates. This has resulted in first-pass silicon that does notmeet the performance expectations due to
one ormore instances that experiencemore voltage droop than anticipated. These STA oversights
have prompted the EDA industry to invest in software to analyse voltage variation inmore detail.

8.12.15 Advanced Topics in STA
STA is constantly evolving as process technologies andmarket demands require new capabilities. As
discussed earlier, modelling the net delay variation and the voltage variation has becomemore
important. Transistor ageing and yield-based analysis are a couple of topics that are also becoming
more critical.

Transistor Ageing
The SPICEmodels for transistors represent fresh transistors early in the lifetime of a product. Two
effects are responsible for a gradual decline in transistor performance over time, which together are
referred to as transistor ageing.

First, a bias voltage on a transistor gate attracts carriers to charge traps in the interface between the
channel and the oxide, causing VT to shift. Removing the bias can release the charge, thus relaxing the
stress and reducing the VT shift (∆VT). Hence, the VT shift depends on the number of traps in the
channel and the length of time the gate is biased. This effect, called bias temperature instability, is
accelerated by higher temperatures and bias voltages. Figure 8.64 illustrates a statistical VT shift due
to bias temperature instability that is modulated by the length of time the gate is biased.

Second, high switching currents accelerate carriers across the channel. These high-velocity carriers
may damage the lattice and become embedded in the gate insulating oxide. This causes a reduction in
mobility and a VT shift. This effect, called hot carrier injection, depends on the switching rate.

Foundries can supply SPICEmodels that reflect some of the effects of transistor ageing. At the time of
this writing, they focus on themaximum VT shift andmobility change. They rarely model relaxation
and the statistical VT shift. Accounting for these effect in STA is becomingmore important because
the volume of semiconductors in high-reliability applications, like avionics, automobiles and
mission-critical data centres, is increasing. This has provided an incentive for the EDA industry to

505

Modern SoCDesign

LVF gives the user control over their confidence in STA through a LVF sigmamultiplier. Larger sigma
multipliers provide higher confidence in the timing yield but more timing paths need to be optimised.
Larger SoC products require higher confidence because they havemore timing paths. Figure 8.63
shows the distribution of delay for a timing path due to local variation in relation to the LVF table
parameters and the sigmamultiplier.

Figure 8.63 LVF path delay distribution and sigmamultiplier

Aminimum timing analysis requires higher confidence thanmaximum timing analysis for reasons
previously discussed. Amaximum timing confidence of 3σ results in a 99.86 per cent probability that
all the paths in a slow die will meet the timing. This is acceptable for maximum timing, since there are
relatively few critical setup paths and few slow dies. On the other hand, minimum timing confidence
needs to be higher because there are usually many near-critical hold paths and thesemust meet the
timing across the entire PVT range. Sigmamultipliers of 4.5 or greater may be necessary.

8.12.13 Net Delay Variation
Aswell as cell OCV, the propagation delay for a net may vary from one die or wafer to another.
Variation arises from inconsistencies in the dimensions of the tracks and vias that carry logic signals
between cells. These affect the parasitic resistance and capacitance, which, in turn, leads to variations
in the net delay. As discussed in Section 4.6.4, the net delay variation did not make up a large
proportion of the path delay for older VLSI nodes. However, as transistor and interconnect
geometries have reduced, the transistors are proportionally faster and the interconnect is more
resistive. This has made the net delay variation increasingly more important.

Since an interconnect often crosses metal layers, a net that uses many layers is manufacturedwith
many independent process steps. Thus, its overall performance will tend towards themean. However,
a net with few layers may be skewed towards one of the BEOL corners, as described earlier. Ideally,
the net delay variation is modelled with statistical methods, much like the FEOL variation is modelled
with LVF. As of this writing, the statistical modelling of FEOL variation is limited to a few via layers.
Themost commonway to account for net delay variations is to use flat derates.

504

Chapter 8 | Fabrication and Production

8.12.14 Voltage Variation
As introduced in Section 8.4.7, supply voltage variations, caused by switching activity, are known as
ground bounce or supply droop, depending on the time scale. These effects are highly correlatedwith
both local andmore global behaviour. Local effects whose duration is less than a gate switching time
are comparatively easy to integrate into cell characterisation, but themore global voltage droops
change in complex ways as instructions and data flow through the SoC.

Supply droops can be very difficult to predict and calculate. Hence, flat delay derates are usually
applied tomodel the timing variation approximately. However, as transistor and interconnect
geometries have reduced, the switching currents have become larger, the PDNs have becomemore
resistive and so the timing variations occasionally exceed the assumptions used to develop the
derates. This has resulted in first-pass silicon that does notmeet the performance expectations due to
one ormore instances that experiencemore voltage droop than anticipated. These STA oversights
have prompted the EDA industry to invest in software to analyse voltage variation inmore detail.

8.12.15 Advanced Topics in STA
STA is constantly evolving as process technologies andmarket demands require new capabilities. As
discussed earlier, modelling the net delay variation and the voltage variation has becomemore
important. Transistor ageing and yield-based analysis are a couple of topics that are also becoming
more critical.

Transistor Ageing
The SPICEmodels for transistors represent fresh transistors early in the lifetime of a product. Two
effects are responsible for a gradual decline in transistor performance over time, which together are
referred to as transistor ageing.

First, a bias voltage on a transistor gate attracts carriers to charge traps in the interface between the
channel and the oxide, causing VT to shift. Removing the bias can release the charge, thus relaxing the
stress and reducing the VT shift (∆VT). Hence, the VT shift depends on the number of traps in the
channel and the length of time the gate is biased. This effect, called bias temperature instability, is
accelerated by higher temperatures and bias voltages. Figure 8.64 illustrates a statistical VT shift due
to bias temperature instability that is modulated by the length of time the gate is biased.

Second, high switching currents accelerate carriers across the channel. These high-velocity carriers
may damage the lattice and become embedded in the gate insulating oxide. This causes a reduction in
mobility and a VT shift. This effect, called hot carrier injection, depends on the switching rate.

Foundries can supply SPICEmodels that reflect some of the effects of transistor ageing. At the time of
this writing, they focus on themaximum VT shift andmobility change. They rarely model relaxation
and the statistical VT shift. Accounting for these effect in STA is becomingmore important because
the volume of semiconductors in high-reliability applications, like avionics, automobiles and
mission-critical data centres, is increasing. This has provided an incentive for the EDA industry to

505

Modern SoCDesign

bias me

V T

stressed
mean VT

relaxed
mean VT

min VT

max VT

low switching
frequency

high switching
frequency

low switching
frequency

Figure 8.64 Statistical VT shift due to bias temperature instability for various bias times

invest in developing STA solutions. However, modelling is complicated by themany dependencies, the
incompleteness of SPICEmodels and increased characterisation costs.

Yield-based Analysis
So far, the timing distributions that have been discussed reflect the probability of an individual path
failing tomeet its timing constraint. In reality, the timing yield of a die depends on the combined
probability that any one of themany paths will fail to meet its constraint. The probability of one out of
many paths failing is less than the probability of an individual path failing. However, paths that share
common instances are correlated, which increases their probability of failure.

Yield-based analysis provides an overall timing yield percentage along with static timing results. If the
overall timing yield is high enough, then resolving the remaining failing paths adds little value. If the
overall timing yield is not high enough, the priority is to resolve the paths that have the highest
probability of contributing to failure.

8.12.16 Timing Closure
Commonly, a marketing department will have pre-sold a product with an advertised clock frequency.
Making the actual product work at this frequency is known asmeeting the timing closure. With the
design in low-level RTL formal, typical approaches for achieving timing closure include:

replacing standard cells with higher drive-strength variants

using D-typemigration tomove logic either side of an existing register (Section 4.4.2)

506

Chapter 8 | Fabrication and Production

for bus protocols that are amenable to registering, such as CHI (or AXI withminor additional
complexity), adding a further pipeline stage. Not all protocols are suitable for registering
(Section 3.1.2)

with transactional interfaces, adding a one-place FIFO buffer

altering the floor plan.

The timing sign-off, like all parts of the back-end flow, involves amassive verification effort. Every
possible design rule check and cross-check is made. The engineers responsible for timing sign-off
always prefer the certainty of a clear pass or fail. Unfortunately, there aremany sources of error plus
incomplete knowledge, which cloud any such certainty. There aremany questions that onemust ask
to balancemodels with reality:

Do the detailed SPICEmodels of the components and logic cells really reflect the silicon?

Will the foundry process drift as themanufacturing process matures?

Do the abstract timingmodels, BEOL extraction and STA engines conform to the detailed SPICE
models?

Are the timingmargins too conservative or too optimistic?

Is the difficulty of meeting timing negatively impacting the PPA of the product (Section 5.6)?

Can the timing violations be fixedwithin the schedule using the resources available?

Do the STA results really reflect the product timing yield and profitability?

Thus, timing sign-off is asmuch an art as a science, an art that requires tremendous attention to detail,
judicious choices, great management skills and a good bit of luck.

8.13 Summary
This chapter has briefly coveredmany of themain aspects of the so-called back-end or physical flow.
The input is synthesisable RTL, cell libraries, full-custom and specialist cells and silicon process
characterisations. The output is a vector graphics file that describes the polygons on eachmask.
Hence, the back-end flow is also called the RTL-to-GDS flow.

The design flows for an FPGA and ASIC are broadly similar. The choice of which to use in the final
product largely depends on the planned production volume. If the final product is envisioned as an
ASIC, an FPGA version is useful for a proof of concept of real-time applications (such asmodems) and
early prototypes in general.

507

Modern SoCDesign

bias me

V T

stressed
mean VT

relaxed
mean VT

min VT

max VT

low switching
frequency

high switching
frequency

low switching
frequency

Figure 8.64 Statistical VT shift due to bias temperature instability for various bias times

invest in developing STA solutions. However, modelling is complicated by themany dependencies, the
incompleteness of SPICEmodels and increased characterisation costs.

Yield-based Analysis
So far, the timing distributions that have been discussed reflect the probability of an individual path
failing tomeet its timing constraint. In reality, the timing yield of a die depends on the combined
probability that any one of themany paths will fail to meet its constraint. The probability of one out of
many paths failing is less than the probability of an individual path failing. However, paths that share
common instances are correlated, which increases their probability of failure.

Yield-based analysis provides an overall timing yield percentage along with static timing results. If the
overall timing yield is high enough, then resolving the remaining failing paths adds little value. If the
overall timing yield is not high enough, the priority is to resolve the paths that have the highest
probability of contributing to failure.

8.12.16 Timing Closure
Commonly, a marketing department will have pre-sold a product with an advertised clock frequency.
Making the actual product work at this frequency is known asmeeting the timing closure. With the
design in low-level RTL formal, typical approaches for achieving timing closure include:

replacing standard cells with higher drive-strength variants

using D-typemigration tomove logic either side of an existing register (Section 4.4.2)

506

Chapter 8 | Fabrication and Production

for bus protocols that are amenable to registering, such as CHI (or AXI withminor additional
complexity), adding a further pipeline stage. Not all protocols are suitable for registering
(Section 3.1.2)

with transactional interfaces, adding a one-place FIFO buffer

altering the floor plan.

The timing sign-off, like all parts of the back-end flow, involves amassive verification effort. Every
possible design rule check and cross-check is made. The engineers responsible for timing sign-off
always prefer the certainty of a clear pass or fail. Unfortunately, there aremany sources of error plus
incomplete knowledge, which cloud any such certainty. There aremany questions that onemust ask
to balancemodels with reality:

Do the detailed SPICEmodels of the components and logic cells really reflect the silicon?

Will the foundry process drift as themanufacturing process matures?

Do the abstract timingmodels, BEOL extraction and STA engines conform to the detailed SPICE
models?

Are the timingmargins too conservative or too optimistic?

Is the difficulty of meeting timing negatively impacting the PPA of the product (Section 5.6)?

Can the timing violations be fixedwithin the schedule using the resources available?

Do the STA results really reflect the product timing yield and profitability?

Thus, timing sign-off is asmuch an art as a science, an art that requires tremendous attention to detail,
judicious choices, great management skills and a good bit of luck.

8.13 Summary
This chapter has briefly coveredmany of themain aspects of the so-called back-end or physical flow.
The input is synthesisable RTL, cell libraries, full-custom and specialist cells and silicon process
characterisations. The output is a vector graphics file that describes the polygons on eachmask.
Hence, the back-end flow is also called the RTL-to-GDS flow.

The design flows for an FPGA and ASIC are broadly similar. The choice of which to use in the final
product largely depends on the planned production volume. If the final product is envisioned as an
ASIC, an FPGA version is useful for a proof of concept of real-time applications (such asmodems) and
early prototypes in general.

507

Modern SoCDesign

The traditional SoC design flow is divided by the structural RTL level into:

Front end: Specify, explore, design, capture and synthesise⇝ structural RTL

Back end: Structural RTL⇝ place, route, mask-making and fabrication.

Today, a handover is more likely to be at the synthesisable RTL level, with the back-end team
resynthesising the logic.

Themainstream approach today is to use standard cells in a semi-custom design. A logic synthesiser
marries the application-specific design details with a reusable cell library chosen for the target
technology node. The principal inputs to a logic synthesiser are synthesisable RTL and the cell library
definition, but the design intent files alsomake a huge difference to the generated design. The output
from the synthesiser is a netlist consisting of cell instances from the cell library that embody the
behaviour of a portable design.

The back-end steps that follow are placement, routing, tapeout, mask-making, test program
generation, fabrication and production testing. In this chapter, we reviewed each of the steps, starting
with the synthesis of the RTL. The back-end verification flow is themost time-consuming element. A
single error can require a complete chip respin, although this can be sometimesmitigated with a
minor change to a fewmasks or a temporary software workaround (Section 9.3).

In previous decades, it was necessary to iteratemany of the steps of an EDAflow to find closure. As an
example, if many timing violations remained after the routing step, then amanual adjustment to
earlier intent and timing target settings wasmade before rerunning the routing step. If there were
still timing violations, it was necessary to go one step further back in the flow andmodify the settings
for the synthesis or placement steps and then repeat those steps. Iterating steps is, nowadays, very
time-consuming and still does not guarantee that the SoC design will meet the performance targets.
Instead, modern EDA tools are physically aware and timing-aware. As an example, logical synthesis
considers various physical aspects including an estimate of net length or macrocell area in a coarse
placement or Rentian estimate (Section 5.6.6). Also, the placement and routing steps have become
timing-aware, since they both automatically iterate (in a trial-and-error approach) until they obtain
zero or theminimum number of timing violations.

In this chapter, the reader has been exposed to every step of a traditional flow. Although this flow
retains its traditional structure, the challenges of deep submicron geometries, together withmarket
pressure to extract maximum performance from each squaremillimetre of silicon, mean far greater
consideration of the interactions between steps is required. The steps have all becomemore
advanced and complicated. So, in this chapter, we have placed extra emphasis on the new techniques.

8.13.1 Exercises
1. List and describe themain layers of a modern silicon chip.

508

Chapter 8 | Fabrication and Production

2. What problems can be found during net routing that would suggest a better placement is needed?
How can these be anticipated during placement? Would a constructive placer take these
considerations into account?

3. Why is an FPGA larger and slower than the equivalent ASIC?

4. Howmany FPGADSP blocks are needed for a 32×32multiplier? What is its latency? What
difference does it make if only 32 bits of the result are needed?

5. Design a logic structure that will be very difficult to assess in a production test, but do not include
redundant logic. What is the problem? Could such a structure be needed in a real application?

6. What principal data need to be held in a floor plan? Can a good floor plan reduce the number of
domain crossing and isolation components needed?

7. Choose one of the reasons listed for limiting the transition times in a design and expand upon the
reasoning with examples, simulations or mathematical modelling. Why is the transition time
especially important for clock signals?

8. Why does the net delay become a larger proportion of the path delay as process geometries
shrink?

9. Whywould it be helpful to model the statistical variation of net delays instead of assuming all
interconnect segments are at one BEOL corner?

10. Create a list of the sources of timing uncertainty considered during STA. Are there any that were
not discussed?

Give an example of OCV that is dependent on location and one that is dependent on time. Is
there an example that depends on both location and time?

What kind of optimisationmight be done to fix timing violations with negative slack in
maximum timing analysis?

What kind of optimisationsmight be done to lower the power by reclaiming positive slack in a
maximum timing analysis?

Why canminimum timing violations not be fixed by decreasing the clock frequency?

How can reducing the STA positive slack benefit power and area?

509

Modern SoCDesign

The traditional SoC design flow is divided by the structural RTL level into:

Front end: Specify, explore, design, capture and synthesise⇝ structural RTL

Back end: Structural RTL⇝ place, route, mask-making and fabrication.

Today, a handover is more likely to be at the synthesisable RTL level, with the back-end team
resynthesising the logic.

Themainstream approach today is to use standard cells in a semi-custom design. A logic synthesiser
marries the application-specific design details with a reusable cell library chosen for the target
technology node. The principal inputs to a logic synthesiser are synthesisable RTL and the cell library
definition, but the design intent files alsomake a huge difference to the generated design. The output
from the synthesiser is a netlist consisting of cell instances from the cell library that embody the
behaviour of a portable design.

The back-end steps that follow are placement, routing, tapeout, mask-making, test program
generation, fabrication and production testing. In this chapter, we reviewed each of the steps, starting
with the synthesis of the RTL. The back-end verification flow is themost time-consuming element. A
single error can require a complete chip respin, although this can be sometimesmitigated with a
minor change to a fewmasks or a temporary software workaround (Section 9.3).

In previous decades, it was necessary to iteratemany of the steps of an EDAflow to find closure. As an
example, if many timing violations remained after the routing step, then amanual adjustment to
earlier intent and timing target settings wasmade before rerunning the routing step. If there were
still timing violations, it was necessary to go one step further back in the flow andmodify the settings
for the synthesis or placement steps and then repeat those steps. Iterating steps is, nowadays, very
time-consuming and still does not guarantee that the SoC design will meet the performance targets.
Instead, modern EDA tools are physically aware and timing-aware. As an example, logical synthesis
considers various physical aspects including an estimate of net length or macrocell area in a coarse
placement or Rentian estimate (Section 5.6.6). Also, the placement and routing steps have become
timing-aware, since they both automatically iterate (in a trial-and-error approach) until they obtain
zero or theminimum number of timing violations.

In this chapter, the reader has been exposed to every step of a traditional flow. Although this flow
retains its traditional structure, the challenges of deep submicron geometries, together withmarket
pressure to extract maximum performance from each squaremillimetre of silicon, mean far greater
consideration of the interactions between steps is required. The steps have all becomemore
advanced and complicated. So, in this chapter, we have placed extra emphasis on the new techniques.

8.13.1 Exercises
1. List and describe themain layers of a modern silicon chip.

508

Chapter 8 | Fabrication and Production

2. What problems can be found during net routing that would suggest a better placement is needed?
How can these be anticipated during placement? Would a constructive placer take these
considerations into account?

3. Why is an FPGA larger and slower than the equivalent ASIC?

4. Howmany FPGADSP blocks are needed for a 32×32multiplier? What is its latency? What
difference does it make if only 32 bits of the result are needed?

5. Design a logic structure that will be very difficult to assess in a production test, but do not include
redundant logic. What is the problem? Could such a structure be needed in a real application?

6. What principal data need to be held in a floor plan? Can a good floor plan reduce the number of
domain crossing and isolation components needed?

7. Choose one of the reasons listed for limiting the transition times in a design and expand upon the
reasoning with examples, simulations or mathematical modelling. Why is the transition time
especially important for clock signals?

8. Why does the net delay become a larger proportion of the path delay as process geometries
shrink?

9. Whywould it be helpful to model the statistical variation of net delays instead of assuming all
interconnect segments are at one BEOL corner?

10. Create a list of the sources of timing uncertainty considered during STA. Are there any that were
not discussed?

Give an example of OCV that is dependent on location and one that is dependent on time. Is
there an example that depends on both location and time?

What kind of optimisationmight be done to fix timing violations with negative slack in
maximum timing analysis?

What kind of optimisationsmight be done to lower the power by reclaiming positive slack in a
maximum timing analysis?

Why canminimum timing violations not be fixed by decreasing the clock frequency?

How can reducing the STA positive slack benefit power and area?

509

Modern SoCDesign

Why is it important that inputs to STA, like Liberty abstract timingmodels and SPEF netlists,
conform to an IEEE standard?

What kind of optimisationsmight be done to fix STAminimum timing violations with negative
slack?

11. Describe how the yield can be improved if a structure is replicated hundreds of times over a chip?
Should the end user be involved in this process? Consult a recent DRAM chip data sheet and
discuss themechanisms likely to be used during a production test and at boot time.

References
[1] V. Gourisetty, H.Mahmoodi, V. Melikyan, E. Babayan, R. Goldman, K. Holcomb, and T.Wood. Low power

design flow based on unified power format and Synopsys tool chain. In 3rd Interdisciplinary Engineering
Design Education Conference, pages 28–31, 2013.

[2] C.Mead and L. Conway. Introduction to VLSI systems. Addison-Wesley, Reading, Mass, 1980. ISBN
0201043580.

[3] R. H. Dennard, F. H. Gaensslen, L. Kuhn, and H. N. Yu. Design of micronMOS switching devices. In
International Electron Devices Meeting, pages 168–170, 1972. doi: 10.1109/IEDM.1972.249198.

[4] Mark Horowitz, Elad Alon, Samuel Naffziger, Rajesh Kumar, and Kerry Bernstein. Scaling, power and the
future of CMOS. In Proceedings of the 20th International Conference on VLSI Design held jointly with 6th
International Conference: Embedded Systems, page 23. IEEE Computer Society, 2007.

[5] Jörg Henkel, Heba Khdr, Santiago Pagani, andMuhammad Shafique. New trends in dark silicon. In
Proceedings of the 52nd Annual Design Automation Conference, DAC ’15, New York, NY, USA, 2015.
Association for ComputingMachinery. ISBN 9781450335201. doi: 10.1145/2744769.2747938. URL
https://doi.org/10.1145/2744769.2747938.

[6] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, andD. Burger. Dark silicon and the end ofmulticore
scaling. In 38th Annual International Symposium on Computer Architecture (ISCA), pages 365–376, 2011.

[7] Texas Instruments. The TTL data book for design engineers, 1976.
[8] ITRS. International technology roadmap for semiconductors 2.0 executive report, 2015.
[9] ITRS. International technology roadmap for semiconductors 2020 update, 2020.
[10] B. Arnold. Shrinking possibilities. IEEE Spectrum, 46(4):26–56, 2009. doi: 10.1109/MSPEC.2009.4808761.
[11] John Patrick Hayes.Digital Logic Design. AddisonWesley, 1993. ISBN ISBN 0-201-15461-7.
[12] David J. Greaves.Multi-Access Metropolitan Area Networks. PhD dissertation, University of Cambridge

Computer Laboratory, 1992. URL https://www.cl.cam.ac.uk/users/djg11/pubs/david-j-greaves-phd-
dissertation-dec-1992.pdf.

[13] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(2):203–215, 2007. doi: 10.1109/TCAD.2006.884574.

[14] IEEE Standard for Universal VerificationMethodology Language ReferenceManual. IEEE, 2020. Std 1800.2-2020
(Revision of Std 1800.2-2017).

[15] Europractice IC Service. Price list for general EuropracticeMPW runs. https://europractice-ic.com, 2021.

510

Chapter 9
Putting Everything Together

Modern SoCDesign

Why is it important that inputs to STA, like Liberty abstract timingmodels and SPEF netlists,
conform to an IEEE standard?

What kind of optimisationsmight be done to fix STAminimum timing violations with negative
slack?

11. Describe how the yield can be improved if a structure is replicated hundreds of times over a chip?
Should the end user be involved in this process? Consult a recent DRAM chip data sheet and
discuss themechanisms likely to be used during a production test and at boot time.

References
[1] V. Gourisetty, H.Mahmoodi, V. Melikyan, E. Babayan, R. Goldman, K. Holcomb, and T.Wood. Low power

design flow based on unified power format and Synopsys tool chain. In 3rd Interdisciplinary Engineering
Design Education Conference, pages 28–31, 2013.

[2] C.Mead and L. Conway. Introduction to VLSI systems. Addison-Wesley, Reading, Mass, 1980. ISBN
0201043580.

[3] R. H. Dennard, F. H. Gaensslen, L. Kuhn, and H. N. Yu. Design of micronMOS switching devices. In
International Electron Devices Meeting, pages 168–170, 1972. doi: 10.1109/IEDM.1972.249198.

[4] Mark Horowitz, Elad Alon, Samuel Naffziger, Rajesh Kumar, and Kerry Bernstein. Scaling, power and the
future of CMOS. In Proceedings of the 20th International Conference on VLSI Design held jointly with 6th
International Conference: Embedded Systems, page 23. IEEE Computer Society, 2007.

[5] Jörg Henkel, Heba Khdr, Santiago Pagani, andMuhammad Shafique. New trends in dark silicon. In
Proceedings of the 52nd Annual Design Automation Conference, DAC ’15, New York, NY, USA, 2015.
Association for ComputingMachinery. ISBN 9781450335201. doi: 10.1145/2744769.2747938. URL
https://doi.org/10.1145/2744769.2747938.

[6] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, andD. Burger. Dark silicon and the end ofmulticore
scaling. In 38th Annual International Symposium on Computer Architecture (ISCA), pages 365–376, 2011.

[7] Texas Instruments. The TTL data book for design engineers, 1976.
[8] ITRS. International technology roadmap for semiconductors 2.0 executive report, 2015.
[9] ITRS. International technology roadmap for semiconductors 2020 update, 2020.

[10] B. Arnold. Shrinking possibilities. IEEE Spectrum, 46(4):26–56, 2009. doi: 10.1109/MSPEC.2009.4808761.
[11] John Patrick Hayes.Digital Logic Design. AddisonWesley, 1993. ISBN ISBN 0-201-15461-7.
[12] David J. Greaves.Multi-Access Metropolitan Area Networks. PhD dissertation, University of Cambridge

Computer Laboratory, 1992. URL https://www.cl.cam.ac.uk/users/djg11/pubs/david-j-greaves-phd-
dissertation-dec-1992.pdf.

[13] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(2):203–215, 2007. doi: 10.1109/TCAD.2006.884574.

[14] IEEE Standard for Universal VerificationMethodology Language ReferenceManual. IEEE, 2020. Std 1800.2-2020
(Revision of Std 1800.2-2017).

[15] Europractice IC Service. Price list for general EuropracticeMPW runs. https://europractice-ic.com, 2021.

510

Chapter 9
Putting Everything Together

Modern SoCDesign

In the early days of SoC design, software engineers, unfortunately, often lacked themotivation to
write even a line of code until the physical silicon prototypes had beenmanufactured andwere about
to be delivered. This had the bad effect of serialising the work of the hardware and software teams
and extended the all-critical time tomarket. Pre-tapeout virtual models, using ESL or FPGA, changed
this. A virtual platform not only allows the software to be developed before the tapeout, but it also
gives the software engineers an opportunity to request hardware changes and API improvements.
The likelihood of a showstopping post-tapeout bug is, thus, minimised.

Today, nearly all aspects of software development can be completed before the first silicon is
fabricated and there aremany stories of a whole SoC system running perfectly on the day that the
chips arrived. The software effort specifically for a new SoC falls mainly into two classes: bootstrap
code and device drivers. Sometimes there is new application code as well, but mostly this can be
developed on other computers or on a previous generation of the hardware.

ESLmodels of devices are likely to be identical to the real hardware, so the device driver
(Section 2.7.1) code should be identical and already tested. Exceptionsmay relate to real-time
performance that has not been accurately reported. A high-level model will not be cycle-accurate,
especially if it has a loosely timed TLM (Section 5.4.4), but also if an FPGA prototype used a different
time/space fold (Section 8.5.3).

The boot procedure for the real hardwaremay be quite different fromwhat was normally used for the
ESLmodel, but the real procedure should also have been tested on the virtual platform. For instance,
the ESLmodel may have simply initialised RAM contents from the file system via backdoor interfaces,
whereas for the real system theremay be complex interdependencies in boot order for the various
cores and subsystems. Powermanagement control needs at least to turn a subsystem on before it can
boot, but the complete power structuremay not have been reflected in the ESLmodel. It may be
infeasible to use an RTLmodel for the complete system boot, but Verilog-to-C techniquesmitigate
this (Section 5.1.1). A secure boot adds complexity (Section 9.1.1).

9.1 Firmware
Software installed in ROM (Section 2.6.2) is called firmware. Early embedded systems and
microcomputers, such as the Acorn personal computer, put the complete operating system in ROM,
but todaymost systems have only aminimal bootloader in ROM. The ROM is put in thememorymap
at a location that encompasses the reset vector of the boot core (Section 1.1.3), which is the first CPU
to start operating after a reset. All the others are triggered by it. The job of the bootloader is to load
the operating system or embedded application for the SoC.

Multiple levels of bootloader are quite commonly used, with each one loading the next and then
transferring execution to it. Each level provides a different level of system configuration and can
select which of several alternative next levels to load. For instance, a dual-boot PCmust select
betweenWindows or Linux, or different versions of the same operating system, at the appropriate
point in the boot chain. One reason for havingmultiple levels is to simplify software distribution. A

512

Chapter 9 | Putting Everything Together

particular operating system kernel can be loaded onto a variety of hardware platforms if a prior level
of booting has provided sufficient custom initialisation such that the platforms look homogeneous.

Early-stage bootloaders set up the DRAMand important peripherals. DRAM requires timing and
voltage selection (Section 4.5) before it can be used and the code that performs this must be small and
run entirely from an on-SoC scratchpad (Section 2.3). If themain operating system is to be fetched
from disk, USB stick or over a network, the bootloader must contain a rudimentary device driver for
the relevant I/O device. For an Ethernet device, it may need to install theMAC in a register, whereas
for a file system, it will need sufficient code to traverse a directory structure, in read-only mode,
looking for the relevant named file.

As described in Section 3.1.7, an operating system can typically explore the hardware structure to find
out howmuchmemory is installed and to see which I/O devices are present. The presence of I/O
devices depends onwhat SoC the code is booted on and onwhat additional components have been
installed on the PCB or plugged in. For ease of software versionmanagement, it is now common for a
booted image to contain device drivers for devices that are not physically present. Similarly, the
booted codemay be able to locate additional device drivers on secondary storage or from the cloud.
Beyond the critical device drivers, the choice of which devices drivers to hard-include andwhich to
load dynamically is a trade-off of code size and convenience. There is also a security issue. For
instance, on a PC, the PS2 port driver may be hard-coded and on amobile phone, the driver for the
buttonwill be hard-coded. This is to prevent operating system spoofing attacks in which a user thinks
they are interacting with the device, but instead, they are using an application that is pretending to be
the whole device.

Bootstrap code does not typically need to be high performance, so can be put in a slow device, like a
serial ROMwith 1 bit per word and a transfer rate of just a fewMbps. Moreover, it is common for the
bootstrap ROM to be disengaged from thememorymap after boot time. A PIO operation
(Section 2.7) to a ROM control register will disable it until the next reset. Disengaging the boot ROM
frees upmemory space (an issue in A32 systems) and provides a degree of protection for secrets and
IP embodied in a secure boot.

9.1.1 Secure Bootstrapping
A secure boot is an increasingly common requirement. A secure bootloader guarantees that the
operating system has been loaded correctly without tampering. It can also provide a number of
related operations, such as checking that the appropriate licences have not expired or ensuring the
boot operation is logged in a tamper-proof journal that is secure enough to be used as evidence in
legal proceedings. A secure bootloader must be installed so that it cannot be bypassed and it must be
able to check the authenticity of the software it loads. Typically, it then passes control to the loaded
software after sealing a certificate of authenticity in a secure enclave (Section 4.9.1), which cannot be
modified by any software subsequently run on the SoC andwhich cannot easily bemodified by
electronic or mechanical probing. A first-level secure enclavemay allow only write access when the
boot ROM is engaged. A serial ROMexternal to the SoC is easy to bypass without specialist tools.

513

Modern SoCDesign

In the early days of SoC design, software engineers, unfortunately, often lacked themotivation to
write even a line of code until the physical silicon prototypes had beenmanufactured andwere about
to be delivered. This had the bad effect of serialising the work of the hardware and software teams
and extended the all-critical time tomarket. Pre-tapeout virtual models, using ESL or FPGA, changed
this. A virtual platform not only allows the software to be developed before the tapeout, but it also
gives the software engineers an opportunity to request hardware changes and API improvements.
The likelihood of a showstopping post-tapeout bug is, thus, minimised.

Today, nearly all aspects of software development can be completed before the first silicon is
fabricated and there aremany stories of a whole SoC system running perfectly on the day that the
chips arrived. The software effort specifically for a new SoC falls mainly into two classes: bootstrap
code and device drivers. Sometimes there is new application code as well, but mostly this can be
developed on other computers or on a previous generation of the hardware.

ESLmodels of devices are likely to be identical to the real hardware, so the device driver
(Section 2.7.1) code should be identical and already tested. Exceptionsmay relate to real-time
performance that has not been accurately reported. A high-level model will not be cycle-accurate,
especially if it has a loosely timed TLM (Section 5.4.4), but also if an FPGA prototype used a different
time/space fold (Section 8.5.3).

The boot procedure for the real hardwaremay be quite different fromwhat was normally used for the
ESLmodel, but the real procedure should also have been tested on the virtual platform. For instance,
the ESLmodel may have simply initialised RAM contents from the file system via backdoor interfaces,
whereas for the real system theremay be complex interdependencies in boot order for the various
cores and subsystems. Powermanagement control needs at least to turn a subsystem on before it can
boot, but the complete power structuremay not have been reflected in the ESLmodel. It may be
infeasible to use an RTLmodel for the complete system boot, but Verilog-to-C techniquesmitigate
this (Section 5.1.1). A secure boot adds complexity (Section 9.1.1).

9.1 Firmware
Software installed in ROM (Section 2.6.2) is called firmware. Early embedded systems and
microcomputers, such as the Acorn personal computer, put the complete operating system in ROM,
but todaymost systems have only aminimal bootloader in ROM. The ROM is put in thememorymap
at a location that encompasses the reset vector of the boot core (Section 1.1.3), which is the first CPU
to start operating after a reset. All the others are triggered by it. The job of the bootloader is to load
the operating system or embedded application for the SoC.

Multiple levels of bootloader are quite commonly used, with each one loading the next and then
transferring execution to it. Each level provides a different level of system configuration and can
select which of several alternative next levels to load. For instance, a dual-boot PCmust select
betweenWindows or Linux, or different versions of the same operating system, at the appropriate
point in the boot chain. One reason for havingmultiple levels is to simplify software distribution. A

512

Chapter 9 | Putting Everything Together

particular operating system kernel can be loaded onto a variety of hardware platforms if a prior level
of booting has provided sufficient custom initialisation such that the platforms look homogeneous.

Early-stage bootloaders set up the DRAMand important peripherals. DRAM requires timing and
voltage selection (Section 4.5) before it can be used and the code that performs this must be small and
run entirely from an on-SoC scratchpad (Section 2.3). If themain operating system is to be fetched
from disk, USB stick or over a network, the bootloader must contain a rudimentary device driver for
the relevant I/O device. For an Ethernet device, it may need to install theMAC in a register, whereas
for a file system, it will need sufficient code to traverse a directory structure, in read-only mode,
looking for the relevant named file.

As described in Section 3.1.7, an operating system can typically explore the hardware structure to find
out howmuchmemory is installed and to see which I/O devices are present. The presence of I/O
devices depends onwhat SoC the code is booted on and onwhat additional components have been
installed on the PCB or plugged in. For ease of software versionmanagement, it is now common for a
booted image to contain device drivers for devices that are not physically present. Similarly, the
booted codemay be able to locate additional device drivers on secondary storage or from the cloud.
Beyond the critical device drivers, the choice of which devices drivers to hard-include andwhich to
load dynamically is a trade-off of code size and convenience. There is also a security issue. For
instance, on a PC, the PS2 port driver may be hard-coded and on amobile phone, the driver for the
buttonwill be hard-coded. This is to prevent operating system spoofing attacks in which a user thinks
they are interacting with the device, but instead, they are using an application that is pretending to be
the whole device.

Bootstrap code does not typically need to be high performance, so can be put in a slow device, like a
serial ROMwith 1 bit per word and a transfer rate of just a fewMbps. Moreover, it is common for the
bootstrap ROM to be disengaged from thememorymap after boot time. A PIO operation
(Section 2.7) to a ROM control register will disable it until the next reset. Disengaging the boot ROM
frees upmemory space (an issue in A32 systems) and provides a degree of protection for secrets and
IP embodied in a secure boot.

9.1.1 Secure Bootstrapping
A secure boot is an increasingly common requirement. A secure bootloader guarantees that the
operating system has been loaded correctly without tampering. It can also provide a number of
related operations, such as checking that the appropriate licences have not expired or ensuring the
boot operation is logged in a tamper-proof journal that is secure enough to be used as evidence in
legal proceedings. A secure bootloader must be installed so that it cannot be bypassed and it must be
able to check the authenticity of the software it loads. Typically, it then passes control to the loaded
software after sealing a certificate of authenticity in a secure enclave (Section 4.9.1), which cannot be
modified by any software subsequently run on the SoC andwhich cannot easily bemodified by
electronic or mechanical probing. A first-level secure enclavemay allow only write access when the
boot ROM is engaged. A serial ROMexternal to the SoC is easy to bypass without specialist tools.

513

Modern SoCDesign

Thus, a commonway to prevent a secure bootloader from being bypassed is to put it in mask ROMon
themain SoC.

The code in a secure operating system has a digital signature. Digital signatures use secure hash
functions, such as SHA-1.2, which return a 20-byte number or similar for a block of data. The source
code for such functions is not secret, but there are no knownways of editing a block of data to give a
desired hash. Hence, it is impossible to generate an operating system image that will give the same
signature as a known good image. The operating systemmust have a digital certificate of its hash.
Certificates normally use public key infrastructure (PKI). PKI uses pairs of keys. One is kept private
and the other made public. These are called, respectively, the private key and the public key. These
are easy to create as pairs, but the private key cannot be generated from the public one. A small
amount of data, such as the hash digest and the name of an operating system image, are digitally
signed by the issuer by encoding the data with the organisation’s private key. The bootloader knows
the organisation’s public key and hence, can validate the certificate. It will proceedwith a boot only if
the hash of the image agrees with the one that has been signed. Either the public key is stored in the
boot ROMor, if trust is delegated, the public key of a certificate provider is stored. In the latter case,
the boot ROM contacts the certificate provider over a network. A secure operating system
periodically checks the digital signature of its code, in casemalware or a fault has corrupted it.
Moreover, it checks the digital signatures of all additionally loaded device drivers and possibly,
application code too.

9.2 Powering up
Nearly all SoCs have a UART device (Section 2.7.1). The first program run onmost new SoCs prints
‘HelloWorld’ to the UART using polled I/O. This programmay already be in the on-chip boot ROMor
else that ROMcontains a low-levelmachine-codemonitor that allowsmemory locations to be viewed
and changed and for control to be transferred. Themajor alternative to a UART is a JTAG debug
interface (Section 4.7.3), which, typically, supports the samemonitoring primitives. If there is on-chip
flashmemory, themonitor allows this to be programmed. Since these low-level ports expose an attack
surface for malware and jailbreaks, a cryptographic exchangemay be needed, as for a secure boot. A
jailbreak is the installation of an unsigned operating system or application on a platform that should
run only approved code.

With a UVM (Section 8.8.1) design flow or otherwise, each IP block is likely to have a software test
program that was used during design verification pre-tapeout. These can, typically, be run on bare
metal, i.e. without operating system support, on the real silicon prior to the operating system boot.
However, it is likely the teamwill try to boot themain software stack at the earliest opportunity.
Because of the prior testing on virtual platforms, it should work first time.

9.2.1 Engineering Sample Testing
The first devices received back from a foundry are called engineering samples. One or twowafers are
produced, yielding up to a hundred devices. These are carefully allocated to various evaluation teams

514

Chapter 9 | Putting Everything Together

or to special-relationship customers. Fewer are available from amulti-project wafer (MPW) run
(Section 8.9.1), since the wafer has amix of well-studied calibration devices and early designs from
various companies. Devices are installed on a custom evaluation board, which often holds the SoC in
a zero-insertion-force socket that enables one chip to be swappedwith another. Even though a SoC
may, typically, be usedwith only a subset of its peripheral capabilities deployed, an evaluation board
supports every option. It also instruments the power supplies andmay provide a bread-boarding area
onto which additional application-specific hardware can be soldered. Prototypes of the flagship
target product, such as a newmodel of a cell phone, could also be ready for the SoC to be installed.
These are termed alpha prototypes. Theymay be conservatively engineered but still require
modification before the systemworks. Modificationsmay need to bemade to the power-supply
distribution, DRAMwiring, resistor values or any other respect. Thesemodifications are folded into
the nextmini-production run, which produces beta prototypes. A beta prototype should be very close
in design to the final product. These units can be photographed for advertising and loaned to trade
journals for pre-release reviews.

A SoC is tested on an evaluation board at various temperatures, power supply voltages and clock
frequencies. Energy use andmargins aremeasured at each operating point for voltage and
temperature. Multiple samples are checked to assess process variation, the first component of PVT
(Section 8.4.4), although if all the samples came from just one or twowafers, the process variation will
not be as wide as in general production. Nonetheless, themeasurements can be correlated against
wafer process parameters measured at the foundry. Not all these data are necessarily released to the
customer however.

DUT Product

supply

Typical use

companion

equipment

Climate chamber

Heater elements

Gas

Refrigeration,

cooling

and humidity

adjustment

fans etc.

Env

sensors

Water

12V 240V

Figure 9.1 Environmental testing under various temperature and humidity conditions in a climate-controlled chamber.

Environmental testing is carried out in a climatic test chamber. Devices often use external mains
power supplies. Thesemust be tested with the device under test (DUT). Figure 9.1 shows a typical
setup. It is assumed that the companion equipment of a typical use case is tested separately, and so
does not have to go inside the chamber. Either the evaluation board or the prototype product are
tested. A test chamber contains heater elements and is also connected to a cylinder of liquefied gas
(e.g. CO2), so that the temperature is adjustable (e.g. from−40°C to+100°C). A water supply allows
the humidity to be tested up to close to 95 per cent, simulating rainforest conditions. Note that

515

Modern SoCDesign

Thus, a commonway to prevent a secure bootloader from being bypassed is to put it in mask ROMon
themain SoC.

The code in a secure operating system has a digital signature. Digital signatures use secure hash
functions, such as SHA-1.2, which return a 20-byte number or similar for a block of data. The source
code for such functions is not secret, but there are no knownways of editing a block of data to give a
desired hash. Hence, it is impossible to generate an operating system image that will give the same
signature as a known good image. The operating systemmust have a digital certificate of its hash.
Certificates normally use public key infrastructure (PKI). PKI uses pairs of keys. One is kept private
and the other made public. These are called, respectively, the private key and the public key. These
are easy to create as pairs, but the private key cannot be generated from the public one. A small
amount of data, such as the hash digest and the name of an operating system image, are digitally
signed by the issuer by encoding the data with the organisation’s private key. The bootloader knows
the organisation’s public key and hence, can validate the certificate. It will proceedwith a boot only if
the hash of the image agrees with the one that has been signed. Either the public key is stored in the
boot ROMor, if trust is delegated, the public key of a certificate provider is stored. In the latter case,
the boot ROM contacts the certificate provider over a network. A secure operating system
periodically checks the digital signature of its code, in casemalware or a fault has corrupted it.
Moreover, it checks the digital signatures of all additionally loaded device drivers and possibly,
application code too.

9.2 Powering up
Nearly all SoCs have a UART device (Section 2.7.1). The first program run onmost new SoCs prints
‘HelloWorld’ to the UART using polled I/O. This programmay already be in the on-chip boot ROMor
else that ROMcontains a low-levelmachine-codemonitor that allowsmemory locations to be viewed
and changed and for control to be transferred. Themajor alternative to a UART is a JTAG debug
interface (Section 4.7.3), which, typically, supports the samemonitoring primitives. If there is on-chip
flashmemory, themonitor allows this to be programmed. Since these low-level ports expose an attack
surface for malware and jailbreaks, a cryptographic exchangemay be needed, as for a secure boot. A
jailbreak is the installation of an unsigned operating system or application on a platform that should
run only approved code.

With a UVM (Section 8.8.1) design flow or otherwise, each IP block is likely to have a software test
program that was used during design verification pre-tapeout. These can, typically, be run on bare
metal, i.e. without operating system support, on the real silicon prior to the operating system boot.
However, it is likely the teamwill try to boot themain software stack at the earliest opportunity.
Because of the prior testing on virtual platforms, it should work first time.

9.2.1 Engineering Sample Testing
The first devices received back from a foundry are called engineering samples. One or twowafers are
produced, yielding up to a hundred devices. These are carefully allocated to various evaluation teams

514

Chapter 9 | Putting Everything Together

or to special-relationship customers. Fewer are available from amulti-project wafer (MPW) run
(Section 8.9.1), since the wafer has amix of well-studied calibration devices and early designs from
various companies. Devices are installed on a custom evaluation board, which often holds the SoC in
a zero-insertion-force socket that enables one chip to be swappedwith another. Even though a SoC
may, typically, be usedwith only a subset of its peripheral capabilities deployed, an evaluation board
supports every option. It also instruments the power supplies andmay provide a bread-boarding area
onto which additional application-specific hardware can be soldered. Prototypes of the flagship
target product, such as a newmodel of a cell phone, could also be ready for the SoC to be installed.
These are termed alpha prototypes. Theymay be conservatively engineered but still require
modification before the systemworks. Modificationsmay need to bemade to the power-supply
distribution, DRAMwiring, resistor values or any other respect. Thesemodifications are folded into
the nextmini-production run, which produces beta prototypes. A beta prototype should be very close
in design to the final product. These units can be photographed for advertising and loaned to trade
journals for pre-release reviews.

A SoC is tested on an evaluation board at various temperatures, power supply voltages and clock
frequencies. Energy use andmargins aremeasured at each operating point for voltage and
temperature. Multiple samples are checked to assess process variation, the first component of PVT
(Section 8.4.4), although if all the samples came from just one or twowafers, the process variation will
not be as wide as in general production. Nonetheless, themeasurements can be correlated against
wafer process parameters measured at the foundry. Not all these data are necessarily released to the
customer however.

DUT Product

supply

Typical use

companion

equipment

Climate chamber

Heater elements

Gas

Refrigeration,

cooling

and humidity

adjustment

fans etc.

Env

sensors

Water

12V 240V

Figure 9.1 Environmental testing under various temperature and humidity conditions in a climate-controlled chamber.

Environmental testing is carried out in a climatic test chamber. Devices often use external mains
power supplies. Thesemust be tested with the device under test (DUT). Figure 9.1 shows a typical
setup. It is assumed that the companion equipment of a typical use case is tested separately, and so
does not have to go inside the chamber. Either the evaluation board or the prototype product are
tested. A test chamber contains heater elements and is also connected to a cylinder of liquefied gas
(e.g. CO2), so that the temperature is adjustable (e.g. from−40°C to+100°C). A water supply allows
the humidity to be tested up to close to 95 per cent, simulating rainforest conditions. Note that

515

Modern SoCDesign

suddenly opening the chamber when it contains very cold air can cause a short shower in the
surrounding laboratory!

Theremay be various on-SoC analogue front ends (AFEs) (Section 2.7.6), such as audio inputs and
network transceivers. Their performance is characterised through detailed testing of the sensitivity
of the interfaces at different supply voltages and operating temperatures. The DUTmay have
phase-locked loops (PLLs) (Section 4.9.5) that must correctly acquire incoming frequencies over a
specified range. Many such components have a hybrid digital/analogue implementation, requiring
coefficients to be loaded that can be correctly determined only on real silicon.

A prototypemust be tested for electromagnetic compatibility (EMC) and electrical safety andmeet
various certification standards before it can bemarketed. In Europe, the vendor can self-certify their
product and then add theCEmark. EMC testing involves electrostatic discharge (ESD) testing and
alsomeasuring its electromagnetic emissions and susceptibility to radio waves.

A standard human bodymodel consists of a 100-pF capacitor charged to 6000V in series with a
1.5 kΩ resistor. Such voltages can easily be generated bywalking over a dry nylon carpet when
wearing certain types of shoes. A devicemust not be permanently damaged by such discharges and
preferably, it should continue to work without interruption. Thus, ESD testing (Section 4.8.1) involves
discharging the capacitor into the equipment at places where it is likely to be touched in real use.
These includemetal parts of the casing and connector pins. This is donewith a precharged cable that
is disconnected at the other end.

Wideband
antenna

Spectrum analyser

Low-noise
amplifier

Search
wand

Cable clamp

DUT

Product
power supply

Typical use
companion
equipment

Screened room

240V

Figure 9.2 EMC testing of radio-frequency interference.

The emissions and susceptibility of a DUT are assessed in an electrically screened chamber or room.
Figure 9.2 illustrates the typical setup for emissions testing. Most equipment is designed and tested
against the American Federal Communications Commission (FCC) class B standard. Companion
equipment for typical use cases must be present and included in the test and hence, inside the
chamber. For instance, if a device is typically plugged into a laptop using USB, the laptopmust be
present. Radiated emissions are picked up by a wideband directional antenna, whichmust be pointed
at the equipment from a prescribed distance. Conducted emissions that pass down the equipment

516

Chapter 9 | Putting Everything Together

and supply cables aremeasuredwith transformers (just a few turns of wire) that are wrapped around
the cables. Emission hot spots can be located with a handheld search coil. The signals are amplified
and fed to a spectrum analyser. All peaksmust be below the standard test levels.

Passing the FCC standard can be a challenge for SoC-based equipment. A clock frequency of 1GHz
means that internal nets are able to generate any frequency within most of the standard radio bands,
including HF, VHF andUHF. Harmonics can also easily be generated, spanning down tomicrowave
frequencies. Much of themitigation is by changing the PCB layout, such as the structure of the ground
planes and the position of the connectors. However, within the SoC, various techniques can help
reduce electromagnetic emissions, such as using a spread spectrum, which applies frequency
modulation to the clocks. An idle system refreshing DRAMalso tends to produce pronounced
emissions. Again, these can be lightly randomisedwith a small pseudorandom binary sequence
(PRBS) generator (Section 3.8), which applies small variations to the refresh interval. These
techniques do not actually reduce the emissions, but spread the energy out so that the level at each
frequency does not exceed the threshold in the relevant standard. Another solution is to use ametal
case or screening boxes on the PCB. These can also isolate delicate receiving AFEs from locally
generated noise.

9.3 Success or Failure?
If a SoC does not work, generally, just one subsystem or function is not right. Hopefully, the fault is not
in a key component and does not prevent everything fromworking, as that would be a fault fatal.
Prototypes can be shippedwith the troublesome feature disabled. Alternatively, a software
workaround can be implemented, whichmay compromise something else, such as battery life or the
simultaneous use of two features. At best, the feature can be removed from the product specification
and held over to the next version. At worst, a respin is needed. As discussed in Section 8.10, a
complete respin can sometimes bemitigated by an engineering change order (ECO) for a small
modification, so that a new batch of engineering samples can be receivedwithin amonth.

Many SoCs are first fabricated using amulti-design shuttle. Ten or so wafers, each containing designs
for several different chips, are fabricated together. Every process stepmay not have been optimised
for the devices, but the resulting variationmay be characterised well and can be accounted for when
the test results are analysed. Such shuttles can be run, say, once a week in a foundry, both to provide
early engineering samples to customers and for internal experiments and quality control by the
foundry owners.

Chip designers are normally reticent in owning up to design errors that have cost their company
thousands or sometimesmillions of pounds, especially if a workaround has hidden the error from the
customer. Problems can arise from both designmistakes at the front end of the flow and from design
process failures in the back end. Here are a few cases from the authors’ personal experiences:

Signal polarity: On one device, an output padwas used for two purposes, depending onwhich of
two data serialisers was enabled. The output from the two serialisers was combinedwith a simple

517

Modern SoCDesign

suddenly opening the chamber when it contains very cold air can cause a short shower in the
surrounding laboratory!

Theremay be various on-SoC analogue front ends (AFEs) (Section 2.7.6), such as audio inputs and
network transceivers. Their performance is characterised through detailed testing of the sensitivity
of the interfaces at different supply voltages and operating temperatures. The DUTmay have
phase-locked loops (PLLs) (Section 4.9.5) that must correctly acquire incoming frequencies over a
specified range. Many such components have a hybrid digital/analogue implementation, requiring
coefficients to be loaded that can be correctly determined only on real silicon.

A prototypemust be tested for electromagnetic compatibility (EMC) and electrical safety andmeet
various certification standards before it can bemarketed. In Europe, the vendor can self-certify their
product and then add theCEmark. EMC testing involves electrostatic discharge (ESD) testing and
alsomeasuring its electromagnetic emissions and susceptibility to radio waves.

A standard human bodymodel consists of a 100-pF capacitor charged to 6000V in series with a
1.5 kΩ resistor. Such voltages can easily be generated bywalking over a dry nylon carpet when
wearing certain types of shoes. A devicemust not be permanently damaged by such discharges and
preferably, it should continue to work without interruption. Thus, ESD testing (Section 4.8.1) involves
discharging the capacitor into the equipment at places where it is likely to be touched in real use.
These includemetal parts of the casing and connector pins. This is donewith a precharged cable that
is disconnected at the other end.

Wideband
antenna

Spectrum analyser

Low-noise
amplifier

Search
wand

Cable clamp

DUT

Product
power supply

Typical use
companion
equipment

Screened room

240V

Figure 9.2 EMC testing of radio-frequency interference.

The emissions and susceptibility of a DUT are assessed in an electrically screened chamber or room.
Figure 9.2 illustrates the typical setup for emissions testing. Most equipment is designed and tested
against the American Federal Communications Commission (FCC) class B standard. Companion
equipment for typical use cases must be present and included in the test and hence, inside the
chamber. For instance, if a device is typically plugged into a laptop using USB, the laptopmust be
present. Radiated emissions are picked up by a wideband directional antenna, whichmust be pointed
at the equipment from a prescribed distance. Conducted emissions that pass down the equipment

516

Chapter 9 | Putting Everything Together

and supply cables aremeasuredwith transformers (just a few turns of wire) that are wrapped around
the cables. Emission hot spots can be located with a handheld search coil. The signals are amplified
and fed to a spectrum analyser. All peaksmust be below the standard test levels.

Passing the FCC standard can be a challenge for SoC-based equipment. A clock frequency of 1GHz
means that internal nets are able to generate any frequency within most of the standard radio bands,
including HF, VHF andUHF. Harmonics can also easily be generated, spanning down tomicrowave
frequencies. Much of themitigation is by changing the PCB layout, such as the structure of the ground
planes and the position of the connectors. However, within the SoC, various techniques can help
reduce electromagnetic emissions, such as using a spread spectrum, which applies frequency
modulation to the clocks. An idle system refreshing DRAMalso tends to produce pronounced
emissions. Again, these can be lightly randomisedwith a small pseudorandom binary sequence
(PRBS) generator (Section 3.8), which applies small variations to the refresh interval. These
techniques do not actually reduce the emissions, but spread the energy out so that the level at each
frequency does not exceed the threshold in the relevant standard. Another solution is to use ametal
case or screening boxes on the PCB. These can also isolate delicate receiving AFEs from locally
generated noise.

9.3 Success or Failure?
If a SoC does not work, generally, just one subsystem or function is not right. Hopefully, the fault is not
in a key component and does not prevent everything fromworking, as that would be a fault fatal.
Prototypes can be shippedwith the troublesome feature disabled. Alternatively, a software
workaround can be implemented, whichmay compromise something else, such as battery life or the
simultaneous use of two features. At best, the feature can be removed from the product specification
and held over to the next version. At worst, a respin is needed. As discussed in Section 8.10, a
complete respin can sometimes bemitigated by an engineering change order (ECO) for a small
modification, so that a new batch of engineering samples can be receivedwithin amonth.

Many SoCs are first fabricated using amulti-design shuttle. Ten or so wafers, each containing designs
for several different chips, are fabricated together. Every process stepmay not have been optimised
for the devices, but the resulting variationmay be characterised well and can be accounted for when
the test results are analysed. Such shuttles can be run, say, once a week in a foundry, both to provide
early engineering samples to customers and for internal experiments and quality control by the
foundry owners.

Chip designers are normally reticent in owning up to design errors that have cost their company
thousands or sometimesmillions of pounds, especially if a workaround has hidden the error from the
customer. Problems can arise from both designmistakes at the front end of the flow and from design
process failures in the back end. Here are a few cases from the authors’ personal experiences:

Signal polarity: On one device, an output padwas used for two purposes, depending onwhich of
two data serialisers was enabled. The output from the two serialisers was combinedwith a simple

517

Modern SoCDesign

OR gate at the top level of themodule hierarchy and used to drive the pad. This would haveworked
fine, except that one of the serialisers produced a logic onewhen idle. This meant that the output
from the other serialiser, when in use, wasmasked by theORing with a constant true logic value. A
software workaroundwas devised. The one-producing serialiser was enabled at all times, but made
to transmit a constant zero when not needed. This involved setting it to a very slow baud rate.
Moreover, a periodic timer-triggered daemon stored a few PIO registers every 100ms, so that the
serial data output never changed from zero. The workaround increased the CPU load on one of the
cores by a negligible percentage. Less than amilliwatt of electricity was wasted due to a small
subsystem being turned on instead of being in sleepmode.

Excessive glitch energy: An AES encryption accelerator (Section 6.4.3) contained, as would be
expected, a large number of high-speed XOR gates. The dynamic powermodelling was based on a
toggle rate (Section 4.6.2) measured from an unannotated simulation in which every path had the
same delay. In the real silicon, the net delays varied considerably from each other, due to net length
variations. This resulted in a large ratio of glitches to genuine transitions. Because of the
high-performance gates, the resulting dynamic energy use was several times greater thanmodelled
and resulted in excessive localised heating. Fortunately, the AES unit had another design error: the
data inputs to the XOR gate networks were always active, whereas this input needed to change
only while the AES computations were beingmade. Aminor change to the clock gating for the
subsystem enabled the input data to be held stable when not in use. This was fixedwith an A1 ECO
(Section 8.10).

Faulty coprocessor or instruction: Sometimes a single instruction in a custom ISA extension
(Section 6.4.1) does not work. In these cases, the instruction can be avoided and replacedwith
slower code from the core instruction set. This may not hit the design target for energy or
performance (or both), but it is possible that something else can be sacrificed, such as the data
compression ratio or battery life.

AFE sensitivity: Analogue electronics has its own set of challenges, including tolerance to noise
and sensitivity. On one networking project, anAFE (Section 2.7.6) for a cable transmission system
had to compensate for the skin effect in copper cables (Section 3.8), in which higher frequencies are
attenuated far more than lower frequencies. If longer cables are detected, a common solution is to
increase the high-frequency gain at the receiver. On one device, the integrated AFE overused this
additional gain for shorter cables, resulting in data transmission errors. The solution wasmade at
the PCB level. It would have been possible to add an external AFE chip to the circuit board for each
input channel, but it was sufficient to add a passive RC network to build out all cables, with the
effect that shorter cables behavedmore like long ones but without severely sacrificing
performance for genuine longer cable runs. The cost of this was a few pence worth of additional
PCB area and passive components.

ROM table error: Intel famously made quite a grave error by shipping chips with a blank
mask-programmed ROM that should have contained digits beyond the fifth significant figure in the
result of certain floating-point divide operations. Likemany complex chips, the silicon contained a

518

Chapter 9 | Putting Everything Together

revision identifier register, allowing the software to determine readily whether it was running on a
faulty chip. It was also easy to run a test division and check what answer was returned. Hence, a
software workaroundwas potentially feasible for all users whowere concerned about the error
and could recompile their code. This was a costly processor chip, so nearly all devices were
socketed and could be replacedwith an alternative version of the device that did not have the bug.
However, typically, this chip may have beenmore expensive than all the other components on the
PCB put together. Intel offered a free replacement service for any customer who asked for it.
Overall, it was a very costly mistake for the company, especially reputationally.

When the device is demonstrably working, scheduled orders for chips will be placedwith a foundry.
Product manufacturing is often done in a country where the cost of the combined import and export
duties is the lowest. This tends to be in the Far East. Of course, many other things, such as cardboard
shipping boxes, user manuals, distributors, field repair agents, advertising and so on have to be
available too.

519

Modern SoCDesign

OR gate at the top level of themodule hierarchy and used to drive the pad. This would haveworked
fine, except that one of the serialisers produced a logic onewhen idle. This meant that the output
from the other serialiser, when in use, wasmasked by theORing with a constant true logic value. A
software workaroundwas devised. The one-producing serialiser was enabled at all times, but made
to transmit a constant zero when not needed. This involved setting it to a very slow baud rate.
Moreover, a periodic timer-triggered daemon stored a few PIO registers every 100ms, so that the
serial data output never changed from zero. The workaround increased the CPU load on one of the
cores by a negligible percentage. Less than amilliwatt of electricity was wasted due to a small
subsystem being turned on instead of being in sleepmode.

Excessive glitch energy: An AES encryption accelerator (Section 6.4.3) contained, as would be
expected, a large number of high-speed XOR gates. The dynamic powermodelling was based on a
toggle rate (Section 4.6.2) measured from an unannotated simulation in which every path had the
same delay. In the real silicon, the net delays varied considerably from each other, due to net length
variations. This resulted in a large ratio of glitches to genuine transitions. Because of the
high-performance gates, the resulting dynamic energy use was several times greater thanmodelled
and resulted in excessive localised heating. Fortunately, the AES unit had another design error: the
data inputs to the XOR gate networks were always active, whereas this input needed to change
only while the AES computations were beingmade. Aminor change to the clock gating for the
subsystem enabled the input data to be held stable when not in use. This was fixedwith an A1 ECO
(Section 8.10).

Faulty coprocessor or instruction: Sometimes a single instruction in a custom ISA extension
(Section 6.4.1) does not work. In these cases, the instruction can be avoided and replacedwith
slower code from the core instruction set. This may not hit the design target for energy or
performance (or both), but it is possible that something else can be sacrificed, such as the data
compression ratio or battery life.

AFE sensitivity: Analogue electronics has its own set of challenges, including tolerance to noise
and sensitivity. On one networking project, anAFE (Section 2.7.6) for a cable transmission system
had to compensate for the skin effect in copper cables (Section 3.8), in which higher frequencies are
attenuated far more than lower frequencies. If longer cables are detected, a common solution is to
increase the high-frequency gain at the receiver. On one device, the integrated AFE overused this
additional gain for shorter cables, resulting in data transmission errors. The solution wasmade at
the PCB level. It would have been possible to add an external AFE chip to the circuit board for each
input channel, but it was sufficient to add a passive RC network to build out all cables, with the
effect that shorter cables behavedmore like long ones but without severely sacrificing
performance for genuine longer cable runs. The cost of this was a few pence worth of additional
PCB area and passive components.

ROM table error: Intel famously made quite a grave error by shipping chips with a blank
mask-programmed ROM that should have contained digits beyond the fifth significant figure in the
result of certain floating-point divide operations. Likemany complex chips, the silicon contained a

518

Chapter 9 | Putting Everything Together

revision identifier register, allowing the software to determine readily whether it was running on a
faulty chip. It was also easy to run a test division and check what answer was returned. Hence, a
software workaroundwas potentially feasible for all users whowere concerned about the error
and could recompile their code. This was a costly processor chip, so nearly all devices were
socketed and could be replacedwith an alternative version of the device that did not have the bug.
However, typically, this chip may have beenmore expensive than all the other components on the
PCB put together. Intel offered a free replacement service for any customer who asked for it.
Overall, it was a very costly mistake for the company, especially reputationally.

When the device is demonstrably working, scheduled orders for chips will be placedwith a foundry.
Product manufacturing is often done in a country where the cost of the combined import and export
duties is the lowest. This tends to be in the Far East. Of course, many other things, such as cardboard
shipping boxes, user manuals, distributors, field repair agents, advertising and so on have to be
available too.

519

Glossary of Abbreviations

A16D8 Address Bus 16 Bits andData Bus 8 BitsWide
Address and data specifications for a computer architecture

ABD Assertion-based Design
A designmethodology in which formal statements are included at all steps of
the design process

ACE AXI Coherency Extensions
Protocol additions for cachemanagement and consistency

ACL2 Applicative Common LISP
A formal proof tool

ACM Association of ComputerMachinery
An American trade body

ADC Analogue-to-digital Convertor
A digitising device that generates a PCM stream from a time-varying voltage

ADSL Asymmetric Digital Subscriber Line
A form of broadband access using POTS telephone cables

AES Advanced Encryption Standard
Amethod of combining blocks of data with a key to get a similar-sized
encrypted block

AFE Analogue Front End
The part of a communications terminal or interface that is not digital and
which connects to the physical media

AHB AMBAHigh-performance Bus
A SoC interconnect standard fromArm, widely used in the 1990’s

ALU Arithmetic and Logic Unit
A combinational circuit that can perform addition, subtraction and various
bitwise logical operations such as AND, OR and XOR

AMBA AdvancedMicro-controller Bus Architecture
A family of SoC interconnect protocols fromArm

Glossary of Abbreviations

BEOL Back End-of-Line Variation
Changes in the upper layer chip fabrication steps that mostly effect wiring
capacitance

BFM Bus FunctionalModel
A high-level model of a subsystemwith sufficient detail for embedded
software to run unaffected

BIOS Basic Input/Output System
A set of low-level device drivers and bootstrapping code stored in ROM

BIST Built-in Self-test
Additional hardware for running a test sequence

BoM Bill ofMaterials
List of parts needed to assemble a product

BRAM Block RAM
Blocks of memory found inmost FPGA fabrics

BSI Battery State Indication
A set of sense functions on a battery pack

BSP Bulk Synchronous Processing
A reference paradigm for parallel computing

BSV Bluspec Verilog
AnHDLwith automatic handshaking and scheduling

BVCI Basic Virtual Component Interface
A split-port protocol from theOpen Core Connect (OCP) family

BWT Burrows–Wheeler Transform
An invertible transformation of a block of text that makes it readily
compressible with run-length encoding

CACTI Cache Access Tool
A delay and energy performance predictor tool for memory and caches

CAD Computer-aided Design
The generic name for the computerised design tools or processes

CAE Computer-aided Engineering
See CAD

523

Glossary of Abbreviations

AMS Analogue andMixed Signal
Extensions to a digital logic simulator for handling voltage, current and similar
analogue quantities

AOI AND-OR-INVERT
A logic function that is efficiently implemented in CMOS and hence, commonly
used

APB AMBAPeripheral Bus
A simple and low-performance interconnect standard in the AMBA family

API Application Program Interface
A protocol or standard, typically between a loaded program and the resident
operating system, for service access

ARQ Automatic Repeat Request
Amessage sent in a transport protocol to request that data be sent again

ASCII American Standard Code for Information Interchange
The predominant character encoding used in computers post 1965

ASIC Application-specific Integrated Circuit
A chipmade for a specific application

ASSP Application-specific Standard Part
An ASIC that is widely sold to other equipmentmanufacturers

ATAPI ATA Packet Interface
A protocol, defined over the original low-levelWestern Digital register
interface for hard disk drives, that conveys a generic, packet-based protocol

AVI Audio Video Interleave
A file format used in early digital cameras that includes JPEG frames and audio

AWS AmazonWeb Services
Amajor cloud computing provider

AXI Advanced eXtensible Interface
An interconnect protocol fromArm

BBC British Broadcasting Corporation
Theworld’s oldest radio and television broadcaster

BDD Binary Decision Diagram
A compact representation of a truth table

522

Glossary of Abbreviations

BEOL Back End-of-Line Variation
Changes in the upper layer chip fabrication steps that mostly effect wiring
capacitance

BFM Bus FunctionalModel
A high-level model of a subsystemwith sufficient detail for embedded
software to run unaffected

BIOS Basic Input/Output System
A set of low-level device drivers and bootstrapping code stored in ROM

BIST Built-in Self-test
Additional hardware for running a test sequence

BoM Bill ofMaterials
List of parts needed to assemble a product

BRAM Block RAM
Blocks of memory found inmost FPGA fabrics

BSI Battery State Indication
A set of sense functions on a battery pack

BSP Bulk Synchronous Processing
A reference paradigm for parallel computing

BSV Bluspec Verilog
AnHDLwith automatic handshaking and scheduling

BVCI Basic Virtual Component Interface
A split-port protocol from theOpen Core Connect (OCP) family

BWT Burrows–Wheeler Transform
An invertible transformation of a block of text that makes it readily
compressible with run-length encoding

CACTI Cache Access Tool
A delay and energy performance predictor tool for memory and caches

CAD Computer-aided Design
The generic name for the computerised design tools or processes

CAE Computer-aided Engineering
See CAD

523

Glossary of Abbreviations

AMS Analogue andMixed Signal
Extensions to a digital logic simulator for handling voltage, current and similar
analogue quantities

AOI AND-OR-INVERT
A logic function that is efficiently implemented in CMOS and hence, commonly
used

APB AMBAPeripheral Bus
A simple and low-performance interconnect standard in the AMBA family

API Application Program Interface
A protocol or standard, typically between a loaded program and the resident
operating system, for service access

ARQ Automatic Repeat Request
Amessage sent in a transport protocol to request that data be sent again

ASCII American Standard Code for Information Interchange
The predominant character encoding used in computers post 1965

ASIC Application-specific Integrated Circuit
A chipmade for a specific application

ASSP Application-specific Standard Part
An ASIC that is widely sold to other equipmentmanufacturers

ATAPI ATA Packet Interface
A protocol, defined over the original low-levelWestern Digital register
interface for hard disk drives, that conveys a generic, packet-based protocol

AVI Audio Video Interleave
A file format used in early digital cameras that includes JPEG frames and audio

AWS AmazonWeb Services
Amajor cloud computing provider

AXI Advanced eXtensible Interface
An interconnect protocol fromArm

BBC British Broadcasting Corporation
Theworld’s oldest radio and television broadcaster

BDD Binary Decision Diagram
A compact representation of a truth table

522

Glossary of Abbreviations

CMN CoherentMesh Generator
An interconnect synthesis tool fromArm

CMO CacheManagement Operation
A command issued on the interconnect tomanage caches, such as the eviction
of a specified line or a full flush

CMOS Complementary Oxide of Silicon
The predominant form of digital logic used in integrated circuits

CMP ChipMultiprocessor
A single chip containingmultiple processors and associated caches

CNF Conjunctive Normal Form
A rearrangement of a Boolean expression into a product of clauses; it is the
opposite of the sum-of-products form

CNN Convolutional Neural Network
A form of AI inference engine used in deep learning, based onmultiplication of
a data vector with static coefficients determined in training

COI Cone of Influence
The pattern of cause and effect in which the behaviour of a single point fans
out to influence several others, which in turn, fan out further

CPI Clock Cycles per Instruction
The reciprocal of IPC

CPLD Complex Programmable Logic Device
A fast field-programmable chip with low pin-to-pin delay

CPU Central Processing Unit
A computer without memory or peripherals, also known as a processor

CRC Cyclic Redundancy Check
A sequence of check digits computed using polynomial arithmetic in Galois
field 2, which can be simply implemented using shift registers and XOR gates

CRV Constrained RandomVerification
Component testing in which a random stimulus is applied, but sequences
outside specified constraints are not used

CSMA Carrier-senseMultiple Access
A form ofmedia access control (MAC) to a shared resource, such as early
Ethernet implementations, that reduces the frequency of conflicts between
simultaneous transmitters

525

Glossary of Abbreviations

CAN Car-area Network
The predominant control bus used in automotive applications

CAP Capability-based Computer
A famous implementation of a hardware protection architecture

CAS ColumnAddress Strobe
The input to a DRAM that indicates that the column part of the address is on
themultiplexed address bus

CAT5 Category 5 Twisted-pair Cable
A high-quality in-building wiring standard, using four twisted pairs with 8-pole
RJ45 connectors

CBFC Credit-based FlowControl
Matching sending and receiving data rates when a source is granted tokens to
send FLITs

CBRI Clock Domain-crossing Bridge
A bus bridge where each side uses a different clock

CCI Coherent Crossbar Interconnect
Awiring generator tool made by Arm

CCIX Cache-coherent Interconnect for Accelerators
An interconnect standard for hardware acceleration

CCS Concurrent Current Source
A technique for net delaymodelling that includes crosstalk effects

CDN Clock Delivery Network
Thewiring structure used to deliver the clock signal with low skewwithin a
clock domain.

CFR Cambridge Fast Ring

CHI Coherent Hub Interface
An AMBA protocol for NoC links and ports

CISC Complex Instruction Set Computer/Computing
A processor ISA that contains a large number of (variable length) instructions,
such as Intel X86

CLB Configurable Logic Block
Components in an FPGA fabric that implement everyday digital logic

524

Glossary of Abbreviations

CMN CoherentMesh Generator
An interconnect synthesis tool fromArm

CMO CacheManagement Operation
A command issued on the interconnect tomanage caches, such as the eviction
of a specified line or a full flush

CMOS Complementary Oxide of Silicon
The predominant form of digital logic used in integrated circuits

CMP ChipMultiprocessor
A single chip containingmultiple processors and associated caches

CNF Conjunctive Normal Form
A rearrangement of a Boolean expression into a product of clauses; it is the
opposite of the sum-of-products form

CNN Convolutional Neural Network
A form of AI inference engine used in deep learning, based onmultiplication of
a data vector with static coefficients determined in training

COI Cone of Influence
The pattern of cause and effect in which the behaviour of a single point fans
out to influence several others, which in turn, fan out further

CPI Clock Cycles per Instruction
The reciprocal of IPC

CPLD Complex Programmable Logic Device
A fast field-programmable chip with low pin-to-pin delay

CPU Central Processing Unit
A computer without memory or peripherals, also known as a processor

CRC Cyclic Redundancy Check
A sequence of check digits computed using polynomial arithmetic in Galois
field 2, which can be simply implemented using shift registers and XOR gates

CRV Constrained RandomVerification
Component testing in which a random stimulus is applied, but sequences
outside specified constraints are not used

CSMA Carrier-senseMultiple Access
A form ofmedia access control (MAC) to a shared resource, such as early
Ethernet implementations, that reduces the frequency of conflicts between
simultaneous transmitters

525

Glossary of Abbreviations

CAN Car-area Network
The predominant control bus used in automotive applications

CAP Capability-based Computer
A famous implementation of a hardware protection architecture

CAS ColumnAddress Strobe
The input to a DRAM that indicates that the column part of the address is on
themultiplexed address bus

CAT5 Category 5 Twisted-pair Cable
A high-quality in-building wiring standard, using four twisted pairs with 8-pole
RJ45 connectors

CBFC Credit-based FlowControl
Matching sending and receiving data rates when a source is granted tokens to
send FLITs

CBRI Clock Domain-crossing Bridge
A bus bridge where each side uses a different clock

CCI Coherent Crossbar Interconnect
Awiring generator tool made by Arm

CCIX Cache-coherent Interconnect for Accelerators
An interconnect standard for hardware acceleration

CCS Concurrent Current Source
A technique for net delaymodelling that includes crosstalk effects

CDN Clock Delivery Network
Thewiring structure used to deliver the clock signal with low skewwithin a
clock domain.

CFR Cambridge Fast Ring

CHI Coherent Hub Interface
An AMBA protocol for NoC links and ports

CISC Complex Instruction Set Computer/Computing
A processor ISA that contains a large number of (variable length) instructions,
such as Intel X86

CLB Configurable Logic Block
Components in an FPGA fabric that implement everyday digital logic

524

Glossary of Abbreviations

A synchronous logic element that is edge triggered and stores 1 bit of data

DFFR ADFFwith a reset input

DfT Design for Testability
Adding extra components to a system tomake testing easier

DHCP Dynamic Host Configuration Protocol
Ameans for an Internet-connected device to obtain a suitable IP address

DIL Dual-in-Line
An IC packaging technology with two parallel rows of pins

DIMM Dual-in-LineMemoryModule
A number of DRAM chips arranged on a small board to obtain sufficient data
bus width and using a double-sided edge connector (two sides have different
functions)

DMA DirectMemory Access
A data transfer technique where datamoves to/from a peripheral with the
host processor not directly involved

DMC DynamicMemory Controller
The device that sequences operations on a DRAM channel

DMI DirectMemory Interface
A fast path connection between amodelled CPU and its memorymodel in an
ESL platform

DPA Differential Power Analysis
A technique for reverse engineering a device based onmeasuringminute
differences in the supply current as different sequences are run

DRAM Dynamic Random-accessMemory
The predominant form of primary storage inmodern computer devices; the
data are held in minute capacitors that require periodic refreshing to prevent
information from leaking away

DRC Design Rule Check
A validation step in which a feature is compared against the rules prescribing
that feature, such as themaximum fanout for a gate

527

Glossary of Abbreviations

CSP Communicating Sequential Processes
Awell-knownmodel of computation from TonyHoare [1]

CTI Cross-trigger Interface
A test/debug component that helps correlate event sources from different
parts of a SoC

CTOR Constructor
A common abbreviation inOOprogramming for themethod that initialises the
fields of a new object

CTOV C-to-Verilog
A compiler tool that converts a C program into RTL

CUDA Compute UnifiedDevice Architecture
A referencemodel and API for synchronising application accelerators

CXL Compute Express Link
An interconnect standard for hardware acceleration

DAC Digital-to-Analogue Convertor
A component that accepts a binary number and produces a voltage in
proportion to its value

DAP Debug Access Port
The principal point of attachment between a SoC and an external debugger

DBMS DatabaseManagement System
The software that looks after a database, maintaining consistency and indices

DCT Discrete Cosine Transform
A variant of the Fourier transform for a fixed-length sequence or tile of
real-valued data

DDC Display Data Channel
A side channel for flat-screen displays that enables a controller to interrogate
their resolution and other capabilities

DDR Double Data-rate
A technique used for the data connections to a DRAM chip where data is
transferred on both clock edges

DEF Design Exchange Format
The complete physical view of a cell used in the tapeout

DFF D-type Flip-flop

526

Glossary of Abbreviations

A synchronous logic element that is edge triggered and stores 1 bit of data

DFFR ADFFwith a reset input

DfT Design for Testability
Adding extra components to a system tomake testing easier

DHCP Dynamic Host Configuration Protocol
Ameans for an Internet-connected device to obtain a suitable IP address

DIL Dual-in-Line
An IC packaging technology with two parallel rows of pins

DIMM Dual-in-LineMemoryModule
A number of DRAM chips arranged on a small board to obtain sufficient data
bus width and using a double-sided edge connector (two sides have different
functions)

DMA DirectMemory Access
A data transfer technique where datamoves to/from a peripheral with the
host processor not directly involved

DMC DynamicMemory Controller
The device that sequences operations on a DRAM channel

DMI DirectMemory Interface
A fast path connection between amodelled CPU and its memorymodel in an
ESL platform

DPA Differential Power Analysis
A technique for reverse engineering a device based onmeasuringminute
differences in the supply current as different sequences are run

DRAM Dynamic Random-accessMemory
The predominant form of primary storage inmodern computer devices; the
data are held in minute capacitors that require periodic refreshing to prevent
information from leaking away

DRC Design Rule Check
A validation step in which a feature is compared against the rules prescribing
that feature, such as themaximum fanout for a gate

527

Glossary of Abbreviations

CSP Communicating Sequential Processes
Awell-knownmodel of computation from TonyHoare [1]

CTI Cross-trigger Interface
A test/debug component that helps correlate event sources from different
parts of a SoC

CTOR Constructor
A common abbreviation inOOprogramming for themethod that initialises the
fields of a new object

CTOV C-to-Verilog
A compiler tool that converts a C program into RTL

CUDA Compute UnifiedDevice Architecture
A referencemodel and API for synchronising application accelerators

CXL Compute Express Link
An interconnect standard for hardware acceleration

DAC Digital-to-Analogue Convertor
A component that accepts a binary number and produces a voltage in
proportion to its value

DAP Debug Access Port
The principal point of attachment between a SoC and an external debugger

DBMS DatabaseManagement System
The software that looks after a database, maintaining consistency and indices

DCT Discrete Cosine Transform
A variant of the Fourier transform for a fixed-length sequence or tile of
real-valued data

DDC Display Data Channel
A side channel for flat-screen displays that enables a controller to interrogate
their resolution and other capabilities

DDR Double Data-rate
A technique used for the data connections to a DRAM chip where data is
transferred on both clock edges

DEF Design Exchange Format
The complete physical view of a cell used in the tapeout

DFF D-type Flip-flop

526

Glossary of Abbreviations

ECSM Effective Current SourceModel
A detailed characterisation technique for standard cells

EDA Electronic Design Automation
CAD tools for designing electronic systems such as integrated circuits and
printed circuit boards

EDS Event-driven Simulation
Also known as discrete-event simulation. A simulation technique inwhich time
advances only when something changes, as opposed to advancing by a
prescribed time step

EEPROM Electrically Erasable Read-onlyMemory
A form of non-volatile memory, such as flash; both setting bits and clearing
blocks are possible using electricity

EIS An End in Itself
A term denoting that an operationmust be performed, even if it has no visible
use

ELN Electrical Linear Networks
SystemC library with a set of standard electrical components

EMC Electromagnetic Compatibility
A broad term for the interference suffered by a device due to surrounding
devices

EMU Event-monitoring Unit

EPROM Erasable Programmable, Read-onlyMemory
A form of non-volatile memory where bits may be set electronically, but
erasure requires another mechanism

ESD Electrostatic Discharge
A harmful impulse current applied to a device, normally arising from lightning
or from static electricity producing by shoes rubbing on a carpet

ESL Electronic System Level
A high-level modelling technique capable of faithfully executing embedded
software

ETA Estimated Time of Arrival

FAW Frame-alignmentWord
A synchronisation pattern in a serial bit stream to delimit word or packet
boundaries

529

Glossary of Abbreviations

DSE Design Space Exploration
The process of testing various alternative designs, all of which work, but some
of which are better than others under variousmetrics (cost, energy,
performance etc.)

DSL Domain-specific Language
In general use, a sub-language or set of constructs inside a general
programming language

DSP Digital Signal Processing
Processing of analogue signals in the digital domain, or, in FPGAs, a
multiply-accumulate block

DUT Device Under Test
The part of a design that is being tested

DVD Digital Versatile Disc
A plastic disc with embeddedmetallic layer containing digital information,
read by laser beam

DVFS Dynamic Voltage and Frequency Scaling
A power control technique that involves changing the power supply voltage
and the clock frequency together

DVI Digital Visual Interface
A digital interconnect standard between a tuner, DVD player or computer and
a display screen

EA-ROM Electrically Alterable Read-onlyMemory
A ROMdevice whose content can be changed using electricity

ECAD Electronic Computer Aided Design
See EDA

ECC Error-correcting Code
Check digits that are added to a block of data that enable a small number of
transmission errors to be corrected

ECL Emitter-coupled Logic
A structure for logic circuits made from bipolar transistors that is
non-saturating and so fast, but which usesmore power than other circuits

ECO Engineering ChangeOrder
An approved request for a change to a design, typically to correct a bug or add
a feature

528

Glossary of Abbreviations

ECSM Effective Current SourceModel
A detailed characterisation technique for standard cells

EDA Electronic Design Automation
CAD tools for designing electronic systems such as integrated circuits and
printed circuit boards

EDS Event-driven Simulation
Also known as discrete-event simulation. A simulation technique inwhich time
advances only when something changes, as opposed to advancing by a
prescribed time step

EEPROM Electrically Erasable Read-onlyMemory
A form of non-volatile memory, such as flash; both setting bits and clearing
blocks are possible using electricity

EIS An End in Itself
A term denoting that an operationmust be performed, even if it has no visible
use

ELN Electrical Linear Networks
SystemC library with a set of standard electrical components

EMC Electromagnetic Compatibility
A broad term for the interference suffered by a device due to surrounding
devices

EMU Event-monitoring Unit

EPROM Erasable Programmable, Read-onlyMemory
A form of non-volatile memory where bits may be set electronically, but
erasure requires another mechanism

ESD Electrostatic Discharge
A harmful impulse current applied to a device, normally arising from lightning
or from static electricity producing by shoes rubbing on a carpet

ESL Electronic System Level
A high-level modelling technique capable of faithfully executing embedded
software

ETA Estimated Time of Arrival

FAW Frame-alignmentWord
A synchronisation pattern in a serial bit stream to delimit word or packet
boundaries

529

Glossary of Abbreviations

DSE Design Space Exploration
The process of testing various alternative designs, all of which work, but some
of which are better than others under variousmetrics (cost, energy,
performance etc.)

DSL Domain-specific Language
In general use, a sub-language or set of constructs inside a general
programming language

DSP Digital Signal Processing
Processing of analogue signals in the digital domain, or, in FPGAs, a
multiply-accumulate block

DUT Device Under Test
The part of a design that is being tested

DVD Digital Versatile Disc
A plastic disc with embeddedmetallic layer containing digital information,
read by laser beam

DVFS Dynamic Voltage and Frequency Scaling
A power control technique that involves changing the power supply voltage
and the clock frequency together

DVI Digital Visual Interface
A digital interconnect standard between a tuner, DVD player or computer and
a display screen

EA-ROM Electrically Alterable Read-onlyMemory
A ROMdevice whose content can be changed using electricity

ECAD Electronic Computer Aided Design
See EDA

ECC Error-correcting Code
Check digits that are added to a block of data that enable a small number of
transmission errors to be corrected

ECL Emitter-coupled Logic
A structure for logic circuits made from bipolar transistors that is
non-saturating and so fast, but which usesmore power than other circuits

ECO Engineering ChangeOrder
An approved request for a change to a design, typically to correct a bug or add
a feature

528

Glossary of Abbreviations

FPGA Field-programmable Gate Array
A large piece of silicon that can be electronically programmed to take on the
functions of a smaller piece of silicon

FPU Floating-point Unit
A coprocessor optimised for numeric processing, generally using the IEEE
floating-point standard

FSM Finite-stateMachine
A standard automaton abstraction in which precisely one of several possible
states is active at any one time

FU Functional Unit
A generic term for a circuit that performs a prescribed function, such as an
adder

GBA Graph-based Analysis
A simple form of static timing analysis where the latest arrival at any node is all
that is considered

GDS-II Graphical Database System
A vector graphics format used as the input tomask-making

GIC Generic Interrupt Controller
A device for aggregating and distributing interrupts frommultiple sources to
multiple CPUs

GND Ground Rail
The zero-volt reference supply rail in a digital logic system

GNU GNUnot Unix
A large body of free software that includes Linux

GOPS Giga-operations per Second
A processing rate withmultiplier 109

GPIO General-purpose Input/Output
A non-dedicated input or output pin on a SoC ormicrocontroller

GPS Global Positioning System
An array of orbiting satellites and associated radio signals that allow a terminal
to find its geolocation, altitude and the current time of day

GPU Graphical Processing Unit
Originally a coprocessor optimised for video operations, such as 3-D rendering
and textured shading, but now used as a general-purpose processing unit

531

Glossary of Abbreviations

FCC Federal Communications Commission
An American government agency that regulates radio transmissions

FDTD Finite-difference, TimeDomain Simulation
A simulation technique where the differences predicted in state variables are
added to the state variables to generate the next state

FEC Forward Error Correction
An approach to error resilience that relies on always adding ECC digits at the
source

FEOL Front End-of-Line Variation
Changes in the lower layer chip fabrication steps that mostly effect transistor
performance

FET Field-effect Transistor
A transistor that uses electrostatic effects (no current flows in the control
electrode, the gate)

FFT Fast Fourier Transform
An efficient implementation of the discrete Fourier transform

FIB Focused Ion Beam
A vacuum device, similar to an electronmicroscope; metallic atoms in an
electron beam are deposited as conductors or else used to cut existing tracks
on a chip

FIFO First-in, First out
A queue fromwhich items are removed in the order they were inserted

FinFET Fin Field-effect Transistor
A FETwith a fin

FIQ Fast Interrupt
An Arm-specific termwhere interrupts are serviced using a dedicated (partial)
register file

FLIT Flow-control Element
A unit of transfer over the interconnect that is subject to flow control

FLOPS Floating Point Operations per Second
Ameasure of computing performance

FO4 Fanout of Four
A circuit structure commonly used for characterising a silicon process node

530

Glossary of Abbreviations

FPGA Field-programmable Gate Array
A large piece of silicon that can be electronically programmed to take on the
functions of a smaller piece of silicon

FPU Floating-point Unit
A coprocessor optimised for numeric processing, generally using the IEEE
floating-point standard

FSM Finite-stateMachine
A standard automaton abstraction in which precisely one of several possible
states is active at any one time

FU Functional Unit
A generic term for a circuit that performs a prescribed function, such as an
adder

GBA Graph-based Analysis
A simple form of static timing analysis where the latest arrival at any node is all
that is considered

GDS-II Graphical Database System
A vector graphics format used as the input tomask-making

GIC Generic Interrupt Controller
A device for aggregating and distributing interrupts frommultiple sources to
multiple CPUs

GND Ground Rail
The zero-volt reference supply rail in a digital logic system

GNU GNUnot Unix
A large body of free software that includes Linux

GOPS Giga-operations per Second
A processing rate withmultiplier 109

GPIO General-purpose Input/Output
A non-dedicated input or output pin on a SoC ormicrocontroller

GPS Global Positioning System
An array of orbiting satellites and associated radio signals that allow a terminal
to find its geolocation, altitude and the current time of day

GPU Graphical Processing Unit
Originally a coprocessor optimised for video operations, such as 3-D rendering
and textured shading, but now used as a general-purpose processing unit

531

Glossary of Abbreviations

FCC Federal Communications Commission
An American government agency that regulates radio transmissions

FDTD Finite-difference, TimeDomain Simulation
A simulation technique where the differences predicted in state variables are
added to the state variables to generate the next state

FEC Forward Error Correction
An approach to error resilience that relies on always adding ECC digits at the
source

FEOL Front End-of-Line Variation
Changes in the lower layer chip fabrication steps that mostly effect transistor
performance

FET Field-effect Transistor
A transistor that uses electrostatic effects (no current flows in the control
electrode, the gate)

FFT Fast Fourier Transform
An efficient implementation of the discrete Fourier transform

FIB Focused Ion Beam
A vacuum device, similar to an electronmicroscope; metallic atoms in an
electron beam are deposited as conductors or else used to cut existing tracks
on a chip

FIFO First-in, First out
A queue fromwhich items are removed in the order they were inserted

FinFET Fin Field-effect Transistor
A FETwith a fin

FIQ Fast Interrupt
An Arm-specific termwhere interrupts are serviced using a dedicated (partial)
register file

FLIT Flow-control Element
A unit of transfer over the interconnect that is subject to flow control

FLOPS Floating Point Operations per Second
Ameasure of computing performance

FO4 Fanout of Four
A circuit structure commonly used for characterising a silicon process node

530

Glossary of Abbreviations

HTML HypertextMarkup Language
The script used to describe web pages

H/W Hardware

IBM International BusinessMachines
A pioneering computer company

IC Integrated Circuit

ICI inter-core/CPU Interrupt
An interrupt generated by one CPU to notify another that something is ready
to be inspected

IDCT Inverse Discrete Cosine Transform
The inverse of DCT

IDE Integrated Drive Electronics
An interface between a computer and a disk drive; the disk controller is on the
far side of the interface (i.e. integrated with the drive)

IDM Integrated DeviceManufacturer
A company that both designs and fabs chips, rather than using an outsourced
foundry

IEEE Institute of Electrical and Electronic Engineers
An American association that defines standards and sponsors conferences and
many other professional activities

II Initiation Interval
Theminimum number of clock cycles between an FU accepting one argument
and the next

ILP Instruction-level Parallelism
Executing two ormore instructions simultaneously since none depends on the
result of any other

IOB Input/output Block
A programmable pad for making external connection to an FPGA

IOMMU Input/OutputMemoryManagement Unit
A virtual to physical address translator that providesmemory protection and
enables DMA devices to use virtual addresses

IoT Internet of Things

533

Glossary of Abbreviations

GSM Global System forMobile Communications
A European standard for cell phones, now adopted inmuch of the world

GUI Graphical User Interface
Unlike a command-line interface, a GUI uses amouse andwindows

HAL Hardware Abstraction Layer
A body of low-level software that gives a uniform higher-level interface over
many variants of a hardware platform

HBM High BandwidthMemory
A die-stackedDRAMmemory system, similar to HMC

HCL Hardware Construction Language
A hardware design language used to generate circuit structures using various
iterating constructs

HDL Hardware Description Language
A language used to describe a circuit diagram at some level of abstraction

HDMI High-definitionMultimedia Interface
A variation of DVI; both carry digital video to a display device

HKMG High-KMetal Gate
A fabrication nodewhere the gate is made of metal and the insulating layer
material had increased dielectric constant

HLL High-level Language
A programming language that is portable over variousmachine architectures
and commonly block structured, such as C++ or Java

HLS High-level Synthesis
An approach to generating hardware from software, generally where the
assignment of data to RAMs andwork to clock cycles is automated and
optimised

HMC HybridMemory Cube
A die-stackedDRAMmemory system, similar to HBM

HoL Head of Line
In the USA, a queue is a called a line. The head-of-line problem arises when a
customer who is not at the front of a shared-resource queuewants to use a
resource that is free, but cannot get to it since the customer at the front of the
queue is waiting for a different resource that is currently busy

532

Glossary of Abbreviations

HTML HypertextMarkup Language
The script used to describe web pages

H/W Hardware

IBM International BusinessMachines
A pioneering computer company

IC Integrated Circuit

ICI inter-core/CPU Interrupt
An interrupt generated by one CPU to notify another that something is ready
to be inspected

IDCT Inverse Discrete Cosine Transform
The inverse of DCT

IDE Integrated Drive Electronics
An interface between a computer and a disk drive; the disk controller is on the
far side of the interface (i.e. integrated with the drive)

IDM Integrated DeviceManufacturer
A company that both designs and fabs chips, rather than using an outsourced
foundry

IEEE Institute of Electrical and Electronic Engineers
An American association that defines standards and sponsors conferences and
many other professional activities

II Initiation Interval
Theminimum number of clock cycles between an FU accepting one argument
and the next

ILP Instruction-level Parallelism
Executing two ormore instructions simultaneously since none depends on the
result of any other

IOB Input/output Block
A programmable pad for making external connection to an FPGA

IOMMU Input/OutputMemoryManagement Unit
A virtual to physical address translator that providesmemory protection and
enables DMA devices to use virtual addresses

IoT Internet of Things

533

Glossary of Abbreviations

GSM Global System forMobile Communications
A European standard for cell phones, now adopted inmuch of the world

GUI Graphical User Interface
Unlike a command-line interface, a GUI uses amouse andwindows

HAL Hardware Abstraction Layer
A body of low-level software that gives a uniform higher-level interface over
many variants of a hardware platform

HBM High BandwidthMemory
A die-stackedDRAMmemory system, similar to HMC

HCL Hardware Construction Language
A hardware design language used to generate circuit structures using various
iterating constructs

HDL Hardware Description Language
A language used to describe a circuit diagram at some level of abstraction

HDMI High-definitionMultimedia Interface
A variation of DVI; both carry digital video to a display device

HKMG High-KMetal Gate
A fabrication nodewhere the gate is made of metal and the insulating layer
material had increased dielectric constant

HLL High-level Language
A programming language that is portable over variousmachine architectures
and commonly block structured, such as C++ or Java

HLS High-level Synthesis
An approach to generating hardware from software, generally where the
assignment of data to RAMs andwork to clock cycles is automated and
optimised

HMC HybridMemory Cube
A die-stackedDRAMmemory system, similar to HBM

HoL Head of Line
In the USA, a queue is a called a line. The head-of-line problem arises when a
customer who is not at the front of a shared-resource queuewants to use a
resource that is free, but cannot get to it since the customer at the front of the
queue is waiting for a different resource that is currently busy

532

Glossary of Abbreviations

JPEG Joint Photographic Experts Group
A trade body that defined the predominant compressed file format for still
images

JTAG Joint Test Action Group
A standard serial data port for debug access and PROMprogramming

LAN Local-area Network
A shared-medium computer network covering a building or floor of a large
building

LBIST Logic Built-in Self-test
A self-test mechanism for miscellaneous logic circuits (as opposed to standard
functions such as ALUs and RAMs)

LCD Liquid-crystal Display
A low-energy display technology where regions of a glass panel change in
opacity owing to electrostatic effects arising from (AC) voltages applied to
transparent conductors

LCRDV Link Credit Valid
The net in the reverse direction of a credit-controlled link that returns credit
to the originator

LEC Logical Equivalence Checking
The process of checking whether two combinational circuits implement the
same logic function

LED Light-emitting Diode
An efficient and commonly used semiconductor device that converts
electricity to light of a pure colour

LEF Library Exchange Format
The standard description language for standard semi-custom cells

LIFO Last-in, First-out
A queuing discipline that is the same as a push-down stack

LINQ Language IntegratedQuery
AMicrosoft standard for connecting the .net runtime to a database query
manager

LISP List Processing Language
An old functional programming language with very simple syntax

535

Glossary of Abbreviations

IP block intellectual Property Block
The design for a component to be placed on a SoC, typically licensed from
another company

IPC instructions per Clock Cycle
For a super-scalar processor, the average number of instructions executed per
clock cycle

IrDA Infrared Data Association
An industry body that develops standards for data exchange using infrared
light between adjacent portable computing objects

IRQ interrupt Request
A signal from an external device to a CPU requesting an interrupt

ISA Instruction Set Architecture
The name for the set of instructions executed by a particular processor family

ISCA International Symposium on Computer Architecture
An annual conference at which new developments in computer architecture
are presented

ISO International Standards Office
A standards publisher

ISR Interrupt Service Routine
The body of code executed by a CPU in response to an interrupt, also known as
an interrupt handler

ISS Instruction Set Simulator
An interpreter for machine code, also known as as an emulator

ISTO Industry Standards and TechnologyOrganisation
A division of the IEEE

ITRS International Technology Roadmap for Semiconductors
A trade body that defines expectations of VLSI progress

JEDEC Joint Electron Device Engineering Council
A trade body that defines standards for memory chips, device packages, etc.

JIT Just in Time
A compilation technique in which code is converted tomachine code only if it
is used a lot

534

Glossary of Abbreviations

JPEG Joint Photographic Experts Group
A trade body that defined the predominant compressed file format for still
images

JTAG Joint Test Action Group
A standard serial data port for debug access and PROMprogramming

LAN Local-area Network
A shared-medium computer network covering a building or floor of a large
building

LBIST Logic Built-in Self-test
A self-test mechanism for miscellaneous logic circuits (as opposed to standard
functions such as ALUs and RAMs)

LCD Liquid-crystal Display
A low-energy display technology where regions of a glass panel change in
opacity owing to electrostatic effects arising from (AC) voltages applied to
transparent conductors

LCRDV Link Credit Valid
The net in the reverse direction of a credit-controlled link that returns credit
to the originator

LEC Logical Equivalence Checking
The process of checking whether two combinational circuits implement the
same logic function

LED Light-emitting Diode
An efficient and commonly used semiconductor device that converts
electricity to light of a pure colour

LEF Library Exchange Format
The standard description language for standard semi-custom cells

LIFO Last-in, First-out
A queuing discipline that is the same as a push-down stack

LINQ Language IntegratedQuery
AMicrosoft standard for connecting the .net runtime to a database query
manager

LISP List Processing Language
An old functional programming language with very simple syntax

535

Glossary of Abbreviations

IP block intellectual Property Block
The design for a component to be placed on a SoC, typically licensed from
another company

IPC instructions per Clock Cycle
For a super-scalar processor, the average number of instructions executed per
clock cycle

IrDA Infrared Data Association
An industry body that develops standards for data exchange using infrared
light between adjacent portable computing objects

IRQ interrupt Request
A signal from an external device to a CPU requesting an interrupt

ISA Instruction Set Architecture
The name for the set of instructions executed by a particular processor family

ISCA International Symposium on Computer Architecture
An annual conference at which new developments in computer architecture
are presented

ISO International Standards Office
A standards publisher

ISR Interrupt Service Routine
The body of code executed by a CPU in response to an interrupt, also known as
an interrupt handler

ISS Instruction Set Simulator
An interpreter for machine code, also known as as an emulator

ISTO Industry Standards and TechnologyOrganisation
A division of the IEEE

ITRS International Technology Roadmap for Semiconductors
A trade body that defines expectations of VLSI progress

JEDEC Joint Electron Device Engineering Council
A trade body that defines standards for memory chips, device packages, etc.

JIT Just in Time
A compilation technique in which code is converted tomachine code only if it
is used a lot

534

Glossary of Abbreviations

MIPS (2) A chipmanufacturer

MMIO Memory-mapped Input andOutput
A style of peripheral operation in which device registers aremapped into the
mainmemorymap so theymay be accessedwith everyday load and store
instructions

MMMC Multi-modeMulti-corner Analysis
A verification procedure that explores a predefined list of combinations of
variations

MMU MemoryManagement Unit
A device that converts a virtual address to a physical address for virtual
memory system

MOESI Modified/Owned/Exclusive/Shared/Invalid
An enhancedMESI cache-consistency protocol

MOS Metal Oxide of Silicon
A field-effect transistor with an insulated gate (instead of a junction FET that
uses a reverse-biased diode)

MOSFET Metal Oxide of Silicon Field-effect Transistor
A transistor that uses an insulator between the gate and the channel; the
predominant form of transistor used in SoCs

MP3 Motion Picture Experts Group Audio Layer Level 3
A commonly used, psycho-acoustic audio compression technology and file
format

MPEG Motion Picture Experts Group
A family of video compression standards that exploit inter-framemotion and
redundancy

MPSoC Multiprocessor System-on-Chip

MPU (1) Memory Protection Unit

MPU (2) Microprocessor

MPW Multi-projectWafer
A prototyping approach in which a wafer carries more than one chip design

537

Glossary of Abbreviations

LPF Low-pass Filter
A filter that allows DC and all frequencies below a certain cutoff frequency to
pass without attenuation

LRU Least-recently Used
A replacement policy for caches that selects the entry that has not been used
for the longest amount of time

LSF Linear Signal Flow
A library of AMSmodelling components

LSI Large-scale Integration
A term to describe silicon chips containingmore than a few hundred
components

LTAB Liberty Technical Advisory Board
A committee responsible for new editions of the Liberty cell definition
language

LUT Lookup Table
A ROMor RAM containing fixed data and, for an FPGA, implementing an
arbitrary logic function with five or six inputs

LVDS Low-voltage Differential Signalling
Away to send digital data that avoids common-mode noise pick-up by using
the voltage difference between twowires

LVF Liberty Variation Format
Interpolation coefficients for a detailedmodel of delay

MAC Media Access Control/Controller
A protocol that controls when data are transmitted on a shared channel

MBIST Memory Built-in Self-test
Additional logic that performs automatic tests on an SRAMmacro

MCM Multi-chipModule
A package containingmore than one piece of silicon, interconnected with an
interposer or through-silicon vias

MESI Modified/Exclusive/Shared/Invalid
A four-state cache-consistency protocol

MIPS (1) Million Instructions per Second
A unit used tomeasure the processing rate of a CPU

536

Glossary of Abbreviations

MIPS (2) A chipmanufacturer

MMIO Memory-mapped Input andOutput
A style of peripheral operation in which device registers aremapped into the
mainmemorymap so theymay be accessedwith everyday load and store
instructions

MMMC Multi-modeMulti-corner Analysis
A verification procedure that explores a predefined list of combinations of
variations

MMU MemoryManagement Unit
A device that converts a virtual address to a physical address for virtual
memory system

MOESI Modified/Owned/Exclusive/Shared/Invalid
An enhancedMESI cache-consistency protocol

MOS Metal Oxide of Silicon
A field-effect transistor with an insulated gate (instead of a junction FET that
uses a reverse-biased diode)

MOSFET Metal Oxide of Silicon Field-effect Transistor
A transistor that uses an insulator between the gate and the channel; the
predominant form of transistor used in SoCs

MP3 Motion Picture Experts Group Audio Layer Level 3
A commonly used, psycho-acoustic audio compression technology and file
format

MPEG Motion Picture Experts Group
A family of video compression standards that exploit inter-framemotion and
redundancy

MPSoC Multiprocessor System-on-Chip

MPU (1) Memory Protection Unit

MPU (2) Microprocessor

MPW Multi-projectWafer
A prototyping approach in which a wafer carries more than one chip design

537

Glossary of Abbreviations

LPF Low-pass Filter
A filter that allows DC and all frequencies below a certain cutoff frequency to
pass without attenuation

LRU Least-recently Used
A replacement policy for caches that selects the entry that has not been used
for the longest amount of time

LSF Linear Signal Flow
A library of AMSmodelling components

LSI Large-scale Integration
A term to describe silicon chips containingmore than a few hundred
components

LTAB Liberty Technical Advisory Board
A committee responsible for new editions of the Liberty cell definition
language

LUT Lookup Table
A ROMor RAM containing fixed data and, for an FPGA, implementing an
arbitrary logic function with five or six inputs

LVDS Low-voltage Differential Signalling
Away to send digital data that avoids common-mode noise pick-up by using
the voltage difference between twowires

LVF Liberty Variation Format
Interpolation coefficients for a detailedmodel of delay

MAC Media Access Control/Controller
A protocol that controls when data are transmitted on a shared channel

MBIST Memory Built-in Self-test
Additional logic that performs automatic tests on an SRAMmacro

MCM Multi-chipModule
A package containingmore than one piece of silicon, interconnected with an
interposer or through-silicon vias

MESI Modified/Exclusive/Shared/Invalid
A four-state cache-consistency protocol

MIPS (1) Million Instructions per Second
A unit used tomeasure the processing rate of a CPU

536

Glossary of Abbreviations

OCIP Open Core Interconnect Protocol
An open-source interconnect standard

OCP Open Core Connect
An open-source SoC bus standard

OCV On-chip Variation
The variation of parameters from one chip to another or across a large chip

OEM Other/Original EquipmentManufacturer
A company elsewhere in the supply chain, typically the provider of parts to be
included or re-badged

O/S Operating System

OSCI Open SystemC Initiative
A trade body, prior to Accellera, that promoted SystemC

OVM Open VerificationMethodology
A standard for coding test programs

PAL Programmable Array Logic
A fast, field-programmable logic device containing up to 20 flip-flops

PASTA Poisson Arrivals See Time Averages
A fact/theorem about exponentially arriving traffic, which essentially samples
a system at random intervals

PBA Path-based Analysis
A detailed approach to static timing analysis that consides every possible path
from end to end

PC (1) Personal Computer

PC (2) ProgramCounter

PC (3) Protocol Checker

PCB Printed-circuit Board
Amulti-layer fibreglass board containing layers of copper wiring with
components soldered to the top and bottom

PCDC Power and/or Clock Domain Convertor
A bus bridge that accommodates differences in clocking or power on each side

539

Glossary of Abbreviations

MSI Message-signalled Interrupts
Interrupts sent as transactions over the interconnect rather than being
conveyed using a dedicated net

NDP Near-data Processing
Processing data near where the data are stored instead of moving them to a
central processor

NFET N-channel Field-effect Transistor
A semiconductor device that conducts when there is a positive potential
between the gate and substrate

NIC Network Interface Card
A communication port, with associatedMAC, buffers andDMA, typically used
to connect a device to a LAN

NLDM Non-linear DelayModel

NMOS N-channelMetal-oxide Semiconductor
A pre-CMOS technology that used only N-channel FETs with the pull-up
effected by a weakly conducting transistor

NoC Metwork-on-Chip

NOP No-operation
An instruction that does not do anything; it just fills space

NRE Non-recurring Expenses
The tooling expenses related to chip development

NRZI Non-return to Zero, Invert onOnes
A simple binarymodulation schemewere a one is coded as a change of state

NSF Next-state Function
For a finite-statemachine, the function that determines the new state based
on the current state and external inputs

NUMA Non-uniformMemory Access
A computer systemwhere different regions of memory have different access
times

NVP Number of Violating Paths
The number of paths in a verification procedure that are unsatisfactory (not
meeting timing or not routed etc.)

538

Glossary of Abbreviations

OCIP Open Core Interconnect Protocol
An open-source interconnect standard

OCP Open Core Connect
An open-source SoC bus standard

OCV On-chip Variation
The variation of parameters from one chip to another or across a large chip

OEM Other/Original EquipmentManufacturer
A company elsewhere in the supply chain, typically the provider of parts to be
included or re-badged

O/S Operating System

OSCI Open SystemC Initiative
A trade body, prior to Accellera, that promoted SystemC

OVM Open VerificationMethodology
A standard for coding test programs

PAL Programmable Array Logic
A fast, field-programmable logic device containing up to 20 flip-flops

PASTA Poisson Arrivals See Time Averages
A fact/theorem about exponentially arriving traffic, which essentially samples
a system at random intervals

PBA Path-based Analysis
A detailed approach to static timing analysis that consides every possible path
from end to end

PC (1) Personal Computer

PC (2) ProgramCounter

PC (3) Protocol Checker

PCB Printed-circuit Board
Amulti-layer fibreglass board containing layers of copper wiring with
components soldered to the top and bottom

PCDC Power and/or Clock Domain Convertor
A bus bridge that accommodates differences in clocking or power on each side

539

Glossary of Abbreviations

MSI Message-signalled Interrupts
Interrupts sent as transactions over the interconnect rather than being
conveyed using a dedicated net

NDP Near-data Processing
Processing data near where the data are stored instead of moving them to a
central processor

NFET N-channel Field-effect Transistor
A semiconductor device that conducts when there is a positive potential
between the gate and substrate

NIC Network Interface Card
A communication port, with associatedMAC, buffers andDMA, typically used
to connect a device to a LAN

NLDM Non-linear DelayModel

NMOS N-channelMetal-oxide Semiconductor
A pre-CMOS technology that used only N-channel FETs with the pull-up
effected by a weakly conducting transistor

NoC Metwork-on-Chip

NOP No-operation
An instruction that does not do anything; it just fills space

NRE Non-recurring Expenses
The tooling expenses related to chip development

NRZI Non-return to Zero, Invert onOnes
A simple binarymodulation schemewere a one is coded as a change of state

NSF Next-state Function
For a finite-statemachine, the function that determines the new state based
on the current state and external inputs

NUMA Non-uniformMemory Access
A computer systemwhere different regions of memory have different access
times

NVP Number of Violating Paths
The number of paths in a verification procedure that are unsatisfactory (not
meeting timing or not routed etc.)

538

Glossary of Abbreviations

PMU PerformanceManagement Unit
A subsystem containing counters for various events, such as instruction
fetches and cachemisses

POD Plain Old Data
Simple built-in data types in the C and C++ languages, and structs of them,
which can be copied with memcopy and so on

PoDP Point of Deep Persistence
The place to which a write must bemade before it can be guaranteed to
survive a power failure or reboot

POTS Plain Old Telephone Service
The subscriber connection standard for telephones used throughout the 20th
century

PPA Power, Performance and Area
The threemainmetrics for the quality of a design in silicon

PRAM Parallel Random-accessMachine
A referencemodel (or set of similar models) for parallel computing

PRBS PseudorandomBinary Sequence
A series of random-looking bits generated by a deterministic shift register and
XOR gate structure

PRD Product Requirements Document
A plain English description of targets and desirable features for a new design

PROM Programmable Read-onlyMemory
A form of non-volatile memory in which bits can be set electronically, but with
nomechanism to clear them

PS2 A keyboard/mouse port found onmany personal computers

PSL Property Specification Language
An assertion language based on temporal logic for formally specifying
hardware

PSU Power Supply Unit
A circuit that converts mains or battery voltages to stable regulated voltages
needed by silicon circuitry

541

Glossary of Abbreviations

PCIe Peripheral Component Interconnect Express
A standard for a board-level interconnect with serial channels

PCM Pulse CodeModulation
A sampled analogue signal represented as a stream of digital binary numbers

PDN Power Delivery Network
On-chip regulators, power gates and supply wiring that deliver electricity to
the active components

PE Processing Element

PFET P-channel Field-effect Transistor
A semiconductor device that conducts when the gate is at a lower potential
than the substrate (or N-well)

PHY Physical Layer
Thewire, fibre or antenna used to convey signals in a computer network and
the associated amplifiers and transformers

PIO Programmed Input/Output
A form of input or output in which a processor changes the value of wires
(typically GPIO) by storing values to registers or reads back their values with a
load instruction

PKI Public-key Infrastructure
A form of digital signature or cryptographic authentication. Data can be
generated only with a privately held secret number, but can be checked using a
widely available public key that is known to belong to the signatory

PL Programmable Logic

PLD Programmable Logic Device
A field-programmable device that can take on an application-specific function
(CPLD, PAL or FPGA)

PLI Programming Language Interface
Ameans for plugging arbitrary C/C++ code into an RTL simulator and a library
of standard functions for printing, file operations and so on

PLL Phase-locked Loop
A common structure used for generating a stable clock from a clock of a
different frequency or that is jittered

PMIO Port-mapped Input andOutput
The opposite of PIO; mostly found on early computers that had limited
addressable space for primary storage

540

Glossary of Abbreviations

PMU PerformanceManagement Unit
A subsystem containing counters for various events, such as instruction
fetches and cachemisses

POD Plain Old Data
Simple built-in data types in the C and C++ languages, and structs of them,
which can be copied with memcopy and so on

PoDP Point of Deep Persistence
The place to which a write must bemade before it can be guaranteed to
survive a power failure or reboot

POTS Plain Old Telephone Service
The subscriber connection standard for telephones used throughout the 20th
century

PPA Power, Performance and Area
The threemainmetrics for the quality of a design in silicon

PRAM Parallel Random-accessMachine
A referencemodel (or set of similar models) for parallel computing

PRBS PseudorandomBinary Sequence
A series of random-looking bits generated by a deterministic shift register and
XOR gate structure

PRD Product Requirements Document
A plain English description of targets and desirable features for a new design

PROM Programmable Read-onlyMemory
A form of non-volatile memory in which bits can be set electronically, but with
nomechanism to clear them

PS2 A keyboard/mouse port found onmany personal computers

PSL Property Specification Language
An assertion language based on temporal logic for formally specifying
hardware

PSU Power Supply Unit
A circuit that converts mains or battery voltages to stable regulated voltages
needed by silicon circuitry

541

Glossary of Abbreviations

PCIe Peripheral Component Interconnect Express
A standard for a board-level interconnect with serial channels

PCM Pulse CodeModulation
A sampled analogue signal represented as a stream of digital binary numbers

PDN Power Delivery Network
On-chip regulators, power gates and supply wiring that deliver electricity to
the active components

PE Processing Element

PFET P-channel Field-effect Transistor
A semiconductor device that conducts when the gate is at a lower potential
than the substrate (or N-well)

PHY Physical Layer
Thewire, fibre or antenna used to convey signals in a computer network and
the associated amplifiers and transformers

PIO Programmed Input/Output
A form of input or output in which a processor changes the value of wires
(typically GPIO) by storing values to registers or reads back their values with a
load instruction

PKI Public-key Infrastructure
A form of digital signature or cryptographic authentication. Data can be
generated only with a privately held secret number, but can be checked using a
widely available public key that is known to belong to the signatory

PL Programmable Logic

PLD Programmable Logic Device
A field-programmable device that can take on an application-specific function
(CPLD, PAL or FPGA)

PLI Programming Language Interface
Ameans for plugging arbitrary C/C++ code into an RTL simulator and a library
of standard functions for printing, file operations and so on

PLL Phase-locked Loop
A common structure used for generating a stable clock from a clock of a
different frequency or that is jittered

PMIO Port-mapped Input andOutput
The opposite of PIO; mostly found on early computers that had limited
addressable space for primary storage

540

Glossary of Abbreviations

RISC Reduced Instruction Set Computer/Computing
An ISAwith only commonly used instructions, all of which are oneword long

rms Root-mean Squared

ROM Read-onlyMemory
A non-volatile memory whose content is immutable or seldom changed

RSA Rivest, Shamir and Adleman
A public-key authentication system developed by these three gentlemen

RS Reset-set

RTC Real-time Clock
A subsystem, typically permanently powered up using a small battery,
containing an oscillator and counters; it keeps track of the time and date

RTL Register Transfer Language
In general, a way to express the new value of a register on the next clock cycle,
but mainly used to refer to Verilog and VHLD, which have additional language
constructs

RTT Round-trip Time
Theminimum interval between sending amessage and receiving a response
due to channel delays

SAIF Switching Activity Interchange Format

SAT Boolean Satisfiability Problem
A canonical search problem for which there aremany effective solver tools;
these find values for Boolean variables that make an expression hold

SATA Serial ATAPI
A serial implementation of the IDE/ATA interface with 23 or so parallel wires,
including a 16-bit data bus

SCSI Small Computer System Interface
A protocol between a computer and disk drive controller, and also the physical
interface for conveying the protocol

SCU Snoop Control Unit
A block that monitors updates to a collection of caches

SDC Synopsys Design Constraint
A file format used for timing annotations and directives for static timing
analysis

543

Glossary of Abbreviations

PUF Physically Unclonable Function
A hardware circuit designedwith random behaviour that cannot be
reproduced on any other chip of the same design

PV Programmer’s View

PVT Process, Voltage and Temperature
The threemain sources of performance variation between chip instances for a
nominally identical design

PWL Piecewise Linear Source
Awaveform generator whose output comprises a series of straight lines

PWM Pulse-widthModulation
A bit streamwhere the density of ones, and hence the average voltage, is
constrained by an input parameter that varies slowly

QoS Quality of Service
A set of parameters for mean and peak delay and throughput for traffic in a
packet-switched system

QPI Quick Path Interconnect
A coherent interface protocol for caches and accelerator interconnection

RAM Random-accessMemory
Memorywith the same access delay to every location

RAPL Running Average Power Limit
An Intel technology that monitors temperature and energy use in various
subsystems and reduces the clock frequency if overheating is detected

RAS RowAddress Strobe
The input to a DRAM that indicates that the row part of the address is on the
multiplexed address bus

RaW Read AfterWrite

RF Radio Frequency

RFI Radio-frequency Interference
Radio waves emitted by a device arising from inadequate shielding or
conductor routing

RGB Red, Green and Blue
The three primary colours used inmost colour display devices

542

Glossary of Abbreviations

RISC Reduced Instruction Set Computer/Computing
An ISAwith only commonly used instructions, all of which are oneword long

rms Root-mean Squared

ROM Read-onlyMemory
A non-volatile memory whose content is immutable or seldom changed

RSA Rivest, Shamir and Adleman
A public-key authentication system developed by these three gentlemen

RS Reset-set

RTC Real-time Clock
A subsystem, typically permanently powered up using a small battery,
containing an oscillator and counters; it keeps track of the time and date

RTL Register Transfer Language
In general, a way to express the new value of a register on the next clock cycle,
but mainly used to refer to Verilog and VHLD, which have additional language
constructs

RTT Round-trip Time
Theminimum interval between sending amessage and receiving a response
due to channel delays

SAIF Switching Activity Interchange Format

SAT Boolean Satisfiability Problem
A canonical search problem for which there aremany effective solver tools;
these find values for Boolean variables that make an expression hold

SATA Serial ATAPI
A serial implementation of the IDE/ATA interface with 23 or so parallel wires,
including a 16-bit data bus

SCSI Small Computer System Interface
A protocol between a computer and disk drive controller, and also the physical
interface for conveying the protocol

SCU Snoop Control Unit
A block that monitors updates to a collection of caches

SDC Synopsys Design Constraint
A file format used for timing annotations and directives for static timing
analysis

543

Glossary of Abbreviations

PUF Physically Unclonable Function
A hardware circuit designedwith random behaviour that cannot be
reproduced on any other chip of the same design

PV Programmer’s View

PVT Process, Voltage and Temperature
The threemain sources of performance variation between chip instances for a
nominally identical design

PWL Piecewise Linear Source
Awaveform generator whose output comprises a series of straight lines

PWM Pulse-widthModulation
A bit streamwhere the density of ones, and hence the average voltage, is
constrained by an input parameter that varies slowly

QoS Quality of Service
A set of parameters for mean and peak delay and throughput for traffic in a
packet-switched system

QPI Quick Path Interconnect
A coherent interface protocol for caches and accelerator interconnection

RAM Random-accessMemory
Memorywith the same access delay to every location

RAPL Running Average Power Limit
An Intel technology that monitors temperature and energy use in various
subsystems and reduces the clock frequency if overheating is detected

RAS RowAddress Strobe
The input to a DRAM that indicates that the row part of the address is on the
multiplexed address bus

RaW Read AfterWrite

RF Radio Frequency

RFI Radio-frequency Interference
Radio waves emitted by a device arising from inadequate shielding or
conductor routing

RGB Red, Green and Blue
The three primary colours used inmost colour display devices

542

Glossary of Abbreviations

SoC System-on-Chip

SOP Start of Packet
A signal that indicates the first word of a frame conveyed on a channel

SPD Serial Presence Detect
A small ROM containing an electronic data sheet for a SIMMorDIMM

SPEF Standard Parasitic Exchange Format
A file format describing capacative loading and other circuit-affecting
artefacts arising from a layout

SPICE Simulation Programwith Integrated Circuit Emphasis
Awidely implemented algorithm for simulating analogue circuitry and an
associate file format for describing circuits and component models

SQL StructuredQuery Language
The normal language used for updating and interrogating relational databases

SRAM Static Random-accessMemory
An electronic data store in which each bit is held in a bistable (pair of
cross-coupled invertors)

SSD Solid-state Drive
A number of flashmemory chips packaged in a SATAmodule as a replacement
for a spinning hard disk

SSE2 Streaming SIMDExtension Set 2
An extension to the Intel x86 architecture for vector processing

SSRAM Synchronous Static Random-accessMemory
A common form of static RAMwhere the data is read out the clock cycle after
the address was supplied

STA Static Timing Analysis
An EDAmethod that reports themaximum clock frequency and hold-time
risks for a synchronous logic circuit

SVA SystemVerilog Assertions
The sub-language for formal proofs embodied in SystemVerilog

SVGA Super Video Graphics Adaptor
A video cable standard used in IBM compatible computers

S/W Software

545

Glossary of Abbreviations

SDK Software Development Kit
A set of library files, example designs and compilation scripts to seed software
builds for a new platform

SEC Sequential Equivalence Checking
A verification step that checks whether two implementations of an FSM have
the same (observable) behaviour

SERDES Serialiser/Deserialiser
A component that sends and receives parallel data words over a serial data
channel

SERES Sugar Extended Regular Expressions
A format for describing patterns in a sequence of events

SEU Single-event Upset
A one-off data error in a digital circuit that occurs randomly and is most
unlikely to happen again

SEV Signal Event
An Arm instruction for low-level communication

SHA Secure Hash
An algorithm that processes a block of data and yields a compact numeric
result with the property that it is infeasible to find a block of data that gives
that hash using an exhaustive search or any other method

SIMD Single-InstructionMultiple-dataWords
A design point in Flynn’s taxonomy [2]

SIMM Single-in-LineMemoryModule
A number of DRAM chips arranged on a small board to obtain sufficient data
bus width andwith a single-sided edge connector (both sides have the same
signal)

SMP SymmetricMultiprocessing
A parallel computer design with identical cores

SMT SatisfiabilityModulo Theories
A class of automated proof tools that convert a task to a SAT problem using
various libraries of standard theories

SMV SymbolicModel Verifier
One of themost famousmodel checkers

544

Glossary of Abbreviations

SoC System-on-Chip

SOP Start of Packet
A signal that indicates the first word of a frame conveyed on a channel

SPD Serial Presence Detect
A small ROM containing an electronic data sheet for a SIMMorDIMM

SPEF Standard Parasitic Exchange Format
A file format describing capacative loading and other circuit-affecting
artefacts arising from a layout

SPICE Simulation Programwith Integrated Circuit Emphasis
Awidely implemented algorithm for simulating analogue circuitry and an
associate file format for describing circuits and component models

SQL StructuredQuery Language
The normal language used for updating and interrogating relational databases

SRAM Static Random-accessMemory
An electronic data store in which each bit is held in a bistable (pair of
cross-coupled invertors)

SSD Solid-state Drive
A number of flashmemory chips packaged in a SATAmodule as a replacement
for a spinning hard disk

SSE2 Streaming SIMDExtension Set 2
An extension to the Intel x86 architecture for vector processing

SSRAM Synchronous Static Random-accessMemory
A common form of static RAMwhere the data is read out the clock cycle after
the address was supplied

STA Static Timing Analysis
An EDAmethod that reports themaximum clock frequency and hold-time
risks for a synchronous logic circuit

SVA SystemVerilog Assertions
The sub-language for formal proofs embodied in SystemVerilog

SVGA Super Video Graphics Adaptor
A video cable standard used in IBM compatible computers

S/W Software

545

Glossary of Abbreviations

SDK Software Development Kit
A set of library files, example designs and compilation scripts to seed software
builds for a new platform

SEC Sequential Equivalence Checking
A verification step that checks whether two implementations of an FSM have
the same (observable) behaviour

SERDES Serialiser/Deserialiser
A component that sends and receives parallel data words over a serial data
channel

SERES Sugar Extended Regular Expressions
A format for describing patterns in a sequence of events

SEU Single-event Upset
A one-off data error in a digital circuit that occurs randomly and is most
unlikely to happen again

SEV Signal Event
An Arm instruction for low-level communication

SHA Secure Hash
An algorithm that processes a block of data and yields a compact numeric
result with the property that it is infeasible to find a block of data that gives
that hash using an exhaustive search or any other method

SIMD Single-InstructionMultiple-dataWords
A design point in Flynn’s taxonomy [2]

SIMM Single-in-LineMemoryModule
A number of DRAM chips arranged on a small board to obtain sufficient data
bus width andwith a single-sided edge connector (both sides have the same
signal)

SMP SymmetricMultiprocessing
A parallel computer design with identical cores

SMT SatisfiabilityModulo Theories
A class of automated proof tools that convert a task to a SAT problem using
various libraries of standard theories

SMV SymbolicModel Verifier
One of themost famousmodel checkers

544

Glossary of Abbreviations

TMR TripleModular Redundancy
A form of design resilience in which three instances of a component are
providedwith the same input values and amajority vote is taken on their
output

TMS TestMode Select
One of the five JTAG port terminals

TPM Trusted PlatformModule
A physically secure device or part of a chip fromwhich information cannot be
read out using side channel attacks, such as DPA

TTL Transistor-transistor Logic
Amainstream logic family of the 1970’s that exceeded the performance of
CMOS at that time

TTM Time toMarket
The period between product inception and first customer shipment

UART Universal Asynchronous Receiver and Transmitter
An historic serial interface that is compatible with electromechanical Teletype
model 33 terminals manufactured in 1936 but still commonly used as a
simple-to-debug interface

UHF Ultra-high Frequency
A radio frequency band ranging from 300MHz to about 3GHz

UML UnifiedModelling Language
A standard language and series of diagrams for capturing various use cases
and operating procedures for a product or process

UPF Universal Power Format
A standard file format for representing power domains across a SoC

URB USB Request Block
A block of data conveyed over a USB port

URL Uniform Resource Locator
A string containing a protocol name, followed by a colon and an address, as
used forWWW links

USB Universal Serial Bus
A low-cost desk-area bus consisting of hubs and end points with a single
master being able to discover the topology and send data to and from the end
points

547

Glossary of Abbreviations

TCK Test Clock
One of the five JTAG port terminals

TCL Tool Command Language
A commonly used imperative language that is frequently extended for EDA
usewith application-specific commands

TCM Tightly CoupledMemory
A region of fast SRAMor scratchpad close to a CPUwhere a compiler can
place frequently used data

TCP Transmission Control Protocol
The predominant transport protocol used in IP networks

TDF TimedData Flow
A form of AMSmodelling where values are exchanged at a predetermined rate

TDI Test Data Input
One of the five JTAG port terminals

TDM (1) Test DataMode
One of the five JTAG port terminals

TDM (2) Time-divisionMultiplexing

TDO Test Data Output
One of the five JTAG port terminals

TGI Tightly Coupled Generator Interface
A channel inside an IP-XACT-based system integrator tool where a child tool is
invoked, such as a RAM, wiring or data sheet generator

TLATCH Transparent Latch
A simple flip-flop that, instead of being edge-triggered, allows the value on the
output to track the input value for one state of the clock input, which is then
called the enable input

TLB Translation Lookaside Buffer
A cache that providesmost of the functionality within amemorymanagement
unit

TLM Transaction-levelModel/Modelling
A style of high-level SoCmodelling where IP blocks invokemethods on their
peers corresponding to a bus transaction

546

Glossary of Abbreviations

TMR TripleModular Redundancy
A form of design resilience in which three instances of a component are
providedwith the same input values and amajority vote is taken on their
output

TMS TestMode Select
One of the five JTAG port terminals

TPM Trusted PlatformModule
A physically secure device or part of a chip fromwhich information cannot be
read out using side channel attacks, such as DPA

TTL Transistor-transistor Logic
Amainstream logic family of the 1970’s that exceeded the performance of
CMOS at that time

TTM Time toMarket
The period between product inception and first customer shipment

UART Universal Asynchronous Receiver and Transmitter
An historic serial interface that is compatible with electromechanical Teletype
model 33 terminals manufactured in 1936 but still commonly used as a
simple-to-debug interface

UHF Ultra-high Frequency
A radio frequency band ranging from 300MHz to about 3GHz

UML UnifiedModelling Language
A standard language and series of diagrams for capturing various use cases
and operating procedures for a product or process

UPF Universal Power Format
A standard file format for representing power domains across a SoC

URB USB Request Block
A block of data conveyed over a USB port

URL Uniform Resource Locator
A string containing a protocol name, followed by a colon and an address, as
used forWWW links

USB Universal Serial Bus
A low-cost desk-area bus consisting of hubs and end points with a single
master being able to discover the topology and send data to and from the end
points

547

Glossary of Abbreviations

TCK Test Clock
One of the five JTAG port terminals

TCL Tool Command Language
A commonly used imperative language that is frequently extended for EDA
usewith application-specific commands

TCM Tightly CoupledMemory
A region of fast SRAMor scratchpad close to a CPUwhere a compiler can
place frequently used data

TCP Transmission Control Protocol
The predominant transport protocol used in IP networks

TDF TimedData Flow
A form of AMSmodelling where values are exchanged at a predetermined rate

TDI Test Data Input
One of the five JTAG port terminals

TDM (1) Test DataMode
One of the five JTAG port terminals

TDM (2) Time-divisionMultiplexing

TDO Test Data Output
One of the five JTAG port terminals

TGI Tightly Coupled Generator Interface
A channel inside an IP-XACT-based system integrator tool where a child tool is
invoked, such as a RAM, wiring or data sheet generator

TLATCH Transparent Latch
A simple flip-flop that, instead of being edge-triggered, allows the value on the
output to track the input value for one state of the clock input, which is then
called the enable input

TLB Translation Lookaside Buffer
A cache that providesmost of the functionality within amemorymanagement
unit

TLM Transaction-levelModel/Modelling
A style of high-level SoCmodelling where IP blocks invokemethods on their
peers corresponding to a bus transaction

546

Glossary of Abbreviations

VM (1) VirtualMachine

VM (2) VirtualMemory

VMM VirtualMachineMonitor
Aminiature and highly secure operating system that supports some number of
fully fledged operating systems on a platformwith isolation and perhaps usage
charging

VSS Voltage Supply for the Sources and Substrates
Another name for ground or the 0V rail in CMOS logic families in which the
N-channel FETs have their source and substrates connected to ground

VTOC Verilog to C Compiler
A tool that converts fromRTL to C++ to generate fast and portablemodels of a
subsystem or entire SoC

WaR Write After Read

WaW Write AfterWrite

WDT Watchdog Timer
A device that, like a dead-man’s handle, detects when activity has stopped and
causes a reset or high-priority interrupt

WFE Wait for Event
An Arm instruction for low-level communication

XML ExtensibleMarkup Language
A human-readable generic file format for exchanging tree-structured data

YUV Luminance Plus Dual Chrominance
A colour matrixing systemwhere the brightness dimension (Y) is factored out
for higher-fidelity processing

ZBT Zero Bus Turnaround
A protocol for a tri-state bus that minimises slack time as the bus changes
direction between reading andwriting

549

Glossary of Abbreviations

UVM Universal VerificationMethodology
A set of standardmethod names and document structures that facilitate easy
integration of third-party IP blocks into an overarching test program

VC Virtual Circuit or Channel

VCC Voltage Supply for the Collectors
The name for the +ve supply rail in logic families like 74-series TTL composed
mainly of NPN bipolar transistors

VCD Verilog Change Dump
A standard file format for storing waveforms generated by a digital logic
simulator, ready for analysis or visualisation

VCO Voltage-controlledOscillator
A pulse or sine wave generator where the frequency is proportional to an
external input voltage

VDD Voltage Supply for the Drains
The positive supply rail in CMOS, which feeds the drains of the N-channel FETs
in an NMOS logic family

VGAA Vertical Gate All Around
Describing a transistor where the source, gate and drain are in a vertical stack

VHDL Very High-speed Integrated-circuit Hardware Description Language
One of the twomainstreamRTLs, the other being Verilog

VHF Very High Frequency
A radio frequency band ranging from 30MHz to 300MHz

VIP Verification Intellectual Property
An IP block from an EDA vendor that contains assertions or other formal
models

VLAN Virtual Local-area Network
A logical division of a LAN in which traffic is isolated from other divisions for
security andmanagement reasons

VLIW Very Long InstructionWord
A form of computer in which themicroarchitecture details are planned at code
compile time and explicit in the instructions

VLSI Very Large-scale Integration
A perhapsmeaningless term these days, but originally referring to chips with
many thousands of logic gates or more

548

Glossary of Abbreviations

VM (1) VirtualMachine

VM (2) VirtualMemory

VMM VirtualMachineMonitor
Aminiature and highly secure operating system that supports some number of
fully fledged operating systems on a platformwith isolation and perhaps usage
charging

VSS Voltage Supply for the Sources and Substrates
Another name for ground or the 0V rail in CMOS logic families in which the
N-channel FETs have their source and substrates connected to ground

VTOC Verilog to C Compiler
A tool that converts fromRTL to C++ to generate fast and portablemodels of a
subsystem or entire SoC

WaR Write After Read

WaW Write AfterWrite

WDT Watchdog Timer
A device that, like a dead-man’s handle, detects when activity has stopped and
causes a reset or high-priority interrupt

WFE Wait for Event
An Arm instruction for low-level communication

XML ExtensibleMarkup Language
A human-readable generic file format for exchanging tree-structured data

YUV Luminance Plus Dual Chrominance
A colour matrixing systemwhere the brightness dimension (Y) is factored out
for higher-fidelity processing

ZBT Zero Bus Turnaround
A protocol for a tri-state bus that minimises slack time as the bus changes
direction between reading andwriting

549

Glossary of Abbreviations

UVM Universal VerificationMethodology
A set of standardmethod names and document structures that facilitate easy
integration of third-party IP blocks into an overarching test program

VC Virtual Circuit or Channel

VCC Voltage Supply for the Collectors
The name for the +ve supply rail in logic families like 74-series TTL composed
mainly of NPN bipolar transistors

VCD Verilog Change Dump
A standard file format for storing waveforms generated by a digital logic
simulator, ready for analysis or visualisation

VCO Voltage-controlledOscillator
A pulse or sine wave generator where the frequency is proportional to an
external input voltage

VDD Voltage Supply for the Drains
The positive supply rail in CMOS, which feeds the drains of the N-channel FETs
in an NMOS logic family

VGAA Vertical Gate All Around
Describing a transistor where the source, gate and drain are in a vertical stack

VHDL Very High-speed Integrated-circuit Hardware Description Language
One of the twomainstreamRTLs, the other being Verilog

VHF Very High Frequency
A radio frequency band ranging from 30MHz to 300MHz

VIP Verification Intellectual Property
An IP block from an EDA vendor that contains assertions or other formal
models

VLAN Virtual Local-area Network
A logical division of a LAN in which traffic is isolated from other divisions for
security andmanagement reasons

VLIW Very Long InstructionWord
A form of computer in which themicroarchitecture details are planned at code
compile time and explicit in the instructions

VLSI Very Large-scale Integration
A perhapsmeaningless term these days, but originally referring to chips with
many thousands of logic gates or more

548

Index
M/M/1, 166
99 percentile delay, 163

A
A1 ECO, 486
abstract syntax tree, 341
AC noisemargin, 53
Accellera, 477
accidental serialisation, 335
action block, 385
activity factors, 185
address space, 3, 115
Advanced Encryption Standard (AES), 284
Advanced eXtensible Interface (AXI), 97
AdvancedOCV, 503
affine transformation, 353
agglomerative clustering, 287
aliasing traffic, 226
almighty capability, 211
alpha prototype, 515
AMBACoherent Hub Interface (CHI), 124
AMBA peripheral bus (APB), 92
AMBAQ-channel protocol, 142
analogue andmixed signal (AMS), 434
analogue front end (AFE), 73, 273, 518
analogue procedural block, 436
analogue-to-digital convertor (ADC), 274
AND-OR-INVERT (AOI), 441
annotated netlist, 19
anti-dependency, 354
application program interface (API), 477
application-specific integrated circuit (ASIC),

449, 451
application-specific standard part (ASSP), 450
approximately timed TLM, 241
arbiter, 157
arbiter service discipline, 158
architectural exploration, 16, 272, 276
architectural register, 289, 292
arithmetic and logic unit (ALU), 77
ArmACE protocol, 45

array of structs, 351
arrival rate, 160
as-soon-as-possible schedule, 346
assertion, 364, 370
assertion variable, 373, 396
assertion-based design (ABD), 222, 374
associative reduction, 171
asymptotic analysis, 307
atomic operation, 83
audio video interleave (AVI), 318
automatic prover, 366
automatic repeat request (ARQ), 103
automatic test program generator, 480
available parallelism, 156
AXI Coherency Extensions (ACE), 99
AXI user, 126

B
back annotation, 474
back end-of-line (BEOL), 493
back side, 39
back-annotated post-layout simulation, 187
backpressure, 90, 130
backward error correction, 103
balanced, 142
bank groups, 179
baremetal, 176, 514
barriers, 96
basic crossbar elements, 109
batch servers, 163
battery state indication (BSI), 182
baud rate, 65, 144
bed of nails, 478
behaviour, 444
behaviour-sensitive instruction, 209
behavioural model, 444
behavioural modelling, 222
beta prototype, 515
big.LITTLE architecture, 309
bilateral switch, 462
bill of materials (BoM), 21, 305, 449

Glossary of Abbreviations

References
[1] Stephen Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential processes. J. ACM,

31:560–599, 1984. doi: 10.1145/828.833.

[2] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Comput- ers,
C-21(9):948–960, 1972. doi: 10.1109/TC.1972.5009071.

550

Index
M/M/1, 166
99 percentile delay, 163

A
A1 ECO, 486
abstract syntax tree, 341
AC noisemargin, 53
Accellera, 477
accidental serialisation, 335
action block, 385
activity factors, 185
address space, 3, 115
Advanced Encryption Standard (AES), 284
Advanced eXtensible Interface (AXI), 97
AdvancedOCV, 503
affine transformation, 353
agglomerative clustering, 287
aliasing traffic, 226
almighty capability, 211
alpha prototype, 515
AMBACoherent Hub Interface (CHI), 124
AMBA peripheral bus (APB), 92
AMBAQ-channel protocol, 142
analogue andmixed signal (AMS), 434
analogue front end (AFE), 73, 273, 518
analogue procedural block, 436
analogue-to-digital convertor (ADC), 274
AND-OR-INVERT (AOI), 441
annotated netlist, 19
anti-dependency, 354
application program interface (API), 477
application-specific integrated circuit (ASIC),

449, 451
application-specific standard part (ASSP), 450
approximately timed TLM, 241
arbiter, 157
arbiter service discipline, 158
architectural exploration, 16, 272, 276
architectural register, 289, 292
arithmetic and logic unit (ALU), 77
ArmACE protocol, 45

array of structs, 351
arrival rate, 160
as-soon-as-possible schedule, 346
assertion, 364, 370
assertion variable, 373, 396
assertion-based design (ABD), 222, 374
associative reduction, 171
asymptotic analysis, 307
atomic operation, 83
audio video interleave (AVI), 318
automatic prover, 366
automatic repeat request (ARQ), 103
automatic test program generator, 480
available parallelism, 156
AXI Coherency Extensions (ACE), 99
AXI user, 126

B
back annotation, 474
back end-of-line (BEOL), 493
back side, 39
back-annotated post-layout simulation, 187
backpressure, 90, 130
backward error correction, 103
balanced, 142
bank groups, 179
baremetal, 176, 514
barriers, 96
basic crossbar elements, 109
batch servers, 163
battery state indication (BSI), 182
baud rate, 65, 144
bed of nails, 478
behaviour, 444
behaviour-sensitive instruction, 209
behavioural model, 444
behavioural modelling, 222
beta prototype, 515
big.LITTLE architecture, 309
bilateral switch, 462
bill of materials (BoM), 21, 305, 449

Glossary of Abbreviations

References
[1] Stephen Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential processes. J. ACM,

31:560–599, 1984. doi: 10.1145/828.833.

[2] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Comput- ers,
C-21(9):948–960, 1972. doi: 10.1109/TC.1972.5009071.

550

Index

clock tree insertion, 473
clock-recovery unit, 143
clock-to-Q propagation delay, 172
closed queuing system, 159
closed-page policy, 179
closure checking, 470
CMOS speed law, 191
co-design, 15, 16, 315
co-simulation, 434
co-synthesis, 15, 315, 356
coarse-grained reconfigurable array, 303
codebook, 143
coefficient of variation, 162
CoherentMeshNetwork (CMN), 132
COI coverage, 368
COI reachability, 368
combinational support, 368
common-mode rejection, 143
common-path pessimism removal (CPPR), 496
compare-and-swap, 83
complementary oxide of silicon (CMOS), 412
completer, 82
completion buffer, 326
complex programmable logic device (CPLD), 464
component, 329
component kind, 421
compulsorymiss, 41
computation graph, 332
computational sprinting, 170, 199
Compute Express Link (CXL), 144
compute/commit, 424, 432
computer-aided design (CAD), 406
concurrent assertion, 371
concurrent current source (CCS), 497
concurrent signal assignment, 419
conducted emissions, 516
cone of influence (COI), 368
configurable logic block (CLB), 464
conflict miss, 41
conjunctive normal form (CNF), 390
connectivity checker, 398
conservation cores, 199, 356
constant folding, 439

constrained random verification (CRV), 376
constructive algorithm, 279
contact bounce, 78
contention, 157
continuous assignment, 419
control hazard, 33, 289
convolutional neural networks (CNNs), 217
copyback, 40
core, 29, 77
core generator, 330
core utilisation ratio, 446
core-bound, 198
cost of goods, 15
counterexample, 371
coverage target, 369
CPU core, 29
CPU governor, 193
credit-based flow control (CBFC), 93, 115, 122
critical path, 171, 172, 489
cross-trigger statemachine, 204
crossbar, 109
crowbar currents, 184
current state, 370
curtainedmemory, 211
custom coprocessor, 299
custom data encoding, 285
custom data path, 299, 341
custom instruction, 32
custom ISA extension, 299, 302
custom peripheral unit, 300
customer, 159
cut-through, 117, 129
cyber-physical system, 434
cycle-accurate, 512
cycle-accuratemodel, 223
cycle-callable model, 223
cyclic redundancy check (CRC), 299

D
dark silicon, 186, 199, 356, 411
data beats, 98
data coherency, 83
data conservation, 396

553

Index

binary decision diagram (BDD), 366
birthday paradox, 40
bisectional, 311
bisimulate, 391
bit blasting, 223, 441
bit stuffing, 143
black box, 370
black-box testing, 374
block coding, 142–143
block transfer, 82
block-matching algorithm, 319
Bloom filter, 100
Bluespec, 335
body biasing, 198
bondwire, 483
bond-out, 203
bonded serial interconnect, 144
Boolean equivalence checking, 389
Boolean equivalence problem, 389
Boolean satisfiability problem (SAT), 377
boot core, 512
boot-up core, 47, 77
bootloader, 512
boundweave, 243
boundary scan, 205
bounded loop, 348
boundedmodel checking, 366
branch, 367
branching-time temporal logic, 380
breakpoint register, 201
bubble, 295
bubble-free FIFO buffer, 295
built-in self-test (BIST), 207, 375
bulk arrival processes, 163
bulk synchronous processing (BSP), 37
bump-in-wire accelerator, 303
Burrows–Wheeler transform (BWT), 351
burst transfer, 82
burstiness, 164
bus abstraction, 329
bus bridge, 22, 107
bus definition, 329
bus error, 84

bus fabric, 109
bus fight, 4
bus functional model (BFM), 227
bus holder, 185
bus holding time, 106
bus keeper, 185
bus protocol, 4
bus resizer, 109
bus transaction, 82
bypass FIFO buffer, 295
byte lanes, 82

C
C-to-gates compiler, 339
cache coherency, 43
cache hit, 41
cache line, 39
cache line invalidate, 41
cachemaintenance operation (CMO), 104
cache stash, 104
cache-coherent interconnect for accelerators

(CCIX), 144
canvas components, 133
capability architectures, 211
capacity miss, 41
carrier-sensemultiple access with collision

detection (CSMA-CD), 74
CD-crossing bridge (CBRI), 138
CEmark, 516
cell drive strengths, 191
cell height, 446
cell library, 453
cell width, 446
central-limit theorem, 162
characteristic impedance, 143
chipmultiprocessor (CMP), 37
Chisel, 333
circuit-switched, 89, 110
CISC, 30
clock algorithm, 42
clock domain (CD), 136
clock input, 4
clock skewing, 213, 407, 495

552

Index

clock tree insertion, 473
clock-recovery unit, 143
clock-to-Q propagation delay, 172
closed queuing system, 159
closed-page policy, 179
closure checking, 470
CMOS speed law, 191
co-design, 15, 16, 315
co-simulation, 434
co-synthesis, 15, 315, 356
coarse-grained reconfigurable array, 303
codebook, 143
coefficient of variation, 162
CoherentMeshNetwork (CMN), 132
COI coverage, 368
COI reachability, 368
combinational support, 368
common-mode rejection, 143
common-path pessimism removal (CPPR), 496
compare-and-swap, 83
complementary oxide of silicon (CMOS), 412
completer, 82
completion buffer, 326
complex programmable logic device (CPLD), 464
component, 329
component kind, 421
compulsorymiss, 41
computation graph, 332
computational sprinting, 170, 199
Compute Express Link (CXL), 144
compute/commit, 424, 432
computer-aided design (CAD), 406
concurrent assertion, 371
concurrent current source (CCS), 497
concurrent signal assignment, 419
conducted emissions, 516
cone of influence (COI), 368
configurable logic block (CLB), 464
conflict miss, 41
conjunctive normal form (CNF), 390
connectivity checker, 398
conservation cores, 199, 356
constant folding, 439

constrained random verification (CRV), 376
constructive algorithm, 279
contact bounce, 78
contention, 157
continuous assignment, 419
control hazard, 33, 289
convolutional neural networks (CNNs), 217
copyback, 40
core, 29, 77
core generator, 330
core utilisation ratio, 446
core-bound, 198
cost of goods, 15
counterexample, 371
coverage target, 369
CPU core, 29
CPU governor, 193
credit-based flow control (CBFC), 93, 115, 122
critical path, 171, 172, 489
cross-trigger statemachine, 204
crossbar, 109
crowbar currents, 184
current state, 370
curtainedmemory, 211
custom coprocessor, 299
custom data encoding, 285
custom data path, 299, 341
custom instruction, 32
custom ISA extension, 299, 302
custom peripheral unit, 300
customer, 159
cut-through, 117, 129
cyber-physical system, 434
cycle-accurate, 512
cycle-accuratemodel, 223
cycle-callable model, 223
cyclic redundancy check (CRC), 299

D
dark silicon, 186, 199, 356, 411
data beats, 98
data coherency, 83
data conservation, 396

553

Index

binary decision diagram (BDD), 366
birthday paradox, 40
bisectional, 311
bisimulate, 391
bit blasting, 223, 441
bit stuffing, 143
black box, 370
black-box testing, 374
block coding, 142–143
block transfer, 82
block-matching algorithm, 319
Bloom filter, 100
Bluespec, 335
body biasing, 198
bondwire, 483
bond-out, 203
bonded serial interconnect, 144
Boolean equivalence checking, 389
Boolean equivalence problem, 389
Boolean satisfiability problem (SAT), 377
boot core, 512
boot-up core, 47, 77
bootloader, 512
boundweave, 243
boundary scan, 205
bounded loop, 348
boundedmodel checking, 366
branch, 367
branching-time temporal logic, 380
breakpoint register, 201
bubble, 295
bubble-free FIFO buffer, 295
built-in self-test (BIST), 207, 375
bulk arrival processes, 163
bulk synchronous processing (BSP), 37
bump-in-wire accelerator, 303
Burrows–Wheeler transform (BWT), 351
burst transfer, 82
burstiness, 164
bus abstraction, 329
bus bridge, 22, 107
bus definition, 329
bus error, 84

bus fabric, 109
bus fight, 4
bus functional model (BFM), 227
bus holder, 185
bus holding time, 106
bus keeper, 185
bus protocol, 4
bus resizer, 109
bus transaction, 82
bypass FIFO buffer, 295
byte lanes, 82

C
C-to-gates compiler, 339
cache coherency, 43
cache hit, 41
cache line, 39
cache line invalidate, 41
cachemaintenance operation (CMO), 104
cache stash, 104
cache-coherent interconnect for accelerators

(CCIX), 144
canvas components, 133
capability architectures, 211
capacity miss, 41
carrier-sensemultiple access with collision

detection (CSMA-CD), 74
CD-crossing bridge (CBRI), 138
CEmark, 516
cell drive strengths, 191
cell height, 446
cell library, 453
cell width, 446
central-limit theorem, 162
characteristic impedance, 143
chipmultiprocessor (CMP), 37
Chisel, 333
circuit-switched, 89, 110
CISC, 30
clock algorithm, 42
clock domain (CD), 136
clock input, 4
clock skewing, 213, 407, 495

552

Index

electromigration, 209
electron tunnelling, 61
electronic design automation (EDA), 406
electronic system-level (ESL) model, 10, 154, 220,

284
electrostatic discharge (ESD), 208, 516
Elmore delay, 213
embarrassingly parallel, 157
embarrassingly parallel problem, 311
embedded temperaturemonitor, 170
emulation exception, 30
engineering change order (ECO), 390, 486, 517
engineering sample, 476, 514
enhancementmode, 412
environmental constraint, 364
equalisation, 143
equivalencemitre, 389
erasable programmable read-only memory

(EPROM), 61
erasure channel, 103
error concealment, 103
error-correcting code (ECC), 103, 208, 415
eternal process loop, 373
Euler’s method, 434
evaluate/update, 432
evaluation board, 515
event queue, 431
event-driven simulation (EDS), 220, 431
event-monitoring unit (EMU), 202
eviction, 40
exclusivity matrix, 280
executable specification, 282, 400
execution substrate, 341
execution unit, 34, 77
expedited service, 163
explicit guard, 336
expression, 367
extraction deck, 458

F
fabless, 449
fabric contention, 110, 157
fabric deadlock, 118

facility location problem, 287
fairness annotation, 372
false path, 499
fanout, 187
far atomic operations, 102
fast Fourier transform (FFT), 355
fast interrupt (FIQ), 299
fast models, 268
fault coverage, 367, 476
fault simulator, 480
Federal Communications Commission (FCC) class

B, 516
Field Programmable Gate Array (FPGA), 25
field-effect transistor (FET), 412
field-programmable, 450
field-programmable gate array (FPGA), 303, 464
FIFO buffer, 294
FinFET, 413
finite-difference time-domain (FDTD), 435
firmware, 512
First come, first served, 158
five-stage pipeline, 32
flashmemory, 62
flashmultiplier, 290, 291
flattened butterfly topology, 133
flattening, 426
flip chip, 484
flip-flopmigration, 173
floating conductor, 61
floating point instructions per second (FLOPS),

154
floating-gate transistor, 61
floating-point unit (FPU), 297
floor plan, 439, 446
floor planning, 468
floor-plan-aware, 409
flow control, 90, 122
flow-control elements (flits), 117, 122
fluid-flowmodel, 221
FO4 delay, 190
focussed ion beam (FIB), 486
folded bus, 112
force-directed approach, 279

555

Index

data dependency, 354
data hazard, 33, 90
data path, 285
data retention, 198
data-dependent control flow, 332, 349
DC noisemargin, 53
de-skewing delay, 69
deadlock, 335, 371
deadlock avoidance, 372
debug access port (DAP), 200
debug reflection API, 200
debug transactions, 83
decidable subscript pattern, 354
declarative language, 365
declarative program, 322
decoupling capacitor, 461, 470
deep submicron era, 410
delta cycle, 229, 421, 424, 431, 432
Dennard scaling rule, 410
derating delay, 188
derating factors, 187
design closure, 272, 406
design exchange format (DEF), 455
design for testability (DfT), 479
design intent, 280, 419
designmutation, 369
design partition, 272
design space exploration (DSE), 146
design verification, 470
device driver, 66
device speed binning, 476
device under test (DUT), 364, 477
die yield, 487
die-stacking, 485
differential power analysis (DPA), 210
digital signal processing (DSP), 466
digital-to-analogue convertor (DAC), 75, 274
direct memory access (DMA), 82
direct memory access (DMA) I/O, 64
direct memory interface (DMI), 253
directed random validation, 375
directed test, 376
directly mapped cache, 40

directory protocol, 44
directory-based coherence, 100
dirty data, 40
discrete cosine transform (DCT), 283, 317
discrete-event simulation, 221, 431
display data channel (DDC), 75
do-not-touchmacro, 421
domain isolation cells, 197
domain-specific language (DSL), 333
don’t-care predicate, 389
double data rate (DDR) DRAM, 59
DRAMbank, 57
DRAM channel, 57
DRAMphysical interface (PHY), 179
DRAM/dynamicmemory controller (DMC), 179
dual in-linememorymodule (DIMM), 57
dynamic body bias, 186, 198
dynamic destination routing, 116
dynamic equivalence validation, 376
dynamic logic, 51
dynamic power use, 183
dynamic RAM (DRAM), 54
dynamic schedule, 326
dynamic validation, 375, 376
dynamic voltage and frequency scaling (DVFS),

154, 314

E
earliest-deadline-first, 158
early path, 495
ECO logic synthesis, 486
edge-centric graph, 286
EDS kernel, 431
effective bandwidth, 127, 146
effective current sourcemodel (ECSM), 497
elaborated, 420
elaboration, 331
electrical linear networks (ELN), 435
electrically alterable ROM (EA-ROM), 59
electrically erasable programmable read-only

memory (EEPROM), 62
electromagnetic compatibility (EMC), 516
electromagnetic emission, 516

554

Index

electromigration, 209
electron tunnelling, 61
electronic design automation (EDA), 406
electronic system-level (ESL) model, 10, 154, 220,

284
electrostatic discharge (ESD), 208, 516
Elmore delay, 213
embarrassingly parallel, 157
embarrassingly parallel problem, 311
embedded temperaturemonitor, 170
emulation exception, 30
engineering change order (ECO), 390, 486, 517
engineering sample, 476, 514
enhancementmode, 412
environmental constraint, 364
equalisation, 143
equivalencemitre, 389
erasable programmable read-only memory

(EPROM), 61
erasure channel, 103
error concealment, 103
error-correcting code (ECC), 103, 208, 415
eternal process loop, 373
Euler’s method, 434
evaluate/update, 432
evaluation board, 515
event queue, 431
event-driven simulation (EDS), 220, 431
event-monitoring unit (EMU), 202
eviction, 40
exclusivity matrix, 280
executable specification, 282, 400
execution substrate, 341
execution unit, 34, 77
expedited service, 163
explicit guard, 336
expression, 367
extraction deck, 458

F
fabless, 449
fabric contention, 110, 157
fabric deadlock, 118

facility location problem, 287
fairness annotation, 372
false path, 499
fanout, 187
far atomic operations, 102
fast Fourier transform (FFT), 355
fast interrupt (FIQ), 299
fast models, 268
fault coverage, 367, 476
fault simulator, 480
Federal Communications Commission (FCC) class

B, 516
Field Programmable Gate Array (FPGA), 25
field-effect transistor (FET), 412
field-programmable, 450
field-programmable gate array (FPGA), 303, 464
FIFO buffer, 294
FinFET, 413
finite-difference time-domain (FDTD), 435
firmware, 512
First come, first served, 158
five-stage pipeline, 32
flashmemory, 62
flashmultiplier, 290, 291
flattened butterfly topology, 133
flattening, 426
flip chip, 484
flip-flopmigration, 173
floating conductor, 61
floating point instructions per second (FLOPS),

154
floating-gate transistor, 61
floating-point unit (FPU), 297
floor plan, 439, 446
floor planning, 468
floor-plan-aware, 409
flow control, 90, 122
flow-control elements (flits), 117, 122
fluid-flowmodel, 221
FO4 delay, 190
focussed ion beam (FIB), 486
folded bus, 112
force-directed approach, 279

555

Index

data dependency, 354
data hazard, 33, 90
data path, 285
data retention, 198
data-dependent control flow, 332, 349
DC noisemargin, 53
de-skewing delay, 69
deadlock, 335, 371
deadlock avoidance, 372
debug access port (DAP), 200
debug reflection API, 200
debug transactions, 83
decidable subscript pattern, 354
declarative language, 365
declarative program, 322
decoupling capacitor, 461, 470
deep submicron era, 410
delta cycle, 229, 421, 424, 431, 432
Dennard scaling rule, 410
derating delay, 188
derating factors, 187
design closure, 272, 406
design exchange format (DEF), 455
design for testability (DfT), 479
design intent, 280, 419
designmutation, 369
design partition, 272
design space exploration (DSE), 146
design verification, 470
device driver, 66
device speed binning, 476
device under test (DUT), 364, 477
die yield, 487
die-stacking, 485
differential power analysis (DPA), 210
digital signal processing (DSP), 466
digital-to-analogue convertor (DAC), 75, 274
direct memory access (DMA), 82
direct memory access (DMA) I/O, 64
direct memory interface (DMI), 253
directed random validation, 375
directed test, 376
directly mapped cache, 40

directory protocol, 44
directory-based coherence, 100
dirty data, 40
discrete cosine transform (DCT), 283, 317
discrete-event simulation, 221, 431
display data channel (DDC), 75
do-not-touchmacro, 421
domain isolation cells, 197
domain-specific language (DSL), 333
don’t-care predicate, 389
double data rate (DDR) DRAM, 59
DRAMbank, 57
DRAM channel, 57
DRAMphysical interface (PHY), 179
DRAM/dynamicmemory controller (DMC), 179
dual in-linememorymodule (DIMM), 57
dynamic body bias, 186, 198
dynamic destination routing, 116
dynamic equivalence validation, 376
dynamic logic, 51
dynamic power use, 183
dynamic RAM (DRAM), 54
dynamic schedule, 326
dynamic validation, 375, 376
dynamic voltage and frequency scaling (DVFS),

154, 314

E
earliest-deadline-first, 158
early path, 495
ECO logic synthesis, 486
edge-centric graph, 286
EDS kernel, 431
effective bandwidth, 127, 146
effective current sourcemodel (ECSM), 497
elaborated, 420
elaboration, 331
electrical linear networks (ELN), 435
electrically alterable ROM (EA-ROM), 59
electrically erasable programmable read-only

memory (EEPROM), 62
electromagnetic compatibility (EMC), 516
electromagnetic emission, 516

554

Index

hub, 109
human bodymodel, 516
hybridmemory cube (HMC), 260
hybrid systemmodelling, 434
hyper-ring, 304
hypercube, 130
hypervisor, 37, 209
hypervisor mode, 211

I
I/O block (IOB), 465
I/Omemorymanagement unit (IOMMU), 37
I/O pad, 453
immediate assertion, 370
imperative language, 365
implicit guard, 338
in-place form, 355
inclusive cache, 45
inclusive cache tree, 100
incremental refinement, 220
induction expression, 348
induction variable, 344, 348
Industry Standards and TechnologyOrganization

(ISTO), 496
inertial delay, 432
initiation interval (II), 345
input-buffered switch, 134, 163
instruction set architecture (ISA), 299
instruction set simulator (ISS), 224, 248
instructions per clock cycle (IPC), 33
integer linear programming, 345
intellectual property (IP), 11
intellectual property (IP) block, 10
inter-core interrupt (ICI), 76, 299
interconnect standard, 84
interface PC, 385
Interlaken protocol, 306
International Technology Roadmap for

Semiconductors (ITRS), 406
interposer, 484
interrupt, 84
interrupt controller, 46
interrupt mask, 47–48

interrupt service routine (ISR), 5, 68
interrupt-driven I/O, 64
invertor, 470

J
jailbreak, 514
Johnson counter, 175
Joint Test Action Group (JTAG), 205
junction temperature, 170
justification symbols, 139

K
Karnaughmap, 439
key frame, 318
KingmanG/G/1, 162
Kiwi HLS, 347

L
lanes (byte lanes), 82
lasso stem, 372
late path, 495
latency, 90
layout versus schematic check, 475
leaf cell, 426
leaky bucket policer, 166
least-recently used (LRU), 41
Liberty Technical Advisory Board (LTAB), 496
Liberty Variation Format (LVF), 503
library exchange format (LEF), 455
line, 367
linear programming, 354
linear signal flow (LSF), 434
linear-time temporal logic, 380
list schedule, 344
liveness assertion, 371
load-linked, 83, 101
local maxima, 278
local search, 287
local-area network (LAN), 111
locality gap, 278
logic built-in self-test (LBIST), 207
logic margin, 87
logic synthesis, 419

557

Index

formal cover property, 368
formal glue, 393, 396
formal verification IP, 375
formal VIP block, 385
forward error correction (FEC), 103
forwarding path, 33
foundry, 404, 449
four-phase handshake, 68
four-value logic system, 223, 429
FR-4 fibreglass, 188
fracture, 465
frame alignment, 144
frame refresh rate, 75
frame-alignment word (FAW), 144
free-running, 497
front end-of-line (FEOL), 493
front side, 39
full-custom design, 450
full-duplex, 90
fully associative cache, 40
fully pipelined, 290, 324
fully registered FIFO buffer, 295
functional coverage, 367
functional model, 12, 222, 282
functional unit (FU), 285, 323
fusible link, 59

G
gallium arsenide (GaAs), 273, 411
galvanic isolation, 143
gate array, 461
gate-level netlist, 229
gate-level simulation, 419
gearbox, 39
general scan path, 207
general-purpose I/O (GPIO), 68
generate statement, 420
generated clock, 497
genetic algorithm, 278
glitch energy, 257
global quantum, 242
goodness, 277
gradient ascent, 278

graph-based analysis (GBA), 489
graphical database system, 404
graphical processing unit (GPU), 76
Gray coding, 174
greedy algorithm, 279
ground bounce, 461, 505
ground plane, 457
guard condition, 364, 370
guarded safety assertion, 371
guest, 209

H
half-duplex, 90
halt, 193
Handel-C, 334
handshake, 8
hard fault, 208
hard IP block, 461
hard IP blocks, 25
hard layout macro, 455
hardmacro, 19, 455
hard real-time problem, 317
hard real-time system, 165
hardened architecture, 305
hardware abstraction layer (HAL), 105
hardware accelerator, 297
hardware construction language (HCL), 321, 331
hardware transactional memory, 37
harmonically locked clocks, 86, 139, 140
Harvard advantage, 28
hazard penalty, 289
hazard-free and commutable effects, 102
head-of-line (HoL) blocking, 163
heisenbug, 200
high bandwidthmemory (HBM), 260
high-level synthesis (HLS), 35, 339
hill climbing, 277
hold time, 172
horizontal, 446
host, 47
host CPU, 304
host processor, 298
hot carrier injection, 61, 505

556

Index

hub, 109
human bodymodel, 516
hybridmemory cube (HMC), 260
hybrid systemmodelling, 434
hyper-ring, 304
hypercube, 130
hypervisor, 37, 209
hypervisor mode, 211

I
I/O block (IOB), 465
I/Omemorymanagement unit (IOMMU), 37
I/O pad, 453
immediate assertion, 370
imperative language, 365
implicit guard, 338
in-place form, 355
inclusive cache, 45
inclusive cache tree, 100
incremental refinement, 220
induction expression, 348
induction variable, 344, 348
Industry Standards and TechnologyOrganization

(ISTO), 496
inertial delay, 432
initiation interval (II), 345
input-buffered switch, 134, 163
instruction set architecture (ISA), 299
instruction set simulator (ISS), 224, 248
instructions per clock cycle (IPC), 33
integer linear programming, 345
intellectual property (IP), 11
intellectual property (IP) block, 10
inter-core interrupt (ICI), 76, 299
interconnect standard, 84
interface PC, 385
Interlaken protocol, 306
International Technology Roadmap for

Semiconductors (ITRS), 406
interposer, 484
interrupt, 84
interrupt controller, 46
interrupt mask, 47–48

interrupt service routine (ISR), 5, 68
interrupt-driven I/O, 64
invertor, 470

J
jailbreak, 514
Johnson counter, 175
Joint Test Action Group (JTAG), 205
junction temperature, 170
justification symbols, 139

K
Karnaughmap, 439
key frame, 318
KingmanG/G/1, 162
Kiwi HLS, 347

L
lanes (byte lanes), 82
lasso stem, 372
late path, 495
latency, 90
layout versus schematic check, 475
leaf cell, 426
leaky bucket policer, 166
least-recently used (LRU), 41
Liberty Technical Advisory Board (LTAB), 496
Liberty Variation Format (LVF), 503
library exchange format (LEF), 455
line, 367
linear programming, 354
linear signal flow (LSF), 434
linear-time temporal logic, 380
list schedule, 344
liveness assertion, 371
load-linked, 83, 101
local maxima, 278
local search, 287
local-area network (LAN), 111
locality gap, 278
logic built-in self-test (LBIST), 207
logic margin, 87
logic synthesis, 419

557

Index

formal cover property, 368
formal glue, 393, 396
formal verification IP, 375
formal VIP block, 385
forward error correction (FEC), 103
forwarding path, 33
foundry, 404, 449
four-phase handshake, 68
four-value logic system, 223, 429
FR-4 fibreglass, 188
fracture, 465
frame alignment, 144
frame refresh rate, 75
frame-alignment word (FAW), 144
free-running, 497
front end-of-line (FEOL), 493
front side, 39
full-custom design, 450
full-duplex, 90
fully associative cache, 40
fully pipelined, 290, 324
fully registered FIFO buffer, 295
functional coverage, 367
functional model, 12, 222, 282
functional unit (FU), 285, 323
fusible link, 59

G
gallium arsenide (GaAs), 273, 411
galvanic isolation, 143
gate array, 461
gate-level netlist, 229
gate-level simulation, 419
gearbox, 39
general scan path, 207
general-purpose I/O (GPIO), 68
generate statement, 420
generated clock, 497
genetic algorithm, 278
glitch energy, 257
global quantum, 242
goodness, 277
gradient ascent, 278

graph-based analysis (GBA), 489
graphical database system, 404
graphical processing unit (GPU), 76
Gray coding, 174
greedy algorithm, 279
ground bounce, 461, 505
ground plane, 457
guard condition, 364, 370
guarded safety assertion, 371
guest, 209

H
half-duplex, 90
halt, 193
Handel-C, 334
handshake, 8
hard fault, 208
hard IP block, 461
hard IP blocks, 25
hard layout macro, 455
hardmacro, 19, 455
hard real-time problem, 317
hard real-time system, 165
hardened architecture, 305
hardware abstraction layer (HAL), 105
hardware accelerator, 297
hardware construction language (HCL), 321, 331
hardware transactional memory, 37
harmonically locked clocks, 86, 139, 140
Harvard advantage, 28
hazard penalty, 289
hazard-free and commutable effects, 102
head-of-line (HoL) blocking, 163
heisenbug, 200
high bandwidthmemory (HBM), 260
high-level synthesis (HLS), 35, 339
hill climbing, 277
hold time, 172
horizontal, 446
host, 47
host CPU, 304
host processor, 298
hot carrier injection, 61, 505

556

Index

noise analysis, 501
noisemargin, 53
non-composable optimisation, 279
non-deterministic choice, 382
non-linear delaymodel (NLDM), 497
non-recurring expenses (NRE), 155, 487
non-return-to-zero invert-on-ones (NRZI), 142
non-synthesisable construct, 420
non-uniformmemory access (NUMA), 37, 52, 108
non-volatile memory, 50
non-volatile store, 103
not recently used algorithm, 42
NP-hard algorithm, 279
number of violating paths (NVP), 214

O
objectivemetric vector, 276
octagon domain, 354
Ohm’s law, 183
on-chip regulator, 469
on-chip variation (OCV), 502
one-hot coding, 174
Open Core Connect (OCP), 93
open queuing system, 160
open verificationmethodology (OVM), 477
open-page policy, 179
optimised hierarchical blockmatching, 320
optimistic concurrency control, 102
optimum eye opening, 143
orchestration, 293
orthogonal perturbation, 278
out-of-order instruction execution, 34
output-buffered switch, 163
over-clocked, 172
over-clocking, 489
overrun, 74
OVM/UVM, 330

P
packet-switched, 89, 110, 117
pad-bound, 198
paradox of mean residual life, 162
Pareto optimal solution, 277

partial derivative polarity, 307
partial power gating, 186, 198
particle swarm optimisation, 278
pass transistor, 463
pass-on-free rule, 112
pass-transistor multiplexor, 462
passivation layer, 415
path coverage, 367
path property, 373
path-based analysis (PBA), 489
PCDC bridge, 138
pending update, 432
per device programming, 483
performancemanagement unit (PMU), 76, 201
peripheral component interconnect express

(PCIe), 144
peripheral device, 64
persistent write, 103
phase dependency, 120
phase-locked loop (PLL), 212
phit, 124
PHYmagnetics, 73
physical design closure, 404
physical flow, 404
physical layer (PHY), 260
physical synthesis flow, 409
physically aware, 404
physically unclonable function (PUF), 479
piggyback, 123
pipeline stall, 289, 326
pipelined FIFO buffer, 295
pipelining, 171
placement, 470
point of persistence (PoP), 103
poison bit, 103
polarity-insensitive coding, 142
Pollack’s rule of thumb, 30, 37
polled I/O, 64
polyhedral, 348
polyhedral address mapping, 353
polyhedral space, 353
polytope, 353
port-mapped I/O (PMIO), 298

559

Index

logical effort analysis, 88
logical equivalence checking (LEC), 389
long line, 465
long links, 130
lookup table (LUT), 465
loop forwarding, 292, 349
loop pipelining, 346
loop unwinding, 171
loop-carried dependency, 348
loop-free, 492
loop-splitting transform, 285
Loosely timed TLM, 241
low-pass filter (LPF), 213
low-voltage differential signalling (LVDS), 143
LVF sigmamultiplier, 504

M
M1-2-3 respin, 486
machine-codemonitor, 514
mailbox pattern, 294
mainmemory, 2
manager, 82
Manchester coding, 144
Manhattan routing, 119
map-reduce, 156
map-reduce paradigm, 348
maximum number of outstanding transactions,

90, 167
maximum timing analysis, 489
MBIST, 207
media access controller (MAC), 74, 483
memory compiler, 443
memory fence, 83, 96
memory fence instruction, 176
memory generator, 257, 404
memorymanagement unit (MMU), 36
memorymap, 5
memory protection unit (MPU), 37, 209
memory wall, 63
memory-accuratemodel, 222
memory-mapped I/O (MMIO), 3, 64, 298
memristive, 63
MESI, 43

message passing, 335
message-signalled interrupts (MSI), 106
metal respin, 486
metastable, 137
microarchitecture, 30, 285
microcode, 31
Miller effect, 458
million instructions per second (MIPS), 154
minimum Steiner tree, 145
minimum timing analysis, 489
mirror copies, 178
mirrorable FU, 324
misaligned access, 8
misspeculation, 289
model checker, 366
modulo schedule, 345
MOESI cache protocol, 45
MPSoC, 2
multi-access network, 311
multi-chip module (MCM), 58, 414, 482, 484
multi-cycle path, 215
multi-design shuttle, 517
multi-modemulti-corner (MMMC), 499
multi-objective optimisation, 277
multi-project wafer (MPW), 485, 515
multi-socket system, 108
multicast, 82
multiphase transaction, 93

N
name alias hazard, 290, 293, 354
name alias problem, 322, 443
natural loop, 348
near-data processing (NDP), 63, 102, 298
netlist extractor, 475
network interface card (NIC), 73
network interface controller, 73
network-on-chip (NoC), 14, 88, 113
neural processing unit, 297
Newton’s law of cooling, 169
nodal equation, 435
nodal simultaneous equation, 433
node-centric graph, 286

558

Index

noise analysis, 501
noisemargin, 53
non-composable optimisation, 279
non-deterministic choice, 382
non-linear delaymodel (NLDM), 497
non-recurring expenses (NRE), 155, 487
non-return-to-zero invert-on-ones (NRZI), 142
non-synthesisable construct, 420
non-uniformmemory access (NUMA), 37, 52, 108
non-volatile memory, 50
non-volatile store, 103
not recently used algorithm, 42
NP-hard algorithm, 279
number of violating paths (NVP), 214

O
objectivemetric vector, 276
octagon domain, 354
Ohm’s law, 183
on-chip regulator, 469
on-chip variation (OCV), 502
one-hot coding, 174
Open Core Connect (OCP), 93
open queuing system, 160
open verificationmethodology (OVM), 477
open-page policy, 179
optimised hierarchical blockmatching, 320
optimistic concurrency control, 102
optimum eye opening, 143
orchestration, 293
orthogonal perturbation, 278
out-of-order instruction execution, 34
output-buffered switch, 163
over-clocked, 172
over-clocking, 489
overrun, 74
OVM/UVM, 330

P
packet-switched, 89, 110, 117
pad-bound, 198
paradox of mean residual life, 162
Pareto optimal solution, 277

partial derivative polarity, 307
partial power gating, 186, 198
particle swarm optimisation, 278
pass transistor, 463
pass-on-free rule, 112
pass-transistor multiplexor, 462
passivation layer, 415
path coverage, 367
path property, 373
path-based analysis (PBA), 489
PCDC bridge, 138
pending update, 432
per device programming, 483
performancemanagement unit (PMU), 76, 201
peripheral component interconnect express

(PCIe), 144
peripheral device, 64
persistent write, 103
phase dependency, 120
phase-locked loop (PLL), 212
phit, 124
PHYmagnetics, 73
physical design closure, 404
physical flow, 404
physical layer (PHY), 260
physical synthesis flow, 409
physically aware, 404
physically unclonable function (PUF), 479
piggyback, 123
pipeline stall, 289, 326
pipelined FIFO buffer, 295
pipelining, 171
placement, 470
point of persistence (PoP), 103
poison bit, 103
polarity-insensitive coding, 142
Pollack’s rule of thumb, 30, 37
polled I/O, 64
polyhedral, 348
polyhedral address mapping, 353
polyhedral space, 353
polytope, 353
port-mapped I/O (PMIO), 298

559

Index

logical effort analysis, 88
logical equivalence checking (LEC), 389
long line, 465
long links, 130
lookup table (LUT), 465
loop forwarding, 292, 349
loop pipelining, 346
loop unwinding, 171
loop-carried dependency, 348
loop-free, 492
loop-splitting transform, 285
Loosely timed TLM, 241
low-pass filter (LPF), 213
low-voltage differential signalling (LVDS), 143
LVF sigmamultiplier, 504

M
M1-2-3 respin, 486
machine-codemonitor, 514
mailbox pattern, 294
mainmemory, 2
manager, 82
Manchester coding, 144
Manhattan routing, 119
map-reduce, 156
map-reduce paradigm, 348
maximum number of outstanding transactions,

90, 167
maximum timing analysis, 489
MBIST, 207
media access controller (MAC), 74, 483
memory compiler, 443
memory fence, 83, 96
memory fence instruction, 176
memory generator, 257, 404
memorymanagement unit (MMU), 36
memorymap, 5
memory protection unit (MPU), 37, 209
memory wall, 63
memory-accuratemodel, 222
memory-mapped I/O (MMIO), 3, 64, 298
memristive, 63
MESI, 43

message passing, 335
message-signalled interrupts (MSI), 106
metal respin, 486
metastable, 137
microarchitecture, 30, 285
microcode, 31
Miller effect, 458
million instructions per second (MIPS), 154
minimum Steiner tree, 145
minimum timing analysis, 489
mirror copies, 178
mirrorable FU, 324
misaligned access, 8
misspeculation, 289
model checker, 366
modulo schedule, 345
MOESI cache protocol, 45
MPSoC, 2
multi-access network, 311
multi-chip module (MCM), 58, 414, 482, 484
multi-cycle path, 215
multi-design shuttle, 517
multi-modemulti-corner (MMMC), 499
multi-objective optimisation, 277
multi-project wafer (MPW), 485, 515
multi-socket system, 108
multicast, 82
multiphase transaction, 93

N
name alias hazard, 290, 293, 354
name alias problem, 322, 443
natural loop, 348
near-data processing (NDP), 63, 102, 298
netlist extractor, 475
network interface card (NIC), 73
network interface controller, 73
network-on-chip (NoC), 14, 88, 113
neural processing unit, 297
Newton’s law of cooling, 169
nodal equation, 435
nodal simultaneous equation, 433
node-centric graph, 286

558

Index

register insertion, 111
register renaming, 35
register transfer level (RTL), 418
regression testing, 375
relaxed consistency, 176
release candidate, 475
remote procedure call, 299
replacement policy, 41
requester, 82
reset input, 4
reset vector, 6
respin, 485, 517
response code, 84
restricted-turn routing, 119
reticule, 485
retirement register file, 35
reversible calculation, 188
reversible computing, 190
revision control system, 375
ring topology, 129
RISC, 30
roots of trust, 155
round robin, 158
routing, 473
routing tag, 116
row-activate operation, 56
RTL freeze, 475
running average power limit (RAPL), 199

S
safety assertion, 370
samples back, 475
SAT solver, 377, 389
satisfiability modulo theories (SMT), 400
saturated source, 128
saturating arithmetic, 285
scalar accumulator, 348
scalarisation function, 277
Schmitt trigger, 438
scoreboarding logic, 35
scrambler, 143
scratchpadmemory, 38
scrub rate, 208

second-source supplier, 14, 450
secure asset, 399
secure bootloader, 513
secure enclave, 207, 210, 513
secure hash, 514
securemode, 399
security requirement, 399
semi-custom, 25
semi-custom design, 404, 450
sequencing FSM, 341
sequential consistency, 95
sequential consistency problem, 175
sequential equivalence checking (SEC), 389, 390
sequential loop, 492
sequential support, 368
serial AT attachment (SATA), 142
serial presence detect (SPD), 57, 180
serialiser, 39
serialiser/deserialiser (SERDES), 142
server, 159
server farm, 326
service time, 160
set-associative cache, 40
sewing kit, 486
SHA-1.2, 514
sharingmiss, 41
shoot-through, 195, 433
short-circuit currents, 184
shrink, 418
shuffle network, 131
side channel, 210
sign-off, 475
signal, 424
signal integrity (SI), 500
signal restoration, 87
silicon end point, 411
SIMD instruction, 31
simplex, 90
simulated annealing, 278
Simulation Programwith Integrated Circuit

Emphasis – SPICE, 191
simultaneousmultithreading, 39
single-event upset (SEU), 103, 208, 372, 414

561

Index

power and clock domain convertor (PCDC), 331
power closure, 406
power delivery network (PDN), 413
power domain (PD), 136
power gated, 154
power intent file, 408
power plan, 468
power throttle, 199
power wall, 410
power, performance and area (PPA), 276
power-aware, 408
power-bound, 199
PPA – Power, Performance and Areametrics, 156
pragmas, 171
precharge time, 52
predicate, 365, 373
Presburger arithmetic, 354
presence probing, 83
primary storage, 2
printed-circuit board (PCB), 7, 414
priority crosstalk, 163
private key, 514
procedural assertion, 370
process corner, 492
process corner explosion, 499
process node, 449
process variation, 456
process, voltage and temperature (PVT), 456, 492
processing element (PE), 326
processor consistency, 176
product requirements document (PRD), 11
production test vector, 379
profile-directed feedback, 340
programmable array logic (PAL), 464
programmable logic (PL), 305
programmed I/O (PIO), 64
programmer’s view (PV), 30, 221
programmer-view accuracy, 221
programming language interface (PLI), 247
proof core, 368
property specification language (PSL), 328, 365,

370, 380
protocol, 84

protocol adaptor, 85
protocol checker (PC), 385
protocol converter, 109
pseudoDMA, 82, 300
pseudo-LRU, 42
pseudorandom binary sequence (PRBS), 111,

143, 517
public key, 514
public key encryption (PKI), 210
public key infrastructure (PKI), 155, 514
pulse shrinkage, 213, 441
pulse-widthmodulation (PWM), 70
pump pattern, 294

Q
QoS - Quality of Service, 166
quadraturemodulation, 275
quality of service (QoS), 86, 159
quantum keeper, 242
quench phase, 278
quick path interconnect (QPI), 304

R
radiated emissions, 516
radiation hardness, 415
radio-frequency interference (RFI), 69, 73, 208
RAM inference, 442
random number generator, 479
random replacement, 41
ratioed clocks, 139
RaWhazard, 289
re-initiation interval, 290
reachable assertion, 371
read-ahead, 83
read-disturb problem, 52
read-only memory (ROM), 51
real-time clock (RTC), 198
real-time traffic, 86
recurring costs, 155
recurring expenses, 487
redundancy zapping, 444, 476
Reed–Solomon coding, 103
register file, 53

560

Index

register insertion, 111
register renaming, 35
register transfer level (RTL), 418
regression testing, 375
relaxed consistency, 176
release candidate, 475
remote procedure call, 299
replacement policy, 41
requester, 82
reset input, 4
reset vector, 6
respin, 485, 517
response code, 84
restricted-turn routing, 119
reticule, 485
retirement register file, 35
reversible calculation, 188
reversible computing, 190
revision control system, 375
ring topology, 129
RISC, 30
roots of trust, 155
round robin, 158
routing, 473
routing tag, 116
row-activate operation, 56
RTL freeze, 475
running average power limit (RAPL), 199

S
safety assertion, 370
samples back, 475
SAT solver, 377, 389
satisfiability modulo theories (SMT), 400
saturated source, 128
saturating arithmetic, 285
scalar accumulator, 348
scalarisation function, 277
Schmitt trigger, 438
scoreboarding logic, 35
scrambler, 143
scratchpadmemory, 38
scrub rate, 208

second-source supplier, 14, 450
secure asset, 399
secure bootloader, 513
secure enclave, 207, 210, 513
secure hash, 514
securemode, 399
security requirement, 399
semi-custom, 25
semi-custom design, 404, 450
sequencing FSM, 341
sequential consistency, 95
sequential consistency problem, 175
sequential equivalence checking (SEC), 389, 390
sequential loop, 492
sequential support, 368
serial AT attachment (SATA), 142
serial presence detect (SPD), 57, 180
serialiser, 39
serialiser/deserialiser (SERDES), 142
server, 159
server farm, 326
service time, 160
set-associative cache, 40
sewing kit, 486
SHA-1.2, 514
sharingmiss, 41
shoot-through, 195, 433
short-circuit currents, 184
shrink, 418
shuffle network, 131
side channel, 210
sign-off, 475
signal, 424
signal integrity (SI), 500
signal restoration, 87
silicon end point, 411
SIMD instruction, 31
simplex, 90
simulated annealing, 278
Simulation Programwith Integrated Circuit

Emphasis – SPICE, 191
simultaneousmultithreading, 39
single-event upset (SEU), 103, 208, 372, 414

561

Index

power and clock domain convertor (PCDC), 331
power closure, 406
power delivery network (PDN), 413
power domain (PD), 136
power gated, 154
power intent file, 408
power plan, 468
power throttle, 199
power wall, 410
power, performance and area (PPA), 276
power-aware, 408
power-bound, 199
PPA – Power, Performance and Areametrics, 156
pragmas, 171
precharge time, 52
predicate, 365, 373
Presburger arithmetic, 354
presence probing, 83
primary storage, 2
printed-circuit board (PCB), 7, 414
priority crosstalk, 163
private key, 514
procedural assertion, 370
process corner, 492
process corner explosion, 499
process node, 449
process variation, 456
process, voltage and temperature (PVT), 456, 492
processing element (PE), 326
processor consistency, 176
product requirements document (PRD), 11
production test vector, 379
profile-directed feedback, 340
programmable array logic (PAL), 464
programmable logic (PL), 305
programmed I/O (PIO), 64
programmer’s view (PV), 30, 221
programmer-view accuracy, 221
programming language interface (PLI), 247
proof core, 368
property specification language (PSL), 328, 365,

370, 380
protocol, 84

protocol adaptor, 85
protocol checker (PC), 385
protocol converter, 109
pseudoDMA, 82, 300
pseudo-LRU, 42
pseudorandom binary sequence (PRBS), 111,

143, 517
public key, 514
public key encryption (PKI), 210
public key infrastructure (PKI), 155, 514
pulse shrinkage, 213, 441
pulse-widthmodulation (PWM), 70
pump pattern, 294

Q
QoS - Quality of Service, 166
quadraturemodulation, 275
quality of service (QoS), 86, 159
quantum keeper, 242
quench phase, 278
quick path interconnect (QPI), 304

R
radiated emissions, 516
radiation hardness, 415
radio-frequency interference (RFI), 69, 73, 208
RAM inference, 442
random number generator, 479
random replacement, 41
ratioed clocks, 139
RaWhazard, 289
re-initiation interval, 290
reachable assertion, 371
read-ahead, 83
read-disturb problem, 52
read-only memory (ROM), 51
real-time clock (RTC), 198
real-time traffic, 86
recurring costs, 155
recurring expenses, 487
redundancy zapping, 444, 476
Reed–Solomon coding, 103
register file, 53

560

Index

T
tagged data, 83
taint trace, 399
tamper-proof, 210
tank capacitor, 470
tapeout, 475
tapless wells, 418
target, 82
target contention, 157
task dependencymatrix, 280
temporal algebra, 366
temporal decoupling, 242
temporal locality, 39
temporal solution, 292
temporally floating port, 374
test agent, 477
test coverage, 367
test coveragemetric, 365
test mode, 479
test suite, 375
test vector, 207, 478
test-and-set, 83
theorem prover, 366
thermal monitor, 483
thermal throttle, 170
thermal time constant, 170
threshold voltage VT, 186
through-silicon via, 260, 485
throughput, 90
tightly coupled generator interface (TGI), 327
time-division duplex, 90, 274
time-divisionmultiplexed (TDM), 109, 118
time-to-market (TTM), 126
timed data flow (TDF), 434
timing closure, 171, 406, 506
TLM convenience sockets, 237
TLM generic payload, 237
TLM transactors, 247
togged packet, 166
toggle coverage, 367
toggle rate, 185
token ring, 111

top-of-rack Ethernet hub, 304
torus topology, 130
total negative slack (TNS), 214
traffic flowmatrix, 127, 146
transaction initiator, 82
transaction phase, 89
transaction tag, 95
transaction-level model (TLM), 222
transactions, 82
transistor limited, 445
translation lookaside buffer (TLB), 36
transmission gate, 462
transparent latch, 195, 428
transport delay, 432
triple modular redundancy (TMR), 156
trusted computemodule, 207
trusted execution environment (TEE), 211
trusted platformmodule (TPM), 210
Turing tax, 298
two-phase handshake protocol, 69
two-port SRAM (TP_SRAM), 443
two-value logic system, 429

U
uncacheable region, 44
uncredited buffer stage, 134
under-run, 74
underflow, 285, 325
undirected testing, 376
unit test, 273, 375
universal asynchronous receiver-transmitter

(UART), 65
universal power format (UPF), 408
universal verificationmethodology (UVM), 477
uop, 31
use case, 280
utilisation, 160

V
validly tagged data, 333, 339
variable unification, 398
vector processing, 31
vectored interrupt, 46

563

Index

skewed corner, 493
skin effect, 143
slack, 214
sleepmodes, 154, 196
slew rate, 69, 188, 458
slotted ring, 111
snoop control unit (SCU), 44, 140
snoop filter, 44, 100
snooping, 44
soft core, 32
soft fault, 208
soft hardware error, 415
software development kit (SDK), 315
solid-state drive (SSD), 62
sort order, 367
source buffering, 130, 164
source routing, 110, 116
spatial locality, 40
spatial reuse, 105
spatial solution, 292
spatial variation, 502
speculation, 289
speed grading, 482
speed of light, 188
split transaction, 93
stable oracle, 396
stage-basedOCV (SBOCV), 503
standard cell library, 404
standard parasitic exchange format (SPEF), 474,

493
standard part, 450
standard synchronous handshake, 92
standbymodes, 154
starvation, 86, 159
state property, 370, 373
statement, 367
static destination routing, 116
static leakage current, 185
static power use, 183
static priority, 158
static schedule, 325
static timing analyser (STA), 214
static timing analysis (STA), 474, 488

static validation, 376
statistical multiplexing gain, 164
stepwise refinement, 357
stimulus, 376
stimulus generation, 428
stochastic system, 161
store zero, 102
store-and-forward, 117
store-conditional, 83, 101
streaming, 90
strength reduction, 359, 441
strip-mining, 326
struct of arrays, 351
structural elaboration, 420
structural hazard, 290
structural netlist, 229, 406
structured ASIC, 467
stuck-at fault, 367, 478
stuttering equivalence, 392
subordinate, 82
Sugar extended regular expressions (SERES), 383
super FPGA, 305
supercell, 455
supply droop, 461, 505
switched-capacitor invertor, 470
switching activity interchange format (SAIF), 185
symmetric multiprocessor (SMP), 37
sync, 103
synchronous static RAM (SSRAM), 53
Synopsys Design Constraint (SDC), 497
syntax-directed approach, 343
synthesisable RTL, 404
synthesisable subset, 340, 420
synthetic data source, 385
system architect, 16
system integrator, 327
system interconnect generator, 82, 127
system invariant, 371
system load average, 193
system PC, 385
SystemVerilog Assertions (SVA), 365, 370, 384
systolic array, 326

562

Index

T
tagged data, 83
taint trace, 399
tamper-proof, 210
tank capacitor, 470
tapeout, 475
tapless wells, 418
target, 82
target contention, 157
task dependencymatrix, 280
temporal algebra, 366
temporal decoupling, 242
temporal locality, 39
temporal solution, 292
temporally floating port, 374
test agent, 477
test coverage, 367
test coveragemetric, 365
test mode, 479
test suite, 375
test vector, 207, 478
test-and-set, 83
theorem prover, 366
thermal monitor, 483
thermal throttle, 170
thermal time constant, 170
threshold voltage VT, 186
through-silicon via, 260, 485
throughput, 90
tightly coupled generator interface (TGI), 327
time-division duplex, 90, 274
time-divisionmultiplexed (TDM), 109, 118
time-to-market (TTM), 126
timed data flow (TDF), 434
timing closure, 171, 406, 506
TLM convenience sockets, 237
TLM generic payload, 237
TLM transactors, 247
togged packet, 166
toggle coverage, 367
toggle rate, 185
token ring, 111

top-of-rack Ethernet hub, 304
torus topology, 130
total negative slack (TNS), 214
traffic flowmatrix, 127, 146
transaction initiator, 82
transaction phase, 89
transaction tag, 95
transaction-level model (TLM), 222
transactions, 82
transistor limited, 445
translation lookaside buffer (TLB), 36
transmission gate, 462
transparent latch, 195, 428
transport delay, 432
triple modular redundancy (TMR), 156
trusted computemodule, 207
trusted execution environment (TEE), 211
trusted platformmodule (TPM), 210
Turing tax, 298
two-phase handshake protocol, 69
two-port SRAM (TP_SRAM), 443
two-value logic system, 429

U
uncacheable region, 44
uncredited buffer stage, 134
under-run, 74
underflow, 285, 325
undirected testing, 376
unit test, 273, 375
universal asynchronous receiver-transmitter

(UART), 65
universal power format (UPF), 408
universal verificationmethodology (UVM), 477
uop, 31
use case, 280
utilisation, 160

V
validly tagged data, 333, 339
variable unification, 398
vector processing, 31
vectored interrupt, 46

563

Index

skewed corner, 493
skin effect, 143
slack, 214
sleepmodes, 154, 196
slew rate, 69, 188, 458
slotted ring, 111
snoop control unit (SCU), 44, 140
snoop filter, 44, 100
snooping, 44
soft core, 32
soft fault, 208
soft hardware error, 415
software development kit (SDK), 315
solid-state drive (SSD), 62
sort order, 367
source buffering, 130, 164
source routing, 110, 116
spatial locality, 40
spatial reuse, 105
spatial solution, 292
spatial variation, 502
speculation, 289
speed grading, 482
speed of light, 188
split transaction, 93
stable oracle, 396
stage-basedOCV (SBOCV), 503
standard cell library, 404
standard parasitic exchange format (SPEF), 474,

493
standard part, 450
standard synchronous handshake, 92
standbymodes, 154
starvation, 86, 159
state property, 370, 373
statement, 367
static destination routing, 116
static leakage current, 185
static power use, 183
static priority, 158
static schedule, 325
static timing analyser (STA), 214
static timing analysis (STA), 474, 488

static validation, 376
statistical multiplexing gain, 164
stepwise refinement, 357
stimulus, 376
stimulus generation, 428
stochastic system, 161
store zero, 102
store-and-forward, 117
store-conditional, 83, 101
streaming, 90
strength reduction, 359, 441
strip-mining, 326
struct of arrays, 351
structural elaboration, 420
structural hazard, 290
structural netlist, 229, 406
structured ASIC, 467
stuck-at fault, 367, 478
stuttering equivalence, 392
subordinate, 82
Sugar extended regular expressions (SERES), 383
super FPGA, 305
supercell, 455
supply droop, 461, 505
switched-capacitor invertor, 470
switching activity interchange format (SAIF), 185
symmetric multiprocessor (SMP), 37
sync, 103
synchronous static RAM (SSRAM), 53
Synopsys Design Constraint (SDC), 497
syntax-directed approach, 343
synthesisable RTL, 404
synthesisable subset, 340, 420
synthetic data source, 385
system architect, 16
system integrator, 327
system interconnect generator, 82, 127
system invariant, 371
system load average, 193
system PC, 385
SystemVerilog Assertions (SVA), 365, 370, 384
systolic array, 326

562

Index

verification reuse, 477
Verilog Change Dump (VCD), 232
vertical gate all around (VGAA), 417
very large-scale integration (VLSI), 405, 412
very long instruction word (VLIW), 35
victim store, 41
virtual channel (VC), 111, 118
virtual clock, 497
virtual machinemonitor (VMM), 209
virtual platform, 16, 220
virtual queueing, 244
virtual-circuit routing, 116
VLSI circuit, 410
voltage transfer characteristic, 88
voltage-controlled oscillator (VCO), 212
vonNeumann bottleneck, 28

W
wafer, 412
wafer yield, 487
WaR hazard, 289
warm-up traffic, 83
watchdog timer (WDT), 70
watchpoint register, 201
water-filling algorithms, 159
WaWhazard, 289
way cache, 41
weakmemory orderingmodel, 96
wear levelling, 62
window lot discipline, 477
wiring or metal limited, 445
wormhole routing, 117
worst negative slack (WNS), 214
write allocate, 42
write buffer, 40
write coalescing, 40
write posting, 84
write-through, 40
writeback, 40
write posting, 109

X
X-propagation checking, 389, 392
Xon/Xoff flow control, 65, 123

Y
yield, 487
yield-based analysis, 506

Z
zapping, 483
Zeno hybrid systemmodel, 437
zero-delaymodel, 433
zero-insertion-force socket, 515

564

Index

verification reuse, 477
Verilog Change Dump (VCD), 232
vertical gate all around (VGAA), 417
very large-scale integration (VLSI), 405, 412
very long instruction word (VLIW), 35
victim store, 41
virtual channel (VC), 111, 118
virtual clock, 497
virtual machinemonitor (VMM), 209
virtual platform, 16, 220
virtual queueing, 244
virtual-circuit routing, 116
VLSI circuit, 410
voltage transfer characteristic, 88
voltage-controlled oscillator (VCO), 212
vonNeumann bottleneck, 28

W
wafer, 412
wafer yield, 487
WaR hazard, 289
warm-up traffic, 83
watchdog timer (WDT), 70
watchpoint register, 201
water-filling algorithms, 159
WaWhazard, 289
way cache, 41
weakmemory orderingmodel, 96
wear levelling, 62
window lot discipline, 477
wiring or metal limited, 445
wormhole routing, 117
worst negative slack (WNS), 214
write allocate, 42
write buffer, 40
write coalescing, 40
write posting, 84
write-through, 40
writeback, 40
write posting, 109

X
X-propagation checking, 389, 392
Xon/Xoff flow control, 65, 123

Y
yield, 487
yield-based analysis, 506

Z
zapping, 483
Zeno hybrid systemmodel, 437
zero-delaymodel, 433
zero-insertion-force socket, 515

564

The Arm Education Media Story

We are Arm
Education Media:
Unleashing Potential
Discover more at www.arm.com/education

Given the vast reach of Arm’s computer chip
and software designs, our aim at Arm
Education Media is to play a leading role in
addressing the electronics and computing skills
gap; i.e., the disconnect between what
engineering students are taught and the skills
they need in today’s job market.

Launched in October 2016, Arm Education
Media is the culmination of several years of
collaboration with thousands of educational
institutions, industrial partners, students,
recruiters and managers worldwide. We
complement other initiatives and programs
at Arm, including the Arm University Program,
which provides university academics worldwide
with free teaching materials and technologies.

Via our subscription-based digital content hub,
we offer interactive online courses and
textbooks that enable academics and students
to keep up with the latest Arm technologies.

We strive to serve academia and the developer
community at large with low-cost, engaging
educational materials, tools and platforms.

Did you know that
Arm processor design
is at the heart of
technology that touches
70% of the world’s
population - from sensors
to smartphones to super
computers.

Unleashing potential with #armeducation

Professional Certificate in Embedded Systems Essentials with Arm (on the edX platform)

Efficient Embedded Systems Design and Programming

Rapid Embedded Systems Design and Programming

Internet of Things

Graphics and Mobile Gaming

Real-Time Operating Systems Design and Programming

Introduction to System-on-Chip Design

Advanced System-on-Chip Design

Embedded Linux

Mechatronics and Robotics

Arm Education Media Online Courses
Our online courses have been developed to help students learn
about state of the art technologies from the Arm partner ecosystem.
Each online course contains 10-14 modules, and each module
comprises lecture slides with notes, interactive quizzes,
hands-on labs and lab solutions.

The courses will give your students an understanding of Arm
architecture and the principles of software and hardware system
design on Arm-based platforms, skills essential for today’s
computer engineering workplace.

For more information, visit www.arm.com/education

Av ailable Now:

Arm Education Media Books

The Arm Education books program aims to take learners from foundational knowledge and
skills covered by its textbooks to expert-level mastery of Arm-based technologies through
its reference books. Textbooks are suitable for classroom adoption in Electrical Engineering,
Computer Engineering and related areas. Reference books are suitable for graduate students,
researchers, aspiring and practising engineers.

For more information, visit www.arm.com/education

Available now, in print and ePub formats:

Embedded Systems Fundamentals with Arm
Cortex-M based Microcontrollers:
A Practical Approach, FRDM-KL25Z EDITION
by Dr Alexander G. Dean
ISBN 978-1-911531-03-6

Embedded Systems Fundamentals with Arm
Cortex-M based Microcontrollers:
A Practical Approach, NUCLEO-F09IRC EDITION
by Dr Alexander G. Dean
ISBN 978-1-911531-26-5

Digital Signal Processing using Arm Cortex-M
based Microcontrollers: Theory and Practice
by Cem Ünsalan, M. Erkin Yücel and H. Deniz Gürhan
ISBN 978-1911531-16-6

Operating Systems Foundations with Linux
on the Raspberry Pi
by Wim Vanderbauwhede and Jeremy Singer
ISBN 978-1-911531-20-3

Fundamentals of System-on-Chip Design on Arm
Cortex-M Microcontrollers
by René Beuchat, Florian Depraz, Sahand Kashani
and Andrea Guerrieri
ISBN 978-1-911531-33-3

System-on-Chip with Arm Cortex-M Processors
by Joseph Yiu, Distinguished Engineer at Arm
ISBN 978-1-911531-19-7

Arm Helium Technology
M-Profile Vector Extension (MVE) for Arm
Cortex-M Processors
by Jon Marsh
ISBN: 978-1-911531-23-4

Arm Education Media is a publishing operation within Arm Ltd, providing a range of educational materials
for aspiring and practicing engineers. For more information, visit: arm.com/resources/education

Modern System-on-Chip
Design on Arm
SoC design has seen significant advances in the last decade and Arm-based silicon has often been at
the heart of this revolution. Today, entire systems including processors, memories, sensors and
analogue circuitry are all integrated into one single chip (hence “System-on-Chip” or SoC). The aim
of this textbook is to expose aspiring and practising SoC designers to the fundamentals and latest
developments in SoC design and technologies using examples of Arm® Cortex®-A technology and
related IP blocks and interfaces. The entire SoC design process is discussed in detail, from memory
and interconnects through to validation, fabrication and production. A particular highlight of this
textbook is the focus on energy efficient SoC design, and the extensive supplementary materials
which include a SystemC model of a Zynq chip.

This textbook is aimed at final year undergraduate students, master students or engineers in the field
looking to update their knowledge. It is assumed that readers will have a pre-existing understanding
of RTL, Assembly Language and Operating Systems. For those readers looking for a entry-level
introduction to SoC design, we recommend our Fundamentals of System-on-Chip Design on Arm
Cortex-M Microcontrollers textbook.

Table of contents

1 Introduction to System-on-Chip

2 Processors, Memory and IP Blocks

3 SoC Interconnect

4 System Design Considerations

5 Electronic System-level Modelling

6 Architectural Design Exploration

7 Formal Methods and Assertion-
based Design

8 Fabrication and Production

9 Putting Everything Together

Dr. David J. Greaves, PhD CEng. is a
Senior Lecturer in Computing Science at
the University of Cambridge, UK and a
Fellow of Corpus Christi College.

In 1995, Dr Greaves implemented
CSYN, one of the first Verilog compilers
for synthesising hardware specifically
for field programmable gate arrays. This

compiler was distributed widely among local companies
on the Cambridge Science Park and also used for
undergraduate teaching. It was licensed to a multinational
to bundle with its own family of FPGAs.

Dr Greaves holds at least five international patents in
the field of communications and electronics. His current
research interests remain in the field of compilation tools
for design automation and scientific acceleration.

